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Abstract

Data perturbation is a technique for generating synthetic data by adding “noise” to raw data, which 

has an array of applications in science and engineering, primarily in data security and privacy. One 

challenge for data perturbation is that it usually produces synthetic data resulting in information 

loss at the expense of privacy protection. The information loss, in turn, renders the accuracy loss 

for any statistical or machine learning method based on the synthetic data, weakening downstream 

analysis and deteriorating in machine learning. In this article, we introduce and advocate a 

fundamental principle of data perturbation, which requires the preservation of the distribution of 

raw data. To achieve this, we propose a new scheme, named data flush, which ascertains the 

validity of the downstream analysis and maintains the predictive accuracy of a learning task. It 

perturbs data nonlinearly while accommodating the requirement of strict privacy protection, for 

instance, differential privacy. We highlight multiple facets of data flush through examples.

Media Summary

The explosive growth of large volumes of data with complex structures demands the wide usage 

of data in applied sciences. In privacy protection, data perturbation is an effective technique. For 

instance, it privatizes the U.S. Decennial Census Data to protect the confidentiality of individuals 

by the standard of differential privacy Kenny et al. (2021) and United States Census Bureau 

(2020). However, the scientific community criticizes such privatization methods for producing 

synthetic data invalidating downstream statistical analysis at the expense of satisfying differential 

privacy. The lack of statistical accuracy raises concern for the interpretability and reliability of 

any statistical and machine learning solutions to a practical problem. Despite its great potential 

in domain sciences, the data science community underappreciates the data perturbation technique. 

Here, we introduce and advocate a fundamental principle of data perturbation that retains the 

distributional information, validating downstream analysis, and delivering accurate prediction and 

reliable interpretation, for raw and privatized data.
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1. Introduction

Data perturbation gives rise to synthetic data by adding noise to raw data, which has had 

vast applications since the pioneering work of Breiman on estimating the prediction error 

in regression (Breiman, 1992). In the data privacy domain, data perturbation can ensure a 

prescribed level of privacy protection by imposing a suitable noise level (Day One Staff, 

2018; Dwork, 2006; Erlingsson et al., 2014; Kaissis et al., 2020; Santos-Lozada et al., 2020; 

Venkatramanan et al., 2021). In statistics and data science, data perturbation is an effective 

tool for replicating a sample, for example, developing Monte Carlo methods of model 

selection (Breiman, 1992; Shen & Ye, 2002). In this situation, data perturbation generates 

synthetic data to resemble raw data in terms of distribution. Despite its great potential in 

many domain sciences, the data science community underappreciates the data perturbation 

technique.

In the differential privacy literature, data perturbation privatizes raw data to satisfy the 

requirement of ε-differential privacy (Dwork, 2006; Dwork, McSherry, et al., 2006), for 

example, by the Laplace method (Dwork, McSherry, et al., 2006; Dwork & Roth, 2014). 

Data perturbation can also mask sensitive classification rules in data mining (Delis et al., 

2010). One major challenge for privacy protection is that most privatization methods suffer 

from information loss in a privatization process to satisfy a prescribed level of privacy 

protection (Gong & Meng, 2020; Goroff, 2015; Santos-Lozada et al., 2020). As a result, 

privatization weakens downstream statistical analysis and yields unreliable machine learning 

solutions. One remedy to information loss is to lower the level of protection to trade 

for reasonably good accuracy of statistical analysis. This common practice refers to as 

low-error-high-privacy differential privacy in the survey literature (Chen et al., 2016; Reiter, 

2019).

In the statistics literature, data perturbation has been utilized for model assessment as in 

the generalized degrees of freedom (Ye, 1998) and for developing adaptive model selection 

criteria (Shen & Huang, 2006; Shen & Ye, 2002) and model averaging criteria for nonlinear 

models (Shen et al., 2004), estimating the generalization error (Shen & Wang, 2006), and 

performing causal inference (Xue et al., 2021). One challenge here is how to generate 

synthetic data to validate statistical inference despite the significant progress for statistical 

prediction.

In many applied sciences, synthetic data must meet task-specific requirements for an 

end-user. In privacy protection, synthetic data or privatized data must meet some privacy 

protection standards to guard against disclosure. In statistics, synthetic data replicates a 

random sample so that users can perform statistical analysis, simulate phenomena and 

operational behaviors of a real-world process, and train machine learning algorithms. For 

instance, Candes et al., 2018 uses knockoffs, a special kind of synthetic data, to estimate 

the Type I error or false discovery error rate in feature selection. In such a situation, one 
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challenge is how to ensure that synthetic data would represent raw data while satisfying 

task-specific requirements to meet an end user’s needs.

To meet the challenges, we first review the data perturbation technique and introduce 

a scheme of data perturbation, what we call data flush, to guide users to design a 

perturbation process to validate the downstream analysis and yield reliable solutions. Then, 

we demonstrate the utility of data flush in two disparate yet intertwined areas: statistical 

inference and differential privacy. Critically, this scheme enables to satisfy any level of 

privacy protection for differential privacy while maintaining the statistical accuracy of 

privatized data as if one used raw data. Finally, we showcase the data-flush scheme in that it 

can simultaneously satisfy requirements in both differential privacy and statistical inference.

The data-flush scheme is distinctive in three ways. First, it generates multiple perturbed 

copies of the raw data following a target distribution. Second, it can ensure differential 

privacy while preserving the target distribution. Third, it applies to nearly all kinds of data, 

particularly continuous, discrete, mixed, categorical, and multivariate. To the best of our 

knowledge, Bi and Shen, 2021 and Woodcock and Benedetto, 2009 are only methods of 

preserving a target distribution, where the former satisfies differential privacy while the 

latter only limits disclosure risk. Furthermore, data flush also maintains its link with the 

raw data identifier or the user’s identification, permitting data integration, data sharing, and 

personalization.

This article consists of five sections. Section 2 introduces the data-flush scheme and 

discusses its applicability in differential privacy and statistics. Section 3 develops a pivotal 

inference method based on data flush, which ascertains the validity of statistical inference. 

Section 4 applies the data-flush scheme to the 2019 American Community Survey Data 

to demonstrate its effectiveness in differential privacy protection and contrast statistical 

inference before and after privatization. Section 5 discusses future directions of data 

perturbation. The Appendix contains some technical details.

2. Data flush

This section introduces a fundamental principle of data perturbation, stating that data 

perturbation must preserve the distribution of raw data to ascertain the validity of the 

downstream analysis and the reliability of a machine learning solution. Applying this 

principle, we derive a data perturbation scheme, called data flush, based on a family of 

nonlinear data perturbations, which simultaneously satisfy the requirements of differential 

privacy and valid statistical analysis.

2.1. Data perturbation.

Data perturbation adds noise directly to raw data (Breiman, 1992; Shen & Ye, 2002; Ye, 

1998), which is called linear perturbation. As argued in Bi and Shen, 2021, a nonlinear 

perturbation is necessary to preserve data distributions while satisfying the requirement of 

ε-differential privacy (Dwork, 2006; Dwork, McSherry, et al., 2006).
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Next, we suggest a data-flush scheme, permitting more flexibility beyond linear perturbation 

for various types of data.

Univariate continuous distributions.—Given an independent sample (Z1, . . .,Zn) from 

a cumulative distribution function (CDF) F, we perturb the raw sample to follow a 

prespecified target distribution R. For example, R can be a standard normal distribution 

or a uniform distribution. But more commonly, R = F if F is known and R = F  otherwise, 

where F  is a smooth estimate of the empirical CDF (Bi & Shen, 2021) or a model-specific 

distribution function (Reiter, 2005) such as a normal distribution with an estimated mean.

First, we sample (U1, · · ·,Un) from Uniform[0, 1] and relabel them so that the rank of Ui in 

(U1, · · ·,Un) remains the same as that of Zi in (Z1, . . .,Zn). This transformation from Zi to 

Ui encodes a positive (Spearman’s rank) correlation between the perturbed and the original 

samples, c.f., Lemma 1. Second, suppose we are interested in generating m perturbed 

samples. We add independent continuous noise eij, j = 1, . . .,m, to Ui independently. Then, 

we map Ui + eij to yield a perturbed sample following the target distribution R:

Zij
* = H Ui + eij , H( ⋅ ) = R−1(G( ⋅ )); i = 1, …, n, j = 1, …, m, (2.1)

where G is the CDF of Ui + eij.

The perturbed observation Zij
* follows the target distribution R while Z1j

* , …, Znj
*  are 

independent across i = 1, . . .,n. The distribution of eij can be chosen to satisfy a task-specific 

requirement.

Multivariate continuous distributions.—Given an independent sample (Z1, . . .,Zn) 

following a p-dimensional continuous distribution F, we apply (2.1) to each component Zi
(j)

through the probability chain rule, where Zi = (Zi
(1), …, Zi

(p)). That is, Zi
(1) yields Zij

(1) * , then Zi
(2)

given Zij
(1) *  yields Zij

(2) *  as in (2.1), and so forth. A perturbed sample is

Zij
(1) * = H(1)(Ui

(1) + eij
(1)), Zij

(l) * = H (l)(Ui
(l) + eij

(l)); j = 1, …, m, l = 2, …, p, (2.2)

where (U1
(l), ⋯, Un

(l)) is a Uniform[0, 1] random sample for Zi
(l) and Hi

(l) = (Ri
(l))−1(G( ⋅ )) applies 

to Zi
(l) given Zij

(1) * , …, Zij
(l − 1) *  as in (2.1), with R(l) the conditional distribution of Zi

(l) given 

Zij
(1) * , …, Zij

(l − 1) * . Note that is unnecessary to relabel (U1
(l), ⋯, Un

(l)), l = 2, . . .,p, as the first 

variable in the chain rule has preserved the identifier of raw data.

Discrete and mixed distributions.—A generalization of (2.2) to discrete or mixed 

distributions, including the empirical distribution, is achieved through a smooth version of 

noncontinuous F, which agrees with F at its jump values, see Bi and Shen, 2021 for more 

details. Then, (2.2) applies by replacing F with its smooth version.

2.2. Key properties and benefits.

Several characteristics of data-flush in (2.2) are worth mentioning. First, Zij
* follows 

the target distribution R. This distribution-preservation property ensures statistically valid 

analysis on perturbed data. Second, Zij
* is positively correlated with Zi

(1), as measured by 
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the Spearman’s rank coefficient when eij is small; i = 1, . . .,n; c.f., Lemma 1. In contrast 

to synthetic data generation methods, this property guarantees that data flush maintains 

the data identifier or index i between Zij
* and Zi, which is accomplished through the first 

variable of interest Zi
(1). Hence, it permits personalized analysis at the individual level. 

Third, Zi1
* , …, Zim

*  are conditionally independent given Ui = (Ui
(1), …, Ui

(p)); i = 1, . . ., n, while 

(Z1j
* , …, Znj

* ) are unconditionally independent; j = 1, · · ·,m.

Lemma 1.—In (2.2), the Spearman’s rank coefficient ρ({Zi
(1)}i = 1

n , {Zij
(1) *}i = 1

n ) 1 as eij → 0 

in probability; i = 1, . . .,n, j = 1, . . .,m.

The proof is given in the Appendix.

2.3. Applications.

2.3.1. Differential privacy.—This subsection reviews the application of data 

perturbation in differential privacy and present the advantages of data flush. Differential 

privacy becomes the gold standard of privacy protection for publicly released data, for 

example, census data (Kenny et al., 2021; United States Census Bureau, 2020). Given a 

prescribed level (i.e., privacy factor) ε > 0 of privacy protection, ε-differential privacy 

(Dwork, 2006) requires that the alteration of any original data leads to a small change of the 

released information.

The differential privacy literature focuses on the design of privatization methods satisfying 

ε-differential privacy. Towards this end, Wasserman and Zhou, 2010 laid the statistical 

foundation of differential privacy. As noted in Goroff, 2015,Santos-Lozada et al., 2020, and 

Gong and Meng, 2020, essentially all privatization methods weaken downstream statistical 

analysis at the expense of achieving a prescribed level of privacy protection, which is 

referred to as the trade-off between data privacy and usefulness. Moreover, differential 

privacy usually entails an impractical requirement on raw data, namely, the bounded support 

of its underlying data distribution (Wasserman & Zhou, 2010).

To alleviate the accuracy loss and the boundedness requirement, scientists attempt to 

approximately preserve some summary statistics of raw data in a privatization process. 

Snoke and Slavković, 2018 suggested a privatization method by maximizing a distributional 

similarity between privatized and raw data. Liu, Vietri, Steinke, et al., 2021 (i.e., PMW) 

leveraged public data as prior knowledge to improve differentially private query release, 

and Liu, Vietri, and Wu, 2021 (i.e., GEM) developed an iterative method to approximately 

preserve the answers to a large number of queries for discrete data. Boedihardjo et al., 2021 

improved the statistical accuracy of the Laplacian method by estimating the distribution of 

raw data. However, none of these methods preserved the probability distribution of raw data, 

although they intend to retain some summary statistics such as the distributional similarity 

and answers of queries. Furthermore, GEM focused on a weaker version of ε-differential 

privacy, known as (ε, δ)-differential privacy (Dwork, Kenthapadi, et al., 2006), where δ 
denotes the probability of information being leaked.

Despite the progress, information loss for downstream statistical analysis prevails for 

most privatization methods. Preservation of summary statistics may be inadequate as an 
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evaluation metric requires the knowledge of the data distribution for statistical analysis or 

a machine-learning task. For example, GEM suffers from a loss of statistical accuracy even 

if it intends to preserve the discrete distribution of multi-way interactions. As illustrated in 

Table 1, GEM not only renders a significant amount of accuracy loss in terms of predictive 

performance and parameter estimation in regression analysis but also requires excessive 

computation to achieve privatization. In contrast, the data-flush scheme (2.2) maintains high 

statistical accuracy due to distribution preservation, which has greater data usefulness for 

downstream analysis. More simulation details are provided in the Appendix.

Data flush adds suitable noise to guarantee a prescribed level of privacy protection 

while applying a nonlinear transformation to preserve a target distribution to validate the 

downstream analysis and provide reliable solutions. For example, one can adopt a version 

of (2.2) with noise eij following a Laplace(0, 1/ε) distribution to guarantee ε-differential 

privacy (Bi & Shen, 2021), and a smoothed empirical CDF to approximates the original 

data distribution. However, the empirical CDF has to be built upon an independent sample 

to satisfy the definition of ε-differential privacy. Public data from similar studies can serve 

as the independent sample, such as past American Community Survey data for the current 

American Community Survey or Census. As an alternative, one can also consider a holdout 

sample, which is a random subset of the raw data (Bi & Shen, 2021). In this situation, the 

holdout sample is fixed once selected. Any alteration, query, or release of the holdout sample 

is not permissible. This guarantees the strict privacy protection of individuals in the holdout 

sample. In this sense, differential privacy does not apply to the holdout sample, since query 

and alteration as required by the definition of differential privacy are not allowed.

2.3.2. Inference.—This subsection briefly comments on data flush as a tool for 

statistical inference. A crucial aspect of data flush is its capability of recovering the exact 

distribution of a pivotal quantity in the finite sample regime, as shown in Theorem 1. In 

contrast, a resampling method such as bootstrap (Efron, 1992; R. J. Tibshirani & Efron, 

1993) approximates the distribution of a pivotal via a Monte Carlo method, which can not 

recover the exact distribution in the finite sample regime. Moreover, data flush has the great 

potential to treat the issue of the bias in inference after model selection, as demonstrated in 

Section 3. In contrast, standard bootstrap suffers from the difficulty of discontinuities of an 

estimate (Efron, 2004).

2.3.3. Other applications.—Data flush has applications in other areas.

Model sensitivity.: To quantify the impact of model selection on estimation, Ye, 1998, Shen 

and Ye, 2002, and Shen and Wang, 2006 define the generalized degrees of freedom using 

the notion of model sensitivity through a linear perturbation form Zi
* = Zi + εi with εi ~ N(0, 

ε2) for a Gaussian sample (Z1, . . .,Zn). Data flush provides a means of evaluating the model 

sensitivity for various data.

Data integration and personalization.: Data-flush in (2.2) retains a positive rank 

correlation between perturbed and raw observations for the first component (Z1
(1), ⋯, Zn

(1)), as 

suggested by Lemma 1. This first component serves as a data identifier for data integration 

and personalization. In privacy protection, for instance, privatized data is released for one 

Shen et al. Page 6

Harv Data Sci Rev. Author manuscript; available in PMC 2023 March 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



time period and can be merged with forthcoming data for different periods via a data 

identifier. By comparison, a resampling method distorts any data identifier.

3. Pivotal inference

This section develops a data perturbation tool for pivotal inference based on raw data 

without privacy concerns. We apply the data-flush scheme (2.2). The perturbed data 

replicate raw data to simulate the sampling distribution of a pivotal, which constructs a 

confidence interval or a test for parameter θ.

Let T = T(θ, θ) and θ = θ(Z) denote a pivotal and an estimate based on a random sample 

Z = (Z1, . . .,Zn), with each Zi following a probability distribution F(θ), and F is known 

but θ is unknown. The distribution of T is independent of θ, which requires a Monte-Carlo 

resampling method such as bootstrap to estimate, as its analytic form is often unavailable. 

However, such a resampling method may suffer the difficulty of inference after model 

selection. As pointed out in Efron, 2014, one needs to adjust for bootstrap by smoothing 

through bagging (Breiman, 1996) to treat the erratic discontinuities of an estimate. In such a 

situation, data flush provides an effective means of approximating the distribution of T.

Data flush generates a pseudo sample Z* = Z1
*, …, Zn

*  from Z = (Z1, . . .,Zn) according 

to (2.2) so that the conditional distribution Zi
* given Zi follows a target distribution 

R = F(θ) θ = θ. Then, we compute the perturbed pivotal T ∗ = T(θ, θ ∗), where θ ∗ = θ Z∗  is the 

estimate based on Z∗ by applying the same statistical procedure for θ Z .

Theorem 1 exhibits a useful yet less known fact about the conditional distribution of T∗ 

given Z, which can substitute an unknown distribution of T for pivotal inference. Note that 

the former can be computed but not the latter.

Theorem 1.

(Distribution preservation) The conditional distribution of T∗ given Z remains the same as 
the distribution of T for any Z. Hence, any test or a confidence interval on the conditional 
distribution of T∗ given Z is exactly as if the distribution of T would have been used.

The proof is given in the Appendix.

Data-flush Monte-Carlo inference.—For an exact or asymptotic pivotal, we may 

compute the conditional distribution of T∗ given Z via a Monte-Carlo approximation while 

correcting bias through data perturbation to improve the finite-sample performance. Data 

perturbation permits estimation of the bias of a statistical procedure through repeated 

experiments as in simulations, as illustrated in a subsequent data example. The following 

data-flush Monte-Carlo method summarizes this proposal.

Step 1: Monte-Carlo approximation of the distribution of T.—Generate D 
independent perturbed samples Zd

* = Z1d
* , …, Znd

*  according to (2.2), with each Z1d
*  following 

R = F(θ); d = 1, . . .,D, m = D. Note that we may choose any continuous unbounded 

distribution of eij in (2.2) for a task-specific purpose (such as a Laplace distribution to 
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satisfy ε-differential privacy). In what follows, D refers to as a Monte-Carlo size. Compute 

the perturbed pivotal Td
* = T(θ, θ Zd

* ); d = 1, . . .,D. Compute the empirical distribution of 

T1
*, …, TD

* , rendering the exact distribution of T as D → ∞.

Step 2: Bias-correction.—Compute the bias estimate B = D−1∑d = 1
D (θ Zd

* − θ). Compute 

the biased-corrected estimate θ c = θ + B.

Step 3: Inference.—Use T(θ c, θ) to construct a confidence interval based on the empirical 

distribution of T1
*, …, TD

* .

Next, we illustrate this data-flush inference method by two examples.

Exact distribution of a pivotal.—The first example concerns the distribution of a 

pivotal quantity for construction of a confidence interval of the population mean θ of a 

normal distribution with unknown σ2. The pivotal is of the form T(Y , θ) = Y − θ
S , where Y

is the sample mean and S is the sample standard deviation. Here, we apply the data-flush 

inference scheme to simulate the distribution of perturbed pivotal T∗ and compare it with 

the bootstrapped pivotal (Efron, 1992) and the exact distribution of T. To generate perturbed 

samples for inference, we apply (2.1) with eij following a Laplace(0, 1/ε) distribution with ε 
= 0.01 and R being the CDF of N Y , S2  given Z.

Figure 1 reveals one salient aspect of data flush: It renders a nearly identical distribution 

of T, whereas nonparametric bootstrap differs substantially for a small sample size n = 5. 

In other words, nonparametric bootstrap’s approximation accuracy depends highly on the 

sample size n. Indeed, data flush yields an exact distribution of a pivotal as the Monte-Carlo 

size D → ∞. This observation agrees with the result of Theorem 1.

High-dimensional regression.—Our second example focuses on the construction of a 

confidence interval in linear regression on a vector of p predictors:

Y i = βTXi + εi; εi N 0, σ2 ; i = 1, …, n, (3.1)

where p could be substantially larger than the sample size n, β = (β1, . . .,βp) is a vector 

of regression coefficients, Xi = (Xi1, . . .,Xip) ~ N(0,Σ) is a vector of predictors that are 

independent of the error εi, and the (j, k)-th element of the covariance matrix Σ is ρ|j−k|, 

and σ2 is an unknown error variance. Our goal is to construct a confidence interval for an 

individual coefficient βl with other covariates involving model selection.

In a high-dimensional situation, one often applies the method of regularization for 

dimension reduction. As a result of the inherent bias from regularization, a standard method 

needs debiasing and uses an asymptotic distribution of debiased LASSO estimate (Zhang 

& Zhang, 2014) with L1-penalty (R. Tibshirani, 1996) given a prespecified regularization 

parameter. Alternatively, one may invert a constrained likelihood ratio test with the L0-

constraint (Zhu et al., 2020). Yet, the inherent bias due to regularization persists in the finite 

sample regime even after debiasing.
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To construct a confidence interval for parameter βl, we apply the constrained L0-norm 

regression (Shen et al., 2012) to select variables excluding variable Xl while treating 

other regression parameters as a nuisance, where the truncated L1-penalty function (TLP) 

constraint approximates the L0-constraint for computation. Towards this end, we apply 

the data-flush Monte-Carlo inference method based on (2.1) for a confidence interval to 

generate synthetic samples to estimate the distribution of an asymptotic pivotal quantity 

T = (β l − βl)/SE(β l) (Zhu et al., 2020), where SE(β l) is the standard error of the constrained 

L0-norm regression (CTLP) estimate β l.

To replicates Xi, Y i i = 1
n  for inference, we apply (2.1), where eij is independently sampled 

from the Laplace(0, 1/ε) distribution and ε = 0.01, Then, Y ij
* = μ Xi + εij

* satisfies ε-

differential privacy for any j, where εij
* = R−1 G Ui + eij  in (2.1) and μ Xi = ∑l = 1

p β lXil and 

σ2 are the fitted value and the standard estimate of σ2 based on a holdout sample that is 

independent of the inference sample, R is the CDF of N 0, σ2 , and G is the CDF of Ui +eij 

with Ui following the Uniform[0, 1] distribution.

We perform simulations with the true parameters β1 = β2 = β3 = 1 and βj = 0 otherwise, with 

σ = 0.5 and ρ = 0.5. Then, we apply (2.1) with m = D/n and D = 10p to construct a 95% 

confidence interval for each βj based on CTLP. The results for β1 and β4 are representative 

and are presented. Specifically, we use the glmtlp package in R to compute the CTLP 

estimate β l and the default σ2 there.

Table 2 shows that the empirical coverage probability for β1 and β4 are close to the 

nominal level 95% in each scenario. The discrepancy between the empirical converge and its 

target 95% is because the asymptotic pivotal may suffer from the bias in the finite-sample 

situation. Overall, the data-flush Monte-Carlo inference scheme yields a credible confidence 

interval for a non-smooth problem involving model selection.

4. American Community Survey data analysis

This section applies the data-flush scheme (2.2) to the 2019 American Community Survey 

(ACS) Data. Notice that, the existing literature in privacy has not thoroughly depicted 

low-error-high-privacy differentially private methods for complex sample surveys such 

as the ACS (Reiter, 2019). We show that data generated by data flush is valid for 

statistical inference while simultaneously guaranteeing differential privacy. In particular, 

we demonstrate that confidence intervals constructed upon perturbed copies of raw data are 

close to those on perturbed copies of privatized data. In other words, the data-flush scheme 

can simultaneously achieve two disparate objectives: differential privacy and statistical 

inference.

The American Community Survey collects demographic data from 3.24 million persons 

nation-wide, roughly 1% of the population in the Year 2019 (Ruggles et al., 2021). 

Statistical analysis of survey data has a long history. Muralidhar and Sarathy, 2003 provided 

a theoretical basis for data perturbation with a definition of disclosure risk requirement. 

Raghunathan et al., 2003 and Reiter, 2005 proposed to use multiple imputation to limit 

the disclosure risk of microdata. Woodcock and Benedetto, 2009 applied a transformation 
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to maximize data utility while minimizing incremental disclosure risk. Jiang et al., 

2021 proposed a perturbation method with a masking component to preserve inferential 

conclusions such as confidence intervals. While most of the above methods aim at limiting 

the data disclosure risk, they are not designed for differential privacy and are not able to 

preserve distributions for most data types.

Alternatively, an investigator can apply data flush to privatize survey data like ACS data 

without incurring information loss when the data-flush scheme preserves the distribution of 

raw data. For the ACS dataset, we use (2.2) for privatization while applying the data-flush 

Monte-Carlo inference method to both the raw and privatized data. For an illustration, we 

make a pairwise comparison of two confidence intervals before and after privatization for 

coefficients of weighted regression.

In particular, we investigate the impact of privatization by (2.2) on the statistical accuracy 

of regression analysis of the total personal income on 16 covariates, including an 

individual’s age (AGE), geographical region (REGION), the population of the residential 

metro/micro area (METPOP10, the logarithm of METPOP10 to be used), metropolitan 

status (METRO), mortgage status (MORTGAGE), sex (SEX), marital status (MARST), 

race (RACE), ethnicity (HISPAN), ability to speak English (SPEAKING), health insurance 

coverage (HCOVANY), educational attainment (EDUCD), employment status (EMPSTAT), 

occupation (OCC), migration status (MIGRATE1), and veteran status (VETSTAT). For our 

analysis, we select individuals with a positive total pre-tax personal income from all sources 

during the 12 months precedent to the survey. This preprocessing renders a sample of 

2,389,971 individuals. See the Appendix for more specific details regarding preprocessing. 

The data types, as well as the number of levels for nominal variables, are summarized in 

Table 3. Then, we regress the logarithm of total personal income on these 16 covariates 

using the person weight (PERWT) as the weights for regression. A confidence interval (CI) 

for each regression coefficient is constructed accordingly before and after privatization.

To satisfy ε-differential privacy, we apply (2.2) with eij following a Laplace(0, 17/ε) 

distribution to preserve the joint distribution of 16 covariates and 1 response variable across 

common data types. In this fashion, privatization protects each individual’s information. 

To illustrate this point, we scrutinize the histogram of the variable AGE before and after 

privatization in Figure 2, which suggests that little distributional difference is evident. 

Note that the two histograms before and after privatization are nearly identical, with the 

mean (standard deviation) being 50.80(19.17) and 50.82(19.17), respectively. Moreover, 

we randomly choose two categorical variables, namely employment status (EMPSTAT) 

and migration status (MIGRATE1), to examine the joint distribution before and after 

privatization, which are the 13th and 15th variables out of 17 variables in the sequential 

privatization process through (2.2). As suggested by Table 4, the data flush scheme 

preserves the joint distribution quite well after privatization, particularly for the two-way 

associations, except for one cell (States-abroad, Non-labor) with small counts. In conclusion, 

the distribution preservation property of data flush ascertains the validity of downstream 

statistical inference while protecting data privacy.
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We apply the data-flush Monte-Carlo method to construct confidence intervals for raw and 

privatized data. In particular, for each replication, we only perturb the linear regression 

residuals and follow the high-dimensional regression example in Section 3. As indicated by 

Figure 3, the data-flush scheme (2.2) preserves the target distribution of raw data and hence 

yields nearly identical confidence intervals except for several ones with shifting centers.

Privacy loss usually occurs for high-dimensional data, which is an inherent challenge for 

any method in differential privacy. In particular, to maintain the same accuracy level, the 

overall level of privacy protection for each variable tends to decay as the number of variables 

increases. In our situation, the overall level of privacy protection, defined by the privacy 

factor ε, is 1 for ε-differential privacy, which requires a stricter level of privacy protection 

1/17 for each of the 17 variables. It is equivalent to that each variable requires independent 

Laplace(0, 17/ε), where the noise variance greatly exceeds the ranges of many variables in 

the ACS data, especially for binary dummy variables.

5. Discussion

Data perturbation has its great potential as an effective tool for replicating a sample, 

which can apply to data security, statistical inference, data integration, among others. The 

fundamental principle, distribution preservation for data perturbation, that we described 

in this article allows users to design data perturbation schemes, such as data flush, to 

satisfy task-specific requirements, as we showcase for statistical inference with differential 

private data in Section 4. On this ground, synthetic data generated by such a scheme yields 

statistically valid analysis and high predictive accuracy of a machine learning task.

Several future directions of research include a more flexible model-based estimation (e.g., 

one including both parametric and empirical components) for high-dimensional target 

distributions and a compatible data perturbation scheme, as well as generalizations to 

independent but non-identically distributed data, time-series data, and unstructured data.
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Appendix A.: Proof of Lemma 1

By construction, (U1
(1), ⋯, Un

(1)) follows the uniform distribution and retains the ranks of 

(Z1
(1), ⋯, Zn

(1)). Then, the Spearman’s rank correlation ρ({Zi
(1)}i = 1

n , {Ui
(1)}i = 1

n ) = 1. It follows from 

the strictly increasing property of H(1) that ρ({Zi
(1)}i = 1

n , {Zij
(1) *}i = 1

n ) = 1 when eij = 0 for any 

fixed j. By continuity, ρ({Zi
(1)}i = 1

n , {Zij
(1) *}i = 1

n ) 1 as eij → 0 in probability. This completes the 

proof.
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Appendix B.: Simulation Comparison for Poisson Regression

To compare with the method of GEM (Liu, Vietri, & Wu, 2021), we generate a sample of 

paired data Xi, Y i i = 1
n , where Xi and Yi need to be discrete to accommodate the requirement 

for GEM. First, we sample (X1,···,Xn) from a 5-dimensional normal distribution N(0, Σ), 

where the off-diagonal and diagonal values of the covariance matrix Σ are 0.7σ2 and σ2, 

and σ = 1, 10, 100. Then, we discretize them by rounding each component of Xi to the 

smallest integer above its value. The average numbers of distinct values for (X1,···,Xn) are 

8, 64, and 465, respectively for σ = 1, 10, and 100. This discretization allows us to evaluate 

the performance of each method under an unknown true distribution. Second, we generate 

a Poisson response Yi with mean exp Xi
′β ; i = 1, · · ·,n, where β = 1

5σ , …, 1
5σ  yields a 

reasonable range of Yi.

For data flush, we set the privacy factor to be ε = 1 to ensure strict protection under ε-

differential privacy. To apply (2.2), we randomly select 25% of Xi, Y i i = 1
n  as a holdout sample 

to construct a smoothed empirical CDF and use the remaining sample for privatization. 

For GEM, we let (ε, δ) = (1, 1
n2 ) for (ε, δ)-differential privacy. Note that (ε, δ)-differential 

privacy with δ = 0 reduces to ε-differential privacy. GEM intends to preserve W three-way 

interactions, where we choose W = 5 out of 20 possible three-way interactions from 6 

variables (Yi and components of Xi), with W denoting the number of interactions to 

consider. Then, we apply the GEM algorithm1 in Liu, Vietri, and Wu, 2021 to privatize 

Xi, Y i i = 1
n  of n = 2500 using the default values with the number of iterations T = 10.2

Given privatized data, we obtain estimated regression coefficient vector β in Poisson 

regression and evaluate predictive performance by the Kullback-Leibler divergence and 

parameter estimation by the root mean square error between the estimated and true 

regression coefficients β. As a reference, we also report simulation results on the non-private 

data Xi, Y i i = 1
n .

Appendix C.: Proof of Theorem 1

By the definition of a pivotal quantity, T(θ1, θ 1) has the same distribution as T(θ2, θ 2) when 

θ j = θ Z(j)  is obtained via the same statistical procedure, where Z(j) follows F(θj); j = 1, 

2. Let θ1 = θ and θ 1 = θ(Z). Let θ2 = θ(Z) and θ 2 = θ Z* . Note that Z∗ given Z follows 

F(θ) while Z follows F(θ). Therefore, the conditional distribution of T * = T(θ2, θ 2) given Z 

remains the same as the unconditional distribution of T = T(θ1, θ 1) for any Z. This completes 

the proof.

1GEM’s code is also available at https://colab.research.google.com/drive/O6vbYotTlovfQnucsFi2f28XJiu5B_eS?usp=sharing.
2In an unreported study, we note that numerical results are stable for T = 15 and W = 10, 15, 20. However, the computational time 
increases dramatically as T or W increases.
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Appendix D.: ACS Data Preprocessing

We preprocess the 2019 American Community Survey data, available at https://

usa.ipums.org. For variable METRO, we combine all other levels exceeding level 2 with 

level 2 to form a new level 2 to indicate “In metropolitan area”. For variable MORTGAGE, 

we merge all levels above level 3 into level 3 to indicate “Yes, have or will have mortgage”. 

For the RACE variable, we merge levels 4 (“Chinese”) and 5 (“Japanese”) with level 6 

to represent “Other Asian or Pacific Islander” and merge level 9 (“Three or more major 

races”) into level 8 (“Two major races”) to represent (“More than one major race”). For 

variable HISPAN, we merge levels from 1 to 4 into level 1 to represent “Hispanic” as there 

are no individuals in the data reporting 9 (“Not Reported”). For variable SPEAKING, we 

merge levels 4 and 5 into level 6 to indicate (“Speak English, but not only English”). For 

variable EDUCD, we merge levels 0 to 2 into 0 to represent “No school (completed),” 

levels from 10 to 61 into 1 to indicate “Nursery school to grade 12”, and levels from 62 

to 64 into 2 to represent “High school graduate, GED, or alternative credential”, levels 

from 65 to 100 into 3 for “Some college”, level 101 into 4 for “Bachelor’s degree”), level 

114 into 5 for “Master degree”, and levels 115 and 116 into level 6 for “Professional 

degree beyond a bachelor’s degree or Doctoral degree”. No other levels are available for 

EDUCD. For variable OCC, we merge occupations based on the 13 subcategories provided 

at https://usa.ipums.org/usa/volii/occ2018.shtml, including “Not Applicable”, “Management, 

Business, and Financial Occupations”, “Computer, Engineering, and Science Occupations”, 

“Education, Legal, Community Service, Arts, and Media Occupations”, “Healthcare 

Practitioners and Technical Occupations”, “Service Occupations”, “Sales and Related 

Occupations”, “Office and Administrative Support Occupations”, “Farming, Fishing, 

and Forestry Occupations”, “Construction and Extraction Occupations”, “Installation, 

Maintenance, and Repair Occupations”, “Production Occupations”, and “Transportation 

and Material Moving Occupations”. For EMPSTAT, we merge “N/A” with “Unemployed”, 

and for MIGRATE1, we merge “Moved between states” and “Abroad one year ago”. 

For VETSTAT, we merge “N/A” with “Not a veteran”. For METPOP10 and INCTOT, 

we take the logarithmic transformation before fitting regression to deal with the long-tail 

distribution. The remaining variables are intact.

Appendix E.: Implementation Details of the ACS Data

After sampling 25% of the ACS data as the holdout sample and leaving the other 75% as 

the to-be-privatized sample to be released, we apply (2.2) to 16 covariates in addition to the 

response sequentially following the order and variable types listed in Table 3.

To achieve privatization, we estimate the conditional distribution of each variable given all 

the previous variables via a corresponding generalized linear model. First, we prioritize 

AGE using the marginal empirical distribution of AGE based on the holdout sample. 

Second, we privatize REGION by fitting multinomial logistic regression of REGION on 

AGE in the holdout sample to estimate the corresponding parameters and then compute the 

probability of each REGION in the to-be-privatized data given the privatized AGE as the 

new covariate. This privatization process continues with the remaining variables following 

the sequential order in Table 3 and using an estimated conditional distribution on the holdout 
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sample by logistic regression, multinomial logistic regression, and linear regression for 

binary, nominal, and normally-distributed data such as log(INCTOT). Note that we privatize 

METPOP10 by the conditional distribution of METPOP10 given REGION without using 

AGE. This assumption appears sensible given that the sample correlation is −0.036 between 

the area and the participant’s age.

The data-flush scheme in (2.2) generates D = 500 conditionally independent samples with 

noise independently following Laplace(0, 0.2), followed by the three steps described in 

Section 3 with a confidence level of 95%.
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Figure 1. 
Illustration of the exact distribution of pivotal for three sample sizes n = 5, 10, 20 based on 

simulated data. Pivotal’s densities for data flush with a Monte Carlo size 105, nonparametric 

bootstrap with a bootstrap size 105, and the t-distribution on n − 1 degrees of freedom are 

represented by solid, dot, and dash curves, respectively.
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Figure 2. 
Histogram of the AGE variable in the ACS data before and after privatization.
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Figure 3. 
Confidence intervals of regression coefficients based on raw data and privatized data, 

represented by gray and red lines and constructed using the data-flush scheme in Section 

3. Regressors from the top to the bottom are the intercept (shifted to the left by 8 units for 

better visualization), AGE, REGION (8 dummy variables), METPOP10, METRO (2 dummy 

variables), MORTGAGE (2 dummy variables), SEX, MARST (5 dummy variables), RACE 

(5 dummy variables), HISPAN, SPEAKENG (2 dummy variables), HCOVANY, EDUCD (6 

dummy variables), EMPSTAT (2 dummy variables), OCC (12 dummy variables), MIGRATE 

(2 dummy variables), and VETSTAT. The confidence intervals based on raw data are 

comparable with those after privatization in terms of the signs of interval centers and 

lengths.
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Table 1.

Private Poisson regression with a privacy factor ε = 1 using raw data, data privatized by data-flush in (2.2), and 

data privatized by GEM (Liu, Vietri, & Wu, 2021). Kullback-Leibler divergence (KL) and root mean square 

error (RMSE) for regression coefficients (with the standard error in parenthesis), together with privatization 

time (Time, in seconds) are presented based on 200 replications. Here σ is the standard deviation of each 

covariate before discretization (a step required by GEM), and NA indicates that an algorithm fails to converge 

within two days.

σ = 1 σ = 10 σ = 100

KL

Raw data 0.001 (0.001) 0.001 (0.001) 0.001 (0.001)

GEM 0.140 (0.126) NA NA

Data-flush 0.005 (0.003) 0.005 (0.003) 0.005 (0.004)

RMSE

Raw data 0.040 (0.014) 0.005 (0.002) 0.001 (0.0002)

GEM 0.273 (0.108) NA NA

Data-flush 0.090 (0.033) 0.013 (0.005) 0.001 (0.0005)

Time

GEM 423.25 NA NA

Data-flush 0.35 0.34 0.33
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Table 2.

Empirical coverage probability (Coverage %) of a 95% confidence interval for β1 and β4 based on CTLP over 

500 simulations in (3.1), where p, n, D represent the number of predictors, the sample size, and the Monte 

Carlo size, respectively.

P n D % Coverage

β1 50 100 1000 92.4

β1 200 100 2000 93.0

β1 500 100 5000 94.6

β4 50 100 1000 95.4

β4 200 100 2000 93.6

β4 500 100 5000 92.0
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Table 3.

Summary statistics for variables used in the ACS analysis, including variable’s names (Name), types (Type), 

the number of levels for nominal variables (# Level), as well as the mean (Mean) and standard deviation 

(Standard deviation). Here NA means “Not applicable”.

Name Type # Level Mean (Standard deviation)

AGE empirical NA 50.80 (19.17)

REGION nominal 9 NA

METPOP10 empirical NA 3.30 × 106 (5.00 × 106)

METRO nominal 5 NA

MORTGAGE nominal 3 NA

SEX binary NA 0.50 (0.50)

MARST nominal 6 NA

RACE nominal 6 NA

HISPAN binary NA 0.12 (0.32)

SPEAKENG nominal 3 NA

HCOVANY binary NA 0.93 (0.26)

EDUCD nominal 7 NA

EMPSTAT nominal 3 NA

OCC nominal 13 NA

MIGRATE1 nominal 3 NA

VETSTAT binary NA 0.08 (0.28)

INCTOT continuous NA 51365.44 (69097.25)
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Table 4.

Joint distribution between employment status (EMPSTAT) and migration status (MIGRATE1) before and after 

privatization, where each cell in the contingency table indicates the number of individuals in the release 

sample before (after) privatization. For MIGRATE1, “House”, “State”, and “States-Abroad” indicate staying 

in the same house, moving within a state, and moving between states or abroad; for EMPSTAT, “Employed”, 

“NA/Unemployed”, and “Non-labor” mean that an individual is employed, unemployed or not applicable, and 

not in the labor force, respectively.

EMPSTAT

MIGRATE1 Employed NA/Unemployed Non-labor Total

House 996078 (1012469) 31207 (31163) 542095 (574287) 1569380 (1617919)

State 120963 (100515) 5697 (4652) 48451 (32242) 175111 (137409)

States-abroad 32120 (31436) 2072 (2230) 13796 (3485) 47988 (37151)

Total 1149161 (1144420) 38976 (38045) 604342 (610014) 1792479 (1792479)
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