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Abstract

While deep learning has revolutionized protein structure prediction, almost all experimentally 

characterized de novo protein designs have been generated using physically based approaches 

such as Rosetta. Here we describe a deep learning based protein sequence design method, 

ProteinMPNN, with outstanding performance in both in silico and experimental tests. The amino 

acid sequence at different positions can be coupled between single or multiple chains, enabling 

application to a wide range of current protein design challenges. On native protein backbones, 

ProteinMPNN has a sequence recovery of 52.4%, compared to 32.9% for Rosetta. Incorporation 
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of noise during training improves sequence recovery on protein structure models, and produces 

sequences which more robustly encode their structures as assessed using structure prediction 

algorithms. We demonstrate the broad utility and high accuracy of ProteinMPNN using X-ray 

crystallography, cryoEM and functional studies by rescuing previously failed designs, made using 

Rosetta or AlphaFold, of protein monomers, cyclic homo-oligomers, tetrahedral nanoparticles, and 

target binding proteins.

One-sentence summary:

A deep learning based protein sequence design method is described that is widely applicable to 

current design challenges and shows outstanding performance in both in silico and experimental 

tests.

The protein sequence design problem is to find, given a protein backbone structure of 

interest, an amino acid sequence that will fold to this structure. Physically based approaches 

like Rosetta approach sequence design as an energy optimization problem, searching for the 

combination of amino acid identities and conformations that have the lowest energy for a 

given input structure. Recently deep learning approaches have shown considerable promise 

in rapidly generating plausible amino acid sequences given monomeric protein backbones 

without need for compute intensive explicit consideration of sidechain rotameric states (1–

6, 6a). However, the methods described thus far are limited in their applicability to the 

wide range of current protein design challenges, and have not been extensively validated 

experimentally.

We set out to develop a deep learning based protein sequence design method broadly 

applicable to design of monomers, cyclic oligomers, protein nanoparticles, and protein-

protein interfaces. We began from a previously described message passing neural network 

(MPNN) with 3 encoder and 3 decoder layers and 128 hidden dimensions which predicts 

protein sequences in an autoregressive manner from N to C terminus using protein 

backbone features – distances between Ca-Ca atoms, relative Ca-Ca-Ca frame orientations 

and rotations, and backbone dihedral angles–as input (1). We first sought to improve 

performance of the model on recovering the amino acid sequences of native monomeric 

proteins given their backbone structures, using as training and validation sets 19.7k high 

resolution single-chain structures from the PDB split based on the CATH (7) protein 

classification (see Methods). We experimented with adding distances between N, Ca, 

C, O and a virtual Cb placed based on the other backbone atoms as additional input 

features, hypothesising that they would enable better inference than backbone dihedral angle 

features. This resulted in a sequence recovery increase from 41.2% (baseline model) to 

49.0% (experiment 1), see Table 1 below; interatomic distances evidently provide a better 

inductive bias to capture interactions between residues than dihedral angles or N-Ca-C 

frame orientations. We next experimented with introducing edge updates in addition to the 

node updates in the backbone encoder neural network (experiment 2). Combining additional 

input features and edge updates leads to a sequence recovery of 50.5% (experiment 3). 

To determine the range over which backbone geometry influences amino acid identity, we 

experimented with 16, 24, 32, 48, and 64 nearest Ca neighbor neural networks (Figure 

S1A), and found that performance saturated at 32–48 neighbors. Unlike the protein structure 
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prediction problem, locally connected graph neural networks can be used to model the 

structure to sequence mapping problem because protein backbones provide a notion of local 

neighborhoods which primarily determine sequence identities.

To enable application to a broad range of single and multi-chain design problems, we 

replaced the fixed N to C terminal decoding order with an order agnostic autoregressive 

model in which the decoding order is randomly sampled from the set of all possible 

permutations (8). This also resulted in a modest improvement in sequence recovery (Table 

1, experiment 4). Order agnostic decoding enables design in cases where, for example, the 

middle of the protein sequence is fixed and the rest needs to be designed, as in protein binder 

design where the target sequence is known; decoding skips the fixed regions but includes 

them in the sequence context for the remaining positions (Figure 1B). For multi-chain design 

problems, to make the model equivariant to the order of the protein chains, we kept the per 

chain relative positional encoding capped at ±32 residues (9) and added a binary feature 

indicating if the interacting pair of residues are coming from the same or different chains.

We took advantage of the flexibility of the decoding order, which enables selection during 

inference of a decoding order appropriate for the specific task, to enable the fixing of residue 

identities in sets of corresponding positions (the residues at these positions are decoded at 

the same time). For example, for a C2 homodimer backbone with two chains A and B with 

sequence A1, A2, A3,.. and B1, B2, B3,…, the amino acids for chains A and B have to be 

the same for corresponding indices; we implement this by predicting logits (unnormalized 

probabilities) for A1 and B1 first and then combine these two predictions to construct a 

normalized probability distribution from which a joint amino acid is sampled (Figure 1C). 

For pseudosymmetric sequence design, residues within, or between chains can be similarly 

constrained; for example for repeat protein design, the sequence in each repeat unit can be 

kept fixed. Multi-state protein sequence design to generate a single sequence that encodes 

two or more desired states can be achieved by predicting logits for each state and then 

averaging; more generally a linear combination of predicted logits with some positive and 

negative coefficients can be used to upweight, or downweight specific backbone states to 

achieve explicit positive-negative sequence design. The architecture of this multichain and 

symmetry aware (positionally coupled) model, which we call ProteinMPNN, is outlined 

schematically in Figure 1A. We trained ProteinMPNN on protein assemblies in the PDB 

(as of Aug 02, 2021) determined by X-ray crystallography or cryoEM to better than 3.5Å 
resolution and with less than 10,000 residues. Sequences were clustered at 30% sequence 

identity cutoff using mmseqs2 (10) resulting in 25,361 clusters (see Methods).

For a test set of 402 monomer backbones we redesigned sequences using Rosetta fixed 

backbone combinatorial sequence design (one round of the PackRotamersMover (11–12) 

with default options and the beta_nov16 score function) and ProteinMPNN. Although 

requiring only a small fraction of the compute time (1.2 seconds versus 4.3 minutes for 

100 residues), ProteinMPNN had a much higher overall native sequence recovery (52.4% 

vs 32.9%), with improvements across the full range of residue burial from protein core to 

surface (Figure 2A). Differences between designed and native amino acid biases for the 

core, boundary and surface regions for the two methods are shown in Figure S2.
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We evaluated ProteinMPNN on a test set of 690 monomers, 732 homomers (with less 

than 2000 residues), and 98 heteromers. The median overall sequences recoveries were 

52% for monomers, 55% for homomers, and 51% for heteromers (Figure 2B). In all three 

cases, sequence recovery correlated closely with residue burial ranging from 90–95% in 

the deep core to 35% on the surface (Figure S1B): the amount of local geometric context 

determines how well residues can be recovered at specific positions. For homomers, we 

found best results with averaging logits between symmetry related positions: unconstrained 

design without symmetry, averaged probabilities, and averaged logits resulted in 52%, 53%, 

and 55% median sequence recoveries respectively (Figure S1C). Because of the non-local 

context, sequence recovery is no longer a monotonic function of the average Cb neighbor 

distance; some residues get information from their symmetric counterparts via averaging of 

probabilities (Figure S1B).

Training with backbone noise improves model performance for protein 

design

While recent protein sequence design approaches have focused on maximizing native 

sequence recovery, this is not necessarily optimal for actual protein design applications. 

Native sequence recovery is likely highest for models trained on perfect protein backbones, 

and with stochastic sequence inference carried out at low temperature. We reasoned, 

however, that improved protein design performance might be achieved by models trained 

with backbone noise and with inference conducted at higher temperature, as described in the 

following paragraphs.

Robustness to small displacements in atomic coordinates is a desirable feature for sequence 

design methods in real world applications where the protein backbone geometry is not 

known at atomic resolution. We found that training models on backbones to which 

Gaussian noise (std=0.02Å) had been added improved sequence recovery on confident 

protein structure models generated by AlphaFold (average pLDDT>80.0) from UniRef50, 

while the sequence recovery on unperturbed PDB structures decreased as expected (Table 

1). Crystallographic refinement may impart some memory of amino acid identity in the 

backbone coordinates which is recovered by the model trained on perfect backbones but 

not present in predicted structures; since the goal is to identify optimal sequences given the 

overall backbone context the more robust model is preferable.

AlphaFold (9) and RoseTTAfold (13) produce remarkably good structure predictions 

for native proteins given multiple sequence alignments which can contain substantial co-

evolutionary and other information reflecting aspects of the 3D structure, but generally 

produce much poorer structures when provided only with a single sequence. We reasoned 

that ProteinMPNN might generate sequences for native backbones more strongly encoding 

the structures than the original native sequences, as evolution in most cases does not 

optimize for stability, and completely redesigned a set of 396 native structures. We found 

in single sequence AlphaFold predictions that ProteinMPNN sequences were predicted 

to adopt the original native backbone structures much more confidently and accurately 

than the original native sequences (Figure 2E). We also tested ProteinMPNN on a set 
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of de novo designed scaffolds which contain a wide range of ligand binding pockets. 

Whereas only a small fraction of the original Rosetta designed sequences were predicted 

to fold to the design target structures, following ProteinMPNN redesign the majority were 

confidently predicted to fold to close to the design target structures (Figure 2F). This 

should substantially increase the utility of these scaffolds for design of protein binding and 

enzymatic functions–the likelihood that the sequences fold to the desired structures is higher, 

and designed enzymes and small molecule binding proteins based on these scaffolds can be 

evaluated using similar structure prediction tests prior to experimental characterization.

We found that the strength of the single sequence to structure mapping, as assessed by 

AlphaFold, was higher for models trained with additional backbone noise. As noted above, 

the average sequence recovery for perfect backbones decreases with increasing amounts of 

noise added during training (Figure 2C) as these models are not able to pick up on fine 

details of the backbone geometry. In contrast, sequences encoded by noised ProteinMPNN 

models are more accurately decoded into 3D coordinates by AlphaFold, likely because 

noised models focus more on overall topological features than fine local structural details 

(which are blurred during noising). For example, a model trained with 0.3Å noise generated 

2–3 times more sequences with AlphaFold predictions within lDDT-Ca (14) of 95.0 and 

90.0 of the true structures than unnoised or slightly noised models (Figure 2C). In protein 

design calculations, the models trained with larger amounts of noise have the advantage 

of generating sequences which more strongly map to the target structures by prediction 

methods (this increases frequency of designs passing prediction based filters, and may 

correspondingly also increase the frequency of actual folding to the desired target structure).

Because the sequence determinants of protein expression, solubility and function are not 

perfectly understood, in most protein design applications it is desirable to test multiple 

designed sequences experimentally. We found that the diversity of sequences generated 

by MPNN could be considerably increased, with only a very small decrease in average 

sequence recovery, by carrying out inference at higher temperatures (Figure 2D). We also 

found that a measure of sequence quality derived from the ProteinMPNN, the averaged log 

probability of the sequence given the structure, correlated strongly with native sequence 

recovery over a range of temperatures (Figure S3A), enabling rapid ranking of sequences for 

selection for experimental characterization.

Experimental evaluation of ProteinMPNN

While in silico native protein sequence recovery is a useful benchmark, the ultimate test of a 

protein design method is its ability to generate sequences which fold to the desired structure 

and have the desired function when tested experimentally. We evaluated ProteinMPNN on 

a representative set of design challenges ranging from protein monomer design, protein 

nanocage design, and protein function design. In each case, we attempted to rescue previous 

failed designs with sequences generated using Rosetta or AlphaFold–we kept the backbones 

of the original designs fixed but discarded the original sequences and generated new ones 

using ProteinMPNN. Synthetic genes encoding the designs were obtained, and the proteins 

expressed in E. coli and characterized biochemically and structurally.
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We first tested the ability of ProteinMPNN to design amino acid sequences for protein 

backbones generated by deep network hallucination using AlphaFold (AF). Starting from 

a random sequence, a Monte Carlo trajectory is carried out optimizing the extent to which 

AF predicts the sequence to fold to a well-defined structure (see accompanying paper for 

details, Wicky et al.). These calculations generated a very wide range of protein sequences 

and backbones for both monomers and oligomers that differ considerably from those of 

native structures. In initial tests, the sequences generated by AF were encoded in synthetic 

genes, and we attempted to express 150 proteins in E. coli. However, we found that the AF 

generated sequences were mostly insoluble (median soluble yield: 9 mg per liter of culture 

equivalent Figure 3A). To determine whether ProteinMPNN could overcome this problem, 

we generated sequences for a subset of these backbones with ProteinMPNN; residue 

identities at symmetry-equivalent positions were tied by averaging logits as described above. 

The designed sequences were again encoded in synthetic genes and the proteins produced 

in E. coli. The success rate was far higher: of 96 designs produced in E. coli, 73 were 

expressed solubly (median soluble yield: 247 mg per liter of culture equivalent, Figure 3A) 

and 50 had the target monomeric or oligomeric state as assessed by SEC (Figure 3A,C). 

Many of the proteins were highly thermo-stable, with secondary structure being maintained 

up to 95 °C (Figure 3B).

We were able to solve the X-ray crystal structure of one of the ProteinMPNN monomer 

designs with a fold more complex (TM-score=0.56 against PDB) than most de novo 
designed proteins (Figure 3D). The alpha-beta protein structure contains 5 beta strands 

and 4 alpha helices, and is close to the design target backbone (2.35 Å over 130 residues), 

demonstrating that ProteinMPNN can quite accurately encode monomer backbone geometry 

in amino acid sequences. The accuracy was particularly high in the central core of the 

structure, with sidechains predicted using AlphaFold from the ProteinMPNN sequence 

fitting nearly perfectly into the electron density (Figure 3D). Crystal structures and cryo-EM 

structures of ten cyclic homo-oligomers with 130–1800 amino acids were also very close to 

the design target backbones (accompanying manuscript, Wicky et al.). Thus, ProteinMPNN 

can robustly and accurately design sequences for both monomers and cyclic oligomers.

We next took advantage of the flexible decoding order of ProteinMPNN to design sequences 

for proteins containing internal repeats, tying the identities of proteins in equivalent 

positions. We found that many previously suboptimal Rosetta designs of repeat protein 

structures could be rescued by ProteinMPNN redesign, an example is shown in Figure 3E, F.

We next experimented with enforcing both the cyclic and internal repeat symmetry by tying 

positions both within and between subunits, as illustrated in Figure 3G. We experimentally 

characterized a set of C5/C6 cyclic oligomers built with Rosetta with sequences designed 

with Rosetta, and a second set with sequences designed using ProteinMPNN, and again 

observed much higher success rates with ProteinMPNN design. For the Rosetta designed 

set, 40% were soluble and none had the correct oligomeric state confirmed by SEC-MALS. 

For the ProteinMPNN designed set, 88% were soluble and 27.7% had the correct oligomeric 

state. We characterized the structure of one of the designs with sufficient size for resolution 

of structural features by negative stain EM (Figure 3I), and image averages were closely 

consistent with the design model (Figure 3J).
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We next evaluated the ability of ProteinMPNN to design sequences that assemble into 

target protein nanoparticle assemblies. We started with a set of previously described protein 

backbones for two-component tetrahedral designs generated using a compute- and effort-

intensive procedure that involved Rosetta sequence design followed by more than a week 

of manual intervention to eliminate unwanted substitutions (15). We used ProteinMPNN 

to design 76 sequences spanning 27 of these tetrahedral nanoparticle backbones, tying 

identities at equivalent positions in the 12 copies of each subunit in the assemblies, and 

ordered plasmids encoding them without further intervention. We found upon expression in 

E. coli and purification by SEC that 13 designs formed assemblies with the expected MW 

(~1 MDa) (Figure S4). Although a similar overall success rate was obtained using Rosetta 

in the original study, several new tetrahedral assemblies were successfully generated using 

ProteinMPNN that had failed using Rosetta. We solved the crystal structure of one of these, 

and found that it was very close to the design model (1.2 Å Cα RMSD over two subunits, 

Figure 3K). Thus ProteinMPNN can robustly design sequences that assemble into designed 

nanoparticles, which have proven useful in several biotechnological applications including 

structure-based vaccine design (16–18). Sequence generation with MPNN is fully automated 

and requires only ~1 second per backbone, vastly streamlining the design process compared 

to the earlier Rosetta-based procedure.

As a final test, we evaluated the ability of ProteinMPNN to rescue previously failed 

designs of new protein functions using Rosetta. We chose as a challenging example the 

design of proteins scaffolding polyproline helix motifs recognized by SH3 domains, such 

that portions of the protein scaffold outside of the SH3 peptide motif make additional 

interactions with the target, with the longer range goal of generating protein reagents with 

high affinity and specificity for individual SH3 family members. Backbones scaffolding a 

proline rich peptide recognized by the Grb2 SH3 domain were generated using Rosetta 

remodel (see Figure 4 legend), but sequences designed for these backbones did not fold 

to structures binding Grb2 when expressed in E. coli (Figure 4B, the design problem is 

challenging as very few native proteins have proline rich secondary structure elements that 

closely interact with the core of the protein). To test whether ProteinMPNN could overcome 

this problem, we generated sequences for the same backbones and expressed the proteins 

in E. coli. Biolayer interferometry experiments showed strong binding to the Grb2 SH3 

domain (Figure 4B), with considerably higher signal than the free proline rich peptide; point 

mutations predicted to disrupt the design completely eliminated the binding signal. Thus 

ProteinMPNN can generate sequences for challenging protein design problems even when 

traditional RosettaDesign fails.

Conclusion

ProteinMPNN solves sequence design problems in a small fraction of the time (1.2 sec 

vs 258.8 sec on a single CPU for a 100 residue protein) required for physically based 

approaches such as Rosetta, which carry out large scale sidechain packing calculations, 

achieves much higher protein sequence recovery on native backbones (52.4% vs 32.9%), and 

most importantly, rescues previously failed designs made using Rosetta or AlphaFold for 

protein monomers, assemblies, and protein-protein interfaces. Machine learning sequence 

design approaches have been developed previously (1–6, 6a), notably the previously 
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described message passing method on which ProteinMPNN is based, but have focused 

on the monomer design problem, achieve lower native sequence recoveries, and with the 

exception of a TIM barrel design study (6) have not been extensively validated using 

crystallography and cryoEM to evaluate design accuracy. Whereas structure prediction 

methods can be evaluated purely in silico, this is not the case for protein design methods: 

In silico metrics such as native sequence recovery are very sensitive to crystallographic 

resolution (Figure S3 B, C) and may not correlate with proper folding (even a single residue 

substitution, while causing little change in overall sequence recovery, can block folding); 

in the same way that language translation accuracy must ultimately be evaluated by human 

users, the ultimate test of sequence design methods is experimental characterization.

Unlike Rosetta and other physically based methods, ProteinMPNN requires no expert 

customization for specific design challenges, and it should thus make protein design more 

broadly accessible. This robustness reflects fundamental differences in how the sequence 

design problem is framed. In traditional physically based approaches, sequence design maps 

to the problem of identifying an amino acid sequence whose lowest energy state is the 

desired structure. This is, however, computationally intractable as it requires computing 

energies over all possible structures, including unwanted oligomeric and aggregated states; 

instead Rosetta and other approaches as a proxy carry out a search for the lowest energy 

sequence for a given backbone structure, and structure prediction calculations are required 

in a second step to confirm that there are no other structures in which the sequence has still 

lower energy. Because of the lack of concordance between the actual design objective and 

what is being explicitly optimized, considerable customization can be required to generate 

sequences which actually fold; for example in Rosetta design calculations hydrophobic 

amino acids are often restricted on the protein surface as they can stabilize undesired 

multimeric states, and at the boundary region between the protein surface and core there 

can be considerable ambiguity about the extent to which such restrictions should be applied. 

While deep learning methods lack the physical transparency of methods like Rosetta, they 

are trained directly to find the most probable amino acid for a protein backbone given all 

the examples in the PDB, and hence such ambiguities do not arise, making sequence design 

more robust and less dependent on the judgement of a human expert.

The high rate of experimental design success of ProteinMPNN, together with the high 

compute efficiency, applicability to almost any protein sequence design problem, and lack 

of requirement for customization has made it the standard approach for protein sequence 

design at the Institute for Protein Design and we expect it to be rapidly adopted throughout 

the community. As illustrated in the accompanying paper (Wicky et al.), ProteinMPNN 

designs also have a much higher propensity to crystallize, greatly facilitating structure 

determination of designed proteins. The observation that ProteinMPNN generated sequences 

are predicted to fold to native protein backbones more confidently and accurately than the 

original native sequences (using single sequence information in both cases) suggests that 

ProteinMPNN may be widely useful in improving expression and stability of recombinantly 

expressed native proteins (residues required for function would clearly have to be kept 

fixed). We are currently extending ProteinMPNN to protein-nucleic acid design and protein-

small molecule design which should increase its utility still further.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. ProteinMPNN architecture.
(A) Distances between N, Ca, C, O, and virtual Cb are encoded and processed using 

a message passing neural network (Encoder) to obtain graph node and edge features. 

The encoded features together with a partial sequence are used to generate amino acids 

iteratively in a random decoding order. (B) A fixed left to right decoding cannot use 

sequence context (green) for preceding positions (yellow) whereas a model trained with 

random decoding orders can be used with arbitrary decoding order during the inference. The 

decoding order can be chosen such that the fixed context is decoded first. (C) Residue 

positions within and between chains can be tied together, enabling symmetric, repeat 

protein, and multistate design. In this example, a homo-trimer is designed with coupling 

of positions in different chains. Predicted logits for tied positions are averaged to get a single 

probability distribution from which amino acids are sampled.
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Fig. 2. In silico evaluation of ProteinMPNN.
(A) ProteinMPNN has higher native sequence recovery than Rosetta. The average Cb 

distance of the 8 closest neighbors (x axis) reports on burial, with most buried positions 

on the left and more exposed on the right; ProteinMPNN outperforms Rosetta at all levels 

of burial. Average sequence recovery for ProteinMPNN was 52.4%, compared to 32.9% 

for Rosetta. (B) ProteinMPNN has similarly high sequence recovery for monomers, homo-

oligomers, and hetero-oligomers; violin plots are for 690 monomers, 732 homomers, 98 

heteromers. (C) Sequence recovery (black) and relative AlphaFold success rates (blue) 

as a function of training noise level. For higher accuracy predictions (circles) smaller 

amounts of noise are optimal (1.0 corresponds to 1.8% success rate), while to maximize 

prediction success at a lower accuracy cutoff (squares), models trained with more noise are 

better (1.0 corresponds to 6.7% success rate). (D) Sequence recovery and diversity as a 

function of sampling temperature. Redesign of native protein backbones with ProteinMPNN 

considerably increases AphaFold prediction accuracy compared to the original native 

sequence using no multiple sequence information. Single sequences (designed or native) 
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were input in both cases. (F) ProteinMPNN redesign of previous Rosetta designed NTF2 

fold proteins (3,000 backbones in total) results in considerably improved AlphaFold single 

sequence prediction accuracy.
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Fig. 3. Structural characterization of ProteinMPNN designs.
(A) Comparison of soluble protein expression over a set of AlphaFold hallucinated 

monomers and homo-oligomers (blue) and the same set of backbones with sequences 

designed using ProteinMPNN (orange), N=129. The total soluble protein yield following 

expression in E. coli, obtained from the integrated area unders size exclusion traces of 

nickel-NTA purified proteins, increases considerably from the barely soluble protein of 

the original sequences following ProteinMPNN rescue (median yields for 1 L of culture 

equivalent: 9 and 247 mg respectively). (B), (C), (D) In depth characterization of a monomer 

hallucination and corresponding ProteinMPNN rescue from the set in A. Like almost all of 

the designs in A, the sequence and structural similarity to the PDB of the design model 

are very low (E-value=2.8 against UniRef100 using HHblits, TM-score=0.56 against PDB). 

(B) The ProteinMPNN rescued design has high thermostability, with a virtually unchanged 

circular dichroism profile at 95 °C compared to 25 °C (C) Size exclusion (SEC) profile 

of failed original design overlaid with the ProteinMPNN sequence design, which has a 

clear monodisperse peak at the expected retention volume. (D) Crystal structure of the 
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ProteinMPNN (8CYK) design is nearly identical to the design model (2.35 RMSD over 130 

residues), see Figure S5 for additional information. Right panel shows model sidechains 

in the electron density, in green crystal side chains, in blue AlphaFold side chains. (E), 

(F) ProteinMPNN rescue of Rosetta design made from a perfectly repeating structural 

and sequence unit (DHR82). Residues at corresponding positions in the repeat unit were 

tied during ProteinMPNN sequence inference. (E) Backbone design model and MPNN 

redesigned sequence AlphaFold model with tied residues indicated by lines (~1.2Å error 

over 232 residues). (F) SEC profile of IMAC purified original Rosetta design and two 

ProteinMPNN redesigns. (G), (H) Tying residues during ProteinMPNN sequence inference 

both within and between chains to enforce both repeat protein and cyclic symmetries. (G) 

Side view of design model. A set of tied residues are shown in red. (H) Top-down view of 

design model. (I) Negative stain electron micrograph of purified design. (J) Class average of 

images from I closely match top down view in H. (K) Rescue of the failed two-component 

Rosetta tetrahedral nanoparticle design T33–27 (13) by ProteinMPNN interface design. 

Following ProteinMPNN rescue, the nanoparticle assembled readily with high yield, and the 

crystal structure (grey) is very nearly identical to the design model (green/purple) (backbone 

RMSD of 1.2 Å over two complete asymmetric units forming the ProteinMPNN rescued 

interface).
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Fig. 4. Design of protein function with ProteinMPNN.
(A) Design scheme. First panel; structure (PDB 2W0Z) of the peptide APPPRPPKP bound 

to the human Grb2 C-term SH3 domain (peptide is in green, target in surface and colored 

blue). Second panel: helical bundle scaffolds were docked to the exposed face of the peptide 

using RIFDOCK (19), and Rosetta remodel was used to build loops connecting the peptide 

to the scaffolds. Rosetta sequence design with layer design task operations was used to 

optimize the sequence of the fusion (Cyan) for stability, rigidity of the peptide-helical 

bundle interface, and binding affinity for the Grb2 SH3 domain. Third panel; ProteinMPNN 

redesign (orange) of the designed binder sequence; hydrogen bonds involving asparagine 

sidechains between the peptide and base scaffold are shown in green and in the inset. 

Fourth panel; Mutation of the two asparagines to aspartates to disrupt the scaffolding of the 

target peptide. (B) Experimental characterization of binding using biolayer interferometry. 

Biotinylated C-term SH3 domain from human Grb2 was loaded onto Streptavidin (SA) 

Biosensors, which were then immersed in solutions containing varying concentrations of 

the target peptide (left) of the designs (right panels), and then transferred to buffer lacking 

added protein for dissociation measurements. The MPNN design (3rd panel from the left) 

has much greater binding signal than the original Rosetta design (2nd panel from the left); 

this is greatly reduced by the asparagine to aspartate mutations (last panel).
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Table 1.

Single chain sequence design performance on CATH held out test split.

Noise level when 
training: 0.00A/0.02A

Modification Number of 
Parameters

PDB Test 
Accuracy

PDB Test 
Perplexit y

AlphaFold 
Model 

Accuracy

Baseline model None 1.381 mln 41.2/40.1 6.51/6.77 41.4/41.4

Experiment 1 Add N, Ca, C, Cb, O distances 1.430 mln 49.0/46.1 5.03/5.54 45.7/47.4

Experiment 2 Update encoder edges 1.629 mln 43.1/42.0 6.12/6.37 43.3/43.0

Experiment 3 Combine 1 and 2 1.678 mln 50.5/47.3 4.82/5.36 46.3/47.9

Experiment 4 Experiment 3 with random 
instead of forward decoding

1.678 mln 50.8/47.9 4.74/5.25 46.9/48.5

Test accuracy (percentage of correct amino amino acids recovered) and test perplexity (exponentiated categorical cross entropy loss per residue) 
are reported for models trained on the native backbone coordinates (left, normal font) and models trained with Gaussian noise (std=0.02Å) added 
to the backbone coordinates (right, bold font); all test evaluations are with no added noise. The final column shows sequence recovery on 5,000 
AlphaFold protein backbone models with average pLDDT > 80.0 randomly chosen from UniRef50 sequences.
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