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Abstract

Cocaine Use Disorders (CUDs) are associated with an increased risk of human immunodeficiency 

virus (HIV) infection. Cocaine and the HIV envelope protein gp120 each induce distinct deficits to 

mesocorticolimbic circuit function and motivated behavior; however, little is known regarding how 

they interact to dysregulate these functions or how such interactions impact pharmacotherapeutic 

efficacy. We have previously shown that the selective, weak partial agonist of the dopamine D3 

receptor (D3R), MC-25–41, attenuates cocaine-seeking behavior in male rats. Here, we sought 

to characterize changes in striatal neuroimmune function in gp120-exposed rats across abstinence 

from operant access to cocaine (0.75 mg/kg, i.v.) or sucrose (45 mg/pellet), and to examine the 

impact of gp120 exposure on MC-25–41-reduced cocaine seeking. After establishing a history 

of cocaine or sucrose self-administration, rats received intracerebroventricular gp120 infusions 

daily the first 5 days of abstinence and were sacrificed either on day 6 or after 21 days of forced 

abstinence and a cue-induced cocaine seeking test. We demonstrated that MC-25–41 treatment 

attenuated cue-induced cocaine seeking among control rats but not gp120-exposed rats. Moreover, 

postmortem analysis of nucleus accumbens (NAc) core neuroimmune function indicated cocaine 

abstinence- and gp120-induced impairments, and the expression of several immune factors within 

the NAc core significantly correlated with cocaine-seeking behavior. We conclude that cocaine 

abstinence dysregulates striatal neuroimmune function and interacts with gp120 to inhibit the 

effectiveness of a D3R partial agonist in reducing cocaine seeking. These findings highlight the 

need to consider comorbidities, such as immune status, when evaluating the efficacy of novel 

pharmacotherapeutics.
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1. Introduction

Human immunodeficiency virus (HIV) and cocaine use disorders (CUDs) remain pervasive 

global health concerns that disproportionately affect male minority populations as well as 

adolescent and young adult populations [12,48]. Combination antiretroviral therapy (cART) 

has dramatically reduced HIV-related mortality, and people living with HIV (PLWH) who 

achieve viral suppression generally live healthy, full lives [62,102]. However, cART has 

poor blood brain barrier (BBB) permeability [71], and PLWH who achieve viral suppression 

experience chronic neuroinflammation and often develop HIV-associated neurocognitive 

disorder (HAND; [40,41,90,112]). Substance misuse is often comorbid with HIV and is 

also a risk factor for HIV infection, particularly with opiates and psychostimulants [94]. 

Concurrent injection drug use and HIV infection may exacerbate neuroimmune dysfunction 

[27] and accelerate disease progression independent of adherence to cART [8,40,90]. Thus, 

developing improved therapeutics for HIV-associated neurocognitive dysfunction within the 

context of substance use disorders is essential.

HIV protein products such as the envelope glycoprotein gp120 and transactivator of 

transcription (Tat) are associated with dysregulation of neuroimmune signaling and 

disruptions to the BBB, which can increase viral invasion into the central nervous system 

(CNS) and subsequent neurotoxicity [94,95]. Both microglia and astrocytes generate a 

complex medley of immune responses under pathological conditions [20,25,44,54], and 

serve as viral reservoirs for HIV [23,38,56,98]. HIV induces persistent secretion of 

proinflammatory cytokines and chemokines [77,83], which impair cognitive function and, 

in severe cases, promote neurodegeneration throughout the CNS [26,41,81,97]. Within the 

rat striatum, acute exposure to gp120 or Tat causes dose-dependent increases in reactive 

astrogliosis [7], and adult gp120 transgenic mice exhibit increased striatal expression of 

glial fibrillary acidic protein (GFAP) and the chemokines CCL2 and CXCL10 [3]. An acute 

microinjection of a high dose of gp120 (500 ng) into the rat striatum induces significant 

upregulation of CCL3, an HIV-suppressive chemokine [1,21], as well as an increase in 

the expression of microglial and macrophage markers Iba1 and CD68 that persists for up 

to four weeks post-injection [57]. Subchronic, intracerebroventricular microinjections of 

gp120 (500 ng) within the CNS of rats increases striatal mRNA expression of interleukin-1β 
(IL-1β) and inducible nitric oxide synthase (iNOS), as well as protein expression of the 

active efflux transporter multidrug resistance-associated protein 1 (MRP1) [4]. Importantly, 

MRPs play a substantial role in the efflux of intracellular anti-HIV drugs, thus contributing 

to the poor BBB penetrance of cART [33,46,71,99]. While these studies implicate striatal 

neuroimmune signaling in the pathophysiology of HIV, it is still unclear how HIV and 

chronic drug use interact in this regard.

Like HIV, cocaine disrupts BBB integrity and induces immune responses within the brain 

through increased glial cell reactivity [27,94]. Cocaine also facilitates HIV invasion [2,27] 
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and viral replication [88] in the brain even during the early asymptomatic stages of infection 

[81]. Furthermore, cocaine exposure enhances gp120 toxicity in rat primary astrocytes to a 

greater extent than that induced by either cocaine or gp120 separately [108]. Thus, combined 

HIV and cocaine use may further exacerbate immune dysregulation, aberrant dopaminergic 

signaling, and cognitive dysfunction [16]. Despite the clear and inextricable link between 

HIV and acute psychostimulant exposure and their impact on immune function, it is largely 

unknown how cocaine abstinence, which is associated with peripheral immune responses 

[5,111], alters CNS immune function within brain reward circuity and how this is modulated 

by HIV.

Motivation for cocaine progressively increases over protracted periods of abstinence, and 

several studies implicate the dopamine D3 receptor (D3R) in facilitating this process 

[69,80]. During the first three weeks of abstinence, D3Rs are up-regulated within the 

nucleus accumbens (NAc; [70]), a brain region associated with reward learning that is 

also critically involved in drug seeking. Interestingly, D3Rs may also contribute to the 

regulation of neuroimmune signaling through glial cell activation [63], suggesting a possible 

regulatory role in HIV- and cocaine-induced neuroimmune responses and drug relapse. 

Despite the known effects of cocaine and gp120 on striatal neuroimmune function, it 

remains unclear how gp120 interacts with cocaine abstinence to dysregulate mesolimbic 

neuroimmune function or whether this interaction impacts motivation to seek cocaine. We 

sought to address these gaps in the present study in male rats trained to self-administer 

cocaine that were then exposed to HIV gp120 for 5 days during a forced abstinence 

period. Exposure to gp120 after animals acquired cocaine self-administration is a novel 

design feature, which better models the acquisition of HIV as a collateral effect of chronic 

drug use in humans with CUDs. The present study also investigated inhibition of D3R 

signaling as a potential therapeutic strategy to ameliorate reward-seeking behavior in cases 

of comorbid HIV infection and CUDs. After 21 days of abstinence, cocaine-experienced 

rats were treated with the novel D3R weak partial agonist, MC-25–41, which effectively 

reduces both D3R signaling and cocaine motivation in rats without affecting spontaneous or 

cocaine-induced locomotion or sucrose motivation [17,80]. Given the paucity of information 

on cocaine-induced changes in neuroimmune signaling within mesolimbic reward circuitry, 

particularly regarding cocaine abstinence, we utilized a multiplex cytokine, chemokine, and 

growth factor array to explore changes in striatal neuroimmune function across abstinence 

and as a function of gp120 treatment history and MC-25–41 treatment.

2. Methods

2.1. Subjects

Adult male Sprague-Dawley rats (N = 50; 201–225 g upon arrival, Charles River 

Laboratories, Hollister, CA, USA) were housed individually in a temperature- and humidity-

controlled vivarium on a 14:10 h reverse light:dark cycle. Animals had ad libitum access 

to water for the duration of the study but had restricted access to food, maintained at 85% 

of their free-feeding weight, during self-administration to facilitate cocaine acquisition. All 

experiments were conducted during the dark phase and were approved by and performed 

in accordance with the Institutional Animal Care and Use Committee of Arizona State 
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University and the National Institutes of Health’s Guide for the Care and Use of Laboratory 
Animals.

2.2. Drugs and reagents

Cocaine hydrochloride (NIDA Drug Supply Program, RTI International, Research Triangle 

Park, NC, USA) was dissolved in sterile saline to a stock concentration of 10 mg/mL, 

which was further diluted with saline to achieve a dose of 0.75 mg/kg/0.10 mL and 

filtered through 0.2 μm syringe filters. HIV-1 IIIB gp120 was obtained from the NIH 

AIDS Reagent Program and was diluted in 1X phosphate buffered saline (PBS) to a final 

concentration of 45 ng/μL based on previous studies suggesting impaired cognition and 

a lack of neurodegeneration at this dose [6,31]. The N-(4-(4-(3-cyanophenyl)piperazin-1-

yl)butyl)−4-(thiophen-3-yl)benzamide D3R partial agonist, referred to here as MC-25–41, 

was dissolved in 20% w/v cyclodextrin + 3% v/v 1 M HCl to achieve 10 mg/mL as we have 

previously described [17,80].

2.3. Surgical procedures

Guide cannulae were implanted intracranially and catheters were implanted into the 

jugular vein as previously described ([65], 2022). Briefly, animals were anesthetized using 

vaporized isoflurane (2–3%), and a sterile polyurethane catheter was inserted 2.5 mm into 

the right jugular vein of cocaine self-administering animals. The opposite end of the catheter 

was tunneled subcutaneously between the shoulder blades and attached to a cannula that 

was secured within a harness (Instech Laboratories, Plymouth Meeting, PA, USA). An 

intracranial guide cannula was stereotaxically implanted 1 mm dorsal to the right lateral 

ventricle (A/P: −0.8 mm, M/L: −1.6 mm, D/V: −2.6 mm) and secured to the skull using 

anchor screws and dental acrylic. All animals received buprenorphine (0.05 mg/kg/mL, s.c.) 

and meloxicam (1 mg/kg/mL, s.c.) at the end of surgery. Meloxicam was also administered 1 

day post-operatively. Catheterized animals also received cefazolin (100 mg/mL, 0.1 mL, i.v.) 

and heparin (70 U/mL, 0.1 mL, i.v.), dissolved in saline, for 5 days post-operatively. Heparin 

alone was administered daily before and after each cocaine self-administration session to 

maintain catheter patency. Animals were given at least 5 days of recovery prior to beginning 

self-administration.

2.4. Cocaine and sucrose self-administration, forced abstinence, and cue-induced 
cocaine seeking

Animals were placed in individual operant conditioning chambers equipped with one active 

and one inactive lever, a cue light above each lever, a house light, a tone generator, and 

a food receptacle (30 × 24 × 21 cm; Med Associates Inc., St. Albans, VT, USA). Prior 

to self-administration, animals were habituated to their respective chambers for 1 hr with 

both levers retracted. Animals underwent 2 hr training sessions 6 days/week and were 

food-restricted as described above. Self-administration initially began on a fixed-ratio (FR) 

1 schedule of reinforcement where one active lever response delivered a single infusion of 

cocaine (0.75 mg/kg/infusion, i.v., over 6 s) or a sucrose pellet (45 mg/pellet, Bio-Serv, 

Flemington, NJ, USA) paired with a compound stimulus light and auditory tone (500 Hz). 

Each reinforcer was followed by inactivation of the light and tone cues and illumination of 

the house light to signal a 20 s time-out period during which lever responses yielded no 
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consequences. Inactive lever responses resulted in no reinforcer or associated cues but were 

still recorded. Within each session, the schedule of reinforcement advanced to a variable 

ratio (VR) 2, 3, and 5, sequentially, where a variable number of active lever responses 

averaging to the specified number was needed to achieve reinforcement. A minimum of 

5 reinforcers earned was required within a reinforcement schedule within a given hour to 

advance to the next reinforcement schedule. Advancement to the next starting schedule 

between sessions required animals to end on a higher schedule than the starting one for 

3 consecutive sessions. Stability criteria at the end of self-administration were defined as 

achieving at minimum 10 reinforcers on a VR5 starting schedule and ≤15% variability 

in reinforcers earned across 3 consecutive sessions with no upward or downward trends. 

Some animals (n = 17) underwent 5 days of forced abstinence and their brains were 

collected on day 6 for protein quantification. Other animals (n = 27) underwent 21 days 

of forced abstinence, followed by a 1 hr cue-induced, cocaine-seeking test where active 

lever responses resulted in presentation of the light/tone cues but no cocaine reinforcer. 

Immediately following cue testing, their brains were collected for protein quantification.

2.5. Microinjection and MC-25–41 treatment procedures

Beginning on day 1 of abstinence, all animals received a daily microinjection of gp120 

(45 ng/μL, 1.0 μL, 0.5 μL/min, i.c.v.) or vehicle (1X PBS, 1.0 μL, 0.5 μL/min, i.c.v.) 

into the right lateral ventricle for 5 consecutive days. Some animals were then sacrificed 

the day after the fifth infusion (i.e., on day 6 of abstinence) to examine NAc cytokine, 

chemokine, and growth factor expression proximal to sub-chronic gp120 exposure. After 

21 days of forced abstinence, remaining animals received a systemic injection of MC-25–

41 (10 mg/kg/mL, i.p.) or vehicle (1 mL/kg of 20% cyclodextrin + 3% HCl in saline, 

i.p.) 10 min prior to undergoing the 1 hr cue-induced cocaine seeking test. This dosing 

regimen of MC-25–41 is based on results of our previous study showing a significant 

MC-25–41-induced reduction in cocaine self-administration on a progressive ratio schedule 

at this dose [80].

2.6. Tissue processing and measurement of cytokine, chemokine, and growth factor 
expression

On day 6 of abstinence or immediately after the cocaine seeking test, animals were deeply 

anesthetized with isoflurane until respiration ceased prior to rapid decapitation followed by 

brain removal. A 2 mm-thick coronal brain slice containing the NAc core was collected 

over ice and homogenized in an ice-cold RIPA lysis buffer solution containing protease and 

phosphatase inhibitors (Sana Cruz Biotechnology, Dallas, TX, USA). Tissue homogenates 

were centrifuged at 10,000 × g for 5 min and the supernatants were collected and stored at 

−80 °C. Samples were diluted 1:1 in 1X PBS and cytokine, chemokine, and growth factor 

expression levels were determined using the Rat Cytokine/Chemokine 27-Plex Discovery 

Assay® Array (Eve Technologies, Calgary, AB Canada). Each sample was analyzed in 

duplicate and the average of each pair of readings was used as the final measure for each 

sample across all targets.
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2.7. Data analysis

Cocaine infusions and sucrose pellets earned across each of the qualifying sessions 

of self-administration were analyzed by repeated measures two-way ANOVAs, with self-

administration session and treatment group as factors. Active and inactive lever presses 

during cue-induced cocaine seeking were analyzed with a three-way ANOVA, with 

treatment (vehicle vs. MC-25–41), microinjection (control vs. gp120), and lever (active vs. 

inactive) as factors. Cytokine, chemokine, and growth factor expression was analyzed via 

two-way ANOVAs, with reinforcer (or treatment) and microinjection as factors. For 21-day 

abstinence animals, cytokine, chemokine, and growth factor expression was further analyzed 

via simple linear regression to examine the correlation of NAc core neuroimmune signaling 

with active lever presses during cue-induced cocaine seeking. Tukey’s or Dunnett’s multiple 

comparisons tests were conducted to examine specific group differences when appropriate. 

Data from a total of 6 rats were excluded from analysis due to loss of catheter patency, 

failure to acquire cocaine self-administration, or clogged intracerebral guide cannula. All 

analyses were conducted at α = 0.05 significance level using GraphPad Prism 9.0 software.

3. Results

3.1. Cocaine and sucrose self-administration

Fig. 1A provides the procedural timeline from the experiment examining NAc core immune 

responses to 5-day gp120 exposure following cocaine or sucrose self-administration. A 

repeated-measures two-way ANOVA for cocaine infusions earned revealed a significant 

main effect of session (F(11,88) = 6.161, p < 0.0001) but no significant main effect of 

group or group-by-session interaction. Post hoc analysis of the session main effect revealed 

a significant increase in cocaine infusions earned on sessions 6–12 relative to session 

1 (Dunnett’s test, ∗p < 0.05, Fig. 1B). For sucrose animals that underwent 5 days of 

abstinence, a repeated-measures two-way ANOVA for sucrose pellets earned revealed a 

significant main effect of session (F(11,110) = 23.35, p < 0.0001) but no significant main 

effect of group or group-by-session interaction. Post hoc analysis of the session main effect 

revealed a significant increase in sucrose pellets earned on sessions 2–12 relative to session 

1 (Dunnett’s test, ∗p < 0.05, Fig. 1C). These results verify that the random assignment of 

animals to treatment conditions produced similar self-administration profiles.

3.2. Cue-induced cocaine seeking

The procedural timeline and results for the experiment investigating the effects of gp120 

exposure on MC-25–41-induced attenuation of cue-induced cocaine seeking are shown in 

Fig. 2A. A repeated-measures, two-way ANOVA for cocaine infusions earned (Fig. 2B) 

revealed no significant main effect of session or group, and no significant group-by-session 

interaction. These results verify similar profiles of cocaine self-administration between 

groups prior to gp120 treatment and cue-induced cocaine seeking. A three-way ANOVA 

of lever presses during the cue test revealed significant main effects of microinjection type 

(F(1,23) = 5.153, p = 0.0329), drug treatment (F(1,23) = 14.77, p = 0.0008), and lever (F(1,23) 

= 97.76, p < 0.0001), as well as significant microinjection-by-treatment (F(1,23) = 5.195, p 
= 0.0322) and lever-by-treatment (F(1,23) = 10.03, p = 0.0043) interaction effects. Post hoc 
analysis revealed that MC-25–41 attenuated cue-induced cocaine seeking in unexposed rats 
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but failed to do so in gp120-exposed rats [∗Tukey’s test, p < 0.05 comparing active lever 

presses (ALPs) and inactive lever presses (ILPs) for each group]. Indeed, the non-exposed, 

MC-25–41-treated rats had significantly lower ALPs relative to all other groups (#Tukey’s 

test, p < 0.05 relative to active lever presses of every other group, Fig. 2C). Taken together, 

these results suggest that MC-25–41 significantly decreases cue-induced cocaine seeking 

and that a history of gp120 exposure prevents this effect.

3.3. NAc core cytokine, chemokine, and growth factor expression

Two-way ANOVAs were used to examine the effect of early cocaine abstinence and gp120 

exposure (5 days) on NAc cytokine, chemokine, and growth factor expression (Fig. 3A–

J). The F-statistics, degrees of freedom, and p-values for significant main effects and 

interactions are provided in Table 1. A significant main effect of reinforcer was detected 

for fractalkine/CX3CL1, IL-4, IL-5, and IL-18, where early cocaine abstinence, regardless 

of gp120 exposure, resulted in downregulation of these targets compared to sucrose controls. 

Conversely, a significant main effect of gp120 exposure was detected for GM-CSF, where 

GM-CSF expression increased regardless of abstinence condition, although this effect was 

likely driven by the increase observed in the sucrose + gp120 rats. Significant main effects 

of both reinforcer and gp120 were detected for CCL5, where gp120 exposure increased 

CCL5 expression regardless of abstinence condition and cocaine abstinence decreased 

CCL5 expression regardless of gp120 exposure history. A significant gp120 X reinforcer 

interaction as well as significant main effects of gp120 and/or reinforcer were detected for 

eotaxin, IFNγ, MIP-2/CXCL2, and VEGF. Post hoc analyses of the interaction revealed that 

cocaine abstinence and gp120 exposure increased expression of these targets compared to 

the sucrose controls (∗∗Tukey’s test, p < 0.05), although for IFNγ, there was only a trend 

towards increased expression in the sucrose + gp120 group compared to sucrose controls 

(Tukey’s test, p = 0.0564). In summary, cocaine abstinence independently decreased NAc 

core expression of CX3CL1, IL-4, IL-5, IL-18, and CCL5, whereas gp120 independently 

increased GM-CSF and CCL5 expression. In addition to these independent effects, no 

synergistic or additive effects of cocaine abstinence and gp120 exposure were detected, as 

cocaine abstinence, gp120, and their combination produced similar increases in NAc core 

expression of IFNγ, eotaxin, MIP-2/CXCL2, and VEGF.

In addition to examining immune function during early cocaine abstinence, we examined 

whether NAc core neuroimmune signaling is altered by the 5-day exposure to gp120 

after protracted abstinence from cocaine. Rats used for this assessment had also received 

treatment with vehicle or MC-25–41 prior to a cue-induced seeking test, and fresh NAc 

core tissue was harvested immediately after the test. Two-way ANOVAs were used to 

examine the effects of gp120 exposure history and MC-25–41 treatment on NAc core 

cytokine, chemokine, and growth factor expression (Fig. 4A–I). The F-statistics, degrees of 

freedom, and p-values for significant main effects and interactions are provided in Table 

2. Only a significant main effect of gp120 was detected for eotaxin, IFNγ, and IL-13, 

where exposure history increased the expression of these targets regardless of MC-25–41 

treatment. Conversely, only a significant main effect of treatment was detected for IL-4 

and VEGF, where MC-25–41 reduced the expression of these targets regardless of gp120 

exposure history. Similar main effects or trends toward them (p < 0.10) of both gp120 
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and treatment were found for GM-CSF, LIX/CXCL5, MIP-2/CXCL2, and IL-6, where 

gp120 exposure history independently increased, while MC-25–41 independently decreased, 

expression levels. Importantly, no significant interaction effects between gp120 and MC-25–

41 treatment were detected for any of the measured analytes.

To better understand the neuroimmune mechanisms that may underlie the failure of MC-25–

41 to inhibit cocaine seeking in gp120-exposed rats, we examined whether neuroimmune-

signaling molecules in the NAc core correlated with cue-induced cocaine seeking. Using 

simple linear regression analysis, we identified 5 neuroimmune factors that positively 

correlated with cue-induced cocaine seeking (IL-6, MIP-1α/CCL3, MIP-2/CXCL2, VEGF, 

and GM-CSF; Fig. 5A–E). In contrast, cocaine seeking correlated negatively with 

fractalkine/CX3CL1 expression (Fig. 5F). Given the failure of MC-25–41 to significantly 

attenuate the gp120-induced increase in MIP-2/CXCL2 (Fig. 4H) and the significant 

correlation of this factor with cue-induced cocaine seeking (Fig. 5C), it is possible that a 

gp120-induced increase in MIP-2/CXCL2 signaling may partially underlie the failure of 

MC-25–41 to inhibit cocaine seeking.

4. Discussion

The present study demonstrates that a history of CNS exposure to the HIV protein gp120 

during early abstinence impairs the therapeutic efficacy of a putative anti-craving medication 

in rodents [80]. Both early cocaine abstinence (5 days) and gp120 exposure, alone and in 

combination, were associated with immune dysfunction in the NAc core relative to sucrose 

controls. After a protracted period of cocaine abstinence, the dopamine D3R partial agonist 

MC-25–41 decreased cue-induced cocaine seeking in controls, but not in rats that received 

i.c.v. microinfusions of gp120 during the first 5 days of 21 days of cocaine abstinence (Fig. 

2).

During early abstinence, cocaine decreased levels of fractalkine/CX3CL1, IL-4, IL-5, IL-18 

and CCL5 regardless of whether rats were exposed to gp120, whereas gp120 exposure 

during early abstinence increased levels of CCL5 and GM-CSF regardless of reinforcement 

history (Fig. 3). Both gp120 exposure and cocaine history similarly increased levels of 

eotaxin, IFNγ, MIP-2/CXCL2, and VEGF during early abstinence. Among these immune 

factors altered by gp120, eotaxin, IFNγ, and MIP-2/CXCL2 were upregulated by gp120 

exposure history relative to unexposed controls following late cocaine abstinence, which 

suggest a set of enduring neuroimmune adaptations that persist across abstinence (Fig. 

4). Taken together, the findings suggest that exposure to HIV gp120 throughout the CNS 

may produce striatal neuroimmune-induced dysfunction that could impair the efficacy of 

medications intended to treat CUDs.

A history of gp120 exposure alone had no effect on cue-induced cocaine seeking; however, 

the expression of numerous immune factors within the NAc core positively correlated 

with this behavior and fractalkine/CX3CL1 negatively correlated with this behavior (Fig. 

5). The finding that increasing levels of VEGF, GM-CSF, MIP-2/CXCL2, and IL-6 were 

associated with increased cue-induced cocaine seeking is interesting because MC-25–41 

tended to decrease levels of these immune factors in the NAc core during late abstinence 
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and attenuated cue-induced cocaine seeking in rats not exposed to gp120. However, gp120 

significantly increased MIP-2/CXCL2 expression in the NAc core during late abstinence 

while MC-25–41 failed to significantly attenuate the expression of this immune factor (Fig. 

4). Altogether, this suggests that gp120-induced increases in MIP-2/CXCL2 within the 

NAc core may underly the failure of MC-25–41 to inhibit cue-induced cocaine seeking in 

gp120-exposed rats (Fig. 2)

4.1. MC-25–41 reduces cue-motivated cocaine seeking

The D3R has long been implicated in cue-motivated drug seeking 

[15,36,47,69,76,101,107,109]. Both animal and human studies show up-regulation of 

D3Rs in response to cocaine experience [10,22,58,70,74]. Further evidence that D3R 

signaling plays a key role in motivation for cocaine is that antagonists or partial 

agonists attenuate cocaine self-administration under high- but not low-effort schedules of 

reinforcement [11,30,34,35,79,107]. We selected MC-25–41 for the present study among 

several compounds our group has developed [18,19] because it exhibits low efficacy (19.4% 

maximum activity in the forskolin-dependent adenylyl cyclase assay), high affinity (D3R 

Ki = 0.50 nM), and high selectivity for D3Rs (1486-fold selective over D2Rs; [80]). 

Importantly, MC-25–41 also has a longer half-life (>60 min in human and rat liver 

microsome assays) compared to other D3R compounds [17,80]. In line with our previous 

findings [80], MC-25–41 significantly attenuated cue-induced cocaine seeking after a period 

of protracted abstinence in unexposed rats. However, MC-25–41 failed to attenuate cocaine 

seeking in rats with a history of CNS gp120 exposure. The gp120 disruption of this MC-25–

41 effect may be due in part to synaptic dysregulation caused by neuroimmune responses as 

discussed in more detail below.

4.2. Cocaine abstinence- and HIV gp120-induced immune responses in the NAc core

Both cocaine and HIV proteins such as gp120 can promote neuroimmune dysfunction 

and blood brain barrier (BBB) permeability, which may contribute to impaired synaptic 

homeostasis and subsequent drug seeking as well as increased HIV neuroinvasion 

[52,112,113]. Neuroinflammation induced by infection, psychostimulants, and other 

xenobiotics increases BBB permeability, which can facilitate neuroinvasion of peripheral 

immune cells that can impair synaptic homeostasis [29,37,52]. After 5 days of cocaine 

abstinence and concomitant gp120 exposure, cocaine alone upregulated MIP-2/CXCL2, 

eotaxin and VEGF to the same degree as cocaine + gp120 exposure, suggesting that 

gp120 exposure and early cocaine abstinence do not interact synergistically or additively in 

regulating these molecules. However, this upregulation of MIP-2/CXCL2 coincided with a 

positive correlation with cue-induced cocaine after a protracted abstinence period. Moreover, 

gp120 exposure history was associated with increased MIP-2/CXCL2 expression relative to 

unexposed rats after protracted abstinence, and MC-25–41 did not significantly attenuate 

MIP-2/CXCL2 expression. Among the other immune factors upregulated by gp120 exposure 

history at this timepoint, MC-25–41 decreased levels of IL-4, VEGF, GM-CSF, and IL-6 

regardless of whether or not rats were previously exposed to gp120

Few studies have examined the causal role of cytokines and chemokines in SUDs-related 

behaviors. However, together with the extant literature, our findings suggest that the 
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gp120-induced upregulation of MIP-2/CXCL2 in the NAc core is involved in the impaired 

efficacy of MC-25–41 to reduce cocaine seeking. MIP-2/CXCL2 critically mediates 

peripheral immune cell migration and subsequent release of proinflammatory factors into 

the brain parenchyma [51,92,106], and recruitment of these cells to the brain promotes 

depression- and anxiety-like behavior in rodents [61,105]. Studies in vitro demonstrate 

that gene expression of MIP-2/CXCL2 is significantly increased in human monocytes 

exposed to gp120 as well as in human neuronal progenitor cells exposed to cocaine 

[24,55]. Moreover, cultured human astrocytes repeatedly exposed to methamphetamine 

show marked upregulation of MIP-2/CXCL2 gene expression [45]. Nevertheless, there 

is a dearth of research on the impact of mesocorticolimbic MIP-2/CXCL2 signaling 

on drug-seeking behavior, although one study found a significant reduction in cocaine 

conditioned place preference after systemic inhibition of its receptor, CXCR2 [89]. 

Given the increase in NAc core MIP-2/CXCL2 by cocaine abstinence, gp120, and their 

combination at the early abstinence timepoint, this particular neuroimmune adaptation may 

represent a more enduring neuroimmune impairment that regulates cue-induced cocaine 

seeking. For example, this increase in MIP-2/CXCL2 could facilitate cueevoked excitatory 

neurotransmission at NAc core medium spiny neuron synapses that drive cocaine-seeking 

behavior [82]. Collectively, these results suggest that NAc neuroimmune dysfunction may 

regulate cue-motivated cocaine seeking, and immune signaling impairments induced by HIV 

may underlie treatment resistance among those living with comorbid HIV and CUDs.

HIV proteins impact mesocorticolimbic neuroimmune function in ways that may promote 

drug-seeking behavior, and in vivo transgenic animal models and in vitro studies have 

revealed important insights into this phenomenon. For instance, gp120 transgenic (Tg) mice 

exhibit increased translocator protein (TSPO; a microglial activation marker) binding within 

the striatum, hypothalamus, and hippocampus in response to a LPS challenge compared 

to wild type controls [110], suggesting an increase in microglial reactivity. These mice 

also exhibit increased sensitivity to methamphetamine-conditioned reward [50]. In rats, 

cocaine exposure upregulates NAc expression levels of CCR5 mRNA (which binds to 

gp120), and pharmacological inhibition of CCR5 attenuates cocaine conditioned place 

preference [68]. Within human mesencephalon/glia cell culture preparations that are rich in 

dopamine neurons, gp120 induces neurodegeneration and oxidative stress [43], implicating 

dopamine neurons as a susceptible cell population. Importantly, cocaine potentiates cellular 

toxicity, oxidative stress, and NF-κB pathway activation induced by gp120 exposure 

within rat primary astrocyte cell cultures [108]. We and others have demonstrated a 

critical role for NAc NF-κB pathway signaling in cue-motivated drug seeking ([65], 

2022; [87]), and gp120 may induce neuroimmune dysfunction via stimulation of NF-κB 

pathway signaling [93]. In turn, this could drive drug-seeking behavior and impair the 

inhibitory effects of MC-25–41 on this behavior. Recently, de Guglielmo et al. [28] showed 

that HIV transgenic rats, which constitutively express 7 of the 9 HIV proteins, exhibit 

escalation of methamphetamine intake, increased responding on a progressive ratio schedule 

reinforcement, and enhanced neuroinflammation within the medial prefrontal cortex (mPFC) 

after a 4-week abstinence period. Paralleling these findings, we observed increased NAc 

core expression of proinflammatory factors such as eotaxin, IFNγ, IL-6, MIP-2/CXCL2, and 

LIX/CXCL5 in gp120-exposed rats regardless of MC-25–41 treatment after a similar length 
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of abstinence. Nevertheless, the profile of neuroimmune changes observed here are distinct 

from this previous study, although this is likely due to model differences and/or brain region 

differences. Collectively, these studies highlight that HIV may modulate neuroimmune 

function to disrupt reward-seeking behavior, and that abstinence is a critical phase of the 

addiction cycle where individuals may be uniquely susceptible to HIV-induced dysregulation 

of drug-motivated behavior.

4.3. Limitations and future directions

One limitation of the present study is the lack of female subjects. We focused on males 

in this initial study because HIV still disproportionately impacts males. As of 2020, 

men accounted for 80% of new HIV cases within the United States, with over 70% 

of cases attributed to male-to-male sexual contact, with or without injection drug use, 

specifically [13]. However, it is important to note that women accounted for 18% of 

new HIV diagnoses within the United States [13]. Many preclinical studies in rodents 

indicate important sex differences in the effects of HIV on striatal synaptic morphology and 

physiology, dopamine signaling, and reward-seeking behavior [9,59,60,72,73]. Moreover, 

we have recently demonstrated that female rats fail to exhibit an attenuation of cue-induced 

cocaine seeking in response to NAc core NF-κB inhibition [66]. Thus, it is possible that 

females have a differential neuroimmune profile and behavioral response to MC-25–41 

treatment following gp120 exposure and protracted abstinence compared to males. Future 

studies should probe this phenomenon.

Another potential limitation of the present study is the use of a single HIV protein (i.e., 

gp120) as opposed to a cocktail of multiple HIV proteins or the use of transgenic animals 

that express one or more of these proteins chronically. Indeed, gp120 and Tat can produce 

synergistic neurotoxicity that is greater than that produced by either protein alone [67], 

and chronic, low-level exposure within the CNS to several HIV proteins in transgenic 

rodents can recapitulate many aspects of HAND among virally-suppressed PLWH [64,100]. 

Nevertheless, one distinct advantage of the protein approach utilized in the present study 

is the temporal control over HIV protein exposure. Many PLWH who are diagnosed with 

a SUD acquired HIV collaterally through risky behaviors such as unsafe sexual practices, 

needle sharing, etc. In such cases, a chronic history of drug use, and the enduring impact 

of that drug history on mesocorticolimbic neurobiology, precedes HIV infection. Thus, 

the administration of HIV proteins into the CNS after a history of drug use is a distinct 

translational advantage over other preclinical models. Studies attempting to understand the 

neurobiological intersections of HIV and SUDs must carefully consider the chronological 

sequence in which substance use and HIV occur to parse their neurobehavioral interactions 

more accurately, particularly as it pertains to medications development efforts. Future 

studies could benefit from models such as the EcoHIV model, which provides temporal 

specificity over direct administration of a chimeric virus construct that closely mimics 

HIV and successfully infects murine immune cells [78]. Characterization of addiction-

like behaviors and pharmacotherapeutic efficacy using such models would be a major 

advancement in the preclinical study of vulnerable subpopulations of people living with 

SUDs.
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Collection of fresh NAc tissue for neuroimmune analyses precluded us from histologically 

verifying cannula placement for i.c.v. infusions, although cannula placement within the 

right lateral ventricle was visually inspected and confirmed during fresh tissue dissections. 

The present study focused on NAc core neuroimmune signaling given its critical role in 

abstinence-dependent cocaine seeking [75], however we realize that the behavioral effects 

observed involve corticolimbic neural circuitry. Given the systemic nature of the i.c.v. 

gp120 treatment, other brain regions that are known to be susceptible to HIV-induced 

neuropathology and are critically involved in cocaine-seeking behavior, such as the mPFC, 

may exhibit a differential profile of neuroimmune adaptations [28,85,103,104]. Such 

changes could also account for the disrupted MC-25–41 effects we observed on cue-induced 

cocaine seeking by gp120 exposure history. Future research should characterize the broader 

impact of HIV on neuroimmune function across brain regions, abstinence timepoints, and 

sex to better understand the mechanisms that underlie immunomodulation of drug-seeking 

behavior and associated synaptic plasticity.

5. Conclusions

We demonstrate here that sub-chronic CNS exposure to the HIV protein gp120 induces 

several neuroimmune adaptations within the NAc core of male rats and blocks the 

therapeutic efficacy of the novel D3R partial agonist MC-25–41. The latter finding 

highlights the importance of examining HIV and other comorbidities in medications 

development for SUDs. In further support, nearly 40% of young adults who have a serious 

mental illness also meet the diagnostic criteria for a substance use disorder (SUD), and over 

60% of adolescents enrolled in community-based SUD treatment programs also met the 

DSM criteria for other mental disorders [42,49,86]. Furthermore, a large, multi-site study 

within the U.S. of over 10,000 PLWH found a SUD prevalence rate of 48%, with a 20% 

rate of polysubstance use and an 11% prevalence rate of CUDs, which is substantially 

higher than the national average [39]. SUDs/HIV comorbidity reduces cART adherence 

and healthcare utilization as well as increases difficulty in managing viral load [32]. 

Cocaine also impairs the efficacy of cART regardless of treatment adherence [84], possibly 

through direct drug-drug interactions [53]. Thus, with no FDA-approved medications 

that adequately treat CUDs, individuals with comorbid HIV and CUDs are particularly 

vulnerable to poorer health outcomes. Altogether, the present findings highlight potential 

neuroimmune mechanisms to explore with future research examining the modulatory 

impact of comorbidities such as HIV on the therapeutic efficacy of putative anti-craving 

medications.
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Fig. 1. Cocaine and sucrose self-administration prior to gp120 exposure and 5-day abstinence.
(A) Timeline of experimental procedures. (B) Mean (± SEM) cocaine infusions earned for 

each qualifying cocaine self-administration (S.A.) session and (C) mean (± SEM) sucrose 

pellets for each qualifying session of sucrose self-administration. There were no group 

differences during training (i.e., prior to gp120 treatment). ∗p < 0.05 relative to session 1, 

regardless of treatment group. n = 8–9/group.
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Fig. 2. HIV gp120 exposure during early cocaine abstinence prevents the attenuation of cue-
induced cocaine seeking by the D3R partial agonist MC-25–41.
(A) Timeline of experimental procedures. (B) Mean (± SEM) cocaine infusions earned for 

each qualifying cocaine self-administration (S.A.) session prior to any treatments and (C) 

mean (± SEM) active lever presses (ALPs) and inactive lever presses (ILPs) during a 1-hr 

cue-induced cocaine seeking test. There were no group differences during training prior to 

abstinence and gp120 treatment. After gp120 treatment and 21 days abstinence, MC-25–41 

significantly attenuated cue-induced cocaine seeking relative to vehicle treatment in control 

rats. However, MC-25–41 failed to attenuate cocaine seeking in rats treated with subchronic 

i.c.v. gp120 during the first 5 days of abstinence. ∗p < 0.05 between ALPs and ILPs for each 

group; #p < 0.05 relative to active lever presses of all other groups. Error bars = SEM; n = 

6–7/group.
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Fig. 3. Cocaine abstinence and i.c.v. gp120 exposure alter neuroimmune function in the NAc 
core.
(A-J) Two-way ANOVAs revealed a significant main effect of early cocaine abstinence for 

fractalkine/CX3CL1, IL-4, IL-5, IL-18, and CCL5 where cocaine abstinence decreased the 

expression of these targets regardless of gp120. Conversely, a significant main effect of 

gp120 exposure was detected for CCL5 and GM-CSF, where gp120 increased the expression 

of these targets regardless of abstinence condition, although this is likely driven by the 

sucrose + gp120 group for GM-CSF. Significant interactions were detected between early 

cocaine abstinence and subchronic exposure to gp120 for eotaxin, IFNγ, MIP-2/CXCL2, 

and VEGF compared to unexposed, sucrose-abstinent rats (i.e., sucrose + CTRL group). 

Expression of these targets was increased to a similar degree due to cocaine abstinence, 

gp120 exposure, or their combination relative to sucrose controls. Overall, no additive or 

synergistic effects of combined gp120 and early cocaine abstinence were observed. ∗p < 

0.05, ANOVA main effect (brackets indicate significant effect of the manipulation); ∗∗p 
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< 0.05 relative to all other treatment groups; #p < 0.05 relative to CTRL-cocaine and 

gp120-cocaine groups. Error bars = SEM; n = 4–5/group.
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Fig. 4. MC-25–41 and gp120 independently alter NAc core cytokine, chemokine, and growth 
factor expression in cocaine-seeking rats.
(A-I) Rats that had self-administered cocaine received daily i.c.v. microinfusions of gp120 

for the first 5 (out of 21) days of abstinence prior to a cue-induced cocaine seeking test and 

were sacrificed for NAc core tissue collection immediately after testing. Two-way ANOVAs 

revealed a significant main effect of gp120 exposure history on eotaxin, IFNγ, IL-13, LIX/

CXCL5, MIP-2/CXCL2, and IL-6 expression, where gp120 increased the overall expression 

of these markers regardless of MC-25–41 treatment (∗p < 0.05). GM-CSF also demonstrated 

a trend towards increased expression due of gp120 exposure history regardless of MC-25–41 

treatment (#p < 0.10). There was also a significant main effect of MC-25–41 treatment on 

IL-4, VEGF, GM-CSF, and IL-6 expression (∗p < 0.05) and a trend toward an effect on LIX/

CXCL5 and MIP-2/CXCL2 (#p < 0.10), where MC-25–41 treatment decreased the overall 

expression of these markers regardless of gp120 exposure history. Notably, no significant 
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interactions were detected, indicating that MC-25–41 did not significantly attenuate any 

gp120-induced increases in immune factor expression back down to unexposed levels. Error 

bars = SEM; n = 6–7/group.
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Fig. 5. Cue-induced cocaine seeking correlates with NAc core neuroimmune signaling.
After gp120 exposure and protracted abstinence, rats were tested for cue-induced cocaine 

seeking, with some rats receiving an acute systemic injection of MC-25–41 (10 mg/kg, 

i.p.; red symbols) prior to testing. Active lever pressing during cue-induced cocaine seeking 

correlated positively with NAc core (A) IL-6, (B) MIP-1α/CCL3, (C) MIP-2/CXCL2, (D) 

VEGF, and (E) GM-CSF expression. In contrast, cocaine seeking correlated negatively with 

(F) fractalkine/CX3CL1 expression. Dashed lines = 95% confidence bands. n = 6–7/group.
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