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Abstract

The inverse conductivity problem is the mathematical problem that must be solved in order for 

electrical impedance tomography systems to be able to make images. Here we show how this 

inverse conductivity problem is related to a number of other inverse problems. We then explain 

the workings of an algorithm that we have used to make images from electrical impedance data 

measured on the boundary of a circle in two dimensions. This algorithm is based on the method 

of least squares. It takes one step of a Newton’s method, using a constant conductivity as an 

initial guess. Most of the calculations can therefore be done analytically. The resulting code is 

named NOSER, for Newton’s One-Step Error Reconstructor. It provides a reconstruction with 496 

degrees of freedom. The code does not reproduce the conductivity accurately (unless it differs very 

little from a constant), but it yields useful images. This is illustrated by images reconstructed from 

numerical and experimental data, including data from a human chest.

THE PROBLEM AND ITS CONNECTION WITH OTHER INVERSE PROBLEMS

Electrical impedance imaging systems apply currents to the surface S of a body B, measure 

the induced voltages at the surface, and from this information reconstruct an approximation 

to the conductivity in the interior [1-3]. The reader interested in background literature is 

referred to Ref. 4. Mathematically, this can be formulated as follows [5]: If u is the electric 

potential and σ the conductivity, then u satisfies
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∇ ⋅ σ( p )∇u( p ) = 0 for p in B (1)

σ( p ) ∂u( p )
∂ν = j( p ) for p on S , (2)

where ν denotes the outward unit normal to the body and j denotes the current density 

applied to the surface of the body. The amount of current leaving the body must be the same 

as the amount entering, which implies

∫
s

j( p )dSp = 0 . (3)

Electrical impedance imaging systems not only apply current, but also measure voltages on 

the boundary

u( p ) = V ( p ) for p on S . (4)

For convenience, we choose the ground or reference potential so that

∫
s

V ( p )dSp = 0 . (5)

The idealized inverse conductivity problem is this: Given all possible current densities j and 

their corresponding voltage distributions V, find the conductivity σ in the interior of the 

body.

This problem is closely related to a number of other inverse problems. For example, if we 

make the change of variables u = σ −1/2ψ, then ψ satisfies the Schrödinger equation

− ∇2ψ( p ) + q( p )ψ( p ) = 0 in B ,

where

q( p ) = ∇2σ1 ∕ 2( p )
σ1 ∕ 2( p )

.

The relations between the inverse conductivity problem and an inverse boundary value 

problem for the Schrödinger equation are studied in Refs. 6-10. This inverse boundary value 

problem is, in turn, related to inverse scattering problems [11].

If we now make the further change of variables w = ρ1/2Ψ, then w satisfies the acoustic 

equation
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∇ ⋅ 1
ρ( p )

∇w( p ) + ω2κ( p )w( p ) = 0 in B ,

where ρ, κ, and ω are related to q by

q( p ) = ρ1 ∕ 2( p )∇2 1
ρ1 ∕ 2( p )

− ω2κ( p )ρ( p ) .

The acoustic equation governs the pressure w in a fluid with density ρ and compressibility κ 
when it is probed by a time-harmonic wave of frequency ω. Acoustic inverse boundary value 

problems are thus also closely related to the inverse conductivity problem [6].

THE ACTUAL PROBLEM

The above mathematical model is an idealization. In practice, we cannot specify current 

densities, but rather only currents, which are applied through electrodes attached to the 

surface. Similarly, we can measure voltages only on these electrodes. There are a number of 

ways of modeling this situation [5, 12], but here we use only the above model (1)-(4), which 

we call the continuum model, and a second model, which accounts for the discretization 

effects of the electrodes as follows.

The “gap” model uses the same differential equation (1)) inside B, but it replaces the 

boundary condition (2) with

σ( p ) ∂u( p )
∂ν =

Il ∕ Al for p ∈ el, l = 1, 2, …, L

0 for p ∉ U
l = 1

L
el .

(6)

Here L denotes the number of electrodes; el the lth electrode; Il, the current sent to the 

lth electrode; and Al the area of the lth electrode. This model for the boundary condition 

assumes that the current density is zero in the gaps between electrodes and is constant over 

the surface of each electrode. The conservation of charge condition (3) is replaced by the 

corresponding condition on the currents themselves:

∑
l = 1

L
Il = 0 . (7)

The voltages that we measure are assumed to have the values of the potential at the center of 

each electrode:

u(center of el) = V l . (8)

We choose the ground so that
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∑
l = 1

L
V l = 0 . (9)

In this more realistic gap model formulation, the inverse conductivity problem becomes the 

following: Given all possible current patterns I = (I1, …, IL) and their corresponding voltage 

patterns V = (V 1, …, V L), find the conductivity σ inside the body.

Unfortunately, this is impossible, for the following reason: There are only L − 1 linearly 

independent current patterns [L degrees of freedom minus one for the constraint (7)]. Any 

other current pattern must be a linear combination of L − 1 “basis” patterns. Because the 

differential equation (1) is linear, any voltage pattern must be a linear combination of L 
− 1 basis voltage patterns. Thus, we have only a finite number of linearly independent 

measurements. From a finite number of measurements, we cannot hope to obtain σ at every 

point in the interior of the body. We can only hope for an approximation to σ that depends 

on a finite number of parameters.

A simple finite-parameter approximation is one that is piecewise constant, and this is the 

approximation that the NOSER [13] code uses. The reconstruction is done on a particular 

mesh described below. The conductivity is assumed to be constant on each mesh element. 

Mathematically, this can be expressed as

σ( p ) = ∑
n = 1

N
σnχn( p ) , (10)

where χn( p ) is the characteristic function that is 1 for p  contained in the nth mesh element 

and zero otherwise.

The inverse problem can thus be stated as follows: Choose a basis of current patterns I
1
, 

I
2
, … , I

L − 1
. For each current pattern I

k
, suppose we know the corresponding voltage 

pattern V
k
. From this information, find σ of the form (10), where σ is connected to each I

and V̄  by (1) and (6)-(9). It will turn out to be more convenient to work with the resistivity ρ, 

which is the reciprocal of the conductivity σ. Assumption (10) in terms of resistivity is

ρ( p ) = ∑
n = 1

N
ρnχn( p ) . (10a)

(The resistivity ρ is not related to the density ρ that we mentioned earlier.)

Here we will consider only two-dimensional problems, in fact, problems in which the body 

B is a disk of radius r0. We use an even number of electrodes, which we assume to be of 

equal sizes so that Al = A for all l. We center the lth electrode at the angular position

Cheney et al. Page 4

Int J Imaging Syst Technol. Author manuscript; available in PMC 2023 March 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



θ = θl = 2πl ∕ L , l = 1, 2, …, L . (11)

MESH DESIGN

The design of the mesh on which we represent the conductivity or resistivity deserves 

careful attention [14]. This is because the ill-conditioning of the reconstruction is affected by 

the number, size, and position of the mesh elements.

That the size and position are important can be seen by noting that the boundary 

measurements are most sensitive to the parts of the disk near the boundary [15]. We 

therefore expect to obtain better resolution there, which implies that we should take smaller 

mesh elements near the boundary. On the other hand, we should not take mesh elements 

too small: If a mesh element is significantly smaller than the size of the smallest object that 

can be distinguished at that location, then the inverse problem will be worse conditioned, 

because many conductivity distributions will produce the same data. The size of the smallest 

distinguishable object is, in turn, determined by the measurement precision [15].

The number of mesh elements is also important. If we try to do the reconstruction on a mesh 

with more elements than the number of independent measurements, then the reconstruction 

problem will be underdetermined. What is the number of independent measurements? Since 

the relation between the I ’s and V ’s is linear, we can think of this relation as being 

given by a matrix, which must have dimensions (L − 1) × (L − 1). This matrix, however, 

is self-adjoint [14], which implies that it contains only L(L − 1)/2 degrees of freedom. 

[To obtain this number, subtract the number of diagonal elements, L − 1, from (L − 1)2. 

This gives the number of off-diagonal elements. Divide by two to obtain the number of 

off-diagonal degrees of freedom, and then add the L − 1 diagonal degrees of freedom.] Thus, 

in order to avoid making our problem underdetermined, we should take

N ≤ L(L − 1)
2 , (12)

where L is the number of electrodes and N the number of mesh elements.

The mesh used by NOSER, dubbed the “Joshua tree” mesh, is shown in Figure 1. It has L = 

32, N = 496, and can be specified by giving radial and angular subdivisions.

THE PLAN: LEAST SQUARES

To get a full set of measurements, we apply a full set of basis current patterns I
1
, I

2
, … , 

I
L − 1

. For simplicity, we use a basis of trigonometric patterns I
k

= (I1
k, I2

k, …, IL
k), where

Il
k = T l

k = cos kθl , k = 1, 2, …, L ∕ 2
sin(k − L ∕ 2)θl , k = (L ∕ 2) + 1, …, L − 1 . (13)
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(Any other basis of current patterns can be decomposed into linear combinations of these 

trigonometric ones.) We denote the measured voltage patterns corresponding to these 

trigonometric current patterns by V
1
, V

2
, … , V

L − 1
. Note that if we knew a resistivity of 

the form (10a). we could compute the voltages that would be produced by the trigonometric 

current patterns. These voltage patterns we denote by U
1
( ρ ), U

2
( ρ ), … , U

L − 1
( ρ ), where 

we have written ρ  as a shorthand for the N constants ρ1, ρ2, … ρN appearing in (10a). Our 

goal is to find ρ  so that

U
k
( ρ ) = V

k
, k = 1, 2, …, L − 1 . (14)

Unfortunately, we cannot hope to do this, for two reasons. First, there is no reason to 

think that the true resistivity is of the form (10a). Since (10) is only an approximation to 

the true resistivity, we expect that the resulting voltage pattern U
k
(ρ) should be only an 

approximation to the voltage pattern V
k
. Second, even if the true resistivity were of the form 

(10a), we could not hope to satisfy (14) because the V ’s, in general, contain measurement 

errors. Thus, a resistivity that produces the V ’s may not even exist.

For these reasons, we do not try to find a resistivity that reproduces the measured voltages. 

Instead, we look for a resistivity ρ  that minimizes the errors V
k

− U
k
( ρ ), k = 1, 2, … , L 

− 1. A convenient way to measure the total error is to take the sum of the squares of these 

differences:

E( ρ ) = ∑
k = 1

L − 1
‖V

k
− U

k
( ρ )‖2 = ∑

k = 1

L − 1
∑
l = 1

L
(V l

k − U l
k( ρ ))2 . (15)

Minimizing this particular error functional is called the method of least squares [16].

It is certainly possible to use other error functionals [17-21]. Here, however, we consider 

only least squares.

We consider the error (15) as a function of N variables ρ1, … , ρN. To minimize this 

function, we differentiate with respect to each variable and set each derivative to zero. This 

gives us the system of N equations:

0 = ∂E( ρ )
∂ρn

= − 2 ∑
k = 1

L − 1
∑

l = I

L
(V l

k − U l
k( ρ )) ∂ U l

k( ρ )
∂ρn

. (16)

If we denote the right side of the nth equation of (16) by Fn( ρ ), i.e.,

Fn( ρ ) = ∂E( ρ )
∂ρn

= − 2 ∑
k = 1

L − 1
∑

l = I

L
(V l

k − U l
k( ρ )) ∂ U l

k( ρ )
∂ρn

, (17)
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then we can rewrite (16) as the system

0 = Fn(ρ1, …, ρN) , n = 1, 2, …, N . (18)

This is a system of N nonlinear equations in N variables. A standard method for solving 

such systems is Newton’s method.

NEWTON’S METHOD

Newton’s method for the case of a system of N equations in N variables is [16, 22, 23]

ρ new = ρ old − [F
′
( ρ old)]−1F ( ρ old) . (19)

Here the derivative of the vector F ( ρ ) is the Jacobian matrix

Fn, m
′ ( ρ ) = ∂

∂ρm

∂E( ρ )
∂ρn

= 2 ∑
k = 1

L − 1
∑
l = 1

L ∂ Ul
k( ρ )

∂ρn

∂ Ul
k( ρ )

∂ρm

− 2 ∑
k = 1

L − 1
∑
l = 1

L
(V l

k − Ul
k( ρ )) ∂2Ul

k( ρ )
∂ρn ∂ρm

.

(20)

The overall plan of the NOSER code is to do one step of Newton’s method, using the initial 

guess ρ old = constant. For the initial guess, the vector F ( ρ old) and matrix F
′
( ρ old) can be 

obtained analytically. Finding ρ new
 from (19) therefore involves only inverting the known 

matrix F
′
( ρ old), applying the inverse to the known vector F ( ρ old), and subtracting it from the 

known vector ρ old
.

Before we consider how to obtain the quantities appearing in (19) from the data, we discuss 

the matrix F’.

MODIFICATION OF F
′

It turns out that the matrix F’ is ill-conditioned, which means that some of its eigenvalues 

are large and some are very small. These small eigenvalues prevent us from computing the 

inverse of F
′
 numerically. Even if we could invert F

′
, the inverse matrix would have very 

large eigenvalues. If we were to apply this inverse matrix to F ( ρ old), these large eigenvalues 

would cause small errors in F ( ρ old) to be magnified tremendously.

To get around this problem, we need to modify F
′
 to get rid of its small eigenvalues. There 

are many ways to do this. The modification used in the NOSER code is based on the 

meaning of the two terms in the definition (20) of F
′
.
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The first term of (20), namely.

An, m = 2 ∑
k = 1

L − 1
∑
l = 1

L ∂ Ul
k

∂ρn

∂ Ul
k

∂ρm
, (21)

can be understood as follows: If we apply the kth current pattern and calculate the voltage on 

the lth electrode, then ∂Ul
k ∕ ∂ρn is the change in this voltage when we change the resistivity 

in the nth mesh element. Similarly, ∂Ul
k ∕ ∂ρm results from changing the mth mesh element. If 

the nth and mth mesh elements are near each other, then the changes in voltage they produce 

will be nearly the same, so the product (∂Ul
k ∕ ∂ρn)(∂Ul

k ∕ ∂ρm) will be positive. In particular, 

this is true if n = m. Suppose, on the other hand, that the nth and mth mesh elements are 

far from each other. Suppose, further, that the nth mesh element is close to the lth electrode, 

so it has a big effect on the voltage Ul
k, which means that ∂Ul

k ∕ ∂ρn is relatively large. But 

then the mth mesh element must be far away from electrode l, so its effect ∂Ul
k ∕ ∂ρm is small. 

Thus, the product (∂Ul
k ∕ ∂ρn)(∂Ul

k ∕ ∂ρm) is small relative to (∂Ul
k ∕ ∂ρn)(∂Ul

k ∕ ∂ρn) if the nth 

and mth mesh elements are far from each other. If the mesh is numbered so that nearby 

elements have close indices, then the matrix A, whose (n, m)th element is given by (21), has 

its largest elements on and near the diagonal.

Moreover, these diagonal elements are all positive. The largest diagonal elements are those 

corresponding to mesh elements near the boundary, and the smallest correspond to mesh 

elements near the center. This variation, between the smallest and largest diagonal elements, 

is of a reasonable size. In other words, the diagonal of A would itself be a well-conditioned 

matrix.

The second term of (20), namely,

Bn, m = − 2 ∑
k = 1

L − 1
∑
l = 1

L
(V l

k − Ul
k( ρ )) ∂2Ul

k( ρ )
∂ρn ∂ρm

, (22)

is more complicated to interpret and to compute. However, if our guess ρ old
 is close to the 

true ρ, then the predicted voltages Ul
k( ρ old) will be close to the measured voltages V l

k and 

Bn,m will be small. The Levenberg–Marquardt approximation [16] used by NOSER is to 

neglect this term entirely, replacing it by a multiple of the diagonal of A. Thus, we replace 

Bn,m by

γAn, mδn, m , (23)

where δn,m is the Kroenecker delta, which equals one if n = m and zero otherwise. Here, the 

parameter γ is to be chosen as small as practically possible.

Explicitly, the modified version of F’ that we use is

An, m + γAn, mδn, m . (24)
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By taking γ large enough, we can force the modified F
′
 to be diagonally dominant and 

positive definite. Since the diagonal matrix An,mδn,m is well conditioned, by taking γ 

large enough, we improve the conditioning of the modified F
′
. Moreover, this modification 

allows us to avoid computing the second derivatives that appear in F
′
. Because we throw 

away these second derivatives, and because we take only one step of Newton’s method, 

our algorithm can also be thought of as finding an approximate solution to the linearized 

problem. In particular, this algorithm can be viewed as a regularized solution of the least-

squares minimization of the linear problem.

The parameter γ was selected empirically to produce a suitable balance between stability 

on the one hand and image contrast and definition on the other. The choice was made 

by simulating analytically a data set representing a highly conductive disc of medium 

size centered in a circular homogeneous region. These data were then used to make 

conductivity reconstructions for different values of γ. When γ was less then about 0.005, 

the reconstructed conductivity overshot the discontinuity by more than 20%. At even 

lower values of γ, the instability made the reconstruction unusable. For values of γ 
more than about 0.02, the reconstruction smoothed the discontinuity excessively; in other 

words, the image was dull and blurred. The value 0.01 was therefore chosen for γ for all 

reconstructions reported here. The images would differ appreciably from those presented if 

γ were to vary by more than approximately 50% in either direction.

HOW TO DO THE COMPUTATIONS

We now turn to the matter of computing the quantities in (19) needed for one step of a 

Newton iteration. We need to understand the following:

1. How to pick ρ old
.

2. How to compute Ul
k( ρ old).

3.
How to compute ∂Ul

k( ρ old)
∂ρn

.

Once we know how to do these three things, we can compute F
′
( ρ old) from (17). We can 

then compute A from (21), and from A, we obtain the modified version of F
′
 from (24). It is 

this modified version of F
′
 that we invert and apply to F ( ρ old) in (19).

1. How to Pick ρ
old

.

We have decided to take ρ old = c (1, 1, …, 1) for some scalar c. How should we choose c?

To find c, we again use the method of least squares. We use the same functional as before, 

namely (15), with ρ = c 1 , where 1 = (1, 1, …, 1). The expression on the right-hand side 

of (15) simplifies for this special resistivity: Because the differential equation (1) is linear, 

multiplying the resistivity 1 by the constant c causes the voltage to be multiplied by c. In 

symbols,
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Ul
k(c 1 ) = cUl

k( 1 ) . (25)

Thus, the error functional (15) can be written

E(c 1 ) = ∑
k = 1

L − 1
∑
k = l

L
(V l

k − cUl
k( 1 ))2 . (26)

Again, we minimize the error by differentiating and setting the derivative to zero. This time, 

however, the differentiation is with respect to c and can be done easily:

O = dE
dc = − 2 ∑

k = 1

L − 1
∑

l = 1

L
[V l

k − cUl
k( 1 )]Ul

k( 1 ) .

Solving for c, we obtain

c = ∑
k = 1

L − 1
∑
l = 1

L
(V l

kUl
k( 1 ))/ ∑

k = 1

L − 1
∑
l = 1

L
[Ul

k( 1 )]2 . (27)

Thus, we see that we should choose our first guess ρ old = c 1 , where c is given by (27). To 

compute the right-hand side of (27) from the data, we need to know how to find Ul
k( 1 ).

2. How to Find Ul
k( 1 ).

The voltage Ul
k( 1 ) is the voltage on the lth electrode due to the trigonometric current pattern 

(13) and the resistivity that is the constant 1. To find the voltage, we must first choose 

the mathematical model we wish to use. The more accurate models [5, 12] give better 

reconstructions with fewer boundary effects, but we do not discuss in this paper all the 

modifications to the algorithm necessary to incorporate these more accurate models. For 

example, if we use the gap model, then we use (6) to find the current density corresponding 

to the trigonometric current pattern (13). Here, for simplicity, we use only the continuum 

model, so that the corresponding current density is

∂ uk

∂ r (r0, θ) = cos kθ , k = 1, 2, …, L ∕ 2
sin[(k − L ∕ 2)θ] , k = L ∕ 2 + 1, …, L − 1 , (28)

on S.

In either case, once the current density on the boundary is known, the boundary value 

problem (1), (2) can be solved by separation of variables. This straightforward procedure 

(which we omit) gives the Fourier series for the potential u in terms of the Fourier series for 

the current density. In the case of the continuum model, the result is especially simple:
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uk(r, θ) = r0

cos kθ
k

r
r0

k

, k = 1, 2, …, L ∕ 2

sin[(k − L ∕ 2)θ]
k − L ∕ 2

r
r0

k − L ∕ 2

, k = (L ∕ 2) + 1, …, L − 1 .
(29)

The voltage Ul
k( 1 ) on the lth electrode is taken to be the potential at the center of the 

electrode:

Ul
k( 1 ) = uk(r0, θl) =

r0

k T l
k , k = 1, 2, …, L ∕ 2

r0

k − L ∕ 2 T l
k , k = L ∕ 2 + 1, …, L − 1 .

(30)

To obtain Ul
k( ρ old), we merely use (25).

3. How to Find [∂Ul
k( ρ

old
)] ∕ ∂ρn.

We compute the vector ∂U
k
( ρ old) ∕ ∂ρn by expanding it in the trigonometric basis (13):

∂ U
k

∂ρn
= ∑

s = 1

L − 1 T
s
, ∂ Uk

∂ρn

〈T
s
, T

s
〉

T
s
, (31)

where the brackets denote the usual inner product

〈W , X 〉 = ∑
l = 1

L
W lXl .

The inner products in the denominator of (31) are merely normalization factors:

〈T
s
, T

s
〉

= L ∕ 2 s = 1, 2, …, (L ∕ 2) − 1, (L ∕ 2) + 1, …, L − 1
L s = L ∕ 2 .

(32)

In the appendix, we show that for a conductivity of the form (10),

T
s
, ∂ U

k
( ρ )

∂ρn
≈ 1

ρn
2∫

Mn
∇uk ⋅ ∇us , (33)

where Mn is the nth mesh element and where uk is the solution to the problem (1), (6), (13).

This solution uk has been calculated analytically for the constant resistivity ρ = 1 . To 

obtain uk for ρ = c 1 , we simply multiply (29) by c.
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With uk given in a form like (29), it is useful to write the derivatives in (33) in polar 

coordinates as well:

T
s
, ∂ Uk

∂ρn
( ρ old) ≈ 1

ρn
∫

Mn

∂ uk

∂ r
∂ us

∂ r + 1
r2

∂ uk

∂θ
∂ us

∂θ . (34)

The differentiations in (34) result in an integrand that is a product of a function of r times 

a function of θ. For a mesh element determined by radial and angular subdivisions, the 

integration results in a simple expression. We omit these straightforward calculations, but 

caution that there are a number of different cases.

NOSER IMPLEMENTATION

In this section, we describe a portable FORTRAN77 implementation of the NOSER algorithm 

and tabulate some typical results from these computations. In general, run times are 

dominated by computation of the Jacobian and Hessian matrices of the error functional 

E. These are F [Eq. 17] and F’ [Eq. (24)], respectively. As noted, however, we can 

expand these in the trigonometric basis (13) and manipulate the derivatives so that much 

of the computational effort is dependent only on the mesh geometry. These terms can be 

precomputed and stored. This has been done for the implementation whose results are 

reported here.

With this enhancement, the computation becomes dominated by the solution of the 

linear system. This is done conventionally, using the LINPACK routines DSIFA and DSISL for 

factorization and solution, respectively. As expected, the reconstruction time for a single 

iteration behaves as O(L3), in L, the number of electrodes. Typical run times (in seconds) for 

several machines on a 32-electrode problem are displayed in Table I.

IMAGES MADE BY NOSER

In this section, we discuss some examples of reconstructions made by NOSER. The first set 

of examples are reconstructions made from analytically generated data. We began with an 

assumed conductivity distribution composed of a body of constant resistivity, in this case 

500 Ω cm, containing a concentric “target,” a disk of resistivity 50 Ω cm. For this simple 

conductivity distribution, we solved the boundary value problem (1), (2) analytically. We 

then used this data as input to NOSER. This avoids problems of experimental error and 

effects of the electrodes and, thus, provides a good test of the algorithm itself.

The results are shown in Figure 2, which contains reconstructions of targets of diameters 2, 

4, 8, and 16 cm, respectively, in a body of diameter 2r0 = 30 cm. The top row in Figure 2 is 

a drawing of the tank and the targets studied. The bottom row is the reconstructed resistivity 

distribution. The reconstructions are exhibited on gray scales chosen so that the range from 

black to white represents a resistivity difference of 40 Ω cm. Each reconstruction, however, 

has its own gray scale, i.e., black represents a different resistivity on each picture.
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To see how the reconstructions compare with each other, one should look at Figure 3, which 

shows slices through the different reconstructions. The vertical bar on each curve shows the 

true size and location of the target. When the reconstruction algorithm is free to choose 

the best value of average resistivity, the presence of a large conductive target lowers the 

estimate of the background resistivity. For this reason, the algorithm was constrained to 

give a background resistivity of 500 Ω cm in figure 3. We do not show a picture of the 

reconstruction obtained when there is no target. For analytic data from a homogeneous disk, 

NOSER produces a reconstruction that is homogeneous to within a fraction of an Ω cm. 

One can also see from Figure 3 that a sufficiently small target will not be detectable. The 

oscillations appearing in the reconstruction of the largest target disappear if γ is increased 

to 0.05. For large targets, the maximum difference in reconstructed conductivity between 

the inhomogeneity and the background is about 35 Ω cm. However, the true difference 

in conductivity is 450 Ω cm. Clearly, the reconstructed conductivities are not accurate. 

Nevertheless, the images show approximately the size and location of the inhomogeneities.

The next set of examples are from data collected experimentally with the Rensselaer ACT 

2 system [2]. The tests were made using a cylindrical tank of diameter 30 cm with 32 

metal electrodes attached around the periphery. The tank was filled with a saline solution of 

conductivity about 150 Ω cm. and cylindrical targets were placed in it (Fig. 4). Since the test 

tank has no vertical variation, the experimental setup simulates a two-dimensional system.

The first image is a reconstruction of the homogeneous tank, with no targets in the middle. It 

shows that the ACT 2 system introduces errors, which are not compensated for in NOSER. 

The second image is a reconstruction of the tank with an insulating target of diameter 

3.2 cm. Immediately below this picture is a difference image formed by subtracting the 

reconstruction of the homogeneous tank from the raw image above it. This has the effect 

of partially removing the errors due to improper modeling of the boundary and unmodeled 

errors in the instrumentation. The third image in Figure 4 is a reconstruction of the tank with 

two insulating targets, each of diameter 3.2 cm, and below it, its difference image (again 

formed by subtracting the homogeneous reconstruction). The last image is a reconstruction 

of the tank with an insulator and a conductor of the same dimensions as before, and 

below it, its difference image. In all four of the pictures in the middle row, the unmodeled 

presence of electrodes at the periphery appears as a ring of low resistivity (blue). Since the 

electrodes are present in all of these images, including the background, their effect is not 

seen in the difference images in the bottom row. Other artifactual inhomogeneities in the raw 

reconstructions also disappear in the subtractions. All the images in Figure 4 are displayed 

on the same color scale. Again we see that targets of higher or lower conductivity pull the 

background up or down.

To see what the colors in Figure 4 represent, one can look at Figure 5, which displays slices 

through the three difference images in Figure 4. Note that the maximum contrast for the 

single, centered insulator, about 4 Ω cm, is consistent with the results in Figure 3 for a 

similar-sized target.

The final set of examples we show here are reconstructions of the chest of a human 

volunteer. Thirty-two karaya-gum-faced foil electrodes were attached in a plane around the 
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chest above the nipples (level T7). Data were collected using the Rensselaer ACT 2 system, 

which required about 30 s to acquire enough data for a reconstruction. Measured amounts 

of air were introduced into the lungs of the subject, who then held his breath for the 30 s of 

data collection.

The results are shown in Figure 6. First, we discuss the top row of pictures. The leftmost is 

a reconstruction of the chest with no air added to the lungs. The second corresponds to 500 

ml of added air, the third to 1000 ml, and the fourth to 1500 ml. In each case, the front of 

the chest is at the bottom of the picture and the left side of the chest is at the right. In these 

images, one can see clearly a bright, low conductivity layer around the boundary, which 

might correspond to skin and fat. At the bottom of each image appear a number of bright 

spots whose locations do not change as air is added. These may be the ribs. Areas just to the 

left and right of center are probably lungs: These areas grow brighter or less conductive as 

more air is added to the lungs.

The second row of pictures in Figure 6 are difference images. These are obtained by 

subtracting the 0-ml image from the image directly above. The greatest conductivity change 

occurs in the region where the lungs should be located. These images may be useful even 

though the human volunteer is neither two-dimensional nor circular.

CONCLUSION

We have described a simple algorithm for producing qualitative impedance images. We have 

illustrated the performance of the algorithm on numerical and experimental data.
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APPENDIX

Here we explain some tricks that allow us to compute 〈 T
s
, (∂U

k
∕ ∂ρn)(ρ)〉, which we denote 

by Y s, k
n (ρ). First, we recall that the components of U

k
(ρ) are the values, at the centers of the 

electrodes, of the solution uk to the problem (1), (6), (13). The inner product 〈 T s, U
k
(ρ)〉 is 

thus a discrete approximation to the integral

∫
S

ukσ ∂us

∂ν dS = ∫
B

σ∇uk ⋅ ∇us , (A1)

where we have obtained the right side of (A1) by multiplying the equation for us by uk and 

using the divergence theorem. We can therefore approximate Y s, k
n  by differentiating the right 

side of (A1):
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Y s, k
n ≡ T

s
, ∂ U

k

∂ρn
( ρ ) ≈ ∂

∂ρn
∫

B
σ∇uk ⋅ ∇us . (A2)

The right side of (A2), however, can be reduced to a simple, easily calculated expression as 

follows:

Claim.

∂
∂ρn

∫
B

σ∇uk ⋅ ∇us = − ∫
B

∂σ
∂ρn

∇uk ⋅ ∇us . (A3)

Proof. We differentiate the left side of (A3) using the product rule:

∂
∂ρn

∫
B

σ∇uk ⋅ ∇us = ∫
B

∂σ
∂ρn

∇uk ⋅ ∇us + ∫
B

σ∇ ∂uk

∂ρn
⋅ ∇us

+ ∫
B

σ∇uk ⋅ ∇ ∂us

∂ρn
.

(A4)

To simplify the last two terms on the right side of (A4), we differentiate problem (1), (6) 

with respect to ρn:

∇ ⋅ σ∇ ∂uk

∂ρn
= − ∇ ⋅ ∂σ

∂ρn
∇uk in B (A5)

σ ∂
∂ν

∂uk

∂ρn
= − ∂σ

∂ρn

∂uk

∂ν on S . (A6)

We multiply (A5) by us, integrate over B, and use the divergence theorem, obtaining

∫
B

σ∇ ∂uk

∂ρn
⋅ ∇us = ∫

S
usσ ∂

∂ν
∂uk

∂ρn
+ ∫

B
us ∇ ⋅ ∂σ

∂ρn
∇uk . (A7)

In the first term on the right side of (A7), we use (A6); in the second, we again apply the 

divergence theorem, making use of the fact that us also satisfies (A5). This gives us

∫
B

σ∇ ∂uk

∂ρn
⋅ ∇us = − ∫

S
us ∂σ

∂ρn

∂uk

∂ν + ∫
S

us ∂σ
∂ρn

∂uk

∂ν
− ∫

B

∂σ
∂ρn

∇us ⋅ ∇uk .
(A8)

The first and second terms on the right side of (A8) cancel, giving us
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∫
B

σ∇ ∂uk

∂ρn
⋅ ∇us = − ∫

B

∂σ
∂ρn

∇us ⋅ ∇uk . (A9)

Clearly, the same relation holds when s and k are interchanged. Using (A9) in the last two 

terms of (A4), we obtain the claimed result (A3). ■

The derivative on the right side of (A3) can be evaluated easily for a conductivity of the form 

(10):

∂σ
∂ρn

( p ) = − 1
ρn

2 χn( p ) . (A10)

Combining this with (A2) and (A3), we obtain

Y s, k
n ≈ 1

ρn
2∫

Mn
∇uk ⋅ ∇us , (A11)

where Mn denotes the nth mesh element.
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Figure 1. 
The 496-element mesh used for the reconstructed resistivity distributions shown in Figures 

2, 4, and 6.
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Figure 2. 
Reconstructed resistivity distributions for analytically derived data sets simulating targets of 

1, 2-, 4-, and 8-cm radii in a field of 15-cm radius. Target resistivity was 50 Ω cm in a field 

of 500 Ω cm. The resistivity scale is from 460 Ω cm (black) to 500 Ω cm (white).
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Figure 3. 
Profiles of the resistivity vs. radius of the reconstructions shown in Figure 2.
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Figure 4. 
Reconstructed resistivity distributions for 33-mm diameter insulating and conducting targets 

in a 300-mm diameter saline tank having a conductivity of about 150 Ω cm. The middle row 

of images are the conductivity distributions yielded by NOSER for a tank with no target, 

one centered insulator, two insulators, and a conductor/insulator pair as shown in the top 

row. The resistivity scale is from 142 Ω cm (blue) to 158 Ω cm (red). The bottom row of 

images are the difference in resistivity between the image above, with a target, and the upper 

left image, with no target present. The resistivity scale for the bottom row is from −8 Ω cm 

(blue) to 9 Ω cm (red).
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Figure 5. 
Profiles of resistivity vs. radius of the difference images shown in the bottom row of Figure 

4.
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Figure 6. 
Reconstructions at a section of the chest of a human subject at different lung volumes. Top 

row, left to right: 0, 500, 1000, and 1500 mL of air added above normal resting lung volume. 

Bottom row: Changes in resistivity from the levels seen at resting lung volume. In the top 

row, the scale is from 345 Ω cm (black) to 465 Ω cm (white). The difference images are on a 

scale of −12 Ω cm (black) to 38 Ω cm (white).
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Table I.

Some Typical Run times for NOSER.

Machine Operating system CPU utilization

IBM 3090 w/VF AIX 10.9

SUN 4/150 SunOs 181.3

Cray Y/MP UNICOS 2.2
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