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Abstract

Social signals can serve as potent emotional triggers with powerful impacts on processes from 

cognition to valence processing. How are social signals dynamically and flexibly associated with 

positive or negative valence? How do our past social experiences and present social standing 

shape our motivation to seek or avoid social contact? We discuss a model in which social 

attributes, social history, social memory, social rank and social isolation can flexibly influence 

valence assignment to social stimuli, termed here as ‘social valence’. We emphasize how the 

brain encodes each of these four factors and highlight the neural circuits and mechanisms that 

play a part in the perception of social attributes, social memory and social rank, as well as how 

these factors affect valence systems associated with social stimuli. We highlight the impact of 

social isolation, dissecting the neural and behavioural mechanisms that mediate the effects of acute 

versus prolonged periods of social isolation. Importantly, we discuss conceptual models that may 

account for the potential shift in valence of social stimuli from positive to negative as the period of 

isolation extends in time. Collectively, this Review identifies factors that control the formation and 

attribution of social valence — integrating diverse areas of research and emphasizing their unique 

contributions to the categorization of social stimuli as positive or negative.

Despite many social interactions being rewarding and capable of motivating instrumental 

behaviour from animals for access1, not all social interactions are positive. Indeed, 

sociability and valence have been proposed to be independent variables2. Here, we 

propose a model in which sociability and valence are linked by numerous factors — 

including social context, isolation history, social memory and social rank — that 
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serve to influence the assignment of positive or negative valence to social stimuli, defined 

here as social valence.

What neural processes occur when an animal comes into contact with a social agent to 

rapidly evaluate the positive or negative valence associated with that social agent? Here, 

we explore the high-level computations that incorporate various contextual social factors 

that affect social valence, and the neural circuits and systems that implement them. We 

propose that social valence assignment depends on a combination of factors that influence 

the perceived valence of a social agent. In addition, we propose that these factors interact 

with the alignment between the self and other (social agent) to further influence valence. 

More specifically, the degree to which another social agent aligns with the self — that is, 

whether they share goals in a cooperation-like manner or have mutually exclusive goals 

in a competition-like manner — influences perception, valence assignment, motivation 

and action selection (FIG. 1). We define this phenomenon as social alignment, which 

can have a considerable impact on social valence.

Although social alignment is a primary factor that guides ongoing social valence assessment, 

many additional factors serve to influence social valence, particularly when there is a lack of 

familiarity with the social stimulus being assessed. When assigning valence to a novel social 

stimulus, we hypothesize that individuals will rely on the information they have — including 

social history, social attributes and their internal state, which is modulated by 

the preceding social environment. For example, in individuals with high familiarity, we 

propose that social attributes can influence assignment of valence, but that social memories, 

established ranks and established cooperative or competitive relationships will weigh more 

heavily on valence assignment than in interactions with unfamiliar agents. Similarly, we 

propose that factors impacting an animal’s social history (for example, experience of social 

isolation) can alter the hedonic value of social stimuli and, consequently, bidirectionally 

modulate the motivation to seek social contact3,4.

Social memory and recognition systems, as well as a catalogue of the social history of 

oneself and one’s relationships, are all necessary in order to represent whether a given 

relationship is cooperative or competitive. Although existing studies discuss social memory 

in a valence-independent manner, newer literature sheds light on the overlapping systems 

and circuits underlying social memory and valence. We review the neural systems that are 

necessary for social memory and recognition5–8, and how they contribute to the assignment 

of valence to a social stimulus. Furthermore, although social hierarchies have been described 

for a century, only recently have neuroscientists been studying their neural mechanisms9,10. 

We review this recent literature and how the dynamic nature of hierarchies relates to valence 

and could contribute to social valence assignment.

Social heuristics help guide the assignment of valence to a novel social stimulus, 

given its observable attributes. Across species, physical social attributes (how another 

individual looks, sounds and smells) provide crucial information that can modulate the 

valence assigned to that individual and, consequently, social motivation and the behavioural 

response to that individual (FIG. 2). For example, features that make an individual seem 

large and intimidating, or sick and weak, could decrease the drive to interact with that 
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individual. We review the literature on how perception of social attributes guides social 

valence assignment.

In humans, perceived deficits in the objective quantity, or subjective quality, of social 

contact (‘loneliness’11) are correlated with deficits in mental12 and physical13,14 health, 

and shortened lifespan15–19. Perceived loneliness correlates with increased morbidity and 

mortality in cancer and cardiovascular disease20, and the severity of symptoms in response 

to viral immune challenges21 and of inflammatory responses22. Yet we are only beginning 

to uncover the neurobiological mechanisms that link deficits in social contact to the myriad 

of deleterious health consequences. Given the global isolation and distancing in recent 

years, one particularly timely question is how deficits in social contact change our brains 

and our behaviour. Prolonged social isolation can produce widespread and detrimental 

effects on the brain and behaviour across various species23, may result in dire evolutionary 

consequences24, produces territorial behaviour, aggression and social avoidance25–30, is 

considered torture31 and has even been used as a model for psychosis27. By contrast, acute 

periods of social isolation seem to have distinct effects on the brain and even opposing 

effects to those of extended social isolation on behaviour3,32,33. Does social isolation 

represent a singular internal state that lies on a continuum defined by time, changing its 

behavioural effects and biological underpinnings in a natural progression, or do acute and 

prolonged isolation represent separable internal states? Here, we synthesize research on the 

exciting intersection of sociality and valence, moving towards a framework for beginning to 

answer such questions.

Social valence

Determining whether something is good or bad is one of the most important functions 

that the brain performs. Models of emotion posit that emotional states can be explained 

by how aversive or rewarding a stimulus is (valence) and how much arousal it evokes34,35. 

Here, we apply this general definition of valence to social stimuli. Similar to other stimuli, 

social stimuli are attributed as having a negative (unpleasant) or positive (pleasant) valence. 

This valence assignment is accompanied by observable changes in behaviour — approach 

towards a social stimulus of positive valence and avoidance of a negative-valence social 

stimulus. Many psychiatric disorders are characterized by dysregulated emotional processing 

and social behaviours, which could be driven by disruptions of valence encoding36–39. 

Furthermore, across psychiatric disorders, brain regions that encode both valence and social 

functions show aberrant activation during emotional processing40.

Appropriate valence assignment to social stimuli is necessary to seek and maintain healthy 

social lives and is vital for the survival of a social species. Unlike many other stimuli, 

social relationships are bidirectionally dynamic, involving flexible changes in behaviour 

of two active agents, both of which can affect the other. This makes the assignment of 

valence to social stimuli more complex than for other stimuli. Flexibility in social valence 

assignment is necessary to allow for changes in social motivation as a social relationship or 

the environment changes — seeking interactions when they are beneficial and avoiding them 

when they are not.
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The perceived valence of a social agent relies primarily on their social alignment: whether 

the relationship between oneself and the agent is competitive or cooperative (FIG. 1). 

The degree of opposition or alignment of two individuals’ goals is a primary parameter 

that defines the social relationship and can dictate social valence assignment during a 

given interaction. In addition, internal states, experience-based predictions and responses 

to a changing environment all influence the valence assigned to a social stimulus, 

implemented across multiple circuit motifs41. Computing social valence becomes highly 

complex, because it may incorporate the dynamic back and forth between two social 

agents. In addition, separate computations — each influenced by the relative rank, identity 

and history of previous interactions3,4 — may be made for each individual in a social 

interaction. Predictions of valence in terms of how others will behave and affect the self 

may be extrapolated based on individualized models for the theory of mind of each 

individual42,43.

Adding to this complexity, arousal can also influence the cognitive appraisal of an emotional 

or social stimulus, and individuals can experience emotional contagion in a way that is 

amplified by the arousal state41,44–46. Researchers have only just begun to unravel how 

the assignment of valence is algorithmically implemented into neural circuit motifs41. 

Emotions and their primitive variants are evolutionarily conserved, particularly among 

social mammals. Social contact due to group living can further affect social valence. Thus, 

communal dynamics, the evolutionary fitness of a species and the synchrony between 

behaving social agents are all major variables that can affect social valence (BOXES 1 

and 2).

Although myriad factors contribute to social valence assignment and updating, we focus 

on the influence of social attributes, social rank and social isolation, as defined by a 

social homeostasis model (a model that proposes we have a preferred optimal ‘set 

point’ in terms of the quantity and quality of social contact, wherein social isolation or 

overcrowding may represent a challenge to the system)3,4. Although these key variables are 

universal factors that can affect valence assignment, variability in valence assignment across 

individuals can arise through differential weighting of these factors.

Social attributes and their perception

The perception of physical social attributes requires multiple sensory systems, as social 

stimuli are multimodal. Here, we focus on auditory and olfactory cues, given the rich literary 

landscape about these, although we point the reader to emerging work in the still developing 

field of social touch47–49. We also briefly discuss some of the social visual perception 

literature that demonstrates valence encoding.

Importantly, these physical features do not intrinsically determine the social valence of 

a conspecific, because valence is assigned to a conspecific and, therefore, also depends 

on the state and social history of the subject assigning valence to the conspecific. The 

specific weighting and valuation of each feature may vary between individuals, and this 

variability may serve the evolutionary purpose of preserving diversity among a population. 

However, the physical attributes of a social stimulus represent a vivid and immediate source 
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of information about many features of an animal, including its behaviour. Behaviours 

represent a dynamic weighted aggregate of information, whereas physical attributes are 

relatively static bits of information. Notably, auditory and visual information represent both 

static attributes (such as pitch of voice or size) and dynamic ones (such as vocalizations 

and gestures). How social stimuli are perceived can substantially affect social valence 

assignment.

Perception of auditory social cues.

Conspecific vocalizations provide emotionally meaningful social information that informs 

behaviour. We learn to recognize voices as infants50,51, and our ability to perceive emotions 

from voices starts early in life, reported as early as 4 years old52. Voices can quickly convey 

universal emotion and arousal through screams, sobs or laughter53. Furthermore, voices can 

be used to identify gender54.

In the human brain, the superior temporal sulcus (STS) preferentially responds to human 

voices over other sounds55. In addition, the STS probably enables us to extract valence 

features about human voices, because it responds more strongly to emotional than non-

emotional voices56,57 and is activated during voice gender perception58. The neighbouring 

superior temporal gyrus (STG) shows increased responses to emotional voices57. Notably, 

the STS and STG are involved in the multisensorial perception of both faces and voices57. 

Emotional vocalizations activate not only auditory regions but also the prefrontal cortex 

(PFC) and amygdala in humans59, suggesting that valence of social vocal cues could 

be assigned downstream of the auditory cortex. However, one study in humans showed 

that vocal emotions could be decoded based on the spatial patterns of blood oxygen 

level-dependent responses in auditory cortical regions, suggesting that valence information 

could be decoded during early perceptual processing of voices60. Other primates, such as 

marmosets and macaques, show vocalizations that are used to communicate and evoke 

responses in the PFC and amygdala61–65. Given the role of these regions in valence 

encoding41, these studies suggest that non-human primate calls may contain valence 

information.

Rodents emit ultrasonic vocalizations in the presence of conspecifics, and use these 

for social communication66,67; for example, to signal an affective state. In response to 

aversive stimuli, rats emit 22 kHz ultrasonic vocalizations68,69 that conspecifics use to 

learn about the valence of the stimuli despite not experiencing the stimuli directly70. In 

mice, ultrasonic vocalization emission is evoked by mating opportunities71,72 and to solicit 

maternal care73,74. Most research into rodent social vocalizations has focused on the neural 

circuits underlying their production, and thus little is known about their perception and the 

circuits that mediate their valence assignment.

Perception of olfactory social cues.

Social odours carry crucial social information across species, such as kinship, health and 

sex75–78. Rodents, cattle and pigs can perceive chemosensory alarm signals from their 

conspecifics that signal potential danger79–81. Individuals with olfactory disorders, such as 
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hyposmia and anosmia, report disruptions in their social life82, suggesting that olfaction has 

a social role in humans too.

In humans, smelling the sweat of students who were taking a final oral academic 

examination activated brain regions implicated in emotional processing such as the 

orbitofrontal cortex (OFC), insula and cingulate cortex, as well as the fusiform gyrus, 

which is activated by emotional cues of other modalities83. In another study, smelling 

chemosensory cues from individuals performing their first skydive produced strong 

activation of the left amygdala84. Intriguingly, in both studies, the participants did not report 

odour discrimination, suggesting that, despite the poor ability of humans to consciously 

perceive negative-valence signals in social odours, the human brain can perceive these 

signals and may alter behaviour without our awareness.

Rodents show an enriched ability to perceive social olfactory cues. Rodents can perceive 

predator and conspecific chemosensory cues, and these cues affect social behaviour85,86. 

Pheromones, non-volatile chemosensory cues, are crucial for rodent social communication. 

They mark territory, signal social dominance, mediate aggression and attract mates87–91. 

Neurons in the rodent accessory olfactory bulb (OB) respond to urine and saliva, 

sources of pheromones, to encode the sex and genetic strain of the social stimulus92. 

The medial amygdala (MeA) is involved in various innate social behaviours such as 

parenting, aggression and mating, and shows a high level of social experience-dependent 

plasticity93–95. Furthermore, in rodents the MeA is activated in response to pheromones 

to guide social behaviours85. Beyond the MeA, other brain regions are important for the 

perception of social odours. In female mice, a subpopulation of neurons in the medial 

preoptic area (mPOA) of the hypothalamus express the neuropeptide neurotensin, and 

respond to urine from males preferentially to appetitive smells96. Interestingly, optogenetic 

activation of this subpopulation is rewarding even in the absence of social stimuli, and 

evokes dopamine release in the nucleus accumbens (NAc), a structure involved in reward 

processing96, suggesting a direct overlap between positive-valence encoding and social-

stimulus encoding in the hypothalamus. Rodents also show encoding of social olfactory 

stimuli in the PFC97. Furthermore, the rodent medial prefrontal cortex (mPFC) plays a part 

in valence encoding98. Whether the same subpopulations of mPFC neurons that encode 

valence of non-social stimuli also stably encode social stimuli and their valence remains an 

open question.

Social cues of other modalities.

In addition to the modalities discussed above, social touch and visual perception of social 

stimuli are critical aspects of social interactions. Recent work suggests that the experience 

of social touch is subjective and involves the amygdala and other limbic structures48,49. For 

an in-depth review of social touch and its effects on emotional regulation, see REF.48. Visual 

perception also exerts a powerful influence on social valence; in particular, the perception 

of facial expressions in primates requires the face fusiform area99 and STS100,101, both 

of which encode valence information from faces102,103. Mice also show facial expressions 

in response to pain, positive or negative stimuli104,105, suggesting that rodent homologues 

of these regions could facilitate social communication in rodents as well. Overall, social 
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attributes, signalled through various sensory modalities, can carry much inherent valence 

information.

Social scientists propose that social heuristics can provide simple intuitive rules to 

guide our social interactions via quick generalizations of social attributes from personal 

experience106–109. These social heuristics probably rely on the rapid perception of valence, 

on the basis of social sensory information.

Social rank and valence assignment

Dominance hierarchies have long been described as a way in which social species organize 

group living110. Although the valence and social rank of a conspecific are unlikely to be 

independent variables, the relationship between them is unclear. It probably depends on 

the stability of the hierarchy and an individual’s social rank, given that these two factors 

influence the stress levels of an individual111–113. For example, dominant animals may find 

some social stimuli more stressful than do subordinates (for example, when the rank of the 

dominant animals is contested) and might find other stimuli less stressful than subordinates 

(for instance, when ranks are stable and resources are scarce). We propose a model in which 

the social context influences the perceived valence of social stimuli in a rank-dependent 

manner. Importantly, social valence can be modulated not only by perceived social rank but 

also by dominance expression. For example, a lower-ranking animal in a scarcity context 

might be forced to compete for resources and lose, making the valence assignment of a 

dominant individual negative.

In mice, an individual’s social rank correlates with neural activity differences in the PFC, 

amygdala, hypothalamic and brainstem nuclei114–117, and in macaques, social rank is 

associated with functional connectivity differences in many of these same regions118. These 

baseline rank-dependent differences probably modulate how the brain perceives the social 

rank of conspecifics. The complex relationship between an individual’s social rank and their 

perception of others’ social rank is not clear; however, a study in mice suggests that the 

neural response to social cues (urine samples from other male mice) is influenced by the 

social rank of the mouse perceiving the cue116. This study highlights the importance of 

measuring social rank as a variable of interest.

Cortical encoding of social rank.

Most research on how the brain represents social rank comes from studies in primates. 

Social-rank perception might occur early in sensory processing, as, in humans, STG activity 

correlates with dominance ratings of facial expressions119–121. Also, participants asked 

to judge the social status of two unknown individuals showed increased functional MRI 

responses in the STS121. Given the role of the temporal cortex in perception of faces and 

valence in faces, we hypothesize that this STG and STS representation probably reflects 

processing of general facial and visual attributes linked to social standing.

The most robust representation of social rank is seen in the PFC, particularly the lateral 

PFC, both dorsal and ventral subregions. The human lateral PFC shows increased activation 

upon viewing high-ranking players or dominance-related postures122,123. In one of these 

Padilla-Coreano et al. Page 7

Nat Rev Neurosci. Author manuscript; available in PMC 2023 March 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



studies122, destabilizing the hierarchy resulted in the mPFC becoming more active when 

viewing high-ranking individuals than low-ranking individuals.

This extra mPFC engagement in dynamic hierarchies is consistent with other studies 

showing that the mPFC is engaged by social-rank learning. In humans, functional MRI 

activity in the rostral mPFC correlated with social-rank perception, and stimulation of 

this region improves social-rank learning124. In mice, mPFC neural population activity is 

predictive of relative social rank during social competition125. Similarly, in mice, individual 

neurons in the anterior cingulate cortex (ACC) encode relative rank, reward size and success 

history during social competition126. Moreover, in humans, explicit judgement of social-

status differences in a scene also engages mPFC activity121. However, one study suggested 

that the mPFC encodes social rank only when the participant is part of that hierarchy: when 

participants learned about two hierarchies (one including the participant, and the other not), 

their mPFC activity correlated with social-rank learning only for the hierarchy that included 

them127. This suggests that the mPFC helps track the social alignment between the self 

and others to guide valence assignment. Indeed, the mPFC represents self–other distinctions 

across species125,128,129, and functional MRI work in humans showed mPFC responses were 

clustered into those for self, familiar others and unfamiliar others130. Together, these results 

suggest that the mPFC tracks relevant information regarding the ‘self’ versus ‘other’ — 

including relative social-rank information — especially in dynamic situations.

In addition to the mPFC and lateral PFC, subpopulations of OFC neurons in monkeys 

respond differentially to familiar faces of dominant versus subordinate conspecifics131, 

suggesting that the OFC may also encode others’ social rank. The OFC also tracks outcomes 

for the self and for others during cooperative and competitive scenarios132. Both the mPFC 

and the OFC contain neurons that encode positive and negative valence133,134. Whether 

certain PFC cells encode both valence and social rank is not clear. However, considering 

how common mixed selectivity is in the PFC135–137, overlaps in valence and social-

rank encoding probably exist.

Subcortical encoding of social rank.

Compared with studies on cortical representation of social rank, the role of subcortical brain 

regions in encoding social-rank information has been less well studied. In macaques, single 

cells in the ventral striatum, a region important for reward processing, show changes in 

firing rate in response to dominant versus subordinate conspecifics’ faces, and overlap little 

with cells that respond to a liquid reward138. Thus, distinct neuronal subpopulations in the 

ventral striatum may encode valence and the rank of a conspecific.

When people are asked to learn the ranks of a group of men or a group of planets (as a 

non-social control), the activity of the anterior hippocampus (HPC) (analogous to the ventral 

hippocampus (vHPC) in rodents) and the amygdala correlated with the social rank recalled; 

however, the anterior HPC also tracked the non-social hierarchy127. Activity in the anterior 

HPC and amygdala also tracked social ranks in hierarchies including and not including 

the participants127. Furthermore, the amygdala and anterior HPC are coupled to the mPFC 

during updating of a hierarchy including the participant, but not during updating of a 

hierarchy that excluded the participant127. Amygdalar responses to high-ranking individuals 
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were greater when participants were told a social hierarchy was unstable than when they 

were informed that social ranks were static and stable122. In macaques, the activity of 

the same amygdala cells that encode a rewarding stimulus predicts the social rank of 

conspecifics139, suggesting that the amygdala, unlike the striatum, uses valence-coding 

systems to encode social rank of conspecifics as well. Whether social-valence encoding 

guides social motivation in a rank-dependent manner remains unknown.

Circuits modulating hierarchy updating.

Several recent optogenetic studies in mice are shedding light on the specific circuits 

that carry social rank information and affect social-dominance behaviour. Nonspecific 

stimulation of the dorsal mPFC increases social-dominance behaviour and, often, subsequent 

social rank in male mice114. Two studies have implicated a thalamo-cortical circuit in social 

dominance. One showed that projections from the mediodorsal thalamus (MDT) to the 

dorsal mPFC undergo plasticity with winning that reinforces social-dominance behaviour, 

and that optogenetic stimulation of the MDT–dorsal mPFC circuit is sufficient to induce 

winning and increase social rank115. The other study showed that lesioning the MDT 

slowed the formation of a hierarchy, and that bidirectional manipulation of MDT modulated 

winning behaviour in a social-dominance task140. The same study showed that parvalbumin-

expressing interneurons in the ACC receive direct projections from the MDT and modulate 

dominance behaviour. Altogether, these studies show that this thalamus–PFC pathway is 

important for establishing and maintaining social hierarchies. MDT inputs to the mPFC 

are probably necessary for the prefrontal representation of relative social rank observed 

in other studies across species124,125,127. Inputs from the basolateral amygdala (BLA) and 

vHPC to the mPFC are probably also necessary for social-rank encoding and may modulate 

social dominance behaviour, given the functional connectivity observed during hierarchy 

updating127, the role of the vHPC in social memory141 and the role of the BLA in valence 

associative learning142.

As the amygdala, HPC and mPFC signal social rank and are functionally connected, we 

hypothesize that social-rank information is transmitted from the mPFC and vHPC to the 

BLA, where it is integrated with valence information, and that it returns from the BLA to the 

mPFC and HPC for an iterative loop that updates on the basis of experience. Furthermore, 

given that the MDT–mPFC circuit is important for cognition143, this pathway could serve to 

facilitate the cognitive and social-behavioural changes associated with social-rank learning. 

Given that social rank is dynamic and can change depending on the social context, the social 

rank of the individual and the other could provide a context-dependent factor to modulate 

social valence assignment. In addition, an individual’s internal state (for example, their 

hunger or isolation level) could change how social rank influences valence assignment of a 

conspecific.

Social memory and valence assignment

Behavioural evidence supports the idea that social history affects interactions with a 

conspecific and the valence assigned to that conspecific. Humans and animals interact 

differently with strangers versus familiar conspecifics144–148. However, the neural dynamics 
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and circuits underlying social history-related changes are unknown. Although social history 

is a broad term, several factors can be easily controlled and measured: familiarity, 

group size and social ranks of the individuals interacting. This parameterization enables 

social history to be studied in the laboratory setting. Unfortunately, in almost all studies 

of the neural circuits of sociability and social motivation to date, participants interacted 

with a novel conspecific, and neither group size nor social ranks were addressed as 

variables. Whether social-motivation circuits differ depending on social history is still an 

open question. Given the rich literature, we focus on the neural circuits for social recognition 

and social memory, and how they overlap with valence systems.

Hippocampal circuits for recognition.

How does the brain recognize someone? The HPC is crucial for recognizing others and in 

forming and maintaining social memories. Individuals with hippocampal lesions are unable 

to recognize familiar faces or other familiar objects149. In the rodent social-recognition or 

social-discrimination test5,8,150, a mouse explores a chamber with two mice — a familiar 

and a novel conspecific — and the familiar mouse can be first encountered minutes or the 

day before testing to probe short-term or long-term social memory, respectively6.

Several studies have dissected the intrahippocampal circuits needed for social memory. The 

HPC contains subregions called the dentate gyrus and CA1, CA2 and CA3, which in turn 

have dorsal and ventral subdivisions151. Various hippocampal subregions play a part in 

social-memory encoding and the retrieval of social memories. For example, in rodents, the 

lateral entorhinal cortical projection to the dorsal dentate gyrus is necessary for the retrieval 

of short-term social memories152, and lesioning or ablating the dorsal CA2 disrupts social 

recognition but not sociability or other spatial-memory functions153,154. Furthermore, a 

study involving optogenetic and chemogenetic manipulation of the dorsal CA2 demonstrated 

that this region has a role in encoding, consolidation and retrieval of social memories7.

The neuropeptides oxytocin and vasopressin act in the HPC to facilitate social memory. 

Oxytocin receptors (OXTRs) are prominently expressed in the HPC155,156. Deletion of Oxtr 
in the rodent CA2 and CA3 disrupts 7-day-old, but not 1-day-old, social memory, and 

application of an Oxtr agonist facilitates potentiation in dorsal CA2 pyramidal neurons ex 

vivo157. However, another study showed that OXTRs in the dorsal dentate gyrus, CA2 and 

CA3 are necessary for short-term social recognition in the order of minutes155. Furthermore, 

input to neurons in the dorsal CA2 that express vasopressin receptor 1B from vasopressin-

positive neurons in the paraventricular hypothalamus is necessary for encoding, but not for 

retrieving, social memories158.

The vHPC and several of its inputs and outputs also have a role in social memory and 

recognition. The projection from the dorsal CA2 and CA3 to the posterior CA1 is necessary 

for the retrieval of short-term social memories155, and the projection from the dorsal CA2 

to the ventral CA1 is similarly necessary for the formation of short-term social memory7. 

Silencing either the ventral CA3 (REF.159) or the ventral CA1 (REF.141) disrupts social-

memory recall. The number of ventral CA1 cells that encode a conspecific increases over 3 

days of co-housing141, suggesting that social memory engrams in the ventral CA1 reflect 

familiarity level. Ventral CA1 projections to the NAc141 and to the mPFC160 are both 
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necessary for short-term social memory. Furthermore, neurons in the dorsal CA2 target 

neurons in part of the ventral CA1 that project to the NAc, providing a multisynapse circuit 

that mediates social memory7.

By tagging activated cells161,162, a recent study shows that the vHPC contains mostly 

separable subpopulations of cells that encode either negative or positive valence163. 

However, these subpopulations are not anatomically divergent, as both vHPC–BLA and 

vHPC–NAc neurons routed negative and positive valence. By contrast, similarly flexible 

valence routing was not seen in the vHPC–mPFC pathway163. Collectively, these studies 

enable speculation about how valence signals in the vHPC might be integrated with 

social-memory information to control behaviour. Given that the vHPC–NAc pathway is 

necessary for social memory141 and encodes both positive-valence and negative-valence 

information163, it could induce social aversion or social preference depending on the 

context, whereas the vHPC–mPFC pathway routes valence-independent social identity 

signals, such as social rank.

Other circuits for social memory.

Beyond the HPC, other circuits are also involved in social memory — particularly mPFC–

NAc and mPFC–amygdala circuits. In rodents, neuropeptide signalling in the MeA is 

central to social-memory processes8,164,165 and encoding in the MeA changes with social 

experience, such as sexual experience93–95 (reviewed elsewhere95).

In addition, several prefrontal top-down circuits show a role in social memory — 

particularly those connecting to subcortical regions that have a well-established role in 

valence encoding (NAc and BLA). As social cues become familiar, the responses of mPFC 

cells to them decrease97, suggesting that the mPFC signals familiarity to guide social 

behaviour. Furthermore, projections from the infralimbic and prelimbic subdivisions of 

the mPFC to the NAc are implicated in social-memory processes. Inhibition of prelimbic 

neurons active during social interaction with a novel animal impairs social recognition, 

but not social preference166, implicating these neurons in social memory. These 

neurons are more likely to express D1 dopamine receptors than D2 receptors, suggesting 

their activity might be modulated by dopamine. Furthermore, inhibition of prelimbic NAc-

projecting neurons disrupted recall of short-term social memory166. Consistent with this, 

prelimbic NAc-projecting neurons encode a combination of social and spatial information 

and have a role in spatial–social memory117. Another study showed that infralimbic 

neurons projecting to the shell of the NAc were more activated during exposure to familiar 

mice than novel mice and that this pathway was necessary for long-term social-memory 

recall167. Together, these studies implicate pathways from both mPFC subdivisions to the 

NAc in social memory. Finally, stimulating OXTR-expressing mPFC neurons projecting to 

the BLA impaired short-term social-memory recall, but not social preference or anxiety-like 

behaviour168.

Whether valence assignment of the social agent affects the circuits underlying 

social memory is unknown. Rodents can detect pheromonal signals of dominance in 

strangers169–171, and a recent study directly compared neuronal activation (assessed through 

immediate early gene expression) evoked by urine from familiar or unfamiliar dominant 
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and subordinate conspecifics116. The neural responses of many brain regions, including the 

mPFC and amygdala, were modulated by a combination of familiarity and the social ranks 

of the test mouse and conspecific, implying that social history can modulate how the brain 

processes social cues. We hypothesize that, given the overlapping circuitry of social memory 

and valence processing, overlapping subpopulations of cells encode valence and social 

memory to support social memories with valence-specific information. Social memory and 

valence systems, together, can support valence assignment for familiar individuals based on 

social rank and context, by recalling memories of experiences with that individual in a given 

context.

Notably, animals can interact with the same individuals for long periods, and social valence 

assignment can change across time; therefore, there is a need to study longer-term social 

memories. Future work may determine whether the neural circuits and dynamics underlying 

long-term familiarity are the same as those underlying social memory over shorter-term 

periods of minutes or a day, and whether social rank of a conspecific affects the neural 

circuits underlying social memory. Moreover, the social attributes of familiar animals used 

in experiments should be examined as a variable in future work.

Impacts of social isolation

Following acute periods of social isolation, various animals — including rodents and 

humans — perform prosocial behaviours such as rebound social interaction and 

increased affiliative behaviours3,32,33,172,173. However, with chronic social isolation, flies, 

rodents and humans display antisocial behaviours, such as aggression, avoidance and 

social anxiety25,26,174, that may, in humans, manifest in the form of mental health 

disorders. These sequelae present an intriguing paradox — namely, how does the same 

experience of social isolation result in opposing effects on behaviour simply based on the 

duration of the experience (FIGS. 2 and 3)? How can the shift from prosocial behaviour 

associated with brief isolation to the antisocial behaviour associated with prolonged isolation 

be explained (FIG. 3)? Is this shift in behaviour the product of a change in the valence of 

social conspecifics from positive to negative as the period of isolation extends? When do 

deficits in social contact no longer drive prosocial behaviour? What adaptations occur when 

the frequency of opportunities for social engagement changes in a long-lasting manner? 

Recent advances have begun to shed light on how the brain encodes, or adapts in the face 

of, social isolation of various durations. Below, we discuss recent literature on the neural 

circuits, mechanisms and signalling molecules associated with the housing condition of an 

animal, highlighting studies focused on acute and chronic isolation and their impact on 

social valence.

Acute social isolation.

The past decade has seen a considerable increase in understanding how the brain and 

behaviour are altered by housing conditions such as social isolation. Unfortunately, the 

notions of ‘acute’ versus ‘prolonged’ isolation are often relative, with no standard agreement 

for definitions in terms of lengths of time. Presumably, a distinction between these could 

be ascertained for each species or experimental backdrop, by determining the point at 
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which isolation leads to a shift from performing prosocial behaviour to antisocial behaviour. 

However, isolation studies are often limited by a focus on either acute or chronic isolation, 

making this distinction unfeasible. Thus, here, we refer to periods shorter than 1 week as 

‘acute’ and those longer than 2 weeks as chronic. These temporal cut-offs were selected 

based on the behavioural and neurobiological effects of each, with the behavioural effects of 

social isolation remaining similar from 1 h to 1 week, and the effects of chronic isolation 

emerging after 2 weeks of social isolation minimally and worsening with more time in 

isolation26. We focus on the effects of isolation in model systems, as investigations into the 

effects of isolation in humans has been well discussed in previous reviews175,176.

Social isolation has long been associated with negative effects on the brain and 

body12,13,20,175,177–179. However, more recent research has demonstrated the positive, 

prosocial effects of brief periods of social isolation3,4,32,33,180–183. Indeed, we previously 

found that 24 h of social deprivation resulted in mice showing an increase in motivation 

to seek social interaction with a novel conspecific, or ‘rebound sociability’32. This rebound 

sociability required midbrain dopamine neurons in the dorsal raphe nucleus (DRN), and 

correlated with an increase in activity of these neurons, supporting the intriguing idea 

that rebound sociability after isolation engages a DRN-specific dopaminergic pathway. 

Consistent with this, functional MRI blood oxygen level-dependent responses to social 

stimuli in the midbrain of humans were greater after 10 h of social isolation than before 

isolation33.

An overall role for dopamine in controlling social reward is well supported by the literature, 

as dopamine signalling by the ventral tegmental area has been implicated in the control 

of social interaction and reward under standard (group) housing conditions184–186. The 

sites of dopamine action to exert the effects of rebound sociability remain unknown, but 

dopaminergic neurons in the DRN project to various regions implicated in social and 

emotional regulation (see below). Notably, D1 and D2 receptors in the NAc are required 

for acute isolation to promote social interaction in rats187. Thus, region-specific dopamine 

signalling might mediate prosocial behaviour depending on environmental conditions, 

although the role of such signalling during the shift from acute to chronic isolation has 

not been examined.

Interestingly, the potentially rewarding effects of rebound sociability seem to interact with 

social status: low-ranking animals exhibit less rebound sociability and DRN dopamine 

activity than do high-ranking animals32. Thus, the value of (even a brief) social interaction 

strongly depends on an animal’s social standing, revealing the bidirectional relationship 

between housing condition and social rank in determining the rewarding value of a 

conspecific.

Beyond dopamine changes, acute social isolation also induces various physiological 

and behavioural changes, including altered immune responses, changes to hypothalamus–

pituitary–adrenal (HPA) axis activation, and heightened arousal and defensive behaviours 

(reviewed elsewhere4). These changes signal an acute state of social withdrawal and may set 

the stage for increased responding to subsequent social stimuli.
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Finally, acute social isolation is associated with changes in various signalling molecules 

across many brain regions (reviewed elsewhere3). Briefly, acute isolation has been shown 

to produce both increases or decreases in the expression of corticotropin-releasing hormone 

(CRH) and/or CRH receptor depending on the brain region interrogated188,189, as well 

as decreased excitability of CRF-expressing neurons in the paraventricular nucleus of 

the hypothalamus (PVN)190. Acute isolation also produces a decrease in mPFC GABA 

levels191. Oxytocin, known for its role in pair bonding192, is also implicated in social 

isolation. For example, chemogenetic inhibition of oxytocinergic neurons in the PVN 

reverses the effects of acute isolation on social interaction193. Also, chronic systemic 

delivery of oxytocin blocks the effects of prolonged isolation on subsequent antisocial 

behaviour194,195. These data highlight the multiregional, multi-mechanistic and multi-

neurochemical way in which brief periods of social isolation can affect prosocial behaviour.

Chronic social isolation.

Unlike acute isolation, prolonged periods of social isolation produce deleterious effects on 

behaviour, including increased avoidance of social conspecifics and increased antisocial 

behaviours. In humans, loneliness — the internal state of perceived social isolation — 

is associated with depression, irritability and increased mortality176. Solitary confinement, 

the most extreme form of social deprivation, is linked to poor mental health outcomes, 

aggression and loss of emotional control196.

For decades, the study of chronic social isolation in primates had been deemed unethical 

following the notorious studies of maternal separation in rhesus monkeys by Harlow and 

colleagues showing that infant monkeys preferred the warm comfort of a soft mother-like 

structure over a wire mother that supplied milk, suggesting that the soft touch, or ‘contact 

comfort’, is more important than a food source197,198. These studies resulted in long-lasting 

and largely irreversible negative consequences on the maternally deprived infants197,198. As 

a result, research on early-life stress, including maternal separation, was largely relegated 

to rodent models199–204, and support for research into social isolation was substantially 

reduced.

Now, in light of a pandemic that has precipitated an unprecedented level of social isolation, 

social distancing and social exclusion, the prominent omission in our understanding of the 

neurobiological consequences of reduced social contact is glaring. Poignantly, the pandemic 

has produced an increase in violence as well as depression and anxiety, hypothesized to 

constitute a ‘second pandemic’ of social isolation205–207.

Chronic social isolation generates an increase in antisocial behaviour in various species. 

Long-term isolation has long been used in fruitflies, mice, rats and other species to 

increase aggressivity towards a conspecific28,29,208–212 in males and females213–215. In 

addition, chronic social isolation reduces social investigation and motivation to interact 

with a conspecific26. Importantly, in mice, acute isolation had no effect on aggression 

or alterations in fear, in contrast to chronic isolation, which increases aggressivity and 

persistent fear responses26. In the same study, chronic social isolation was shown to increase 

threat responsivity, fear-related behaviours and risk-taking behaviours, and to reduce 

time spent in a chamber containing a novel conspecific in the three-chamber assay. These 
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results contrast with findings that acutely isolated mice spend more time interacting with 

a conspecific in the same assay32, and that other species similarly show an increase in 

social interaction after acute isolation172,216,217. These results suggest that prolonged social 

isolation produces a unique, deleterious internal state.

Recently, there has been considerable progress in our understanding of the neural circuitry 

and molecular mechanisms that underlie the effects of prolonged social isolation. For 

example, one study of the effects of chronic social isolation in juvenile mice218 showed 

that mPFC neurons have a dissociable role in isolation-induced aggression in males and 

isolation-induced reductions in sociability in females. These behavioural changes correlate 

with changes in the spiking activity of cells in regions downstream of the mPFC — 

including the BLA and ventral tegmental area in males and females, respectively. These 

studies provide further support for the role of mPFC in providing top-down control of 

aggression219.

We recently implicated subcortical structures in the brain state produced by prolonged 

social isolation. Multiplexed loss-of-function approaches revealed dissociable roles for the 

neuropeptide tachykinin 2 (TAC2) in the anterior dorsal bed nucleus of the stria terminalis 

(BNST), dorsomedial hypothalamus (DMH) and central amygdala (CeA) in the control 

of isolation-induced persistent fear, enhanced aggression and acute fear, respectively26. In 

addition, brain-wide overexpression of TAC2 combined with chemogenetic activation of 

TAC2-expressing neurons induced behaviours in group-housed mice that mimicked those 

of isolated mice, including increased fighting and persistent fear responses, and these 

effects could be reversed by a TAC2-receptor antagonist26. Therefore, TAC2 signalling is 

necessary and sufficient to induce a social isolation-like state. Although neuromodulators 

and neuropeptidergic subpopulations have been implicated in the regulation of internal states 

and certain behaviours, respectively220–225, this study describes how a single neuropeptide 

system acts in different brain regions in concert to mediate the internal state produced by 

chronic social isolation and exert control over isolation-induced behaviours.

Many studies also suggest a role for glucocorticoids and the HPA axis in regulation of 

the effects of prolonged social isolation (reviewed elsewhere179). Similar to other stressors, 

social isolation increases cortisol levels176,226. Intriguingly, whereas acute social isolation 

results in various changes in the expression of HPA-related genes, these changes usually 

dissipate as the isolation period grows, suggesting that the HPA axis soon adapts to 

counteract the effects of isolation179. By contrast, following chronic periods of social 

isolation, HPA axis dysregulation is more likely to persist179.

An integrated social homeostasis model.

We believe that social isolation is unique among stressors in its ability to have opposing 

effects on social behaviour depending on its duration. Indeed, opposing effects of acute 

versus chronic social isolation on feeding and sleep have also been identified, whereby 

chronic, but not acute, social isolation increases feeding behaviour and reduces sleep 

in Drosophila227. Other stressors produce effects that may vary with the stressor’s 

intensity, duration or proximity, but they tend to maintain the same negative effects and 
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valence228–234. What is the evolutionary benefit of the contrasting effects of short-term and 

long-term isolation?

We have previously hypothesized that, similar to hunger, isolation engages a homeostatic 

mechanism to appropriately control an animal’s response to a social conspecific depending 

on housing conditions3,4. Thus, following acute social isolation, the detector would 

send information to the control centre, which would compute a deficit relative to the 

homeostatic set point and, thus, activate effector systems that would drive the animal 

to emit behaviours that would increase social contact to bring the detected level of social 

contact back to the homeostatic set point1,35. Indeed, the idea that low levels of stress are 

biologically beneficial has long been supported, consistent with the prosocial behavioural 

response following acute isolation33,172.

How can the same condition (isolation) and the same stimulus (social group) shift from 

positive to negative valence? As described above, short periods of acute social isolation 

produce prosocial behaviour, which switches to antisocial behaviour as the period of 

isolation increases. Thus, we hypothesize that the valence of the same social stimuli 

would shift from positive to negative depending on whether there is a perceived deficit 

or surplus of social contact detected relative to the social homeostatic set point, respectively 

(FIG. 3). With acute isolation, the effector system is activated, increasing correction effort 

(energy/time/resource expenditure towards obtaining the homeostatic set point, the preferred 

optimal). When an acutely isolated individual is reintroduced to the social group, a rebound 

of social interaction and affiliative behaviour may serve to restore the detected social contact 

to the homeostatic set point. By contrast, prolonged isolation may eventually trigger the 

recalibration of the social contact optimum (known as ‘set point adaptation’)4, such that the 

previous optimum level of social contact may now be perceived as a surplus. According 

to this hypothesis, chronically overcrowding animals would also cause a resetting of social 

homeostasis that would increase future basal preferences for social contact. These models 

provide a theoretical framework by which the divergent effects of acute and chronic stress 

can be reconciled4.

It should be noted that this hypothesis suggests that all antisocial behaviours are elicited 

by or directed towards a social stimulus with a negative valence. Such a hypothesis 

would seem to contrast with the finding that aggression is rewarding, such that rodents 

will perform operant behaviours to receive access to a conspecific whom it can attack235. 

Importantly, however, such studies often require that the conspecific mouse is more docile 

(often by having previously and repeatedly been defeated) and that the aggressor mouse is 

prescreened for increased aggression-seeking behaviour or has been previously exposed to 

fighting experiences in which it ‘won’. In contrast to these set-ups, social isolation-induced 

aggression may occur with no prior aggression training or knowledge of the potential 

‘outcome’ of an upcoming social interaction236. This argues against the idea that opponents 

during attack are attributed with a positive valence. Furthermore, although an animal 

might seek an aggressive encounter, this does not necessarily distinguish between the 

rewarding properties of ‘winning’ and the rewarding nature of fighting. Additional studies 

that manipulate variables related to conspecific valence and reward are warranted to further 
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isolate the mechanisms controlling social valence during acute versus prolonged social 

isolation.

Conclusions and looking forward

In this Review, we have defined social valence, reviewed the rich literature in this growing 

field enabled by new technologies237–240 and put forth a simple conceptual framework 

outlining testable hypotheses to probe the key parameters in socio-emotional processes. 

For example, when animals are in competition, they represent outcomes for the self and 

the other separately125,132. We hypothesize that neurons in non-overlapping ensembles241 

may help represent the other’s outcome as either aligned (overlapping) or orthogonal 

(non-overlapping) depending on whether or not the animals are in cooperation (aligned 

representations for self and other) or in competition (orthogonal representations for self and 

other)125. More empirical data will be needed to inform construction of a quantitative, 

predictive model for how both internal inputs (for example, relating to hunger, social 

memory and emotion state) and external inputs (for instance, resource scarcity, dominance 

behaviours exhibited by conspecifics and competitive success) are integrated and weighted 

to ultimately determine behaviours from the individual and other social agents.

But how is social valence constructed, and what information is integrated to abstract down 

to the general property of valence? Despite our knowledge of the individual factors that 

influence social valence and their individual neural systems, we do not know how they 

interact with each other. Future experiments could test the hypothesis that they have a 

hierarchical nature, with some factors, such as the isolation state, being higher in the 

hierarchy and weighted more for social valence assignment than other factors. Alternatively, 

attributes that contribute to social recognition and valence identification from features 

(such as faces, voices and so on) could have the largest role. How social attributes and 

familiarity interact is unknown, and future experiments could address how social history and 

memories affect social attribute perception. Partially overlapping neural circuits are involved 

in the perception of social attributes, social rank and history, and many of these contain 

subpopulations of neurons that encode valence (including those in the mPFC, ACC, BLA, 

HPC and NAc), highlighting a potential neural mechanism for social valence assignment.

As a field, the study of the neural mechanisms of social hierarchies is still in its infancy 

but animal models and evidence of both innate and learned mechanisms to support 

hierarchies and social-rank encoding are already proliferating9. New studies that take into 

account previous history of group composition and size will be crucial to understand 

how history affects rank development and hierarchical placing, whereas other studies in 

more controlled environments can dissect how the mechanisms of reward and aversion 

encoding affect social hierarchy formation. Work across species suggests differences in the 

dopaminergic and serotonergic systems in social dominance242–246. Considering the role of 

neuromodulation in valence assignment133,247,248, future work may focus on understanding 

how neuromodulatory systems contribute to rank-dependent social valence assignment.

Interestingly, social isolation itself seems to be a powerful modulator of social valence. 

We speculate that isolation is a powerful modulator because of evolutionary drives and the 
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importance of socializing for reproduction and defence. Furthermore, we have theorized 

that the state of social isolation influences the social valence of other social factors. In 

this model, chronic isolation alters how attributes, history and rank are perceived. Few 

studies have looked at how isolation state affects other social factors and their neural 

circuits and dynamics. For example, is the increase in aggression seen after social isolation 

as rewarding as aggression seen during territorial defence? Which factors can explain the 

effects of prolonged isolation on reducing approach behaviour but also increasing aggression 

simultaneously? Can we uncouple the valence assigned to a social conspecific from the 

valence assigned to the social interaction (such as a fighting episode) experienced with that 

same conspecific? Also, what are the circuit or neurochemical mechanisms that explain an 

animal’s shift in behaviour from acute to prolonged social isolation? Is this shift more or 

less dramatic depending on an animal’s position in its social hierarchy? At least one study 

indicates that social rank can affect the consequences of social isolation32, suggesting that 

social factors can interact with the isolation state to affect social valence assignment. Are 

there ways to protect against the deleterious effects of prolonged isolation? What role does 

control, or the perception of control, have in the development of these negative effects? 

Future studies aimed at teasing apart these factors will shed light on the neurobiology 

underlying social isolation and its impact on behaviour.

Collectively, understanding how social perception, contextual factors, prior history and 

isolation state are integrated in the brain to control social motivation is vital, given the high 

prevalence of dysregulated social behaviour in psychiatric and neurological disorders249.
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Glossary

Sociability
A parameter describing the degree to which an animal seeks social contact or engages in 

social interactions.

Valence
The degree to which something is pleasurable (positive) or aversive (negative).

Social context
The social aspects related to the environment that an individual is in. This can include social 

rank and the presence or absence of others, as well any history of social interactions (such as 

fighting, mating and so on) in that context.

Social rank
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The social position of an individual relative to others in a group (for example, social 

hierarchy).

Social valence
The valence assigned to a social stimulus or agent.

Cooperation
Two or more individuals with common or shared goals.

Competition
Two or more individuals with goals which are incompatible or in conflict.

Social alignment
The degree to which the goals of the self are in cooperation (‘aligned’) versus in competition 

(‘opposed’) with the goals of the other.

Social history
The collective social experience of an individual. This includes social memories, social rank, 

isolation history, group size and other related social experiences.

Social attributes
The physical attributes of a social agent including their age, size, rank, resource-holding 

potential and so on.

Social heuristics
Generalized associations that can facilitate rapid assessment of a social agent.

Brain state synchrony
When the internal brain state of a social agent is synchronized to the brain state of another 

social agent, such that changes in one produce changes in the other.

Theory of mind
The ability to create a model of another’s mind as distinct from one’s own by inferring their 

mental state, logic, beliefs and emotions.

Emotional contagion
The phenomenon of individuals mimicking the emotions or emotional behaviours of others.

Social homeostasis model
A conceptual model proposing that there is an optimal quality and/or quantity of social 

contact, regulated by a detector, control centre and effector system.

Social dominance
The repertoire of behaviours expressed by higher ranking animals including winning during 

competition and species-specific body poses.

Mixed selectivity
The ability of neurons to respond consistently to multiple, statistically independent 

variables.
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Valence associative learning
Learning the association between two or more stimuli in which one of the stimuli has a 

positive or negative valence.

Familiarity
The degree to which two individuals know each other.

Engrams
Ensembles of neurons that undergo enduring changes during learning and facilitate memory 

recall.

Social preference
The preference for social stimuli (as opposed to non-social stimuli) observed in rodents.

Spatial–social memory
Memory of the space in which a social interaction occurred, often indexed by changes in the 

time spent in that social space.

Rebound social interaction
The increase in social interaction observed immediately after a social deficit.

Social anxiety
The decrease in social interaction and/or social preference observed following a negative 

social experience (for example, prolonged isolation, social defeat and so on).

Threat responsivity
The degree to which a host of behavioural responses are expressed in response to a 

threatening, noxious stimulus, including: freezing, darting, activity bursting, flinching, 

vocalizations and so on.

Homeostatic set point
Within any homeostatic system, there is a control centre that stores a ‘set point’ and 

computes the difference between the detected input and the optimal set point.
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Box 1 |

Social valence is guided by the alignment of goals for self and other

It is adaptive for individuals of a species that share genetic material to cooperate and to 

care for others as extensions of themselves. By contrast, it may be more adaptive for a 

species overall if only a subset of genetic material (that of the ‘fittest’) is perpetuated2263, 

thereby necessitating a competitive scenario both within and between species (FIG. 1). 

Interestingly, this evolutionary theory has been supported by behavioural observations 

showing that rats show more altruistic ‘helping’ behaviour when presented with familiar 

rats or rats sharing physical traits of those with which they were raised264,265. Individuals 

do not seem to be inherently aware of their own genotype but, instead, rely on familiarity 

and stimulus generalization for identification, as evidenced by the fact that rats will more 

readily help a stranger that is similar to those they were reared with, even if they are a 

different strain264. This notion is also supported in humans by racial and gender biases 

that are pervasive (as reflected in Harvard’s Implicit Association Test266) and influenced 

by the racial identity of the participant, and by the finding that interracial cohabitation 

promoted subjective pleasure and physical engagement while reducing anxiety in a novel 

interracial interaction267,268.

Some work has identified possible neural mechanisms that help an individual determine 

whether their own goals are aligned with those of a conspecific. Brain state 

synchrony of interacting individuals in the prefrontal cortex (PFC) has been shown 

in humans269 and mice270 alike. In the context of social decision-making during a 

prisoner’s dilemma task, which requires animals to anticipate the social alignment of 

others, non-human primates interacting or engaging in cooperative behaviours show 

distinct activity in corticolimbic circuits involving cortical regions such as the anterior 

cingulate cortex (ACC), PFC, orbitofrontal cortex (OFC) and basolateral amygdala 

(BLA) from that shown during competition132,253,255,271,272. Furthermore, a recent study 

in macaques shows that activity in the dorsal medial prefrontal cortex (mPFC) encodes 

detailed representations of a group’s behaviour and reflects others’ identities, actions and 

outcomes273.
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Box 2 |

Aggression, altruism, empathy and observational learning

Here, we introduce the social behaviours and psychological constructs of aggression, 

altruism, empathy and observational learning, and explore some of the neural 

mechanisms thought to mediate them.

In mice, circuits for aggression — largely identified as those mediating increases in 

biting bouts and overall time spent attacking (including biting, tussling and lunging) 

— have been identified in mice in the ventromedial hypothalamus3215,235,274,275, 

pinpointing neuronal ensembles that orchestrate complex social behaviours in a dynamic 

and experience-dependent manner276. Recent work extends the sensitivity of the 

ventromedial hypothalamus to social experience and implicates this region in the 

encoding of additional social experiences (such as social defeat), and the representation 

of environmental cues that predict these negative experiences277. Circuits involving the 

nucleus accumbens (NAc) in the ventral striatum that encode the rewarding aspects of 

aggression on others have been identified using a task in which mice perform an operant 

response to gain access to a conspecific over which they will exert their aggression278, 

with relevance to sadism and bullying. Furthermore, in primates, striatal neurons that 

encode reward also encode the social agent when there are two monkeys involved in the 

task279.

The notion of empathy, the ability to recognize the emotions of others and to take 

on that emotion280, is distinct from the related concept of altruism281 (although it has 

been conceptualized as correlated281), which focuses on helping another at one’s own 

expense. Altruism may rely on the ability to recognize distress in others, but does not 

necessarily require the taking on of the emotions of others282, as occurs in empathy. 

Studies in humans have identified the amygdala, insular cortex, orbitofrontal cortex 

(OFC) and anterior cingulate cortex (ACC) as key regions involved in empathy283, and 

mirror neurons are also theorized to facilitate empathy284.

Another important distinction is that between the related concepts of empathy and 

observational learning. In observational learning, an individual can learn about the 

valence of environmental stimuli, as well as appropriate responses to them, by observing 

another individual, without direct experience285. Observational learning can be applied 

to both positive and negative valence, providing an enormous adaptive advantage. 

For example, it could be costly or fatal to learn through direct experience that a 

predator is a threat; thus, learning that a predator is threatening by observing another 

animal’s escape responses or defensive behaviours in response to a predator-associated 

cue enables learning without the same cost. During observational learning, the ACC 

detects and represents information about the behavioural state of the social agent 

and routes this information to the basolateral amygdala (BLA), where ACC input is 

crucial for observational learning286. The related psychological constructs of empathy, 

cooperative and competitive decision-making and observational learning all implicate 

largely overlapping cortical circuits, including the ACC and BLA ensembles287–289, 
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suggesting that the biological implementation of these related computations is also 

related.
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Fig. 1 |. social alignment: a coarse parameterization of interactions between the self and other 
with positive or negative valence.
Proposed model in which events can benefit the other and also be good for the self (resulting 

in mutual benefit); can be bad for the other and good for the self (jealousy, schadenfreude 

or sadism); can be good for the other and bad for the self (helping or altruism); or can be 

bad for both the self and the other, which could lead to sympathy. If an individual feels their 

fate is tied to another, then they will move along the axis of cooperation (events or stimuli 

that are good for the other are also good for the self, and punishments or threats to the other 

are bad for the self), and be motivated to help others (altruism)250–252. By contrast, if an 

individual perceives themselves to be in competition with the other, then they will move 

along the axis of competition (what is good for the other is bad for the self, and vice versa, 

as there are finite resources for which the self and the other are in competition)253–257.

Padilla-Coreano et al. Page 37

Nat Rev Neurosci. Author manuscript; available in PMC 2023 March 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2 |. Factors influencing social valence assignment and circuits underlying those factors.
A circuit summary of brain regions implicated in processing four factors that contribute 

to social context and, thus, assignment of social valence: social attributes, social rank, 

social memory and social isolation. Circuit nodes represented have been directly evidenced 

or hypothesized to play a part in processing these four social factors. Our central theory 

is that an animal assigns valence to a social stimulus depending on the attributes, rank, 

social memory and housing conditions of the individuals interacting. In addition, internal 

state factors such as hormones, energy and motivation affect valence assignment. Valence 

Padilla-Coreano et al. Page 38

Nat Rev Neurosci. Author manuscript; available in PMC 2023 March 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



assignment, in turn, influences an animal’s behavioural response. Attribute circuits are 

based on primate55,59,62,83,99,100,102,258 and rodent93–97 literature. Social-rank circuits 

are based on primate118,119,121–123,127,138,259 and rodent115,116,125,140 literature. Social 

memory117,141,152,155,160,168,260 and social isolation218,219,225,261,262 circuits are based on 

rodent literature. Brain regions are not arranged anatomically, and regions found only in 

primate brain are coloured blue. ACC, anterior cingulate cortex; BLA, basolateral amygdala; 

BNST, bed nucleus of the stria terminalis; CeA, central amygdala; DMH, dorsomedial 

hypothalamus; DRN, dorsal raphe nucleus; ENT, entorhinal cortex; FFA, fusiform face area; 

HPC, hippocampus; LH, lateral hypothalamus; MDT, mediodorsal thalamus; MeA, medial 

amygdala; mPFC, medial prefrontal cortex; mPOA, medial preoptic area; NAc, nucleus 

accumbens; OB, olfactory bulb; OFC, orbitofrontal cortex; PVN, paraventricular nucleus 

of the hypothalamus; STG, superior temporal gyrus; STS, superior temporal sulcus; SuM, 

supramammillary nucleus.
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Fig. 3 |. A model of the temporal effects of social isolation.
As social isolation increases, prosocial behaviour first increases and then decreases as the 

duration of isolation extends, whereas antisocial behaviours increase. We hypothesize that 

the valence of a social conspecific transitions from neutral to positive to negative as an 

animal transitions from group housing to acute and then chronic isolation. A simplified 

account of how this could be achieved is depicted, whereby circuits from brain regions 

or molecules involved in encoding the internal states produced by isolation allow for the 

increase (acute isolation) or decrease (chronic isolation) in social interaction, by promoting 

or inhibiting activity in downstream social-motivation centres.
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