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Abstract

1. Biological phenotypes are products of complex evolutionary processes in which 

selective forces influence multiple biological trait measurements in unknown ways. 

Phylogenetic comparative methods seek to disentangle these relationships across 

the evolutionary history of a group of organisms. Unfortunately, most existing 

methods fail to accommodate high-dimensional data with dozens or even thousands of 

observations per taxon. Phylogenetic factor analysis offers a solution to the challenge 

of dimensionality. However, scientists seeking to employ this modeling framework 

confront numerous modeling and implementation decisions, the details of which pose 

computational and replicability challenges.
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2. We develop new inference techniques that increase both the computational efficiency 

and modeling flexibility of phylogenetic factor analysis. To facilitate adoption of these 

new methods, we present a practical analysis plan that guides researchers through the 

web of complex modeling decisions. We codify this analysis plan in an automated 

pipeline that distills the potentially overwhelming array of decisions into a small 

handful of (typically binary) choices.

3. We demonstrate the utility of these methods and analysis plan in four real-world 

problems of varying scales. Specifically, we study floral phenotype and pollination 

in columbines, domestication in industrial yeast, life history in mammals, and brain 

morphology in New World monkeys.

4. General and impactful community employment of these methods requires a data 

scientific analysis plan that balances flexibility, speed and ease of use, while 

minimizing model and algorithm tuning. Even in the presence of non-trivial 

phylogenetic model constraints, we show that one may analytically address latent 

factor uncertainty in a way that (a) aids model flexibility, (b) accelerates computation 

(by as much as 500-fold) and (c) decreases required tuning. These efforts coalesce to 

create an accessible Bayesian approach to high-dimensional phylogenetic comparative 

methods on large trees.

Keywords

Bayesian inference; BEAST; latent factor model; Geodesic Hamiltonian Monte Carlo; 
phylogenetic comparative methods; Stiefel manifold

1 Introduction

Biological phenotypes are the result of numerous evolutionary forces acting in complex 

and often conflicting ways throughout an organism’s evolutionary history. Phylogenetic 

comparative methods seek to untangle this web of selective pressures and elucidate the 

forces that have shaped organisms over time. As implied by their name, these methods 

compare phenotypes across numerous biological taxa connected by a phylogenetic tree 

that captures their shared evolutionary history. Accounting for shared evolutionary history 

via the phylogeny is necessary to avoid biased inference, as this shared history implies 

phenotypes are non-independent across taxa. Statistical models that inappropriately ignore 

this dependence can identify spurious associations between phenotypes (Felsenstein, 1985). 

However, accounting for these relationships between taxa poses challenges to statistical 

inference.

Starting with Felsenstein (1985), there has been much work developing computationally 

efficient phylogenetic comparative methods (see Rohlf, 2001; Revell and Harmon, 2008; 

Pybus et al., 2012; Ho and Ané, 2014). While methods development has typically focused 

on scaling inference to large trees, these methods struggle to accommodate data with a 

large number of traits or high-dimensional phenotypes. The computational complexity (i.e. 

run time) of most approaches scales quadratically or cubically with the number of traits, 

making inference intractable as the number of traits increases. Additionally, methods that 
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estimate the evolutionary correlation structure between traits are difficult to interpret for data 

sets with high-dimensional phenotypes, as the number of pairwise correlations requiring 

interpretation scales quadratically with the number of traits.

1.1 Why phylogenetic factor analysis?

Phylogenetic factor analysis (PFA, Tolkoff et al., 2017) provides an all-in-one approach 

to high-dimensional comparative analyses that simultaneously simplifies complex data via 

dimension reduction, similar to phylogenetic principal component analysis (pPCA, Revell, 

2009), and statistically evaluates evolutionary correlations between groups of phenotypes, 

as with phylogenetic independent contrasts (Felsenstein, 1985). In Section 6.1, for example, 

we use PFA to understand the relationship between 11 floral phenotypes and pollinator 

species in columbines. We identify two axes along which floral phenotypes evolve: a first 

differentiating hummingbird pollination from hawk moth pollination and a second capturing 

phenotypes differentiating bumblebee pollination from the latter two pollination strategies. 

Similarly, in Section 6.2, we explore evolutionary relationships between 82 phenotypes 

of industrial yeast: growth rates under 62 different stress conditions, production of 16 

metabolites and 4 metrics related to reproduction. In this example, we identify a group of 

phenotypes characterizing the early domestication of beer yeast. Additionally, PFA allows 

for flexible model specifications. For example, in Section 6.3 we study the evolution of 

life history strategies in mammals. We structure the PFA model to isolate the influence of 

a particular trait (body size) so that we can infer size-independent patterns of life history 

evolution. Finally, as with pPCA, researchers can employ PFA as a descriptive technique 

useful for identifying and visualizing low-dimensional structure in high-dimensional data 

(see Section 6.4 for an example of this with New World monkey brain shape). Unlike pPCA, 

however, Bayesian PFA incorporates uncertainty into the loadings (the analogs of the pPCA 

weights) and factors (the analogs of the pPCA scores).

1.2 Statistical developments in high-dimensional trait analyses

As the primary motivation of PFA is analyzing high-dimensional trait data, we briefly 

discuss existing methods that deal with the computational and interpretive burden of high-

dimensional phenotypes. As mentioned above, pPCA (Revell, 2009) is one such solution 

that constructs a low-dimensional, phylogenetically-informed summary of the relationships 

between traits. More recently, several distance-based methods have been developed by 

Adams (2014a,b,c) to study phylogenetic signal, high-dimensional phylogenetic regression 

and evolutionary rates, respectively. While these methods are statistically efficient for high-

dimensional phenotypes, they rely on operations that scale cubically with the number of 

taxa and may struggle computationally with very large trees or in cases where they must 

be applied over many large trees. Additionally, existing implementations of pPCA and the 

Adams (2014a,b,c) distance-based methods do not readily accommodate missing data, a 

common scourge in many relevant data sets. PFA (Tolkoff et al., 2017) adapts the Bayesian 

latent factor model of Aguilar and West (2000) to the phylogenetic context. Like pPCA, PFA 

is a linear dimension reduction approach that assumes the P-dimensional data arise from 

K latent factors that evolve independently along a phylogenetic tree. Unlike pPCA, PFA 

readily accommodates missing data without data imputation or augmentation. Additionally, 

PFA fits seamlessly into Bayesian phylogenetic inference and estimates the uncertainty of 
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the influence of a particular factor on a particular trait. However, the inference regime 

proposed by Tolkoff et al. (2017) scales quadratically with the number of taxa and is 

intractable for large trees.

Finally, Clavel et al. (2019) propose a penalized likelihood framework for studying 

high-dimensional phenotypes. While this procedure involves an operation that scales 

quadratically in number of taxa, the rate-limiting calculations scale linearly in the number 

of taxa but cubically in the number of traits. Nevertheless, Clavel et al. (2019) demonstrate 

success handling data sets with more than a thousand traits. While PFA reduces the size 

of the parameter space by assuming the between-trait covariance is low-rank, the penalized 

likelihood approach of Clavel et al. (2019) achieves a similar goal by assuming a priori that 

relatively few of the between-trait covariances are non-zero. The specific implementations 

also differ in that Clavel et al. (2019) rely on maximum likelihood inference while our work 

here and Tolkoff et al. (2017) approach PFA from a Bayesian perspective.

1.3 A new approach to PFA

We propose two new PFA inference regimes that each scale linearly with both the number 

of traits P and the number of taxa N. While Tolkoff et al. (2017) rely on data augmentation, 

our new methods rely on a novel likelihood-calculation algorithm that analytically integrates 

out the latent factors. We also address two other shortcomings of PFA and latent factor 

models generally. First, Tolkoff et al. (2017) constrain the factor loadings matrix to be 

upper triangular, which induces an implicit ordering to the phenotypes. Specifically, the 

first trait is influenced only by the first factor, the second trait is influenced only by the 

first two factors, etc. until the Kth trait and beyond which are influenced by all K factors 

(see Table 1 for an example). As justifying a specific ordering of the phenotypes a priori 
can be difficult, we extend an alternative constraint proposed by Holbrook et al. (2016) 

that eliminates such ordering. Second, a common challenge in exploratory factor analysis 

generally is determining an appropriate number of factors. As such, we implement a cross-

validation model selection procedure that identifies the number of factors that confers the 

best predictive performance.

To facilitate use among researchers seeking to employ these methods, we develop an 

analysis plan with practical guidance on the most significant modeling and inference 

decisions. We codify this plan in the Julia package PhylogeneticFactorAnalysis.jl, which 

uses relatively simple instructions to automatically perform model selection and run more 

complex analyses in the Bayesian phylogenetic inference software BEAST (Suchard et al., 

2018).

For clarity, we emphasize which methods below are completely new statistical innovations 

and which are novel applications of previously developed statistical practices. The 

calculations in Sections 3.1.2 and 3.2.1 that allow inference of the loadings without 

conditioning on the latent factors are novel, and we are unaware of any similar work 

in the statistics literature. The fast likelihood calculations in Section 2.1.1 are based on 

earlier work by Hassler et al. (2020) but require non-trivial adjustment for application to 

this context (see Supplemental Information (SI) Section 1). Finally, the modeling decisions 

described in Section 2.2 and inference techniques described in Sections 3.1.1, 3.1.3 and 3.2 
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are previously developed statistical procedures that find novel application to phylogenetic 

comparative methods here.

1.4 Brief overview

PFA allows researchers to identify high-dimensional patterns of trait variation using a 

model that reduces the computational and interpretive burden of high-dimensional analyses. 

We begin by specifying the technical details of the PFA model in Section 2. Intuitively, 

PFA assumes that the evolution of high-dimensional trait data can be approximated by the 

evolution of some small number of latent (unobserved) factors, with each of these latent 

factors influencing the observed traits in some estimable way. In Section 3 we present 

the technical details of several approaches to statistical inference under this model, and in 

Section 4 we compare the computational efficiency of these various approaches. As we 

recognize that researchers seeking to use these methods face an array of technical modeling 

and inference decisions, we devote Section 5 to practical guidance on how to make these 

decisions. Finally, in Section 6 we demonstrate the utility of PFA on 4 real-world examples.

2 Phylogenetic Latent Factor Model

We approach inference from a Bayesian perspective and propose two statistical models 

which share a likelihood but have distinct priors. As we discuss below, each model has 

advantages under different circumstances, and allowing researchers to choose a model (with 

our guidance) offers maximum flexibility while keeping modeling decisions to a minimum.

2.1 Likelihood

Both statistical models share the same latent factor likelihood introduced by Tolkoff et al. 

(2017). This likelihood assumes the N × P trait data Y = (y1, …, yN)t arise from N × K 
latent factors F = (f1, …, fN)t via the linear transformation Y = FL + ϵ, where L is a 

K × P loadings matrix that must be inferred and ϵ ~ MN (0, IN,Λ−1) is matrix-normally 

distributed with mean 0, between row variance IN and diagonal between column precision 

Λ = diag[λ1, …, λP ]. The latent factors F arise from K independent Brownian diffusion 

processes on the phylogenetic tree ℱ. The tree ℱ is rooted and bifurcating with degree-two 

root node ν2N−1, degree-three internal nodes {νN+1, …, ν2N−2} and degree-one leaf nodes 

{ν1, …, νN}. Under the Brownian diffusion model, all internal and tip factors are normally 

distributed as f j N fpa(j), tjIK  where fpa(j) are the factors of the parent of node νj and tj is the 

distance (time) between nodes νpa(j) and νj. Following from Pybus et al. (2012), we assume 

the ancestral root traits f2N − 1 N μ0, 1
κ0

IK , where κ0 is some (typically small) predetermined 

prior sample size. This construction implies the tip factors are jointly matrix-normally 

distributed as F MN 1Nμ0
t, Ψ + 1

κ0
JN, IK , where 1N is an N-vector of ones, JN = 1N1N

t  and Ψ is 

the standard variance-covariance (VCV) representation of the phylogeny ℱ. Specifically, the 

diagonal elements Ψii are the sum of the edge lengths connecting νi to the root ν2N−1. The 

off-diagonal elements Ψij are the total amount of shared evolutionary history or time from 

the most recent common ancestor of νi and νj to the root node ν2N−1.

Given this model, the vectorized data vec(Y) are multivariate normally distributed as
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vec(Y) ∣ L, Λ, ℱ N vec 1Nμ0
t , LtL ⊗ Ψ + 1

κ0
JN + Λ−1 ⊗ IN , (1)

where ⊗ is the Kronecker product operator. Computing the likelihood in this form, however, 

requires inverting the NP × NP dimensional variance matrix, which has computational 

complexity O N3P 3 . Tolkoff et al. (2017) avoid this by treating the latent factors F as model 

parameters that they integrate out via Markov chain Monte Carlo (MCMC) simulation. This 

augmented likelihood p(Y, F ∣ L, Λ, ℱ) = p(Y ∣ L, Λ, F)p(F ∣ ℱ) is far easier to compute, but 

sampling from the full conditional distribution of F (i.e. the posterior distribution of F 
conditional on the data and all other model parameters) as proposed by Tolkoff et al. (2017) 

scales quadratically with the size of the phylogenetic tree and is intractable for big-N.

2.1.1 Fast Likelihood Calculation—To avoid costly data augmentation, we adapt the 

likelihood-computation algorithm independently developed by Bastide et al. (2018), Mitov 

et al. (2020) and Hassler et al. (2020). This algorithm analytically integrates out latent 

traits (in our case factors) and missing data to compute the likelihood p Yobs ∣ L, Λ, ℱ
of the observed data Yobs in O NPK2 + NK3  via a post-order traversal of the tree (i.e. 

computations start at the tips and are carried up the tree to the root). This procedure naturally 

accommodates missing data assuming an ignorable missing data mechanism (Rubin, 1976). 

We also utilize a more numerically stable modification of this post-order algorithm proposed 

by Bastide et al. (2021). We detail these calculations in SI Section 1.

2.1.2 Loadings Identifiability—A major challenge in latent factor models generally is 

the non-identifiability of the loadings matrix L (see Shapiro, 1985). In statistical models, 

non-identifiability occurs when there are multiple parameter values that result in the same 

probability density over the data. In these cases, inference procedures cannot distinguish 

between the equally valid parameter values. This lack of identifiability in PFA stems from 

the fact that the likelihood as defined in Equation 1 depends only on LtL rather than L itself. 

As such, for any K×K orthonormal matrix Q (i.e. QtQ = IK), p(Y |L,…) = p(Y |QL,…) 

because (QL)t (QL) = LtL. This identifiability problem inspires our choice of priors below.

2.2 Priors

We assume the diagonal precisions λj ~ Gamma(aΛ,bΛ) for j = 1, …, P (shape/rate 

parameterization). For the loadings L = {lkj}, we propose two different priors. Each prior 

on L admits a different inference regime for sampling from L which in turn have their own 

strengths and weaknesses that we discuss in Section 3.

2.2.1 Independent Gaussian Priors on the Loadings L—The standard assumption 

in Bayesian latent factor models is that each element of the loadings ℓkj
i.i.d.N 0, σ2 , where 

typically σ2 = 1. As this prior is also invariant with respect to orthogonal rotations, 

additional constraints are required for posterior identifiability. One solution is to assume 

certain elements of the loadings matrix L (typically those below the diagonal) are fixed 

at zero (Geweke and Zhou, 1996; Aguilar and West, 2000). This approach solves the 

identifiability problem, but it induces an implicit ordering to the data (see Table 1). While 
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this ordering may be well-informed in some cases, there is typically no principled way to 

choose such an ordering a priori.

An alternative to the sparsity constraint is to assume that the loadings matrix has rows that 

1) are orthogonal and 2) have decreasing norms (Holbrook et al., 2016). This constraint does 

not require any a priori ordering of the traits. However, it does require sampling from the 

space of orthogonal matrices, which is a notoriously challenging problem (see Hoff, 2009; 

Byrne and Girolami, 2013; Jauch et al., 2021; Pourzanjani et al., 2021). We address this 

challenge via post-processing in Section 3.1.3.

2.2.2 Orthogonal Shrinkage Prior—While post-processing to orthogonality is often 

sufficient, we find in practice that the loadings may be only loosely identifiable with this 

procedure in small-N problems. As such, we seek an alternative prior that enforces the 

orthogonality constraint directly. Following from Holbrook et al. (2017), we decompose 

the loadings L = ΣV where Σ = diag[σ] is a K × K diagonal matrix whose diagonals σ 
have descending absolute values and V is a K × P orthonormal matrix (i.e. VVt = IK). 

We assume Vt is uniformly distributed over the Stiefel manifold VK ℝP  (i.e. the space of 

P × K orthonormal matrices). For the scale component Σ = diag[σ1, …, σK] we assume a 

multiplicative gamma prior inspired by Bhattacharya and Dunson (2011):

σk N 0, τk
−1 for k = 1, …, K, where

τk = ∏
1

k
νℓ and

νℓ Gamma aℓ, bℓ for ℓ = 1, …, K .

(2)

For l > 1, we constrain the prior shape al and rate bl such that aℓ > bℓ (i.e. E νℓ > 1). This 

constraint implies that the τk are (stochastically) increasing with k, which results in scale 

parameters σk with (stochastically) decreasing magnitudes.

This prior induces posterior identifiability, as it is not invariant under rotations of the 

loadings. However, in some cases we find that this prior does not induce sufficient 

identifiability in practice, particularly when K is relatively large (i.e. > 5). For these cases, 

we multiply the joint prior on Σ by an indicator function 1{|σk| < α|σk−1| for k = 2, …, K}. 

Setting α < 1 forces spacing between the diagonals of Σ, which results in more identifiable 

posteriors.

3 Inference

Our Bayesian inference regime seeks to approximate the posterior distribution of the 

parameters of scientific interest via MCMC simulation. We typically use molecular sequence 

data S to simultaneously infer the factor model parameters and phylogenetic tree by 

approximating

p L, Λ, ℱ ∣ Yobs, S ∝ p Yobs ∣ L, Λ, ℱ p(ℱ, S)p(L)p(Λ), (3)
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where the model of sequence evolution p(ℱ, S) is developed elsewhere (see Suchard et al., 

2018). For cases where we lack sequence data or ℱ is too large to infer efficiently, we 

simply fix the tree ℱ.

3.1 Loadings Under the i.i.d. Gaussian Prior

We propose two different samplers to draw from the full conditional distribution of the 

loadings L under the i.i.d. Gaussian prior from Section 2.2.1. The first relies on the Gibbs 

sampler used by Tolkoff et al. (2017), where we sample from LYobs, F, Λ. The second 

avoids data augmentation and can sample directly from the full conditional distribution 

LYobs, F, Λ, ℱ without conditioning on the latent factors F.

3.1.1 Gibbs Sampler with Data Augmentation—Tolkoff et al. (2017) use the 

conjugate Gibbs sampler of Lopes and West (2004) to sample from LYobs, F, Λ. As this 

sampler conditions on the latent factors F, Tolkoff et al. (2017) simultaneously infer the 

factors by sequentially drawing from fi | F/i,Yobs, L, Λ, ℱ for i = 1, …, N, where F/i 

represents all factors except fi. As sampling fi for all N taxa requires O N2K2  work, this 

procedure quickly becomes intractable with increasing taxa.

Rather than relying on this per-taxon sampling scheme, we employ the pre-order data 

augmentation algorithm of Hassler et al. (2020) that uses statistics from the post-order 

likelihood computation to draw jointly from F | Yobs, L, Λ, ℱ in O NK3  via a single 

pre-order traversal of the tree (see SI Section 2.1 for details). After sampling from F | Yobs, 

L, Λ, ℱ, we can draw directly from L | Yobs, F, Λ using the procedure developed by Lopes 

and West (2004) with computational complexity O NPK2  (see SI Section 2.2 for details).

3.1.2 Hamiltonian Monte Carlo Sampler—We also propose an alternative 

Hamiltonian Monte Carlo (HMC; Neal, 2010) sampler for the loadings that does not require 

data augmentation. Intuitively, HMC (a form of MCMC) treats parameter values as the 

position of a particle in a landscape informed by the posterior distribution. Parameter 

proposals are the end-point of a trajectory initiated by “kicking” the particle and allowing it 

to traverse this landscape according to Hamiltonian dynamics for a pre-determined amount 

of time. As the parameter trajectories are informed by the geometry of the posterior, HMC 

tends to propose parameter updates that are both relatively far away from the current 

position and have high acceptance probabilities.

While we cannot compute these continuous trajectories analytically, we can 

approximate them numerically. Each trajectory approximation, however, requires 

numerous gradient calculations, and we must efficiently compute the gradient 

∇Llogp L ∣ Yobs, Λ, ℱ = ∇Llogp Yobs ∣ L, Λ, ℱ + ∇Llogp(L) to effectively employ HMC to 

update the loadings L. As we assume each element of the loadings are a priori i.i.d. N(0, 1), 

the gradient of the log-prior ∇L logp(L) can be computed simply as ∂
∂ ℓkj

logp(L) = − ℓkj for j 

= 1, …, P, k = 1, …, K.
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As computing ∇Llogp Yobs ∣ L, Λ, ℱ  directly via Equation 1 scales O N3P 3  and is intractable 

for most problems, we use the highly structured nature of the phylogeny to compute this 

gradient in O NPK2 + NK3 . We calculate the gradient of the likelihood with respect to each 

column of the loadings lj individually to accommodate variation in the missing data structure 

across traits.

∇ℓjlogp Yobs ∣ L, Λ, ℱ = λjE Ft ∣ Yobs, L, Λ, ℱ δj
′yj

obs′

− λjE Ftδj
′F ∣ Yobs , L, Λ, ℱ ℓj , (4)

where yj
obs′ is the jth column of Yobs and δj

′ = diag δ1j, …, δNj  is a diagonal matrix of observed-

data indicators (i.e. δij = 1 if yij is observed and 0 otherwise). Note that these calculations 

rely only on the conditional mean and variance of the factors, not the factors themselves. We 

compute the expectations using statistics from the post-order likelihood calculation (see SI 

Section 1) in a pre-order tree traversal (Bastide et al., 2018; Fisher et al., 2020) that takes 

O NK3  additional time. See SI Section 3 for detailed calculations.

3.1.3 Orthogonality Constraint and Post-Processing—While both the Gibbs and 

HMC samplers above can enforce the structured sparsity constraint, neither can enforce the 

orthogonality constraint directly. However, as both the likelihood and i.i.d. prior are invariant 

with respect to orthonormal rotations of L, applying such a rotation to all posterior samples 

via post-processing results in a valid posterior. We can easily rotate the loadings to have 

orthogonal rows with descending norms via singular value decomposition (see SI Section 4 

for details).

3.2 Loadings Under the Orthogonal Shrinkage Prior

Both samplers above are incompatible with the orthogonal shrinkage prior from Section 

2.2.2 as 1) they cannot enforce the orthogonality constraint directly and 2) post-processing is 

invalid because the prior is not rotationally invariant. Therefore, we sample directly from the 

full conditional distributions of both Σ and V rather than their product L.

3.2.1 Geodesic HMC Sampler on the Orthonormal Component V—Requiring Vt 

to be orthonormal allows us to employ existing techniques for sampling from the Stiefel 

manifold (i.e. the space of orthonormal matrices). Geodesic HMC (Byrne and Girolami, 

2013) uses the same fundamental principles of standard HMC, but progresses parameters 

along geodesics on manifolds (e.g. an arc on a sphere) rather than through Euclidean space. 

This procedure also relies on the gradient of the log-posterior with respect to the parameter 

of interest. As such, to efficiently employ geodesic HMC to update the orthonormal matrix 

V, we must efficiently compute the gradient

∇Vlogp V ∣ Yobs , Σ, Λ, ℱ = ∇Vlogp Yobs ∣ V, Σ, Λ, ℱ + ∇Vlogp(V) . (5)

As noted in Section 2.2.2, we place a uniform prior on V and can therefore ignore ∇V 

logp(V). Using our calculations for ∇Llogp Yobs ∣ L, Λ, ℱ  from Section 3.1.2, the chain rule 

provides a simple formula for the gradient of the likelihood with respect to V as L = ΣV:
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∇Vlogp Yobs ∣ V, Σ, Λ, ℱ = Σ∇Llogp Yobs ∣ L, Λ, ℱ (6)

We then use this gradient in the geodesic HMC algorithm of Holbrook et al. (2016) to 

sample from the full conditional distribution of V.

3.2.2 Gibbs Sampler on the Diagonal Scale Component Σ—While we can 

employ HMC to sample from Σ | Yobs, V, Λ, ℱ, our implementation did not mix well 

in practice. We develop a Gibbs sampler to draw from Σ | Yobs, V, Λ, F as an efficient 

alternative that relies on the data augmentation of F in SI Section 2.1. See SI Section 5 for 

details.

3.2.3 Gibbs Sampler on the Precision Multipliers—We must also sample from 

the shrinkage multipliers ν1, …, νK when using the shrinkage prior on the loadings. 

Bhattacharya and Dunson (2011, Section 3.1, Step 5) develop a conjugate Gibbs sampler 

for these multipliers that we apply directly to this model.

3.3 Sign Constraint on the Loadings

Regardless of which prior (i.i.d. vs. orthogonal shrinkage) or constraint (sparsity vs. 

orthogonality) we choose, we must enforce a sign constraint on a single element in each 

row of L for full identifiability (see SI Section 6 for details).

3.4 Gibbs Sampler on the Error Precisions Λ

We sample from Λ | F, Yobs, L using the same procedure as Tolkoff et al. (2017) in 

conjunction with the data augmentation algorithm in SI Section 2.1 (see SI Section 7 for 

details).

4 Computational Efficiency

We compare the computational efficiency of the inference regimes discussed in Sections 

3.1.1, 3.1.2 and 3.2 with that of Tolkoff et al. (2017). To understand performance across a 

wide range of situations, we simulate three unique data sets for all 36 combinations of N 
∈ {50, 100, 500, 1000}, P ∈ {10, 100, 1000} and K ∈ {1, 2, 4} (see SI Section 8.1 for 

simulation details). To understand the relative performance of each inference regime, we 

compare the effective sample size (ESS) per second of the loadings across all four samplers 

(see SI Section 8.2 for details) and report our results in Figure 1.

Compared against the conditional Gibbs sampler of Tolkoff et al. (2017), both our joint 

Gibbs and HMC samplers under the i.i.d. prior consistently yield efficiency gains of an order 

of magnitude in small-N data sets and two orders of magnitude in big-N data sets. While the 

sampling regime under the orthogonal shrinkage prior is slower than either the joint Gibbs 

or HMC sampler (and even the conditional Gibbs sampler for small-N, big-P), it has clear 

advantages over the others that we discuss in Section 5.2.
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5 Principled Analysis Plan

The modeling decisions required for Bayesian factor analysis can be daunting. In addition to 

the priors, identifiability constraints and sampling procedures discussed above, researchers 

must also choose an appropriate number of factors K. Making such choices in a principled 

manner is challenging, and experimenting with different combinations to determine which 

“work best” is time consuming and opens the door to modeling decisions based on 

publication concerns. We propose a generalizable analysis plan to guide researchers through 

this process. To aid researchers seeking to employ phylogenetic factor analysis specifically, 

we also develop software tools that codify this plan and automate core procedures.

5.1 Choosing the Loadings Constraint

The decision to apply the sparsity constraint versus the orthogonality constraint depends 

on the biological question of interest. While the sparsity constraint induces ordering onto 

the traits, this ordering can be desirable under certain circumstances. For example, if one is 

trying to isolate the effects of a particular set of traits, placing those traits first in conjunction 

with the upper triangular constraint ensures that they will load only onto the first few 

factors and all subsequent factors will be independent of their influence. If one does not 

want to apply such an ordering, the orthogonality constraint may be a better alternative. We 

emphasize, however, that the orthogonality constraint is no less restrictive than the sparsity 

constraint; rather, it replaces a series of potentially arbitrary modeling decisions (i.e. the 

ordering of the first K traits) with a single, perhaps equally arbitrary, constraint.

Researchers can also apply a hybrid approach where one or more traits load only onto 

a certain factor(s) while the remaining traits are free to load onto all factors. If the 

specific sparsity structure is not sufficient to induce identifiability, then any unconstrained 

sub-matrices of the loadings would require rotation to orthogonality. We present a simple 

example of this in Section 6.3, where the the first trait (body mass) loads only onto 

the first factor and the remaining traits load onto all K factors. In this case, the first 

row of the loadings is identifiable and captures mass-dependent relationships, while the 

sub-matrix composed of rows 2, …, K and columns 2, …, j is rotated to orthogonality via 

post-processing.

5.2 Choosing the Loadings Prior

Those choosing the sparsity (or hybrid) constraint must use the i.i.d. prior on the loadings, 

as orthogonality is implicit in our definition of the shrinkage prior. For those opting for the 

orthogonality constraint, we recommend choosing a prior based on the characteristics of the 

specific application. For big-N data sets (N > 1000) the geodesic HMC sampler on V under 

the shrinkage prior may be prohibitively slow (particularly when combined with big-P), and 

we suggest using the i.i.d. prior with post-processing.

One serious limitation of the post-processing regime, however, is the potential for label 

switching (Celeux, 1998). This phenomenon occurs when the posterior distributions of 

certain scale parameters σ overlap enough that a given factor switches its ordering. When 

this occurs, the resulting estimated factor (e.g. factor 1) may actually be a mixture of factors 
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that shuffle in order during MCMC and post-processing. Figure 2 provides an example of 

this phenomenon and shows how the orthogonal shrinkage prior can address it. Examining 

the MCMC trace plots (i.e. plots of parameter values over each sample from the MCMC 

chain) in software such as the CODA R package (Plummer et al., 2006) or Tracer (Rambaut 

et al., 2018) is the best way to check for label switching. If the trace plot of the scale 

parameters σ appear to be touching (as in the top, left panel of Figure 2), then label 

switching is likely occurring. See SI Section 9 for a more thorough discussion of identifying 

label switching in the context of PFA.

Conveniently, label switching does not typically occur in big-N analyses, so we recommend 

the more computationally efficient i.i.d. prior with post-processing in these situations. For 

small- or moderate-N analyses, we still suggest attempting the i.i.d. sampler with post-

processing, but we caution users to look for evidence of label switching. If such evidence 

exists, we recommend using the shrinkage prior with forced ordering and separation.

5.3 Constraining the Number of Factors

We propose cross-validation for identifying the number of factors with optimal predictive 

performance. In the case of the i.i.d. prior, this procedure compares models with different 

number of factors directly, while in the case of the orthogonal shrinkage prior it tunes the 

strength of the shrinkage on the loadings scales. See SI Section 10 for details.

We fully recognize that complex evolutionary processes do not, in reality, conform 

exactly to the phylogenetic latent factor model (or any tractable statistical model) and 

caution against seeking to identify the “true” number of underlying evolutionary processes 

driving the phenotypes of interest, as such ground truth likely does not exist. Rather, we 

encourage researchers to use this model selection procedure to identify the limitations of 

the information available in a particular data set and the model’s ability to extract it. For 

example, if model selection determines that a four factor model provides optimal predictive 

performance, one should be wary of interpreting results from a model with greater than four 

factors as it is likely some of the perceived signal is an artifact of noise in the data.

Prior to model selection, one must choose some maximum number of factors Kmax that 

balances model interpretability, flexibility, identifiability and tractability. Models with more 

factors are inherently more flexible and can potentially capture more information about 

underlying biological phenomena. However, interpretation becomes challenging as the 

number of factors increases. While the model with optimal predictive performance may 

have K < Kmax, one should be open to interpreting a model where K = Kmax. Limiting 

Kmax provides additional benefits, as 1) the identifiability challenges discussed in Section 

5.2 intensify with increasing K and 2) inference scales cubically with K and some big-K 
models may be intractable. In practice, we settle on Kmax = 5 for most examples below, as 

we find that the computation time and identifiability issues are typically manageable at K = 

5 and feel most researchers would rarely need to interpret more than five factors.
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5.4 Software Implementation

We implement all inference procedures in Section 3 in the Bayesian phylogenetic inference 

software BEAST (Suchard et al., 2018). While BEAST is an extraordinarily flexible tool, 

this flexibility can result in a user experience that is overwhelming for the uninitiated.

We develop the Julia package PhylogeneticFactorAnalysis.jl to both simplify the BEAST 

user experience (in the context of PFA) and automate model selection, post-processing, 

diagnostics and plotting. Users must input the trait data, a phylogenetic tree, the 

identifiability constraint on the loadings and the prior on the loadings. Users may also 

optionally specify other modeling decisions such as whether to standardize the trait data 

(which we recommend) and the model selection meta-parameters as well as a BEAST input 

file with instructions for inferring the phylogenetic tree from sequence data.

After receiving appropriate input, PhylogeneticFactorAnalysis.jl automatically performs 

model selection and outputs a series of files including the sub-sampled MCMC realizations 

and plots of both the loadings (see Figures 3B, 4A and 5A) and factors on the tree 

(see Figures 4B, 5B and 6B) using the ggplot2 (Wickham, 2016) and ggtree (Yu et al., 

2017) plotting libraries. PhylogeneticFactorAnalysis.jl is registered under the Julia General 

registry. Source code and documentation can be accessed at:

https://github.com/gabehassler/PhylogeneticFactorAnalysis.jl

6 Example Analyses

We demonstrate the utility of these methods in the four examples below. Unless otherwise 

noted, all data are standardized on a per-trait basis (i.e. subtracting the trait mean and 

dividing the by the trait standard deviation) prior to analysis.

6.1 Pollinator-Flower Co-evolution in Aquilegia

The intimate relationship between plants and their pollinators has played a defining role 

in the evolution of angiosperms (see Kay and Sargent, 2009; Van der Niet and Johnson, 

2012). Here we re-evaluate the relationship between floral phenotypes and pollinators 

in the genus Aquilegia (columbines). Whittall and Hodges (2007) identify three primary 

Aquilegia “pollination syndromes” associated with bumblebees, hummingbirds and hawk 

moths respectively. Tolkoff et al. (2017) apply phylogenetic factor analysis to study the 

relationship between 11 floral phenotypes and these pollination syndromes in Aquilegia and 

identify two factors, only one of which is associated with pollinator type.

We re-evaluate this previous work for two reasons. First, Tolkoff et al. (2017) assume the 

upper-triangular constraint on the loadings which requires that the vertical angle of the 

flower loads only onto the first factor. Our orthogonality constraint eliminates arbitrarily 

singling out this phenotype. Additionally, we compare our cross-validation model selection 

procedure with the marginal likelihood-based approach of Tolkoff et al. (2017), which 

identifies a two-factor model as having greatest posterior support.
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As four of the traits (anthocyanin production and the three pollination syndromes) are 

binary, we follow Tolkoff et al. (2017) in adapting the latent-liability model of Cybis 

et al. (2015) to the latent factor model (see SI Section 11). We use the i.i.d. prior 

with orthogonality constraint, and our model selection procedure, indeed, identifies two 

factors. We present our results in Figure 3. The first factor captures patterns differentiating 

hummingbird-pollinated plants from hawk moth-pollinated plants, while the second factor 

appears to separate the bumblebee pollinated flowers from the other two pollination 

syndromes. Note that in Figure 3A, the first factor falls along a relatively uniform 

continuum, while the second factor has a clear out-group consisting of the bumblebee-

pollinated plants. While only two taxa are coded as being pollinated by both hummingbirds 

and hawk moths, this suggests that non-bumblebee Aquilegia pollination strategies may 

lie on a continuum rather than strict a hawk moth/hummingbird dichotomy, and it is 

possible that many of the plants listed as having a single pollinator in reality attract both 

hummingbirds and hawk moths.

6.2 Yeast Domestication

The brewer’s yeast Saccharomyces cerevisiae is essential to a variety of industrial 

applications due to its ability to convert sugars into ethanol, carbon dioxide and aroma 

compounds. In addition to its well-known role in the production of fermented food and 

beverages, it also plays a key role in the production of of bio-fuels and serves as model 

organism for basic biological research. Industrial strains within this species adapted to thrive 

within specialized environments and can withstand stress conditions often suited to the 

specific industrial niche they evolved in, such as ethanol, osmotic, acidic and temperature 

stresses.

Recent work by Gallone et al. (2016) and Gallone et al. (2019) uses phylogenetic methods 

to study the domestication of S. cerevisiae within industrial environments. To elucidate the 

effects of domestication on yeast phenotypes, Gallone et al. (2016) sequence and phenotype 

154 strains of industrial and wild S. cerevisiae. The 82 phenotypes include numerous 

measurements of growth rates under varying environmental and nutrient stresses, the levels 

of production of various metabolites and the ability to reproduce sexually.

Domestication in plants and animals is typically characterized by limited reproduction 

outside of domestic contexts, increased yield and decreased tolerance to rare or novel 

environmental stressors (Doebley et al., 2006; Larson and Fuller, 2014). Gallone et al. 

(2016) observe these same patterns in the yeast strains they study, with additional niche-

specific patterns of covariation. While their analysis examines the specific hypotheses above, 

they do not employ a data-generative model of phenotypic evolution capable of studying 

broad changes across all measured phenotypes.

The phylogenetic latent factor model, however, is ideally suited for such a task. We first 

infer a phylogenetic tree for the 154 phenotyped strains using the 2.8 megabase DNA 

sequence alignment of Gallone et al. (2016) (see SI Section 12.1). We fix this tree during 

model selection due to the computational costs of inferring the phylogeny. Based on the 

principles discussed in Section 5, we opt for the orthogonality constraint, the orthogonal 

shrinkage prior with forced spacing (α = 0.8) and Kmax = 5. Our model selection procedure 
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yields a final model with five significant factors. For the final analysis we infer the tree 

jointly with factor model parameters using the same tree model in SI Section 12.1. As 

the number of significant factors K is equal to the maximum Kmax, we are confident 

any signal is biologically relevant but recognize we have not completely captured the full 

phenotypic covariance structure. That being said, the final factor captures only 7% (5%−9% 

HPD interval) of the heritable variance and 3% (2%−4%) of the total variance, suggesting 

that adding additional factors will yield diminishing returns at the expense of exacerbating 

identifiability challenges.

We plot the loadings associated with the first factor and the first factor on the tree in Figure 

4 (see SI Figures 2 and 3 for the full results). For the first factor that accounts for 44% (33%

−52%) of the heritable variance, we observe a clear separation between strains in the Beer 

1 clade and strains isolated from other fermentation processes and from the wild. Notably, 

the domestication of beer strains in this clade led to an impaired sexual cycle as observed 

in the reduced sporulation efficiency and spore viability. This loss of a functional sexual 

cycle is paired with the additional loss of tolerance to environment and nutrient stresses 

generally. These stresses are not encountered during continuous growth in the nutrient-rich 

wort medium. The higher tolerance to high temperature outside of Beer 1 might reflect 

other more cryptic specializations of non-Beer clade 1 strains selected for different industrial 

processes (e.g. bioethanol or cocoa fermentation). Beyond these general patterns, we also 

note specific traits selected for in the Beer 1 clade. For example: strains within this clade 

do not produce 4-vinyl guaiacol (4-VG), a renown off-flavor in beer that is less relevant to 

other industrial niches. Additionally, the first factor in this clade is associated with efficient 

utilization of maltotriose, an important carbon source in beer wort but rarely found in high 

concentrations in natural environments. These results overall recapitulate one of the main 

findings of Gallone et al. (2016): the transition from complex and variable natural niches to 

the stable, nutrient-rich, beer medium favored certain adaptations (e.g. efficient utilization 

of maltotriose) and accentuation of certain traits (lost of beer off-flavours) at the cost of 

becoming sub-optimal for survival in the wild.

We emphasize that in this dataset there are different domestication trajectories targeted to 

very diverse industrial processes, and the life histories of the different clades took separate 

paths that the additional factors likely capture.

6.3 Mammalian Life History

Life history strategies vary greatly across the tree of life. Generally speaking, organisms 

exist along a spectrum between fast-reproducing species that produce many offspring with 

little investment into any single child and slow-reproducing species that invest relatively 

great time and energy into each of their (comparatively fewer) offspring (Pianka, 1970). 

While allometric (size-dependent) constraints clearly influence these life history strategies 

(Boukal et al., 2014), pace-of-life theory predicts size-independent life-history variation 

as a major driver of phenotypic covariation (Reynolds, 2003; Réale et al., 2010). Much 

work has been done evaluating these hypotheses across numerous taxonomic groups (see 

Blackburn, 1991; Bielby et al., 2007; Salguro-Gómez, 2017), but most studies are limited 
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by methodologies that require complete data and scale poorly to very large trees and many 

traits.

We explore the evolution of mammalian life history using the PanTHERIA ecological 

database (Jones et al., 2009). We select a sub-set of this data including body mass and 10 

life history traits for the 3,691 species with at least one non-missing observation. While 

Hassler et al. (2020) explore a similar subset of the PanTHERIA data using a multivariate 

Brownian diffusion (MBD) model, the MBD model cannot partition the covariance structure 

into size-dependent and size-independent components.

PFA, however, is ideally suited to this task as we can structure the loadings matrix a priori to 

reveal these relationships. Specifically, we apply the hybrid constraint introduced in Section 

5.1 where elements l21, …, lK1 are fixed to zero, forcing body mass to load only onto the 

first factor. To avoid ordering the other life-history traits, we assume that the sub-matrix 

consisting of rows 2, …, K and columns 2, …, P is orthogonal (which we enforce via 

post-processing). We use the fixed tree of Fritz et al. (2009), which we prune to include only 

the 3,691 taxa for which we have trait data. We perform model selection assuming Kmax 

= 5, with the optimal model having K = 5. However, the first three factors explain 85% of 

the heritable variance (with the last factor explaining only 4%), suggesting that K = 5 is 

sufficient to capture the major patterns of variation in mammalian life-history evolution. We 

plot our results in Figure 5.

Consistent with the Hassler et al. (2020) analysis, body size is clearly associated with the 

“slow” life history strategy (i.e. smaller and less frequent litters, longer lives). Notably, 

this allometric factor is not the dominant factor and explains only 16% (14%−18%) of the 

heritable variance. The second factor, however, explains 46% (42%−51%) of this variance 

and clearly captures a size-independent fast-slow life history axis, suggesting that size-

independent life-history strategies play a major role in mammalian evolution. As evident in 

Figure 5, this primary life-history axis (factor 2) varies independently of the allometric one 

(factor 1) with examples of large/slow (cetaceans), large/fast (lagomorphs), small/slow (bats) 

and small/fast (rodents) taxonomic groups. This primary life-history factor is well-conserved 

across the phylogenetic tree, with large taxonomic groups sharing life-history strategies.

Factors 3, 4 and 5 explain comparatively less of the heritable variance (23%, 11% and 

4% respectively). Factors 3 and 4 appear to capture trade-offs between litter size and litter 

frequency, while the 5th factor primarily captures a negative relationship between weaning 

age and gestation length and is strongly expressed in monotremes and marsupials that 

employ different reproductive strategies than placental mammals.

6.4 New World Monkey Cranial Morphology

While much effort has been devoted to studying the evolution of primate brain size, 

relatively few studies have focused on understanding diversity in brain morphology or 

shape. Notable exceptions to this trend include Aristide et al. (2016) and Sansalone et al. 

(2020). Here we re-analyze the data presented in Aristide et al. (2016), that consist of 

399 endocranial landmarks in 3-dimensional Euclidean space (standardized by generalized 

Procrustes analysis) for 48 species of New World monkey (NWM). While Aristide et al. 
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(2016) perform principal component analysis on the Procrustes coordinates and use the 

principal component scores as traits in a larger evolutionary analysis, this procedure lacks a 

complete data-generative statistical model that explicitly accounts for uncertainty or noise in 

the shape data.

We simultaneously infer the phylogeny with the PFA parameters using DNA sequence 

alignments from Aristide et al. (2015) (see SI Section 12.2 for details). Preliminary results 

suggest 1) optimal predictive performance requires a very large number of factors (> 20), 

which is unsurprising given the complexity of this data set, and 2) identifiability poses 

an unusually great challenge due to the “small-N big-P” nature of the data. As such, we 

settle on a 3-factor model with orthogonal shrinkage prior and strong shrinkage to maximize 

identifiability. To maintain differences in scale between traits, we do not re-scale on a 

per-trait basis but rather divide all traits by the maximum per-trait standard deviation.

We plot the influence of each factor on brain shape and the evolution of these factors on the 

tree in Figure 6. These three factors capture similar patterns of variation as the first three 

principal components in Aristide et al. (2016), who identify several ecological processes 

associated with the evolution of these principal components. As the latent factor model can 

capture uncertainty that PCA cannot, we are eager to re-evaluate these relationships via a 

more structured latent factor model that directly models the relationship between the brain 

shape factors and ecological phenotypes such as social structure or diet. While preliminary 

results suggest that the first factor is correlated with relative brain volume (i.e. brain volume 

divided by body mass) and social group size and that the second factor is correlated with 

body mass and absolute brain volume, we leave this more structured analysis as future work.

7 Discussion

We develop a practical and scalable analysis plan requiring minimal user decisions enabled 

by computationally innovative inference procedures. Previously, researchers performing 

phylogenetic factor analysis were limited by computational constraints and had to determine 

a priori the ordering of the traits and optimal number of factors. These computational 

and modeling advances are not independent but rather complement each other. Our default 

model selection procedure requires 26 individual MCMC chain simulations (5-fold cross 

validation with 5 sets of meta-parameters plus the final run). Such an analysis would be 

intractable for all but the smallest data sets using existing inference techniques. However, 

our new inference procedures take only a few hours to run all 26 simulations for even 

the largest data sets we analyze. Additionally, we have made these tools both flexible 

and accessible with the Julia package PhylogeneticFactorAnalysis.jl, which assembles and 

runs all BEAST input files, automatically performs model selection, plots the results 

and performs basic quality control. Our implementation allows researchers to focus on 

big-picture modeling decisions and leave low-level implementation details to the software.

Limitations of this work that we plan to address in the future include the following. First, 

while we can accommodate discrete phenotypes through the latent probit model of Cybis et 

al. (2015) (see SI Section 11), we notice both in our analysis and Tolkoff et al. (2017) that 

the discrete parameters tend to have a far higher influence than their continuous counterparts 
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(i.e. the loadings entries associated with the discrete traits have greater magnitude than those 

associated with continuous traits). This is likely due to the fact that we control the variance 

of the latent liabilities indirectly by fixing the discrete trait precisions Λ to a constant as do 

Tolkoff et al. (2017). It is possible that the (potentially) inflated significance of these discrete 

traits can influence the loadings structure in unexpected ways, and we seek an alternative 

solution that places the continuous and discrete traits on more equal footing.

Second, there may be cases where label switching persists despite our efforts to induce 

identifiability. Additional post-processing procedures developed for Bayesian mixture 

models (Rodíguez and Walker, 2014) or multidimensional scaling (Okada and Mayekawa, 

2018) may serve as solutions to these unusually convolved posteriors. While preliminary 

work suggests that these methods can efficiently identify and deconvolve individual modes 

of multi-modal posteriors, we are concerned about their potential to identify non-existent 

signal in the data and believe a careful analysis of their properties is warranted.

Additionally, as proposed in Section 6.4, this work can be readily extended to incorporate 

parallel evolutionary models for different suites of traits. In this framework, we could 

simultaneously perform factor analysis on a high-dimensional trait (e.g. brain shape) 

and infer the evolutionary correlation between the latent factors and other phenotypes 

of interest (e.g. brain size, diet, group size) using an MBD model. Note that we could 

study relationships between multiple, distinct high-dimensional phenotypes as well from 

structural equation modeling paradigm (Lee and Song, 2012). While likelihood calculations 

under such models are straightforward given this and previous work, inferring the joint 

evolutionary covariance matrix requires additional inference machinery that we leave as 

future work.

Finally, while we focus on the multivariate Brownian diffusion model of phenotypic 

evolution for simplicity, all inference machinery can be readily adapted to other Gaussian 

processes, such as the multivariate Ornstein–Uhlenbeck (OU) process (Hansen, 1997). 

Indeed, the OU model and inference procedure of Bastide et al. (2018) have already been 

implemented in BEAST and are easily integrated with the methods presented in this paper.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Data Availability

The data and code necessary for reproducing our analyses are available in the GitHub 

repository https://github.com/suchard-group/PhylogeneticFactorAnalysis and archived at 

Hassler et al. (2022b, https://doi.org/10.5281/zenodo.6617733). The Julia package 

PhylogeneticFactorAnalysis.jl is registered under the Julia General registry. Source code 

for PhylogeneticFactorAnalysis.jl is available on GitHub at https://github.com/gabehassler/

PhylogeneticFactorAnalysis.jl and archived at Hassler et al. (2022a, https://doi.org/10.5281/

zenodo.6617738).
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Figure 1: 
Timing comparison between inference regimes. We run three MCMC chain simulations 

for each combination of N (the number of taxa), P (the number of traits), K (the number 

of factors) and sampler and present the average minimum ESS per second for each. The 

“conditional Gibbs” sampler refers to the methods used by Tolkoff et al. (2017). The “joint 

Gibbs”, “HMC” and “orthogonal” samplers refer to the methods presented in Sections 3.1.1, 

3.1.2 and 3.2 respectively. Our joint Gibbs and HMC samplers are an order of magnitude 

faster than the conditional Gibbs sampler with relatively few taxa (N = 50) but more than 

two orders of magnitude faster with many taxa (N = 1000). The orthogonal sampler is 

slower than the joint Gibbs and HMC samplers (and even the conditional Gibbs in the case 

of small-N, big-P) but scales well to large trees. Values are available in SI Table 1.
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Figure 2: 
Trace plots of relevant parameters from analysis in Section 6.2. Estimates under the 

i.i.d. Gaussian prior are characteristic of poorly-identifiable conditions (the scales σ are 

overlapping resulting in label switching / row-wise convolution of the loadings). The 

shrinkage prior with forced spacing (α = 0.8) largely eliminates this problem.
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Figure 3: 
Aquilegia results. A) Factor values colored by pollinator(s) for each species of Aquilegia. 

Large, solid points represent posterior means for each species. Small, transparent points 

represent a random sample from the posterior distribution of the factors. B) Posterior 

summary of the loadings matrix. Dots represent posterior means while bars cover the 95% 

highest posterior density (HPD) interval. Colors represent the posterior probability that 

the parameter is greater than 0. While the second factor clearly separates the bumblebee-

pollinated plants from the others, the first factor captures a more gradual transition from 

hummingbird pollination to hawk moth pollination.
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Figure 4: 
Results associated with first factor in yeast analysis. A) Posterior summary of first row of 

the loadings of 5-factor PFA on yeast data set. This first factor primarily captures differences 

associated with tolerance to environment and nutrient stress as well as reproductive ability. 

See Figure 3B for description of plot elements. B) The first factor plotted on yeast 

phylogeny with strain origin. Stars at the tips indicate mosaic strains as identified by 

Gallone et al. (2016). Low factor values in the Beer 1 clade indicate poor tolerance of 

environmental and nutrient stress generally and a lower capacity to reproduce sexually, all of 

which are signs of domestication. The Beer 1 clade includes strains from Belgium, Germany, 

Britain and the United States, and Gallone et al. (2016) estimate its origin ca. 1590 AD 
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that coincides with the transition from home-brewing to large-scale beer production across 

Europe.
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Figure 5: 
Mammalian life history results. A) Posterior summary of the loadings. Loadings of body 

size onto factors 2–5 is set to 0 a priori. See Figure 3B for detailed description of 

figure elements. The first factor captures allometric relationships (by design) and explains 

only 16% of the heritable variance, while the remaining factors capture size-independent 

relationships. The second factor, accounting for the plurality (46%) of the heritable variance, 

captures a fast-slow life history axis. Remaining factors capture more specific strategies (e.g. 

factors three and four appear to support the energy trade-off between litter size and litter 
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frequency). This suggests that body size is not the main driver of life history evolution and 

that natural selection primarily acts on life history directly. B) Evolution of factors along 

the mammalian phylogeny. Most factors are strongly phylogenetically conserved throughout 

the tree, with large clades sharing similar factor values. There is relatively little correlation 

between the the first and second factors, with clades of small, slow species (e.g. bats) and 

large, fast species (e.g. lagomorphs).
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Figure 6: 
A) Influence of each factor on New World monkey brain shape. B) Brain shape factors 

plotted along New World monkey phylogeny. The coefficients of the first three principal 

components (PCs) from Aristide et al. (2016) are highly correlated with the corresponding 

rows of the loadings matrix. While we do not explore such an analysis here, Aristide et al. 

(2016) provide evidence of association of PC1 (strongly correlated with our first factor) with 

relative brain size and PC2 (strongly correlated with our second factor) with diet.
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Table 1:

Example of how the ordering of three hypothetical traits (A, B and C) influences results in a simple two-factor 

model under the assumptions made by Tolkoff et al. (2017).

trait order 1: A, B, C trait order 2: B, A, C

first factor captures relationships of trait A with traits B and C captures relationships of trait B with traits A and C

second factor captures relationships between traits B and C independent of 
A

captures relationships between traits A and C independent of 
B
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