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Abstract

Shifts in spatial attention are associated with variations in a band («, 8-14 Hz) activity, specifically in interhemi-
spheric imbalance. The underlying mechanism is attributed to local a-synchronization, which regulates local
inhibition of neural excitability, and frontoparietal synchronization reflecting long-range communication. The di-
rection-specific nature of this neural correlate brings forward its potential as a control signal in brain-computer
interfaces (BCls). In the present study, we explored whether long-range a-synchronization presents lateralized
patterns dependent on voluntary attention orienting and whether these neural patterns can be picked up at a
single-trial level to provide a control signal for active BCl. We collected electroencephalography (EEG) data
from a cohort of healthy adults (n=10) while performing a covert visuospatial attention (CVSA) task. The data
show a lateralized pattern of a-band phase coupling between frontal and parieto-occipital regions after target
presentation, replicating previous findings. This pattern, however, was not evident during the cue-to-target ori-
enting interval, the ideal time window for BCI. Furthermore, decoding the direction of attention trial-by-trial
from cue-locked synchronization with support vector machines (SVMs) was at chance level. The present find-
ings suggest EEG may not be capable of detecting long-range a-synchronization in attentional orienting on a
single-trial basis and, thus, highlight the limitations of this metric as a reliable signal for BCI control.
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Cognitive neuroscience advances should ideally have a real-world impact, with an obvious avenue for trans-
ference being brain-computer interface (BCI) applications. The hope is to faithfully translate user-generated
brain endogenous states into control signals to actuate devices. A paramount challenge for transfer is to
move from group-level, multitrial average approaches to single-trial level. Here, we evaluated the feasibility
of single-trial estimation of phase synchrony across distant brain regions. Although many studies link atten-
tion to long-range synchrony modulation, this metric has never been used to control BCl. We present a first
attempt of a synchrony-based BCI that, albeit unsuccessful, should help break new ground to map endoge-
\nous attention shifts to real-time control of brain-computer actuated systems. /

ignificance Statement

Introduction interfaces (BCIls) can read out brain activity, extract fea-

A few decades ago, imagining an interface between the  tures from the signal in real-time, and convert them into
human brain and a computer was closer to science fiction ~ outputs for monitoring, controlling devices, or even modify-
than to scientific achievement. Nowadays, brain-computer ~ ing cognitive states (Blankertz et al., 2016). One significant
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challenge of BCls is finding reliable control signals from
brain activity with a sufficiently high signal-to-noise ratio
(SNR) at a trial-by-trial level to allow successful classifica-
tion. Ideally, the Ocurrence of the target brain activity
should depend on endogenous mental states that a user
can control at will. The use of noninvasive, cost-effective,
and light-weight neuroimaging devices can, in turn, facili-
tate transfer to real-life applications. For now, electroence-
phalography (EEG) is the most viable candidate to achieve
real-life BCI.

For example, some EEG-based BCls have used motor
imagery as a control signal (e.g., imagined right/left-limb
movement; Padfield et al., 2019), whereas others have used
neural correlates of covert visuospatial attention (CVSA; van
Gerven and Jensen, 2009; Treder et al., 2011; Tonin et al.,
2013). Here, we will concentrate on the latter. In human be-
havior, CVSA is used to direct processing resources to rele-
vant locations in the environment while disengaging from
irrelevant locations (Pashler, 1999; Foster and Awh, 2019).
CVSA can be manipulated through a Posner cueing protocol
(Posner, 1980), which shows a robust effect on behavioral
performance: higher accuracy and faster reaction times for
targets appearing at the cued (attended) location compared
with targets appearing in un-cued, putatively unattended lo-
cations (Posner, 1980).

Shifts in CVSA are associated with changes in oscilla-
tory activity in the @ band («, 8-14 Hz) at parieto-occipital
regions (Klimesch, 1999; Foster et al., 2017). Typically,
a-power shows an interhemispheric imbalance when atten-
tion is covertly oriented to either the left or right visual field,
revealing its potential as a control signal for BCl implemen-
tations (Thut et al., 2006; Rihs et al., 2007; for a review, see
Astrand et al., 2014b). Interhemispheric a-power imbalance
corresponds to a late process in CSVA shifts (van Diepen et
al., 2019). First, cueing information is integrated through
sensory pathways in a bottom-up fashion, reaching higher
visual areas in the parietal cortex [e.g., intraparietal sulcus
(IPS)] and eventually frontal regions [e.g., frontal eye fields
(FEFs); Petersen and Posner, 2012]. From there on, top-
down modulation shifts attention to the corresponding
hemifield, where it is maintained during target anticipation
(Simpson et al., 2011). The mechanism involved in this top-
down modulation is thought to involve long-range a-syn-
chronization between the frontal and posterior cortex,
which eventually leads to classical interhemispheric im-
balances in a-power observed in the visual cortex (Sauseng
et al., 2005; Doesburg et al., 2009; Lobier et al., 2018).
Long-range synchronization is a potential mechanism to
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increase the fidelity and effectiveness of communication
throughout the brain (Clayton et al., 2018) among occipital,
parietal, and frontal regions (Sadaghiani and Kleinschmidt,
2016). Synchronizing excitability cycles between distant
neural populations increases the likelihood of spikes
from one region discharging postsynaptic potentials dur-
ing a specific (excitable) phase of the other (Fries, 2015).
Despite the evidence supporting this model (Buschman
and Miller, 2007; Cardin et al., 2009), there is still debate
on its temporal dynamics, lateralization patterns and in-
dividual-level variability.

Despite the evidence of links between long-range a-syn-
chronization and behavioral performance in group-level
analyses (Sauseng et al.,, 2005; Doesburg et al., 2009,
2016), BCI protocols based on endogenous attention ori-
enting have only used a-power as a control signal. In our
study, we attempt to replicate a previously demonstrated
effect in attention orienting involving long-range a-syn-
chronization to assess its feasibility in BCI paradigms.
The original publication (Sauseng et al., 2005) found signifi-
cant increases in contralateral over ipsilateral connectivity
around the time of target appearance. We hypothesized
that, if attention-driven connectivity emerged in target-cen-
tered time windows, it may also be present in the cue-to-
target interval, where participants are putatively shifting
attention toward the cued side. Further, this cue-to-target
time window would enable the use of long-range a-syn-
chronization in BCls based on purely endogenous brain
signals. Therefore, we will test whether such contralateral
and ipsilateral patterns in a-synchronization emerge in sin-
gle-trial dynamics with sufficient signal strength to make
them a reliable control signal. To do so, we used an EEG
dataset from a lateralized endogenous spatial attention
task to replicate the group-level effects found by Sauseng
et al. (2005), to explore the cue-to-target interval, and to
classify the direction of attention at the single-trial level
using long-range a-phase synchronization as proof of con-
cept for transference to BCI.

Materials and Methods

Participants

We used data from a previous, unrelated study (Torralba
et al.,, 2016). The dataset consisted of 15 participants
(mean age =22, SD =3; 7 female). All participants provided
informed consent and had a normal or corrected-to-nor-
mal vision. The study was run in accordance with the
Declaration of Helsinki and the experimental protocol
approved by the local ethics committee CEIC Parc de
Salut Mar (Barcelona, Spain).

Task

Before the experimental session, the participant’s EEG
activity was recorded during a 5-min recording at rest
with eyes closed to extract the individual « frequency
(IAF) used in the analyses. In the experimental session,
participants performed a modified version of the Posner
cueing task (see Fig. 1A). The trial started with the onset
of a central fixation cross, placed between two placehold-
ers located 20° of visual angle left and right off-center,
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Figure 1. Experimental design and response rates. A, Schematic trial representation. A black fixation cross in the middle of the
screen and two squares (to-be-attended locations) at the bottom left, and bottom right positions were displayed continuously. At
the beginning of each trial, participants were instructed to gaze at the fixation cross. After 200 ms (fixation period), an auditory cue
appeared for 100 ms (cue period) indicating which hemifields participants must attend (75% validity). After a jittered interstimulus in-
terval of 2000 = 500 ms, a target appeared at the targeted location during 50 ms (target period). Participants had to report first if
they had seen the target (detection task), and after 1000 ms, the location of the target (left/right discrimination task) during 1500 ms.
An intertrial interval (ITl) of 1000 ms followed, and a new trial began (adapted from Torralba et al., 2016). B, Response rates for de-
tected and discriminated trials (HITS) related to attended and unattended trials. Black lines over violin plots represent the mean
value. Both overall performance (top) and right/left hemifields (bottom) are shown. White dots indicate individual values (adapted

from Torralba et al., 2016).

vertically shifted 20° of visual angle below the fixation
cross (see Fig. 1A). After a 200-ms fixation period, a cen-
tral auditory cue (100-ms duration) indicated the likely tar-
get location through either high pitch (2000Hz) or low
pitch (500 Hz) tones, the mapping was randomized across
subjects. Participants should covertly attend to the indi-
cated side, without moving their eyes, during a jittered
interstimulus interval (ISI; 2000 = 500 ms). The use of a jit-
tered ISI was employed to avoid participants using auto-
matic temporal attention to solve the task. Next, the
target (a Gabor grating tilted 45° left or right, 50-ms dura-
tion) appeared briefly inside one of the placeholders, with
75% validity regarding the cued location. The grating con-
trast was adjusted individually, as described below. A
noise pattern with an equal overall luminance as the target
was presented at the alternative placeholder, with the
exact timings as the target. Participants were asked first
to indicate if they had detected the target (yes/no detec-
tion) and, subsequently, the target’s tilt (left/right dis-
crimination). Both answers were made by keypress, in an
un-speeded fashion, and with response mapping (top-
bottom) orthogonal to the attention manipulation and
varied from trial to trial. A trial was considered correctly
answered only when participants both detected the stimulus
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and discriminated the hemifield in which it was presented. An
intertrial interval of 1000ms followed the response, and a
new trial began. Unless otherwise noted, the EEG analyses
were done on validly cued trials that were responded cor-
rectly. On average, 289.9 = 11.3 trials from each participant
were employed for the EEG analysis.

The Gabor gratings used as stimuli were 0.002 cycles
per degree, with a size of 3.35°, embedded in white noise.
The contrast was adjusted individually using a preliminary
threshold titration procedure in which the Gabor contrast
thresholds for both hemifields (left and right) were inde-
pendently adjusted to a 70% detection rate when cued
(i.e., in the attended location). Stimuli were presented on a
21-inch CRT screen with a refresh rate of 100Hz and a
resolution of 1024 x 768 pixels. The experiment was
implemented in MATLAB R2015b (MATLAB, RRID: SCR_
001622) using the Psychophysics Toolbox (Psychophysics
Toolbox, RRID: SCR_002881).

EEG recording and preprocessing

EEG recordings were obtained from 64 Ag/AgCl elec-
trodes positioned according to the 10-10 system with
AFz as ground and nose tip as reference. Impedance was
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kept below 10 kQ. The employed system was an active
actiCHAmp EEG amplifier from Brain Products. The sig-
nal was sampled at 500 Hz and processed in MATLAB
2020 and 2015 (MATLAB, RRID: SCR_001622) using
custom functions and the FieldTrip toolbox (FieldTrip,
RRID: SCR_004849).

Manual artifact rejection was applied to discard trials
where any EOG components had an amplitude higher
than 50 pV. Defective channels were repaired using neigh-
bours calculated by triangulation and splines for interpolat-
ing channel data. Then, the data were demeaned and notch
filtered at 50 Hz to exclude line noise. Next, fifth-order high-
pass and sixteenth-order low-pass |IR Butterworth filters
were employed to limit the signal between 0.16 and 45Hz
(Sauseng et al., 2005). The filtering was done forward and
backwards (two-pass), which resulted in zero phase lag.

Time-frequency analysis

We performed long-range synchronization analyses in
two time windows. The first was time-locked to the target
onset (target-locked) to replicate Sauseng et al. (2005)
methods and validate our analysis pipeline. The second
was time-locked to the cue onset (cue-locked) to estimate
long-range a-phase synchronization during covert visuo-
spatial attention shifts.

Following Sauseng et al. (2005), for the target-locked
analysis, we used two windows of 200ms: a pretarget
(—200-0 ms) and a post-target window (200-400 ms). The
latter excludes the interval 0-200 ms, most affected by
the phase resetting effect of target presentation. For the
cue-locked analysis, we used the cue-to-target time win-
dow between 500 and 1500 ms postcue and divided it
into five consecutive and nonoverlapping 200-ms win-
dows. By analysing from 500 ms onwards we avoid the
event-related potential (ERP) caused by cue presentation
and allow endogenous attention shift to build up, a pro-
cess which takes a few hundreds of milliseconds (Foxe
and Snyder, 2011). The cue-locked analysis period ends
at 1500 ms, which was the minimum possible duration of
the cue-to-target interval (duration of 2000 = 500 ms; see
Materials and Methods). All epoched data were mirror-re-
flected to avoid edge artefacts (Cohen, 2014) when per-
forming the time-frequency analysis. Afterwards, data
were trimmed, and reflected edges were removed.

We computed the Fourier coefficients using five-cycle
Morlet wavelets (Grossmann and Morlet, 1984) with 16 loga-
rithmically spaced frequencies ranging from 2.6 to 42 Hz.
For the analysis aimed at replicating Sauseng’s results, we
only used wavelets within the upper a-band (9.54-14.31 Hz;
Sauseng et al., 2005), whereas, for the exploratory analysis,
we used the whole frequency range (i.e., 2.6-42 Hz) to ex-
plore further long-range a-phase synchronization in other
frequency bands beyond the IAF.

Connectivity measures

Three clusters of electrodes of interest (EOI) were de-
fined for the connectivity analyses, mimicking Sauseng et
al. (2005): A fronto-medial (FM) EOI cluster (Fz, FC1, FC2)
and two symmetric posterior clusters located either at the
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parietal left (PL) region (P3, PO3, PO1) or the parietal right
(PR) region (P4, PO4, PO2). To infer connectivity between
each parietal EOI cluster and the FM location, we used
phase locking value (PLV; Lachaux et al., 1999). This met-
ric estimates the consistency of phase differences be-
tween two locations across multiple trials and is not
affected by power differences. Mathematically, the PLV is
expressed as the absolute value of the average complex
unit-length phase differences:

n

PLV(x,y) = ‘%Ze’“’*“”“’”k” :

k=1

M

where n corresponds to the total number of trials indexed
by k and ¢,, ¢, correspond to the phases at electrodes x
and y, respectively. PLV was calculated according to
Equation 1 using the phases for every combination of indi-
vidual electrode pairs of the FM-PR and FM-PL networks.
Then, these values were averaged, resulting in a time se-
ries of PLV FM-PR and FM-PL networks for each of the
frequencies of interest and condition (attended left and at-
tended right) trials. Subsequently, the PLV time series
were collapsed as either ipsilateral (FM-PL network and
attend left; FM-PR and attend right) or contralateral (FM-
PR network and attend left; FM-PL and attend right).
Therefore, for each participant and frequency of interest,
two time series of PLV were obtained (contralateral and
ipsilateral PLV).

Classification

The trial classification was performed using support
vector machines (SVMs). We selected FM-PR and FM-PL
connectivity as input to the SVM. Attended right and at-
tended left labels for each trial were provided as ground
truth for the algorithm. The main goal of the classifier was
to infer, on each trial, whether a participant was attending
to the left or right hemifield, based on the long-range
a-phase synchronization in the left and right frontoparietal
networks. Note that PLV is computed across trials, and
SVM aims to classify on a single-trial basis, so PLV was
also calculated across time points (Cohen, 2015). As a
validation step, we repeated the target-locked analysis
employing this metric (i.e., cross-time PLV) before pro-
ceeding with the cue-locked classification attempt.

We divided the cue-locked interval ranging from 500 to
1500 ms in bins of 200 ms, yielding five values for FM-PR
connectivity and five for FM-PL connectivity. The resulting
ten values were used as input to the SVM to perform the
optimization and classification of the trials. Note that for
the classification, we used the data from the participant
that achieved a significant difference in PLV values be-
tween parietal left and right EQOI clusters in all cue-to-tar-
get windows (Participant (P)10). Trials were split into a
training (80%) and testing (20%) set of trials to avoid over-
fitting. Then, the training set was subdivided into sub-
training (80%) and validation sets (20%).

Our initial approach was to use a linear kernel for the
classification. However, after evaluating the option through
cross-validation of the validation set and obtaining a
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negative result (i.e., classification was not better than
chance), we decided to use a Gaussian kernel (i.e., Radial
Basis Function). In order to select the most suitable and ef-
ficient values for classifying attended left and attended
right trials from the validation set, we optimized the para-
metric space of the SVM. This comprised margin and vy pa-
rameters, which were explored in logarithmic steps from
10~® to 10° for both constants and every fold.

Interhemispheric power imbalance analysis

Besides calculating the long-range a-phase coupling,
we also computed the interhemispheric a-power imbal-
ance at parietal regions, both at the individual and at
group-level, as a reality check. For this reality check, we
used Thut et al. (2006) for guidance to choose the electro-
des of interest. First, we performed an independent com-
ponent analysis (ICA, Makeig et al., 1995), during which
3 = 1 components were discarded on average per partici-
pant, based on a visual inspection, the components’ to-
pography, and time course. The rejected components
comprised both ocular and motor artifacts. Please note that
ICA was only performed for the power analysis, not for the
connectivity pipeline, to replicate the exact preprocessing as
seen previously (Sauseng et al., 2005) and, importantly, be-
cause phase of electrophysiological recordings is affected
when ICA components are rejected (Thatcher et al., 2020).

The frequency of interest used in lateralization analyses
was adjusted for each participant depending on the indi-
vidual « frequency (IAF) extracted from the 5-min record-
ing (eyes closed) previous to the experiment (see above).
The IAF was determined based on the presence of a sin-
gle peak (i.e., a local maximum) within the considered fre-
quency band of interest (5-15 Hz) on the power spectrum
density (PSD). A spectrogram was extracted for each pari-
eto-occipital electrode (P7, P5, P3, P1, Pz, P2, P4, P6,
P8, PO3, PO4, POz, PO9, PO10, O1, Oz, O2) using the
Welch method (segments of 1000 ms with a 10% overlap,
a Hanning taper to avoid spectral leakage and 0.25-Hz
frequency resolution). The power spectrum was averaged
across electrodes for each participant and normalized by
the mean power from 1 to 40 Hz (Vigué-Guix et al., 2022).

To extract the a-power during the task, we selected the
epoch from —1.5 to 3 s in cue-locked trials by convolving
the EEG signal with a set of complex Morlet wavelets
(Grossmann and Morlet, 1984) of five cycles (ng). The fre-
quencies of the wavelets ranged from IAF = 1 Hz, in 1-Hz
steps. For instance, an IAF peak of 10Hz would have a
bandwidth ranging from 8.33 to 11.67 Hz. Power was ex-
tracted from two symmetric regions of interest precisely
in PR (P6, P8, PO4, 0O2) and PL locations (P5, P7, POS,
0O1) to replicate as closely as possible the original EOI
electrodes used previously (Thut et al., 2006). Power im-
balance was computed according to the formula:

a(PREOI) — o(PLEOI)

Lateralization Index = meanofa(PLEOI + PREOI)’

@
where a (PL EOI) and « (PR EOI) are the average of
a-power over left and right electrodes of interest, respec-
tively. Equation 2 leads to smaller (negative) values where
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a-activity is more prominent over the left hemisphere than
the right [« (PL EOI) > « (PR EOI)] and to larger (positive)
values for the opposite pattern [« (PL EOIl) < « (PR EOQI)].
According to theory and previous findings, values of LI re-
flecting attention directed to the right hemifield should be
larger than LI values reflecting leftward directed attention.

Finally, we also checked whether there was any rela-
tionship between the a-power imbalance and the contra-
ipsi difference of PLV for each attended location. We ex-
plored the correlations between a-lateralization indexes
and the effect in PLV contra-ipsi differences at the pretar-
get (—200-0ms) and post-target (200-400 ms) windows
using Pearson correlations.

Statistical analyses

A one-tailed nonparametric Monte Carlo permutation test
was computed to determine significant differences in PLV
between networks for each attended location (Mostame et
al., 2019). For each participant, the attended right or left la-
bels were randomly assigned to trials, and surrogate PLVs
were calculated from the resulting dataset. This process
was repeated 10000 times (iterations) to create a null distri-
bution of PLV values. The obtained p-value corresponded
to the proportion of surrogate iterations with a contra-ipsi
difference larger than the actual measured value (one-tailed
test). This process was performed on every time window
defined in the previous section. For the group analysis, the
procedure was equivalent, but surrogate PLV distributions
were averaged across participants before the statistical
test.

For the statistical assessment of the a-power imbal-
ance over time between attended left and attended right
trials, we performed a cluster-based permutation test pro-
cedure (100,000 randomizations) for each participant and
at the group-level (one-tailed permutation test; Maris and
Oostenveld, 2007; Meyer et al., 2021). We assessed that
lateralization indexes for attended right and attended left
trials were two significantly different distributions by ap-
plying a one-tailed t test (independent samples) with
a-level = 0.05 for each participant. At group-level, we per-
formed a one-tailed paired t test with the mean lateraliza-
tion indexes for attended right and attended left trials for
each participant with a-level =0.05. Correlations between
a-power imbalance and the contra-ipsi difference of PLV
were corrected for multiple comparisons by applying the
false discovery rate (FDR) of Benjamini and Hochberg
(Benjamini and Hochberg, 1995).

Results

Behavioral results

Five participants who presented equivalent detection
and discrimination rates for stimuli appearing at cued and
un-cued locations were discarded from the analysis, leav-
ing a total of 10 participants. As expected, behavioral re-
sults showed that the detection rate calculated based on
both the detection response (yes/no) and the discrimina-
tion response (left/right; chance level at 0.25) was superior
for cued (attended) trials 0.68 £ SEM=0.02 compared
with un-cued (unattended) ones 0.46 = 0.04 (see Fig. 1B).
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The pattern on each hemifield was equivalent: on the left
hemifield attended = 0.68 = 0.03 and unattended =0.47 =
0.03; for the right hemifield attended=0.67 = 0.03, and
unattended = 0.44 = 0.06. We used one tailed t tests to as-
sess that performance was above chance level (25%) for
each of the conditions (attended and unattended) and hemi-
fields separately: attended left trials (0.68 = 0.11, p-value =
2 x 1077, fg = 12.593), attended right trials (0.67 = 0.11,
p-value=3 x 1077, tg = 12.226), unattended left trials
(0.47 = 0.08, p-value=5 x 10", tg = 8.876) and unattended
right trials (0.44 = 0.20, p-value =0.06, tg = 3.117).

Target-locked long-range «-synchrony

Here, we describe the results from the target-locked
analysis, conducted to reproduce Sauseng et al. (2005)’s
findings. Long-range synchrony was estimated using
PLV between frontal EOl and each of two lateralized pari-
etal EOI. Figure 2 shows the group-level connectivity
analysis of the upper a-band (9.54-14.31Hz). Phase
coupling is depicted as the mean across the pretarget
window (—200-0 s) and the post-target window (200-
400ms), as well the time course (from to —500 to
500 ms). Regarding the left frontoparietal network (Fig.
2A, left), PLV was consistently higher when attention
was directed rightward (contralateral) than leftward (ipsi-
lateral) in both pretarget and post-target windows, although
the PLV difference only reached significance in the
post-target window (p < 0.05). Regarding the right net-
work (Fig. 2A, right), PLV was stronger when attention
was directed leftward (contralateral) than rightward
(ipsilateral) in the post-target window, whereas the pre-
target window does not show this difference. Neither
window, however, emerged as significant. This pattern
generally replicates Sauseng et al. (2005) results, as
indicated by the dashed lines in Figure 2A representing
the mean phase-coupling from their study. Lower pan-
els in Figure 2A display the temporal course of phase
coupling to provide a time-resolved illustration of the
phase-coupling effect. For the attended right condi-
tion, PLV values in the left network should be higher
than PLV values for the attended left. The inverse pat-
tern should hold in the right network. Moreover, Figure
2B presents the PLV with side of attention collapsed
as contralateral and ipsilateral with respect to the cor-
responding network. Individual PLV values, marked as black
dotted lines, exhibit a consistent contralateral to ipsilateral
increase in the post-target window. Group-level statistical
analysis further showcased a significant difference limited to
this time window (200-400ms, p <0.05). This result
was controlled by avoiding the preprocessing band-
pass filter which may affect phase estimation, and by
computing a Hjorth filter to avoid the effects of volume
conduction (Hjorth, 1975). Both analyses maintained
the significant differences between contralateral and
ipsilateral PLV (p < 0.05).

At individual level, only three out of 10 participants
showed significant contralateral PLV increase (P02,
p <0.01; P05, p<0.01; P07, p<0.01; see Extended
Data Fig. 2-1). The lack of a significant group-level ef-
fects in the pretarget window is consistent with
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individual phase coupling, as a multiple subject pres-
ent a trend in the opposite direction as expected (i.e.,
ipsilateral over contralateral PLV; see Extended Data
Fig. 2-1). We further assessed single-subject synchroni-
zation through the phase linearity measurement (PLM) as
it has been recently reported to be a robust metric for
trial-level connectivity (Baselice et al., 2019). We did not
find any significant effects in any participant (p > 0.05;
see Extended Data Fig. 2-2).

Cue-locked long-range a-synchrony

In the previous section, we replicated the results as pre-
viously shown (Sauseng et al., 2005). The findings from
here onwards correspond to original results to ascertain
whether attention-based long-range connectivity dur-
ing the attention-orienting period could be a reliable
signal for BCI control. We explored the cue-to-target in-
terval before target presentation (500-1500ms after
cue onset). Considering that the cue indicates the hemi-
field to which participants should voluntarily lateralize
attention, differences in contralateral and ipsilateral con-
nectivity may potentially emerge in this time window. So
far, we have seen that attention shifts had significant
consequences on behavior and target processing (post-
target connectivity). At the group level, however, no sig-
nificant difference between contralateral and ipsilateral
connectivity in the upper a-band was found in any of the
five 200-ms time windows considered in the cue-to-tar-
get period (see Fig. 3A). At the individual level, seven
participants had a significant contralateral PLV increase
in at least in one window (see Extended Data Fig. 3-1).
However, only one participant (P10) showed this effect in
all time windows and, furthermore, did not present a
significantly higher contralateral connectivity in pretar-
get and post-target time windows of the target-locked
analysis.

We chose the upper a-band a priori given Sauseng et
al. (2005)’s findings, as well as the effects in the target-
locked analyses from the present dataset. However, we
conducted additional analyses to explore other frequen-
cies (between 2.4 and 42 Hz) in search of differences be-
tween contralateral and ipsilateral PLV (see Fig. 3B).
Values were collapsed as the difference between both
measures (contra-ipsi) and z-scored. Over time, neither
clear trends across frequencies nor apparent increases
were observed in contralateral or ipsilateral connectivity.
Individual results showed the same trend and did not
present relevant PLV patterns in any participant beyond
those from upper a-band findings in P10 (see Extended
Data Fig. 3-2).

Classification

The results are hardly promising in generalizing the use
of long-range connectivity for BCI control. However, BCI
protocols are often very sensitive to individual patterns.
Here, we intended to seek a proof-of-concept, from at
least a single participant. With this goal in mind, we at-
tempted single-trial classification, as either attended right
or attended left, according to cue-locked connectivity
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Figure 2. Target-locked results. A, Target-locked results of the phase-coupling for attended left (light blue) and attended right (dark
blue) in fronto-medial to parietal left (FM-PL) and fronto-medial to parietal right (FM-PR) networks. The lower panels depict the
cross-trial average time course (+ shaded standard error of the mean; SEM) of phase-locking value (PLV) in both conditions (at-
tended left and attended right). Upper panels present the binned violin plots (mean and median) of the pretarget window (—200-
0ms) and the post-target window (200-400 ms); *p < 0.05. B, Target-locked results collapsed as either ipsilateral (FM-PL network
and attended left; FM-PR and attended right) or contralateral (FM-PR network and attended left; FM-PL and attended right). The
lower panel shows the cross-trial average time course (= shaded SEM) of PLV in ipsilateral (light gray) and contralateral (dark gray)
conditions. The upper panel exhibits the distribution of individual PLV with a violin plot, superimposed by the mean and the contra-
lateral to ipsilateral differences between individual PLV; *p < 0.05. Individual results with PLV are found in Extended Data Figure 2-1,
and those with phase linearity measurement (PLM) are found in Extended Data Figure 2-2.

March 2023, 10(3) ENEURO.0203-22.2023 eNeuro.org


https://doi.org/10.1523/ENEURO.0203-22.2023.f2-1
https://doi.org/10.1523/ENEURO.0203-22.2023.f2-2

eMeuro
A

Research Article: Negative Results 8 of 14

|- Contralateral Ipsilateral ~—— Mean

—O— Individual

)

Phase Coupling
w

#»

A

& %

| [ >| I '

05t00.7s 0.7t009s

09to1.1s 1.1t013s 13t01.5s

/\_~/'

4 ' '

—
| | |

0.5 0.7 0.9

v1)
N
)

N w
o o

Frequency (Hz)

-
o

0.5 0.7 0.9

11 1.3
Time (s

(s)
1.1 1.3 1.5

9J00S—Z

Time(s)

Figure 3. Cue-locked results. A, Group-level results of upper-a phase locking value (PLV). Upper panel shows phase coupling for ipsilateral
(light gray) and contralateral (dark gray) sides in time-windows of 200 ms from the cue-locked interval (500-1500 ms after cue presentation).
Lower panel shows mean and standard error of the mean of the PLV values. Individual results are shown in Extended Data Figure 3-1. B,
Exploratory analysis of PLV differences. Group-level temporal evolution of the z-scored difference between contralateral and ipsilateral PLV
for each frequency band (2.4-42Hz with 16 logarithmic steps). Z-score values range from —0.03 to 0.03. Individual results are shown in

Extended Data Figure 3-2.

patterns. We selected the participant (P10) for whom we
found significant connectivity differences in the cue-to-
target time window of the cue-locked analysis. The total
number of trials was 338.

We conducted a validation of cross-time PLV in the tar-
get-locked window to understand whether this metric
could replicate group-level differences between contralat-
eral and ipsilateral networks found through cross-trial
PLV. These results can be seen in Figure 4A. Statistical
analysis showed no significant differences between con-
tralateral and ipsilateral scenarios in either time window.
Individual values were also nonsignificant (see Extended
Data Fig. 4-1). Considering the large parametric land-
scape of SVM implementations, we optimized the y and
margin parameters of a Gaussian kernel (see Fig. 4B).
From a qualitative perspective, no clear maximum valida-
tion accuracy values emerge from the landscape,
although quantitative analysis identified minimum values
of margin and v to be used on the test set in every fold.
The lack of a clear minimum suggests that the model may
be unable to classify individual trials regardless of the
parametric values.

March 2023, 10(3) ENEURO.0203-22.2023

Ten-fold cross-validation was conducted to maximize
the available data and improve the classification accu-
racy. Single trials predicted as either attended right or at-
tended left were contrasted with the actual cue direction in
each trial. Classification outcomes are shown in Figure 4C,
which resulted in virtually chance-level sorting (0.541). The
confusion matrix displays the distribution of each class, re-
vealing the skewed distribution of values toward attended
right labels, which is far from the ideal clustering along the
diagonal of the matrix. Finally, we employed two additional
algorithms to classify both attended right and attended left
trials. These consisted of shrinkage linear discriminant anal-
ysis (sLDA) and Riemannian minimum distance to the mean
(RMDM), as they are shown to work well in small training
sets (Lotte et al., 2018). Both decoding techniques yielded
chance-level results (see Extended Data Fig. 4-2).

Interhemispheric power imbalance

As a reality check on the dataset, we addressed
whether there was a difference in the a-power interhemi-
spheric imbalance between attended left and attended
right trials. We performed the cue-locked analysis at the
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Figure 4. Classification outcomes. A, Cross-time phase locking value (PLV) reality check. Replication of results from Figure 2 calcu-
lating PLV across time points rather than across trials. Individual results are shown in Extended Data Figure 4-1. B, Optimization re-
sults of y and margin parameters of the Gaussian kernel support vector machine. Ten-fold validation accuracies with varying
margin values (x-axis) and vy values (y-axis). Inset shows a detailed view of the z-axis. C, Confusion matrix of the classification out-
comes for one participant. y-axis represents ground truth labels (attended right or attended left) and x-axis represents the classi-
fier's outcomes. Percentages represent the fraction of correctly classified trials of each condition (i.e., each row sums to 100%).
Under the percentage is the gross number of classified trials. Results with additional classifiers such as shrinkage linear discriminant
analysis (sLDA) and Riemannian minimum distance to the mean (RDMD) are shown in Extended Data Figure 4-2.

group level, using the Lateralization Index (LI) described
by Thut et al. (2006; see Fig. 5A). On average, the laterali-
zation index was significantly different between attended
right and attended left in the expected direction (p < 0.01,
Cohen’s d = —0.8356). At the individual level, 7 out of
the 10 participants showed a significant difference in
lateralization index between the two attention condi-
tions (p <0.05; see Extended Data Fig. 5-1). We also
performed a time-resolved version of this analysis
within the cue-to-target window. A cluster-based per-
mutation test (Fig. 5B) showed significance within two
time periods, from 0.66 to 0.82 s and 1.34 to 1.5 s. At
the individual level, only for one participant (P01), the
cluster-based permutation test revealed a significant
cluster over time from 0.6 to 1 s (see Extended Data
Fig. 5-1). These results are consistent with the results
of previous studies (Thut et al., 2006; Tonin et al., 2012), at
least at the group level. It is more challenging to compare
single-subject data with other studies, as they are usually
neither reported nor statistically analyzed.

Finally, we explored the potential correlation be-
tween a-power interhemispheric imbalance measured
with the lateralization index and a-phase coupling for
each attended location (see Fig. 5C,D). In the pretarget
window (Fig. 5C), the correlations for attended right
(r = —0.25, p>0.05) and attended left (r = —0.13,
p >0.05) did not reach significance. Neither did the
correlations for attended right (r = —0.44, p > 0.05) and
attended left (r = —0.42, p >0.05) at the post-target
(Fig. 5D) window. Visual inspection indicated that

March 2023, 10(3) ENEURO.0203-22.2023

participants showing an effect in PLV contra-ipsi dif-
ferences are below the correlation fit in pretarget and
post-target windows, suggesting that those partici-
pants have a more negative effect in PLV contra-ipsi
differences.

Discussion

The present study addressed the relationship between
shifts in visuospatial attention and the lateralization of
a-band coherence between frontal and parietal electro-
des, to assess its feasibility as a control signal in BCI.
Previous studies, using group-averaged multi-trial anal-
yses, found increased long-range a-synchronization in
the hemisphere contralateral to the attended hemifield,
and suggested that it reflects top-down mechanisms of
visual spatial attention (Sauseng et al., 2005; Doesburg
et al., 2009). We reasoned that if contralateral to ipsilat-
eral differences in synchronization would emerge as a re-
sult of endogenous top-down mechanisms, they should
be present following cue presentation as participants
shift their attention. This hypothesis stems from how in-
structing participants to shift their attention laterally before
target appearance engages frontoparietal visual processing
pathways (Hopfinger et al., 2000; Corbetta and Shulman,
2002; Asplund et al., 2010). Here, we sought proof that
long-range neural synchronization engaged in this network
could be used for BCI control on a trial-by-trial basis.

In attention-orienting protocols, the cue-to-target pe-
riod offers the possibility of implementing a BCI control
in anticipation of the target appearance. This would

eNeuro.org
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blue) via cluster-based permutation test. Individual results are shown in Extended Data Figure 5-1. C, D, Lateralization indexes and
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and attended left (r = —0.19, p > 0.05) did not reach significance and neither did the correlations for attended right (r = —0.38,
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open the possibility of designing active BCl systems
controlled by the user’s voluntary decision to attend left/
rightward covertly. Therefore, our study employed long-
range a-synchronization in the frontoparietal network
(FPN) as means to investigate whether this brain mea-
sure could potentially discriminate attended locations of
the left/right visual field.

We found significant group-level differences in contra-
lateral to ipsilateral long-range a-synchronization around
target onset, replicating Sauseng et al. (2005). These re-
sults demonstrate the involvement of lateralized long-
range a-synchrony along the FPN during the post-target
period and especially reveal the potential of EEG to grasp
these effects, at the group level. However, similar differen-
ces in frontoparietal synchrony were not observed during
the cue-to-target time window, which was the time of in-
terest for BCI purposes. We also extended the cue-locked
analysis to other frequencies outside the a-band, with
equally negative results. Finally, given the high individual
variability of single-trial analysis outcomes, we attempted
to classify the individual trials of one selected participant
for whom significant synchronization differences following
cue presentation were found, as a benchmarking process.
The results nevertheless rendered chance-level classifi-
cation. Below, we discuss how these results may be

March 2023, 10(3) ENEURO.0203-22.2023

influenced by various methodological aspects (e.g., differ-
ent time windows, classifier’s input metric) and how they
fit into state-of-the-art literature. Please note that because
the focus of our study was on single-trial analysis, the
sample size was relatively small for the group analyses
(n=10). Although this sample size was sufficient to con-
firm previous findings on long-range «-synchronization
and lateralization index (Sauseng et al., 2005; Thut et al.,
2006), the negative results of the group analyses should
be interpreted with caution.

Frontoparietal network synchronization characterizes
visuospatial attention

A result from our study is that long-range a-synchroni-
zation within the FPN was associated with the conse-
quences of visuospatial attention orienting, in line with its
putative role in this cognitive process (Siegel et al., 2008;
Doesburg et al., 2009; Jensen et al., 2015; Sacchet et al.,
2015). We observed significant increase in contralateral
versus ipsilateral upper « coherence for targets appearing
at the attended location. According to current attention
theories, the mechanism underlying this finding may be
inherently related to top-down processing. More specifi-
cally, frontal regions such as the frontal eye fields (FEF)
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and the intraparietal sulcus (IPS) may modulate attention
by causing a state of a-band desynchronization in the
visual cortex contralateral to attended hemifield (Kastner
and Ungerleider, 2000; Corbetta and Shulman, 2002;
Capotosto et al., 2009; Marshall et al., 2015; Helfrich et
al., 2018). This explanation further aligns with the well-es-
tablished evidence that contralateral a-power suppres-
sion (also reproduced in our results) enables visual stimuli
processing in the attended location (Yamagishi et al.,
2003; Babiloni et al., 2006; Thut et al., 2006; Klimesch et
al., 2007; Doesburg et al., 2009; Foxe and Snyder, 2011;
Lange et al., 2013), and that cyclic phase-dependent in-
hibition in low-level visual cortex dictates behavioral
performance (i.e., reaction times; Haegens et al., 2011;
Klimesch, 2012; Jensen et al., 2014; Samaha et al.,
2015; VanRullen, 2016). Both accounts fit with the idea
that local a-power and long-range a-synchronization may
have separate roles in attention and perception (Palva and
Palva, 2007, 2011; Sadaghiani and Kleinschmidt, 2016;
Bonnefond et al., 2017).

Our results of the increased contralateral synchroniza-
tion within the FPN replicate the work of Sauseng et al.
(2005) and validate our methodology and analysis pipeline
(e.g., time-frequency analysis, synchronization metric),
setting the ground for the intended proof of concept test
regarding transference to BCI. However, lateralized fronto-
parietal connectivity patterns in attentional and perceptual
disposition remain challenged in the literature together with
the role of a power/phase (Ruzzoli, Torralba et al., 2019;
van Diepen et al., 2019; Antonov et al., 2020; Keitel et al.,
2022). Lobier et al. (2018) found that a-synchronization
was associated with visuospatial attention but revealed
distinct lateralization patterns regarding the visual system
and top-down attentional networks. They showed stronger
ipsilateral synchronization within the visual system (in line
with Siegel et al., 2008; Doesburg et al., 2009) but no con-
sistent lateralization in long-range networks, suggesting
their different involvement in visuospatial attention. A study
by D’Andrea et al. (2019) found a modulation of frontoparie-
tal a-B cross-frequency synchronization during attention
orienting, but not in a-synchronization alone. Further, this
cross-frequency connectivity pattern was strongly asso-
ciated with right hemisphere frontal dominance, in line
with Heilman and van den Abell (1980) and Zago et al.
(2017). This finding agrees with previous evidence of
the crucial role of the right FEF in top-down attentional
modulation (Silvanto et al., 2006; Hung et al., 2011;
Esterman et al., 2015; Veniero et al., 2021), supported
by evidence using TMS (Capotosto et al., 2009). In light of
this evidence and our results, the exact relationship be-
tween contralateral frontoparietal a-synchronization and
shifts in attention orienting is still unclear. Positive findings,
however, such as the ones in the present study using a
target-locked analysis, represent a basis for exploring
earlier time windows capable of shedding light on the
mechanism underlying FPN a-synchronization.

Correlations between long-range a-synchronization and
individual reaction times in visuospatial tasks suggest this
neural correlate may be observable at a single-subject
level (Lobier et al., 2018). However, significant group-level
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target-locked dynamics of increased synchrony did not
transfer to all individuals in our study. The observed vari-
ability may be partially explained by individual anatomic
differences in the neural substrate of attention (e.g., superi-
or longitudinal fasciculus; Marshall et al., 2015). Findings
employing magnetic resonance imaging (MRI) suggest that
volumetric differences in these structures impact local vis-
ual cortex oscillations, leading to variability in EEG traces
(Marshall et al., 2015; D’Andrea et al., 2019). However, this
variability of individual results is challenging to set in
the perspective of previous research simply because
published studies do not report single-subject statis-
tics. Ultimately, the outcomes of this study leave an in-
complete understanding of whether there is a reliable
group effect that does not extend to all individuals or,
contrarily, whether individual effects of specific partic-
ipants are large enough to induce a group-level finding
in previous research.

Lateralized patterns of a-synchronization appear in
target-locked but not cue-locked analysis

In our study, long-range a-synchronization presented
contralateral increases at the post-target (200-400ms,
with t=0 as target appearance) and the pretarget window
(—200-0ms), but only the former time window resulted
significantly. This result is slightly different from Sauseng
et al. (2005), who observed significant increases in contra-
lateral synchronization within the FPN network at both
time windows. However, the numerical differences were
in the same direction in both studies, leaving the possibil-
ity that statistical significance be just because of a lack of
statistical power. Another potential explanation for the ab-
sence of significant findings at the pretarget window may
be the difference in experimental paradigms. The task
employed here had a longer postcue interval ranging
from 2000 to 2500 ms (jittered between trials), com-
pared with Sauseng et al. (2005; i.e., 600-800 ms). If
participants shifted attention at varying times from
cue onset up to target appearance, this might explain
why we could not capture the effect in anticipatory vi-
suospatial attention.

In cueing paradigms, bottom-up integration of cue
information through sensory pathways precedes top-
down modulation of visuospatial attention (Simpson et
al., 2011). The time course of voluntary directed atten-
tion is thought to begin only after 150 ms from cue onset
and involves frontal regions approximately after 350 ms.
Furthermore, from 400-500 ms onwards, frontal and pa-
rietal regions are thought to be involved in attentional
shifting and target discrimination (Simpson et al., 2011).
Thus, if the FPN does present direction-specific syn-
chronization, we anticipated this would appear from
~500ms after cue onset onwards. Contrary to what we
expected, we did not observe any significant contralat-
eral to ipsilateral differences in the cue-to-target time
windows (500-1500 ms after cue onset). Previous stud-
ies employing a similar time window showed lateraliza-
tion patterns in parietal regions in « and B8 bands (Siegel
et al., 2008; Pantazis et al., 2009) and frontoparietal lat-
eralization in low and high-frequency bands (Green and
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McDonald, 2008; Gregoriou et al., 2009). Therefore, we
extended our cue-locked analysis to other frequencies
but again obtained no significant contralateral to ipsilat-
eral differences. Note that PLV values were averaged
across 200-ms windows, and this excludes, to a certain
extent, the confound of frontal and parietal regions having
different activation over time. Altogether, despite the evi-
dence across multiple frequencies of synchronization in
the cue-to-target time window, we did not find patterns of
lateralized cue-locked connectivity within or outside the
a-band.

Our negative results in the cue-locked analysis may align
with the notion that late periods after cue onset are associ-
ated with direction-specific activity in parieto-occipital re-
gions but not in frontal regions (e.g., FEF; Doesburg et al.,
2009; Simpson et al., 2011). Long-range a-synchronization
may, therefore, be associated to an initial shift of attention
(shortly after cue presentation) and later (close to target
presentation) to attention maintenance at the directed
hemifield (Hopfinger et al., 2000; Kastner and Ungerleider,
2000; Grent-'t-dJong and Woldorff, 2007; Lobier et al.,
2018). This idea resonates with the essential question for-
merly posed by Sauseng et al. (2005), debating whether
frontal involvement in long-range a-synchronization is a
causative or consequential correlate of posterior activation.
Furthermore, it motivated the exploration of cue-locked in-
tervals where bottom-up and top-down processing may
have elicited stronger effects on a-band synchronization.

Finally, to ensure participants correctly lateralized their
attention during the cue-to-target interval, we conducted
a reality check by calculating the a-power imbalance
using the lateralization index over this period (Thut et al.,
2006). There was a clear difference in the averaged later-
alization index between 500 and 1500 ms at group level.
We further employed the lateralization index to perform an
exploratory analysis of its relationship with the difference
in a-synchronization between contralateral and ipsilat-
eral networks. Considering lateralized local « activity
and lateralized long-range a-synchronization are both
relevant in successful attention orienting, we explored
whether these two mechanisms would have had a signif-
icant positive correlation. Therefore, individuals with
high lateralization index should also present lateralized
synchronization within the FPN. In contrast to our ex-
pectations, there was no significant correlation between
these two metrics, neither at the pretarget nor the post-
target time windows.

Ultimately, we did not observe a significant increase
in contralateral long-range a-synchronization in the five
200-ms bins following cue onset. This time frame offered
potential as it occurs much before target appearance and
could be robustly employed in a covert visuospatial BCI
decoder. By expanding our analysis to several frequen-
cies and carrying out the aforementioned reality checks,
we conclude that PLV measured from EEG may not serve
as a reliable metric in capturing direction-specific syn-
chronization from frontal to posterior regions, despite this
evidence being present in parietal to occipital synchrony
(Doesburg et al., 2009).
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EEG estimates of long-range a-synchronization may
not serve as a reliable control signal for BCI

The use of long-range a-synchronization to decode
attentional direction yielded chance-level results. We
employed 200-ms time bins of contralateral and ipsilat-
eral FPN connectivity as input in an SVM classifier.
Nonlinear SVMs are widely employed in decoding cog-
nitive neural correlates of behavioral states (Lotte et al.,
2007). Furthermore, SVMs outperform other classifiers,
such as artificial neural networks, nonlinear Bayesian
estimators, and recurrent reservoir networks (Astrand
et al., 2014a). We also employed sLDA and RMDM clas-
sifiers, as they have low computational cost, require
small training sets, and perform well in real-time appli-
cations (Lotte et al., 2018), with no success.

Prior work using SVMs, mainly centered around primate
models and invasive recordings, successfully decoded
the attentional spotlight from frontal sites (Esghaei and
Daliri, 2014; Tremblay et al., 2015; Gaillard et al., 2020).
Clearly, these methods (i.e., LFP, intracranial-EEG) have a
higher signal-to-noise ratio (SNR) compared with nonin-
vasive imaging. However, the objective of the present
study was to offer a BCI proof of concept using a-syn-
chronization as a control signal. Therefore, a noninvasive
and portable technique must be employed. Other nonin-
vasive modalities such as functional magnetic resonance
imaging (fMRI), where the temporal resolution is too low for
real-time implementations, or magnetoencephalography
(MEG), where the equipment is expensive and requires
a magnetically shielded room (as fMRI), have limited po-
tential transfer in out-of-lab applications. Contrarily,
EEG is an affordable imaging modality with a straight-
forward setup which provides high temporal resolution
and portability. However, the inconvenience of using
EEG is a low spatial resolution and a low SNR. Despite
this, decoders have been commonly employed in EEG-
BCI design employing parieto-occipital power changes
in a-band activity to predict covert visuospatial atten-
tion tasks (van Gerven and Jensen, 2009; Treder et al.,
2011; Tonin et al., 2013). The integrated approach be-
tween frontal and parieto-occipital attentional decoding
based on a-synchronization, however, has not been at-
tempted. Here, we found that cue-locked synchronization
enclosed in the FPN a-band is insufficient to determine the
attentional location at EEG single trial level. This may be
because of an inherent lack of connectivity in the cue-to-
target interval, or else more likely, the poor sensitivity of the
EEG to register synchronization patterns.

Another potential reason to explain the failed classifica-
tion of cue-locked FPN connectivity at single-trial level
may be the change in PLV calculation from trial-average
to single-trial. Standard cognitive research employs multi-
ple trials to estimate consistent findings on electrophysio-
logical markers (M/EEG). Instead, BCIs need robust and
accurate estimates in a single-trial fashion and thus re-
quire a trade-off between spatial (i.e., single-channel de-
coding is preferred) and temporal resolution. PLV is a
measure of consistency across multiple trials and cannot
serve as a single-trial control signal. Therefore, we com-
puted PLV across time points within the same trial. This
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new measure is also referred to in the literature as the in-
tersite phase clustering (ISPC) and may represent a differ-
ent underlying process than that captured by classic PLV
(Cohen, 2015). This prompts the question of whether long-
range a-synchronization is incapable of decoding the at-
tended location, or rather the single-trial nature of IPSC over
time is responsible for this.

In sum, long-range «@-synchronization within the FPN
estimated with EEG may not serve as a control signal for
BCI. This limitation may be because of incomplete infor-
mation on neural correlates because of the lack of cross-
frequency analysis or the computational techniques
surrounding ISPC over time.

In conclusion, we found direction-specific contralat-
eral patterns of upper a-synchronization (i.e., PLV) with-
in the FPN following target appearance in a covert
visuospatial task. This finding, however, did not extend
to pretarget or cue-to-target time windows. The modu-
latory role of a-synchronization in anticipatory attention
through frontal, parietal and occipital regions suggests
that PLV may not constitute a reliable metric for this
top-down visual processing. Furthermore, chance-level
classification resulting from using this metric in an SVM
indicates that long-range a-synchronization computed
with EEG may not be a suitable control signal for BCI.
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