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Abstract

Background

The COVID-19 pandemic has demonstrated the need for efficient and comprehensive,

simultaneous assessment of multiple combined novel therapies for viral infection across

the range of illness severity. Randomized Controlled Trials (RCT) are the gold standard

by which efficacy of therapeutic agents is demonstrated. However, they rarely are

designed to assess treatment combinations across all relevant subgroups. A big data

approach to analyzing real-world impacts of therapies may confirm or supplement RCT

evidence to further assess effectiveness of therapeutic options for rapidly evolving dis-

eases such as COVID-19.

Methods

Gradient Boosted Decision Tree, Deep and Convolutional Neural Network classifiers were

implemented and trained on the National COVID Cohort Collaborative (N3C) data repository

to predict the patients’ outcome of death or discharge. Models leveraged the patients’ char-

acteristics, the severity of COVID-19 at diagnosis, and the calculated proportion of days on

different treatment combinations after diagnosis as features to predict the outcome. Then,

the most accurate model is utilized by eXplainable Artificial Intelligence (XAI) algorithms to

provide insights about the learned treatment combination impacts on the model’s final out-

come prediction.
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Results

Gradient Boosted Decision Tree classifiers present the highest prediction accuracy in identi-

fying patient outcomes with area under the receiver operator characteristic curve of 0.90

and accuracy of 0.81 for the outcomes of death or sufficient improvement to be discharged.

The resulting model predicts the treatment combinations of anticoagulants and steroids are

associated with the highest probability of improvement, followed by combined anticoagu-

lants and targeted antivirals. In contrast, monotherapies of single drugs, including use of

anticoagulants without steroid or antivirals are associated with poorer outcomes.

Conclusions

This machine learning model by accurately predicting the mortality provides insights about

the treatment combinations associated with clinical improvement in COVID-19 patients. Anal-

ysis of the model’s components suggests benefit to treatment with combination of steroids,

antivirals, and anticoagulant medication. The approach also provides a framework for simul-

taneously evaluating multiple real-world therapeutic combinations in future research studies.

Introduction

At the time of this writing, 8,029 completed or ongoing clinical trials for COVID-19 have been

listed in ClinicalTrials.gov [1]. A majority of these trials are prospective randomized controlled

trials (RCTs) or similarly designed clinical trials. These approaches offer the benefit of directly

comparing therapeutic arms and control groups and can minimize bias. Notably, RCTs neces-

sarily have inclusion and exclusion criteria that can limit the generalizability of the conclusions

drawn from them. Further, RCTs, due to economic interests, required sample sizes, and the

relative complexity of factorial designs, are rarely designed to explicitly address the optimal

therapeutic combination(s) as a function of severity of illness.

Due to variable host-virus interactions, patients with SARS-CoV-2 infection may have a

range of manifestations ranging from asymptomatic infection to critical illness [2]. Some stud-

ies of COVID-19 have described an initial viral stage of illness that can progress to a hyperin-

flammatory pulmonary stage, which can further evolve to a hypercoagulable phase or a late

hyperinflammatory phase, as well as a chronic illness, referred to as the Post-Acute Sequelae of

COVID-19 (PASC) or long-COVID [3]. Approaches to managing each of these phases are

likely to require combinations of therapies directed at the respective underlying mechanisms

and severity of illness. For instance, directly acting antiviral therapies would be anticipated to

have the largest impact in the viral phase of the illness while anti-inflammatory treatments

may be counterproductive as the body is mounting an antiviral immune response. By contrast,

anti-inflammatory therapies would be expected to have the most beneficial effect in patients

who have transitioned from the viral phase to a hyperinflammatory phase of illness. Antiviral

agents may be less effective in this later phase. Especially in the early days of the pandemic,

RCTs necessarily and largely evaluated individual therapeutic agents in critically ill patients,

given the more favorable potential risk-benefit ratio. This approach may miss the impact of

effective treatment combinations across the spectrum of COVID-19 illness severity.

Treatments have largely been studied individually in RCTs; for example, RCTs demon-

strated that steroids benefit most patients requiring oxygen therapy [4], and the antiviral drug,

Remdesivir, has been used successfully during the viral phase [5]. While one study recently
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reported benefit from the combination of Remdesivir and dexamethasone [6], data are lacking

on the optimal combination of therapies for individual patients at various stages of the illness.

Review of patient outcomes from large, real-world data (RWD) sources offers the opportu-

nity to assess the effect of therapies and their combinations not directly or adequately evalu-

ated by RCTs, potentially augmenting our understanding of this increasingly complex

therapeutic landscape [7]. Therefore, in this study, we explore the patient and treatment fac-

tors, particularly therapeutic agent combinations, associated with better outcomes using

machine learning models (ML). The present study addresses key gaps in the extant literature

by adopting ML models to evaluate the effect of therapeutic agents, singly and in combination,

on patient outcomes using the large N3C cohort of patients.

Methods

Overall setting and study design

The National COVID Cohort Collaborative (N3C) is a high-granularity electronic health

record (EHR) data repository containing harmonized, patient-level data from 72 sites across

the United States (US). They are primarily tertiary care centers but also include data from

health information exchanges and community hospitals. N3C data partners contribute data to

N3C regularly. As of May 4, 2022 (Release 75), N3C contains data on more than 10 million

patients, including more than 4.9 million COVID-19 SARS-CoV-2 infected persons.

N3C design, data ingestion and harmonization, and sampling approach have been detailed

previously [8, 9]. In brief, N3C contributing sites provide the central repository EHR data,

including demographics, healthcare visits, vital signs, medications, laboratory results, and

diagnoses which are then harmonized into the Observational Medical Outcomes Partnership

(OMOP) common data model. Participating sites submit EHR data on all patients with a posi-

tive SARS-CoV-2 lab test (Polymerase Chain Reaction, Antigen, or Antibody) or a COVID-19

diagnosis and a demographically matched comparison group of SARS-CoV-2 uninfected per-

sons (1:2 matching positive: negative). For this study, we modify the N3C COVID-19 positivity

definition [10] to exclude those with antibody-only positive results after December 10, 2020,

the date when vaccinations became publicly available in the US [11].

To account for differences in data availability at the site level, we excluded sites with low

medication reporting (<2 standard deviations below mean reporting for all sites). This

approach excluded 17 of the 72 sites in N3C at the time of our data extraction.

Institutional Review Board (IRB) approval for this retrospective cohort study is obtained

from the University of Mississippi Medical Center (IRB2020V0280, 3/31/2021), Johns Hopkins

University (IRB00249128, 9/18/2020), Christiana Health (IRB604959, 5/07/2021), West Virginia

University (IRB2012192778, 12/17/2020), University of Nebraska Medical Center (IRB050-

21-EP, 2/9/2021), Nemour’s Children’s Health (IRB1700991, 2/17/2022), and Maine Medical

Center (IRB1697848-2, 3/5/2021). Further approval by the N3C Data Access Committee (RP-

504BA5) is granted that operates under the authority of the National Institute of Health IRB

with Johns Hopkins University School of Medicine serving as the central IRB. A limited dataset

was available for this project, however, zip codes were not used for the analyses described in the

paper. No informed consent was obtained as the study utilizes a limited dataset.

Cohort identification

For the purpose of this study, we selected COVID-positive patients with at least one day of

hospitalization during the 28 days after their initial COVID-19 diagnosis. The cohort under

study includes patients in the United States who tested positive for COVID-19 and were hospi-

talized between January 1, 2020, and July 1, 2021.
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Selection is then further limited to patients with an outcome of either death or discharge by

the 28th day (n = 145,769) after COVID-19 diagnosis. Patients with any other outcome at the

end of the 28-day period are not considered as they are still being treated, and our interest is

limited to those who have completed treatments [12–14]. This selected cohort is hereafter

referred to as patients with a stable outcome, as treatment duration is completed and the final

outcome of either death or discharge has been achieved. Fig 1 presents the information flow

diagram for the final cohort under the study.

Data extraction

Data were extracted on May 4, 2022 (N3C release 75) for the previously defined cohort with a

stable outcome before July 1, 2021. The lag between the observation window cutoff and data

Fig 1. Information flow diagram for the cohort under the study.

https://doi.org/10.1371/journal.pone.0282587.g001
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extraction ensured that data from reporting sites was as complete as possible and placed the

observation window before the rapid rise of the Delta variant. We developed concept sets for

all conditions, drugs, and procedures used in this study, which include OMOP concept identi-

fiers (derived from SNOMED CT, RxNorm, and other standardized vocabularies) contained

with a patient’s EHR. Concept sets in use, available in Table 1, define computable phenotypes

to programmatically identify patient health status at a point-in-time. All concept sets in use

received review by three clinicians and one informatician during curation and

implementation.

Feature engineering

For the identified cohort, we have considered demographics, body mass index (BMI), comor-

bidities [15], treatment with pressors, the quarter of COVID-19 diagnosis, patient severity at

the time of diagnosis, and prescribed treatments as input features for model development.

To measure patient severity, we used an Ordinal Scale (OS) developed for use with EHR

data [16]. Specifically, this was a 6-point ordinal scale assigned with odd integers from 1 to 11,

devised explicitly for patients diagnosed with COVID-19 based on discrete EHR data elements.

In this context, a level of 1 represents an outpatient or patient discharged from the hospital,

level 3 indicates hospitalization, while being hospitalized on Oxygen or Mechanical Ventilator

is an indicator of levels 5 and 7, respectively, with level 9 representing patients hospitalized on

ECMO and level 11 representing death.

Fig 2 shows the lookback period used for determining the patient’s comorbidities in green

with a minimum of 2 years, while highlighted in blue are the considered treatments’ duration

within up to 28 days after the diagnosis, followed by the recorded patient’s outcome as of the

last day of treatment.

Prescribed therapeutics on each day after the diagnosis were categorized and considered in

eight distinct groups, defined as anticoagulants (Coag), steroid preparations (Ster), unproven

antiviral therapies (ViralUnp), targeted antivirals (ViralTrgt), spike protein monoclonal anti-

bodies (MonoSP), monoclonal antibody Immunomodulators (MonoI), macrolide and quino-

lone antibiotics (BiotMQ), and a miscellaneous treatments (Misc) category that included other

treatments presumed to be administered for treatment of COVID-19. Medications in each cat-

egory are shown in Table 1.

The model considered the proportion of days on treatment combinations, any direct corre-

lations between the treatment values and duration of treatment are removed, preventing the

ML algorithm from leveraging this information directly for prediction. By using the propor-

tion of days on treatment combinations, the modeling algorithm is forced to find the effect of

different treatment distributions rather than attributing days on treatments to the outcome of

interest.

Modeling

We implemented three models to predict the final patient outcomes at the end of the 28-day

observation window. The first was a Gradient Boosted Decision Tree (GBDT) classifier based

on an additive model that tunes a weak learner into a strong one by training on residuals in

boosting rounds; GBDT combines the results of previous learners along the way, thus learning

from the errors of previous iterations to improve accuracy [17]. Two Neural Network models

were also implemented, the first was based on a Deep fully-connected Neural Network (DNN)

with a self-attention mechanism to increase the attention of the model to key features. The sec-

ond was a multi-layer Convolutional Neural Network (CNN), convolving over the features to

provide levels of generalization and extract treatment patterns and their effects. For the CNN
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Table 1. Medications in each treatment category.

Class Medication Concept Sets

Anticoagulants (Coag) Apixaban 259221776

Betrixaban 568693141

Dabigatran 23600781

Enoxaparin 858278110

Heparin 357794478

Rivaroxaban 544420473

Warfarin 441951686

Targeted Antivirals (ViralTrgt) Remdesivir 719693192

Nirmatrelvir/ritonavir (Paxlovid) 285332632

Molnupiravir 643666235

Macrolide and Quinolone Antibiotics (BiotMQ) Azithromycin 359938251

Doxycycline 950251876

Ciprofloxacin 369973585

Moxifloxacin 609610642

Gemifloxacin 382925247

Delafloxacin 103404439

Gatifloxacin 932126058

Ofloxacin 931604126

Norfloxacin 292248378

Erythromycin 4697796

Clarithromycin 4697796

Levofloxacin 4697796

Spike Protein Monoclonal Antibodies (MonoSP) Bamlanivimab 804283782

Casirivimab/Imdevimab 204936358

Etesevimab 985547691

Sotrovimab 550646109

Tixagevimab/Cilgavimab 809722294

Bamlanivimab-Etesevimab combo String search

Bebtelovimab String search

Steroids Preparations (Ster) Dexamethasone 213873961

Hydrocortisone 932266800, 422007021

Methylprednisolone 640520004

Prednisone 783588396

Monoclonal Antibody Immunomodulators (MonoI) Tocilizumab 276204116

Baricitinib 394764748

Tofacitinib 391595378

Sarilumab 807728943

Unproven Antiviral Therapies (ViralUnp) Hydroxychloroquine 807281242

Chloroquine 818210864

Ivermectin 980395214

Lopinavir/ritonavir 165611849

Tenofovir 563211602, 568417090

Interferon 359012050, 531467540

Miscellaneous (Misc) Vitamin D 689338842

Fluvoxamine 424477820

https://doi.org/10.1371/journal.pone.0282587.t001
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model, multiple convolution structures based on VGG-16 [18], Inception [19], and DenseNet

[20] blocks were evaluated and results for the best model is reported.

For the ML models, the input features considered as predictors of outcome are demograph-

ics, BMI, quarter of diagnosis, comorbidities, the severity of the patient at the time of diagno-

sis, being treated with pressors, and prescribed treatment combinations after diagnosis. Due to

the sensitivity of ML models to hyper-parameters and to make the study repeatable, we used

HyperOpt [21], an open-source Bayesian optimization library, to increase the model’s Area

Under receiver operating Characteristic (AUC) curve by fine-tuning the parameters. Hyper-

parameter tuning is performed on stratified random train, validation, and test splits of 60%,

20%, and 20% respectively, with random over-sampling of the training dataset using the

SMOTE [22] library to address the data imbalance in the training set. Then, given the discov-

ered hyper-parameters, model evaluation is conducted by 5-fold cross-validation to report the

models’ AUC and accuracy.

Model interpretability

Generally, machine learning models are considered black-box procedures, with limited

insights and interpretability other than outcome prediction. However, recent years have seen

many improvements in the ability to generate robust and interpretable insights from complex

ML models [23]. Use of SHapley Additive exPlanation (SHAP) [24] values as an eXplainable

Artificial Intelligence (XAI) algorithm can provide insightful interpretations of a complex

machine learning model with high accuracy and robustness, similar to human interpretations.

The generated SHAP values for input features of ML models can be used to characterize the

effect of the inputs on the final model’s prediction. In this study, to communicate the effects of

treatment combinations as features of patients’ outcomes, we first trained an accurate ML

model on the patients’ data. Then, the trained model is utilized for generating the SHAP values

of input features, providing insights into the features’ importance on the probability of a

patient discharge prediction. For the analysis, a feature has a positive impact if the feature

increases the probability of the discharge prediction, while the negative impact of a feature

translates to a decrease in the probability of discharge prediction.

After model hyper-parameter optimization, training, and evaluation, the model was

retrained on the entire dataset, using the same parameters, to learn all existing interactions

within the dataset. Then for SHAP value calculations, two required inputs are generated, back-

ground samples as a base of comparisons and input samples for evaluation of the effects. Fol-

lowing SHAP’s best practices for calculating the required background samples in large

datasets, we applied the K-Nearest Neighbor clustering algorithm (K = 50) to patients in each

class of outcome (death and discharge), providing us with a total of 100 cluster centroids to be

used for the SHAP analysis.

Fig 2. Time windows for treatment, comorbidities, and outcome.

https://doi.org/10.1371/journal.pone.0282587.g002
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For input samples, we noticed, however, that in a highly imbalanced dataset, averaging the

SHAP values for each feature to provide a holistic view of the effect can be biased by the class

containing the larger sample size (which in this case was discharge), diminishing the impact of

learned interactions within the smaller set (defined by death as the outcome). To overcome

any unwanted effects that data imbalance may pose on the results, we used 1:1 matched sets of

patients, matching on the demographics (age, sex, race, ethnicity), BMI, comorbidities (speci-

fied in Table 2, under comorbidities), quarter of the year, pressor status (presence or absence),

and OS level at diagnosis as inputs for SHAP calculation, resulting in a more balanced set of

patients, preserving the effects and discriminating factors learned from the smaller set.

Results

Study population

The dataset included 145,769 hospitalized patients (Table 2). Most patients (128,063; 87.9%)

were discharged alive from the hospital within 28 days of COVID-19 diagnosis while the

remaining 17,706 (12.1%) were deceased. Although 24.2% of patients were not hospitalized on

day 1 of their diagnosis (OS level 1), they subsequently were hospitalized after day 1 as this

study assessed only hospitalized patients.

Prescribed treatment combinations

Among single agent treatments, anticoagulants (Coag), steroids (Ster), and macrolide and

quinolone antibiotics (BiotMQ) are the top three most commonly prescribed to patients;

22.7% (n = 83,665), 6.5% (n = 24,026), and 3.7% (n = 13,625), respectively (Fig 3). The three

most frequent treatment combinations prescribed were: 1) anticoagulants and steroids with

unproven antivirals (ViraUnp) 2) anticoagulants and steroids, and 3) steroids with unproven

antivirals (ViraUnp) (Fig 3).

The top two prescribed treatments were also the treatments that patients received for the great-

est number of days with 35.2% for anticoagulants and 11.6% for the combination therapy of anti-

coagulants with unproven antivirals (ViraUnp) and steroids. While steroids alone were the third

most used therapeutic agent, patients spent roughly the same days on steroids in combination

with anticoagulants (5.9%) and on steroid single therapy alone (6.8%). Fig 4 presents the top 10

therapeutics based on the cumulative number of days they were prescribed to patients.

Model accuracy

Developing an ML model to leverage the aforementioned curated data and provide an accurate

prediction, can be used not only as a predictive measure for taking therapeutic actions, but

also as a means to evaluate the effect of patients’ characteristics and prescribed treatment com-

binations on the final patient outcomes. The devised models have been trained and evaluated

using 5-fold cross-validation. Fig 5 shows the Receiver Operating Characteristic (ROC) curve,

and accuracy of the models. Our results indicate that the Gradient Boosted Decision Tree

(GBDT) classifier has superior (AUC = 0.90) and balanced accuracy (81% for both death and

discharge classes) in identifying and discriminating patient outcomes compared to both Deep

Neural Network (DNN) and Convolutional Neural Network (CNN) models.

Feature importance

Given the accuracy and discriminative ability of the GBDT model, SHAP values were calcu-

lated to evaluate the impact of a feature on the model’s prediction. Specifically, positive SHAP

values in this context indicate a positive impact on the predicted probability of classifying a
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Table 2. Patients’ characteristics.

Characteristics n = 145,769

Gender (%)

Female 71,891 (49.3)

Male 73,855 (50.7)

Other/ Unknown <25 (0.0)

Age (mean (SD)) 59.2 y (19.5)

Race (%)

Asian 5,305 (3.6)

Black 32,467 (22.3)

Native Haw./Pac. Islander 318 (0.2)

White 75,658 (51.9)

Other/ Unknown 30,883 (21.2)

Ethnicity (%)

Hispanic/Latino 29,419 (20.2)

Not Hispanic/Latino 104,200 (71.5)

Other/ Unknown 12,068 (8.3)

OS at day 1 (%)

OS 1—outpatient 35,328 (24.2)

OS 3—hospitalized 94,601 (64.9)

OS 5—hospitalized on Oxygen 9,326 (6.4)

OS 7—hospitalized on Mechanical Ventilator 6,252 (4.3)

OS 9—hospitalized on ECMO 262 (0.2)

OS 11—death 0 (0)

BMI (mean (SD)) 31.0 (7.1)

Comorbidities (%)

Hypertension 92,767 (63.6)

Diabetes Mellitus 33,808 (23.2)

Myocardial Infarction 19,197 (13.2)

Congestive Heart Failure 31,629 (21.7)

Peripheral Vascular Disease 24,011 (16.5)

Stroke 24,168 (16.6)

Dementia 13,037 (8.9)

Chronic Pulmonary Disease 40,545 (27.8)

Rheumatologic Disease 8,998 (6.2)

Mild Liver Disease 15,014 (10.3)

Severe Liver Disease 4,972 (3.4)

Upper GI bleed 4,791 (3.3)

Renal Disease 33,848 (23.2)

Peptic Ulcer Disease 4,496 (3.1)

Paralysis 5,116 (3.5)

Cancer 14,397 (9.9)

Diabetes with chronic complications 27,186 (18.7)

Metastatic solid tumor 5,376 (3.7)

HIV/AIDS 1,527 (1.0)

Quarter of Diagnosis (%)

Jan-Mar 2020 6,956 (4.8)

Apr-Jun 2020 28,837 (19.8)

Jul-Sep 2020 17,111 (11.7)

(Continued)
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patient as discharged while negative SHAP values indicate impact on the predicted probability

of death. Fig 6 presents the top 10 features with the highest positive and negative impacts on

the model’s predictive ability. It shows that six treatment combinations are among the top ten

features with the highest positive impact underlining the importance of combination therapies;

the steroid and anticoagulant combination provides the highest positive effect on model pre-

diction. Monotherapies of both steroids and unproven antiviral therapies (ViralUnp) are

ranked eighth and tenth after combination therapies. The other two features with high positive

impact are COVID diagnosis in the first quarter of 2021 and OS severity level 1 (outpatient sta-

tus) at the time of diagnosis. Among the features with the most negative impact, age is associ-

ated with the strongest negative impact on the model’s classification, followed by two of the

single therapies: miscellaneous (Misc) and anticoagulants (Coag) alone. Among the comorbid-

ities, renal disease (Renal), severe liver disease (LiverSevere), Myocardial Infarction (MI), and

Congestive Heart Failure (CHF) are most highly associated with negative effects, in decreasing

order of importance. In addition, OS levels 7 and 3 at the time of diagnosis are each associated

with the negative outcome (death).

Discussion

We developed accurate machine learning models with high accuracy for predicting death and

discharge outcomes from COVID-19. By examing factors contributing to these predictions we

Table 2. (Continued)

Characteristics n = 145,769

Oct-Dec 2020 44,210 (30.3)

Jan-Mar 2021 33,468 (23.0)

Apr-Jun 2021 15,173 (10.4)

Outcomes (%, IQR)

Discharged 128,063 (87.9, 8)

Death 17,706 (12.1, 13)

https://doi.org/10.1371/journal.pone.0282587.t002

Fig 3. Top 10 prescribed treatments to patients.

https://doi.org/10.1371/journal.pone.0282587.g003
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can better understand the impact of treatment combinations on outcomes. Specifically, our

findings suggest that combination therapy with different classes of drugs is more effective than

therapy with only a single agent. These models also demonstrate that patient characteristics

and comorbidities such as age, kidney, liver, heart disease, and severity of illness at diagnosis

have a large impact on disease outcome, confirming previous literature [25–29]. Indeed, the

models suggest that for COVID-19 outcomes, patient characteristics are not surprisingly often

as influential as the treatments administered. Of note, pre-existing renal, liver, and heart dis-

eases were strongly associated with poor prognosis. However, several combinations of treat-

ments appear to be associated with better or worse outcomes. Specifically, our models support

the efficacy of steroids, antiviral drugs, and anticoagulation while raising the possibility of

harm from miscellaneous category therapies of vitamin D and fluvoxamine. Data from clinical

trials of fluvoxamine in COVID-19 is mixed; however, our findings support guidelines recom-

mending against its routine use at this time [30, 31]. Similarly, our negative findings regarding

vitamin D are consistent with a clinical trial showing lack of efficacy of vitamin D in reducing

Fig 4. Top 10 treatments based on the number of days prescribed.

https://doi.org/10.1371/journal.pone.0282587.g004

Fig 5. ML models performance in predicting patient outcomes.

https://doi.org/10.1371/journal.pone.0282587.g005
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the length of stay in hospitalized COVID-19 patients [32]. Steroids have a well established ther-

apeutic benefit in COVID-19 patients requiring oxygen but have not been shown to benefit

patients not requiring oxygen [33]. With electronic health record data, our models also observe

the association between steroid treatment and higher likelihood of recovery among COVID-

19 patients requiring oxygen therapy.

COVID-19 is associated with micro and macrovascular thrombosis [34–36], and COVID-

19 patients have high risk of thrombotic complications such as pulmonary embolism. There-

fore, various doses of anticoagulation have been proposed as part of standard COVID-19 treat-

ment. Intermediate dose anticoagulation in ICU patients failed to show benefit [37]. However,

among hospitalized patients not requiring ICU care, full dose anticoagulation has been

reported to have benefits [38, 39]. If and when to use higher dose anticoagulation remains con-

troversial [40, 41]. Our models suggest the possibility of benefit from the addition of anticoa-

gulation to steroids. The combination of two potentially beneficial therapies, steroids and

anticoagulants, being associated with an increased likelihood of recovery may reinforce the

need to consider therapeutic combinations when attempting to define the optimal treatment

of COVID-19.

The association with poor outcome of use of anticoagulants alone without steroids or anti-

virals is intriguing. Perhaps the use of anticoagulation alone is a marker for patients who were

not treated aggressively for COVID-19 or who had comorbidities such as poorly controlled

diabetes which might cause clinicians to withhold steroids or renal/hepatic failure that might

give clinicians pause regarding the use of Remdesivir. However, this hypothesis cannot be

tested in our dataset.

Many experts have suggested that combining steroids with antivirals may be beneficial

because of the potential immunosuppressive effect of steroids [42, 43]. We expected to see a

benefit of the combination of steroids and antivirals with efficacy against COVID-19. How-

ever, the overall positive effect of steroids combined with antivirals of unproven efficacy was

surprising. It may be that the decision to use the combination of steroids/antiviral drug before

proven antiviral drugs were available may have been a marker of other aspects of care (for

example, excellent supportive care such as proning) that may have been associated with better

outcomes. Since many patients in the dataset were treated before the availability of proven

antivirals with efficacy against COVID, this may have led to an association between use of

unproven (and likely ineffective) antivirals and reduced mortality.

Due to anti-inflammatory effects and proposed antiviral effects, macrolides were applied as

possibly effective treatments for COVID-19 early in the pandemic [44]. Similarly,

Fig 6. Top 10 features with the highest impact on final model prediction.

https://doi.org/10.1371/journal.pone.0282587.g006
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fluoroquinolone antibiotics were also suggested as COVID-19 treatments [45]. This was the

rationale for including the antibiotics in our analysis. As enthusiasm for use of these medica-

tions for specific treatment of COVID-19 per se has declined, the positive associations found

by our machine learning algorithms are perhaps unexpected. Severely ill COVID-19 patients

are known to be at high risk of secondary infections [46]. It is possible that macrolides and

quinolones treated secondary infections or prevented the development of such infections.

Alternatively, the association between antibiotics treatment and improved outcome may be

confounded by serving as a marker of more aggressive treatment. Further study of the mecha-

nisms responsible for this association are needed.

While this study demonstrates a generally applicable machine learning model (ML)

approach to explore treatment factors, particularly therapeutic agent combinations for

COVID-19, ML models have been successfully applied to other aspects of the COVID-19 pan-

demic. More specifically for COVID-19, ML models have been developed and validated to pre-

dict the outcomes of COVID-19 patients using metrics collected at the time of admission [47].

Another study using ML evaluated risk factors associated with increased mortality for

COVID-19 patients [48]. ML has also been used to show the predictive effect of comorbidities

and risk factors on progression of illness in COVID-19 patients [49, 50]. ML models generally

demonstrate improved prediction of patient outcomes when compared to conventional statis-

tical approaches [51–53].

Our study has several limitations. First, information on the doses of medications used is not

available in the dataset. Similarly, the impact of steroid dose is unknown. However, the results

of our study support the need for clinical trials to explore the efficacy of different doses of ther-

apeutic combinations and single therapies. An additional limitation is that we have no knowl-

edge as to why clinicians choose to administer or not administer certain therapeutic agents.

Patients with treatment limitations, such as DNR orders, are more likely to die than those

without such limitations [54]. It is possible that such care limitations or contraindications,

especially early in the pandemic, influenced the decision to use or not use certain treatments.

It is also possible that some patients were incidentally positive for COVID-19 but hospitalized

for other serious illnesses, although this cannot be determined from the database. Another lim-

itation of our study is the lack of full control over the diagnosis criteria that treating clinicians

used and the possibility of false negatives or false positives, however, we followed the best prac-

tices provided by the NIH experts to define inclusion criteria for COVID-19 positivity.

Conclusions

Machine learning algorithms can predict mortality in hospitalized COVID-19 patients with a

high degree of accuracy. Future work may allow use of such algorithms to identify high risk

patients needing more aggressive therapies. In the meantime, our analyses of a large multicen-

ter cohort of COVID-19 patients using machine learning algorithms supports use of steroids,

anti-virals, and anticoagulant medications in combination. Further study is needed on the

associations of macrolide and fluoroquinolone antibiotics with survival in COVID-19. In addi-

tion to the beneficial observed effects of specific treatments and, in particular, their combina-

tions, patient characteristics such as age and comorbidities are strong predictors of increased

likelihood of death as expected, perhaps serving as negative controls suggesting validity of the

models. More generally, this study demonstrates use of a machine learning model (ML)

approach to explore treatment factors, particularly therapeutic agent combinations, associated

with outcomes across comorbidity profiles and initial severity of illness. It potentially provides

useful evidence, particularly with regard to therapeutic combinations, to supplement evidence

from RCTs.
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Review board approval and consent

National Institute of Health’s (NIH) National COVID Cohort Collaborative (N3C) Data Utili-

zation Request (DUR) approval committee approved the data utilization request of this project

(RP-504BA5). Each author’s home Institutional Review Board approved the study protocol

(HM and WH # 2020V0280; TB #1700991; MK, BP, WK, and SH #2012192778; JA and JH

#050-21-EP; SLS #1697848–2, MV #604959). The N3C data transfer to NCATS is performed

under a Johns Hopkins University Reliance Protocol # IRB00249128 or individual site agree-

ments with NIH. The N3C Data Enclave is managed under the authority of the NIH; informa-

tion can be found at https://ncats.nih.gov/n3c/resources.
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