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Abstract

Summary: Proteins are fundamental building blocks of life and are investigated in a broad range of scientific fields,
especially in the context of recent progress using in silico structure prediction models and the surge of resulting
protein structures in public databases. However, exploratory data analysis of these proteins can be slow because of
the need for several methods, ranging from geometric and spatial analysis to visualization. The Python library
faltwerk provides an integrated toolkit to perform explorative work with rapid feedback. This toolkit includes
support for protein complexes, spatial analysis (point density or spatial autocorrelation), ligand binding site
prediction and an intuitive visualization interface based on the grammar of graphics.

Availability and implementation: faltwerk is distributed under the permissive BSD-3 open source license. Source
code and documentation, including an extensive common-use case tutorial, can be found at github.com/phiweger/
faltwerk; binaries are available from the pypi repository.

Contact: adrian.viehweger@medizin.uni-leipzig.de

1 Introduction

Exploratory data analysis is often used to generate new hypotheses.
Such exploratory work is more effective when it takes little time and
effort to create new viewpoints on the data. However, subanalyses
often add substantial friction and prolong feedback, especially with
multimodal data such as protein structures. Here, many tracks of
evidence need to be integrated: the binding of ligands and other pro-
teins occurs at specific residues and is determined by physicochemi-
cal features such as solvent access and electrostatic forces, which in
turn can be affected by mutations (Bhattacharya et al., 2017), data
which usually has been collected from several individuals of a popu-
lation of interest (species, patients). More complexity is added by
the fact that proteins fold into three-dimensional structures, which
in their evolutionary history are more conserved than the underlying
linear amino acid sequence (Illergård et al., 2009). In fact, this fold-
ing allows a pair of residues to be far apart on the protein sequence
but very close in three dimensions. Because structure determines
function, it can be helpful to add, for example, spatial features.
Mutations have been observed to sometimes cluster and thus mark
functionally important parts of a protein, both in disease
(Kamburov et al., 2015; Li et al., 2022; Sivley et al., 2018) as during
environmental adaptation (Barber and Elde, 2014; Kiefl et al., 2023;
Slodkowicz and Goldman, 2020). It is these spatial patterns that
Tobler’s first law of geography addresses: ‘Everything is related to
everything else, but near things are more related than distant things’
(Tobler, 1970). For example, Barber and Elde (2014) observed the

asymmetric clustering of substitutions in a specific region of the pro-
tein transferrin, which led to the hypothesis and subsequent experi-
mental validation that the observed mutation pattern likely derives
from coevolution. We will use this example as a use case below.

Three main approaches have been pursued to analyze spatial sig-
nals on proteins. First, mapped entities (protein residues) can be
grouped based on pairwise distance, sometimes referred to as point-
density analysis (Meyer et al., 2016; Ryslik et al., 2014). This
approach relies solely on atomic coordinates. Popular algorithms in-
clude Markov chain clustering (MCL) (Enright et al., 2002) and
HDBSCAN (McInnes and Healy, 2017). Second, one can aggregate
non-spatial information attached to these coordinates using a spher-
ical window sliding along the (folded) protein sequence from N- to
C-terminus (Hicks et al., 2019; Silk et al., 2021). Third, one can test
how non-spacial features are distributed and whether they form
‘hotspots’ (Fujimoto et al., 2016; Kamburov et al., 2015;
Slodkowicz and Goldman, 2020; Tokheim et al., 2016; Turner
et al., 2015). Because most of these methods compare the residues in
local ‘patches’ of protein against randomly permuted ones, multiple
comparison correction is required (Benjamini and Hochberg, 1995).
Many of the spatial methods used for protein analysis are ad hoc
variations on more ‘classical’ ones from the geographical sciences,
namely Ripley’s K (Sivley et al., 2018), Moran’s I, and the Getis-Ord
G family of statistics. Robust implementations exist, in contrast to
most studies, for which either no code was available or which would
require significant refactoring to use outside of the original work.
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To our knowledge, faltwerk is the first library that allows
analyses across all three spatial analysis types. While one can use
other tools like anvio ‘structure’ (Eren et al., 2021; Kiefl et al.,
2023) to explore protein structures, none includes methods for spa-
tial data analysis at the time of writing. However, in light of the
steep increase of available protein structures, mainly driven by
AlphaFold v2 (Jumper et al., 2021) but likely a more general trend
(Jones and Thornton, 2022; Mirdita et al., 2022), faltwerk will be
a valuable tool for many users in computational and molecular
biology.

2 Functionality

faltwerk is a framework to facilitate exploratory data analysis of
proteins. It offers many functions for handling protein structures
and complexes, including easy loading, subsetting protein com-
plexes, and annotating protein domains and conserved sites. By cen-
tering on exploration, a central part is a well-designed API to
visualize the structures, inspired by the grammar of graphics
(Wilkinson, 2005), a concept that allows the layering of graphical
objects. Protein structures and complexes render in jupyter and
colab notebooks, ideal for exploratory work or for sharing such
analyses. Unlike stand-alone applications in the protein space,
faltwerk is a python library that integrates well into existing tools
and workflows for high throughput processing and is distributed
under a permissive BSD-3 license. Besides these features, which are
required from a broadly applicable library, faltwerk also includes
sophisticated functions to explore protein structures spatially. While
this might seem like a niche at the moment, we hypothesize that
with the enormous growth in protein structure predictions, such
analyses will become more mainstream. For example, faltwerk
allows spatial clustering of sites under positive evolutionary selec-
tion. When integrated into a workflow, thousands of proteins can
be screened to identify potential targets of immune processes or
coevolution (Shultz and Sackton, 2019), not just on the linear se-
quence, but in three dimensions (Gao et al., 2017; Kamburov et al.,
2015).

Specifically, the library implements standard parsers for files in
the common PDB format and can also be used to parse and explore
protein complexes. The library can handle files in PDB format stored
as strings and provides access to commonly used biopython struc-
ture objects, facilitating integration with existing code bases.
However, faltwerk adds objects on top of these standard ones to
facilitate work with protein complexes and in silico predictions. For
example, to remove chains A and B from a protein complex, one can
use the following concise syntax: cx ¼ Complex(path); cx =-
“AB”. A custom AlphaFold object handles additional metadata
generated during prediction such as pLDDT, a metric that estimates
prediction quality (Jumper et al., 2021). Structures can be aligned
directly from within faltwerk, which wraps foldseek (van
Kempen et al., 2022) for this purpose. Furthermore, several

functions allow to explore the geometry of the protein structure and
extract annotations, such as per-residue distance to the binding site
in a protein complex. Such relations are relevant because enrichment
of mutations at protein-protein interaction interfaces has been
reported (Slodkowicz and Goldman, 2020). The result can then be
visualized using an intuitive API inspired by the grammar of graph-
ics (Wilkinson, 2005) using the 3Dmol.js library for rendering
(Rego and Koes, 2015). In short, a layout is specified, onto which
graphics can be layered. Optionally, only a subset of the data can be
selected, e.g. when visualizing mutations or residues that are part of

Fig. 1. Visualization of residues under positive selection identified by Barber and Elde (2014) in human transferrin (leftmost panel). Note the asymmetric distribution on the

C-terminal lobe of the otherwise symmetric protein. This pattern led them to a hypothesis that co-evolution with an iron-scavenging receptor of the bacterium Neisseria

meningititis was responsible, which was shown to be correct using in vitro experiments. A hotspot analysis (middle panel) marks this region and allows co-localization with

the bacterial receptor binding interface (not shown); note how two positions on the N-terminal lobe do not result in hotspots. In the rightmost panel, the hotspot residues are

segmented (clustered) using HDBSCAN into two clusters. In an automated workflow, one could now run a regression model for each of those on the assumption that distinct

protein features drive the respective pattern

# Skipping imports

# Load model and residues under positive selection

from Barber et al., Science, 2014

model ¼ Fold(”/path/to/structure.pdb”)

original ¼ [152, 252, 381, . . .]

positive ¼ [1 if i in original else 0 for i in

range(len(model))]

# (1) Spatial autocorrelation , defaults to

Getis–Ord metric

hotspots ¼ find_hotspots(model , positive ,

false_discovery_rate¼0.05)
# (2) Point density analysis , defaults to

HDBSCAN

clusters ¼ cluster(model , hotspots ,

min_cluster_size¼5)

model.annotate_many_(f”positive”: positive,

”hotspots”: hotspots , ”clusters”:

clustersg)
ly ¼ Layout(model , panel_size=(200, 200),

grid ¼ (1, 3), linked¼True)
mask ¼ ly.select(residues¼positive,

elements ¼ [”CA”], chain¼”A”)
ly.geom_ribbon(color ¼ ”#ffffff”)

ly.geom_sphere(selection ¼ mask, color¼”black”
)

ly.geom_surface(”hotspots”, palette¼”binary”,
panel=(0, 1))

ly.geom_surface(”clusters”, palette¼”Set2_r”,
panel=(0, 2))

ly.render().show()
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an active site. This approach allows features to be explored quickly
and in relation to one another (Fig. 1). Note that faltwerk acts as
a layer of abstraction or ‘glue’ between many well-tested functions
for protein exploration. For benchmarks, we refer the reader to
these respective libraries and their associated method descriptions,
e.g. pysal (github.com/pysal) or hdbscan (McInnes and Healy,
2017).

For spatial exploration, we implement (i) point density clustering
using HDBSCAN (McInnes and Healy, 2017) (default) and MCL
(Enright et al., 2002). While these algorithms require very different
implementations, we expose a common interface, and users can
seamlessly add, switch and compare methods. Furthermore, we im-
plement (ii) a sliding spherical window in which protein features can
be aggregated. Last, hotspots can be identified using (iii) local spa-
tial autocorrelation using either the Getis-Ord G family of metrics
(Getis and Ord, 1992) (default) or Moran’s I (Moran, 1950), includ-
ing multiple hypothesis correction using a specified false discovery
rate (Benjamini and Hochberg, 1995). Again, a common interface
makes switching between methods trivial. In contrast to previous
work, faltwerk allows exploration of spatial methods and individ-
ual components such as different distance functions. For example, a
fixed radius around a residue of interest is often used to define
neighbors. In our library, users can experiment with other functions,
such as weights that decay with distance, where the neighborhood is
defined on a continuous scale. Lastly, faltwerk implements pro-
tein domain and ligand binding site prediction, using the approach
from Kobren and Singh (2019). Here, we rely on custom code writ-
ten by E. Kiefl (https://merenlab.org/2020/07/22/interacdome/). For
subsequent analyses, the library provides methods to export protein
annotations as a data frame which can then be used without modifi-
cation with subsequent tools. Users might follow up using spatial re-
gression or machine and deep learning to identify features that
might be predictive for sites of interest, such as those under positive
selection. Below, we provide an example and the subsequent visual-
ization of a hotspot analysis and clustering of residues under positive
selection identified by Barber and Elde (2014):
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