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Abstract Speckle-type POZ protein (SPOP) is a substrate adaptor in the ubiquitin proteasome 
system, and plays important roles in cell-cycle control, development, and cancer pathogenesis. 
SPOP forms linear higher-order oligomers following an isodesmic self-association model. Oligo-
merization is essential for SPOP’s multivalent interactions with substrates, which facilitate phase 
separation and localization to biomolecular condensates. Structural characterization of SPOP in 
its oligomeric state and in solution is, however, challenging due to the inherent conformational 
and compositional heterogeneity of the oligomeric species. Here, we develop an approach to 
simultaneously and self-consistently characterize the conformational ensemble and the distribu-
tion of oligomeric states of SPOP by combining small-angle X-ray scattering (SAXS) and molecular 
dynamics (MD) simulations. We build initial conformational ensembles of SPOP oligomers using 
coarse-grained molecular dynamics simulations, and use a Bayesian/maximum entropy approach to 
refine the ensembles, along with the distribution of oligomeric states, against a concentration series 
of SAXS experiments. Our results suggest that SPOP oligomers behave as rigid, helical structures 
in solution, and that a flexible linker region allows SPOP’s substrate-binding domains to extend 
away from the core of the oligomers. Additionally, our results are in good agreement with previous 
characterization of the isodesmic self-association of SPOP. In the future, the approach presented 
here can be extended to other systems to simultaneously characterize structural heterogeneity and 
self-assembly.

Editor's evaluation
In this important paper, the authors have developed an approach for simultaneously optimizing the 
conformational ensemble and degrees of oligomerization, and this has been tested by applying it 
to a specific protein (SPOP). Comparison of the quality of fits with different models also provides 
valuable insights into structural features important to the assembly of oligomers. The approach, 
presented with compelling experimental support, is potentially applicable to other systems as well.

Introduction
Protein self-association is fundamental for many processes in biology (Ali and Imperiali, 2005; Marsh 
and Teichmann, 2015), and it has been estimated that around half of all proteins form dimers or 
higher-order complexes (Lynch, 2012). One such protein is Speckle-type POZ protein (SPOP), a 
substrate adaptor in the ubiquitin proteasome system, which recruits substrates for the Cullin3-RING 
ubiquitin ligase (CRL3) (Hernández-Muñoz et al., 2005; Kent et al., 2006; Kwon et al., 2006). SPOP 
targets a range of substrates for degradation, including proteins involved in hormonal signalling, 
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epigenetic modification, and cell-cycle control, such as the androgen receptor (AR) (An et al., 2014) 
and death-associated protein 6 (DAXX) (Kwon et al., 2006; Cuneo and Mittag, 2019). SPOP is thus 
an important regulator of cellular signalling, and mutations in SPOP are associated with a variety of 
cancers (Le Gallo et al., 2012; Kim et al., 2013; Cuneo and Mittag, 2019).

The 374-residue SPOP monomer consists of three domains. From N- to C-terminus, these are 
the MATH domain (i.e., the meprin and TRAF-C homology domain), the BTB domain (i.e. the broad-
complex, tramtrack, and bric-a-brac domain), and the BACK domain (i.e. the BTB and C-terminal 
Kelch domain). MATH is the substrate binding domain, while the BTB domain mediates interaction 
with CRL3 (Zhuang et al., 2009; Bosu and Kipreos, 2008). Both the BTB and BACK domains can 
homodimerize, resulting in the formation of polydisperse, linear higher-order SPOP oligomers with 
alternating BTB-BTB and BACK-BACK interfaces (Errington et  al., 2012; van Geersdaele et  al., 
2013; Marzahn et al., 2016). The BTB-mediated dimer is formed with nanomolar affinity, and this 
dimer acts as the unit of higher-order oligomerization, which occurs through micromolar affinity BACK 
dimerization. Thus, only even-numbered SPOP oligomers are substantially populated (Marzahn et al., 
2016; Figure 1).

Chemical crosslinking experiments have shown that SPOP oligomers form inside cells (Marzahn 
et al., 2016), and analysis of SPOP homologues shows sequence co-variation across both the BTB-
BTB and BACK-BACK interfaces (Bouchard et al., 2018), together suggesting that self-association 
has physiological relevance. By presenting multiple MATH domains for substrate binding, SPOP oligo-
mers can simultaneously bind to multiple low-affinity binding motifs in a single substrate, resulting 
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Figure 1. SPOP forms higher-order oligomers through isodesmic self-association. (a) The SPOP BTB-BTB homodimer forms with nanomolar affinity, and 
is the unit of higher-order oligomerization through BACK-BACK homodimerization. Higher-order SPOP oligomerization follows an isodesmic model, 
where the equilibrium between oligomer ‍i‍ and ‍i‍+1 is described by a single equilibrium constant, ‍KD,isodesmic‍, which is independent of oligomer size. (b) 
Crystal structures of homodimers of the BACK (left, PDB: 4HS2) and MATH-BTB (right, PBD: 3HQI) domains of SPOP. Below, the structure of a SPOP28–359 
dimer constructed based on crystal structures. The cartoon model is overlaid with the coarse-grained representation used in the Martini simulations. The 
BACK domains of the two neighbouring subunits in the oligomer are also shown (without Martini bead overlay). (c) Left: Populations of SPOP oligomers 
given by the isodesmic model with  ‍KD,isodesmic‍=1.6 µM, determined from CG-MALS, for the protein concentrations used in our SAXS experiments. 
Note the logarithmic scale. Right: Relative contribution of each oligomer to the average SAXS signal given by the populations in left panel. (d) Structure 
of a SPOP28–359 60-mer constructed based on structures in panel b. MATH domains are coloured orange and BTB/BACK domains are coloured blue in all 
panels.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Fit of isodesmic model to CG-MALS.

https://doi.org/10.7554/eLife.84147
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in an overall increased affinity through avidity effects (Pierce et al., 2016). The longer lifetimes of 
these complexes enable effective polyubiquitination (Pierce et al., 2016). This suggests that tuning 
SPOP’s oligomerization state could act as a mechanism to regulate substrate degradation (Errington 
et al., 2012). SPOP oligomerization is also involved in phase separation. SPOP localizes to nuclear 
speckles in cells (Marzahn et al., 2016), and upon overexpression of certain substrates, SPOP and 
substrate co-localize to condensates which recruit CRL3 and display active substrate ubiquitination 
(Bouchard et  al., 2018). This process requires both SPOP oligomerization and substrate binding 
(Marzahn et  al., 2016; Bouchard et  al., 2018), and it has been proposed that SPOP oligomers 
function as scaffolds that enable binding of substrates both within and between oligomers, resulting 
in filament-formation at low substrate concentrations and condensate formation at higher substrate 
concentrations (Bouchard et al., 2018; Schmit et al., 2020).

The higher-order self-association of SPOP follows the isodesmic model (Marzahn et al., 2016), in 
which the equilibrium between oligomer ‍i‍ and ‍i‍+1 is described by a single equilibrium constant inde-
pendently of oligomer size (Oosawa and Kasai, 1962). In the case of SPOP, the BTB-mediated dimer 
acts as the protomer of higher-order self-association, and the isodesmic ‍KD‍ thus describes BACK-
BACK self-association. The isodesmic model can be used to calculate the equilibrium concentration 
of every oligomeric species as a function of the total protomer concentration (Figure 1a and c). For 
SPOP, a low micromolar isodesmic ‍KD‍ has been determined from composition gradient multi-angle 
light scattering experiments (CG-MALS; Marzahn et  al., 2016). While these insights describe the 
heterogeneity in oligomer sizes, the conformational heterogeneity of the higher-order oligomers has 
not been characterized. Previous work revealed that constitutive SPOP dimers, created via deletion 
of the BACK domain, have considerable conformational heterogeneity in the position of their MATH 
domains. The MATH domains are seen docked onto the BTB dimer in the structure, but small-angle 
X-ray scattering (SAXS) experiments showed that they could undock from the BTB domains, enabled 
by a long flexible linker (Zhuang et al., 2009). This may enable binding of multivalent substrates with 
different spacing between SPOP binding motifs. Whether this conformational flexibility also exists in 
higher-order SPOP oligomers is unclear.

Here, we aimed to determine simultaneously both the distribution of oligomeric states of SPOP 
and the conformational ensemble of each SPOP oligomer by combining SAXS experiments and MD 
simulations. SAXS can provide low-resolution information on protein structure in solution, but reports 
on an ensemble average, which in the case of SPOP is both an average over different oligomeric 
states and the structural heterogeneity of each oligomeric state. Therefore, SAXS experiments are 
often combined with MD simulations to provide a full structural model of the system (Thomasen and 
Lindorff-Larsen, 2022). In the case of polydisperse systems, it is sometimes possible to deconvo-
lute the information into contributions from a small number of individual species and analyse these 
individually (Herranz-Trillo et  al., 2017; Meisburger et  al., 2021). We took a different approach 
and aimed to explicitly model every relevant configuration of SPOP in its range of oligomeric states 
along with the associated thermodynamic weight of each configuration. We collected SAXS data on 
SPOP at a range of protein concentrations and constructed initial conformational ensembles of every 
substantially populated oligomeric state using coarse-grained MD simulations. We then developed 
an approach to simultaneously and self-consistently optimize the distribution of oligomeric states, 
given by the isodesmic model (Oosawa and Kasai, 1962; Shemesh et  al., 2021), and refine the 
conformational ensemble of each oligomer against the SAXS data using Bayesian/maximum entropy 
(BME) reweighting (Bottaro et al., 2020; Figure 2). Our results show that SPOP forms rigid, helical 
oligomers in solution, and that the linker connecting the MATH and BTB domains is likely flexible, 
allowing for repositioning of the MATH domains during substrate binding. Our results also provide 
further evidence that SPOP self-association follows the isodesmic model, and we find an isodesmic 

‍KD‍ in good agreement with the previously determined value (Marzahn et al., 2016). Using SAXS 
experiments of a cancer variant of SPOP we also show how our approach can be used to determine 
changes in the level of self-association.

Results
We collected a concentration series of SAXS data on a previously used truncated version of SPOP, 
SPOP28–359 (full length is 374 residues), with total protein concentrations ranging from 5 to 40 µM. In order 
to build structural models to refine against the SAXS data, we first needed to decide which oligomeric 

https://doi.org/10.7554/eLife.84147
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species to include in our modelling. To this aim, we used the isodesmic self-association model, which 
has previously been shown to describe SPOP oligomerization well (Marzahn et al., 2016). We fitted 
previously measured CG-MALS data (Marzahn et al., 2016) to obtain an isodesmic ‍KD‍ of 1.6±0.3 µM 
(Figure 1—figure supplement 1). Based on the isodesmic model fitted to the CG-MALS data, the popu-
lation of oligomers larger than ~30-mers should be very low at the concentration range used in our SAXS 
experiments. As scattering intensity is proportional to particle size squared, larger oligomers, however, 
make a considerable contribution to the SAXS signal despite their low concentrations (Figure 1c). Given 
the concentrations from the isodesmic model and taking into account the increased scattering of larger 
oligomers, we decided that constructing models of oligomers up to the 60-mer should be sufficient to 
capture all substantial contributions to the SAXS data.

There are no crystal structures of SPOP28–359 available, so we constructed a model of the SPOP28–359 
BTB-dimer using the crystal structure of the isolated BACK domain (4HS2) (van Geersdaele et al., 
2013) and the crystal structure of a truncated construct containing only the MATH and BTB domains 
(3HQI) (Zhuang et al., 2009; Figure 1b). We used this model of the BTB-dimer to construct SPOP28–359 
oligomers, which we used as starting structures for MD simulations. We ran 60 µs MD simulations of 
oligomers ranging from the dimer to the dodecamer; we used a coarse-grained representation of 
SPOP modelled using the Martini 3 force field (Souza et al., 2021) further modified by increasing 
protein-water interactions by 6% (Thomasen et al., 2022). It would be computationally prohibitive 
to run simulations of large oligomers up to the 60-mer. Instead, we relied on the assumption that the 
dodecamer behaves similarly to a segment of an arbitrarily long oligomer, and constructed conforma-
tional ensembles of oligomers up to the 60-mer by joining together conformers from the simulations 
of the dodecamer at the BACK-BACK interface (Figure 1d).
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Figure 2. Overview of the self-consistent approach used to fit conformational ensembles of SPOP oligomers to SAXS data. Small-angle X-ray scattering 
(SAXS) data on SPOP represents an average over a range of oligomeric species present in solution. Here, the distribution of oligomeric species and 
the conformational ensemble of each oligomer were self-consistently fitted to a concentration series of SAXS data by iteratively fitting the scale and 
constant background of the SAXS data and the isodesmic ‍KD‍, followed by reweighting of the conformational ensemble of each oligomer.

https://doi.org/10.7554/eLife.84147
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We calculated SAXS intensities from our conformational ensembles and, given the relative population 
of each oligomer from the isodesmic model with  ‍KD‍=1.6 µM, determined from CG-MALS, we calculated 
SAXS profiles averaged over all the oligomeric species. We found that the SAXS data calculated in this 
way from the ensembles generated by MD simulations convoluted with the isodesmic model were in 
good agreement with the experimental SAXS data, giving a reduced ‍χ

2
‍ to the concentration series of 

SAXS data (‍χ
2
r,global‍) of 1.53 (Figure 3). Despite the overall good agreement, the residuals revealed some 

systematic deviations to the experimental SAXS profiles. These deviations could potentially arise from 
inaccuracies in the distribution of oligomeric states given by the isodesmic model, from inaccuracies 
in the modelled conformational ensembles, or from both. As a first step, we wanted to see if we could 
eliminate the deviations by only tuning the distribution of oligomeric states. We globally optimized the 

‍KD‍ of the isodesmic model against the concentration series of SAXS data, which gave  ‍KD‍=0.9±0.4 µM, 
in good agreement with  ‍KD‍=1.6±0.3 µM determined from CG-MALS, and resulted in a ‍χ

2
r,global‍ of 1.24 

to the SAXS data (Figure 3). However, this did still not fully eliminate the systematic deviations from the 
experimental SAXS profiles.

To improve the agreement with the experimental SAXS data further, we aimed to simultaneously 
refine the conformational ensemble of each oligomer and optimize the distribution of oligomeric 
states. We developed a self-consistent optimization scheme, in which the isodesmic ‍KD‍ is optimized 
globally to the entire concentration series of SAXS data followed by reweighting of the conformations 
of each oligomer against a SAXS profile deconvoluted from the experimental SAXS data (Figure 2; 
see Methods section for details). To reweight the ensembles, we used BME reweighting, in which the 
population weights of the conformational ensemble are minimally perturbed with respect to the prior 
ensemble (generated by the MD simulations) to improve the agreement with a set of experimental 
data (Bottaro et  al., 2020). This approach resulted in excellent agreement with the experimental 
SAXS data, giving a ‍χ

2
r,global‍ of 0.69, while only small deviations remained (Figure 3). The isodesmic ‍KD‍ 

was fitted to 1.3±0.5 µM, and thus also remained in good agreement with the previously determined 
value (Marzahn et al., 2016). To validate our approach and to examine the possibility of overfitting, 
we left out one SAXS profile recorded with 15 µM protein from the optimization. The optimized ‍KD‍ 
and ensemble weights did not substantially affect the fit to this SAXS profile, suggesting that we had 
avoided overfitting (Figure 3—figure supplement 1). These results show that SAXS data on SPOP 
can be explained well by conformational ensembles of linear oligomers with populations given by 
the isodesmic model, and thus provide further evidence that SPOP self-association follows a simple 
isodesmic mechanism (Marzahn et al., 2016).

The previously published CG-MALS data on SPOP clearly precludes a simple dimer–tetramer, dimer–
hexamer, dimer–octamer, or dimer–decamer equilibrium in favor of an isodesmic self-association model 
(Marzahn et al., 2016). To determine whether the SAXS data also favors the isodesmic model, we used 
our conformational ensembles to examine whether monodisperse oligomers, ranging in size between an 
octamer and 60-mer, as well as corresponding dimer-oligomer equilibria, would be compatible with the 
SAXS concentration series (Figure 3—figure supplement 2). For each dimer–oligomer equilibrium, we 
fitted the ‍KD‍ globally to the SAXS data. Thus, the isodesmic model and dimer–oligomer models are of 
comparable complexity, with only a single free parameter. The results show that the SAXS concentration 
series is in better agreement with an isodesmic distribution of oligomers than with any of the tested single 
oligomers or dimer–oligomer equilibria.

We also wished to examine whether the conformational ensembles of SPOP generated by the MD 
simulations described the SAXS data better than static structures. As a first comparison, we calculated 
SAXS profiles from the initial SPOP oligomer structures constructed based on crystal structures. To 
make the results comparable with our optimized ensembles, we fitted the isodesmic ‍KD‍ to the SAXS 
data for the static structures. This resulted in a worse agreement with the SAXS data (‍χ

2
r,global‍=4.03 

with ‍KD‍=0.43 µM) than what we obtained using the ensembles both before and after reweighting. 
We also investigated the agreement with the SAXS data for individual structures drawn from the 
ensembles of the oligomers, again fitting the isodesmic ‍KD‍ for each set of structures. We found that 
some of the single structures from the ensembles could fit the SAXS data as well as the entire ensem-
bles before reweighting, but no set of static structures fit the SAXS data as well as the reweighted 
ensembles (Figure 3—figure supplement 3). This result highlights that, while an ensemble of multiple 
conformers is likely necessary to produce the best agreement with the SAXS data, SPOP oligomers 
have a relatively rigid structure overall, allowing for reasonable agreement with the SAXS data without 

https://doi.org/10.7554/eLife.84147
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Figure 3. Refining oligomer populations and conformational ensembles against SAXS data. (a) Relative populations of oligomers for the protein 
concentrations used in SAXS experiments. Note the logarithmic scale. Populations are given by the isodesmic model with the ‍KD‍ noted above the 
plot, which is either (1) previously determined by CG-MALS or (2–3) fitted globally to the SAXS data in panel b. ‍χ

2
r,global‍ quantifies the agreement with 

SAXS data in panel b for the three scenarios. (b) Agreement between experimental SAXS data and averaged SAXS data calculated from conformational 
ensembles of SPOP oligomers with populations given by the isodesmic model (as shown in panel a). SAXS profiles are shown for three different 
scenarios: (1) calculated from the conformational ensembles generated by MD simulations with the isodesmic ‍KD‍ previously determined with CG-MALS, 
(2) calculated from the conformational ensembles generated by MD simulations with the isodesmic ‍KD‍ fitted to the SAXS data, and (3) calculated from 
conformational ensembles refined against the SAXS data using Bayesian/MaxEnt reweighting, and with the isodesmic ‍KD‍ self-consistently fitted to the 
SAXS data. Error-normalized residuals are shown below the SAXS profiles and ‍χ

2
r ‍ to each SAXS profile is shown on the plot.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Selection of ‍ϕeff ‍ and model validation.

Figure supplement 2. Agreement with SAXS for other self-association models.

Figure supplement 3. Comparison of static structures and ensembles.

Figure supplement 4. Agreement with CG-MALS for isodesmic model fitted to SAXS.

Figure supplement 5. Determining the error of the fitted isodesmic ‍KD‍ before reweighting.

Figure supplement 6. Determining the error of the fitted isodesmic ‍KD‍ after reweighting.

Figure 3 continued on next page

https://doi.org/10.7554/eLife.84147
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modelling the conformational heterogeneity for each oligomer. The improvement in agreement with 
the SAXS data over the starting structures, also for individual conformers, suggests that the MD 
simulations contribute, not only by modelling the conformational heterogeneity, but also by simply 
relaxing the structure to a more accurate state.

The results described above show that the SAXS data fit well to an isodesmic model with a ‍KD‍ value 
close to that determined from CG-MALS. We wished to validate our approach further by comparing 
the SAXS-derived model of self-association with the CG-MALS data more directly. We therefore calcu-
lated the average molecular weight given by the isodesmic model with the ‍KD‍ of 1.3 µM that we 
obtained by fitting to the SAXS data and compared the results with the CG-MALS data (Figure 3—
figure supplement 4). This analysis confirmed that the model of self-association derived from our 
analysis of the SAXS data is fully consistent with the independently measured CG-MALS data.

Having generated a conformational ensemble of each SPOP oligomer in agreement with the SAXS 
data, we proceeded to analyze the structures. Reweighting resulted in an increase in the radius of 
gyration (‍Rg‍) for almost all oligomeric species, suggesting that slightly more expanded conforma-
tions than those sampled with our modified version of Martini are more consistent with the SAXS 
data (Figure 4a–b and Figure 4—figure supplement 1). This expansion can be attributed both to 
a slight increase in the end-to-end distance for most oligomers (Figure 4c–d and Figure 4—figure 
supplement 2), as well as a slight increase in the average distance between the MATH and BTB/BACK 
domains for all oligomers upon reweighting (Figure 4e–f).

In order to investigate the global flexibility and compaction of SPOP oligomers, we fitted a power 
law to the average end-to-end distance (‍RE-E‍) as a function of the number of subunits in the oligomer 
(‍N ‍), ‍RE-E = R0Nν

‍, where R0 is the subunit segment size and ‍ν‍ is a scaling exponent (Figure 4c). The fit 
gave R0=~3.1 nm and  ‍ν‍=0.99, showing a linear growth of the end-to-end distance with the number 
of subunits. This result is consistent with no significant curvature or compaction of the oligomers 
and, along with the narrow distribution of end-to-end distances for each oligomer (Figure 4—figure 
supplement 2), suggests that the SAXS data is compatible with a distribution of straight and relatively 
rigid SPOP oligomers, at least on length scales up to the ~180 nm of the 60-mer. The helical structure 
of larger oligomers, with ~16 subunits per turn, is evident as small periodic deviations from the fit 
(Figure 4c).

The MATH and BTB domains are connected through a ~20 residue long linker region (Figure 1b). 
We hypothesized that this linker may be flexible, allowing for reconfiguration of the MATH domains 
with respect to the crystal structure (Zhuang et al., 2009). We calculated the distances between the 
center-of-mass (COM) of the MATH domain and the COM of the BTB/BACK domains in the ensem-
bles for every subunit of every oligomer. The distribution of these MATH-BTB/BACK distances reveal 
two populations overlapping with the two crystal structure configurations (Figures 4e, i , and 5c), 
where the MATH domains are in close proximity to the BTB/BACK domains (Zhuang et al., 2009). 
However, there is also a third population in which the MATH domains are extended away from the 
BTB/BACK domains, suggesting that the MATH-BTB linker is flexible and allows for movement out 
of the configurations observed in the crystal structure. Reweighting slightly increased the population 
of this extended state (Figure 4e–f). This flexibility in the configuration of the MATH domains gives 
rise to a broad distribution of distances between the substrate binding sites in neighbouring MATH 
domains, which is also slightly increased upon reweighting for all oligomers (Figure 4g–h). Both the 
overall rigidity of the oligomers and the flexibility of the MATH domains are also evident from visual 
inspection of the conformational ensemble of the 60-mer (Figure 4j).

To examine further whether the SAXS data support the observed flexibility of the MATH-BTB 
linker and repositioning of the MATH domains, we generated new ensembles of SPOP oligomers 
following the same protocol as above, but this time restraining the MATH domains to the BTB-BACK 
domains based on the configuration in the crystal structure using the elastic network model imple-
mented in Martini. We calculated SAXS data from the generated ensembles and again fitted the 

Figure supplement 7. Fit to SAXS data for SPOP R221C.

Figure supplement 8. Determining the error of the fitted isodesmic ‍KD‍ for R221C.

Figure supplement 9. Averaging the conformational weights from different SAXS experiments.

Figure 3 continued
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Figure 4. SPOP forms rigid, linear oligomers with flexible MATH domains in solution. (a) Probability distribution of the radius of gyration (‍Rg‍) calculated 
from ensembles of six representative SPOP oligomers before and after reweighting (see Figure 1 for ‍Rg‍ distributions for all oligomers). Dashed lines 
show the average values. (b) The fold-change in average ‍Rg‍ after reweighting for all SPOP oligomers. (c) The average end-to-end distance calculated 
from ensembles of SPOP oligomers before and after reweighting (see Figure 2 for distributions for all oligomers). Solid lines show the fit of a power 
law: ‍RE-E = R0Nν

‍, where ‍RE-E‍ is the average end-to-end distance, R0 is the subunit segment size, ‍N ‍ is the number of subunits in the oligomer, and ‍ν ‍ 
is a scaling exponent. The fit gave R0=3.16 nm, ‍ν ‍=0.99 before reweighting and R0=3.11 nm, ‍ν ‍=0.99 after reweighting. (d) The fold-change in average 
end-to-end distance after reweighting for all SPOP oligomers. (e) Normalized histogram of distances between the center-of-mass (COM) of the MATH 
domain and the COM of the BTB/BACK domains in the same subunit before and after reweighting. The histogram contains the distances from every 
conformation of every subunit in every oligomer. (f) The fold-change in average MATH-BTB/BACK COM distance after reweighting for all SPOP 
oligomers. (g) Normalized histogram of COM distances between MATH substrate binding sites in neighbouring subunits (blue and red). The histogram 

Figure 4 continued on next page
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isodesmic ‍KD‍ globally to the SAXS data, resulting in  ‍KD‍=0.2±0.2 µM. The agreement with the SAXS 
data was substantially worse than for the original ensembles with the MATH domains unrestrained 
(‍χ

2
r,global‍=4.38 and ‍χ

2
r,global‍=1.24 respectively), and the systematic deviations from the experimental 

SAXS profiles were clearly exacerbated (Figure 5). These results suggest that, first, the resolution of 
the SAXS data is high enough to distinguish between different configurations of the MATH domains 
and, second, that the SAXS data are indeed in better agreement with a model where the MATH-BTB 
linker is flexible. Taken together, our results support a model where, in solution, SPOP oligomers 
behave as rigid, helical structures with flexible MATH domains that can extend away from the BTB/
BACK domains.

The comparison between the conformational ensembles generated with the MATH domains 
free or restrained also suggests that accurate conformational ensembles are necessary for accurate 
determination of the isodesmic ‍KD‍. Fitting the SAXS data using ensembles with the MATH domains 
restrained resulted in a lower isodesmic ‍KD‍, and calculating the agreement with SAXS for a range of 
isodesmic ‍KD‍ values revealed that there was no clear minimum in the ‍χ

2
r,global‍ for ‍KD‍ values > 0, which 

is also reflected in the large error range for the fitted ‍KD‍ (Figure 5—figure supplement 1). In line with 
this observation, validation with SAXS data at 15 µM protein revealed that improving the accuracy of 
the ensembles by reweighting also improved the accuracy of the fitted isodesmic ‍KD‍ independently 
of the fitted ensemble weights (Figure 3—figure supplement 1d).

To explore further how changes in the conformational ensemble would affect the agreement with 
the SAXS data, we used subsampling to generate ensembles with specific properties based on the 
ensembles with unrestrained MATH domains. To keep the comparison of ensembles unbiased by our 
previous fitting to the SAXS data, we used the isodesmic  ‍KD‍=1.6 µM from CG-MALS for all compar-
isons with SAXS. First, we selected frames with lower average MATH-BTB/BACK COM distances 
(Figure  5—figure supplement 3). In line with the results from simulations with restrained MATH 
domains, this worsened the agreement with the SAXS data. In contrast, selecting frames with higher 
average MATH-BTB/BACK COM distance slightly improved the agreement with the SAXS data, in 
line with the results from reweighting (Figure 5—figure supplement 4). We also wished to test how 
sensitive the agreement with the SAXS data was to the overall shape of the oligomers. However, the 
conformational space that we could explore by subsampling the ensembles was limited by the rigidity 
of the oligomers. Despite this limitation, we subsampled ensembles with slightly higher and lower 
end-to-end distances than the original ensembles, corresponding to oligomers that are more or less 
extended than the original ensembles. Again consistent with the results from reweighting, ensembles 
with lower end-to-end distance resulted in slightly worse agreement with the SAXS data (Figure 5—
figure supplement 5), while ensembles with higher end-to-end distance did not substantially change 
the agreement with the SAXS data (Figure 5—figure supplement 6). This result suggests that the 
SAXS data is less consistent with more compact SPOP oligomers, at least within the local part of 
conformational space explored here.

Self-association allows SPOP to bind disordered substrates that contain multiple SPOP binding 
motifs through multivalent interactions (Pierce et  al., 2016). We hypothesized that the spacing 
between MATH domains in SPOP oligomers could be related to the spacing between SPOP binding 
motifs in disordered substrates. To investigate this, we selected five SPOP substrates with multiple 
SPOP binding motifs located in IDRs (SETD2 Zhu et al., 2017, SCAF1 Theurillat et al., 2014, SRC3 Li 
et al., 2011; Geng et al., 2013; Janouskova et al., 2017, Gli2, and Gli3 Zhang et al., 2006; Zhang 

contains the distances from every conformation of every subunit in every oligomer. In black, distances between neighbouring SPOP binding sites in 
seven SPOP substrate IDRs calculated from CALVADOS simulations. (h) The fold-change in average COM distance between neighbouring MATH 
substrate binding sites after reweighting for all SPOP oligomers. (i) Overlay of conformational ensembles corresponding to the three populations in 
panel (e) The structures are from all non-terminal subunits of the SPOP dodecamer and are superposed on the BTB/BACK domains. (j) Overlay of 151 
randomly selected frames from the conformational ensemble of the SPOP 60-mer with atoms represented as spheres. Structures were superposed to 
the BTB/BACK domains in the four middle subunits. MATH domains are shown in orange and BTB/BACK domains are shown in blue.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. ‍Rg‍ distributions before and after reweighting.

Figure supplement 2. End-to-end distance distributions before and after reweighting.

Figure supplement 3. SPOP substrate motif-motif distances and motif-motif spacing.

Figure 4 continued
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Figure 5. Unrestrained MATH domains give better agreement with SAXS data. Comparison of conformational ensembles with MATH domains 
either unrestrained (blue) or restrained to BTB/BACK domains based on the configuration in the crystal structure (orange). (a) Relative populations of 
oligomers for the protein concentrations used in SAXS experiments. Note the logarithmic scale. Populations are given by the isodesmic model with 
the ‍KD‍ noted above the plot. ‍KD‍ was fitted globally to the SAXS data in panel (b). ‍χ

2
r,global‍ quantifies the agreement with SAXS data in panel b for the 

two setups. (b) Agreement between experimental SAXS data and averaged SAXS data calculated from conformational ensembles of SPOP oligomers 
generated with the two setups. Oligomer populations are given by the isodesmic model (as shown in panel a). Error-normalized residuals are shown 
below the SAXS profiles and ‍χ

2
r ‍ to each SAXS profile is shown on the plot. (c) Histogram of center-of-mass distances between MATH and BTB/BACK 

domains in the same subunit calculated from all conformations of all subunits of all oligomers. Average values are shown as dashed lines.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Determining the error of the fitted isodesmic ‍KD‍ with ensembles with MATH restrained.

Figure supplement 2. ‍Rg‍ distributions from simulations with MATH free and MATH restrained.

Figure 5 continued on next page
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et al., 2009) and ran coarse-grained simulations of their IDRs (seven IDRs in total) using CALVADOS, 
a one-bead-per-residue implicit solvent model that has been optimized to reproduce accurate global 
dimensions and transient interactions in IDPs (Tesei et al., 2021). We calculated the distances between 
neighbouring SPOP binding motifs in the simulations, and compared these with the distances between 
substrate-binding sites in neighbouring MATH domains given by our ensembles of SPOP oligomers 
(Figure 4g). This revealed substantial overlap between the two distributions, with a similar average 
distance between neighbouring binding sites in SPOP and in substrates, suggesting that the spacing 
of SPOP binding motifs in substrates may be evolutionarily optimized for multivalent binding to MATH 
domains.

Having analyzed the conformational properties of wild type SPOP and shown that the SAXS data 
are sensitive to the degree of self-association, we next wished to test whether our approach could 
capture the effects of mutations on SPOP self-association. We collected a concentration series of 
SAXS data on the SPOP mutant R221C, which has been identified in melanoma (Krauthammer et al., 
2012) and colorectal cancer (Giannakis et al., 2016). R221C is located in the BTB-BTB interface, so 
we hypothesized that it may affect SPOP’s propensity to self-associate. We used the same approach 
as for wild type to fit the isodesmic ‍KD‍ globally to the SAXS data, but without reweighting the confor-
mational ensembles. For R221C, the isodesmic ‍KD‍ was fitted to 8.2±2.3  µM, which resulted in a 
reasonable fit to the SAXS data with  ‍χ

2
global‍=1.79 (Figure 3—figure supplement 7), suggesting that 

the mutation results in a decreased propensity to self-associate compared with wild type (‍KD‍=0.9 µM 
using a comparable approach or 1.3 µM when also reweighting the ensemble). Because R221C is 
located at the BTB-BTB interface, the 6–9 fold increase of the isodesmic ‍KD‍ (which relates to BACK-
BACK dimerization) is perhaps surprising. While a long-range effect of R221C cannot be ruled out, 
an alternative mechanism may involve shifting the equilibrium of the BTB-BTB dimer, thus effectively 
decreasing the concentration of dimeric species available for self-association.

Discussion
The ability of SPOP, a cancer-associated substrate adaptor in the ubiquitination machinery, to self-
associate is important for its role in biology and disease. Characterizing the conformational ensemble 
of flexible and self-associating proteins such as SPOP from ensemble-averaged experiments is, 
however, difficult due to conformational and compositional heterogeneity. In one approach, SAXS 
data of mixtures may be attempted to be decomposed into contributions of individual components 
that may then be analysed separately (Herranz-Trillo et al., 2017; Meisburger et al., 2021). Here, we 
have developed an alternative ‘forward modelling’ approach to characterize proteins that undergo 
polydisperse oligomerization by self-consistently and globally fitting the distribution of oligomeric 
species and reweighting the conformational ensembles of the oligomers against SAXS data. A similar 
idea has recently been applied to study the self-association of tubulin using static structures as input 
(Shemesh et al., 2021). We recorded a concentration series of SAXS data on SPOP, which is known 
to form linear higher-order oligomers, and combined MD simulations with our approach to simulta-
neously refine conformational ensembles of thirty oligomeric states of SPOP along with the relative 
populations.

Our results suggest that SPOP oligomers are rigid, helical structures in solution and that the MATH-BTB 
linker is flexible, allowing for the extension of MATH domains away from the oligomer core. This is consis-
tent with SPOP’s proposed role in phase separation, as reconfiguration of the MATH domains could facili-
tate binding of substrates across multiple MATH domains and between different SPOP oligomers (Pierce 
et al., 2016; Bouchard et al., 2018). Indeed, the spacing of the MATH domains in our model of SPOP 
oligomers is consistent with the distances between motifs in ensembles of disordered SPOP substrates, 
based on coarse-grained simulations of disordered SPOP substrates. It has been suggested previously 

Figure supplement 3. Subsampling compact MATH domains.

Figure supplement 4. Subsampling extended MATH domains.

Figure supplement 5. Subsampling low end-to-end distance.

Figure supplement 6. Subsampling high end-to-end distance.

Figure 5 continued
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that rigidity could play an important role in the phase separation of SPOP oligomers by ensuring a low 
conformational entropy penalty upon stacking linear oligomers with cross-bound substrates in the dense 
phase (Schmit et al., 2020). This is also consistent with the rigid structural model of SPOP oligomers 
proposed here. Our results also provide orthogonal evidence that SPOP self-association is described 
well by the isodesmic model, and that the isodesmic ‍KD‍ for BACK-BACK mediated self-association is 
in the low micromolar range, in agreement with previous measurements by CG-MALS (Marzahn et al., 
2016). We also collected SAXS data and fitted the isodesmic ‍KD‍ for the SPOP mutant R221C. Our results 
suggest that SPOP R221C has a six- to ninefold decreased propensity to self-associate.

While the analysis of the SAXS data presented here does not strictly exclude the possibility that 
SPOP forms branched or otherwise non-linear oligomers, our results show that linear oligomers based 
only on the self-association interfaces known from existing crystal structures are consistent with SAXS 
data. Thus, linear oligomers seem to be the most plausible model based on this and other existing 
experimental evidence, for example that removal or mutation of either the BACK-BACK or BTB-BTB 
interface results in abolishment of higher-order self-association and that higher-order oligomers are 
formed through the self-association of SPOP dimers with every step of subunit-addition populated 
(Marzahn et al., 2016). Finally, as shown here, linear isodesmic self-association with the same ‍KD‍ 
provides a good fit to both SAXS and CG-MALS data (Marzahn et al., 2016).

The approach presented here to study SPOP can be extended to other polydisperse systems 
to characterize the distribution of oligomeric states and their conformational properties. However, 
there are a few limitations to be aware of; SAXS is a low-resolution technique, and may not be able 
to distinguish between all relevant conformations, a problem that is likely exacerbated here, as the 
contribution of many species to the SAXS signal may average out distinct features in the profile. One 
way to mitigate this problem is to construct multiple structural models, and test whether they show 
any difference in the agreement with the SAXS data. In the case of SPOP we used this approach to 
examine the flexibility of the MATH domain in SPOP28–359.

Another limitation of the approach is the correlation between the fitted distribution of oligomeric 
states and the conformational properties of the oligomers. Here, we observed that a low isodesmic 

‍KD‍ with large uncertainty was fitted when using more compact structures (MATH domains restrained), 
which suggests that the model can compensate for the underestimated dimensions of the proteins by 
increasing the populations of larger oligomers. Therefore, it is important to use prior conformational 
ensembles that are as accurate as possible. Additionally, it is important to include all the oligomeric 
species that make a substantial contribution to the SAXS data in the modelling. In the future, it might 
be relevant to include independent data reporting on the distribution of oligomeric species, such as 
from CG-MALS, when fitting SAXS data.

In the case of SPOP, we described the distribution of oligomers using the isodesmic self-association 
model, but this can be replaced by any model that describes the populations of the species in solution 
— with the caveat that there should not be too many free parameters to fit to the SAXS data. Similarly, 
the approach to generate prior conformational ensembles is not limited to MD simulations, and can 
be varied based on the system at hand. This flexibility in the modelling approach will make it useful to 
study other polydisperse systems in the future.

Methods
Protein expression and purification
The SPOP gene encoding residues 28–359 (His-SUMO-SPOP28–359) was expressed and purified as 
previously described (Bouchard et  al., 2018). Briefly, His-SUMO-SPOP28–359 was transformed into 
BL21-RIPL cells and expressed in auto-induction media (Studier, 2005). Cells were harvested, lysed, 
and cell debris was pelleted by centrifugation. The clarified supernatant was applied to a gravity 
Ni Sepharose resin equilibrated in resuspension buffer (30 mM imidazole, 1 M NaCl, pH 7.8). After 
washing with wash buffer (75 mM imidazole, 1 M NaCl, pH 7.8), the protein was eluted with a buffer 
containing 300 mM imidazole, 1 M NaCl, pH 7.8. One milligram of TEV protease was added to the 
eluted protein and the reaction was left to dialyze into 20 mM Tris pH 7.8, 300 mM NaCl, and 5 mM 

https://doi.org/10.7554/eLife.84147
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DTT at 4 °C overnight. The cleaved protein was then further purified using a Superdex S200 size-
exclusion chromatography column equilibrated with 20 mM Tris pH 7.8, 300 mM NaCl, and 5 mM DTT.

Small-angle X-ray scattering
SAXS experiments were performed at the LIX-beamline (16-ID) of the National Synchrotron Light 
Source II (Upton, NY) (DiFabio et al., 2016). Data were collected at a wavelength of 1.0 Å, yielding an 
accessible scattering angle range of 0.006 ‍< q <‍ 3.2 Å−1, where ‍q‍ is the momentum transfer, defined 
as ‍q = 4π sin(θ)/λ‍, where ‍λ‍ is the X-ray wavelength and 2θ is the scattering angle. Data with ‍q <‍ 0.4 Å−1 
were used for all analyses. Prior to data collection, SPOP was dialyzed into 20 mM Tris pH 7.8, 150 mM 
NaCl, and 5 mM DTT. Samples were loaded into a 1 mm capillary for ten 1 s X-ray exposures. Data 
were reduced at the beamline using the Python package py4xs.

Molecular dynamics simulations with Martini
We ran coarse grained molecular dynamics simulations of six SPOP28–359 oligomers ranging from the 
dimer to dodecamer (in steps of dimeric protomer subunits) using a beta version (3.0.4.17) of the 
Martini 3 force field (https://github.com/KULL-Centre/papers/tree/main/2020/TIA1-SAS-Larsen-et-al/​
Martini; Souza et al., 2021) and Gromacs 2020 (Abraham et al., 2015). We built the SPOP monomer 
structure using Modeller (Sali and Blundell, 1993) based on the crystal structure of the MATH and 
BTB domains (PDB: 3HQI) (Zhuang et al., 2009) and a crystal structure of the BACK domain (PDB: 
4HS2) (van Geersdaele et al., 2013). We built the dimer structure by superposing two monomer 
structures to the crystal structure of the BTB-BTB dimer interface in 3HQI. We then built larger oligo-
mers by iteratively adding dimer structures to the linear oligomer. Dimers were added by superposing 
the terminal BACK domain of the oligomer and a terminal BACK domain of the dimer to the structure 
of the BACK-BACK dimer (4HS2).

The starting structures were coarse grained using the Martinize2 python script. Elastic network 
restraints of 500 kJ mol–1 nm–2 between backbone beads within a 1.2 nm cut-off were applied with 
Martinize2 to keep folded domains intact and to hold oligomer subunits together. In the ‘MATH free’ 
model, we removed all elastic network restraints between MATH and BTB/BACK domains, between 
MATH and MATH domains, and in the linker region between MATH and BTB/BACK domains, while in 
the ‘MATH restrained’ model, we only removed elastic network restraints between MATH and MATH 
domains and in the linker region between MATH and BTB/BACK domains, but kept restraints between 
MATH and BTB/BACK domains. We added dihedral and angle potentials between side chains and 
backbone beads with the -scfix flag in Martinize2. Using Gromacs editconf, we placed the dimer and 
tetramer in a dodecahedral box. To keep the box volume small, larger oligomers were aligned with 
the principal axis of the system and placed in triclinic boxes that were thus elongated along the x-axis. 
To keep these oligomers from rotating and self-associating across the periodic boundary, we added 
soft harmonic position restraints of 5 J mol–1 nm–2 along the y- and z-axis to the backbone beads of 
the terminal BTB/BACK domains. We solvated the systems using the Insane python script (Wassenaar 
et al., 2015) and added 150 mM NaCl along with Na+ ions to neutralize the systems. In the ‘MATH 
free’ system, we rescaled the ‍ϵ‍ of the Lennard-Jones potentials between all protein and water beads 
by a factor 1.06 to favour extension of the MATH domains into solution (Thomasen et al., 2022), while 
the unmodified Martini 3 beta v.3.0.4.17 was used for the ‘MATH restrained’ model.

Energy minimization was performed using steepest descent for 10,000 steps with a 30 fs time-step. 
Simulations were run in the NPT ensemble at 300 K and 1 bar using the Velocity-Rescaling thermostat 
(Bussi et  al., 2007) and Parinello-Rahman barostat (Parrinello and Rahman, 1981). Non-bonded 
interactions were treated with the Verlet cut-off scheme. The cut-off for Van der Waals interactions 
and Coulomb interactions was set to 1.1 nm. A dielectric constant of 15 was used. We equilibrated the 
systems for 10 ns with a 2 fs time-step and ran production simulations for 60 µs with a 20 fs time-step, 
saving a frame every 1 ns.

After running the simulations, molecule breaks over the periodic boundaries were treated with 
Gromacs trjconv using the flags -pbc mol -center. Simulations were backmapped to all-atom using 
a modified version of the Backward algorithm (Wassenaar et  al., 2014), in which simulation runs 
are excluded and energy minimization is shortened to 200 steps (Larsen et al., 2020). Every fourth 
simulation frame was backmapped for a total of 15,000 conformers in each backmapped ensemble.

https://doi.org/10.7554/eLife.84147
https://github.com/KULL-Centre/papers/tree/main/2020/TIA1-SAS-Larsen-et-al/Martini
https://github.com/KULL-Centre/papers/tree/main/2020/TIA1-SAS-Larsen-et-al/Martini
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Constructing ensembles of larger SPOP oligomers
We constructed conformational ensembles of larger SPOP28–359 oligomers with up to 60 subunits by 
joining together conformers from the all-atom backmapped ensembles of the SPOP dodecamer. Using 
ensembles of two input SPOP oligomers (SPOP 1 and SPOP 2) we started by removing the last subunit 
of SPOP 1 and the first subunit of SPOP 2 to ensure that the newly joined subunits were internal and 
not terminal. We then removed additional subunits from SPOP 2 to reach the desired length of the 
output oligomer. Then, we selected a random frame from SPOP 1 and SPOP 2, superposed the BTB/
BACK domains of the last two subunits of SPOP 1 to the BTB/BACK domains of the first two subunits 
of SPOP 2, and deleted the first two subunits of SPOP 2. Next, we checked for clashes between the 
newly joined subunits (shortest interatomic distance <0.4 Å), and rejected the new frame if there was 
a clash. This approach ensured that the terminal subunits in the constructed oligomer were also the 
terminal subunits in the MD simulation of the dodecamer, while all internal subunits in the constructed 
oligomer were also internal in the MD simulation. This approach was repeated to create 15,000 struc-
tures of each larger oligomer.

Calculating SAXS intensities from conformational ensembles
We calculated SAXS intensities from each of the 15,000 conformers in each of our all-atom ensembles 
of SPOP oligomers using Pepsi-SAXS (Grudinin et al., 2017). To avoid overfitting to the experimental 
SAXS data, we used fixed values for the parameters that describe the contrast of the hydration layer, 

‍δρ‍=3.34 e/nm3, and the volume of displaced solvent, r0/rm = 1.025, that have been shown to work well 
for intrinsically disordered and multidomain proteins (Pesce and Lindorff-Larsen, 2021). The forward 
scattering (‍I(0)‍) was set equal to the number of subunits in the oligomer, in order to scale the SAXS 
intensities proportionally to the particle volume.

The isodesmic self-association model and averaging of SAXS intensities
The experimental SAXS profiles of SPOP report on the average of a polydisperse mixture of oligo-
meric species in solution. The concentration of each oligomer should follow the isodesmic model 
where the concentration of the smallest subunit, the BTB-BTB dimer, is given by:

	﻿‍
c1 = 2ctotKA + 1 −

√
4ctotKA + 1

2ctotK2
A ‍

 
�

(1)

The concentration ci of any larger oligomer with ‍i‍ subunits can be calculated given c1 and the 
concentration of oligomer ‍i‍–1, ci-1:

	﻿‍ ci = KAci−1c1‍� (2)

‍KA‍ is the isodesmic association constant and ‍ctot‍ is the total concentration of protomers. Here 
we assume that the SPOP BTB-BTB dimer is always fully formed (Marzahn et al., 2016) and ‍ctot‍ in 
Equation 1 is thus half of the total protein concentration reported for the SAXS experiments, which 
refers to the SPOP monomer concentration. Given the concentration ci of each oligomer ‍i‍ from the 
isodesmic model, we can calculate the volume fraction ‍ϕi‍ of the oligomer:

	﻿‍
ϕi = ici∑N

i ici ‍�
(3)

The average SAXS intensities from the mixture of oligomers ‍⟨I⟩mix‍ are then given by:

	﻿‍
⟨I⟩mix =

N∑
i
⟨I⟩i,ensembleϕi

‍�
(4)

where ‍⟨I⟩i,ensemble‍ is the conformationally averaged SAXS intensity of oligomer ‍i‍. Note that the 
magnitude of the SAXS intensities calculated with Pepsi-SAXS were set to be proportional to the 
number of subunits in the oligomer, so given Equations 3 and 4 the total contribution of each 
oligomer to the averaged SAXS intensity is proportional to ‍i2ci‍.

https://doi.org/10.7554/eLife.84147
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Self-consistent optimization of isodesmic model parameters and 
conformational ensemble weights
The algorithm we developed to self-consistently optimize the isodesmic distribution of oligomer 
concentrations and reweight the conformational ensemble of each oligomer against SAXS data 
consists of three iterative steps: (1) fitting the scale and constant background of the SAXS data, (2) 
fitting the isodesmic ‍KA‍, and (3) reweighting the conformational ensemble of each oligomer using 
BME reweighting. We used a concentration series of SAXS experiments, to which the isodesmic ‍KA‍ 
was fitted globally, and only subsequently transformed the ‍KA‍ to the ‍KD‍ (‍KD = 1/KA‍) for reporting our 
results.

Step 1: Fitting the SAXS scale and constant background
The following step was repeated for each SAXS experiment in the concentration series. The concen-
tration of each oligomer was calculated using the isodesmic model with the given ‍ctot‍ (Equations 1 
and 2). The average SAXS intensities ‍⟨I⟩mix‍ from all oligomers were then calculated using Equations 3 
and 4. The scale and constant background (‍cst‍) of ‍⟨I⟩mix‍ were fitted to the experimental SAXS intensi-
ties, ‍Iexp‍, using least-squares linear regression weighted by the experimental errors (LinearRegression 
function in scikit-learn Pedregosa et al., 2011):

	﻿‍ Iexp = scale⟨I⟩mix + cst‍� (5)

In practice, to avoid modifying the SAXS scale and constant background for every conformer in our 
ensembles, we instead performed the inverse operation on the experimental SAXS profile:

	﻿‍
Iexp,fit =

Iexp − cst
scale ‍�

(6)

and propagated the experimental errors ‍σexp‍ accordingly:

	﻿‍
σexp,fit =

σexp
|scale|‍� (7)

Step 2: Fitting the isodesmic model
The isodesmic ‍KA‍ was fitted globally to the concentration series of SAXS experiments using Metrop-
olis Monte Carlo (Metropolis et al., 1953) with simulated annealing. For each Monte Carlo step, we 
generated a new random ‍KA‍ with a Gaussian probability distribution centered around the previous 

‍KA‍, calculated new oligomer concentrations and corresponding ‍⟨I⟩mix‍ for each SAXS experiment in 
the concentration series using Equations 1–4, and for each SAXS experiment calculated the reduced 

‍χ
2
‍, ‍χ

2
r ‍, as:

	﻿‍
χ2

r = 1
m

m∑
j

(⟨I⟩j,mix − Ij,exp)2

σ2
j,exp ‍�

(8)

where ‍m‍ is the number of SAXS intensities ‍j‍ in the SAXS profile. We then calculated the average 
of the ‍χ

2
r ‍-values across the SAXS concentration series to get the global ‍χ

2
r ‍, ‍χ

2
r,global‍, as the number 

of intensities was the same in each SAXS profile. Next, we evaluated the acceptance criterion by 
calculating:

	﻿‍
α = exp

(
−
χ2

new,r,global − χ2
old,r,global

T

)

‍�
(9)

where ‍χ
2
new,r,global‍ and ‍χ

2
old,r,global‍ are the from the current and previous Monte Carlo step respec-

tively and ‍T ‍ is the simulated annealing temperature. If ‍α‍ > 1, we accepted the new ‍KA‍. If ‍α‍=1, we 
generated a random number, ‍rand‍, between 0 and 1, and if ‍α‍ > ‍rand‍, accepted the new ‍KA‍. Other-
wise, we kept the ‍KA‍ from the previous Monte Carlo step. Finally, we decreased ‍T ‍ for the next Monte 
Carlo step.

https://doi.org/10.7554/eLife.84147
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Step 3: Reweighting the conformational ensemble
The following step was repeated for each SAXS experiment in the concentration series. We calculated 
the oligomer concentrations using the isodesmic model given the new ‍KA‍ determined in step 2. For 
each oligomer ‍i‍, we extracted a SAXS profile for BME reweighting from the experimental profile using 
the following method: we calculated the average SAXS profile from the ensembles as in Equation 4 
but leaving out oligomer ‍i‍ from the sum to get ‍⟨I⟩mix,rest‍. Next, we determined the contribution of 
species ‍i‍ to the experimental SAXS intensity as:

	﻿‍
⟨I⟩i,extr =

Iexp − ⟨I⟩mix,rest
ϕi ‍�

(10)

where ‍Iexp‍ is the experimental SAXS intensity and ‍ϕi‍ is the volume fraction of oligomer ‍i‍. We then 
propagated the error ‍σi,extr‍ on ‍⟨I⟩i,extr‍ from both the errors on the experimental SAXS intensities and the 
errors on the calculated SAXS intensities, which we determined using block error analysis (Flyvbjerg and 
Petersen, 1989). The propagated errors were given by:

	﻿‍
σi,extr =

√
σ2

exp +
∑N

r (σr,blockϕr)2

ϕi ‍�
(11)

where the sum ‍r‍ to ‍N ‍ runs over all oligomers that contributed to ‍⟨I⟩mix,rest‍, ‍σexp‍ is the error on the 
experimental SAXS intensity, ‍σr,block‍ is the error on the average SAXS intensity calculated from the 
ensemble of oligomer ‍r‍ prior to reweighting using block error analysis (https://github.com/fpesceKU/​
BLOCKING; Pesce, 2023), and ‍ϕi‍ is the volume fraction of oligomer ‍i‍. The conformational ensemble of 
oligomer ‍i‍ was then reweighted against this extracted SAXS profile using BME reweighting (Bottaro 
et al., 2020), in which a set of ensemble weights ‍w‍ are obtained by minimizing the function:

	﻿‍
L(w1...wn) = m

2
χ2

r (w1...wn) − θSrel(w1...wn)
‍� (12)

where ‍n‍ is the number of ensemble conformations, ‍m‍ is the number of experimental observables (in 
this case the number of SAXS intensities in the profile), ‍χ

2
r ‍ quantifies the agreement between ‍⟨I⟩ensemble‍ 

and ‍⟨I⟩extr‍, ‍Srel‍ is the relative Shannon entropy that quantifies the deviation of the new weights from 
the initial weights, ‍w0‍, and ‍θ‍ is a scaling parameter that quantifies the confidence in the experimental 
data versus the prior ensemble. ‍χ

2
r ‍ is given by:

	﻿‍
χ2

r (w1...wn) = 1
m

m∑
j

∑n
k(wkIj,k,ensemble − ⟨I⟩j,extr)2

σ2
j,extr ‍�

(13)

where ‍Ij,k,ensemble‍ is the SAXS intensity ‍j‍ calculated from the conformer ‍k‍ of the ensemble. ‍Srel‍ is 
given by:

	﻿‍
Srel = −

n∑
k

wklog

(
wk
w0

k

)

‍�
(14)

Using the ensemble weights obtained from BME reweighting, we calculated new weighted average 
SAXS intensities, ‍⟨I⟩i,ensemble‍, from the ensemble of oligomer ‍i‍. The process of extracting a SAXS profile 
followed by BME reweighting was repeated for each oligomer.

Optimization parameters
The three steps described above were repeated iteratively to converge on self-consistent values of 
the SAXS scale and constant background, the isodesmic ‍KA‍, and the ensemble weights for each 
oligomer species. As the SAXS profile against which the ensemble of each oligomer was reweighted is 
a function of the ensemble weights of all other oligomeric species, we wished to reweight the ensem-
bles only slightly in initial iterations, and then gradually increase the degree of reweighting as the 
conformational weights and isodesmic ‍KA‍ converged. We achieved this by starting with a high value 
of ‍θ‍ (Equation 12) and then gradually decreasing ‍θ‍ each iteration. The fraction of effective frames, 

‍ϕeff ‍, given by ‍exp(Srel)‍, provides a measure of the fraction of the initial ensemble that is retained after 
reweighting. At every iteration, we checked whether the ensemble of each oligomer had reached a 

https://doi.org/10.7554/eLife.84147
https://github.com/fpesceKU/BLOCKING
https://github.com/fpesceKU/BLOCKING
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‍ϕeff ‍ below a set cut-off, after which ‍θ‍ was no longer decreased for that specific oligomer. Thus, the 
overall degree of reweighting could be tuned through selection of this ‍ϕeff ‍-cut-off.

We ran the optimization scheme for 1000 iterations starting with  ‍θ‍=100 and decreasing ‍θ‍ by 2% 
every iteration. The simulated annealing of the isodesmic ‍KA‍ was run from  ‍T ‍=10 to ‍T ‍=0.1 every iter-
ation, with ‍T ‍ decreased by 30% every Monte Carlo step, and with a standard deviation of 0.1 µM−1 
for the Gaussian probability distribution used to generate the new ‍KA‍. The step was repeated if ‍KA ≤‍ 
0 was generated.

Preventing overfitting of ensemble weights
We ran the optimization with a range of ‍ϕeff ‍-cut-offs from 0.1 to 1. To prevent overfitting, we aimed 
to choose a value of ‍ϕeff ‍ that retained as much of the prior ensemble as possible (high ‍ϕeff ‍) while not 
sacrificing substantial improvement in the fit to the SAXS data (low ‍χ

2
r,global‍). As an additional approach 

to prevent overfitting, we left out the SAXS experiment recorded with 15 µM protein from the opti-
mization, and used it as validation for the determined weights (averaged as explained in the next 
section) and isodesmic ‍KA‍ at different values of the ‍ϕeff ‍-cut-off. For each ‍ϕeff ‍-cut-off, we fitted only the 
SAXS scale and constant background to the 15 µM SAXS experiment. We tested the effect of using 
the fitted ‍KA‍ and ensemble weights in combination, but also the effect of using only the fitted ‍KA‍ or 
ensemble weights independently. Although in all cases the fitted ‍KA‍ and ensemble weights combined 
improved the fit to the SAXS data compared with the initial weights and ‍KA‍, ‍ϕeff ‍-cut-off=0.4 was 
the lowest value of ‍ϕeff ‍ where the fit was not improved by replacing the fitted weights with uniform 
weights in combination with the fitted ‍KA‍ (Figure 3—figure supplement 1). Thus, we selected the 
conformational weights and isodesmic ‍KA‍ determined with ‍ϕeff ‍-cut-off=0.4 to avoid overfitting the 
ensemble weights.

Averaging the conformational weights from different SAXS 
experiments
The optimization scheme outputs a set of conformational weights for each SAXS experiment in the 
concentration series. We combined these conformational weights to obtain a single set of weights 
for further analysis, under the assumption that the conformational properties of each SPOP oligomer 
are independent of protein concentration. The distribution of oligomeric species from the isodesmic 
model depends on the protein concentration. Thus, each SAXS experiment does not contain the same 
amount of information on every oligomer; SAXS experiments at lower concentrations have a relatively 
smaller contribution from large oligomers and vice versa. Therefore, we weighted the averaging of the 
conformational weights to reflect this mismatch in information. The average weight of conformation 
‍k‍ of oligomer ‍i‍ was calculated as:

	﻿‍
⟨w⟩k,i =

o∑
l

wk,i,lρi,l
‍�

(15)

where ‍wk,i,l‍ is the weight of conformer ‍k‍ of oligomer ‍i‍ from reweighting against SAXS experiment ‍l‍ 
and ‍ρi,l‍ is the contribution of oligomer ‍i‍ to SAXS experiment ‍l‍ relative to the contribution of oligomer 
‍i‍ to the other SAXS experiments in the concentration series, given by:

	﻿‍

ρi,l = 1∑o
l

i2ci,l∑N
i i2ci,l

i2ci,l∑N
i i2ci,l

‍�
(16)

where ‍ci,l‍ is the concentration of oligomer ‍i‍ in SAXS experiment ‍l‍ given by the isodesmic model. 
For a plot of the contributions ‍ρi,l‍, see Figure 3—figure supplement 9.

Determining the error of the fitted isodesmic KD

To determine the uncertainty of the isodesmic ‍KD‍ fitted with our optimization scheme, we scanned 
a range of ‍KD‍ values around the fitted ‍KD‍ and determined the ‍χ

2
r,global‍ to the concentration series of 

SAXS data. We used the same ensemble weights for every value of ‍KD‍, and only fitted the scale and 
constant background to the SAXS data. We then defined the error of the fitted ‍KD‍ to include all ‍KD‍ 
values that gave a ‍χ

2
r,global‍ to the SAXS data within 10% of the minimum ‍χ

2
r,global‍.

https://doi.org/10.7554/eLife.84147
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Analysis of SPOP conformational ensembles
‍Rg‍ was calculated from ensembles using the gyrate function in Gromacs. End-to-end distances were 
calculated from ensembles as the distances between the center-of-mass (COM) of the BTB/BACK 
domains in the terminal subunits using the compute_center_of_mass function in MDTraj (McGibbon 
et al., 2015) and the ​linalg.​norm function in NumPy (Harris et al., 2020). We fitted ensemble aver-
aged end-to-end distances against oligomer size (number of subunits) with a power law: ‍RE-E = R0Nν

‍, 
where R0 is the subunit segment size, ‍N ‍ is the number of subunits in the oligomer, and ‍ν‍ is a scaling 
exponent, using the curve_fit function in SciPy (Virtanen et al., 2020). To subsample ensembles with 
extended or compacted oligomers, frames were selected with ‍RE-E > max(RE-E) − max(RE-E)−⟨RE-E⟩

2 ‍ or 

‍RE-E < min(RE-E) + ⟨RE-E⟩−min(RE-E)
2 ‍ respectively, where ‍max(RE-E)‍ and ‍min(RE-E)‍ are the maximum and 

minimum over all frames of the ensemble and ‍⟨RE−E⟩‍ is the ensemble average. MATH-BTB/BACK 
COM distance was calculated from ensembles as the distance between the COM of the MATH domain 
and BTB/BACK domains in every subunit using the compute_center_of_mass function in MDTraj and 
the ​linalg.​norm function in NumPy. The histogram of MATH-BTB/BACK COM distances shows values 
for all conformations of all subunits of all oligomers. To subsample ensembles with compacted or 
extended MATH domains, frames were selected with an average MATH-BTB/BACK COM distance 
over all subunits <4.4 nm or >5.2 nm, respectively. The COM distance between substrate binding 
sites in neighbouring MATH domains was calculated from ensembles using the distance function in 
Gromacs. The MATH substrate binding site was defined as residue Arg70, Tyr87, Ser119, Tyr123, and 
Lys129-Phe133. The histogram of MATH binding site COM distances shows values for all conforma-
tions of all subunits of all oligomers. Structures for Figure 4i were selected by fitting three Gaussians 
to the histogram in Figure 4e (after reweighting) using SciPy curve_fit and for each Gaussian selecting 
conformers within 0.1σ of the mean. All visualizations of protein structures were made with ChimeraX 
(Pettersen et al., 2021). To examine the agreement of single frames drawn from the ensembles with 
SAXS data, we drew a random frame from the ensemble of each oligomer and scanned the isodesmic 

‍KD‍ from 0.01 to 100 µM (with 10,000 log-spaced steps) to select the ‍KD‍ that gave the optimal agree-
ment with the SAXS concentration series based on ‍χ

2
r,global‍. The SAXS scale and constant background 

were fitted for each ‍KD‍. This procedure was repeated for 10,000 iterations. The same procedure was 
performed with oligomer structures constructed prior to the MD simulations.

Dimer-oligomer equilibria and averaging of SAXS intensities
For dimer-oligomer equilibria, the total concentration of BTB-mediated dimer subunits (both free 
and in oligomers), ‍ctot,dimer‍, was assumed to be half of the total SPOP monomer concentration. We 
determined the equilibrium dimer concentration, ‍cdimer‍, and oligomer concentration, ci, for a given 
association constant ‍KA‍ using:

	﻿‍
KA = ci

c(i/2)
dimer ‍�

(17)

and the equation for conservation of mass:

	﻿‍
ci =

ctot,dimer − cdimer
i/2 ‍� (18)

where, ‍i‍ is the number of subunits in the oligomer. The averaged SAXS intensities ‍⟨I⟩mix‍ were then 
calculated as:

	﻿‍ ⟨I⟩mix = ϕdimer⟨I⟩dimer,ensemble + ϕi⟨I⟩i,ensemble‍� (19)

where ‍⟨I⟩dimer,ensemble‍ and ‍⟨I⟩i,ensemble‍ are the ensemble averaged SAXS intensity for the dimer and 
oligomer, and ‍ϕdimer‍ and ‍ϕi‍ are the volume fractions of the dimer and oligomer calculated based 
on the concentrations and number of subunits. For each possible dimer-oligomer equilibrium, we 
scanned ‍KA‍ values from 10−12–1012 µM−1 and selected the ‍KA‍ that gave the optimal agreement with 
the SAXS concentration series based on ‍χ

2
r,global‍. The SAXS scale and constant background were fitted 

for each ‍KA‍.

https://doi.org/10.7554/eLife.84147


 Research article﻿﻿﻿﻿﻿﻿ Structural Biology and Molecular Biophysics

Thomasen et al. eLife 2023;12:e84147. DOI: https://doi.org/10.7554/eLife.84147 � 19 of 23

Molecular dynamics simulations with CALVADOS
We selected five SPOP substrates with at least 8 SPOP binding motifs (Cuneo and Mittag, 2019) 
for simulations (SETD2 Zhu et al., 2017, SCAF1 Theurillat et al., 2014, SRC3 Li et al., 2011; Geng 
et al., 2013; Janouskova et al., 2017, Gli2, and Gli3 Zhang et al., 2006; Zhang et al., 2009). We 
selected the IDRs of these proteins based on low Alphafold pLDDT scores and pairwise alignment 
errors (Jumper et al., 2021). We ran coarse-grained simulations of these with CALVADOS 2 (Tesei 
et al., 2021; Tesei and Lindorff-Larsen, 2023). Simulations were run at 298 K, with an ionic strength 
of 150 mM, and pH 7.2 for determining the partial charge of histidine side-chains. Simulations were 
run for ‍3 × 103N2

res‍ steps, where ‍Nres‍ is the number of residues, using a 10 fs time-step (Tesei and 
Lindorff-Larsen, 2023). Frames were saved every ‍3N2

res‍ steps to obtain weakly correlated frames. We 
used a 2 nm cutoff for the Ashbaugh-Hatch potential and a 4 nm cutoff for the Debye-Hückel poten-
tial. All simulations were started from a linear arrangement of the protein chain, except for simulations 
of the two longest IDRs, SCAF1 IDR and SETD2 IDR 1, which were started from an Archimedean spiral 
arrangement. Simulations were performed with HOOMD-blue 2.9.3 (Anderson et al., 2020).

Analysis of motif spacing in SPOP substrates
We identified SPOP binding motifs in the substrate sequences as five consecutive positions with resi-
dues 1: GAVLIMWFPC, 2: STCYNQDEHR, 3: ST, 4: STCYNQDEHR, 5: ST or 1: GAVLIMWFPC, 2: 
STCYNQDEHR, 3: ST, 4: ST, 5: STCYNQDEHR, where each set of amino acids are allowed at the given 
position (Zhuang et al., 2009; Cuneo and Mittag, 2019). We calculated a histogram of all distances 
between neighbouring motifs in the SPOP susbstrate sequences over the CALVADOS simulations. 
Distances were calculated between the middle residue beads of the neighbouring motifs using the 
compute_contacts function in MDTraj. We also calculated the average distance, ‍R‍, between each 
neighbouring motif and fit this with a power law ‍R = R0Nν

‍, where R0 is the segment size, ‍N ‍ is the 
number of residues spacing the two motifs, and ‍ν‍ is a scaling exponent, using the curve_fit function 
in SciPy.

Fitting CG-MALS data
Given the concentration of each oligomer from the isodesmic model, the average molecular weight, 
as measured by CG-MALS, was calculated as:

	﻿‍
⟨MW⟩ =

���� 1
N
∑N

i ci

N∑
i

(iMWmonomer)2ci

‍�
(20)

where ‍N ‍ is the number of oligomers, ci is the concentration of oligomer ‍i‍ given by the isodesmic 
model and ‍MWmonomer‍ is the molecular weight of the subunit of oligomerization.

We fitted the isodesmic ‍KD‍ and ‍MWmonomer‍ to the CG-MALS data from Marzahn et al., 2016. The 
CG-MALS data consists of two merged data-sets, so we allowed a different ‍MWmonomer‍ for each of the 
two merged data-sets to absorb uncertainties from determination of the protein concentrations. The 

‍KD‍ was fitted globally to the two merged data-sets, and the error of the fit on the ‍KD‍ was set to two 
standard deviations. Fitting was done with the curve_fit function in SciPy.
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