Review began 01/23/2023 Review ended 01/30/2023 Published 02/07/2023

© Copyright 2023

Chandrakumar et al. This is an open access article distributed under the terms of the Creative Commons Attribution License CC-BY 4.0., which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

The Effects of Bariatric Surgery on Cardiovascular Outcomes and Cardiovascular Mortality: A Systematic Review and Meta-Analysis

Harshith Chandrakumar 1 , Nazima Khatun 1 , Tanuj Gupta 1 , Suzette Graham-Hill 2 , Angelina Zhyvotovska 3 , Samy I. McFarlane 1

1. Internal Medicine, State University of New York (SUNY) Downstate Health Sciences University Hospital, Brooklyn, USA 2. Cardiology, Kings County Hospital Center, Brooklyn, USA 3. Cardiology, Lenox Hill Hospital, Manhattan, USA

Corresponding author: Samy I. McFarlane, samy.mcfarlane@downstate.edu

Abstract

Obesity is a major public health problem that is associated with serious comorbidities and premature mortality. Cardiovascular disease (CVD) is the major cause of morbidity and mortality associated with obesity. Lifestyle modifications, pharmacological therapy, and weight reduction surgery are the major interventions to date available for obesity management. Bariatric surgery has been increasingly utilized as a therapeutic option for obesity. In this meta-analysis, we aim to assess the effects of bariatric surgery on CVD outcomes and cardiovascular mortality. This study was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) checklist. PubMed, Embase, Cochrane Library, Google Scholar, and Web of Science were searched until 03/01/2022. Our search included three types of bariatric surgery: Roux-en-Y gastric bypass (RYGB), sleeve gastrectomy, and gastric banding (GB). All were searched in conjunction with "coronary artery disease," "ischemic heart disease," "myocardial infarction," "cerebrovascular accident," "stroke," "atrial fibrillation," "heart failure," "arrhythmias," and "mortality."

We included 49 studies meeting the study criteria. Bariatric surgery showed a beneficial effect on coronary artery disease (CAD) (hazard ratio (HR) of 0.68 {95% confidence interval (CI): 0.52-0.91}, p = 0.008), myocardial infarction (MI) (HR of 0.53 {95% CI: 0.44-0.64}, p < 0.01) heart failure (HF) (HR of 0.45 {95% CI: 0.37-0.55}, p < 0.01), cerebrovascular accident (CVA) (HR of 0.68 {95% CI: 0.59-0.78}, p < 0.01), and cardiovascular mortality (HR of 0.48 {95% CI: 0.40-0.57}, p < 0.01). The effect on atrial fibrillation (AF) did not reach statistical significance: HR of 0.81 (95% CI: 0.65-1.01), p = 0.07. Our study, that is, an updated meta-analysis, including the three types of procedure, confirms beneficial effects on the major CVD outcomes, including coronary artery disease, myocardial infarction, cerebrovascular accident, and heart failure, and on CVD mortality. This study provides updated insights into the long-term CV effects of bariatric surgery, an increasingly common intervention for obesity.

Categories: Cardiology, Endocrinology/Diabetes/Metabolism, Preventive Medicine Keywords: stroke, cerebrovascular accident, myocardial infarction, coronary artery disease, cardiovascular disease, gastric banding, sleeve gastrectomy, roux-en-y gastric bypass, bariatric surgery, obesity

Introduction And Background

Obesity is a multifactorial disorder associated with serious complications including diabetes, dyslipidemia, cancer, and cardiovascular disease (CVD) [1,2]. Its prevalence has been uptrending over the last few decades, and it has become a modern-day epidemic [3]. Per the 2013 American Heart Association (AHA)/American College of Cardiology (ACC) guidelines, overweight is defined as a body mass index (BMI) of 25 to <30 kg/m² and obesity as a BMI of 30 kg/m² [4]. According to the 2017-2018 National Health and Nutrition Examination Survey (NHANES), at least two in five adults (42.4% prevalence) have obesity. This is an increase from the 1999-2000 data with a much lower prevalence of 30.5% [3]. The etiologies leading to obesity could be biological, psychosocial, socioeconomic, and environmental factors [2]. Although unhealthy dietary habits play a major role, racial differences [5] and socioeconomic factors play a major role in the high prevalence of obesity and its complications among minority populations [6]. A higher BMI was strongly associated with higher comorbid cardiovascular risk factors [1]. Of the BMI-related deaths, 41% were notably due to cardiovascular diseases [7].

Obesity is a major contributor to cardiovascular risk factors including hypertension, hyperlipidemia, coronary artery disease (CAD), heart failure (HF), stroke, sleep apnea, and arrhythmias [8]. Its pathogenesis is linked to proinflammatory factors and vessel wall remodeling, among others. Obesity accelerates atherosclerosis by promoting lipid deposition and atherothrombosis formation. It further activates the cytokines and interleukins causing endothelial dysfunction and vascular remodeling [2]. This translates into cardiovascular disease (CVD) events including CAD, myocardial infarction (MI), and stroke. Excess visceral adiposity leads to the activation of renin-angiotensin-aldosterone system, cytokine gene expression, and increased systemic circulation of proatherogenic factors [2,9]. This in turn leads to myocardial fat accumulation, increased stroke volume, cardiac wall remodeling, and fibrosis manifesting as heart failure [2,10]. Similar mechanisms lead to left atrial enlargement and fibrosis contributing to arrhythmogenesis [11].

Lifestyle modifications and increased physical activity are the initial modalities recommended in the management of obesity. Patients with a BMI of at least 40 or >35 kg/m² with serious obesity-related comorbidities are considered eligible for bariatric surgery [12]. The commonly performed bariatric surgeries include sleeve gastrectomy, Roux-en-Y gastric bypass (RYGB), and gastric banding (GB) [12]. Sleeve gastrectomy is currently the most commonly performed owing to lower risk of complications. The benefits of bariatric surgery include greater long-term weight loss, reduction of major adverse cardiovascular events (MACE) [13], and cardiovascular mortality [14].

In this study, we aimed to perform an updated systematic review and a meta-analysis on bariatric surgery and major cardiovascular outcomes. The bariatric surgeries examined in our study include RYGB, sleeve gastrectomy, and gastric banding.

Review

Methods

Literature Search and Search Strategy

This study was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) checklist [15]. Articles were searched online by two investigators independently through five databases and additional online sources. PubMed, Embase, Cochrane Library, Google Scholar, and Web of Science were searched at the University Hospital of Brooklyn library. Articles were restricted to only English language and searched until 03/01/2022. The search included three common types of bariatric surgery: Roux-en-Y gastric bypass, sleeve gastrectomy, and gastric banding. The search strategies included "Bariatric surgery" AND "Cardiovascular diseases," "Roux en Y Gastric bypass" AND "Cardiovascular diseases," "Sleeve gastrectomy" AND "Cardiovascular diseases," and "Gastric banding" AND "Cardiovascular diseases," "Ischemic heart disease," "myocardial infarction," "cerebrovascular accident," "stroke," "atrial fibrillation," "heart failure," and "arrhythmias." We also reviewed prior meta-analysis articles to account for missing articles. The initial search included 3981 articles from all databases. After the removal of duplicates, 2515 articles were reviewed. A repeat search was done during manuscript writing, and additionally, one article was included in the analysis.

Study Selection and Quality Assessment

Articles were reviewed by assessing article titles and abstracts independently by two investigators (HC and TG). The intervention group included patients undergoing bariatric surgery (Roux-en-Y gastric bypass, sleeve gastrectomy, and gastric banding). The control group included non-surgical obese patients.

Patients of age >18 years and BMI of >30 kg/m² with a follow-up of at least 12 months were included. Further, these studies had to include a control group and should assess at least one of the outcomes. Exclusion criteria included the following: (i) patients with malignancy, (ii) case series and conference abstracts, and (iii) studies involving cardiovascular disease cohort at baseline. But studies noting incidental cardiovascular diseases among baseline comorbid characteristics were not excluded. The quality of the studies was evaluated by the Newcastle-Ottawa Scale (NOS). Studies with less than five points carry a high risk of bias, and those with more than seven points were deemed of good quality.

Outcomes Studied

Six outcomes were studied in total. This includes CAD, MI, HF, atrial fibrillation, cerebrovascular accident (CVA), and cardiovascular disease-specific mortality. Studies assessing all-cause mortality only were excluded.

Data Extraction

Eighty-five articles were reviewed in detail, of which 49 studies were included. The reasoning for study exclusion is elaborated in the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flowchart (Figure 1). We extracted the following study details: sample size, gender, BMI, duration of follow-up, and end point data. The event data for intervention and control groups were obtained. Further, the adjusted and unadjusted hazard ratios (HR) with confidence intervals (CI) were extracted for the outcomes studied.

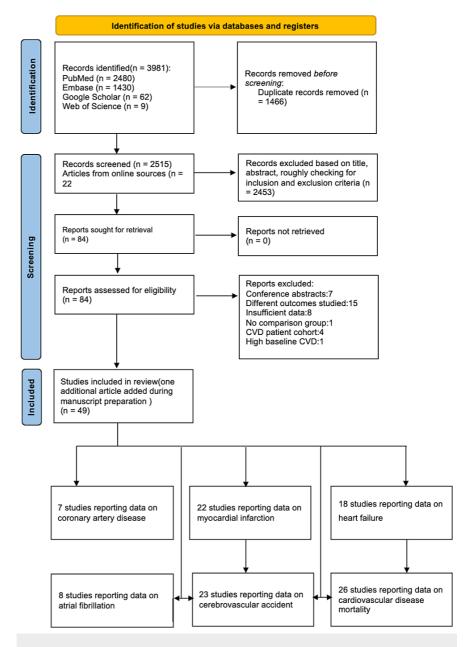


FIGURE 1: The Preferred Reporting Items for Systematic Reviews and Meta-Analyses flowchart is shown elaborating the literature databases and the study selection

CVD: cardiovascular disease

Statistical Analysis

The meta-analysis was performed with Cochrane's Review Manager (RevMan) version 5.4. Adjusted hazard ratios were considered for the final analysis as the event rates were available for fewer studies. Hazard ratios (HR) were log transformed, and the confidence interval (CI) was used to measure standard error (SE). Genetic inverse variance and random effects model were used to obtain pooled HR and hence study the association between bariatric surgery and cardiovascular outcomes. Heterogeneity was assessed by Cochran's Q statistic and quantified by I² index. I² values of <50%, 50%-75%, and >75% were considered to have low, moderate, and high heterogeneity, respectively. Publication bias was assessed using funnel plot analysis. A funnel plot was obtained for outcomes involving >10 studies.

Results

Out of the 3982 articles, 49 studies were included for data abstraction. All the included studies were cohort studies, both prospective and retrospective. Some of the studies excluded are the following: (i) studies

involving malabsorptive surgery such as biliopancreatic diversion, (ii) studies that looked at outcomes in cohorts having preexisting MI and atrial fibrillation (since this would corroborate our outcome data, they were excluded), (iii) studies that had a high comorbid CVD at baseline, and (iv) studies assessing only all-cause mortality. The event rates and the hazard ratios for all the included studies are shown in Table 1.

Study name	Intervention group event rates	Control group event rates	Adjusted HR (CI)	Unadjusted HR (CI)
Coronary artery disease				
Bouchard et al., 2022 [13]	NA	NA	NA	NA
Fisher et al., 2018 [16]	NA	NA	0.64 (0.42-0.99)	NA
Alkharaiji et al., 2019 [17]	18/131	259/579	0.29 (0.16-0.52)	0.31 (0.19-0.52)
Aminian et al., 2019[18]	NA	NA	0.69 (0.54-0.87)	NA
Singh et al., 2020 [19]	NA	NA	0.85 (0.61-1.19)	NA
Ardissino et al., 2021 [20]	15/593	17/593	0.6884 (0.3244- 1.4610)	NA
Rassen et al., 2021 [21]	NA	NA	1.10 (0.67-1.80)	NA
Myocardial infarction				
Bouchard et al., 2022 [13]	NA	NA	NA	NA
Alkharaiji et al., 2019 [17]	13/131	95/579	0.98 (0.54-1.77)	1.03 (0.57-1.86)
Ardissino et al., 2021 [20]	6/593	6/593	NA	NA
Sampalis et al., 2006 [22]	35/1035	274/5746	0.71 (0.50-1.002)	NA
Sjöström et al., 2007 [23]	13/2010	25/2037	NA	NA
Romeo et al., 2012 [24]	NA	NA	0.56 (0.34-0.93)	NA
Sjöström et al., 2012 [25]	122/2010	136/2037	NA	0.71 (0.54-0.94)
Johnson et al., 2013 [26]	8/2580	241/13371	NA	NA
Douglas et al., 2015 [27]	5/3618	18/3732	0.28 (0.10-0.74)	NA
Eliasson et al., 2015 [28]	15/5694	39/5467	0.49 (0.24-1.01)	NA
Benotti et al., 2017 [29]	12/1724	17/1724	0.89 (0.41-1.92)	0.85 (0.41-1.79)
Brown et al., 2020 [30]	NA	NA	0.39 (0.35-0.42)	NA
Michaels et al., 2020[31]	57/3242	323/3242	NA	NA
Moussa et al., 2020 [32]	37/3701	93/3701	0.41 (0.28-0.606)	NA
Stenberg et al., 2020 [33]	NA	NA	0.53 (0.42-0.67)	0.61 (0.50-0.75)
Wong et al., 2021 [34]	NA	NA	0.534 (0.125-2.278)	NA
Höskuldsdóttir et al., 2020 [35]	NA	NA	0.57 (0.24-1.35)	NA
Dash et al., 2021 [36]	NA	NA	0.519 (0.301-0.894)	NA
Hung et al., 2021 [37]	3/1436	15/1436	0.186 (0.054-0.643)	NA
Lundberg et al., 2021 [38]	97/28204	518/40827	0.60 (0.41-0.88)	NA
Yuan et al., 2021 [39]	NA	NA	0.24 (0.07-0.77)	0.21 (0.07-0.69)
Mentias et al., 2022 [40]	NA	NA	0.63 (0.59-0.68)	NA
Heart failure				
Bouchard et al., 2022 [13]	182/3627	377/5420	0.80 (0.70-0.90)	NA
Alkharaiji et al., 2019 [17]	13/131	91/579	0.89 (0.47-1.70)	0.81 (0.44-1.49)
Aminian et al., 2019[18]	NA	NA	0.38 (0.30-0.49)	NA
Singh et al., 2020 [19]	NA	NA	0.57 (0.34-0.96)	NA

Rassen et al., 2021 [21]	NA	NA	0.82 (0.44-1.52)	NA
Sjöström et al., 2007 [23]	2/2010	5/2037	NA	NA
Johnson et al., 2013 [26]	35/2580	1338/13371	NA	NA
Benotti et al., 2017 [29]	24/1724	55/1724	0.38 (0.22-0.64)	0.53 (0.33-0.85)
Moussa et al., 2020 [32]	22/3701	46/3701	0.403 (0.181-0.89)	NA
Wong et al., 2021 [34]	NA	NA	0.283 (0.068-1.173)	NA
Höskuldsdóttir et al., 2020 [35]	NA	NA	0.32 (0.15-0.67)	NA
Dash et al., 2021 [36]	NA	NA	0.198 (0.109-0.36)	NA
Mentias et al., 2022 [40]	NA	NA	0.46 (0.44-0.49)	NA
Persson et al., 2017 [41]	89/22295	944/25564	0.37 (0.29-0.46)	NA
Sundström et al., 2017 [42]	44/25804	29/13701	NA	NA
Jamaly et al., 2019 [43]	188/2003	266/2030	0.66 (0.51-0.81)	0.65 (0.54-0.79)
Liakopoulos et al., 2020 [44]	86/5321	233/5321	0.33 (0.24-0.46)	NA
Höskuldsdóttir et al., 2021 [45]	47/5321	151/5321	0.27 (0.19-0.38)	NA
Atrial fibrillation				
Aminian et al., 2019[18]	NA	NA	0.78 (0.62-0.97)	NA
Singh et al., 2020 [19]	NA	NA	0.93 (0.68-1.27)	0.94 (0.60-1.28)
Rassen et al., 2021 [21]	NA	NA	1.91 (1.10-3.33)	NA
Höskuldsdóttir et al., 2020 [35]	NA	NA	0.69 (0.30-1.62)	NA
Yuan et al., 2021 [39]	NA	NA	0.91 (0.43-1.90)	0.64 (0.31-1.31)
Höskuldsdóttir et al., 2021 [45]	104/5321	138/5321	0.59 (0.44-0.78)	NA
Jamaly et al., 2016 [46]	247/2000	340/2021	0.69 (0.58-0.82)	NA
Lynch et al., 2019 [47]	21/2522	73/2522	NA	NA
Cerebrovascular accident				
Bouchard et al., 2022 [13]	163/3627	233/5420	1.05 (0.74-1.12)	NA
Fisher et al., 2018 [16]	NA	NA	0.69 (0.38-1.25)	NA
Alkharaiji et al., 2019 [17]	8/131	40/579	0.87 (0.36-2.10)	0.77 (0.34-1.72)
Aminian et al., 2019[18]	NA	NA	0.67 (0.48-0.94)	NA
Singh et al., 2020 [19]	NA	NA	0.98 (0.66-1.45)	NA
Ardissino et al., 2021 [20]	1/593	4/593	0.0227 (0.0009-5.45)	NA
Sjöström et al., 2007 [23]	6/2010	6/2037	NA	NA
Romeo et al., 2012 [24]	NA	NA	0.73 (0.41-1.30)	NA
Sjöström et al., 2012 [25]	93/2010	111/2037	0.66 (0.49-0.90)	NA
Johnson et al., 2013 [26]	11/2580	214/13371	NA	NA
Douglas et al., 2015 [27]	17/3683	19/3748	0.91 (0.47-1.76)	NA
Benotti et al., 2017 [29]	31/1724	49/1724	0.73 (0.45-1.17)	0.77 (0.49-1.21)
Brown et al., 2020 [30]	NA	NA	0.55 (0.51-0.59)	NA
Moussa et al., 2020 [32]	4/3701	9/3701	0.536 (0.164-1.748)	NA
Stenberg et al., 2020 [33]	NA	NA	0.81 (0.66-1.01)	0.90 (0.75-1.09)
Wong et al., 2021 [34]	NA	NA	0.811 (0.367-1.793)	NA
Höskuldsdóttir et al., 2020 [35]	NA	NA	0.18 (0.04-0.82)	NA
Dash et al., 2021 [36]	NA	NA	0.405 (0.169-0.971)	NA

Hung et al. 2021 [37]7/4362/47460.62 (0.07.3.0.0)NALundberg et al. 2021 [38]14/282446/40276.80 (4.8-9.3)10.51.91.1Yuan et al. 2021 [38]NANA12.00.4-2.3.0)10.51.91.1Menis et al. 2021 [30]NA12.01.0.5.0.3.0NANAMuna et al. 2021 [30]NA2.12.0.4.0.3.0NANACarloscular mettal2.12.0.4.0.3.0NANANASjokrim et al. 2021 [30]2.12.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0					
Yuan dal, 2021 [39]NANA1.23 (0.42.3)1.053.191Mentias et al., 2022 [40]NANA0.71 (0.65.0.79)NAMousas et al., 2021 [43]19/42125/4/2120.352 (0.165.0.637)NACardiovascular mortality21/20400.70 (0.57.0.55)NASjöström et al., 2020 [23]20201014/2037NANASjöström et al., 2021 [25]28/201049/2037NANASjöström et al., 2012 [25]28/201095/13371NANAEliasson et al., 2013 [26]14/258095/13371NANABisson et al., 2020 [33]NANANANAHorson et al., 2021 [37]0/143NANANALandpeuto et al., 2020 [33]NANANANAHung et al., 2021 [37]0/14362/1436NANALandpoulos et al., 2020 [43]196/202498/408270.76 (0.60.10.1)NALandpoulos et al., 2020 [43]196/202498/408270.76 (0.60.10.1)NAMacOnal J et al., 2020 [43]196/202415/153NANAMacDonal J et al., 2020 [44]NA1050/5746NANAAdosn et al., 2020 [45]5/53213150/5746NANAAdosn et al., 2007 [51]6/153104/7925NANAAdosn et al., 2007 [51]6/153104/7925NANAAdosn et al., 2007 [51]6/154NANANAPortirol et al., 2015 [53]16/154NANA<	Hung et al., 2021 [37]	7/1436	42/1436	0.162 (0.073-0.360)	NA
Mentase clal. 2022 [49]NANAO.71 (0.8507)NAMousse clal. 2021 [48]19/2125/42120.352 (0.195067)NACarciovascular mortally17/200721/2040N0 (0.57.0.58)NASjøström et al. 2020 [14]167/200714/2037NANASjøström et al. 2020 [25]20/20104/2037NANASjøström et al. 2020 [25]20/20109/51/3371NANAEliasson et al. 2020 [23]NANANANABiskuldsdöttir et al. 2020 [33]NANANANAHung et al. 2021 [37]0/143NANANALundberg et al. 2020 [43]NANANANALundberg et al. 2020 [43]NANANANALundberg et al. 2020 [43]NANANANALundberg et al. 2020 [43]NANANANALundberg et al. 2020 [44]NANANANALundberg et al. 2020 [45]NANANANANaconal Jet et al. 2020 [56]Si (521 Cal. Cal. Cal. Cal. Cal. Cal. Cal. Cal.	Lundberg et al., 2021 [38]	134/28204	486/40827	0.68 (0.48-0.96)	NA
Nuesas et al., 2021 [48]1942126.442120.352 (0.195-0.5)NACardiovascular mortalityCardiovascular mortalityCardiovascular mortalityCardiovascular mortalitySignt of al., 2007 [23]6700014/2037NANASjöström et al., 2007 [23]620104920370.47 (0.29-0.76)0.56 (0.35-0.89)Johnson et al., 2015 [26]8/56403/54670.40 (0.15-1.05)NAEliasson et al., 2020 [33]NANANANASheberg et al., 2020 [33]NANANANAHung et al., 2021 [37]0/14362/1436NANALundberg et al., 2021 [38]16/28204989408270.78 (0.60-1.01)NALundberg et al., 2021 [39]0/153115321NANALundberg et al., 2021 [39]0/15411178NANALundberg et al., 2021 [39]0/154150/5746NANALundberg et al., 2021 [39]0/154150/5746NANAMacconald Jr et al., 1987 [39]0/154150/5746NANAAdams et al., 2007 [51]4.5/1736.8/139NANAAdams et al., 2007 [52]57925104/7925NANANaNA14141414Portioni et al., 2016 [54]NANANANa1412/260NANAPortioni et al., 2016 [54]NANANAControl et al.,	Yuan et al., 2021 [39]	NA	NA	1.23 (0.64-2.35)	1 (0.53-1.91)
Carcinovacular motivationCarcinovacular motivatio	Mentias et al., 2022 [40]	NA	NA	0.71 (0.65-0.79)	NA
Carlsson et al. 2020 [14]167/2007221/20400.70 (0.57-0.85)NASjöström et al. 2020 [23]20/201014/2037NANASjöström et al. 2012 [24]28/201049/20370.47 (0.29-0.76)0.56 (0.35-0.85)Johnson et al. 2013 [26]14/2580985/13371NANAEliasson et al. 2015 [28]8/56943/364670.40 (0.15-1.05)NAStenberg et al. 2020 [35]NANANANAHöskuldsdöttr et al. 2020 [36]NANA15 (0.03-0.68)NALundberg et al. 2020 [37]0.14632/1436NANALundberg et al. 2021 [37]14636204896408270.76 (0.60-1.01)NALiakopoulos et al. 2021 [36]NANA3.6 (0.22-0.58)NALiakopoulos et al. 2021 [36]NANA3.6 (0.22-0.58)NALiakopoulos et al. 2021 [36]153213.15321NANAMacDonal J ret al. 1997 [49]2/14313/5321NANAAdams et al. 2007 [51]4.51736.8/139NANAAdams et al. 2007 [51]5.5795104/7955NANAPontiroit et al. 2016 [54]NANANANANaNASin 304NANANAPontiroit et al. 2016 [54]NANANANAPontiroit et al. 2016 [54]NANANANANaSin 304NANANANAPontiroit et al. 2016 [54]NANANANA	Moussa et al., 2021 [48]	19/4212	54/4212	0.352 (0.195-0.637)	NA
Sjöström e.l., 2007 (23)20/201014/2037NANASjöström e.l., 2012 (25)28/201049/20370.47 (0.29-76)0.56 (0.35-0.89)Johnson et.al., 2013 (26)11/258095/13371NANAEliasson et.al., 2013 (26)8/56943/54670.40 (0.15-1.05)NASterberg et.al., 2020 (33)NANANANANAHöskuldsdöttir et.al., 2020 (33)NANANANANAHung et.al., 2021 (37)0/1432/1436NANANALundberg et.al., 2021 (38)19/9282498/408270.78 (0.60-1.01)NALindberg et.al., 2021 (34)NANA0.36 (0.22-0.58)NAHöskuldsdöttir et.al., 2021 (45)5/53213/15321NANAAdzonold Jr et.al., 1997 (49)2/15412/78NANAAdsonold Jr et.al., 1997 (49)4/10351530/5746NANAAdams et.al., 2007 (51)4.51736.8/139NANAAdams et.al., 2007 (52)5/7925104/79250.51 (0.36-0.73)0.51 (0.36-0.73)Pontiroli et.al., 2016 (53)5/3502/2681NANANALint et.al., 2017 (55)NANANANANAPontiroli et.al., 2016 (54)5/2499770/104/448420.57 (0.52-0.63)NAPontiroli et.al., 2016 (55)NANANANANAPontiroli et.al., 2020 (58)NANANANAPontiroli et.al., 2020 (58)NANA	Cardiovascular mortality				
Sjöström et al., 2012 [25]28/201049/20370.47 (0.29-0.76)0.56 (0.35-0.88)Johnson et al., 2013 [26]41/2580985/13371NANAEliasson et al., 2015 [28]8/56943/54670.40 (0.15-105)NAStenberg et al., 2020 [33]NANANANANAHöskuldsdöttir et al., 2020 [33]NANANANANAHing et al., 2020 [33]NA2/1436NANANANALundberg et al., 2020 [34]196/28204989/408270.78 (0.60-101)NANALundberg et al., 2021 [38]196/28204989/408270.78 (0.60-101)NANALiabopolos et al., 2020 [44]NANA0.36 (0.22-0.58)NANAHöskuldsdöttir et al., 2021 [45]5/53213/15321NANANAMaCDonald Jr et al., 1997 [49]2/15412/78NANANAAdams et al., 2007 [51]4.51736.8/139NANANAAdams et al., 2007 [52]5/7925104/79250.51 (0.36-0.73)NANAPortiroli et al., 2016 [53]5/3852/2681NANANANALent et al., 2017 [55]NANANANANANAPortiroli et al., 2017 [55]NANANANANANAPortiroli et al., 2018 [56]NANANANANANAPortiroli et al., 2018 [56]NANANANANANANA <td< td=""><td>Carlsson et al., 2020 [14]</td><td>167/2007</td><td>221/2040</td><td>0.70 (0.57-0.85)</td><td>NA</td></td<>	Carlsson et al., 2020 [14]	167/2007	221/2040	0.70 (0.57-0.85)	NA
Johnson et al., 2013 [26]41/2580985/13371NANAEliasson et al., 2015 [28]8/56943/54670.40 (0.15.105)NAStenberg et al., 2020 [33]NANANANAHöskuldsdöttir et al., 2020 [35]NANA0.15 (0.03-0.68)NAHung et al., 2021 [37]0/14362/1436NANALundberg et al., 2020 [43]196/28204989/408270.76 (0.60-1.01)NALiakopoulos et al., 2020 [44]NANA0.36 (0.22-0.58)NAHöskuldsdöttir et al., 2020 [44]NANANANAMacDonald Jr et al., 1997 [49]2/15415/321NANAMacDonald Jr et al., 1997 [49]2/1545/305746NANAAdams et al., 2007 [51]4/1735/319NANAAdams et al., 2007 [52]5/7925104/7925NANAPontiroli et al., 2016 [53]NANANANAPontiroli et al., 2016 [53]NANANANAPontiroli et al., 2016 [54]NANANANAPontiroli et al., 2016 [55]NANANANAPontiroli et al., 2016 [56]NANANANAPontiroli et al., 2016 [56]NANANANAPontiroli et al., 2016 [56]NANANANAPontiroli et al., 2020 [56]NANANANAPontiroli et al., 2020 [56]NANANANA <trr>Pontiroli et al., 2020 [56]<td>Sjöström et al., 2007 [23]</td><td>20/2010</td><td>14/2037</td><td>NA</td><td>NA</td></trr>	Sjöström et al., 2007 [23]	20/2010	14/2037	NA	NA
Eliasson et al., 2015 [28]8/669433/54670.40 (0.15-1.05)NAStenberg et al., 2020 [33]NANANANAHöskuldsdöttir et al., 2020 [34]NANA0.15 (0.03-0.68)NAHung et al., 2021 [37]0/14362/1436NANALundberg et al., 2020 [43]196/28204989/408270.76 (0.60-1.01)NALiakopoulos et al., 2020 [44]NANA0.36 (0.22-0.58)NAHöskuldsdöttir et al., 2020 [44]NANANANAMacDonald Jr et al., 1997 [49]2/1541/5321NANAMacDonald Jr et al., 1997 [49]2/1545/30746NANAAdams et al., 2007 [52]5/7925104/7925NANAAdams et al., 2007 [52]5/7925104/79255/10.36-0.73)15/10.36-0.73)Pontiroli et al., 2016 [53]NANANANADavidson et al., 2016 [54]NANANANAPontiroli et al., 2017 [55]NANANANAPontiroli et al., 2016 [53]5/5499773/2404NANANaSei (0.35-0.96)NANANANAPonturoli et al., 2020 [56]NANANANAChromouras et al., 2020 [58]NANANANASei (44, 1920 [46]NANANANAPonturoli et al., 2020 [56]NANANANAChromouras et al., 2020 [56]NANANANASei (45, 1999	Sjöström et al., 2012 [25]	28/2010	49/2037	0.47 (0.29-0.76)	0.56 (0.35-0.88)
Stenberg et al., 2020 [33]NANANANAHöskuldsdöttir et al., 2020 [33]NANANANANAHing et al., 2021 [37]0/14362/1436NANANALundberg et al., 2020 [44]NAS89/408270.78 (0.60-1.01)NALiakopoulos et al., 2020 [44]NANA0.36 (0.22-0.58)NAHöskuldsdöttir et al., 2020 [44]S/53211/5321NANAHöskuldsdöttir et al., 2020 [44]S/53211/5321NANAMacDonald J. et al., 1997 [45]S/53211/5321NANAMacDonald J. et al., 2004 [50]4/10351/530746NANABalsis et al., 2007 [51]5/17326.8/139NANAAdams et al., 2007 [52]S/6352/681NANAPontiroli et al., 2016 [53]NANANANADavidson et al., 2016 [54]NANANANAPontiroli et al., 2017 [55]NANANANANaS/1404S/1404NANANAPontiroli et al., 2016 [54]S/149973/14/1494842NANARauppila et al., 2016 [55]S/14997S/14/1494842S/16,03-0.50,03NAPontiroli et al., 2016 [54]NANANANANAPontiroli et al., 2016 [56]NANANANARauppila et al., 2016 [56]NANANANAPontiroli et al., 2016 [56]NANANANA<	Johnson et al., 2013 [26]	41/2580	985/13371	NA	NA
Höskuldsdötlir et al., 2020 [35] NA NA 0.15 (0.03-0.68) NA Hung et al., 2021 [37] 0/1436 2/1436 NA NA Lundberg et al., 2021 [38] 196/28204 989/40827 0.78 (0.60-1.01) NA Liakopoulos et al., 2020 [44] NA NA 0.36 (0.22-0.58) NA Liakopoulos et al., 2020 [45] S/5321 31/5321 NA NA Höskuldsdötlir et al., 2021 [45] S/5321 31/5321 NA NA MacDonald Jr et al., 1997 [49] 2/154 12/78 NA NA MacDonald Jr et al., 2007 [51] 4/9/1035 1530/5746 NA NA Batsis et al., 2007 [52] 5/7925 104/7925 0.51 (0.36-0.73) 0.51 (0.36-0.73) Pontiroli et al., 2017 [55] NA NA NA NA Davidson et al., 2018 [54] S/1540 NA NA NA Lent et al., 2017 [55] NA NA NA NA Rauppila et al., 2020 [56] NA NA NA NA Doum	Eliasson et al., 2015 [28]	8/5694	33/5467	0.40 (0.15-1.05)	NA
Hung et al., 2021 [37] 0/1436 2/1436 NA NA Lundberg et al., 2021 [38] 196/2804 989/40827 0.78 (0.60-1.01) NA Liakopoulos et al., 2020 [44] NA NA 0.36 (0.22-0.58) NA Höskuldsdötlir et al., 2020 [45] 5/5321 31/5321 NA NA MacDonald Jr et al., 1997 [49] 2/154 31/5321 NA NA MacDonald Jr et al., 2007 [51] 4/173 6.8/139 NA NA Adams et al., 2007 [52] 5/7925 104/7925 0.51 (0.36-0.73) 0.51 (0.36-0.73) Pontiroli et al., 2007 [52] 5/395 2/2681 NA NA Pontiroli et al., 2017 [54] NA NA NA NA Pontiroli et al., 2017 [54] NA NA NA NA Rauppila et al., 2017 [54] S149477 S14040 NA NA Routing et al., 2017 [57] S149477 S140410 NA NA Routing et al., 2019 [57] S149477 S140410 S160.350.050 NA	Stenberg et al., 2020 [33]	NA	NA	NA	NA
Lundberg et al., 2021 [38] 196/28204 989/40827 0.78 (0.60-1.01) NA Liakopoulos et al., 2020 [44] NA NA 0.36 (0.22-0.58) NA Höskuldsdóttir et al., 2021 [45] 5/5321 31/5321 NA NA MacDonald Jr et al., 1997 [49] 2/154 12/78 NA NA Christou et al., 2004 [50] 49/1035 1530/5746 NA NA Batsis et al., 2007 [51] 45/173 6.8/139 NA NA Adams et al., 2007 [52] 5/7925 104/7925 0.51 (0.36-0.73) 0.51 (0.36-0.73) Pontiroli et al., 2016 [53] 5/385 2/681 NA NA Davidson et al., 2016 [54] NA NA NA NA Pontiroli et al., 2016 [54] NA NA NA NA Rauppila et al., 2019 [57] 52/4997 30740/494842 0.57 (0.52-0.63) NA Ruopururas et al., 2020 [58] NA NA NA NA NA Doumouras et al., 2020 [59] NA NA NA NA <td< td=""><td>Höskuldsdóttir et al., 2020 [35]</td><td>NA</td><td>NA</td><td>0.15 (0.03-0.68)</td><td>NA</td></td<>	Höskuldsdóttir et al., 2020 [35]	NA	NA	0.15 (0.03-0.68)	NA
Liakopoulos et al., 2020 [44]NANAO.36 (0.22-0.58)NAHöskuldsdótir et al., 2020 [45]5/532131/5321NANAMacDonald J et al., 1997 [49]2/15412/78NANAChristou et al., 2004 [50]49/10351530/5746NANABatsis et al., 2007 [51]4.5/1736.8/139NANAAdams et al., 2007 [52]55/7925104/79250.51 (0.36-0.73)0.51 (0.36-0.73)Pontiroli et al., 2016 [53]5/3852/681NANADavidson et al., 2016 [54]NANANANAPontiroli et al., 2017 [55]NANANANAPontiroli et al., 2016 [54]NAS2/360NANAPontiroli et al., 2018 [56]8/1543/2360NANAPontiroli et al., 2019 [57]52/4997730740/4948420.57 (0.52-0.63)NARuoppila et al., 2020 [56]NANANANADoumouras et al., 2020 [56]NANA0.39 (0.14-1.07)NASheez et al., 2020 [56]NANANANACourcoulas et al., 2021 [60]NANA0.47 (0.37-0.60)NARwo BNANANANANACourcoulas et al., 2021 [60]NANANANANANANANANANANANANANANANANaNANANANANANaNANANANA <t< td=""><td>Hung et al., 2021 [37]</td><td>0/1436</td><td>2/1436</td><td>NA</td><td>NA</td></t<>	Hung et al., 2021 [37]	0/1436	2/1436	NA	NA
Höskuldsdötir et al., 2021 [45]5/532131/5321NANAMacDonald Jr et al., 1997 [49]2/15412/78NANAChristou et al., 2004 [50]49/10351530/5746NANABatsis et al., 2007 [51]4.5/1736.8/139NANAAdams et al., 2007 [52]55/7925104/79250.51 (0.36-0.73)0.51 (0.36-0.73)Pontiroli et al., 2016 [53]5/3852/681NANADavidson et al., 2017 [54]NANANANAPontiroli et al., 2017 [55]NANANANAPontiroli et al., 2018 [56]8/1542/360NANAPontiroli et al., 2018 [56]8/1542/360NANAPontiroli et al., 2018 [56]8/1543/360NANAPontiroli et al., 2018 [56]8/1543/2360NANAPontiroli et al., 2018 [56]8/1543/2360NANARauppila et al., 2019 [57]52/4997730740/4948420.57 (0.52-0.63)NAPoumouras et al., 2020 [58]NANANANASheetz et al., 2020 [59]NANA0.39 (0.14.1.07)NASheetz et al., 2021 [60]NANA0.47 (0.37-0.60)NARYGBNNANANA0.27 (0.20-0.37)NACourcoulas et al., 2021 [60] (NANANA0.57 (0.19.1.71)NA	Lundberg et al., 2021 [38]	196/28204	989/40827	0.78 (0.60-1.01)	NA
MacDonald Jr et al., 1997 [49] 2/154 12/78 NA NA Christou et al., 2004 [50] 49/1035 1530/5746 NA NA Batsis et al., 2007 [51] 4.5/173 6.8/139 NA NA Adams et al., 2007 [52] 5/7925 104/7925 0.51 (0.36-0.73) 0.51 (0.36-0.73) Pontiroli et al., 2016 [53] 5/385 2/2681 NA NA Davidson et al., 2016 [54] NA NA NA NA Davidson et al., 2017 [55] NA NA NA NA Davidson et al., 2017 [55] NA NA NA NA Christoi et al., 2017 [55] NA NA NA NA Pontiroli et al., 2018 [56] NA NA NA NA Guanguras et al., 2020 [57] 52/49977 30740/494842 0.57 (0.52-0.63) NA Doumouras et al., 2020 [58] NA NA NA NA NA Sheetz et al., 2020 [59] NA NA NA 0.47 (0.37-0.60) NA Courco	Liakopoulos et al., 2020 [44]	NA	NA	0.36 (0.22-0.58)	NA
Christou et al., 2004 [50]49/10351530/5746NANABatsis et al., 2007 [51]4.5/1736.8/139NANAAdams et al., 2007 [52]55/7925104/79250.51 (0.36-0.73)0.51 (0.36-0.73)Pontiroli et al., 2016 [53]5/3852/681NANADavidson et al., 2016 [54]NANA0.51 (0.36-0.73)NALent et al., 2017 [55]NANANANAPontiroli et al., 2018 [56]1540472/360NANAPontiroli et al., 2018 [56]6.51 (34997730740/4948420.57 (0.52-0.63)NARauppila et al., 2020 [58]NANASaNADoumouras et al., 2020 [58]NANA0.39 (0.14.1.07)NASheetz et al., 2020 [58]NANA0.47 (0.37-0.60)NACourcoulas et al., 2020 [59]NANANANASheetz et al., 2020 [58]NANASaSaSheetz et al., 2020 [59]NANASaNACourcoulas et al., 2020 [59]NANASaSaSheetz et al., 2020 [50]NANASaSaSaSheetz et al., 2020 [50]NANASaSaSaSheetz et al., 2020 [50]NANASaSaSaSheetz et al., 2020 [50]NANASaSaSaSheetz et al., 2020 [50]NANASaSaSaSaSheetz et al., 2020 [50]NANASaSa <td>Höskuldsdóttir et al., 2021 [45]</td> <td>5/5321</td> <td>31/5321</td> <td>NA</td> <td>NA</td>	Höskuldsdóttir et al., 2021 [45]	5/5321	31/5321	NA	NA
Address et al., 2007 [51] 4.5/173 6.8/139 NA NA Adams et al., 2007 [52] 5/7925 104/7925 5.10.36-0.73) 0.51 (0.36-0.73) Pontiroli et al., 2016 [53] 5/385 2/681 NA NA Davidson et al., 2016 [54] NA NA NA NA Pontiroli et al., 2016 [54] NA NA NA NA Pontiroli et al., 2017 [55] NA NA NA NA Pontiroli et al., 2018 [56] 8/154 3/2360 NA NA Rauppila et al., 2020 [58] 8/154 3/2404/94842 0.57 (0.52-0.63) NA Doumouras et al., 2020 [58] NA NA NA NA Sheetz et al., 2020 [58] NA NA NA NA Courcoulas et al., 2021 [60] NA NA NA NA RYGB NA NA NA NA NA Courcoulas et al., 2020 [58] NA NA NA NA Sheetz et al., 2021 [60] NA NA	MacDonald Jr et al., 1997 [49]	2/154	12/78	NA	NA
Adams et al., 2007 [52] 55/7925 104/7925 0.51 (0.36-0.73) 0.51 (0.36-0.73) Pontiroli et al., 2016 [53] 5/385 22/681 NA NA Davidson et al., 2016 [54] NA NA 0.51 (0.36-0.73) NA Lent et al., 2017 [55] NA NA 0.51 (0.36-0.73) NA Pontiroli et al., 2017 [55] NA NA 0.51 (0.36-0.73) NA Pontiroli et al., 2017 [56] NA NA NA NA Stauppila et al., 2019 [57] 52/49977 30740/494842 0.57 (0.52-0.63) NA Doumouras et al., 2020 [58] NA NA NA NA Sheetz et al., 2020 [58] NA NA 0.39 (0.14-1.07) NA Courcoulas et al., 2021 [60] NA NA 0.47 (0.37-0.60) NA KryGB Na NA 0.27 (0.20-0.37) NA	Christou et al., 2004 [50]	49/1035	1530/5746	NA	NA
Pontiroli et al., 2016 [53]5/38522/681NANADavidson et al., 2016 [54]NANA0.51 (0.36-0.73)NALent et al., 2017 [55]NANANANAPontiroli et al., 2018 [56]8/15432/360NANAKauppila et al., 2019 [57]525/4997730740/4948420.57 (0.52-0.63)NADoumouras et al., 2020 [58]NANASasoNASheetz et al., 2020 [58]NANA0.49 (0.37-0.60)NASheetz et al., 2020 [59]NANA0.47 (0.37-0.60)NACourcoulas et al., 2021 [60]NANA0.27 (0.20-0.37)NACourcoulas et al., 2021 [60]NANA0.57 (0.19-1.71)NA	Batsis et al., 2007 [51]	4.5/173	6.8/139	NA	NA
Davidson et al., 2016 [54]NANA0.51 (0.36-0.73)NALent et al., 2017 [55]NANANANAPontiroli et al., 2018 [56]8/15432/360NANAKauppila et al., 2019 [57]525/4997730740/4948420.57 (0.52-0.63)NADoumouras et al., 2020 [58]NANA0.58 (0.35-0.96)NADoumouras et al., 2020 [58]NANA0.39 (0.14-1.07)NASheetz et al., 2020 [59]NANA0.47 (0.37-0.60)NACourcoulas et al., 2021 [60]NANA0.27 (0.20-0.37)NACourcoulas et al., 2021 [60]NANA0.57 (0.19-1.71)NA	Adams et al., 2007 [52]	55/7925	104/7925	0.51 (0.36-0.73)	0.51 (0.36-0.73)
Lent et al., 2017 [55] NA NA NA NA Pontiroli et al., 2018 [56] 8/154 32/360 NA NA Kauppila et al., 2019 [57] 525/49977 30740/494842 0.57 (0.52-0.63) NA Doumouras et al., 2020 [58] NA NA Sa (0.35-0.96) NA Doumouras et al., 2020 [58] NA NA 0.39 (0.14-1.07) NA Sheetz et al., 2020 [59] NA NA 0.47 (0.37-0.60) NA Sheetz et al., 2021 [60] NA NA 0.27 (0.20-0.37) NA Courcoulas et al., 2021 [60] NA NA 0.57 (0.19-1.71) NA	Pontiroli et al., 2016 [53]	5/385	22/681	NA	NA
Pontiroli et al., 2018 [56] 8/154 32/360 NA NA Kauppila et al., 2019 [57] 525/49977 30740/494842 0.57 (0.52-0.63) NA Doumouras et al., 2020 [58] NA NA NA NA Doumouras et al., 2020 [58] NA NA 0.58 (0.35-0.96) NA Sheetz et al., 2020 [59] NA NA 0.39 (0.14-1.07) NA Sheetz et al., 2020 [59] NA NA 0.47 (0.37-0.60) NA Courcoulas et al., 2021 [60] NA NA 0.27 (0.20-0.37) NA Courcoulas et al., 2021 [60] NA NA 0.57 (0.19-1.71) NA	Davidson et al., 2016 [54]	NA	NA	0.51 (0.36-0.73)	NA
Kauppila et al., 2019 [57] 525/49977 30740/494842 0.57 (0.52-0.63) NA Doumouras et al., 2020 [58] (RYGB) NA NA 0.58 (0.35-0.96) NA Doumouras et al., 2020 [58] (SG) NA NA 0.39 (0.14-1.07) NA Sheetz et al., 2020 [59] NA NA 0.47 (0.37-0.60) NA Courcoulas et al., 2021 [60] (RYGB) NA NA 0.27 (0.20-0.37) NA	Lent et al., 2017 [55]	NA	NA	NA	NA
Doumouras et al., 2020 [58] NA NA o.58 (0.35-0.96) NA Doumouras et al., 2020 [58] (SG) NA NA 0.39 (0.14-1.07) NA Sheetz et al., 2020 [59] NA NA 0.47 (0.37-0.60) NA Courcoulas et al., 2021 [60] NA NA 0.27 (0.20-0.37) NA Courcoulas et al., 2021 [60] (SG) NA NA 0.57 (0.19-1.71) NA	Pontiroli et al., 2018 [56]	8/154	32/360	NA	NA
(RYGB) NA NA 0.58 (0.35-0.96) NA Doumouras et al., 2020 [58] (SG) NA NA 0.39 (0.14-1.07) NA Sheetz et al., 2020 [59] NA NA 0.47 (0.37-0.60) NA Courcoulas et al., 2021 [60] NA NA 0.27 (0.20-0.37) NA Courcoulas et al., 2021 [60] (SG) NA NA 0.57 (0.19-1.71) NA	Kauppila et al., 2019 [57]	525/49977	30740/494842	0.57 (0.52-0.63)	NA
Sheetz et al., 2020 [59] NA NA 0.47 (0.37-0.60) NA Courcoulas et al., 2021 [60] (RYGB) NA NA 0.27 (0.20-0.37) NA Courcoulas et al., 2021 [60] (SG) NA NA 0.57 (0.19-1.71) NA		NA	NA	0.58 (0.35-0.96)	NA
Courcoulas et al., 2021 [60] (RYGB) NA NA 0.27 (0.20-0.37) NA Courcoulas et al., 2021 [60] (SG) NA NA 0.57 (0.19-1.71) NA	Doumouras et al., 2020 [58] (SG)	NA	NA	0.39 (0.14-1.07)	NA
(RYGB) NA NA 0.27 (0.20-0.37) NA Courcoulas et al., 2021 [60] (SG) NA NA 0.57 (0.19-1.71) NA	Sheetz et al., 2020 [59]	NA	NA	0.47 (0.37-0.60)	NA
		NA	NA	0.27 (0.20-0.37)	NA
Doumouras et al., 2021 [61] 9/3041 38/3041 0.32 (0.15-0.66) NA	Courcoulas et al., 2021 [60] (SG)	NA	NA	0.57 (0.19-1.71)	NA
	Doumouras et al., 2021 [61]	9/3041	38/3041	0.32 (0.15-0.66)	NA

TABLE 1: Included studies with the event rates and corresponding hazard ratios

NA, not available; CI, confidence interval; HR, hazard ratio; SG, sleeve gastrectomy; RYGB, Roux-en-Y gastric bypass

Baseline study characteristics are shown in Table 2. The studies reported a mean age ranging from 32 to 62 and a mean BMI ranging from 37 to 50. All the studies were nonrandomized. Thirty-two of the studies were retrospective cohort studies, and the rest were either prospective or population-based studies.

				Type of				Sample size	Age (mean + SD)	BMI (mean + SD)		Primary	Secondary
Serial	Study name	Design	Country	intervention	Study	Inclusion	Exclusion				Follow-up	outcome	outcome

numb	er			done	population	criteria	criteria	Intervention	Control (con)	Intervention	Control	Intervention	Control	duration	studied	studied
1	Bouchard et al., 2022 [13]	Population- based observational cohort study	Canada	Adjustable gastric banding (AGB: 42%), sleeve gastrectomy (SG: 23%), Roux-en-Y gastric bypass (RYGB: 11%), and duodenal switch (DS: 24%)	Ywo healthcare databases: 1) the Régie de l'Assurance Maladie du Québec (RAMQ) and 2) the Ministry of Health's Maintenance et Exploitation des Données pour l'Étude de la Clientèle Hospitalière (MED-ÉCHO), 2007-2012	BMI of ≥35 with a comorbidity or BMI of ≥40, age of ≥18, and diagnosis of DM and/or HTN prior to the index date	Not specified	3627	5420	48±10	50±	NA	NA	7.05 years	Incident composite MACE (any coronary artery event, cerebrovascular event, heart failure (HF), or all-cause mortality)	Four individu components the primary (point
2	Carlsson et al., 2020 [14]	Prospective matched cohort study	Sweden	Vertical banded gastroplasty (69%), AGB (18%), and RYGB (13%)	The Swedish Obese Subjects (SOS), 1987- 2001	Age of 37-60 years and BMI for males of ≥34 and females of ≥38	Earlier gastric/duodenal surgery (surg), ongoing malignancy, MI of <6 months, and drug/alcohol	2007	2040	47.2±5.9	48.7 ±	42.4 ± 4.5	40.1 ± 4.7	Surg: 24 years; con: 22 years	All-cause mortality	CV mortality
3	Fisher et al., 2018 [16]	Retrospective	USA	RYGB (76%), SG (17%), and AGB (7%)	US health plan and care delivery systems, 2005-2011	Age of 19-79 years, BMI of >35, and DM2	<1 year of enrollment, cancer, pregnancy, gestational diabetes, CAD or cerebrovascular disease, and missing BMI	5301	14934	49.5±10	50.2 ± 10.1	44.7 ± 6.9	43.8 ± 6.7	Surg: 4.7 years; con: 4.6 years	Macrovascular disease	CAD and stroke separ
4	Alkharaiji et al., 2019 [17]	Retrospective	UK	RYGB or SG	The Health Improvement Network (THIN), 2017	Age of >18 years and insulin- treated DM2	DM1 or non- insulin-treated DM2	131	579	50.74 ± 11.0	51.96 ± 12.8	42.77 ± 9.6	40.6 ± 9.0	10 years	Patients' (pt) survivability against nonfatal CV events: AMI, stroke, CHD, HF, and PAD	Health covar such as bod; weight, calculated B HbA1c, total cholesterol, systolic/diast blood pressu and likelihoo insulin independenc
5	Aminian et al., 2019 (18)	Retrospective cohort	USA	RYGB (63%), SG (32%), AGB (5%), and duodenal switch (0.002%)	Cleveland Clinical Health System, 2018	Age of 18-80, BMI of ≥30, HbA1c of ≥6.5%, or ≥1 diabetic drug	Solid organ transplant, severe HF, active cancer, gastric cancer of <1 year, ER admission of <5 months, earlier gastric cancer surgery	2287	39267	52.5	61.6	45.1	35.9	3.9 years	Six-point MACE	All-cause mortality, MI CAD, HF, str AF, and neuropathy
6	Singh et al., 2020 [19]	Retrospective cohort	UK	AGB, SG, RYGB, or duodenal switch (% NA)	The Health Improvement Network (THIN), 1990- 2018	>1 year registered in general practice	BMI of <30, age of >75 years, gastric cancer, gastric balloon, endo-barrier, or revisional	5170	9995	45.2 ± 10.6	45.3 ± 10.5	NA	NA	3.9 years	Cardiovascular disease (CVD) (IHD, HF, stroke, and TIA), all-cause mortality, incident	All-cause mortality, IHI HF, stroke, 1 and AF

							bariatric surgery (BS)								hypertension, and AF	
7	Ardissino et al., 2021 [20]	Retrospective cohort	UK	Not specified	The Clinical Practice Research Datalink (CPRD)	Age of >18 years, BMI of ≥30, and DM2	CKD of ≥3 and missing data: age, sex, BMI, and DM2	593	593	49.63	49.47	45.54	45.14	42.7 months	ASCVD	All-cause mortality, C/ stroke, and
8	Rassen et al., 2021 [21]	Retrospective	USA	RYGB (50%), SG (44%), and gastric resection (8%)	Electronic health records licenced from Optum, 2007- 2018	Age of 18-80 years, DM2, and BMI of ≥30	Solid organ transplant, severe HF, cancer in the past year, peptic ulcer disease on the index date, and ER admission of five prior to index date	344	551	57.9	59	42.6	42.1	Surg: 2.7 years; con: 2.4 years	Six-point MACE, B12 deficiency, anemia, and cholelithiasis	Not specifie
9	Sampalis et al., 2006 [22]	Retrospective	Canada	RYGB (81.3%) and vertical banded gastroplasty (18.7%)	McGill University Health Centre, 1986-2002	Not specified other than BS	Cancer, hematological disease, CVD, digestive diseases, endocrinologic disease including diabetes and genitourinary, infectious, musculoskeletal, nervous system, psychiatric and mental, respiratory, and skin diseases	1035	5746	45±12	47±	NA	NA	2.5 years	Incidence of CV- and MSK- related conditions and treatments	Not specifie
10	Sjöström et al., 2007 [23]	Prospective matched cohort	Sweden	Vertical banded gastroplasty (68%), AGB (19%), and RYGB (13%)	The Swedish Obese Subjects, 1987-2001	Age of 37-60 years, BMI for males of \geq 34 and females of \geq 38	Not specified	2010	2037	46.1 ± 5.8	47.4 ± 6.1	41.8 ± 4.4	40.9 ±	10.9 ± 3.5	All-cause mortality	Not specifie
11	Romeo et al., 2012 [24]	Prospective, nonrandomized, controlled interventional trial	Sweden	RYGB (16%), gastric banding (18%), and vertical gastroplasty (66%)	The Swedish Obese Subjects (SOS), 1987- 2001	DM2, age of 37-60, and BMI of ≥34 for males and ≥38 for females	Earlier gastric/duodenal ulcer surgery; earlier barlatric surgery; gastric ulcer/MI in the past six months; ongoing/active malignancy in the past five years; bulimic, drug/alcohol, psychiatric, or cooperative problems contraindicating bariatric surgery; and other contraindicating conditions, such as continuous glucocorticoid or anti- inflammatory treatment	345	262	49±6	50±6	42±5	40±5	13.3 years	CV events (MI and stroke, whichever came first), as well as MI and stroke analyzed separately	Not specifie

12	Sjöström et al., 2012 [25]	Prospective matched cohort	Sweden	Gastric bypass (13.2%), banding (18.7%), or vertical banded gastroplasty (68.1%)	The Swedish Obese Subjects (SOS), 1987- 2001	Age of 37-60 years and BMI for males of ≥34 and females of ≥38	Earlier gastric/duodenal ulear surgery; earlier bariatic surgery; gastric ulear/MI in the past six months; ongoing/active malignancy in the past five years; bulimic, drug/alcohol, psychiatric, or cooperative problems contraindicating bariatric surgery; and other contraindicating contraindicating conditions, such as continuous gluccorticoid or anti- inflammatory treatment	2010	2037	46.1	47.8	42.4	40.1	14.7 years	Total mortality	MI and strok
13	Johnson et al., 2013 [26]	Retrospective cohort	USA	Gastric bypass, adjustable gastric banding, vertical banded gastroplasty, or biliopancreatic diversion or sleeve gastrectomy	SCORS UB-04	Moderate and severely obese patients with DM2, age of 18-77 years, and no document document history of history of document document and and and stoke, or advancad disease (previous nontraumatic disease (previous amputation, advancad disease (previous disease (previous disease (previous disease (previous disease (previous) (prev	Type 1 diabetes, did not have diagnosis code specific to moderate or severe obesity, or had missing or incompatible data	2580	13371	47.5±10.6	52.1± 12.8	ΝΑ	NA	Surg: 1.768 years; con: 1.58 years	Macrovascular (acute MI, stroke, or all- cause death) or microvascular (new diagnosis of blindness in at least one eye, laser eye or retinal surgery, nontraumatic amputation, or creation of permanent arteriovenous access for dialysis)	Macrovascul and microvascula complication considered separately, a well as other vascular complication including revasculariz of coronary, carotid, or lo extremity art or a new diagnosis of congestive h failure or any pectoris
14	Douglas et al., 2015 [27]	Retrospective cohort	UK	AGB (47.1%), RYGB (36.6%), SG (15.8%), and others (0.5%)	Clinical Practice Research Datalink, 2014	>12 months of prior registration in database	Skin cancer and missing BMI data/BMI <35	3882	3882	45±11	45 ± 11	44.7±8.8	42.1 ± 6.5	3.4 years	Weight, BMI, DM2, HTN, angina, MI, stroke, fractures, OSA and cancer, mortality, and resolution of hypertension and DM2	All-cause mortality anc stroke
15	Eliasson et	Retrospective	Sweden	RYGB (100%)	National Diabetes Register and Scandinavian	Age between 18 and 60	Not specified	6132	6132	48.4 ± 9.8	50.5 ±	42 ± 5.7	41.4 ±	3.5 years	Total mortality, cardiovascular mortality, and	MI and CV

	al., 2015 [28]	cohort			Obesity Surgery Registry, 2007-2014	years					12.7		5.7		fatal or nonfatal MI	mortality
16	Benotti et al., 2017 [29]	Retrospective cohort	USA	RYGB (100%)	Geisinger Health Center, 2002-2012	Age of 20-80 years, BMI of >35, and no preexisting CVD (ICD9 410-449)	Missing data to calculate Framingham Risk Score	1724	1724	45.0 ± 10.6	45.1 ± 10.6	46.5 ± 6.0	46.5 ±	6.3 years	Combined MI/HF/stroke	Stroke, MI, a HF
17	Brown et al., 2020 [30]	Retrospective	USA	RYGB (52.19%), SG (13.81%), and AGB (34%)	Statewide Planning and Research Cooperative System database, 2006-2012	Age of ≥18 years	In-hospital death in earliest record, age of <18 years, duplicated records, and missing or unknown gender	60445	268362	42.72 ± 11.55	43.28 ± 11.75	NA	NA	Not specified	Any type of CV event, MI, and stroke	Cardiovascu events
18	Michaels et al., 2020 [31]	Retrospective cohort	USA	RYGB (78.9%), AGB (11.7%), SG (7.7%), and others (1.7%)	Single Virginia Academic Hospital, 1985- 2015	Not specified other than BS	Not specified	3242	3242	43	43	47.7	48	Surg: 6.1 years; con: 8.1 years	Incident MI, coronary catheterization, PCI, and CABG	Not specified
19	Moussa et al., 2020 [32]	Prospective cohort	UK	RYGB (38%), AGB (35%), SG (15%), others (1%), and undefined (11%)	UK Clinical Practice Research Datalink, 2020	Not specified other than BS	BMI of <35, MACE before index date, lost to follow-up <12 months after index date, and missing data: age, BMI, and sex	3701	3701	36	36	40.5	40.3	140.7 months	Combined Ml/stroke	All-cause mortality, MI stroke, and ł
20	Stenberg et al., 2020 [33]	Retrospective matched cohort	Sweden	RYGB (90.1%) and sleeve gastrectomy (9.9%)	Scandinavian Obesity Surgery Register (SOReg) and the Swedish National Patient Registers (NPR)	Not specified other than BS	<18 years, without HTN, those with antihypertensive therapy possibly for other reasons, and pt without at least one matched control with HTN	11863	26199	52.1 ± 7.46	54.6 ± 7.12	41.9±5.43	NA	Surg: 61.1 ± 30.4 months; con: 60.7 ± 30.6 months	MACE	ACS, cerebrovasc event, all-cai mortality, CV mortality, an remission of
21	Wong et al., 2021 [34]	Retrospective matched cohort study	China	Sleeve gastroplasty (80.5%), RYGB (16.2%), and revision procedure (3%)	Hospital Authority database in the Hong Kong adult diabetes population, 2006-2017	DM2	BMI of <27.5, non-DM2, history of CVD, and eGFR of <30	303	1399	51.35 ± 12.26	50.98 ± 13.44	37.44 ± 5.04	36.55 ± 6.49	32 months	All-cause mortality, composite CVD events (acute Ml, other IHD, CHF, stroke, and PVD), ESKD, and severe hypoglycemia	NA
22	Höskuldsdóttir et al., 2020 [35]	Nationwide, matched, observational cohort study	Sweden	RYGB (100%)	National Diabetes Register and Scandinavian Obesity Surgery Registry, 2007-2013	DM1	Not specified	387	387	41.7 ± 10.3	41.1 ± 14.5	40.8±5.4	39.5 ± 7.0	9 years	All-cause mortality, CV disease, stroke, HF, and hospitalization for serious hypo- or hyperglycemic events, amputation, psychiatric disorders, changes in kidney function,	Not specifier

23	Dash et al., 2021 [36]	Retrospective cohort study	Canada	RYGB (92.7%) and SG (7.3%)	University Health Network (UHN), 2008- 2017	BMI of ≥40 or ≥35 with comorbidities	Not Ontario residents, those who had surgery either before or >2.5 years after their referral date to the UHN bariatric program, and those who underwent procedures other than RYGB or SG, ineligible for surgery	3098	5470	43.19± 10.36	46.15 ± 12.13	47.92 ± 8.07	47.37 ± 11.53	NA	and substance abuse	MI, stroke, H coronary revascularizz carotid revascularizz all-cause mortality, an hospitalizatik chronic kidm disease, chn liver disease and psychiat disease
24	Hung et al., 2021 [37]	Retrospective cohort	Taiwan	Gastric banding (13.87%), gastric bypass (52.68%), one- anastomosis gastric bypass (3.49%), and Iaparoscopic sleeve gastrectomy (29.87%)	Taiwan National Health Insurance Research Database (NHIRD), 2003-2008	Age of 18-55 years and BMI of >35 kg/m ² with comorbidities or >40 kg/m ²	A primary diagnosis of any condition other than obesity, died during admission or within 30 days following the index admission, had a history of any CV disease, had undetermined sex, and were diagnosed with gastric malignancy	1436	1436	32.39 ± 8.63	32.27 ±9.25	NA	NA	89.65 months	Incidence of CV events	Not specified
25	Lundberg et al., 2021 [38]	Prospective cohort	Sweden	RYGB (100%)	Swedish National Patient Registry, 2001-2013	Age of 20-65 years and BMI of ≥35	Other bariatric surgery or died <2 years after obesity diagnosis	28 204	40 827	40.8 ± 10.4	43.1 ± 11.8	NA	NA	Surg: 4 years; con: 4.8 years	All-cause mortality, MI, ischemic stroke, and cardiovascular- related mortality	Not specified
26	Yuan et al., 2021 [39]	Retrospective cohort	USA	RYGB (100%)	Obesity clinic at Mayo Clinic, Rochester, MN, 1993- 2012	BMI of >35	Pts underwent gastric banding and incomplete data	308	701	44.2 ± 10.5	43.6 ± 12.6	46.4 ± 6.5	44.8 ± 6.9	1 year of index diagnosis	New-onset AF	MACE
27	Mentias et al., 2022 [40]	Prospective cohort	USA	SG (65.5%), gastric bypass (33.3%), and gastric banding (1.3%)	Medicare beneficiaries through 2013- 2019	Medicare beneficiaries enrolled in part A	>75 years, history of established HF, and enrolled in Medicare for <1 year before the study entry date. Patients that had an emergent/urgent admitted to a skilled nursing facility or long- term acute care, and are discharged to any destination other than home	94885	94885	62.33 ± 10.62	62.33 ± 10.62	44.71 ± 7.3	44.71 ±7.3	4 years	All-cause mortality	Time to admission w diagnosis of new-onset H MI, and isch stroke. Secondary outcomes ak included tota rate of admissions v HF in follow-

28	Persson et al., 2017 [41]	Retrospective	Sweden	gastric banding (3.5%), vertical banded gastroplasty (3%), and gastroduodenal bypass (0.7%)	Swedish National Patient Registry, 2000-2011	Age of 18-74 years with first recorded diagnosis of obesity	HF at or before obesity diagnosis and died on the same time of obesity diagnosis	22295	25564	40.7 ± 10.7	44.3 ± 13.2	NA	NA	3.7 years	Incident HF and mortality	Not specified
29	Sundström et al., 2017 [42]	Prospective cohort	Sweden	RYGB (100%)	Scandinavian Obesity Surgery (2007-2012) and Itrim health database (2006-2013)	BMI of 30- 49.9 and age of ≥18 years	Crossover, HF at baseline, and missing data on education or marital status	25804	13701	41.3	41.5	41.5	41.4	4.1 years	Incident HF	Nonischemic
30	Jamaly et al., 2019 [43]	Prospective matched cohort	Sweden	Vertical banded gastroplasty (68%), AGB (19%), and RYGB (13%)	The Swedish Obese Subjects, 1987-2001	Age of 37-60 years and BMI for males of ≥34 and females of ≥38	Earlier gastric/duodenal ulcer surgery; earlier bariatric surgery; gastric ulcer/MI in the past six months; ongoing/active malignancy in the past five years; bulimic, drug/alcohol, psychiatric, or ccoperative problems contraindicating bariatric surgery; and other contraindicating contraindicati	2003	2030	47.2 ± 5.9	48.7±	42.4 ± 4.5	40.1 ± 4.7	22 years	Incident HF	Not specified
31	Liakopoulos et al., 2020 [44]	Retrospective observational cohort	Sweden	Gastric bypass	National Diabetes Register and the Scandinavian Obesity Surgery Register, 2007-2015	Age of 18-75 years and DM2	Not specified	5321	5321	49±9.5	47.1 ± 11.5	42±5.7	40.9±	Surg: 4.7 years; con: 4.6 years	Incident renal disease	CV diagnose heart failure, mortality
32	Höskuldsdóttir et al., 2021 [45]	Nationwide, matched, observational cohort study	Sweden	RYGB (100%)	National Diabetes Register and Scandinavian Obesity Surgery Registry, 2007-2013	Age of 18-65 years, BMI of >27.5, and DM2	Procedures other than RYGB	5321	5321	48.96 ± 9.50	47.14 ± 11.49	42.03 ± 5.65	40.95 ± 7.30	4.5 years	Hospitalization for HF and/or AF and mortality in patients with preexisting HF	Not specified
33	Jamaly et al.,	Prospective	Sweden	Vertical banded gastroplasty (68%), AGB	The Swedish Obese	Age of 37-60 years, BMI for males of ≥34	H/o AF at baseline, gastric surgery, ongoing malignancy, recent myocardial infarction, a bulimic eating	2000	2021	47.2±5.9	48.6 ±	42.4 ± 4.5	40.1 ±	19 years	Incident AF	Not specified

	2016 [46]	matched cohort		(19%), and RYGB (13%)	Subjects, 1987-2001	and females of ≥38	pattern, alcohol/drug abuse, or psychiatric problems likely to impair study compliance				6.2		4.7			
34	Lynch et al., 2019 [47]	Retrospective cohort	USA	RYGB or SG (%	Single Virginia Academic Hospital, 1985- 2015	Age of >18 years	Banded gastroplasty pts and preexisting AF	2522	2522	42	42	47.1	47.7	Surg: 6.2 years; con: 8.0 years	Incident AF	Not specified
35	Moussa et al., 2021 [48]	Retrospective	UK	NA	UK Clinical Practice Research Datalink, 2021	Not specified other than BS	Had primary event before enrollment	4212	4212	50	51	40.4	40.5	11.4 years	Cerebrovascular event	Ischemic eve hemorrhagic events, indiv components the primary e point alone, : all-cause mortality
36	MacDonald Jr et al., 1997 [49]	Retrospective cohort	USA	RYGB (100%)	Obesity Research Program at East Carolina University, 1979-1994	Non-insulin- dependent DM2	No non-insulin- dependent DM2, no morbid obesity, and age of >64 years	154	78	41.9	43.5	50.6	48.8	Surg: 9 years; con: 6.2 years	All-cause mortality	Not specified
37	Christou et al., 2004 [50]	Observational two-cohort study	Canada	RYGB (79.2%), vertical banded gastroplasty (18.7%), and laparoscopic RY isolated gastric bypass (2.2%)	McGill University Health Centre between 1986 and 2002	Not specified other than BS	Subjects with medical conditions (other than morbid obesity) at cohort inception into the study	1035	5746	45.1 ± 11.6	46.7 ± 13.1	NA	NA	Surg: 2.5 years; con: 2.6 years	Long-term mortality, morbidity, and healthcare use	Not specified
38	Batsis et al., 2007 [51]	Population- based, historical cohort	USA	RYGB (100%)	Mayo Clinic medical record, the Mayo Surgical Index, and the Rochester Epidemiology Project (REP), 1990- 2003	Not specified other than RYGB	Missing data and BMI of <35	197	163	44.0 ± 9.9	43.4± 11.2	49.5 ± 8.9	44 ± 5.7	3.3 years	All-cause mortality, cardiovascular mortality, cardiovascular events, and combined cardiovascular events/all-cause mortality	Not specified
39	Adams et al., 2007 [52]	Retrospective cohort	USA	RYGB (100%)	Single Utah surgical practice, 1984- 2002	Not specified	Not specified	7925	7925	39.5 ± 10.5	39.3 ± 10.6	45.3±7.4	46.7±	7.1 years	Death from any cause	Death from various spec causes: all deaths cause by disease: (I disease (HF, CAD, stroke, other CV), diabetes, cai other diseases. All non-disease causes: acci unrelated to drugs, poiso of undetermi intent, suicid and others
40	Davidson et al., 2016 [54]	Retrospective cohort	USA	RYGB (100%)	Private surgical practice, Utah, 1984-2002	Not specified other than BS	Not specified	7925	7925	39.5 ± 10.5	39.5 ± 10.6	45.3 ± 7.4	46.7 ±	7.2 years	All-cause and cause-specific mortality	Not specified

41	Lent et al., 2017 [55]	Retrospective observational cohort	USA	RYGB (100%)	A large comprehensive medical center, 2004-2015	Age of 18-70 years, BMI of >40 kg/m² (or >35 kg/m² with comorbidity of DM, HTN, HLD, or OSA), active in the primary care system for an extended three or visits over visits over period), not partod, not partod, not of agnosis of agroups <	Surgery other than RYG8	DM: 625; no DM: 1803	DM: 625, no DM: 1803	DM: 52.5 ± 9.4; no DM: 48.3 ± 11	DM: 52.5 ± 9.4; no DM: 43.9 ± 11	DM: 44.9 ± 6.0; no DM: 47.4 ± 6.4	DM: 44.9 ± 6.1; no DM: 47.3 ± 6.4	5.8 years	All-cause mortality, stratified by "baseline" diabetes status	Cause-speci motality, stratified by "baseline" diabetes stal
42	Pontiroli et al., 2018 [56]	Retrospective cohort	Italy	LAGB (100%)	Italian National Health System Lumbardy database (LAGB10 study group), 1995-2001	BMI of ≥40 or ≥35 with comorbidities and age of 18-65 years	Not specified	154	360	41.0 ± 10.13	42.2 ± 12.94	42.7 ± 4.62	39.1 ± 5.27	19.5 ± 1.87 years	All-cause mortality	Not specified
43	Kauppila et al., 2019 [57]	Population- based cohort	Denmark, Finland, Iceland, Norway, and Sweden	Gastric bypass (73.4%), vertical banded gastroplasty (11%), gastric banding (10.9%), other restrictive procedures (3.2%), or blocking procedures (1.5%)	Nordic Obesity Surgery Cohort (NordOSCO)	Not specified other than BS	Not specified	49977	494842			NA	NA	>15 years	All-cause mortality	Mortality, specifically in obesity-relat morbidities, cardiovascul disease, diabetes, ca and suicide
44	Doumouras et al., 2020 [58] (RYGB)	Population- based matched cohort	Canada	RYGB (87%) and sleeve gastrectomy (13%)	The Ontario Bariatric Network (OBN), 2010- 2016	Not specified other than BS	Non-Ontario residents, age of 270 years, BMI of 35 kg/m ² or less, h/o cancer within two years, active substance use disorder, accessed palliative care, pregnancy as of the index date, previous solid organ transplantation, active cardiac disease or major revascularization procedure within	13679	13679	45.23 ± 10.89	45.49 ± 11.63	47.21 ± 8.01	46.70 ±8.44	Gen: 4.89 years; con: 4.84 years	All-cause mortality	Cause-speci mortality

							six months of the index date, or severe liver disease with ascites within one year of the index date									
45	Doumouras et al., 2020 [58] (SG)	Population- based matched cohort	Canada	RYGB (87%) and sleeve gastrectomy (13%)	The Ontario Bariatric Network (OBN), 2010- 2016	Not specified other than BS	Non-Ontario residents, age of ≥70 years, BMI of 35 kg/m ² or less, h/o cancer within two years, active substance use disorder, accessed palliative care, pregnancy as of the index date, previous solid organ transplantation, active cardiac disease or major revascularization procedure within six months of the index date, or severe liver disease withi ascites within one year of the index date	13679	13679	45.23± 10.89	45.49 ±11.63	47.21 ± 8.01	46.70 ±8.44	Gen: 4.89 years; con: 4.84 years	All-cause mortality	Cause-speci mortality
46	Sheetz et al., 2020 [59]	Retrospective	USA	Sleeve gastrectomy (45.1%), Roux- en-Y gastric bypass (41.6%), gastric banding (12.8%), or duodenal switch (0.4%)	US Renal Data System registry, 2006- 2015	Not specified other than BS	<18 years, similarly coded surgery for a diagnosis of malignancy, BMI of <35, or without a recorded BMI	1597	4750	49.8 ± 11.2	51.7 ± 11.1	45.6 ± 6.7	44.6 ± 6.8	3 years	All-cause mortality at five years	Disease-spe mortality and incidence of kidney trans
47	Courcoulas et al., 2021 [60] (RYGB)	Retrospective matched cohort	USA	SG (45%) and RYGB (55%)	Kaiser Permanente regions Washington and California, 2005-2015	Age of 19-79 years and BMI of ≳35	<1 year of enrollment, pregnancy, h/o cancer (except non-melanoma skin cancer, and missing BMI data/BMI of <35							4.9 years	All-cause mortality	CV, cancer, diabetes-rela health
48	Courcoulas et al., 2021 [60] (SG)	Retrospective matched cohort	USA	SG (45%) and RYGB (55%)	Kaiser Permanente regions Washington and California, 2005-2015	Age of 19-79 years and BMI of ≥35	<1 year of enrollment, pregnancy, and h/o cancer (except non- melanoma							4.9 years	All-cause mortality	CV, cancer, diabetes-rela health
							Non-Ontario pts, BMI of <35, age of ≥70 years, h/o cancer within two years, active substance abuse, had accessed palliative care, pregnant, had									

49 Canada database, transplantation, 3455 3455	Cause-speci 14.06 All-cause mortality and 4.6 years mortality nonfatal morbidities
--	---

TABLE 2: Baseline study characteristics of all included studies

BMI, body mass index; CAD, coronary artery disease; ACS, acute coronary syndrome; HTN, hypertension; DM, diabetes mellitus; HbA1c, hemoglobin A1c; ESKD, end-stage kidney disease; CKD, chronic kidney disease; ASCVD, atherosclerotic cardiovascular disease; OSA, obstructive sleep apnea; MI, myocardial infarction; TIA, transient ischemic attack; IHD, ischemic heart disease; CHF, congestive heart failure; AF, atrial fibrillation; CV, cardiovascular; PAD, peripheral arterial disease; MSK, musculoskeletal; MACE, major adverse cardiovascular events; PCI, percutaneous coronary intervention; CABG, coronary artery bypass graft; LAGB, laparoscopic adjustable gastric banding; CHD, coronary heart disease; ER, emergency room; ESRD, end-stage renal disease; HD, hemodialysis; HLD, hyperlipidemia; SCORS UB-04, South Carolina Office of Research and Statistics Uniform Billing-04; ICD9, International Classification of Diseases-9; Gen, general surgery; NA, not available

Using the Newcastle-Ottawa Scale (NOS), studies were assessed for quality, of which all studies had at least a score of 7 and none were excluded. The quality assessment of the studies can be found in Table 3.

Study name	Study type	Selection	Comparability	Exposure	Total score	AHRQ standards
Bouchard et al., 2022 [13]	Cohort	3	2	3	8	Good quality
Carlsson et al., 2020 [14]	Cohort	3	2	3	8	Good quality
Fisher et al., 2018 [16]	Cohort	4	2	3	9	Good quality
Alkharaiji et al., 2019 [17]	Cohort	4	2	2	8	Good quality
Aminian et al., 2019 [18]	Cohort	4	2	3	9	Good quality
Singh et al., 2020 [19]	Cohort	3	2	2	7	Good quality
Ardissino et al., 2021 [20]	Cohort	3	2	2	7	Good quality
Rassen et al., 2021 [21]	Cohort	4	2	3	9	Good quality
Sampalis et al., 2006 [22]	Cohort	4	2	2	8	Good quality
Sjöström et al., 2007 [23]	Cohort	4	2	3	9	Good quality
Romeo et al., 2012 [24]	Cohort	4	2	2	8	Good quality
Sjöström et al., 2012 [25]	Cohort	4	2	3	9	Good quality
Johnson et al., 2013 [26]	Cohort	4	2	3	9	Good quality
Douglas et al., 2015 [27]	Cohort	4	2	3	9	Good quality
Eliasson et al., 2015 [28]	Cohort	4	2	3	9	Good quality
Benotti et al., 2017 [29]	Cohort	4	2	3	9	Good quality
Brown et al., 2020 [30]	Cohort	4	2	2	8	Good quality
Michaels et al., 2020 [31]	Cohort	3	2	2	7	Good quality
Moussa et al., 2020 [32]	Cohort	3	2	2	7	Good quality
Stenberg et al., 2020 [33]	Cohort	4	2	3	9	Good quality
Wong et al., 2021 [34]	Cohort	3	2	2	7	Good quality
Höskuldsdóttir et al., 2020 [35]	Cohort	3	2	2	7	Good quality

Dash et al., 2021 [36]	Cohort	2	2	3	7	Good quality
Hung et al., 2021 [37]	Cohort	4	2	2	8	Good quality
Lundberg et al., 2021 [38]	Cohort	4	2	2	8	Good quality
Yuan et al., 2021 [39]	Cohort	4	2	2	8	Good quality
Mentias et al., 2022 [40]	Cohort	3	2	3	8	Good quality
Persson et al., 2017 [41]	Cohort	4	2	2	8	Good quality
Sundström et al., 2017 [42]	Cohort	4	2	2	8	Good quality
Jamaly et al., 2019 [43]	Cohort	4	2	2	8	Good quality
Liakopoulos et al., 2020 [44]	Cohort	3	2	2	7	Good quality
Höskuldsdóttir et al., 2021 [45]	Cohort	4	2	3	9	Good quality
Jamaly et al., 2016 [46]	Cohort	4	2	3	9	Good quality
Lynch et al., 2019 [47]	Cohort	4	2	3	9	Good quality
Moussa et al., 2021 [48]	Cohort	4	2	3	9	Good quality
Macdonald Jr et al., 1997 [49]	Cohort	3	2	2	7	Good quality
Christou et al., 2004 [50]	Cohort	4	2	3	9	Good quality
Batsis et al., 2007 [51]	Cohort	3	2	3	8	Good quality
Adams et al., 2007 [52]	Cohort	3	2	3	8	Good quality
Davidson et al., 2016 [54]	Cohort	3	2	2	7	Good quality
Lent et al., 2017 [55]	Cohort	4	2	3	9	Good quality
Pontiroli et al., 2018 [56]	Cohort	4	2	2	8	Good quality
Kauppila et al., 2019 [57]	Cohort	3	2	3	8	Good quality
Doumouras et al., 2020 [58] (RYGB)	Cohort	4	2	2	8	Good quality
Doumouras et al., 2020 [58] (SG)	Cohort	4	2	2	8	Good quality
Sheetz et al., 2020 [59]	Cohort	3	2	3	8	Good quality
Courcoulas et al., 2021 [60] (RYGB)	Cohort	3	2	2	7	Good quality
Courcoulas et al., 2021 [60] (SG)	Cohort	3	2	2	7	Good quality
Doumouras et al., 2021 [61]	Cohort	4	2	3	9	Good quality

TABLE 3: Quality assessment of studies using the Newcastle-Ottawa Scale (NOS)

AHRQ: Agency for Healthcare Research and Quality

Effect on Coronary Artery Disease

Seven studies reported effects on CAD, of which six had adjusted HR ratio data and were included in the analysis (Figure 2). One study by Bouchard et al. [13] reported a combined HR for both CAD and MI. Since individual data were not available, it was excluded from the analysis to avoid duplication of data and bias. Of the included studies, there were 17423 bariatric surgery patients and 43507 controls. The effect on CAD was significant with a pooled HR of 0.68 (95% CI: 0.52-0.91) (p = 0.008).

				Hazard Ratio		Hazard Ratio
Study or Subgroup	log[Hazard Ratio]	SE	Weight	IV, Random, 95% CI	Year	IV, Random, 95% CI
Fisher et al 2018	-0.4463	0.2149	17.7%	0.64 [0.42, 0.98]	2018	
Alkharaiji et al 2019	-1.2379	0.3034	12.7%	0.29 [0.16, 0.53]	2019	_
Aminian et al 2019	-0.3711	0.1251	23.9%	0.69 [0.54, 0.88]	2019	
Singh et al 2020	-0.1625	0.1693	20.8%	0.85 [0.61, 1.18]	2020	
Ardissino et al 2021	-0.3734	0.3839	9.5%	0.69 [0.32, 1.46]	2021	
Rassen et al 2021	0.0953	0.253	15.4%	1.10 [0.67, 1.81]	2021	
Total (95% CI)			100.0%	0.68 [0.52, 0.91]		◆
Heterogeneity: Tau ² = Test for overall effect:			0.05 0.2 1 5 20 Bariatric surgery Obesity control			

FIGURE 2: Forest plot with the included studies and the pooled hazard ratio for coronary artery disease

CI: confidence interval

Sources: [13,16-21]

Effect on Myocardial Infarction

Twenty-two studies reported myocardial infarction outcomes. Sixteen studies had adjusted HR data and were included in the analysis (Figure 3). These studies had 231503 patients in the intervention group and 487727 in the control group. The effect on MI was significant with a pooled HR of 0.53 (95% CI: 0.44-0.64) (p < 0.01). The studies showed high heterogeneity with an $I^2 = 79\%$.

				Hazard Ratio		Hazard Ratio
Study or Subgroup	log[Hazard Ratio]	SE	Weight	IV, Random, 95% CI	Year	IV, Random, 95% CI
Sampalis et al 2006	-0.3425	0.1789	8.9%	0.71 [0.50, 1.01]	2006	
Romeo et al 2012	-0.5798	0.2546	6.7%	0.56 [0.34, 0.92]	2012	
Douglas et al 2015	-1.273	0.5253	2.6%	0.28 [0.10, 0.78]	2015	
Eliasson et al 2015	-0.7133	0.3642	4.5%	0.49 [0.24, 1.00]	2015	
Benotti et al 2017	-0.1165	0.3954	4.0%	0.89 [0.41, 1.93]	2017	
Alkharaiji et al 2019	-0.0202	0.3041	5.6%	0.98 [0.54, 1.78]	2019	
Wong et al 2020	-0.6274	0.7409	1.5%	0.53 [0.12, 2.28]	2020	
Brown et al 2020	-0.9416	0.0552	12.4%	0.39 [0.35, 0.43]	2020	-
Hoskuldsdottir et al 2020	-0.5621	0.4413	3.4%	0.57 [0.24, 1.35]	2020	
Moussa et al 2020	-0.8916	0.1946	8.4%	0.41 [0.28, 0.60]	2020	
Stenberg et al 2020	-0.6349	0.1187	10.8%	0.53 [0.42, 0.67]	2020	-
Hung et al 2021	-1.682	0.631	1.9%	0.19 [0.05, 0.64]	2021	
Lundberg et al 2021	-0.5108	0.1943	8.4%	0.60 [0.41, 0.88]	2021	
Yuan et al 2021	-1.4271	0.5948	2.1%	0.24 [0.07, 0.77]	2021	
Dash et al 2021	-0.6559	0.278	6.1%	0.52 [0.30, 0.89]	2021	
Mentias et al 2022	-0.462	0.0335	12.8%	0.63 [0.59, 0.67]	2022	•
Total (95% CI)			100.0%	0.53 [0.44, 0.64]		◆
Heterogeneity: $Tau^2 = 0.07$;	Chi ² = 71.58, df =	15 (P < 0	.00001);	$I^2 = 79\%$		0.05 0.2 1 5 20
Test for overall effect: $Z = 6$	5.67 (P < 0.00001)					0.05 0.2 i 5 20 Bariatric surgery Obesity control

FIGURE 3: Forest plot with the included studies and the pooled hazard ratio for myocardial infarction

CI: confidence interval

Sources: [13,17,20,22-35,40]

Like previously mentioned, Bouchard et al. [13] reported a combined incidence and hence was excluded. Johnson et al. [26], Sjöström et al. [23,25], Michaels et al. [31], and Ardissino et al. [20] provided only the incidence data and were not included in the analysis. Naslund et al. [62] studied the outcomes in patients with preexisting MI and was excluded.

Effect on Heart Failure

Eighteen studies reported heart failure outcomes. Fifteen studies had adjusted HR data and were included in the analysis (Figure 4). These studies amounted to a sample size of 180961 in the intervention group and 202891 in the control group. The effect on heart failure was significant with a pooled HR of 0.45 (95% CI: 0.37-0.55) (p < 0.01). The studies showed high heterogeneity with an $I^2 = 87\%$. Sundström et al. [42], Johnson et al. [26], and Sjöström et al. [23] had only provided relative risk data and were excluded from the analysis.

				Hazard Ratio		Hazard Ratio
Study or Subgroup	log[Hazard Ratio]	SE	Weight	IV, Random, 95% CI	Year	IV, Random, 95% CI
Persson et al 2017	-0.9943	0.1243	9.0%	0.37 [0.29, 0.47]	2017	+
Benotti et al 2017	-0.9676	0.2789	5.8%	0.38 [0.22, 0.66]	2017	
Jamaly et al 2019	-0.4155	0.1315	8.8%	0.66 [0.51, 0.85]	2019	-
Alkharaiji et al 2019	-0.1165	0.3258	5.0%	0.89 [0.47, 1.69]	2019	
Aminian et al 2019	-0.9676	0.1206	9.0%	0.38 [0.30, 0.48]	2019	-
Singh et al 2020	-0.5621	0.2636	6.1%	0.57 [0.34, 0.96]	2020	
Wong et al 2020	-1.2623	0.7275	1.6%	0.28 [0.07, 1.18]	2020	
Hoskuldsdottir et al 2020	-1.1394	0.3866	4.1%	0.32 [0.15, 0.68]	2020	
Liakopoulos et al 2020	-1.1087	0.1625	8.2%	0.33 [0.24, 0.45]	2020	-
Moussa et al 2020	-0.9088	0.4084	3.8%	0.40 [0.18, 0.90]	2020	
Hoskuldsdottir et al 2021	-1.3093	0.1793	7.8%	0.27 [0.19, 0.38]	2021	
Rassen et al 2021	-0.1985	0.3176	5.1%	0.82 [0.44, 1.53]	2021	
Dash et al 2021	-1.6195	0.3046	5.3%	0.20 [0.11, 0.36]	2021	
Mentias et al 2022	-0.7765	0.0227	10.3%	0.46 [0.44, 0.48]	2022	•
Bouchard et al 2022	-0.2231	0.0681	9.9%	0.80 [0.70, 0.91]	2022	-
Total (95% CI)			100.0%	0.45 [0.37, 0.55]		
Heterogeneity: Tau ² = 0.10;	Chi2 - 107 03 df -	14 (D -				▼
		14 (P <	0.00001)	1 = 0/70		0.01 0.1 1 10 100
Test for overall effect: $Z = 7$.97 (P < 0.00001)					Bariatric surgery Obesity control

CI: confidence interval

Sources: [13,17-19,21,23,26,29,32-36,40-45]

Effect on Atrial Fibrillation

Eight studies reported atrial fibrillation outcomes. Seven had adjusted HR data and were included in the analysis (Figure 5). These studies amounted to a sample size of 18309 in the intervention group and 32933 in the control group. The effect on atrial fibrillation was not significant with a pooled HR of 0.81 (95% CI: 0.65-1.01) (p = 0.07). Lynch et al. [47] provided relative risk data only and hence was excluded.

Study or Subgroup	log[Hazard Ratio]	SE	Weight	Hazard Ratio IV, Random, 95% CI	Year	Hazard Ratio IV, Random, 95% Cl
Jamaly et al 2016	-0.3711	0.0886	22.7%	0.69 [0.58, 0.82]	2016	+
Aminian et al 2019	-0.2485	0.1171	20.5%	0.78 [0.62, 0.98]	2019	
Hoskuldsdottir et al 2020	-0.3711	0.425	5.5%	0.69 [0.30, 1.59]	2020	
Singh et al 2020	-0.0726	0.1597	17.2%	0.93 [0.68, 1.27]	2020	
Hoskuldsdottir et al 2021	-0.5276	0.1497	17.9%	0.59 [0.44, 0.79]	2021	
Rassen et al 2021	0.6471	0.2815	9.9%	1.91 [1.10, 3.32]	2021	— . —
Yuan et al 2021	-0.0943	0.3825	6.4%	0.91 [0.43, 1.93]	2021	
Total (95% CI)			100.0%	0.81 [0.65, 1.01]		•
Heterogeneity: Tau ² = 0.05 Test for overall effect: Z =		6 (P = 0.	01); $I^2 = 6$	54%		0.05 0.2 1 5 20 Bariatric surgery Obesity control

FIGURE 5: Forest plot with the included studies and the pooled hazard ratio for atrial fibrillation

CI: confidence interval

Sources: [18,19,21,35,39,45-47]

Effect on Cerebrovascular Accident

Twenty-three studies reported cerebrovascular accident (CVA) outcomes. Twenty-one studies had adjusted HR data and were included in the analysis (Figure 6). These studies amounted to a sample size of 238472 subjects and 513848 controls. The effect on CVA was significant with a pooled HR of 0.68 (95% CI: 0.59-0.78) (p < 0.01). The studies showed moderate heterogeneity with an $I^2 = 72\%$.

				Hazard Ratio		Hazard Ratio
Study or Subgroup	log[Hazard Ratio]	SE	Weight	IV, Random, 95% CI	Year	IV, Random, 95% CI
Romeo et al 2012	-0.3147	0.2943	3.9%	0.73 [0.41, 1.30]	2012	
Sjostrom et al 2012	-0.4155	0.152	7.6%	0.66 [0.49, 0.89]	2012	
Douglas et al 2015	-0.0943	0.3371	3.3%	0.91 [0.47, 1.76]	2015	
Benotti et al 2017	-0.3147	0.2468	4.9%	0.73 [0.45, 1.18]	2017	
Fisher et al 2018	-0.3711	0.3044	3.8%	0.69 [0.38, 1.25]	2018	
Alkharaiji et al 2019	-0.1393	0.4502	2.1%	0.87 [0.36, 2.10]	2019	
Aminian et al 2019	-0.4005	0.1702	7.0%	0.67 [0.48, 0.94]	2019	
Hoskuldsdottir et al 2020	-1.7148	0.7674	0.8%	0.18 [0.04, 0.81]	2020	·
Moussa et al 2020	-0.6236	0.6042	1.3%	0.54 [0.16, 1.75]	2020	
Singh et al 2020	-0.0202	0.2017	6.1%	0.98 [0.66, 1.46]	2020	
Stenberg et al 2020	-0.2107	0.1045	9.2%	0.81 [0.66, 0.99]	2020	
Wong et al 2020	-0.2095	0.4046	2.5%	0.81 [0.37, 1.79]	2020	
Brown et al 2020	-0.5978	0.0385	11.1%	0.55 [0.51, 0.59]	2020	•
Dash et al 2021	-0.9039	0.4459	2.1%	0.40 [0.17, 0.97]	2021	
Hung et al 2021	-1.8202	0.4067	2.5%	0.16 [0.07, 0.36]	2021	
Lundberg et al 2021	-0.3857	0.1777	6.8%	0.68 [0.48, 0.96]	2021	
Moussa et al 2021	-1.0441	0.3013	3.8%	0.35 [0.20, 0.64]	2021	
Yuan et al 2021	0.207	0.3333	3.3%	1.23 [0.64, 2.36]	2021	
Ardissino et al 2021	-3.7854	1.6468	0.2%	0.02 [0.00, 0.57]	2021	·
Mentias et al 2022	-0.3425	0.045	11.0%	0.71 [0.65, 0.78]	2022	•
Bouchard et al 2022	0.0488	0.1785	6.7%	1.05 [0.74, 1.49]	2022	-
Total (95% CI)			100.0%	0.68 [0.59, 0.78]		•
Heterogeneity: Tau ² = 0.05;	Chi ² = 67.88, df =	20 (P < 0	.00001);	$l^2 = 71\%$		0.05 0.2 1 5 20
Test for overall effect: $Z = 5$						0.05 0.2 i 5 20 Bariatric surgery Obesity control

FIGURE 6: Forest plot with the included studies and the pooled hazard ratio for cerebrovascular accident

CI: confidence interval

Sources: [13,16-20,23-27,29,30,32-40,48]

Johnson et al. [26] and Sjöström et al. [23] reported data for relative risks only and were excluded. Some studies for CVA reported ischemic outcomes (transient ischemic attack and ischemic stroke) and hemorrhagic outcomes (hemorrhagic stroke and intraparenchymal hemorrhage) separately. We have not made differentiation between the entities and have reported it as a composite CVA outcome.

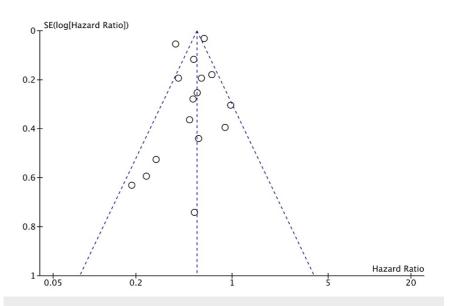
Effect on Cardiovascular Mortality

Twenty-six studies reported cardiovascular disease-specific mortality. Fifteen studies had adjusted HR data and were included in the analysis (Figure 7). There were 157750 in the surgery group and 643770 in the control groups. The effect on cardiovascular disease (CVD) mortality was significant with a pooled HR of 0.48 (95% CI: 0.40-0.57) (p < 0.01). The studies showed high heterogeneity with an $I^2 = 71\%$.

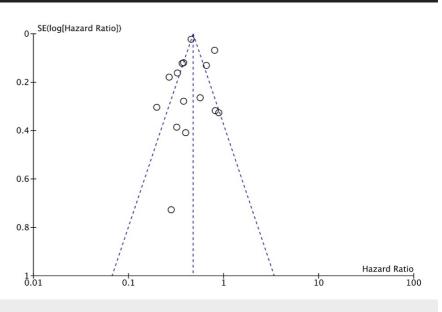
				Hazard Ratio			Hazard Ratio		
Study or Subgroup	log[Hazard Ratio]	SE	Weight	IV, Random, 95% CI	Year		IV, Random, 95% CI		
Courcoulas et al - RYGB 2021	-1.3093	0.1531	9.4%	0.27 [0.20, 0.36]					
Courcoulas et al – SG 2021	-0.5621	0.5605	2.1%	0.57 [0.19, 1.71]					
Doumouras et al - RYGB 2020	-0.5447	0.2577	6.3%	0.58 [0.35, 0.96]					
Doumouras et al – SG 2020	-0.9416	0.5227	2.4%	0.39 [0.14, 1.09]					
Adams et al 2007	-1.0217	0.2513	6.4%	0.36 [0.22, 0.59]	2007				
Sjostrom et al 2012	-0.755	0.2464	6.5%	0.47 [0.29, 0.76]	2012				
Eliasson et al 2015	-0.9163	0.5004	2.6%	0.40 [0.15, 1.07]	2015				
Davidson et al 2016	-0.6733	0.1777	8.6%	0.51 [0.36, 0.72]	2016				
Kauppila et al 2019	-0.5621	0.0468	12.6%	0.57 [0.52, 0.62]	2019		-		
Sheetz et al 2020	-0.755	0.1221	10.5%	0.47 [0.37, 0.60]	2020				
Carlsson et al 2020	-0.3567	0.1048	11.1%	0.70 [0.57, 0.86]	2020		-		
Hoskuldsdottir et al 2020	-1.8971	0.8212	1.1%	0.15 [0.03, 0.75]	2020	←			
Liakopoulos et al 2020	-1.0217	0.2513	6.4%	0.36 [0.22, 0.59]	2020				
Doumouras et al 2021	-1.1394	0.3866	3.8%	0.32 [0.15, 0.68]	2021				
Lundberg et al 2021	-0.2485	0.1339	10.1%	0.78 [0.60, 1.01]	2021		-		
Total (95% CI)			100.0%	0.48 [0.40, 0.57]			•		
Heterogeneity: Tau ² = 0.06; Chi ²	² = 47.47, df = 14 (P	< 0.000	1); $ ^2 = 7$	1%		0.05		20	-
Test for overall effect: Z = 8.22						0.05	0.2 1 S		,
	,						Bariatric surgery Obesity cor	itroi	

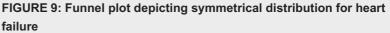
FIGURE 7: Forest plot with the included studies and the pooled hazard ratio for cardiovascular mortality

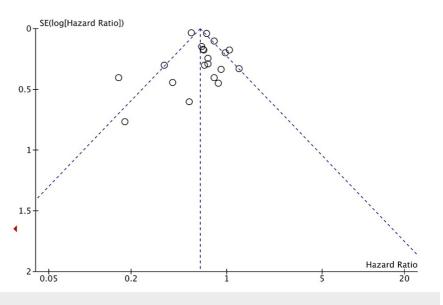
CI: confidence interval


Sources: [14,23,25-28,33,35-38,44,45,49-61]

Pontiroli et al. [53,56], Höskuldsdóttir et al. [35,45], Stenberg et al. [33], Sjöström et al. [23], MacDonald Jr et al. [49], Lent et al. [55], Hung et al. [37], Batsis et al. [51], Johnson et al. [26], and Christou et al. [50] had insufficient data for hazard ratio and were excluded. Courcoulas et al. [60] and Doumouras et al. [58] studied CVD data separately on sleeve gastrectomy and RYGB. Hence, they were included as separate outcomes.


Publication bias


Publication bias was assessed for MI, HF, CVA, and CVD. The studies included had a moderate-to-high amount of heterogeneity. This is likely from many smaller studies included leading to effect size variation.


This is suggestive of likely publication bias in favor of positive studies. But the funnel plots (shown in Figures *8-11*) show the studies being symmetrically scattered around the midline. This is in concordance with the inverted funnel appearance reassuring that there is no publication bias [63].



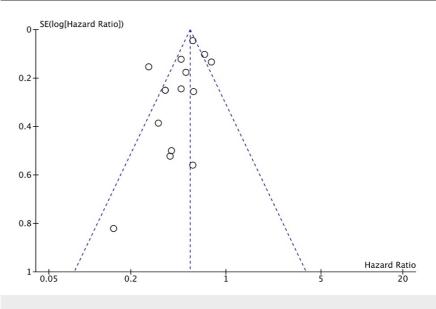


FIGURE 11: Funnel plot depicting symmetrical distribution for cardiovascular mortality

Discussion

In this updated meta-analysis, we analyzed six major long-term cardiovascular outcomes post-bariatric surgery. Five outcomes including CAD, MI, HF, CVA, and CVD mortality showed a significant risk reduction, whereas atrial fibrillation showed a non-significant risk reduction.

Bariatric Surgery and Atherosclerotic Disease

Obesity poses a high risk for atheroma formation [2]. Bariatric surgery provides a beneficial effect by altering molecular mechanisms involving inflammation. Bariatric surgery decreases the levels of oxidative stress and inflammatory markers [64]. It reduces circulating levels of adhesion molecules and improves endothelium-dependent vasodilatory response [65]. Objectively, several studies have shown that surgery reduces carotid intimal wall thickness in concordance with weight loss [66]. These processes in turn contribute to the risk reduction of atherosclerotic diseases such as CAD, MI, and CVA.

Although CAD and MI are atherosclerotic processes, they differ in their pathophysiology and clinical manifestations. CAD is defined as the presence of atherosclerotic plaque within the epicardial coronary

arteries. Over time, risk factors potentiate plaque growth. During periods of myocardial oxygen demand, there is endothelial dysfunction causing plaque rupture. This in turn leads to atherothrombosis, vessel occlusion, and myocardial infarction [67]. Of significance, there was a 29.3% cumulative decrease in MI-related inpatient deaths and 3.6% cumulative increase in CAD-related inpatient deaths from 2001 to 2014 [68]. It is important to differentiate MI and CAD, as bariatric surgery is protective against both MI and CAD. Hence, we have studied the effects separately.

The pooled HR for CAD in our study was 0.68 (95% CI: 0.52-0.91). Currently, there are no prior meta-analysis exhibiting the association between bariatric surgery and CAD. The pooled HR for MI in our meta-analysis was 0.53 (95% CI: 0.44-0.64) from 16 studies. This is in concordance with previous studies. Kwok et al. reported a pooled OR of 0.46 (95% CI: 0.30-0.69) from four studies [69]. A more recent analysis by van Veldhuisen et al. reported a pooled HR of 0.58 (95% CI: 0.43-0.76) from seven studies [70]. The pooled HR for composite CVA in our meta-analysis was 0.68 (95% CI: 0.59-0.78) from 21 studies. Kwok et al. reported a similar pooled OR of 0.49 (95% CI: 0.32-0.75) from four studies [69].

Bariatric Surgery and Heart Failure

Bariatric surgery counteracts the effects of obesity on the heart, as described previously. Although there are no randomized controlled trials to show this effect on heart failure, few observational studies have been conducted. The mechanism by which this occurs could be multifactorial. Bariatric surgery reduces heart failure risk factors including hypertension, hyperlipidemia, and diabetes [51]. It also directly acts on the myocardium causing changes in the left ventricle (LV) wall and ejection fraction (EF) percentage. Vest et al. showed that bariatric surgery improved left ventricular systolic dysfunction and resulted in a statistically significant improvement in left ventricle ejection fraction (LVEF) [71]. Another study showed a 43% reduction in left ventricular mass with subsequent reduction in left atrial and right ventricular wall diameter and epicardial fat [72]. A meta-analysis done by Cuspidi et al. showed significant changes in LV thickness, improvement in LV diastolic function, and a decrease in left atrial diameter [73]. Cuspidi et al. also showed no significant improvement of EF percentage [73]. The pooled HR for HF in our study was 0.45 (95% CI: 0.37-0.55) from 15 studies. This is consistent with a prior similar meta-analysis [70,74].

Bariatric Surgery and Cardiovascular Mortality

Scandinavian countries have the most comprehensive obesity registries with a long-term follow-up [14,25,35,43,57]. The data from these have provided significant insight into the long-term outcomes after bariatric surgeries. Carlsson et al. followed 2007 patients over a mean of 24 years and found 457 deaths, of which 167 were from cardiovascular causes, the most common cardiovascular cause of death being myocardial infarction, heart failure, and sudden death [14]. Kauppila et al. reported from the Nordic population. Among 49977 patients that underwent bariatric surgery, there were 525 cardiovascular deaths with patients followed up to >15 years [57]. Sjöström et al. studied 2010 subjects with a mean follow-up of 14.7 years, encountering 28 cardiovascular deaths [25].

In our analysis, the pooled HR for CVD mortality was 0.48 (95% CI: 0.40-0.57) involving 15 studies. Our study has the largest pooled data with respect to cardiovascular mortality data to date. Wiggins et al. reported an OR of 0.50 (95% CI: 0.39-0.71) from three studies [75].

Given the significant cardiovascular benefits offered by bariatric surgery, the referral from primary care physicians has been lower. This could be attributed to knowledge gaps, hesitancy, or concerns regarding postoperative care. A recent Canadian survey showed that more than 50% of physician respondents did not feel equipped to counsel the patients on surgical options. And only 11.6% of the obese patients were being counselled [76]. In a Swedish survey, interestingly, 84% of respondents stated that the patients themselves initiated bariatric surgery referral [77]. Physician's knowledge showed a positive correlation toward referral and management of postoperative issues [77]. This brings into perspective that education and awareness would lead to better patient sampling, thereby cumulatively improving cardiovascular outcomes.

Limitations

Firstly, the studies included are all nonrandomized cohort studies, which could involve selection and publication biases. Henceforth, longer randomized controlled trials are required. Secondly, most of the outcomes had high heterogeneity, which could be owed to the many smaller studies that were included. Thirdly, some studies had non-generalizable populations such as type 1 diabetes or type 2 diabetes specifically. However, we omitted populations that had cardiovascular diseases at baseline. Fourthly, only English studies were included owing to the ease of interpretation and analysis. Lastly, we failed to study the HR specific to each bariatric surgery, likely due to the scarcity of data for a pooled analysis.

Conclusions

Although the management of obesity requires a multimodal approach, recognizing the necessity for bariatric surgery early in the disease course is important. Both the physician and the patients should be aware of the treatment strategies to make a well-informed decision. Our study is an updated meta-analysis highlighting the consistency with the prior data. We included additional studies to provide more comprehensive data on six major cardiovascular outcomes. In conclusion, bariatric surgery showed a statistically significant risk reduction withCAD, MI, HF, CVA, and cardiovascular disease-specific mortality and a non-significant risk

reduction of atrial fibrillation. However, these data are inclusive of RYGB, SG, and laparoscopic banding. Further research needs to be conducted to determine if these individual procedures have better overall outcomes than one another.

Additional Information

Disclosures

Conflicts of interest: In compliance with the ICMJE uniform disclosure form, all authors declare the following: **Payment/services info:** All authors have declared that no financial support was received from any organization for the submitted work. **Financial relationships:** All authors have declared that they have no financial relationships at present or within the previous three years with any organizations that might have an interest in the submitted work. **Other relationships:** All authors have declared that there are no other relationships or activities that could appear to have influenced the submitted work.

Acknowledgements

HC and SM formulated the idea and designed the research study. HC, TG, and NK collected the data and tabulated the findings. HC and AZ performed the statistical analysis. HC and SGM wrote the manuscript, and SGM assisted in editing the manuscript. All authors read and approved the final manuscript.

References

- Schienkiewitz A, Mensink GB, Scheidt-Nave C: Comorbidity of overweight and obesity in a nationally representative sample of German adults aged 18-79 years. BMC Public Health. 2012, 12:658. 10.1186/1471-2458-12-658
- Powell-Wiley TM, Poirier P, Burke LE, et al.: Obesity and cardiovascular disease: a scientific statement from the American Heart Association. Circulation. 2021, 143:e984-1010. 10.1161/CIR.00000000000973
- Hales CM, Carroll MD, Fryar CD, Ogden CL: Prevalence of obesity and severe obesity among adults: United States, 2017-2018. NCHS Data Brief. 2020, 1-8.
- Jensen MD, Ryan DH, Apovian CM, et al.: 2013 AHA/ACC/TOS guideline for the management of overweight and obesity in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and The Obesity Society. Circulation. 2014, 129:S102-38. 10.1161/01.cir.0000437739.71477.ee
- Cozier YC, Yu J, Coogan PF, Bethea TN, Rosenberg L, Palmer JR: Racism, segregation, and risk of obesity in the Black Women's Health Study. Am J Epidemiol. 2014, 179:875-83. 10.1093/aje/kwu004
- Bell CN, Kerr J, Young JL: Associations between obesity, obesogenic environments, and structural racism vary by county-level racial composition. Int J Environ Res Public Health. 2019, 16:861. 10.3390/ijerph16050861
- Afshin A, Forouzanfar MH, Reitsma MB, et al.: Health effects of overweight and obesity in 195 countries over 25 years. N Engl J Med. 2017, 377:13-27. 10.1056/NEJMoa1614362
- Poirier P, Giles TD, Bray GA, Hong Y, Stern JS, Pi-Sunyer FX, Eckel RH: Obesity and cardiovascular disease: pathophysiology, evaluation, and effect of weight loss: an update of the 1997 American Heart Association scientific statement on obesity and heart disease from the Obesity Committee of the Council on Nutrition, Physical Activity, and Metabolism. Circulation. 2006, 113:898-918. 10.1161/CIRCULATIONAHA.106.171016
- Csige I, Ujvárosy D, Szabó Z, Lőrincz I, Paragh G, Harangi M, Somodi S: The impact of obesity on the cardiovascular system. J Diabetes Res. 2018, 2018:3407306. 10.1155/2018/3407306
- Neeland IJ, Gupta S, Ayers CR, et al.: Relation of regional fat distribution to left ventricular structure and function. Circ Cardiovasc Imaging. 2013, 6:800-7. 10.1161/CIRCIMAGING.113.000532
- Lavie CJ, Pandey A, Lau DH, Alpert MA, Sanders P: Obesity and atrial fibrillation prevalence, pathogenesis, and prognosis: effects of weight loss and exercise. J Am Coll Cardiol. 2017, 70:2022-35. 10.1016/j.jacc.2017.09.002
- Arterburn DE, Telem DA, Kushner RF, Courcoulas AP: Benefits and risks of bariatric surgery in adults: a review. JAMA. 2020, 324:879-87. 10.1001/jama.2020.12567
- Bouchard P, Al-Masrouri S, Demyttenaere S, Court O, Andalib A: Long-term impact of bariatric surgery on major adverse cardiovascular events in patients with obesity, diabetes and hypertension: a population-level study. Obes Surg. 2022, 32:771-8. 10.1007/s11695-021-05849-1
- 14. Carlsson LM, Sjöholm K, Jacobson P, et al.: Life expectancy after bariatric surgery in the Swedish obese subjects study. N Engl J Med. 2020, 383:1535-43. 10.1056/NEJMoa2002449
- 15. Page MJ, McKenzie JE, Bossuyt PM, et al.: The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Rev Esp Cardiol (Engl Ed). 2021, 74:790-9. 10.1016/j.rec.2021.07.010
- Fisher DP, Johnson E, Haneuse S, et al.: Association between bariatric surgery and macrovascular disease outcomes in patients with type 2 diabetes and severe obesity. JAMA. 2018, 320:1570-82. 10.1001/jama.2018.14619
- Alkharaiji M, Anyanwagu U, Donnelly R, Idris I: Effect of bariatric surgery on cardiovascular events and metabolic outcomes in obese patients with insulin-treated type 2 diabetes: a retrospective cohort study. Obes Surg. 2019, 29:3154-64. 10.1007/s11695-019-03809-4
- Aminian A, Zajichek A, Arterburn DE, et al.: Association of metabolic surgery with major adverse cardiovascular outcomes in patients with type 2 diabetes and obesity. JAMA. 2019, 322:1271-82. 10.1001/jama.2019.14231
- 19. Singh P, Subramanian A, Adderley N, et al.: Impact of bariatric surgery on cardiovascular outcomes and mortality: a population-based cohort study. Br J Surg. 2020, 107:432-42. 10.1002/bjs.11433
- Ardissino M, Watson F, Amin R, Collins P, Moussa O, Purkayastha S: Atherosclerotic disease burden after bariatric surgery in patients with obesity and type 2 diabetes. J Diabetes. 2021, 13:640-7. 10.1111/1753-0407.13151
- 21. Rassen JA, Murk W, Schneeweiss S: Real-world evidence of bariatric surgery and cardiovascular benefits using electronic health records data: a lesson in bias. Diabetes Obes Metab. 2021, 23:1453-62.

10.1111/dom.14338

- 22. Sampalis JS, Sampalis F, Christou N: Impact of bariatric surgery on cardiovascular and musculoskeletal morbidity. Surg Obes Relat Dis. 2006, 2:587-91. 10.1016/j.soard.2006.08.006
- Sjöström L, Narbro K, Sjöström CD, et al.: Effects of bariatric surgery on mortality in Swedish obese subjects . N Engl J Med. 2007, 357:741-52. 10.1056/NEJMoa066254
- 24. Romeo S, Maglio C, Burza MA, et al.: Cardiovascular events after bariatric surgery in obese subjects with type 2 diabetes. Diabetes Care. 2012, 35:2613-7. 10.2337/dc12-0193
- 25. Sjöström L, Peltonen M, Jacobson P, et al.: Bariatric surgery and long-term cardiovascular events. JAMA. 2012, 307:56-65. 10.1001/jama.2011.1914
- 26. Johnson BL, Blackhurst DW, Latham BB, et al.: Bariatric surgery is associated with a reduction in major macrovascular and microvascular complications in moderately to severely obese patients with type 2 diabetes mellitus. J Am Coll Surg. 2013, 216:545-56. 10.1016/j.jamcollsurg.2012.12.019
- Douglas IJ, Bhaskaran K, Batterham RL, Smeeth L: Bariatric surgery in the United Kingdom: a cohort study of weight loss and clinical outcomes in routine clinical care. PLoS Med. 2015, 12:e1001925. 10.1371/journal.pmed.1001925
- Eliasson B, Liakopoulos V, Franzén S, Näslund I, Svensson AM, Ottosson J, Gudbjörnsdottir S: Cardiovascular disease and mortality in patients with type 2 diabetes after bariatric surgery in Sweden: a nationwide, matched, observational cohort study. Lancet Diabetes Endocrinol. 2015, 3:847-54. 10.1016/S2213-8587(15)00334-4
- Benotti PN, Wood GC, Carey DJ, et al.: Gastric bypass surgery produces a durable reduction in cardiovascular disease risk factors and reduces the long-term risks of congestive heart failure. J Am Heart Assoc. 2017, 6:e005126. 10.1161/JAHA.116.005126
- 30. Brown AM, Yang J, Zhang X, Docimo S, Pryo AD, Spaniolas K: Bariatric surgery lowers the risk of major cardiovascular events. Ann Surg. 2022, 276:e417-24. 10.1097/SLA.00000000004640
- Michaels AD, Mehaffey JH, Hawkins RB, Kern JA, Schirmer BD, Hallowell PT: Bariatric surgery reduces longterm rates of cardiac events and need for coronary revascularization: a propensity-matched analysis. Surg Endosc. 2020, 34:2638-43. 10.1007/s00464-019-07036-x
- 32. Moussa O, Ardissino M, Heaton T, et al.: Effect of bariatric surgery on long-term cardiovascular outcomes: a nationwide nested cohort study. Eur Heart J. 2020, 41:2660-7. 10.1093/eurheartj/ehaa069
- 33. Stenberg E, Cao Y, Marsk R, Sundbom M, Jernberg T, Näslund E: Association between metabolic surgery and cardiovascular outcome in patients with hypertension: a nationwide matched cohort study. PLoS Med. 2020, 17:e1003307. 10.1371/journal.pmed.1003307
- Wong CK, Wu T, Wong SK, et al.: Effects of bariatric surgery on kidney diseases, cardiovascular diseases, mortality and severe hypoglycaemia among patients with type 2 diabetes mellitus. Nephrol Dial Transplant. 2021, 36:1440-51. 10.1093/ndt/gfaa075
- 35. Höskuldsdóttir G, Ekelund J, Miftaraj M, et al.: Potential benefits and harms of gastric bypass surgery in obese individuals with type 1 diabetes: a nationwide, matched, observational cohort study. Diabetes Care. 2020, 43:3079-85. 10.2337/dc20-0388
- Dash S, Everett K, Jackson T, et al.: Cardiorenal outcomes in eligible patients referred for bariatric surgery. Obesity (Silver Spring). 2021, 29:2035-43. 10.1002/oby.23294
- 37. Hung SL, Chen CY, Chin WL, Lee CH, Chen JH: The long-term risk of cardiovascular events in patients following bariatric surgery compared to a non-surgical population with obesity and the general population: a comprehensive national cohort study. Langenbecks Arch Surg. 2021, 406:189-96. 10.1007/s00423-020-02027-2
- Lundberg CE, Björck L, Adiels M, Lagergren J, Rosengren A: Risk of myocardial infarction, ischemic stroke, and mortality in patients who undergo gastric bypass for obesity compared with non-operated obese patients and population controls. Ann Surg. 2021, 277:275-83. 10.1097/SLA.000000000005054
- Yuan H, Medina-Inojosa JR, Lopez-Jimenez F, et al.: The long-term impact of bariatric surgery on development of atrial fibrillation and cardiovascular events in obese patients: an historical cohort study. Front Cardiovasc Med. 2021, 8:647118. 10.3389/fcvm.2021.647118
- 40. Mentias A, Aminian A, Youssef D, et al.: Long-term cardiovascular outcomes after bariatric surgery in the Medicare population. J Am Coll Cardiol. 2022, 79:1429-37. 10.1016/j.jacc.2022.01.047
- Persson CE, Björck L, Lagergren J, Lappas G, Giang KW, Rosengren A: Risk of heart failure in obese patients with and without bariatric surgery in Sweden-a registry-based study. J Card Fail. 2017, 23:530-7.
 10.1016/j.cardfail.2017.05.005
- Sundström J, Bruze G, Ottosson J, Marcus C, Näslund I, Neovius M: Weight loss and heart failure: a nationwide study of gastric bypass surgery versus intensive lifestyle treatment. Circulation. 2017, 135:1577-85. 10.1161/CIRCULATIONAHA.116.025629
- Jamaly S, Carlsson L, Peltonen M, Jacobson P, Karason K: Surgical obesity treatment and the risk of heart failure. Eur Heart J. 2019, 40:2131-8. 10.1093/eurheartj/ehz295
- 44. Liakopoulos V, Franzén S, Svensson AM, et al.: Renal and cardiovascular outcomes after weight loss from gastric bypass surgery in type 2 diabetes: cardiorenal risk reductions exceed atherosclerotic benefits. Diabetes Care. 2020, 43:1276-84. 10.2337/dc19-1703
- 45. Höskuldsdóttir G, Sattar N, Miftaraj M, et al.: Potential effects of bariatric surgery on the incidence of heart failure and atrial fibrillation in patients with type 2 diabetes mellitus and obesity and on mortality in patients with preexisting heart failure: a nationwide, matched, observational cohort study. J Am Heart Assoc. 2021, 10:e019323. 10.1161/JAHA.120.019323
- Jamaly S, Carlsson L, Peltonen M, Jacobson P, Sjöström L, Karason K: Bariatric surgery and the risk of newonset atrial fibrillation in Swedish obese subjects. J Am Coll Cardiol. 2016, 68:2497-504. 10.1016/j.jacc.2016.09.940
- Lynch KT, Mehaffey JH, Hawkins RB, Hassinger TE, Hallowell PT, Kirby JL: Bariatric surgery reduces incidence of atrial fibrillation: a propensity score-matched analysis. Surg Obes Relat Dis. 2019, 15:279-85. 10.1016/j.soard.2018.11.021
- Moussa O, Ardissino M, Tang A, et al.: Long-term cerebrovascular outcomes after bariatric surgery: a nationwide cohort study. Clin Neurol Neurosurg. 2021, 203:106560. 10.1016/j.clineuro.2021.106560
- MacDonald KG Jr, Long SD, Swanson MS, Brown BM, Morris P, Dohm GL, Pories WJ: The gastric bypass operation reduces the progression and mortality of non-insulin-dependent diabetes mellitus. J Gastrointest Surg. 1997, 1:213-20. 10.1016/s1091-255x(97)80112-6

- Christou NV, Sampalis JS, Liberman M, Look D, Auger S, McLean AP, MacLean LD: Surgery decreases longterm mortality, morbidity, and health care use in morbidly obese patients. Ann Surg. 2004, 240:416-23. 10.1097/01.sla.0000137343.63376.19
- Batsis JA, Romero-Corral A, Collazo-Clavell ML, Sarr MG, Somers VK, Brekke L, Lopez-Jimenez F: Effect of weight loss on predicted cardiovascular risk: change in cardiac risk after bariatric surgery. Obesity (Silver Spring). 2007, 15:772-84. 10.1038/oby.2007.589
- Adams TD, Gress RE, Smith SC, et al.: Long-term mortality after gastric bypass surgery. N Engl J Med. 2007, 357:753-61. 10.1056/NEJMoa066603
- 53. Pontiroli AE, Zakaria AS, Mantegazza E, Morabito A, Saibene A, Mozzi E, Micheletto G: Long-term mortality and incidence of cardiovascular diseases and type 2 diabetes in diabetic and nondiabetic obese patients undergoing gastric banding: a controlled study. Cardiovasc Diabetol. 2016, 15:39. 10.1186/s12933-016-0347-Z
- 54. Davidson LE, Adams TD, Kim J, et al.: Association of patient age at gastric bypass surgery with long-term all-cause and cause-specific mortality. JAMA Surg. 2016, 151:631-7. 10.1001/jamasurg.2015.5501
- 55. Lent MR, Benotti PN, Mirshahi T, et al.: All-cause and specific-cause mortality risk after Roux-en-Y gastric bypass in patients with and without diabetes. Diabetes Care. 2017, 40:1379-85. 10.2337/dc17-0519
- 56. Pontiroli AE, Zakaria AS, Fanchini M, et al.: A 23-year study of mortality and development of co-morbidities in patients with obesity undergoing bariatric surgery (laparoscopic gastric banding) in comparison with medical treatment of obesity. Cardiovasc Diabetol. 2018, 17:161. 10.1186/s12933-018-0801-1
- 57. Kauppila JH, Tao W, Santoni G, et al.: Effects of obesity surgery on overall and disease-specific mortality in a 5-country population-based study. Gastroenterology. 2019, 157:119-127.e1. 10.1053/j.gastro.2019.03.048
- Doumouras AG, Albacete S, Mann A, Gmora S, Anvari M, Hong D: A longitudinal analysis of wait times for bariatric surgery in a publicly funded, regionalized bariatric care system. Obes Surg. 2020, 30:961-8. 10.1007/s11695-019-04259-8
- Sheetz KH, Gerhardinger L, Dimick JB, Waits SA: Bariatric surgery and long-term survival in patients with obesity and end-stage kidney disease. JAMA Surg. 2020, 155:581-8. 10.1001/jamasurg.2020.0829
- Courcoulas AP, Johnson E, Arterburn DE, et al.: Reduction in long-term mortality after sleeve gastrectomy and gastric bypass compared to non-surgical patients with severe obesity. Ann Surg. 2021, 10.1097/SLA.00000000005155
- Doumouras AG, Lee Y, Paterson JM, et al.: Association between bariatric surgery and major adverse diabetes outcomes in patients with diabetes and obesity. JAMA Netw Open. 2021, 4:e216820. 10.1001/jamanetworkopen.2021.6820
- Näslund E, Stenberg E, Hofmann R, et al.: Association of metabolic surgery with major adverse cardiovascular outcomes in patients with previous myocardial infarction and severe obesity: a nationwide cohort study. Circulation. 2021, 143:1458-67. 10.1161/CIRCULATIONAHA.120.048585
- 63. Sterne JA, Sutton AJ, Ioannidis JP, et al.: Recommendations for examining and interpreting funnel plot asymmetry in meta-analyses of randomised controlled trials. BMJ. 2011, 343:d4002. 10.1136/bmj.d4002
- 64. Uzun H, Zengin K, Taskin M, Aydin S, Simsek G, Dariyerli N: Changes in leptin, plasminogen activator factor and oxidative stress in morbidly obese patients following open and laparoscopic Swedish adjustable gastric banding. Obes Surg. 2004, 14:659-65. 10.1381/096089204323093453
- Pontiroli AE, Pizzocri P, Koprivec D, et al.: Body weight and glucose metabolism have a different effect on circulating levels of ICAM-1, E-selectin, and endothelin-1 in humans. Eur J Endocrinol. 2004, 150:195-200. 10.1530/eje.0.1500195
- Lupoli R, Di Minno MN, Guidone C, Cefalo C, Capaldo B, Riccardi G, Mingrone G: Effects of bariatric surgery on markers of subclinical atherosclerosis and endothelial function: a meta-analysis of literature studies. Int J Obes (Lond). 2016, 40:395-402. 10.1038/ijo.2015.187
- Nelson AJ, Ardissino M, Psaltis PJ: Current approach to the diagnosis of atherosclerotic coronary artery disease: more questions than answers. Ther Adv Chronic Dis. 2019, 10:2040622319884819. 10.1177/2040622319884819
- Healthcare Cost and Utilization Project (HCUP) statistical briefs [Internet]. Agency for Healthcare Research and Quality, Rockville, MD; 2006. https://pubmed.ncbi.nlm.nih.gov/21413206/.
- 69. Kwok CS, Pradhan A, Khan MA, et al.: Bariatric surgery and its impact on cardiovascular disease and mortality: a systematic review and meta-analysis. Int J Cardiol. 2014, 173:20-8. 10.1016/j.ijcard.2014.02.026
- van Veldhuisen SL, Gorter TM, van Woerden G, de Boer RA, Rienstra M, Hazebroek EJ, van Veldhuisen DJ: Bariatric surgery and cardiovascular disease: a systematic review and meta-analysis. Eur Heart J. 2022, 43:1955-69. 10.1093/eurheartj/ehac071
- Vest AR, Patel P, Schauer PR, Satava ME, Cavalcante JL, Brethauer S, Young JB: Clinical and echocardiographic outcomes after bariatric surgery in obese patients with left ventricular systolic dysfunction. Circ Heart Fail. 2016, 9:e002260. 10.1161/CIRCHEARTFAILURE.115.002260
- Castagneto-Gissey L, Angelini G, Mingrone G, et al.: The early reduction of left ventricular mass after sleeve gastrectomy depends on the fall of branched-chain amino acid circulating levels. EBioMedicine. 2022, 76:103864. 10.1016/j.ebiom.2022.103864
- 73. Cuspidi C, Rescaldani M, Tadic M, Sala C, Grassi G: Effects of bariatric surgery on cardiac structure and function: a systematic review and meta-analysis. Am J Hypertens. 2014, 27:146-56. 10.1093/ajh/hpt215
- Berger S, Meyre P, Blum S, Aeschbacher S, Ruegg M, Briel M, Conen D: Bariatric surgery among patients with heart failure: a systematic review and meta-analysis. Open Heart. 2018, 5:e000910. 10.1136/openhrt-2018-000910
- Wiggins T, Guidozzi N, Welbourn R, Ahmed AR, Markar SR: Association of bariatric surgery with all-cause mortality and incidence of obesity-related disease at a population level: a systematic review and metaanalysis. PLoS Med. 2020, 17:e1003206. 10.1371/journal.pmed.1003206
- El-Beheiry M, Vergis A, Choi JU, Clouston K, Hardy K: A survey of primary care physician referral to bariatric surgery in Manitoba: access, perceptions and barriers. Ann Transl Med. 2020, 8:S3. 10.21037/atm.2020.01.69
- Memarian E, Carrasco D, Thulesius H, Calling S: Primary care physicians' knowledge, attitudes and concerns about bariatric surgery and the association with referral patterns: a Swedish survey study. BMC Endocr Disord. 2021, 21:62. 10.1186/s12902-021-00723-8