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Genome‑ and transcriptome‑wide 
splicing associations with alcohol 
use disorder
Spencer B. Huggett , Ami S. Ikeda , Qingyue Yuan , Chelsie E. Benca‑Bachman  & 
Rohan H. C. Palmer *

Genetic mechanisms of alternative mRNA splicing have been shown in the brain for a variety of 
neuropsychiatric traits, but not substance use disorders. Our study utilized RNA-sequencing data 
on alcohol use disorder (AUD) in four brain regions (n = 56; ages 40–73; 100% ‘Caucasian’; PFC, NAc, 
BLA and CEA) and genome-wide association data on AUD (n = 435,563, ages 22–90; 100% European-
American). Polygenic scores of AUD were associated with AUD-related alternative mRNA splicing 
in the brain. We identified 714 differentially spliced genes between AUD vs controls, which included 
both putative addiction genes and novel gene targets. We found 6463 splicing quantitative trait loci 
(sQTLs) that linked to the AUD differentially spliced genes. sQTLs were enriched in loose chromatin 
genomic regions and downstream gene targets. Additionally, the heritability of AUD was enriched 
for DNA variants in and around differentially spliced genes associated with AUD. Our study also 
performed splicing transcriptome-wide association studies (TWASs) of AUD and other drug use 
traits that unveiled specific genes for follow-up and splicing correlations across SUDs. Finally, we 
showed that differentially spliced genes between AUD vs control were also associated with primate 
models of chronic alcohol consumption in similar brain regions. Our study found substantial genetic 
contributions of alternative mRNA splicing in AUD.

Alternative mRNA splicing is the process where a single gene codes for multiple mRNA transcripts and con-
sequently multiple proteins and gene isoforms with different structures and functions. Nearly 95% of human 
genes undergo alternative splicing1. Alternative mRNA splicing in the brain is a major contributor to both the 
genetic and neuromolecular pathology of psychiatric traits2. But researchers rarely investigate genome-wide or 
transcriptome-wide alternative mRNA splicing associations with substance use disorders.

Alcohol consumption induces abnormal alternative splicing events. That is, in tightly controlled experiments, 
alcohol use has shown to alter the combinations of protein coding (exons) and non-coding (introns) regions 
in particular transcripts as well as modify the expression of individual gene isoforms relative to naïve controls 
in brain tissues and cell types3,4. These data suggest that alcohol exposure might directly disrupt alternative 
mRNA splicing in specific genes. Post-mortem human brain studies identify alternative splicing associations 
with alcohol use disorder (AUD) highlighting specific gene isoforms among ion channels5 and neurotransmit-
ter receptors6 as well as intracellular pathways and synaptic plasticity processes7. One study reported that AUD 
causes changes in mRNA splicing in the brain7, but did not explore the possibility of genetic influences, which 
would be inconsistent with causality.

Other research has identified links between genetic predispositions and RNA associations from human brain 
data on substance use disorders. Using a variety of different genomic methods, including gene-based associations, 
expression quantitative trait loci, and partitioned heritability, genetic associations with substance use disorders 
show overlap with differentially expressed genes and gene co-expression networks associated with these traits 
in post-mortem human brain data8–10. Thus, mRNA associations with AUD in human brain data—including 
alternative mRNA mis-splicing—could be due to drug exposure, genetic factors, or both.

Common forms of genetic variation, like single nucleotide polymorphisms (SNPs; individual DNA variants), 
account for a modest amount of variance in AUD11,12. AUD is polygenic and shares genetic risk with other sub-
stance use traits13. Outside of putative alcohol metabolism genes and neurotransmission genes, the biological 
basis of the genetic predisposition to AUD or problematic alcohol use remains elusive. One important mediator of 
genetic risk could be neuromolecular events as DNA variation has been shown to predict differentially expressed 
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genes linked to AUD in addiction neurocircuitry14. How, or whether, alternative mRNA splicing mediates the 
genetic risk to AUD is unknown.

Our exploratory study hypothesized that (1) polygenic scores of AUD would be higher in those with AUD 
than controls, (2) individual SNPs would be associated with abnormal alternative mRNA splicing in the brain, 
and (3) DNA variants around differentially spliced genes would contribute to the heritability of AUD. To test 
these hypotheses, our study used polygenic score analyses, splicing quantitative trait loci (sQTL) mapping (spe-
cific DNA variants that correlate with alternative mRNA splicing associated with a trait), partitioned heritability 
analyses, and estimated transcriptome-wide splicing associations from large-scale genome-wide association 
studies (GWASs). Using RNA-sequencing (RNA-seq) data from humans and primates, we also tested whether 
alternative mRNA splicing events were consistent across brain regions and whether differentially spliced genes 
linked with AUD overlapped with primate models of chronic alcohol use. For an overview of our study see Fig. 1.

Materials and methods
Samples.  RNA‑seq.  We used the same publicly available data source of human post-mortem brain sam-
ples as Van Booven et  al.7, which were collected from the New South Wales Brain Tissue Resource Center. 
Van Booven et al.7 also performed differential splicing, but they used different methods, included individuals 
from disparate ancestral backgrounds, and did not investigate genetic links with splicing. Using 56 Caucasian 
individuals14 (Supplementary Fig. S1), our study explored the possible genetic links of AUD-related splicing 
in the brain. Note, we derived genome-wide DNA variant information from RNA-seq brain data. Principal 
components analysis showed that individuals from the RNA-seq data were genetically homogenous, but did 
not cluster with the ancestral populations in 1000 Genomes reference samples—likely due to differences in data 
types (RNA-seq vs. GWAS). Still, systematic differences were observed between the ancestral clustering of RNA-
seq data with genomic reference samples, which decreases the portability of polygenic score analyses. Of the 
human brain samples 23.22% were female and the average age was 57.34 (s.d. = 8.91, range = 40–73; see Table 1). 
AUD was defined as a diagnosis of either DSM-IV alcohol abuse (66.66% of AUD cases) or dependence (33.33% 
of AUD cases). Controls included social or non-drinkers that were not diagnosed with AUD and were well-
matched on all covariates (see Supplementary Fig. S2). The most common cause of death was a cardiac complica-

Figure 1.   Schematic representation of our study. Created with BioRender.com.
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tion (67.9% of all samples) followed by respiratory causes. Five individuals died of alcohol toxicity. Multiple brain 
regions were available for each individual and included: (1) superior pre-frontal cortex (PFC; PRJNA530758), 
(2) nucleus accumbens (NAc; PRJNA551775), (3) central nucleus of the amygdala (CEA; PRJNA551908) and 
(4) basolateral amygdala (BLA; PRJNA551909). Human brain samples were collected within three days of death 
(post-mortem interval range = 9–72 h, M = 32.81, s.d. = 13.75 h). For more information on the human RNA-seq 
data see Rao et al.14. Briefly, RNA was extracted via the Qiagen RNeasy kit. RNA was sequenced on the Illumina 
HiSeq 2000, which resulted in an average of 91,252,228 million paired-end reads (s.d. = 33,916,588).

Male primate samples came from four cohorts (4, 5, 7a and 7b) of Rhesus Macaques from the Monkey Alco-
hol Tissue Research Resource (www.​MATRR.​com). Primate brain samples contained analogous brain regions 
as the human data, including the: (1) PFC15 (cortical area 32; GSE96731), (2) NAc core16 (GSE144783) and (3) 
CEA15 (GSE96732). Note the PFC and CEA primate samples were from the same study15. Monkeys were housed 
individually and across cohorts had an age between 4–11 years and an average weight of 9.14 kg (s.d. = 1.24). The 
alcohol use paradigm was described previously17. Briefly, monkeys were trained to drink a 4% alcohol solution 
for 4 months. After this, monkeys were permitted to self-administer alcohol for over a year with 22 h of open 
access to alcohol. Primate alcohol consumption in this model is comparable to human alcohol in inviduals with 
AUD18. Primate samples had five drinking categories: controls (alcohol naïve), low drinkers, high drinkers, binge 
drinkers, or very high drinkers. To reduce multiple testing, we collapsed the top drinking categories into a single 
alcohol group and compared this group to the lowest drinking category (naïve controls in the NAc or the low 
drinking category in the PFC and CEA; note PFC and CEA samples had no naïve alcohol group). We removed 
samples with a normalized RNA-seq read count below two standard deviations of the group mean, which left 
a total of 81 primate brain samples (nNAC = 23; nCEA = 28; nPFC = 30). All primate procedures were reviewed and 
approved by the Oregon National Primate Research Center IACUC and were in accordance with the Guide for 
the Care and Use of Laboratory Animals as well as the NIH guidelines for the care and use of laboratory animal 
animals. For more information on the primate RNA-seq data see Iancu et al.15 and Walter et al.16. Briefly, paired-
end and stranded RNA libraries were prepared via the TruSeq RNA sample preparation kit. PFC and CEA data 
were ribo-depleted (RiboZero Gold rRNA depletion) and sequenced on the Illumina HiSeq 2000, whereas NAc 
data were PolyA selected and sequenced on the Illumina HiSeq 2500. In total, the primate brain samples had an 
average of 43,133,419 paired-end reads (s.d. = 14,096,098).

GWAS.  Alternative mRNA splicing associations were inferred from GWAS summary statistics from a study on 
problematic alcohol use, which we refer to as AUD for simplicity. AUD in this GWAS was defined as a DSM-V 
AUD diagnosis, a DSM-IV alcohol dependence diagnosis, or a log10 transformed metric of the Alcohol Use Dis-
orders Identification Tests—problem drinking items. This study used 435,563 individuals of European ancestry 
(Age range = 22–90)11 across three major cohorts: the (1) Million Veteran’s Project, (2) Psychiatric Genomics 
Consortium and (3) United Kingdom BioBank.

Data preparation.  RNA-seq data were processed using a uniform pipeline. First, we investigated RNA-seq 
data quality using FastQC (https://​www.​bioin​forma​tics.​babra​ham.​ac.​uk/​proje​cts/​fastqc/). We removed Illumina 
adapters and poor quality reads (reads < 36 bp long, leading or trailing reads < Phred score of 3 and allowing a 
maximum of 2 mismatches per read) using Trimmomatic (version 0.39)19. Then, we aligned trimmed reads to 
either the human hg19 genome or the Rhesus Macaque mmul_10 genome using STAR aligner version 2.5.3.a20. 
We followed the guidelines outlined by leafcutter (https://​david​aknow​les.​github.​io/​leafc​utter) to align RNA-
seq reads and prepare data for differential splicing analyses. RNA-seq read alignment yielded an average of 

Table 1.   RNA-seq data used in the study. Primate samples lacked information on brain pH AUD includes 
both DSM-IV diagnoses of alcohol abuse (two thirds of AUD cases) and alcohol dependence (one third of 
AUD cases). PMI stands for post-mortem interval or the # of hours since death until brain tissue was frozen or 
processed.

Descriptive information on RNA-seq samples

Human Primate

Data source PRJNA530758; PRJNA551775; PRJNA551908; 
PRJNA551909

GSE96731; GSE144783

GSE96732

n 56 53

Traits 53.57% AUD
16.98% Very high drinkers, 20.75% high drinkers

13.2% Binge drinkers, 33.96% low drinkers and 15.09% 
Naïve

Brain regions sPFC, NAc, BLA and CEA PFC (Area 32), NAc core and CEA

Age M = 57.34 (s.d. = 8.91) 4–11 years

Sex 76.79% 100% Male

Brain pH 6.60 (s.d. = 0.25) NA

PMI M = 32.81 (s.d. = 13.75) < 1 h

Cigarette smoker 67.86% 0%

http://www.MATRR.com
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://davidaknowles.github.io/leafcutter
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78,955,738 paired-end reads in humans (s.d. = 29,804,777; MAlignment = 86.16%; Mread_size = 188.36) and a mean of 
34,551,920 paired–end reads in primates (s.d. = 8,202,258; MAlignment = 79.71%; Mread_size = 127.59).

DNA genotypes from human RNA-seq data were ascertained via the SAMtools mpileup function as done 
previously21. Human genotypes derived from RNA-seq data were phased and imputed with Beagle version 5.1, 
which uses a probabilistic Hidden Markov Chain model that performs well for sequencing data with sparse 
genomic coverage22. We would like to caution the reader that Beagle was originally developed for genome-wide 
DNA variant data and not RNA-sequencing data. Our analyses used a few methods and criteria for quality control 
(QC) including: genotyping rate > 95%, minor allele frequency > 0.10, Hardy–Weinberg equilibrium > 1e-6, > 5 
reads per sample, Phred Score > 20 and an imputation score > 0.3. The input for imputation was 40,878 called 
genotypes that were common among all samples and passed initial QC. These variants were imputed to 1000 
Genomes Phase III all data, which resulted in 570,755 SNPs, 178,598 of which passed QC. These ~ 170 k variants 
were used for polygenic score and sQTL analyses. Note, that the 91.9% of these SNPs were present in the AUD 
GWAS, but that GWAS has 77.9 times more SNPs than the current study. Thus, we encourage the reader to use 
caution in interpreting our polygenic score and sQTL analyses given the limited number of individuals and the 
number of SNPs used.

Analyses.  Differential splicing.  To detect alternative mRNA associations with AUD we used Leafcutter 
version 0.2.923. Leafcutter is a powerful transcriptome-wide splicing method that uses a Dirichlet-multinomial 
generalized linear regression to identify differentially spliced genes. A differentially spliced gene generally is 
composed of multiple clusters, each of which includes various alternative splicing events, such as exon-skipping 
(see Fig. 1), intron retention, alternative acceptor or alternative donor splice sites, which we annotated with the 
Vertebrate Alternative Splicing and Transcription Database (https://​vastdb.​crg.​eu/​wiki/​Main_​Page). Each splic-
ing event corresponds to a change in percent spliced in (ΔPSI or dPSI) metric. In our AUD analyses, a positive 
ΔPSI for an exon skipping event would suggest that an individual with AUD is more likely to skip a certain exon 
than someone without AUD. We utilized the default filtering parameters of Leafcutter that filtered out splicing 
clusters with < 5 samplers per intron, < 3 samples per group, and required at least 20 reads, which resulted in 
18,685 unique genes across human brain regions. Human differential splicing analyses covaried for sex, age, 
brain pH, PMI, and smoking status. Note leafcutter performs analyses at the cluster level calculating a clus-
ter p-value and then performs a Benjamini–Hochberg False Discovery (BH-FDR) multiple testing correction. 
Differentially spliced genes/clusters were those that survived a standard BH-FDR adjusted p-value < 0.05. We 
corrected p-values for multiple testing within brain regions and thus, our analyses do not account for multiple 
testing across tissues or samples. Since only 21 genes were differentially spliced in primates (BH-FDR < 0.05), 
we defined significant differential splicing with a nominal p-value threshold < 0.05. When possible, primate dif-
ferential splicing analyses controlled for age (NAc sample). We assessed linear correlations of the ΔPSI across all 
significant alternative splicing events that were common across brain regions.

To assess the overlap between human and primate results we used a Fisher’s Exact test at the gene-level and 
restricted analyses to homologous genes identified by biomaRt24 and only used results from analogous regions 
of the brain (CEA, NAc, and PFC). In humans, we compared our differential splicing analyses with differentially 
expressed genes. Differential expression analyses leveraged featureCounts to count aligned RNA-seq reads and 
used DESeq225 to determine differential expression. Differential expression analyses used the same covariates 
and p-value adjustment as differential splicing analyses. Previous differential splicing analyses of these data7 used 
rMATS26 that focuses on individual splicing events (rather than broader clusters within genes) and leverages a 
joint likelihood function combining binomial and normal distributions.

Polygenic scores.  We investigated two questions with polygenic score analyses. First, did AUD cases have higher 
mean polygenetic scores for AUD than control samples? Second, are AUD polygenic scores associated with alter-
native mRNA splicing in the brain? Polygenic score hypotheses were tested using PRScice.2 (version 2.3.3)27. We 
elected to use standard polygenic score guidelines28. Specifically, we performed quality control on the base data, 
which was the AUD GWAS summary statistics (minor allele frequency > 0.01, remove duplicate and ambiguous 
SNPs). Our target data was the cleaned and imputed RNA-seq brain data (genotyping rate > 95%, minor allele 
frequency > 0.10, Hardy–Weinberg equilibrium < 1e-6, read depth > 5 reads per sample, Phred Score > 20 and 
imputation score > 0.3). We used the default parameters from PRScice.2, which removed variants in linkage 
disequilibrium (LD) with each other (clumping) and selected the most associated polygenic score via a p-value 
threshold approach using a certain number of genes that enhances prediction.

sQTLs.  A splicing quantitative trait locus (sQTL) is a SNP that predicts alternative mRNA splicing associ-
ated with a trait. Similar to Li et al.23, we standardized excision-splicing ratios and then quantile normalized 
splicing data across individuals. Our analyses used default settings on MatrixQTL to find cis-acting sQTLs that 
may affect mRNA splicing in a nearby gene, which tests all SNPs within 1 megabase (Mb) of a genomic region. 
sQTLs were defined as a SNP associated with a differentially spliced gene that survived a BH-FDR correction for 
multiple testing per SNP. To determine whether sQTLs resided in specific regions of the genome we annotated 
sQTLs in 11 annotation categories from ANNOVAR (version 4.1)29. The annotation categories that were built 
on hg18 genome coordinates were updated to their corresponding hg19 values using CrossMap (version 0.5.1)30. 
Genetic analyses (polygenic score and sQTLs) controlled for sex, age, and two ancestral principal components.

Partitioned heritability.  To test whether differentially spliced genes associated with AUD in the brain pointed 
to genetic mechanisms of alcohol misuse we performed a partitioned heritability analysis. We used LD score 
regression31 and created an annotated gene set of differentially spliced genes (BH-FDR < 0.05). To be consistent 

https://vastdb.crg.eu/wiki/Main_Page
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with our sQTL analyses, this included SNPs within 1 Mb of the start and stop site of a differentially spliced gene, 
which is similar to defaults on other splicing partitioned heritability mapping tools (e.g., Li et al.32). To determine 
the specificity of our findings, we tested the partitioned heritability of this gene-set with a negative control trait 
(Joint disorders found via: http://​www.​neale​lab.​is/​uk-​bioba​nk) that used individuals of European ancestry and 
had similar sample size (n =  ~ 361,194) and trait heritability (h2

SNP = 0.0695) as AUD.

Splicing TWASs.  We performed transcriptome-wide association studies (TWASs) via splicing SMulti-Xcan33,34, 
to assess how DNA associations predicted alternative mRNA splicing associations in human tissues. To increase 
power, we performed spicing TWASs on all of the 49 available Genotype-Tissue Expression (GTEx) database 
tissues (which included up to 838 human donors; https://​www.​gtexp​ortal.​org/​home/) as done previously2. Since 
alternative mRNA splicing is tissue-specific, we also re-ran a splicing TWAS on AUD incorporating only the 13 
GTEx brain tissues. The brain-specific splicing TWAS and the all-tissue splicing TWAS yielded fairly similar 
results (see Supplementary File S1). That is, 42.42% of the genes identified in the brain TWAS were identified 
in the all-tissue TWAS. Our manuscript focuses on the splicing TWAS using all 49 GTEx tissues, given that this 
analysis increased power and specifically boosted the number of significant genes over threefold compared to 
the splicing brain TWAS. SMultiXcan (the method used for our splicing TWAS) combines multiple regression 
and elastic neural networks to predict alternative mRNA splicing from cis-sQTLs. This method accounts for 
linkage disequilibrium (LD) of European ancestry using the 1000 Genomes Phase 3 data. Our study assessed the 
convergence between the splicing TWAS on AUD and the differentially spliced genes in the brain associated with 
AUD. Of the overlapping genes, we assessed SNP associations mapped to these genes that were associated with 
other traits via https://​www.​ebi.​ac.​uk/​gwas/. For these genes that also had a significant sQTL we evaluated the 
LD between the lead sQTL SNP (smallest p-value for the gene) with the SNP listed in the GWAS catalog using 
LDlink (European Ancestry; https://​ldlink.​nci.​nih.​gov/?​tab=​home). Lastly, we investigated how splicing asso-
ciations generalized across substance use traits by correlating splicing TWAS results from three other GWASs: 
cigarettes per day (n = 263,954)35, opioid use disorder (n = 82,707)36 and cannabis use disorder (n = 374,287)37.

Results
Polygenic scores associated with AUD and alternative mRNA splicing.  Polygenic score analyses 
indicated that individuals with AUD had an increased average polygenic risk for AUD than healthy controls 
(p = 0.00003; Fig. 2). Polygenic scores were linked to alternative mRNA splicing in the CEA (p = 0.035), trending 
in the NAc and PFC (all p < 0.099) and non-significant in the BLA (p = 0.119; Fig. 2; see Supplementary Files 
S2–S3). Given limitations of sample size and sparse genomic coverage, we encourage the reader to take caution 
in interpreting results from our polygenic score analyses.

Differential splices genes between AUD vs controls.  In total, we found 713 differentially spliced genes 
in 740 clusters encompassing 5118 unique splicing events associated with AUD (see Fig. 3 and Supplementary 
File S4). Note, we identified more clusters than genes in these analyses as some genes had multiple clusters that 
were differentially spliced and because other clusters corresponded to a gene region without an official annotated 
gene symbol. Similar to previous analyses with these data, 92.3% of the reported differentially spliced genes 
associated with AUD7, were at least nominally significant in our analyses. We also identified exon skipping as the 
most frequent splicing event (53.9%) and found alternative splice donor events (4.0%) to be the least frequent. 
Differentially spliced genes were not enriched for gene ontological processes (all padj > 0.39), but several addic-
tion genes were found to be differentially spliced, including ALDH3A2, CAMK2D, CAMKK2, GRIA2, GRK4, 
GRK6, HDAC3, PPP2R1B, and PRKACB (see Supplementary Figs. S3–S4). The GRIA2 gene showed differential 
splicing in a putative ‘flip flop’ splicing site (see Supplementary Fig. S5), which alters the rate of AMPA receptor 
opening38,39 and has been implicated with chronic alcohol use in primates40. We found 53 differentially expressed 
genes associated with AUD (all padj < 0.05; see Supplementary File S5). Note, no differentially expressed gene was 
differentially spliced.

Conservation of splicing associations across humans and primates.  Investigating analogous brain 
regions in Macaques, we found that AUD differentially spliced genes tended to also demonstrate differential 
splicing in primate models of chronic alcohol use (see Supplementary Fig. S6). This overlap was more than we 
expected by chance, OR = 1.38, 95% CI [1.06, 1.77], p = 0.0126. We found significant, yet small, correlations of 
splicing events across brain regions in humans (r = 0.05–0.27; see Fig. 3), yet only 23 out of 713 genes (~ 3%) were 
differentially spliced across brain regions (see Supplementary Fig. S7). In the primate data, we found significant 
positive associations of differential splicing across brain regions when using the same individual primate sam-
ples (e.g., same monkeys but different tissues: PFC and CEA: r = 0.10, p = 2e−16). However, splicing associations 
across brain regions were negative when looking across different primate samples (NAc with the PFC: r =  − 0.04 
and NAc with CEA r =  − 0.08, all p < 0.002). Altogether, these results suggest alcohol-related mRNA splicing is 
largely tissue-specific and that overlap across regions may be due to the same samples/individuals.

Genetic variation correlates with AUD‑related alternative splicing.  Next, we tested for sQTLs, or 
whether specific genetic variants were associated with the differentially spliced genes associated with AUD. In 
total, we found 6,463 unique sQTLs linked with 170 different genes (padj < 0.05; see Fig. 4 and Supplementary 
File S6). Drug metabolism (CYP2C19 and CYP2C9) intracellular signaling (GRK4, GRK6, HDAC3, PRKACB, 
and MAPK3K6) and calcium ion channel genes (CACNA1A, CACNA1G, CACNB2, and KCNMA1) had sQTL(s). 
Exon skipping events in the CACNA1A and KCNMA1 genes corresponded to certain gene formations that dif-
ferentially alter vesicular release41 and activation of Ca+ channels42. Most sQTLs were located in intergenic 

http://www.nealelab.is/uk-biobank
https://www.gtexportal.org/home/
https://www.ebi.ac.uk/gwas/
https://ldlink.nci.nih.gov/?tab=home
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regions (52.3%) or introns (36.1%), but we only identified sQTL enrichment among DNaseI hypersensitivity 
sites, enhancer regions, and downstream locations of protein-coding genes (see Fig. 4).

The heritability of AUD is enriched for differentially spliced genes.  We further investigated the 
role of alternative splicing for the genetic basis of AUD. Using LDscore regression we observed that heritable 
influences explained 7.81% of the individual differences in AUD. Our partitioned heritability analyses revealed 
that SNPs in and around differentially spliced genes accounted for 30% of the genetic risk for AUD (OR = 1.349, 
se = 0.064, p = 6.46e−7; see Fig. 5), but not for our negative control trait (Joint disorders, p = 0.161).

Splicing TWASs are associated with substance use traits.  We found 311 splicing TWAS associa-
tions with disordered alcohol use (padj < 0.05; 215 unique genes; see Supplementary File S7), which were enriched 
for alcohol dehydrogenase activity (padj = 3.23e−10). Seven of the TWAS splicing genes were also differentially 
spliced genes in post-mortem brain tissue (GRK4, KLHDC8B, PDS5A, PSMD7, TMEM184B, VRK2, and 
WDR27). The role of these genes in the pathophysiology of AUD is largely unknown. Previous research suggests 
that SNPs mapped to these genes are associated with substance use traits, neuropsychiatric illnesses, and neu-
rological endophenotypes as well as other unrelated traits (see Supplementary File S8). Of note, our lead sQTLs 
for the GRK4 (rs2858038) and KLHDC8B (rs3819325) genes were in LD with SNPs associated with human 
cigarettes per day (rs2960306, R2 = 0.29) and smoking cessation (rs7617480, R2 = 0.07)35. To investigate potential 
shared genetic processes across substance use, we correlated significant splicing TWAS associations across three 
substance use traits: cigarettes per day35, opioid use disorder36, and cannabis use disorder37. Using the 1397 
significant splicing TWAS associations across substance use traits (BH-FDR < 0.05; 923 unique genes; see Sup-
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Figure 2.   Genetic risk for AUD and alternative mRNA Splicing. (A) Violin plot showing polygenic score 
distributions of AUD between individuals with AUD and controls. Mean and standard error are shown. P-value 
thresholds were 0.0183, 0.1016, 0.3522 and 0.0187 for the BLA, CEA, NAc and PFC, respectively. Scores were 
combined across brain regions and tested between AUD cases and controls. (B) Heat matrix showing the 
amount of variance explained (R2) by polygenic score analyses of differential splicing results for each brain 
region. Principal components (PC) analysis was used to distil differential splicing results into a single metric (1st 
PC). Polygenic score p-value thresholds were 5.e−5, 0.006, 5e−5 and 0.0012 for the BLA, CEA, NAc and PFC, 
respectively.
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Figure 3.   Alternative mRNA splicing associations with AUD by brain region. (A) Volcano plot displaying 
differentially spliced genes between individuals with AUD and controls for each brain region. (B) Scatter plot 
showing differential splicing associations across brain regions from differentially spliced genes. Note ΔPSI stands 
for the change in percent-spliced-in and that each colored dot represents a specific splicing event in a cluster 
from a significantly differentially spliced gene (padj < 0.05).
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Figure 4.   Individual DNA markers linked with alternative mRNA splicing events associated with AUD. 
(A) Volcano plot showing results from our sQTL analyses. Each dot above the dashed red line represents a 
significant (padj < 0.05) SNP association with a differentially spliced gene. (B) Bar plot showing the genomic 
regions enriched for significant sQTL associations. * indicated that a certain genomic region survived correction 
for multiple testing (padj < 0.05).
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plementary File S9), we found substantial overlap—especially among disordered substance use (all r > 0.38; see 
Supplementary Fig. S8).

Discussion
Our exploratory study hypothesized that (1) polygenic scores of AUD would be higher in those with AUD than 
controls, (2) individual SNPs would be associated with abnormal alternative mRNA splicing in the brain, and 
(3) DNA variants around differentially spliced genes would contribute to the heritability of AUD.

Our exploratory study found novel splicing associations with AUD. We found support for our three hypoth-
eses, such that: (1) polygenic scores were increased in those with AUD, (2) specific SNPs were associated with 
abnormal mRNA splicing events in multiple brain regions and (3) DNA variants in and around differentially 
spliced genes contributed to the heritability of AUD. Altogether, we used a handful of methods that provided 
evidence implicating genetic factors in AUD-related alternative mRNA splicing. These data add another layer 
to the neuroepigenetic understanding of compulsive alcohol use.

The takeaways from our study are consistent with previous analyses of these data. Both our study and the Van 
Booven et al., study7 found: (1) thousands of differentially spliced events between individuals with AUD and con-
trols, with (2) largely tissue-specific findings and (3) different magnitudes of splicing associations by brain region 
as well as (4) more significant splicing associations with AUD than differential expression associations. Also, at 
the genetic level, we identified an order of magnitude more sQTLs than the previously reported (and validated) 
expression QTLs (eQTLs) with AUD14. These results are consistent with previous analyses suggesting alternative 
mRNA splicing elicits robust genetic and neurotranscriptional correlates with psychiatric traits2 and calls for 
additional research to better characterize the gene isoform architecture of mental illness and substance abuse.

Extending research on other neurological traits32,43, we show that individual genetic markers (sQTLs) and 
polygenic risk underlie alternative mRNA splicing associated with AUD. Similar to other research44, we found 
that sQTLs were enriched among DNaseI hypersensitivity sites, corroborating that loose chromatin regions are 
hotspots for alternative mRNA splicing regulation. Previous splicing studies used a single tissue type2,43–45. Our 
study suggests that future work should consider multiple tissues when possible—as the genetic links with splic-
ing events may differ by brain region.

Splicing associations with AUD occurred in genes involved with neurotransmission, intracellular signaling, 
and drug/alcohol metabolism. Most alternative mRNA splicing events were uncharacterized, but a few of the 
ion channel (CACNA1A, KCNMA1) and glutamate receptor (GRIA2) associations seemed to affect synaptic 
neurotransmission. For instance, in the BLA, we found that individuals with AUD were more likely to have an 
exon skipping event of the GRIA2 flip exon (exon 14), which is associated with longer glutamate receptor open-
ing and consistent with the BLA pathology in alcohol use46–48.

We found preliminary evidence that alternative mRNA splicing could play a more general role in a com-
mon genetic liability of substance use disorders and psychopathology. Our study revealed moderate splicing 
associations across disordered and problematic drug use as well as tobacco consumption, via splicing TWASs. 
Furthermore, the sQTLs underlying AUD-related differential splicing in the brain were correlated with DNA 
variants previously implicated in tobacco consumption, mental illness, and cognitive functioning. Additionally, 
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differentially spliced genes correlated with AUD in our analyses were also linked with brain splicing associations 
with autism spectrum disorder and schizophrenia2, which included glutamate receptor (GRIA2) and calcium 
signaling genes (CACNA1G, CAMK2D, and CAMKMT) as well as intracellular processes (AKAP13, ARPP21, 
PRKACB, and PTPRS) and synaptic plasticity genes (ARHGEF10L, ARHGEF4, CLASP2, GAPVD1, NTNG2, 
SUN1, and TPM3).

While our study sought to characterize the genetic roots of alcohol-related alternative mRNA splicing, we 
cannot dismiss the potential for alcohol-induced differential splicing. We found that many of the differentially 
spliced genes associated with AUD were also differentially spliced in primate models of chronic binge drinking. 
Notably, only five of these overlapping genes from analogous brain regions had a sQTL (2.9% of sQTLs). This 
may suggest that both genetic and alcohol-related mechanisms underlie alternative mRNA splicing in the brain.

The current study should be interpreted in the context of the following limitations. First and foremost, our 
study used small RNA-seq samples that lacked direct replication or validation samples. Results from small sam-
ples may incur unreliable effect size estimates and could be more prone to a winner’s curse. But, we sought to 
assess the reproducibility of our findings by utilizing multiple tissue and data types as well as cross-referencing 
findings with GWASs that contain much larger samples. Polygenic scores and differential splicing associations 
with AUD are likely both associated with chronic alcohol use and thus may confound interpretations of pure 
genetic links with mRNA splicing in human brain tissue. Polygenic scores used PRScise2, which chooses a thresh-
old that maximizes prediction and over-fits the data. Partitioned heritability analyses indicated that alternative 
mRNA splicing explained a significant amount of the heritability, but this is still ~ 2% of the total individual 
differences in AUD and may include non-splicing related DNA variants. The GWASs used in our study included 
some overlapping participants (e.g., UK BioBank and Million Veterans Project) and were limited to individuals 
of European Ancestry. Human brain data had long post-mortem intervals, which could lead to poor RNA quality 
and high RNA degradation—potentially biasing results towards shorter transcripts. Primate brain samples were 
not perfectly matched to the human data, as primates were limited to males, neuroanatomical location diverged 
(especially in PFC), and often the specific splicing events within genes differed across species. Lastly, the results 
from our study were based on computational analyses and require experimental follow-up to buttress the con-
fidence of these findings and their role in AUD. Notwithstanding these limitations, our study added context to 
our genetic and neurobiological understanding of AUD.

Data availability
The datasets analyzed during the current study are available in Sequence Read Archive (Human brain data: 
PRJNA530758, PRJNA551775, PRJNA551909 and PRJNA551908) or the Gene Expression Omnibus (GSE96731, 
GSE144783 and GSE96732). All procedures used in this study are in accordance with ARRIVE guidelines.
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