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A B S T R A C T   

Apolipoprotein E (APOE) polymorphic alleles are genetic factors associated with Alzheimer’s disease (AD) risk. 
Although previous studies have explored the link between AD genetic risk and static functional network con
nectivity (sFNC), to the best of our knowledge, no previous studies have evaluated the association between 
dynamic FNC (dFNC) and AD genetic risk. Here, we examined the link between sFNC, dFNC, and AD genetic risk 
with a data-driven approach. We used rs-fMRI, demographic, and APOE data from cognitively normal individuals 
(N = 886) between 42 and 95 years of age (mean = 70 years). We separated individuals into low, moderate, and 
high-risk groups. Using Pearson correlation, we calculated sFNC across seven brain networks. We also calculated 
dFNC with a sliding window and Pearson correlation. The dFNC windows were partitioned into three distinct 
states with k-means clustering. Next, we calculated the proportion of time each subject spent in each state, called 
occupancy rate or OCR and frequency of visits. We compared both sFNC and dFNC features across individuals 
with different genetic risks and found that both sFNC and dFNC are related to AD genetic risk. We found that 
higher AD risk reduces within-visual sensory network (VSN) sFNC and that individuals with higher AD risk spend 
more time in a state with lower within-VSN dFNC. We also found that AD genetic risk affects whole-brain sFNC 
and dFNC in women but not men. In conclusion, we presented novel insights into the links between sFNC, dFNC, 
and AD genetic risk.   

1. Introduction 

Alzheimer’s disease (AD) is the most prevalent age-related dementia 
in individuals above 65 years of age (Masters et al., 2015). While global 
biomedical research efforts for AD prevention have expanded, the 
number of individuals affected by AD is still growing significantly every 
year. Even though there is no effective AD therapy to date, some med
ications can slow down disease progression (Yiannopoulou and Papa
georgiou, 2020). It has been hypothesized that AD progression begins 
affecting brain functional connectivity many years prior to disease onset 

(Agosta et al., 2012; Demirtaş et al., 2017). As such, knowing how AD 
risk alters brain connectivity in cognitively normal individuals might 
shed light on the mechanisms associated with AD development later in 
life. 

While previous studies showed that environmental factors such as 
diet, living in rural versus urban areas, smoking, not exercising, and 
infections are risk factors for AD, genetic factors are believed to 
contribute 70% to AD risk (Elsheikh et al., 2020; Van Cauwenberghe 
et al., 2016). Apolipoprotein E polymorphic alleles are genetic factors 
linked to Alzheimer’s disease (AD). There are three common alleles, 
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including ε2, ε3, and ε4, that can produce six genotypes such as ε2/ε2, 
ε2/ε3, ε2/ε4, ε3/ε3, ε3/ε4, and ε4/ε4 in which one gene is inherited 
from the father and the other is from the mother (Yamazaki et al., 2019). 
Individuals carrying the ε4 allele have the highest risk of AD and 
younger mean age at dementia onset compared to those carrying the ε3 
and ε2 alleles, whereas individuals with the ε2 allele have the lowest 
chance and older mean age of dementia onset (Bird, 2008). 

Previous studies explored the link between AD’s genetic risk and 
static functional network connectivity or sFNC (Axelrud et al., 2019; 
Chiesa et al., 2017; McKenna et al., 2016; Turney et al., 2020). For 
example, a recent study found that individuals carrying ε4 have lower 
temporal default mode network (DMN) functional connectivity than 
those without ε4 (Turney et al., 2020). Another study showed an in
crease in functional connectivity between the hippocampus and pre
frontal/parietal/temporal cortex in healthy individuals carrying ε4 
(Zheng et al., 2018). Despite extensive research on the effect of ε4 on rs- 
fMRI sFNC, the effects of other alleles (i.e., ε2 and ε3) on sFNC have not 
been explored. Additionally, previous literature that studied the APOE 
effect on FNC assumed that FNC is static over time and ignored its dy
namics. However, recent studies have shown that FNC is highly dynamic 
during both task and resting conditions (Allen et al., 2014; Sendi et al., 
2021a; Sendi et al., 2021b). Therefore, we hypothesized here that 
studying the dynamics of whole-brain FNC might give insight into how 
the APOE could disrupt FNC in AD. 

This study aimed to explore how dFNC and sFNC differ among in
dividuals with different genetic risks for AD using a relatively large 
dataset (N >850). To model the dFNC of each participant, we utilized a 
sliding window approach followed by k-means clustering to estimate a 
set of connectivity states (Allen et al., 2014). Next, we modeled the 
temporal changes by calculating the occupancy rate (OCR) and fre
quency of visits of each state from the dFNC. Next, we explored the 
difference between cognitively normal participants with different AD 
risk levels via statistical analysis of the estimated OCR features and the 
frequency of visits. In addition, we compared sFNC cell-wise differences 
between cognitively normal individuals differing in genetic risk of AD. 

2. Methods and materials 

2.1. Participants and dataset 

Neuroimaging data of 886 cognitively normal brains (354 females) 
and their associated demographic information from the longitudinal 
Open Access Series of Imaging Studies (OASIS)-3 cohort was used in this 
study (LaMontagne et al., 2019). The participants’ cognitive function
ality at the time of scanning was evaluated by the clinical dementia 
rating scale (CDR) scores, and the CDR scores were equal to 0. The 
participants’ age at scanning time ranged from 42.46 years to 95.39 
years, with a mean of 70.13 years. We divided the data into three groups, 
including the low genetic risk of AD or LGR_AD (N = 127, 55 females), 
consisting of all individuals with at least one ε2 allele (i.e., ε2/ε2 and ε2/ 
ε3), moderate genetic risk of AD or MGR_AD (N = 558, 219 females), 
containing all individuals with only ε3 allele (i.e., ε3/ε3), and high ge
netic risk of AD or HGR_AD (N = 201, 80 females) consisting of all in
dividuals with at least one ε4 allele (i.e., ε3/ε4 and ε4/ε4). The 
demographic and clinical information of each group is shown in Table 1. 
No significant age, gender, and mini-mental state examination differ
ences were observed between any pair of groups (p > 0.05). 

2.2. Imaging acquisition protocol 

The T2*-weighted functional images were collected via echoplanar 
imaging (EPI) using Trio 3 T scanners with 20-channel head coils 
(Siemens Medical Solutions USA, Inc.). The data collecting protocol 
includes TE = 27 ms, TR = 2.2 s, flip angle = 90̊, slice thickness = 4 mm, 
slice gap (center-to-center) = 4 mm, matrix = 64×64, number of slices 
= 32, and field of view = 256×256 mm2. The duration of the scanning 

Table 1 
The peak coordinates of components and labels.    

Component Name Peak Coordinate (mm) 

1 SCN Caudate (69) 6.5 10.5 5.5 

2  Subthalamus/hypothalamus (53)  − 2.5  − 13.5  − 1.5 
3  Putamen (98)  − 26.5  1.5  − 0.5 
4  Caudate (99)  21.5  10.5  − 3.5 
5  Thalamus (45)  − 12.5  − 18.5  11.5  

6 AUN Superior temporal gyrus ([STG], 21)  62.5  –22.5  7.5 
7  Middle temporal gyrus ([MTG], 56)  − 42.5  − 6.5  10.5  

8 SMN Postcentral gyrus ([PoCG], 3)  56.5  − 4.5  28.5 
9  Left postcentral gyrus ([L PoCG], 9)  − 38.5  –22.5  56.5 
10  Paracentral lobule ([ParaCL], 2)  0.5  –22.5  65.5 
11  Right postcentral gyrus ([R PoCG], 11)  38.5  − 19.5  55.5 
12  Superior parietal lobule ([SPL], 27)  − 18.5  − 43.5  65.5 
13  Paracentral lobule ([ParaCL], 54)  − 18.5  − 9.5  56.5 
14  Precentral gyrus ([PreCG], 66)  − 42.5  − 7.5  46.5 
15  Superior parietal lobule ([SPL], 80)  20.5  − 63.5  58.5 
16  Postcentral gyrus ([PoCG], 72)  − 47.5  − 27.5  43.5  

17 VSN Calcarine gyrus ([CalcarineG], 16)  − 12.5  − 66.5  8.5 
18  Middle occipital gyrus ([MOG], 5)  –23.5  − 93.5  − 0.5 
19  Middle temporal gyrus ([MTG], 62)  48.5  − 60.5  10.5 
20  Cuneus (15)  15.5  − 91.5  22.5 
21  Right middle occipital gyrus ([R 

MOG], 12)  
38.5  − 73.5  6.5 

22  Fusiform gyrus (93)  29.5  − 42.5  − 12.5 
23  Inferior occipital gyrus ([IOG], 20)  − 36.5  − 76.5  − 4.5 
24  Lingual gyrus ([LingualG], 8)  − 8.5  − 81.5  − 4.5 
25  Middle temporal gyrus ([MTG], 77)  − 44.5  − 57.5  − 7.5  

26 CCN Inferior parietal lobule ([IPL], 68)  45.5  − 61.5  43.5 
27  Insula (33)  − 30.5  22.5  − 3.5 
28  Superior medial frontal gyrus 

([SMFG], 43)  
− 0.5  50.5  29.5 

29  Inferior frontal gyrus ([IFG], 70)  − 48.5  34.5  − 0.5 
30  Right inferior frontal gyrus ([R IFG], 

61)  
53.5  22.5  13.5 

31  Middle frontal gyrus ([MiFG], 55)  − 41.5  19.5  26.5 
32  Inferior parietal lobule ([IPL], 63)  − 53.5  − 49.5  43.5 
33  Left inferior parietal lobue ([R IPL], 

79)  
44.5  − 34.5  46.5 

34  Supplementary motor area ([SMA], 
84)  

− 6.5  13.5  64.5 

35  Superior frontal gyrus ([SFG], 96)  − 24.5  26.5  49.5 
36  Middle frontal gyrus ([MiFG], 88)  30.5  41.5  28.5 
37  Hippocampus ([HiPP], 48)  23.5  − 9.5  − 16.5 
38  Left inferior parietal lobue ([L IPL], 

81)  
45.5  − 61.5  43.5 

39  Middle cingulate cortex ([MCC], 37)  − 15.5  20.5  37.5 
40  Inferior frontal gyrus ([IFG], 67)  39.5  44.5  − 0.5 
41  Middle frontal gyrus ([MiFG], 38)  − 26.5  47.5  5.5 
42  Hippocampus ([HiPP], 83)  − 24.5  − 36.5  1.5  

43 DMN Precuneus (32)  − 8.5  − 66.5  35.5 
44  Precuneus (40)  − 12.5  − 54.5  14.5 
45  Anterior cingulate cortex ([ACC], 23)  − 2.5  35.5  2.5 
46  Posterior cingulate cortex ([PCC], 71)  − 5.5  − 28.5  26.5 
47  Anterior cingulate cortex ([ACC], 17)  − 9.5  46.5  − 10.5 
48  Precuneus (51)  − 0.5  − 48.5  49.5 
49  Posterior cingulate cortex ([PCC], 94)  − 2.5  54.5  31.5  

50 CB Cerebellum ([CB], 13)  − 30.5  − 54.5  − 42.5 
51  Cerebellum ([CB], 18)  –32.5  − 79.5  − 37.5 
52  Cerebellum ([CB], 4)  20.5  − 48.5  − 40.5 
53  Cerebellum ([CB], 7)  30.5  − 63.5  − 40.5  
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was 6 min. 

2.3. Preprocessing 

Fig. 1 shows the analytic pipeline that we used in this study. The 
following steps describe the details of our method. The first step (Step 1 
in Fig. 1) removed the first five dummy scans before the preprocessing. 
We used statistical parametric mapping (SPM12, https://www.fil.ion. 
ucl.ac.uk/spm/) default slice timing routines. In this method, we used 
the slice acquired in the middle of the sequence as the reference slice. 
We applied rigid body motion correction to adjust for participant head 
movement. Next, we normalized the imaging data to the standard 
Montreal Neurological Institute (MNI) space using the echo-planar im
aging (EPI) template. Finally, we smoothed the images by applying a 
Gaussian kernel with a full width at half maximum (FWHM) of 6 mm. 

2.4. Extracting independent components using Neuromark 

This study used a set of robust network priors to extract comparable 
components across subjects from the OASIS dataset. The network priors 
were extracted via the Neuromark pipeline (Du et al., 2020). This 
framework performed group ICA with model order as 100 on two 
healthy controls datasets, human connectome project (HCP: htt 
ps://www.humanconnectome.org/study/hcp-young-adult/document 
/1200-subjects-data-release, 823 subjects after the subject selection) 
and genomics superstruct project (GSP: https://dataverse.harvard. 
edu/dataverse/GSP, 1005 subjects after the subject selection) for 
creating the network priors. The extracted ICs from the two datasets 
were matched by comparing the corresponding group-level spatial 
maps. If they showed a higher spatial correlation than a given threshold 
of 0.4, we considered that the IC pairs were reproducible. The repro
ducible ICs pairs were further evaluated by examining their spatial ac
tivations and low-frequency fluctuations of their corresponding time 
courses (TCs). 53 pairs of ICs were identified as meaningful and were 
arranged into seven functional domains based on anatomic and 

functional prior knowledge. These seven functional domains were the 
subcortical network (SCN), auditory network (ADN), sensorimotor 
network (SMN), visual network (VSN), cognitive control network (CCN), 
default-mode network (DMN), and cerebellar network (CBN) as shown 
in Fig. 2. The peak coordinates of components are shown in Table 1. 

Finally, after obtaining the subject-specific time courses, we did 
additional post-processing on the time courses to remove the noise, 
including 1) detrending linear, quadratic, and cubic trends, 2) multiple 
regression of the 6 realignment parameters and their derivatives, 3) 
removal of detected outliers, and 4) low-pass filtering with a cutoff 
frequency of 0.15 Hz. Our filtering was performed on the TC of ICs, not 
on the voxel-based fMRI data because we want to retain more infor
mation on fMRI for ICA decomposition. This strategy has been suc
cessfully applied in a wide range of previous ICA-based dFNC studies 
(Dini et al., 2021; Du et al., 2020; Sendi et al., 2021a; Sendi et al., 
2021b). 

2.5. Dynamic and static functional network connectivity estimation 

The sliding window approach with a tapered window (size of 44 s 
and standard deviation of 3 s) was used to estimate the whole-brain 
dFNC. We used Pearson correlation to assess the functional network 
connectivity among all 53 ICs within each window. With 53 ICNs, the 
symmetric matrix size is 53×53. Additionally, with 53 ICNs, we had

( 53
2
)

= 1378 connectivity features within each window. Next, we concate
nated the functional network connectivity estimates of each window for 
each individual to form an (F × T) array (where F = 1378 denotes the 
number of connectivity features and T = 139 is the number of windows 
for each participant), which represented the changes in brain connec
tivity between ICNs as a function of time. Next, we concatenated all 
matrices across all participants (Step 2 in Fig. 1). 

2.6. Dynamic functional network connectivity clustering 

In the next step, we used the k-means clustering approach to assign 

Fig. 1. Analytic pipeline: In Step 1, fifty-three time-course components of the whole brain were identified using group-independent component analysis (ICA). In 
Step 2, a taper sliding window was used to segment the time-course signals and calculate the functional network connectivity (FNC). After vectorizing the FNC 
matrixes, we concatenated them and used k-means clustering, k = 3, to group them into three distinct states (Step 3). The elbow criteria were used to find the optimal 
k. In addition, the correlation distance metric was used for the clustering. Then, based on the state vector of each subject, the occupancy rate or OCR, in total 3 
features, and the frequency of visits of each state, in total 3 features, were calculated from the state vector of each subject. We next compared the OCR among groups 
with a two-sample t-test. We adjusted all p values by the Benjamini-Hochberg false discovery rate (FDR) correction in each analysis (Step 4). LGR: LGR-AD: Low 
genetic risk of AD, MGR-AD: Moderate genetic risk of AD, HGR-AD: High genetic risk of AD. 
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the windowed FNCs of all participants into a set of clusters (or states). 
The optimal number of clusters (k) was set to three based upon the 
elbow criterion, e.g., “the ratio of within-cluster to between cluster 
distance.” Pearson correlation was used as a distance metric, and 1000 
iterations were used. Even though we randomly set the maximum 
number of iterations to 1000 times, we did not observe any failure in 
convergence with this number. The output of k-means clustering was 
three states for the entire group of all 886 participants and a state vector 
for each individual. The state vector represents changes in whole-brain 
FNC over time. For example, in the state vector shown in Fig. 1, the 
participant is in state1, then state 3, state1, state3, state2, state3, state1, 
and finally, state 3. This pattern would be different for another partic
ipant. Next, we calculated the proportion of each participant’s time 
spent in each state, called occupancy rate (OCR) hereafter. To calculate 
OCR in state i for each participant, we counted all windows in state i 
belonging to that participant and then divided it by 139 (the entire 
number of windows). Having three states, we estimated three OCRs for 
each individual. Additionally, we calculated the number of transitions to 
state i as the frequency of visits for that state. With three states, we 
calculated three frequencies of visits for each participant. 

2.7. Statistical analysis 

A two-sample t-test was used to compare the OCR (number of null 
hypotheses or N = 3) and the frequency of visits (number of null hy
potheses or N = 3) of each pair of groups. Similarly, a two-sample t-test 
was used to compare the sFNC (number of null hypotheses or N = 1387) 
of each pair of groups. We adjusted all p values with Benjamini-Hoch
berg false discovery rate (FDR) correction in both dFNC and sFNC ana
lyses (Yoav Benjamini and Yosef Hochberg, 1995). 

3. Results 

3.1. Clinical and demographic information 

The demographic and clinical information of each group is shown in 
Table 2. No significant age, gender, and mini-mental state examination 
differences were observed between any pair of groups (p > 0.05). 

3.2. The genetic risk associated with sFNC 

The average sFNC of each group is shown in Fig. 3A. Also, Fig. 3B 
shows the Cohen’s d effect size when we compared the cell-wise FNC 
between each pair of groups using a two-sample t-test. Those significant 
group differences with p < 0.05 and corrected p < 0.05 are shown in 
Fig. 3B top and bottom panels, respectively. The red and blue colors in 
this figure show positive and negative differences, respectively. Fig. 3B 
(left panel) shows the Cohen’s d effect size while we compared LGR_AD 
with MGR_AD (MGR_AD vs. LGR_AD). We did not observe a significant 
sFNC difference between LGR_AD and MGR_AD groups after FDR 
correction. While the difference between LGR_AD and HDR_AD (or 
HGR_AD vs. LGR_AD) was significant in some networks, as shown in 
Fig. 3B (middle panel). As Fig. 3B shows, we see significant differences 
in SMN/CCN (connectivity between SMN and CCN), VSN/DMN, CCN/ 
DBN, and within CCN. Therefore, a pattern of internetwork differences 
spanning multiple resting-state networks across the whole brain was 
observed. 

In contrast, the cell-wise FNC difference between MGR_AD and 
HDR_AD (or HGR_AD vs. MGR_AD) was more focused on VSN, as shown 
in Fig. 3B (right panel). As shown in this figure, we found that in
dividuals with a higher risk of AD have less within VSN connectivity 
than those with a moderate risk of AD. In comparison, the connectivity 
between VSN and CCN and between VSN and DMN was higher for in
dividuals with higher AD risk. 

Fig. 2. We used the Neuromark pipeline to extract reliable intrinsic connectivity networks (ICNs, in total, 53 components) for the whole brain that are replicated 
across independent datasets. We put them into seven networks, including subcortical network (SCN), auditory network (AND), visual sensory network (VSN), 
sensorimotor network (SMN), cognitive control network (CCN), default mode network (DMN), and cerebellar network (CBN). 

Table 2 
Demographic and clinical information of subjects.   

LGR-AD MGR-AD HGR-AD 

Number 127 558 201 
Age 71.22±8.42 70.14±8.58 69.37±8.59 
Gender (M/F) 72/55 339/219 121/80 
MMSE 28.98±1.17 29.15±1.11 29.12±1.30 

Note: LGR-AD: Low genetic risk for AD, MGR-AD: Moderate genetic risk for AD, 
HGR-AD: High genetic risk for AD, MMSE: mini-mental state examination. 
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3.3. Dynamic functional network connectivity states 

Fig. 4 shows three distinct dFNC states estimated by k-means clus
tering. State1 and state 2 show more positive connectivity within CCN, 
within CBN, within SMN, and within VSN relative to state 3. State 2 
offers the most positive connectivity among sensory domains (i.e., ADN, 
SMN, and VSN). Meanwhile, the connectivity between these three do
mains with the rest of the brain is negative in this state. Additionally, the 
connectivity between SMN and the rest of the brain is relatively high in 
state1. 

3.4. Genetics risk associated with dFNC features 

We compared the OCR and frequency of visits of each state across 
three groups of individuals. The results are shown in Fig. 5A, and Sup
plementary Table 1 shows the Cohen’s d effect size of each pair of group 
comparisons. As this figure shows, we found that the OCR of state1 was 
significantly less for HGR_AD than for LGR_AD (corrected p = 0.03). In 
contrast, HGR_AD had higher OCR than LGR_AD in state 3 (corrected p 
= 0.04). Additionally, we did not find any significant OCR difference 
across groups in state 2. Besides, no significant difference was observed 
between MGR_AD and LGR_AD and between HGR_AD and MGR_AD. 

Fig. 3. Estimated sFNC for each group. A) Estimated sFNC for LGR-AD (left panel), MGR-AD (middle panel), and HGR-AD (right panel). The colorbar shows the 
intensity of sFNC values, B) Top panel: The Cohen’s d effect size of sFNC difference between each pair of groups (uncorrected p < 0.05). Bottom panel: Significant 
group differences passing the multiple comparison thresholds (false discovery rate [FDR] corrected, p < 0.05). The colorbar shows Cohen’s d effect size calculated 
using MATLAB toolbox (https://www.mathworks.com/matlabcentral/fileexchange/62957-computecohen_d-x1-x2-varargin.). SCN: subcortical network SCN, ADN: 
auditory network, SMN: sensory motor network, VSN: visual sensory network, CCN: cognitive control network, DMN: default mode network, and CBN: cerebellar 
network. LGR-AD: Low genetic risk of AD, MGR-AD: Moderate genetic risk of AD, HGR-AD: High genetic risk of AD. The chord graphs are generated using the 
NiChord toolbox in Python (https://github.com/paulcbogdan/NiChord). 
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Also, we did not observe any significant difference in the frequency of 
visits, as shown in Fig. 5B (All subjects). 

3.5. Gender effect on sFNC and dFNC features 

To consider sex effects on the results, we separated men and women 
in each group of individuals and repeated our analysis. The Cohen’s 
d effect size group sFNC difference for each sex is shown in Fig. 6. Fig. 6A 
shows the sFNC difference for each male participant group, and Fig. 6B 
shows similar results for female. Interestingly, we did not find any sig
nificant sFNC difference across groups for males after FDR correction. In 
contrast, the sFNC difference between LGR_AD and HGR_AD was sig
nificant for women, as shown in Fig. 6B (left panel). We did not observe 
a significant difference between women LGR_AD and MGR_AD and be
tween women MGR_AD and HGR_AD, as shown in the middle and right 
panel of Fig. 6B. We also studied group differences in dFNC features for 
both men and women. We did not observe a significant group difference 
in the OCR and frequency of visits to each state (Fig. 5B) for men like we 
did for the sFNC analysis. In contrast, the group difference in dFNC 
features was significant for women. In more detail, we found a signifi
cant OCR difference between LGR_AD and MGR_AD and between 
LGR_AD and HGR_AD in state 1 and state 3 (corrected p < 0.05). Besides, 
the frequency of visits in state 3 was significantly higher in MGR_AD 
(corrected p = 0.02) and HGR_AD (corrected p = 0.04) compared with 
LGR_AD. 

4. Discussion 

Previous studies showed that FNC estimated from rs-fMRI is highly 
dynamic even without external input (Allen et al., 2014; Sendi et al., 
2021c). Therefore, here we hypothesized that the genetic risk of AD not 
only alters the strength of the functional connectivity between pairs of 
brain networks, as would be shown in sFNC, but also the dynamic 
fluctuations of connectivity among those networks, as would be shown 
in dFNC. To the best of our knowledge, the present study is the first to 
report a link between AD genetic risk and dFNC estimated from rs-fMRI 
recorded of cognitively normal participants. We also compared the re
sults obtained from both sFNC and dFNC data as the measures are 
complementary and could provide distinct insights into the relationship 
between brain network connectivity and the genetic risk of AD. Lastly, 
we examined the effects of an individual’s sex on the degree to which 
sFNC, dFNC, and the genetic risk of AD are associated. 

We observed that AD genetic risk causes a different pattern that 

spans multiple inter-network connections across the resting-state net
works in cognitively normal individuals, which is consistent with pre
vious studies (Sheline et al., 2010; Trachtenberg et al., 2012). We found 
that genetic risk affects the VSN significantly more than other brain 
networks. In more detail, we found that individuals carrying ε4 have less 
within-VSN functional connectivity compared to those individuals car
rying ε3 and not ε2. A decrease in VSN activity during a visual task has 
been reported in individuals carrying ε4 (Smith et al., 1999). A recent 
study reported functional connectivity decreases in the primary, sec
ondary, and associative visual cortices for cognitively normal in
dividuals with the ε4 allele compared with ε4 allele non-carriers 
(McKenna et al., 2016). We also found that cognitively normal in
dividuals carrying ε4 have higher VSN/CCN than individuals with 
moderate AD risk and more increased VSN/DMN connectivity relative to 
individuals with moderate and lower AD risk. We hypothesize that this 
higher VSN/CCN connectivity in ε4 carriers could be a compensatory 
mechanism to offset the VSN FC reduction in these individuals. A similar 
compensatory mechanism in functional connectivity has been reported 
in individuals with ε4, enabling them to achieve the same performance 
level as individuals with ε3 in a memory task (Bondi et al., 2005). It is 
worth mentioning that we did not find a significant sFNC difference 
between the individuals with the lowest risk and the moderate risk of 
AD. 

We also explored the whole-brain dFNC across cognitively normal 
individuals with different genetic risks for AD. We observed a significant 
difference in the OCR of individuals carrying ε4 and individuals having 
ε2. At the same time, we did not observe any significant differences 
between those with ε2 and ε3 and those with ε3 and ε4. In more detail, 
we found that individuals carrying ε4 spend more time than those 
having ε2 in state3 with lower within-VSN functional connectivity 
(relative to state1 and state2). This result is consistent with the result 
obtained from the sFNC data, which showed that individuals with higher 
AD genetic risk have less within-VSN functional connectivity. That 
supported our hypothesis about the genetic risk effects on both the 
strength and the temporal pattern of FNC estimated from rs-fMRI. 

Additionally, we found that individuals with ε4 spend more time in 
state3 with lower SMN, lower CCN, and lower CBN functional connec
tivity (relative to state1 and state2), while we did not observe a signif
icant difference in those networks by analyzing sFNC data. These results 
might reveal new evidence of the CCN, VSN, and CBN’s role in differ
entiating individuals with different genetic risks for AD. We did not 
observe a significant difference in OCRs of the individuals with a mod
erate and lower risk of AD, consistent with the sFNC analysis results. 

Fig. 4. Three dFNC states were identified with the k-means clustering method. Each state is a 53×53 matrix in which positive connectivity is shown in red and 
negative connectivity is shown in blue. We put all 53 components in 7 domains, including the subcortical network (SCN), auditory network (ADN), sensory motor 
network (SMN), visual sensory network (VSN), cognitive control network (CCN), default mode network (DMN), and cerebellar network (CBN). We found individuals 
spent 36.79 %, 35.68 %, and 27.53 % in state 1, state 2, and state 3, respectively. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 

M.S.E. Sendi et al.                                                                                                                                                                                                                              



NeuroImage: Clinical 37 (2023) 103363

7

These pieces of evidence might suggest that a moderate genetic risk of 
AD does not affect either brain sFNC or dFNC. 

We observed a considerable difference in sFNC when comparing the 
individuals having ε3 with those having ε4. However, no significant 
difference between the two groups was observed by looking at OCR. 
While previous studies only analyzed sFNC (Axelrud et al., 2019; Chiesa 
et al., 2017; McKenna et al., 2016; Turney et al., 2020), the results 

reported above demonstrated the importance of examining both sFNC 
and dFNC data to differentiate individuals with different AD risks. 

We also separated men and women to examine the effect of sex on 
our results. We did not observe a significant difference across the three 
groups of men for either sFNC or dFNC data. While a significant dif
ference between women carrying ε4 and ε2 and between women car
rying ε4 and ε3 was observed in the dFNC analysis, we only found a 

Fig. 5. Genetic risk effects on dFNC features. A) The occupancy rate (OCR) of each group in state 1, state 2, and state 3. All individuals: The individuals with the ε2 
allele spent more time in state 1 than those individuals without the ε2 allele (corrected p < 0.05). Male: The occupancy rate (OCR) of each group in state 1, state 2, 
and state 3. No significant difference was observed among the groups. Female: The occupancy rate (OCR) of each group in state 1, state 2, and state 3. The individuals 
without the ε2 allele spent more time in state 3 than those individuals with the ε2 allele (corrected p < 0.05). B) The frequency of visits to states 1, state 2, and state 3. 
All individuals: No significant difference was observed across the group. Male: No significant difference was observed among the groups. Female: participants with 
the ε2 allele have fewer visits to state 3 than those with the ε3 and ε4 alleles (corrected p < 0.05). LGR-AD: Low genetic risk of AD, MGR-AD: Moderate genetic risk of 
AD, HGR-AD: High genetic risk of AD. The error bars represent the standard deviation. 
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significant difference between the women with ε2 and ε4 in the sFNC 
analysis. We did not observe a significant difference between individuals 
having ε3 and ε4 in either analysis. A recent study analyzed 5496 
healthy individuals carrying ε4 and showed that AD’s conversion rate is 
significantly higher for women (Altmann et al., 2014). A study showed 
that ε4 could be used to predict mild cognitive impairment (MCI) to AD 
transition, while ε4 affects the transition speed in women but not men 
(Kim et al., 2015). Another study showed a significant reduction in DMN 
connectivity of females with ε4 than females with ε3, while this differ
ence was not substantial in males with ε4 versus those with ε3 (Dam
oiseaux et al., 2012). Our results showing that differences in sFNC across 
female groups are significant and that differences in sFNC across male 

groups are not significant is consistent with these studies mentioned 
above. Additionally, our current study provided new information about 
how sex differences significantly contribute to the differentiation of the 
dFNC of cognitively normal individuals with different AD genetic risks. 

A recent study on the Alzheimer’s Disease Neuroimaging Initiative 
dataset found that p-tau levels in cerebrospinal fluid grow faster in fe
male ε4 carriers than in noncarriers and males, indicating that the ε4 
allele has a sex-specific impact (Buckley et al., 2019). This might explain 
why we see a significant difference in the FNC of female individuals with 
higher AD genetic risk compared to those with lower AD genetic risk in 
our study. It could also explain why this pattern has not been observed in 
male individuals due to slower tau growth in this group. Similarly, we 

Fig. 5. (continued). 
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compared sFNC and dFNC feature across ε4 carriers and noncarriers and 
found a significant sFNC difference in females but not in males (Sup
plementary Fig. 1 and Fig. 2). Similarly, we found a significant sFNC 
difference between ε4 carriers and noncarriers in females but not males. 
Although previous studies considered the ε3 allele to be a neutral factor 
in AD, a recent study claimed that the ε3 allele might be a protective 
factor rather than a neutral one (de-Almada et al., 2012). Our results 
may suggest that the ε3 allele is a more significant risk factor for AD in 
women than in men. 

It should be noted that our study does have some limitations. In 
particular, previous studies have indicated that other risk factors, in 
addition to genetic risk, can lead to AD (Durazzo et al., 2014; Rahman 
et al., 2020; Thomas et al., 2020). For example, a recent study showed 
that individuals with diabetes and the ε4 allele demonstrated a faster 
functional decline than those without diabetes (Thomas et al., 2020). 
Other confounding factors like smoking (Durazzo et al., 2014), physical 
activity (Meng et al., 2020), and education levels (Meng and Arcy, 2012) 
could introduce some bias into our results. This information was not 
included in the dataset. Future studies are needed to explore AD genetic 
risk factors combined with other potential risk factors in both sFNC and 
dFNC data. 

In conclusion, by analyzing the link between AD genetic risk with 
sFNC and dFNC for the first time, we found that AD genetic risk affects 
both sFNC and dFNC and that each analysis provides information about 

different aspects of the effects of AD risk on brain connectivity. When 
analyzing sFNC data, it was possible to differentiate people with lower 
risk from those with higher risk and people with moderate risk from 
those with higher risk. An analysis of dFNC showed that people with low 
risk could be discriminated from those with higher risk and that the SMN 
and CBN helped differentiate the two groups. When analyzing sFNC and 
dFNC from individuals of both sexes, we found that a higher risk of AD is 
associated with a reduction in within-VSN connectivity and an increase 
in VSN/DMN connectivity, potentially as a compensatory mechanism. 
However, when analyzing only women, we did not observe a similar 
compensatory mechanism. The lack of a compensatory mechanism in 
women could explain the higher AD conversion rate in women that has 
been identified in previous studies (Altmann et al., 2014). Additionally, 
our findings suggested that having only an ε3 allele could be more of a 
risk factor in women than in men. Our results shed new light on the 
genetic risk interactions for AD and brain connectivity in cognitively 
normal individuals and could assist future diagnostic and treatment 
efforts. 

Declaration of Competing Interest 

Elizabeth Mormino provides consulting services for Neurotrack and 
Eli Lilly. David Salat is a founder and has equity interest in Niji Corp. The 
remaining authors declare no competing interests. 

Fig. 6. Sex effects on sFNC. A) Top panel: sFNC differences between pairs of groups for males (uncorrected p < 0.05). Bottom panel: sFNC differences between pairs 
of groups for males (corrected p < 0.05). B) Top panel: sFNC differences between pairs of groups for females (uncorrected p < 0.05). Bottom panel: sFNC differences 
between pairs of groups for females (corrected p < 0.05). The colorbar shows Cohen’s d effect size calculated using MATLAB toolbox (https://www.mathworks. 
com/matlabcentral/fileexchange/62957-computecohen_d-x1-x2-varargin.). SCN: subcortical network SCN, ADN: auditory network, SMN: sensory motor network, 
VSN: visual sensory network, CCN: cognitive control network, DMN: default mode network, and CBN: cerebellar network. LGR-AD: Low genetic risk of AD, MGR-AD: 
Moderate genetic risk of AD, HGR-AD: High genetic risk of AD. The chord graphs are generated using the NiChord toolbox in Python (https://github.com/paulcbogda 
n/NiChord). 
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