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ABSTRACT: A tetrahedral FeII4L4 cage assembled from the coordination
of triangular chiral, face-capping ligands to iron(II). This cage exists as two
diastereomers in solution, which differ in the stereochemistry of their metal
vertices, but share the same point chirality of the ligand. The equilibrium
between these cage diastereomers was subtly perturbed by guest binding.
This perturbation from equilibrium correlated with the size and shape fit of
the guest within the host; insight as to the interplay between stereo-
chemistry and fit was provided by atomistic well-tempered metadynamics
simulations. The understanding thus gained as to the stereochemical impact
on guest binding enabled the design of a straightforward process for the
resolution of the enantiomers of a racemic guest.

■ INTRODUCTION
Enzymes possess chirotopic cavities, enabling stereoselective
recognition of target substrates and stereospecific chemical
reactions.1−3 Enantiopure metal−organic cages with enclosed
cavities,4 constructed by coordination-driven self-assembly, are
able to mimic the functions of enzymes and have found uses
across diverse areas, including stereoselective sensing, separa-
tion,5 and catalysis.6,7 Studies on the communication of
stereochemistry within cages also help to elucidate the flow of
stereochemical information in both artificial and living systems
and may lead to the discovery of bioinspired applications.8

The stereochemistry of metal−organic cages can be
influenced by enantiopure counterions and guests, through
templation during cage formation or postassembly resolution
of racemic cage mixtures.4,9 More frequently, enantiopure
components, i.e., ligands and metal complexes, are used to
control the stereochemistry of self-assembled structures,
whereby the resulting metal−organic cages are enantiopure.4,10
In cases where the metal ions, particularly those from the d-
block or f-block, have octahedral11 or pseudotricapped trigonal
prismatic geometry,12 stereochemical information from the
ligands can transfer to the metal vertices to produce either a
preferred Δ or Λ handedness during higher-order self-
assembly. Based upon this strategy, examples of the
diastereoselective formation of homochiral cages, with precise
control of the handedness of both metal vertices and the final
assembled structure, have been reported.4,11,12

Metal−organic cages with electron-deficient walls have
displayed extensive host−guest properties, binding electron-
rich and even electron-poor guests with high affinities.13 We
therefore envisioned that the incorporation of an electron-poor

ligand into a chiral cage framework might optimize binding
ability,14 resulting in the discovery of self-assembled cages with
new potential applications.15 Herein, we describe the self-
assembly of an electron-deficient enantiopure ligand with FeII
to afford an FeII4L4 tetrahedron existing as a pair of distinct
diastereomers, adopting either an all Δ or Λ configuration of
metal centers, with moderate diastereocontrol. The ratio of the
Δ4 to Λ4 configurations was then subtly modulated and even
inverted by the encapsulation of guests. The diastereoenriched
cage enabled the selective encapsulation of functionalized
fullerenes from mixtures and enantioselective separation of
racemic cryptophane-A (CRY-A).

■ RESULTS AND DISCUSSION
Tritopic ligand A with pyridyl-triazole “click” chelates14,16 was
synthesized from iodinated N-heterotriangulene over three
steps (Figure S1). The carbonyl groups and perfluorophenyl
rings ensure its electron-deficient nature. The self-assembly of
A (4 equiv) with iron(II) bis(trifluoromethanesulfonyl)imide
(Fe(NTf2)2, 4 equiv) in acetonitrile at 343 K gave rise to cage
1 (Figure 1a). Its FeII4L4 composition, as anticipated following
the foundational work of Lusby,16 was confirmed by
electrospray ionization mass spectrometry (ESI-MS, Figure
S21). One set of proton signals in the 1H NMR spectrum of 1
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indicated the exclusive formation of a T-symmetric framework,
with each octahedral tris-chelate metal vertex displaying the
same handedness (Figure 1b). The absence of Cotton effects
in the circular dichroism (CD) spectrum was consistent with
the formation of a racemic mixture of Δ4-1 and Λ4-1 in
solution (Figure 1c).
We hypothesized that the stereochemistry of such FeII4L4

cages might be controlled by using an enantiopure ligand,
which could dictate the configuration of the iron centers.
Chiral ligand B, having the same ligand core as A, was
therefore prepared, with each arm bearing an amide-containing
chiral directing group (Figure S7). The stereocenter-contain-
ing side chain was incorporated at the 3-position of the pyridyl
ring to secure its proximity to the metal vertex. Such a design
should also avoid steric clash within the coordination
environment around the metal centers that would be induced

by substituents at the pyridyl 6-position, which might
destabilize assembled structures.17

Ligand B underwent self-assembly with Fe(NTf2)2 to
produce FeII4L4 cage 2 (Figure 1a), as confirmed by ESI-MS
(Figure S30). The 1H NMR spectrum of cage 2 shows two sets
of proton signals, consistent with the formation of Δ4-2 and
Λ4-2 as diastereomeric complexes. The well-separated signals
of Hh allowed determination of a diastereomeric ratio (d.r.) of
2.4:1 (Figure 1b). The same diffusion coefficient was observed
for all peaks in the diffusion-ordered spectroscopy (DOSY)
spectrum, indicating similar hydrodynamic radii for both
diastereomers (Figure S25). Other N-heterotriangulene-based
chiral ligands bearing modified chiral directing groups were
also employed in the self-assembly process; however, lower
diastereomeric ratios were observed in all cases compared to
the present ratio of 2.4:1 (Figures S34 and S35).

Figure 1. (a) Self-assembly of cages 1 and 2 from ligands A and B, respectively. (b) Partial 1H NMR spectra of cages 1 and 2, with Hh used to
gauge the d.r. of 2 (500 MHz, CD3CN, 298 K). (c) CD spectra of cages 1 and 2. (d) Front view of the DFT-optimized molecular models of Δ4-2
and Λ4-2, with ΔE representing the difference in total energy between the two diastereomers at 298 K as estimated by molecular dynamics.
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The CD spectrum of cage 2 displayed intense negative
signals around 240−340 nm, corresponding to high-energy
π−π* transitions in the ligands, while metal-to-ligand charge
transfer (MLCT) and d−d transitions produced weaker signals
from 360 to 540 nm (Figure 1c). The Cotton effects observed
in the CD spectrum are correlated with the handedness of the
octahedral tris-chelate iron vertices. Comparison of the CD
spectra of structurally similar Δ- and Λ-[Fe(bpy)3]2+
complexes, particularly peaks resulting from π−π* and
MLCT transitions, allowed us to infer there is an excess of
iron centers having Δ configuration within cage 2.18,19 The
major diastereomer of 2 was thus determined to be Δ4-2, and
the minor diastereomer was Λ4-2.
After many unsuccessful attempts to grow crystals suitable

for X-ray diffraction, we undertook density functional theory
(DFT) calculations to obtain the energy-minimized molecular
models of Δ4-2 and Λ4-2 (Figure 1d; for details, see
Supporting Information Section 10).20 In accordance with
previous observations of face-capped M4L4 tetrahedral
cages,5i,9h Δ4-2 adopts a clockwise orientation of its four
ligand faces, while Λ4-2 is paired with ligands of anticlockwise
orientation. The FeII···FeII distances in both diastereomers are
similar (ca. 23 Å). The calculated cavity volumes are only
slightly different: 1281 Å3 for Δ4-2 and 1266 Å3 for Λ4-2
(Figure S107).21

In control experiments, an FeIIL3 complex was formed by the
reaction of Fe(NTf2)2 with a monomeric pyridyl-triazole ligand
bearing the same chiral side chain (Figure S36). Very weak
signals observed in the CD spectrum indicated a weaker chiral
induction effect in this mononuclear complex relative to that of
the tetranuclear cage (Figure S38). These results reflect that
diastereoselectivity during the formation of 2 emerges as a
result of higher-order assembly, in which the stereochemical
information transfer from ligand to metal vertex and
stereochemical communication between metal centers may

cooperatively play a role in amplifying the energy differences
between the two diastereomers.22

The relative energy differences (ΔE) between Δ4-2 and Λ4-2
was gauged to be 8.5 kcal mol−1 by performing molecular
dynamics simulations on a model of cage 2 in explicit
acetonitrile at 298 K performed using the GROMACS software
package patched with plumed23 (model description and
simulation setup in Supporting Information Section 10).24

These calculations supported the conclusion that Δ4-2 is more
favored from an enthalpic point of view, as this difference
mainly arises from the difference in potential energy.
Both diastereomers of 2 have flat ligand cores and enclosed

cavities, thus rendering 2 a good prospective host for large π-
extended guests. We therefore began to investigate the host−
guest properties of 2 with fullerenes and fullerene derivatives
(Figure 2a). Heating an equimolar mixture of guest and 2 in
acetonitrile at 343 K for 30 min resulted in the quantitative
formation of the 1:1 host−guest complexes G⊂2, as confirmed
by 1H NMR, 19F NMR, and ESI-MS spectra for all investigated
guests (Supporting Information, Section 6.1). The major
contributions to binding were inferred to be extensive stacking
interactions between host and guest, as well as solvophobic
effects in acetonitrile. The insolubility of these π-extended
guests in acetonitrile prevented quantification of binding
strength through 1H NMR titration experiments.

1H NMR and CD spectra confirmed that both Δ4-2 and Λ4-
2 were able to accommodate the guests, with G⊂Δ4-2 as the
major species (Figures 2a and S69); Δ4⇄Λ4 interconversion
was also observed during the binding process. We inferred that
the size and shape fit between guest and cage change the
energy differences between two configurations. To quantify
this phenomenon, molecular volume (Vmol)

21 was used to
determine the size of the guest, while sphericity (Ψ)25 was
employed to reflect the shape of the guest considering the
near-spherical cavity of 2 (Table S2). The plot of d.r. against
Vmol and Ψ revealed that binding a smaller and more spherical

Figure 2. (a) Schematic and table showing guest-binding-induced Δ4 ⇄ Λ4 interconversion, with d.r. determined by 1H NMR. (b) Diastereomeric
ratio of the host−guest complex plotted against the molecular volume (Vmol) and sphericity (Ψ) of guests. PCBM = [6,6]-phenyl-Cn-butyric acid
methyl ester (n = 61 or 71). IC60MA = indene-C60 monoadduct. Bis-C60PCBM exists as a mixture of regioisomers. C70PCBM exists as a mixture of
regioisomers with about 85% α-C70PCBM. (c) Schematic showing conversion of one metal vertex within the framework of 2, with ΔG⧧

representing the calculated transition energy barrier and τ representing the characteristic transition timescale at 298 K.
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guest resulted in a stronger energetic preference for the Δ4
configuration, whereas binding larger and less spherical guests
reduced energy differences between diastereomers (Figure 2b).
Although the stereochemical effects of guests upon the host
observed here were subtle, the model plotted in Figure 2b
allowed quantification of guest-induced diastereomer inter-
conversion for binding C60 and its adducts, according to the
linear relationships between d.r. and Vmol and between d.r. and
Ψ. However, two outlying points prevented good linear
regression fits for binding C70 and C70PCBM ([6,6]-phenyl-
C71-butyric acid methyl ester).
To obtain information related to the energy barriers for the

interconversion between Δ4-2 and Λ4-2, we employed multiple
infrequent well-tempered metadynamics (WT-MetaD) simu-
lations.26 These biased simulations allowed us to activate the
escape from the two local Δ and Λ minima and to obtain
information on the associated barriers and characteristic
timescales expected for these transitions in unbiased
conditions. In particular, we activated the transition of one
of the four metal vertices, exploring the Δ4 → Δ3Λ and Λ4 →
Λ3Δ transitions (Figure 2c), which are first necessary steps in
the Δ4 ⇄ Λ4 isomerization. Fifty infrequent WT-MetaD
simulations were run for both transitions.
For the Δ4 → Δ3Λ transition, the infrequent WT-MetaD

simulations provided a transition energy barrier ΔG⧧ ∼ 24.3
kcal mol−1 and a characteristic transition timescale τ ∼ 3.2 ×
105 s, while the corresponding energy barrier and timescale for
Λ4 → Λ3Δ were calculated to be ΔG⧧ ∼ 23.5 kcal mol−1 and τ
∼ 9.3 × 104 s, respectively. These results suggested that the
dynamics of interconversion between Δ4 and Λ4 diastereomers
are slow at room temperature. Similar energy barriers were
obtained for the diastereomer transformations of C70⊂2.
However, by rescaling the obtained transition timescales at
343 K (mixing condition), we could estimate that these
transition events can occur within a timescale of minutes. This
suggests that the Δ4 and Λ4 configurations dynamically
equilibrate during the self-assembly process and reequilibrate
during mixing with guest molecules.
We then investigated the ability of 2 to purify high-value

fullerenes, starting with preparing a mixture consisting of
equimolar amounts of C60, C60PCBM, bis-C60PCBM, and 2 in
acetonitrile (Figure 3). Notably, after being kept at 343 K for
30 min, the host−guest complex bis-C60PCBM⊂2 was
observed to form exclusively, as confirmed by ESI-MS and
1H NMR (Figures S89 and S90). Likewise, cage 2 was also able
to selectively extract C70PCBM from a mixture with C70
(Figures S91 and S92). The efficient and selective
encapsulation of bis-C60PCBM and C70PCBM by 2 may
provide an alternative method for the purification of fullerene
covalent adducts contaminated with numerous side-products
from reaction mixtures.27 We attribute the excellent selectivity
observed here to the higher solubility of these alkyl chain-
substituted fullerenes in organic solvents.28

Electron-deficient 2 was also observed to bind electron-rich
enantiopure cryptophane-A, which is an example of an
important class of organic supramolecular host.29 The host−
guest adduct CRY-A⊂2 was formed upon heating equimolar
amounts of CRY-A and 2 in acetonitrile at 343 K for 30 min
(Figure 4). PP-CRY-A⊂2 (Δ4:Λ4 = 2.4:1) retained the
stereochemical configuration of the parent cage 2 (Δ4:Λ4 =
2.4:1), whereas the encapsulation of MM-CRY-A occurred
with inversion of host stereochemistry, providing MM-CRY-
A⊂2 in a d.r. of Δ4:Λ4 = 1:2.6. Opposite Cotton effects

observed in the CD spectra of both host−guest complexes also
confirmed such stereochemical outcomes upon encapsulation
of enantiopure CRY-A (Figure S94). The Δ4 configuration was
thus favored by PP-CRY-A, whereas the Λ4 configuration was
preferred by MM-CRY-A. The inversion of the stereochemistry
of 2 induced by MM-CRY-A reflected that host 2 can
dynamically adapt its stereochemistry and chiral inner void to
maximize binding affinity for a chiral guest.
We next explored the enantioselective separation of racemic

guests by 2. We observed that 2 displayed no enantioselectivity
in binding racemic C70PCBM, as confirmed by 1H NMR and
CD spectra (Figures S65 and S105). Diastereoenriched 2 was
nonetheless capable of enantioselectively separating racemic
CRY-A (Figure 5a).

Figure 3. Schematic showing the selective encapsulation of bis-
C60PCBM and C70PCBM.

Figure 4. Schematic showing the stereochemical communication
between 2 and CRY-A.
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Two equivalents of racemic CRY-A were added to an
acetonitrile solution of 2, and the reaction mixture was
maintained at 343 K for 30 min. The host−guest complex
CRY-A⊂2 was isolated by precipitation with diethyl ether;
evaporating the excess diethyl ether subsequently afforded
unbound CRY-A. All signals in the 1H NMR spectrum of CRY-
A⊂2 had the same diffusion coefficient, with proton signals
corresponding to bound CRY-A shifted upfield due to host
shielding effects (Figure 5b). Four sets of signals from the
methoxy groups of CRY-A were observed in the 2.55−2.83
ppm region, indicating that CRY-A⊂2 consists of four
diastereomers, PP-CRY-A⊂Δ4-2, PP-CRY-A⊂Λ4-2, MM-
CRY-A⊂Δ4-2, and MM-CRY-A⊂Λ4-2. Comparison with the
1H NMR spectra for PP-CRY-A⊂2 and MM-CRY-A⊂2
allowed us to identify each diastereomer in solution (Figure
S93).
The 1H NMR spectrum clearly showed that more MM-

CRY-A was encapsulated when two equivalents of racemic
guest were used. Cotton effects assigned to MM-CRY-A were
also observed in the CD spectrum of CRY-A⊂2 (Figure S94).
The enantiomeric excess (ee) of the unbound CRY-A was
determined to be 32% by chiral HPLC, with PP-CRY-A being
enriched (Figure S96). The bound CRY-A was released by
sonicating a suspension of the host−guest complex in
chloroform (Figure S102), and the solid 2 was then recovered
by centrifugation (Figures S103 and S104).

In control experiments, PP-CRY-A was observed to be
encapsulated kinetically faster than MM-CRY-A at the initial
stage of the binding process, as PP-CRY-A is bound more
strongly by the Δ4 configuration of 2 (Δ4:Λ4 = 2.4:1 for this
guest). Heating the reaction mixture resulted in re-
equilibration of the cage framework, eventually giving MM-
CRY-A⊂Λ4-2 as the major host−guest complex, indicating that
MM-CRY-A⊂Λ4-2 is the thermodynamically favored diaster-
eomer within the four-diastereomer CRY-A⊂2 system (Figure
S101). These results indicated that the enantioselectivity in
binding racemic CRY-A by 2 is driven by the formation of the
thermodynamically stable host−guest diastereomer, MM-CRY-
A⊂Λ4-2.
Encouraged by the chiral resolution observed, we ran a

second round of separation experiments, through addition of
the CRY-A (32% ee) obtained from the first round to a fresh
acetonitrile solution of 2. After precipitation of the host−guest
adduct and removal of the solvent, the unbound CRY-A was
obtained in 77% ee, as determined by chiral HPLC (Figure
S98).

■ CONCLUSIONS
The moderately stereoselective self-assembly of FeII4L4
tetrahedron 2 thus can serve as the basis of an enantiosepara-
tion process, based upon a nuanced understanding of how
stereochemistry influences guest fit within this host. Cage 2
was also capable of selectively extracting bis-C60PCBM and

Figure 5. (a) Schematic showing the enantioselective resolution of CRY-A by cage 2 in acetonitrile and the recycling of 2 in chloroform. (b) Partial
1H NMR spectrum of CRY-A⊂2 obtained in the first round of the resolution procedure, with the peaks for the encapsulated guest highlighted with
a light blue background, showing an expansion of the OMe region of bound CRY-A (400 MHz, CD3CN, 298 K).
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C70PCBM from mixtures of their derivatives. The strategy
outlined herein may thus become applicable to the design of
new cage-based purification methods, particularly stereo-
selective ones. Future work will focus on the immobilization
of such N-heterotriangulene-based cages on solid supports,
such as alumina, for the development of efficient large-scale
separation and purification processes.30
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