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Recent evidence suggests that physical activity may influence the functional connectivity
of the aging brain. The purpose of this study was to examine the influence of physical activ-
ity on the association between executive function and functional connectivity of key brain
networks and graph theory metrics in community-dwelling older adults. Participants were
47 older adults (M = 73 years; SD = 5.92) who participated in neuropsychological testing,
physical activity measurements, and magnetic resonance imaging (MRI). Seed-to-voxel
moderation analyses and graph theory analyses were conducted. Physical activity was sig-
nificantly positively associated with default mode network functional connectivity (DMN
FC; Posterior Cingulate Gyrus, p-FDR = 0.005; Frontal Pole (L), p-FDR = 0.005; Posterior
Cingulate Gyrus, p-FDR = 0.006; Superior Frontal Gyrus (L), p-FDR = 0.016) and dorsal
attention network functional connectivity (DAN FC; Inferior Frontal Gyrus Pars
Opercularis (R), p-FDR = 0.044). The interaction between physical activity and executive
function on the DMN FC and DAN FC was analyzed. The interaction between executive
function and physical activity was significantly associated with DMN FC. When this signif-
icant interaction was probed, the association between physical activity and DMN FC dif-
fered between levels of high and low executive function such that the association was
only significant at levels of high executive function. These results suggest that greater
physical activity in later life is associated with greater DMN and DAN FC and provides evi-
dence for the importance of physical activity in cognitively healthy older adults.
� 2022 The Authors. Published by Elsevier Inc. This is an open access article under theCCBY-

NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

As the number of older adults continues to grow at an
unprecedented rate, there is a need to examine the neuro-
protective effects of health and wellness factors that pro-
mote healthy aging. While long touted as good for
physical health, several meta-analyses have found that
exercise interventions positively impact cognitive function
in older adulthood [13,38,46,50]. Self-reported and objec-
tively measured physical activity have also been shown
to be positively associated with cognitive functioning in
aging [64,24,35,3,39,34]. Using objective devices to record
the activity level of older adults has allowed for many dif-
ferent aspects of physical activity to be examined (e.g.,
intensity of activity, number of steps, distance traveled).
Some studies have found that the intensity of physical
activity has the greatest association to current cognitive
ability for older adults [2,7,39,68], while others have pos-
ited that simply moving around throughout the day (i.e.,
number of steps) is significantly related to cognition
[3,8]. The use of performance-based measures to examine
physical activity in older adults allows for more accurate
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and specific information to be examined in its association
with cognitive functional ability.

Exercise interventions have been shown to impact cog-
nitive function in aging, particularly executive function
[2,13,51]. Executive functions involve the integration of
several cognitive processes including inhibitory control,
working memory, set-shifting, and cognitive flexibility.
These processes support higher order cognitive functions
such as problem solving, decision-making, and planning
and are one of the earliest domains effected by aging
related cognitive decline [19,12,36,55]. Executive function
ability is crucial to maintaining functional independence
in aging, and the preservation of this ability is important
to researchers and clinicians [61]. A component of execu-
tive functions, set-shifting ability, is related to several out-
comes in older adulthood such as risk of fall, subjective
cognitive complaints, and everyday functioning
[27,31,43,44,45]. Better executive function performance
in older adulthood has specific neuronal underpinnings
such as greater connectivity in both the default mode net-
work (DMN) and in the dorsal attention network [1,15,41].
Therefore, there is a need to examine how physical activity
might interact with executive function to impact the func-
tioning of the aging brain.

The impact of physical activity on the functional con-
nectivity (FC) of the aging brain is an emerging area. Recent
reviews [54,66] examined the current state of the litera-
ture concerning the associations between physical activity
and FC for older adults and found relatively few studies on
this topic. There are several cross-sectional studies which
have examined aspects of these associations with a partic-
ular focus on the brain networks that are most susceptible
to aging including the DMN and DAN. The DAN is based in
the intraparietal sulcus and frontal eye fields and is active
during tasks that require voluntary and sustained atten-
tion, while the DMN, housed in the ventromedial pre-
frontal cortex and posterior cingulate cortex, is active at
rest [22,60]. Boraxbekk and colleagues [6] showed that
self-reported physical activity of the previous decade was
related to DMN FC in older adults. Using objectively mea-
sured physical activity, Veldsman and colleagues [67]
found that physical activity level was related to DAN FC
in older adult stroke survivors. The current literature indi-
cates an association between physical activity and DMN
and DAN FC in aging, but less is known about how execu-
tive function might play into this association.

Finally, the literature examining the associations
between physical activity and graph theory metrics such
as global and local efficiency is extremely sparse. Graph
theory posits that the brain is made up of a complex series
of nodes (e.g., anatomical elements) and edges (e.g., rela-
tionships between nodes) and this methodology can model
the overall connectivity of the brain and thus characterizes
this organization [9,63]. This methodology can be used to
determine both global and local efficiency of the brain.
Kawagoe, Onoda, and Yamaguchi [37] examined the asso-
ciations between executive function, global efficiency, local
efficiency, and physical fitness in older adults. They found
that global efficiency was positively associated with exec-
utive function and physical fitness, while local efficiency
was negatively associated with executive function and
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physical fitness. The authors posited that while the find-
ings for global efficiency were intuitive, their hypothesis
for why local efficiency was negatively related to executive
function and physical fitness was because of the tendency
of high functioning older adults to have connections across
a broader range of brain areas at the expense of local effi-
ciency (i.e., a compensatory mechanism). In addition, a
recent study by Yue and colleagues [67] examined the
impact of Tai Chi practice on network efficiency in Chinese
female older adults and found no difference in global and
local efficiency between those that engaged in Tai Chi
and those that walked, although local efficiency attributes
expressed positive trends in favor of Tai Chi practice. While
these studies give us some insight into the associations
between physical activity, executive function, and mea-
sures of functional connectivity and efficiency, this area
is ripe for a greater exploration of global and local effi-
ciency of networks susceptible to the effects of aging.

The purpose of the current study was to expand upon
the limited current state of the literature in this area by
exploring the impact of physical activity on FC and execu-
tive function in older adults. This study is important
because it contributes to a better understanding of how
physical activity may modify the connections between
cognition and key brain networks implicated in cognitive
aging. This study had several aims. The first aim was to
examine whether executive function performance was
related to DMN and DAN FC in community-dwelling older
adults and to examine whether physical activity moder-
ated this association. We hypothesized that better execu-
tive function performance would be related to greater
DMN and DAN connectivity. We also hypothesized that
physical activity would moderate the association between
both executive function and DMN/DAN FC such that higher
levels of physical activity would buffer the association
between lower executive function and DAN/DMN FC. The
second aim was to evaluate whether physical activity
was related to whole brain local and global efficiency for
community-dwelling older adults. We hypothesized that
greater physical activity would be significantly associated
with both greater global efficiency and greater local effi-
ciency, as evidence indicates that there is greater whole
brain connectivity and lower local connectivity in aging
[10,53,33].
Methods

Participants

Participants were a total of 47 community-dwelling
older adults (aged 65 years and older) from the surround-
ing community of a southeastern college town recruited
over a four-year period. Participants were recruited
through community ads, presentations to community
aging groups by study staff, and word of mouth. Some par-
ticipants’ data were acquired as part of a separate interven-
tion study, but for the purpose of the present study, only
data from their baseline assessments (pre-intervention)
was used. All participants completed sessions that
included neuropsychological testing, physical activity and
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fitness measurements, and magnetic resonance imaging
(MRI). Participants were eligible if they had no major neu-
rological (e.g., Alzheimer’s, Parkinson’s) or psychiatric dis-
orders, were right-handed, Native English speakers, and
were compatible with the MRI environment (i.e., no metal
implants, no recent surgeries, etc). Participants were
excluded if their cognitive functioning was below mild
cognitive impairment (MCI) as indicated by their perfor-
mance on the MMSE (totals score < 24; [57]). This study
was approved by the Institutional Review Board at the
University of Georgia. Informed consent was obtained from
all participants and the Declaration of Helsinki was
followed.
Physical activity

Physical activity (PA) was measured using NL-1000
Accelerometers (New Lifestyles, Inc.; Lee’s Summit, Mis-
souri, USA). This device measures the number of steps
using a piezoelectric strain gauge. Participants in this study
wore the NL-1000 on their waist for 7 days and completed
a log including times that the accelerometer was removed
(e.g., sleeping, showering) to ensure adequate wear time
(e.g., at least 8 h per day [48]. The average number of steps
taken per day over the span of seven days was calculated
as follows: Average Steps = [(Total Steps Day 1 + Total
Steps Day 2 + Total Steps Day 3 + Total Steps Day 4 + Total
Steps Day 5 + Total Steps Day 6 + Total Steps Day 7)/7].
This device has been validated to capture steps in aging
populations [4]. Daily step count is a readily accessible
way to monitor physical activity [40].
Neuropsychological measures

Each participant received neuropsychological assess-
ment by a trained assessor. All participants were adminis-
tered the Delis-Kaplan Executive Function System (DKEFS)
Color-Word Interference Test, the DKEFS Verbal Fluency
Test, and the DKEFS Trail Making Test, which are subtests
of the full DKEFS battery, measure non-verbal and verbal
executive function, are validated in English speaking older
adults, and have relatively brief administration times [17].
Scaled scores were determined based on the DKEFS norma-
tive sample, participant age, and performance on the task.
For the Trail Making Test, a scaled score was calculated for
Condition 4: Number-Letter Switching, which measures
the ability to set-shift. For Verbal Fluency, a scaled score
for Category Switching was calculated, which measures
the ability to generate words that fall under categories
while being able to set-shift. For the Color-Word Inference
Test, a scaled score was calculated for Condition 4: Inhibi-
tion/Switching, which measures verbal inhibition and set-
shifting (D-KEFS; [16]). All scaled scores were then aver-
aged together for each participant to create an executive
function composite specific to set-shifting. In order to
determine whether these three subtests were correlated
with each other and were thus measuring similar con-
structs, a Cronbach’s alpha based on standardized items
[5] was calculated (a = 0.607) indicating an acceptable fit
for a small number of items [32]. Our group has previously
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utilized this composite method to capture executive func-
tion in an older adult population [28].

Neuroimaging

MRI Acquisition
Brain images were acquired using a General Electric

(GE; Waukesha, WI) 3 T Signa HDx MRI system. A high-
resolution 3D T1-weighted fast spoiled gradient recall echo
sequence was used to collect structural scans (TR = 7.5 ms;
TE = < 5 ms; FOV = 256 � 256 mm matrix; flip angle = 20�;
slice thickness = 1.2 mm; 154 axial slices) with an acquisi-
tion time of 6 min and 20 s. This protocol collected 176
images. Resting state functional scans were aligned to each
participant’s anterior commissure-posterior commissure
(AC-PC) line, collected axially, and used a T2*-weighted
single shot EPI sequence (TR = 5000 ms; TE = 25 ms; 90�
RF pulse; acquisition matrix = 128 � 128;
FOV = 220 � 220 mm; in-plane resolution = 220/128 mm;
slice thickness = 2 mm; 60 interleaved axial slices). Total
acquisition time was 9 min and 25 s. 108 volumes were
acquired.

Resting state pre-processing
The resting state functional scans were pre-processed

using the default pre-processing pipeline in the CONN tool-
box from the Neuroimaging Tools & Resources Collabora-
tory (v.18.b; www.nitrc.org/projects/conn; [65]. The
CONN Toolbox default pre-processing pipeline includes
realigning and unwarping the data, centering the coordi-
nates, applying a slice-time correction, outlier detection
(using ART-based identification of outlier scans for scrub-
bing; www.nitric.org/projects/artifact_detect), direct func-
tional and structural segmentation and normalization
(using simultaneous Grey Matter/White Matter/CSF seg-
mentation and MNI normalization), and functional
smoothing. In addition, functional scans were denoised in
CONN to remove physiological effect, subject movement,
and other confounding effects from the BOLD signal.
Within the CONN Toolbox, cortical and subcortical ROIs
were defined by the Harvard-Oxford atlas [23,18,42,29],
Automated Anatomical Labelling (AAL) Atlas [59], and
CONN default networks.

Seed-to-voxel analyses
Seed-to-voxel analyses were conducted a priori to

examine the level of functional connectivity between the
DMN and every voxel in the brain and the DAN and every
voxel in the brain, which produces seed-based correlation
(SBC) maps for each participant. ROIs/seeds were defined
by coordinates provided by the CONN toolbox regarding
the DMN and DAN. SBC maps contain Fisher r to z trans-
formed bivariate correlation coefficients between each
seed/ROI BOLD timeseries (averaged across all voxels
within an ROI) and an individual voxel BOLD timeseries.
Group summary maps of SBC maps for each participant
were used in statistical analyses (voxel-wise FDR-
corrected p < 0.05). The DMN consists of four ROIs (lateral
parietal R & L, medial prefrontal cortex, posterior cingulate
cortex) as does the DAN (frontal eye field R & L, intrapari-



Table 1
Sample Demographics and Key Study Variables.

Variable % or M (SD)

Demographics
Age 72.96 (5.92)
Sex (% female) 61.7%
Race (% White) 91.5%
Years of Education 16.96 (2.45)
Average Steps (day) 5360.91 (3223.83)
DKEFS Composite 11.65 (2.44)

DKEFS = Delis Kaplan Executive Function System
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etal sulcus R & L). The connectivity in all ROIs in the net-
work was averaged.

The associations between executive function and DMN/
DAN connectivity and the associations between physical
activity and DMN/DAN connectivity were examined. To
test the moderating effect of physical activity and fitness
on the association between executive function and func-
tional connectivity of DMN/DAN using seed-to-voxel anal-
yses, contrasts were run in CONN to determine whether
significant executive function � physical activity interac-
tions existed. When significant interactions existed, execu-
tive function and physical activity were discretized into
‘‘high” and ‘‘low” groups and between-subjects contrasts
were conducted within CONN to interpret the directional-
ity of the results.

Graph theory analyses
To examine the global and local properties of the whole

brain and the impact of physical activity on these proper-
ties, graph theory analyses were applied in CONN. Network
ROIs in CONN were defined by independent cluster analy-
ses (ICA) by CONN software creators. Whole brain global
efficiency was computed as the average inverse distance
for all possible pairs of nodes and represents the efficiency
of information transfer among all ROIs. The local efficiency
was computed as the average of the inverse shortest path
lengths among the ROIs in the immediately connected
neighborhood of an ROI. At the whole brain network level,
local efficiency represents the average sub-network effi-
ciency across all ROIs and reflects the ability to effectively
compensate for the localized failure of a single node [52].
Calculation of global efficiency and local efficiency cost
was set at 0.15 and corrected for multiple comparisons
(FDR-corrected p < 0.05). Adjacency matrix thresholding
is typically implemented using a fixed network cost level
(e.g. keeping the strongest 15% of connections) in order
to allow sensitive between-network comparisons of other
graph measures of interest [65,30].

Power analysis

A post-hoc power analysis was conducted using GPo-
wer [20] with power (1 - b) set at 0.80 and a = 0.05 using
the a priori setting Linear Multiple Regression: Fixed
model, R2 deviation from zero. Based on the current sam-
ple size of 51 participants, this sample size would provide
enough power to detect a medium to large effect with
three predicters (i.e., physical activity, executive function,
physical activity � executive function interaction;
f2 = 0.23) and a medium effect with one predictor (i.e.,
physical activity predicting efficiency; f2 = 0.16).
Results

Descriptive characteristics

Table 1 provides means and standard deviations for
sociodemographic characteristics. The average age was
72.96 years (SD = 5.92). Slightly over half (61.7%) of the
participants were female and a majority of the participants
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were White (91.5%). On average, participants had com-
pleted 16.96 years (SD = 2.45) of education. The average
steps per day (M = 5360.91; SD = 3223.83) was below most
recommended average steps per day for older adults
[25,58,40]. Our sample fell in the average range on the
composite measure of executive functioning (M = 11.65;
SD = 2.44).

Seed-to-voxel analyses

Executive function was not significantly associated with
DMN FC, but it was significantly related to DAN FC in our
sample (Inferior Frontal Gyrus, Pars Triangularis (L), p-
FDR = 0.045). Physical activity was significantly positively
associated with DMN FC (Posterior Cingulate Gyrus, p-
FDR = 0.005; Frontal Pole (L), p-FDR = 0.005; Posterior Cin-
gulate Gyrus, p-FDR = 0.006; Superior Frontal Gyrus (L), p-
FDR = 0.016; Fig. 1) and DAN FC (Inferior Frontal Gyrus
Pars Opercularis (R), p-FDR = 0.044; Fig. 2). The interaction
between executive function and PA was significantly asso-
ciated with DMN FC (see Table 2). When this significant
interaction between executive function and physical activ-
ity was probed, the association between physical activity
and DMN FC differed between levels of high and low exec-
utive function such that the association was only signifi-
cant at levels of high executive function. The interaction
between executive function and physical activity was not
significantly associated with DAN FC.

Whole brain graph theory analyses

Contrary to our hypothesis, physical activity was not
significantly associated with whole brain global efficiency
(t (45) = -0.77, p = 0.45) or whole brain local efficiency (t
(45) = 0.29, p = 0.77).

Discussion

The protective effects of physical activity on the brain
have been well-documented in aging, but the mechanisms
by which physical activity is neuroprotective is less under-
stood. The current study sought to examine how physical
activity impacts the association between executive func-
tion and resting state brain connectivity. Importantly, we
utilized an objective measure of physical activity as well
as seed-to-voxel and graph theory analyses. Consistent
with the existing literature, we hypothesized that better
executive function performance would be related to



Fig. 1. Default Mode Network Functional Connectivity Results. Physical activity was significantly positively associated with Default Mode Network
functional connectivity (A). The interaction between executive function and physical activity was significantly associated with Default Mode Network
Functional Connectivity (B). (color print).
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greater DMN and DAN connectivity. We also hypothesized
that physical activity would moderate the association
between both executive function and DMN/DAN FC such
that higher levels of physical activity would buffer the
association between lower executive function and DAN/
DMN FC.

Our first hypothesis was partially supported. Executive
function was not significantly associated with DMN FC,
5

but it was significantly related to DAN FC with frontal
areas. This significant finding is in line with research that
has demonstrated stronger positive connectivity between
dorsal attention and frontoparietal networks on an execu-
tive functioning task [56]. However, this is not universally
seen in the literature, as some studies have failed to find
any association between common resting state networks
(i.e., including the DMN) and cognitive performance in



Fig. 2. Dorsal Attention Network Functional Connectivity Results. Executive function was significantly positively associated with Dorsal Attention Network
Functional Connectivity (A). Physical activity was significantly positively associated with Dorsal Attention Network Functional Connectivity (B). (color
print).

Table 2
Moderation Analyses.

Clusters (x,y,z) Size (Voxels) p-FDR Area

DMN FC
PA �12, �44, +04 56 0.005 Posterior Cingulate Gyrus

�04, +54, �04 55 0.005 Frontal Pole (L)
+10, �44, +08 51 0.006 Posterior Cingulate Gyrus
�20, +18, +52 40 0.016 Superior Frontal Gyrus (L)

PA � EF +64, �44, �10 42 0.007 Middle Temporal Gyrus (R)
DAN FC
EF �46, +36, +10 47 0.024 Inferior Frontal Gyrus, Pars Triangularis (L)
PA +52, +14, +22 45 0.044 Inferior Frontal Gyrus, Pars Opercularis (R)

EF = Executive Function; PA = Physical Activity; DMN = Default Mode Network; DAN = Dorsal Attention Network; FC = Functional Connectivity.

Marissa A Gogniat, Talia L Robinson, Kharine R Jean et al. Aging Brain 2 (2022) 100036
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older adulthood [47,21,26]. This indicates the need for
future replication and additional exploration. Interestingly,
physical activity was significantly positively associated
with DMN FC in frontal and parietal areas associated with
reasoning and emotional regulation. Physical activity was
only significantly positively related to DAN FC with the
inferior frontal gyrus pars opercularis, an area in the fron-
tal lobe involved in language production and semantic pro-
cessing. This finding adds to the growing literature
demonstrating an association between physical activity
and increased functional connectivity in aging [6,62].

Notably, there was a significant interaction between
executive function and physical activity on DMN FC. When
this interaction was probed, the association between phys-
ical activity and DMN FC differed between levels of high
and low executive function such that the association was
only significant at high levels of executive functioning. This
suggests that older adults may see the greatest benefit of
physical activity on DMN FC if they are already performing
at high levels of executive function and provides evidence
for the importance of physical activity in cognitively
healthy older adults. Increasing physical activity in high
executive functioning older adults may act as buffer
against age-related DMN FC decline and supports lifestyle
factors such as physical activity as enhancing compen-
satory scaffolding in the aging brain [49]. In addition, this
finding suggests that interventions may consider boosting
both physical activity and executive functioning in tandem
to achieve preserve or improve the functional connectivity
of the aging brain.

Our second hypothesis was not supported. Physical
activity was not significantly associated with whole brain
global or local efficiency in our sample. It is possible that
physical activity does have an impact on efficiency in more
localized and specific ways that was missed by examining
efficiency using whole brain metrics. In addition, there
may have been a small effect and we did not have enough
power based on our sample size to detect it. Future studies
should consider examining efficiency in regions of interest.
Given that this sample was engaging in far less physical
activity than is recommended by CDC guidelines [11], it
would be important to examine this relationship in a group
of older adults with a wider range of physical activity
levels.

There are several limitations that should be considered.
First, this study was cross-sectional and thus limits causal
conclusions that can be drawn. While it was hypothesized
that physical activity impacted the association between
cognition and brain function, it is possible that these rela-
tionships are also bidirectional [14] and should be
explored in future longitudinal studies. Additionally, our
measurement of physical activity was a time-limited (i.e.,
one week) sample of current activity and may not repre-
sent historical physical activity. Future studies might con-
sider tracking physical activity over time. In addition, our
sample was relatively sedentary. It is possible that the
impact of physical activity on these associations might be
greater in a wider range of physical activity levels. Our
sample was highly educated, racially homogenous, cogni-
tively intact, and relatively sedentary, which may have
implications for the generalizability of the results. While
7

a limit to generalizability, the ability to find effects in a
highly educated and cognitively unimpaired sample indi-
cates that effects may be greater for those with lower
levels of education and thus lower cognitive reserve. In
addition, this sample was modestly sized, and thus power
was limited to conduct additional analyses. Despite these
limitations, the current study contributes to our under-
standing of how physical activity may impact cognition
and the functional connectivity of the aging brain. These
analyses provide insight into the neuroprotective effects
of physical activity and may inform future research in this
important area.
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