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ABSTRACT: Simulation techniques are crucial to establish a firm link
between phenomena occurring at the atomic scale and macroscopic
observations of functional materials. Importantly, extensive sampling of
space and time scales is paramount to ensure good convergence of
physically relevant quantities to describe ion transport in energy
materials. Here, a number of simulation methods to address ion
transport in energy materials are discussed, with the pros and cons of
each methodology put forward. Emphasis is given to the stochastic
nature of results produced by kinetic Monte Carlo, which can
adequately account for compositional disorder across multiple
sublattices in solids.
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1. JUMP DIFFUSIVITY�AN IMPORTANT QUANTITY
Storing and distributing green energy is central to the process of
modernization of our society. Rechargeable batteries, including
lithium (Li)-ion batteries, contribute substantially to shifting
away from oil and other petrochemicals. The 2019 Nobel prize
in chemistry awarded to John Goodenough, Stanley Whitting-
ham, and Akira Yoshino resulted in the introduction of the Li-
ion battery as a mainstream technology powering millions of
portable devices, electric vehicles, and stationary applications.1,2

In any rechargeable battery architecture, including the Li-ion
battery, the active ions, Li+, Na+ etc., are discharged from the
anode (negative electrode) into the positive electrode (the
cathode) through an electrolyte in a reversible manner. The
rapid transport of ions in electrode materials and between the
electrodes bymeans of electrolytes enables the battery itself. The
physical quantity characterizing ionic movement in materials
(i.e., in solids) is the “jump” diffusivity (or diffusion coefficient),
DJ of eq 1.
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D* is a prefactor, Em is the energy of ionic migration, T is the
temperature, and kB is the Boltzmann constant. The physical
origins of DJ and D* and related physical quantities have been
extensively reviewed elsewhere.3−12 Figure 1 shows graphically
the main elements enclosed by eq 1.
The migration energy Em and the prefactor D* depend

intrinsically on the chemical composition and the specific
polymorph (or phase) of a material. Going forward, this
Perspective will focus on crystalline compounds, which display
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Figure 1. Arrhenius plot of ion jump diffusivity DJ (in cm2 s−1) vs
reciprocal of temperature (K−1). The slope of the line Em sets the
migration barrier associated with ion motion, whereas the intercept
with the y-axis is the prefactor D* of eq 1.
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long-range order of atoms and will be referred to more generally
as materials.
A number of experimental and computational techniques can

be used to determine DJ in materials for energy storage. For
example, the galvanostatic intermittent titration technique
(GITT) is largely used to evaluate solid-state diffusion
coefficients in electrode materials.13 DJ in solid (and liquid)
electrolytes can be inferred from ion conductivity measurements
derived from electrochemical impedance spectroscopy (EIS).
Spin−lattice solid-state nuclear magnetic resonance (SL-SS-
NMR), quasi-elastic neutron scattering (QENS), secondary ion
mass spectrometry (SIMS), and muon spectroscopy have been
largely employed to indirectly probe diffusivities in materials
(via estimation of Em).

9 Altogether these techniques can sample
wide space and time domains, and have enabled invaluable
progress in our understanding of the physical phenomena of ion
transport in electrode and solid-electrolyte materials.9,11

Alongside experimental techniques, computational method-
ologies have steadily progressed in the simulation of ion
transport phenomena in materials. Computational method-
ologies set a firm link betweenmacroscopicmeasurements of ion
diffusivity (or conductivity) with the atomistic processes of ionic
migration. The latter is inherently connected to the intrinsic
chemical and structural properties of the materials inves-
tigated.10 Note that ionic diffusion happens through random
walks, or randommigration events, within a solid. Therefore, the
jump-diffusion coefficient of eq 1 can also be defined in terms of
the root-mean-square of the displacement of the center of mass
of all random walkers, e.g. Li-ions:
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where the numerator of eq 2 is the square of the sum of all
random walk trajectories. In the denominator, d is the
dimensionality of the diffusion network, N is the number of
random walkers, and T is the temperature. BecauseDJ tracks the
center of mass of ion transport, the jump diffusion incorporates
all correlation effects between ions.4 The tracer diffusion
coefficient, DT, when computed as if each random walker is
treated as an individual diffusion center.
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Equations 2 and 3 are connected by the Haven ratio, HR.
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HR provides a measure of the correlation between migrating
ions.

2. COMPUTATION TO PREDICT ION TRANSPORT IN
MATERIALS

Existing computational methodologies to study ion transport in
materials are arranged in Figure 2 according to their abilities in
sampling the space and time domains. In sequence from left to
right in Figure 2, we find

• Ab initio Molecular Dynamics (AIMD) simulations
integrate Newton’s equations of motion, by exploring the
potential energy surfaces (PESs) of materials using first-
principles methodologies, with the most popular method
being density functional theory (DFT).14

pros: Because AIMD simulations rely on solving
approximately the many-body Schrödinger equation,
they provide one of the most accurate representations
of PESs in materials15 and thus sample accurately forces
and stresses acting on atoms. As AIMD simulations
compute directlyDT at different temperatures,D* and Em
can be directly extracted by fitting eq 1 and using HR.
Since DFT can adequately treat the electronic structure of
insulators, semiconductors, and even metals, AIMDs can
be automated (to a large extent).

cons: Albeit very accurate, AIMD are computationally
expensive, limiting the propagation of MD simulations to
materials systems with just a handful of atoms (<500
atoms) and short-production runs (lower than 1 ns,
typically restricted to a hundred or so ps). As the statistic
of rare events�ionic migration�provided by AIMDs
remains rather limited, room (and low)-temperature ion
diffusivities are often extrapolated by high-temperature
AIMDs. Moreover, the convergence of DJ is slow with
ionic displacements and usually requires extended
sampling of rare events beyond the current capabilities
of AIMD.16 Typically, AIMD simulations compute the
tracer diffusivity DT, while HR are often fitted from
experimental data, from which DJ is computed.

• Nudged Elastic Band (NEB) simulations, developed by
Jo ́nsson and Henkelman,17−19 explore the PES of
materials at a fixed temperature as ions (e.g., Li+ and
Na+) migrate along specific “reaction coordinates”,
identifying saddle points of the PES, which in turn

Figure 2. Computational methodologies to study ion transport in energy materials arranged left to right according to their abilities in sampling the
space and time domains. Machine learning is abbreviated as ML.
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correspond to Em. Typically, NEB estimates forces and
stresses on atoms using DFT; thus, the temperature of
calculation is 0 K. NEBs are direction dependent; to this
end, the introduction of the kinetically resolved activation
energies developed by Van der Ven et al. can be
employed.3,10

pros:Given a specific crystal structure and composition,
NEB calculations can identify all possible migration
barriers. NEB establishes a direct structure−property
relationship by linking migration trajectories in the host
materials directly to Em values. In systems with sluggish
kinetics of ion transport, primarily associated with large
values of Em, NEB becomes extremely handy and perhaps
the only methodology capable of providing accurate
migration energies.20−23

cons: Depending on the structural complexities of the
ionic conductor, NEB calculations can be time-consum-
ing and in specific situations hard to converge.23 Within
the framework of transition state theory,24 values of D*
can be approximated indirectly through statistical
thermodynamics from phonon calculations, but these
are time-consuming too.

• ClassicalMolecular Dynamics (CMD) simulations chart
the PES of materials utilizing interatomic potentials (IPs),
fitted on features of the chemical bonds of materials.

pros: Simulating ion transport in ion conductors with
IPs enables large MDs for tens of nanoseconds (using
models containing less than one million atoms). There-
fore, CMD simulations can achieve longer sampling
statistics even at low temperatures.7,25−29 For example,
CMD simulations have been recently used to simulate
grain boundaries in Li-ion conductors.29,30 IPs driving
CMD simulations rely on combinations of Morse,
Buckingham, Lennard−Jones, etc., potentials that are
physically interpretable. Many of these IPs are available
“off-the-shelf” for several materials and in various software
packages.

cons: Parameters entering IPs are typically fitted from
ab initio data or experimental observables, or a mixture of
both. This aspect limits the extrapolative ability of IPs as
their usability is limited only to chemical domains where
these potentials have been fitted. Therefore, the trans-
ferability of IPs among slightly different chemical systems
is one of the main limiting factors.

• Machine-Learned Molecular Dynamics (ML-MD)
simulations explore the PES of ion conductors using
machine-learned interatomic potentials (MLIPs). Some
of the MLIPs build upon the force-matching ideas
developed by Ercolessi and Adams,31 where PESs from
AIMD simulations are used to train surrogate models that
are computationally more accessible.32,33 Shapeev34

proposed the moment tensor potentials, where PESs are
developed as linear combinations of polynomial basis
functions describing one-body, two-body, and three-body
interactions. Another strategy is that of Behler and
Parrinello,35 where PESs are represented by neural
networks, but this method has been mostly confined to
investigating the thermodynamic stability of energy
materials.36,37 Mueller et al.38 have recently presented
an exhaustive description of exiting MLIPs.

pros: ML-MD are orders of magnitude less expensive
compared to AIMD, but provide comparable accuracies
to AIMD.39−41 For this reason, ML-MDs can deal with

larger supercell models (<100 000 atoms) and long
simulations runs spanning tens of nanoseconds.

cons: The parametrization of MLIPs still requires
extensive AIMD (or DFT) simulations, with thousands
(even tens of thousands) of “force/stress calls”. The
computation of forces and stresses in MLIPs is still
contingent on numerical differentiation, making their MD
simulations more expensive than the CMD. Albeit more
accurate than classical IPs, current MLIPs are not
physically interpretable and may suffer from overfitting.
The transferability of MLIPs between similar chemical
systems, e.g., polymorphs of the same material, appears
contingent on the training set.42

• Kinetic Monte Carlo (kMC) enables the evaluation of
large stochastic ensemble of ion migration events.3,10 In
kMC, the frequency Γ (eq 5) of ion migration event is
evaluated through the transition state theory.3,10
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where ν* (measured in Hz) is the attempt frequency,
associated with the vibrational modes of atoms. Values of
ν* can be derived from first-principles calculations as
extensively discussed by Van der Ven et al.10 kMC
simulations become only feasible once “auxiliary models“
to quickly estimate Em’s are available. One reliable strategy
to develop systematically improvable “auxiliary models” is
that of first-principles based local-lattice Hamiltonians,
also known as local cluster expansions. A local cluster
expansion can be used to estimate inexpensively
migration barriers as the chemical compositions of the
active ions are varied.3,10,16,43−49 If constructed correctly,
local cluster expansions carry the accuracy of first-
principles calculations. An example of local cluster
expansion combined with kMC will be given in section
3. In principle, kMC simulations driven by IPs can be also
used to assess Ems, but with a notable loss of accuracy and
other limitations, as discussed in the previous paragraphs.

pros: Selecting viable migration events according to
their frequency, Γ of eq 5, kMC can be easily propagated
to perform long simulation runs in the realm of
millisecond and on extended structures models
(>1 000 000 atoms).3,10,16,46,49,50 Given the extremely
long times sampled by kMC, the evaluation ofDJ,DT, and
HR is guaranteed to converge to representative
values.3,10,16,43,44,46,49,50 An immediate advantage of this
is that material systems operating in the regime of
nondilute carriers can be treated seamlessly. If coupled
with lattice Hamiltonian models, kMC can screen
efficiently many compositions of ion conductors,3,10,16,49

thus addressing situations of compositional disorder�a
commonality of the electrode and solid electrolyte
materials. kMC simulations can be easily applied to
systems with sluggish diffusivities.

cons: kMC relying on lattice models cannot provide
meaningful trajectories of the moving ions. In contrast,
trajectories of all moving and nonmoving ions are
accessible via all MD methods. Although relaxation
effects of structural models are typically captured
implicitly in local cluster expansion models driving kMC
simulations, this may turn out to be a limitation in ion
conductors exhibiting significant ion mobility. In contrast
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to any MD method, in kMC, the pre-exponential factors
ν*’s (and hence D*’s) are not derived directly from the
simulations, but instead, the ν*’s must be provided as an
input parameter.

In relation to the predicting capabilities and power of the
simulation techniques discussed in the previous paragraphs,
computer time is certainly a crucial variable that must be
understood in depth when planning the application of specific
methodologies and algorithms to study ion transport in
materials. Indeed, the computer time required by specific
methods highly depends on several variables, such as the specific
hardware utilized for the simulation, the implementation and
optimization of specific algorithms, the parallelization capability
of codes and algorithms, and the simulation size targeted (often
set by the number of atoms per “simulation box”).

3. KINETIC MONTE CARLO APPLIED TO
Na1+xZr2SixP3−xO12 ION-CONDUCTORS

In the field of energy storage, the development and application
of lattice Hamiltonians in combination with kMC appears less
common in comparison to molecular dynamic simulations. Van
der Ven has pioneered the application of local cluster expansion
and kMC to the study of Li+, Na+, andMg+ mobility in electrode
materials.3,43,44,47,50 Indeed just a handful of research groups
globally have been pushing the development of this method-
ology.3,10,16,43,44,46−49 This section discusses an example of the
application of kMC+local-cluster expansion in the study of ion
transport phenomena in the Na1+xZr2SixP3−xO12 solid electro-
lyte. We refrain from discussing the application of kMC+local-
cluster expansion to intercalation electrode materials, as it has
been extensively covered by Van der Ven et al.10

The Natrium Super-Ionic CONdcutor (NaSICON) with the
composition Na1+xZr2SixP3−xO12 is a well-known ceramic solid-
electrolyte for all-solid-state Na-ion batteries,49,51−56 with
impressive ion-conductivities of ∼4 mS cm−1 at 298 K (for
composition Na3.4Zr2Si2.4P0.6O12).

49 NaSICON provides a
versatile framework, incorporating both cations (Na+ and
Zr4+) and anion (SiO4

4 and PO4
3 ) moieties, which enable

the number of Na+ ions to vary between 1 and 4 per f.u. with the
corresponding variation in the P/Si ratio and Na-ion
conductivity. In NaSICON, superionic conductivity is driven
by a Na-vacancy migration mechanism that links directly to the
occupational disorder of the Na sites. Variations of sodium
compositions in the range 1 < x < 3 control directly the mixing
between SiO4

4 and PO4
3 , which disorder in the NaSICON

lattice.51−55 Thus, describing accurately the effects of Na+ and
vacancy disordering and polyanion disordering is crucial to
rationalize the Na-ion transport in NaSICON materials.
With two inequivalent Na crystallographic sites, i.e., Na(1)

and Na(2), the Na+ transport in Na1+xZr2SixP3−xO12 follows a
vacancy-mediated mechanism relying on the interplay on the
population of Na(1) and Na(2) sites at different temperatures
and Si/P compositions. As a result, Na-ion transport in
Na1+xZr2SixP3−xO12 requires both Na(1) and Na(2) sites, and
migration pathways of the kind Na(1) ↔ Na(2), as shown in
Figure 3a.
Figure 3a shows the so-called migration unit which can be

used to derive a local cluster expansion, fitted on migration
barriers computed with DFT-NEB calculations. In practice, in
ref 49, a process of enumeration of all unique Na/Vacancy/
PO4/SiO4 combinations of the migration unit (Figure 3a) was
performed. Starting from these enumerated model structures,

DFT-based NEB calculations of migration pathways, such as
Na(2) → Na(1) → Na(2), were calculated, from which the
kinetically resolved activation barriers (KRAs) were derived.3

The computed KRA barriers were used to train a local cluster
expansion, whose details are given in ref 49. The local cluster
expansion can effortlessly and efficiently generate any migration
barrier at any Na/Vacancy (or equivalently PO4/SiO4)
composition of the Na1+xZr2SixP3−xO12 material. Figure 3b
shows the Na+ KRAs as obtained by the local cluster expansion
for all Na1+xZr2SixP3−xO12 compositions identified in the
migration unit of Figure 3a. Low values of KRAs are
proportional to low values of migration barriers and vice versa.
By varying the Si/P environment of the migration unit of

Figure 3a, two regions of low and high KRA barriers could be
isolated (Figure 3b). At low Si or high P content (bottom rows
of Figure 3b), high KRAs (∼500 meV) were observed. On the
contrary, low values of KRA barriers were predicted as the Si
amount was increased (see top row of Figure 3b). A monotonic
decrease in KRA values (and migration barriers) with Si content

Figure 3. Na+ migration in Na1+xZr2SixP3−xO12.
49 (a) Minimal

migration unit describing Na-ion migration in Na1+xZr2SixP3−xO12,
where Na follows a Na(2)↔ Na(1)↔ Na(2) hop. In (b) Na(1) sites
are shown by silver spheres, Na(2) sites by orange spheres, and red
triangles indicate the bottlenecks caused by PO4/SiO4 tetrahedra
(where oxygen atoms are not shown). (b) Computed kinetically
resolved activation barriers for Na(2) ↔ Na(1) hops, with varying
Na(2) site occupation and Si/P content per migration unit. Adapted
with permission under a Creative Commons Attribution 4.0 Interna-
tional License from ref 49. Copyright 2022 Springer Nature.
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was ascribed to lower +Si4 −Na+ electrostatic repulsions
compared to P5+−Na+ repulsion during Na-ion migration.
Indeed, the migration unit can be used to “tessellate”

per iod ica l l y the three -d imens iona l s t ruc ture o f
Na1+xZr2SixP3−xO12 at selected Na/Vacancy (or PO4/SiO4)
compositions. Having selected an input temperature and
starting Na1+xZr2SixP3−xO12, which is an ensemble of migration
units representing a desired Na1+xZr2SixP3−xO12 composition,
the kMC can be started. Three major steps are done in the
rejection-free kMC as proposed initial by Bortz−Kalos−
Lebowitz:57 (i) Using eq 5, the probabilities Γs of Na+ migration
in thousands of migration units are accurately computed. (ii) A
kMC step is performed by choosing a random number, and a
new Na+ migration event is selected. (iii) New Na+ migration
events and trajectories are obtained, and the simulation time is
advanced. Because computing migration energies within the
local cluster expansion is a very efficient task (just algebraic
summations),3,10 these three steps discussed above can be
repeated at ease countless (million) times, for several temper-
atures and compositions.
Using the extensive sets of local migrations generated by

kMC, properties of interest, such as DJ, DT and HR can be
computed. Figure 4 shows the predicted jump diffusivities DJ of

Na1+xZr2SixP3−xO12 at variable temperature and Na content by
Deng et al.,49 as derived from the kMC approach implementing
the local cluster expansion.3

As demonstrated by Deng et al.,49 the diffusivities of Figure 4
can be utilized to predict (via theNernst−Einstein equation) the
ionic conductivities as a function of Na composition and
temperature in Na1+xZr2SixP3−xO12. The predicted composition-
dependent conductivities were found to be in good agreement

with experimental values of bulk conductivities of
Na1+xZr2SixP3−xO12.

49 Note that to capture adequately the
statistical disorder of the PO4/SiO4 polyanion in NaSICON,
each point of diffusivity in Figure 4 represents the arithmetic
average of 50 distinct spatial arrangements of the silicate and
phosphate units at a given Na composition.
Figure 5 depicts the time scale accessible by kMC simulations

coupled with the formalism of local-cluster expansion.

Remarkably, within this computational framework, simulations
can extend to regimes of milliseconds. These time scales are
clearly not accessible by the current MD approaches discussed
above.
Indeed, trends shown in Figure 5 are just manifestations of the

transition state theory of eq 5, which favors migration processes
accompanied by low migration barriers, which results in small
times per diffusion event. In the specific case of
Na1+xZr2SixP3−xO12, high P content materials (i.e., x ∼ 1)
show consistently high Na+ migration barriers, which is directly
reflected by large values on both y-axes.

4. OUTLOOK AND FINAL REMARKS
We have elucidated the role of modern computational
techniques, including ab initio molecular dynamics, machine
learning-based molecular dynamics, and kinetic Monte Carlo
(kMC) methods, to describe phenomena of ion transport in
functional materials. The importance of kMC coupled with
lattice Hamiltonians was emphasized. This combination can
sample astoundingly large and long simulations while carrying
the accuracy of first-principles calculations. By virtue of its
construction, kMC incorporates statistical distributions of
moving and nonmoving ions. In the example of
Na1+xZr2SixP3−xO12 in the composition range 0 < x < 3,
compositional disorder occurs both on the sub-Na/Vacancy
lattice and the anion sublattice, i.e., PO4/SiO4. Compositional
disorder on anion sublattice is a common feature of many fast-
ion conductors (and electrode materials), such as the LiSiCON-

Figure 4. Predicted jump diffusivities DJ of Na1+xZr2SixP3−xO12 as a
function of Na composition and temperature (373 K blue, 473 K
yellow, and 573 K red shapes).49 Each kMC simulation included
2 048 000 equilibration steps, and 12 288 000 production steps at each
temperature and Na composition, respectively. All points in Figure 4
stem form 1650 independent kMC simulations (11 compositions × 50
initial configurations × 3 temperatures) that is ∼14 million steps per
configuration. Each diffusivity DJ value in Figure 4 is the arithmetic
average of the diffusivities computed for 50 different starting
equilibrium configurations generated from the compositional phase
diagram of Na1+xZr2SixP3−xO12.

55 Adapted with permission under a
Creative Commons Attribution 4.0 International License from ref 49.
Copyright 2022 Springer Nature.

Figure 5. Average time for each Na+ diffusion event (in ps) and total
simulation time at temperatures of 373, 473, and 573 K and different
sodium compositions, respectively. The sum of the time of each kMC
event (left y-axis) provides the total simulation time (right y-axis).49

Adapted with permission under a Creative Commons Attribution 4.0
International License from ref 49. Copyright 2022 Springer Nature.
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type Li4±xSi1−xZxO4 (Z = P5+, Al3+, Sn4+ and/or Ge4+),
Li10MP2S12 based on Li4MS4:Li3PS4 (M = Ge4+, Sn4+, and Si4+).
Because in the kMC approach combined with local-cluster

expansion, a migration unit must be identified a priori. Hence,
the generalizability of codes to different material systems is often
a major obstacle. Researchers have designed specialized codes
around topical materials of interest. Indeed, this limitation has
curbed the distribution of general plug-and-play simulation
packages.
Machine-learned interatomic potentials (MLIPs) for simu-

lations of ion transport appear the right strategy bridging the
accuracy of ab initio simulations and extended sampling
capabilities of classical IPs. Efforts toward the generalization of
MLIPs do exist, and currently, different research groups provide
“plug-and-play” software (with or without active learning) to
train and performMD simulations. In the future, progress in this
important area may bring physics-interpretable MLIPs. A main
advantage of MLIP-MDs is that structural deformations
occurring during ion transport are fully captured in the
trajectories. In contrast, in lattice-Hamiltonian kMC, effects of
local geometrical deformations resulting from ion migrations are
only captured implicitly in the lattice Hamiltonian. This is
another limitation of the kMC and local cluster expansion
approach.
Given a set of materials, a general challenge is the reliable

identification of good ionic conductors by surfacing all possible
ion migration pathways giving rise to ion percolation and
associated migration energies. This is a crucial aspect in kMC
models, which become only effective for large data sets of
migration events. Several strategies to identify migration
energies and migration paths in materials have been proposed.
For example, Adams and collaborators using the softBV method
could screen large libraries of inorganic materials for the
identification of good ionic conductors.25,26,58−60 While this
methodology is certainly computationally efficient at screening
thousands of compounds, it lacks the appropriate accuracy
required to predict reliable migration energies. Transferability
across different material chemistries remains another limitation
of the softBVmethod. Pathfinder developed by Rong et al.61 can
derive all possible migration paths in bulk materials from an
analysis of their DFT electronic charge densities and electro-
static potentials. Building upon Pathfinder, AprroxNEB61

identifies viable ion-migration paths in materials as the
minimum energy path through a static potential, derived from
DFT charge densities. This method can decrease runtimes by
∼25% in NEBs.61 While this methodology performs well on
compact host materials, it appears less accurate at identifying ion
migration paths in more open anion frameworks, such as tunnel-
like structures (Hollandite) or 2D conductors, e.g., LiCoO2 or
LiNi0.8Mn0.1Co0.1O2. These strategies are implemented in
powerful materials-screening workflows.62 The estimation of
migration barriers displaying reflection symmetry can be
accelerated using R-NEB by Mathiesen et al.63 More recently,
Bölle et al.64 suggested that a Voronoi tessellation is sufficient to
propose a reasonable guess of transition states in ion conductor
and electrode materials. They also demonstrated that six
geometrical descriptors combined with a principal component
analysis are sufficient to identify migration pathways with similar
topologies, thus limiting the overall number of calculations.64 By
relaxing the chain of states in the field of the electrostatic
potential averaged over a spherical volume using different finite-
size ion models, Zimmermann et al.65 identified migration paths
in materials at significantly lower computational costs. This

methodology appears less robust when applied to open-
framework materials. While all these strategies contribute
toward autonomous workflows for screening large data sets of
materials,66 all these methodologies eventually require time-
consuming DFT calculations.
These examples demonstrate the urgent need for new general

algorithms to assess ion transport in materials, with the accuracy
of DFT but at reduced computational costs. In this context,
MLIPs offer a degree of advantage. Combining databases of
migration barriers from MLIPs with kMC models will provide a
robust and powerful strategy to assess ion transport in materials.
Presently, both MLIP and kMC-type models remain confined

to bulk systems.66 In this context, Dawson and collaborators
have applied successfully classical interatomic potentials
through molecular dynamics to study the effects of grain
boundaries (homogeneous interfaces) on ion transport.29,30

Lately, Wang et al. have attempted the application of MLIP to
the study of Li-ion transport in heterogeneous interfaces
typically formed in batteries.42 The description of transport
phenomena at homogeneous and heterogeneous interfaces,
such as the electrode and electrolyte interfaces, remains an active
area of research. Another area where these methods should see
more development, is the description of amorphous systems,
motifs that are recurrent in glassy ion-conductors, such as
Li4MS4:Li3PS4 (M = Ge4+, Sn4+, and Si4+).
We hope that the technical advancements summarized in this

Perspective foster new technical insights and developments in
the field of computational materials science toward the
investigation of ion transport in materials.

■ AUTHOR INFORMATION
Corresponding Author

Pieremanuele Canepa − Department of Materials Science and
Engineering, National University of Singapore, 117575,
Singapore; Department of Chemical and Biomolecular
Engineering, National University of Singapore, 117585,
Singapore; orcid.org/0000-0002-5168-9253;
Email: pcanepa@nus.edu.sg

Complete contact information is available at:
https://pubs.acs.org/10.1021/acsmaterialsau.2c00057

Author Contributions

CRediT: Pieremanuele Canepa conceptualization (lead), data
curation (lead), formal analysis (lead), funding acquisition
(lead), investigation (lead), methodology (lead), project
administration (lead), resources (lead), visualization (lead),
writing-original draft (lead), writing-review & editing (lead).
Notes

The author declares no competing financial interest.

Biography

Pieremanuele Canepa is an Asst. Prof. in the Department of Materials
Science and Engineering at the National University of Singapore and
has a joint appointment with the Department of Chemical and
Biomolecular Engineering at the same institution. Pieremanuele is also
part of the Singapore-MIT Alliance. Previously, he was a Postdoctoral
fellow under the guidance of Prof. Ceder initially at the Massachusetts
Institute of Technology and later at Lawrence Berkeley National
Laboratory. Between November 2016 and August 2018, Pieremanuele
was an independent Ramsay Memorial Fellow at the University of Bath
(United Kingdom). He received his bachelor’s and master’s degrees in

ACS Materials Au pubs.acs.org/materialsau Perspective

https://doi.org/10.1021/acsmaterialsau.2c00057
ACS Mater. Au 2023, 3, 75−82

80

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Pieremanuele+Canepa"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-5168-9253
mailto:pcanepa@nus.edu.sg
https://pubs.acs.org/doi/10.1021/acsmaterialsau.2c00057?ref=pdf
pubs.acs.org/materialsau?ref=pdf
https://doi.org/10.1021/acsmaterialsau.2c00057?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Chemistry from the University of Torino (Italy) and his PhD from the
University of Kent (United Kingdom). His research contributes to the
rational design of new materials for clean energy technologies, such as
electrode materials for batteries, ionic conductors, and liquid
electrolytes for sustainable energy storage devices. In March 2020,
Piero was awarded the National Research Fellowship, the equivalent of
the NSF CAREER in the US (or the ERC starting grant in Europe). In
2021 he was elected a Fellow of the Royal Society of Chemistry. In 2022
Pieremanuele was nominated as a Materials Au Rising Star by the
American Chemical Society, which is the result of this perspective.

■ ACKNOWLEDGMENTS
P.C. acknowledges funding from the National Research
Foundation under his NRF Fellowship NRFF12-2020-0012
and support from the Singapore Ministry of Education
Academic Fund Tier 1 (R-284-000-186-133). Prof. Gopalak-
rishnan Sai Gautam at the Indian Institute of Science, Bangalore
is acknowledged for his critical insights while writing this
Perspective. Naomi M. Henry is acknowledged for her critical
reading of the early drafts of this Perspective and her continuous
support.

■ REFERENCES
(1) Press release: The Nobel Prize in Chemistry 2019, accessed on
09/27/2022. https://www.nobelprize.org/prizes/chemistry/2019/
press-release/.
(2) Castelvecchi, D.; Stoye, E. Chemistry Nobel honours world-
changing batteries. Nature 2019, 574, 308−308.
(3) Van der Ven, A.; Ceder, G.; Asta, M.; Tepesch, P. D. First-
principles theory of ionic diffusion with nondilute carriers. Phys. Rev. B
2001, 64, 184307.
(4) Balluffi, R. W.; Allen, S. M.; Carter, W. C. Kinetics of Materials;
Wiley, 2005.
(5) He, X.; Zhu, Y.; Mo, Y. Origin of fast ion diffusion in super-ionic
conductors. Nat. Commun. 2017, 8, 15893.
(6) Marcolongo, A.; Marzari, N. Ionic correlations and failure of
Nernst-Einstein relation in solid-state electrolytes. Phys. Rev. Materials
2017, 1, 025402.
(7) He, X.; Zhu, Y.; Epstein, A.; Mo, Y. Statistical variances of
diffusional properties from ab initio molecular dynamics simulations.
npj Comput. Mater. 2018, 4, 18.
(8) Famprikis, T.; Canepa, P.; Dawson, J. A.; Islam, M. S.; Masquelier,
C. Fundamentals of inorganic solid-state electrolytes for batteries. Nat.
Mater. 2019, 18, 1278−1291.
(9) Gao, Y.; Nolan, A. M.; Du, P.; Wu, Y.; Yang, C.; Chen, Q.; Mo, Y.;
Bo, S.-H. Classical and Emerging Characterization Techniques for
Investigation of Ion Transport Mechanisms in Crystalline Fast Ionic
Conductors. Chem. Rev. 2020, 120, 5954−6008.
(10) Van der Ven, A.; Deng, Z.; Banerjee, S.; Ong, S. P. Rechargeable
Alkali-Ion Battery Materials: Theory and Computation. Chem. Rev.
2020, 120, 6977−7019.
(11) Gao, Y.; Mishra, T. P.; Bo, S.-H.; Gautam, G. S.; Canepa, P.
Design and Characterization of Host Frameworks for Facile
Magnesium Transport. Annu. Rev. Mater. Res. 2022, 52, 129−158.
(12) Iton, Z. W. B.; See, K. A. Multivalent Ion Conduction in
Inorganic Solids. Chem. Mater. 2022, 34, 881−898.
(13) Kang, S. D.; Chueh, W. C. Galvanostatic Intermittent Titration
Technique Reinvented: Part I. A Critical Review. J. Electrochem. Soc.
2021, 168, 120504.
(14) Kohn, W.; Sham, L. J. Self-Consistent Equations Including
Exchange andCorrelation Effects. Phys. Rev. 1965, 140, A1133−A1138.
(15) Urban, A.; Seo, D.-H.; Ceder, G. Computational understanding
of Li-ion batteries. npj Comput. Mater. 2016, 2, 16002.
(16)Morgan, B. J. Lattice-geometry effects in garnet solid electrolytes:
a lattice-gas Monte Carlo simulation study. R. Soc. Open Sci. 2017, 4,
170824.

(17) Jónssson, H.; Mills, G.; Jacobsen, K. W. Nudged elastic band
method for finding minimum energy paths of transitions. Chapter 16:
Classical and Quantum Dynamics in Condensed Phase Simulations; World
Scientific, 1998; pp 385−404.
(18) Henkelman, G.; Jónsson, H. Improved tangent estimate in the
nudged elastic band method for finding minimum energy paths and
saddle points. J. Chem. Phys. 2000, 113, 9978−9985.
(19) Sheppard, D.; Terrell, R.; Henkelman, G. Optimization methods
for finding minimum energy paths. J. Chem. Phys. 2008, 128, 134106.
(20) Rong, Z.; Malik, R.; Canepa, P.; Gautam, G. S.; Liu, M.; Jain, A.;
Persson, K.; Ceder, G. Materials Design Rules for Multivalent Ion
Mobility in Intercalation Structures. Chem. Mater. 2015, 27, 6016−
6021.
(21) Canepa, P.; Bo, S.-H.; Gautam, G. S.; Key, B.; Richards, W. D.;
Shi, T.; Tian, Y.;Wang, Y.; Li, J.; Ceder, G. Highmagnesiummobility in
ternary spinel chalcogenides. Nat. Commun. 2017, 8, 1759.
(22) Chen, T.; Gautam, G. S.; Canepa, P. Ionic Transport in Potential
Coating Materials for Mg Batteries. Chem. Mater. 2019, 31, 8087−
8099.
(23) Devi, R.; Singh, B.; Canepa, P.; Gautam, G. S. Effect of exchange-
correlation functionals on the estimation ofmigration barriers in battery
materials. npj Comput. Mater. 2022, 8, 160.
(24) Vineyard, G. H. Frequency factors and isotope effects in solid
state rate processes. J. Phys. Chem. Solids 1957, 3, 121−127.
(25) Adams, S. Relationship between bond valence and bond softness
of alkali halides and chalcogenides. Acta Crystallogr. B: Struct. Sci. Cryst.
Eng. Mater. 2001, 57, 278−287.
(26) Adams, S. From bond valence maps to energy landscapes for
mobile ions in ion-conducting solids. Solid State Ion 2006, 177, 1625−
1630.
(27) Islam, M. S.; Fisher, C. A. J. Lithium and sodium battery cathode
materials: computational insights into voltage, diffusion and nano-
structural properties. Chem. Soc. Rev. 2014, 43, 185−204.
(28) Burbano, M.; Carlier, D.; Boucher, F.; Morgan, B. J.; Salanne, M.
Sparse Cyclic Excitations Explain the Low Ionic Conductivity of
Stoichiometric Li7La3Zr2O12. Phys. Rev. Lett. 2016, 116, 135901.
(29) Dawson, J. A.; Canepa, P.; Famprikis, T.; Masquelier, C.; Islam,
M. S. Atomic-Scale Influence of Grain Boundaries on Li-Ion
Conduction in Solid Electrolytes for All-Solid-State Batteries. J. Am.
Chem. Soc. 2018, 140, 362−368.
(30) Dawson, J. A.; Canepa, P.; Clarke, M. J.; Famprikis, T.; Ghosh,
D.; Islam, M. S. Toward Understanding the Different Influences of
Grain Boundaries on Ion Transport in Sulfide and Oxide Solid
Electrolytes. Chem. Mater. 2019, 31, 5296−5304.
(31) Ercolessi, F.; Adams, J. B. Interatomic Potentials from First-
Principles Calculations: The Force-Matching Method. Europhys. Lett.
1994, 26, 583−588.
(32) Podryabinkin, E. V.; Shapeev, A. V. Active learning of linearly
parametrized interatomic potentials. Comput. Mater. Sci. 2017, 140,
171−180.
(33) Novoselov, I.; Yanilkin, A.; Shapeev, A.; Podryabinkin, E.
Moment tensor potentials as a promising tool to study diffusion
processes. Comput. Mater. Sci. 2019, 164, 46−56.
(34) Shapeev, A. V. Moment Tensor Potentials: A Class of
Systematically Improvable Interatomic Potentials. Multiscale Model.
Simul. 2016, 14, 1153−1173.
(35) Behler, J.; Parrinello, M. Generalized Neural-Network
Representation of High-Dimensional Potential-Energy Surfaces. Phys.
Rev. Lett. 2007, 98, 146401.
(36) Lacivita, V.; Artrith, N.; Ceder, G. Structural and Compositional
Factors That Control the Li-Ion Conductivity in LiPON Electrolytes.
Chem. Mater. 2018, 30, 7077−7090.
(37) Guo, H.; Wang, Q.; Urban, A.; Artrith, N. Artificial Intelligence-
Aided Mapping of the Structure−Composition−Conductivity Rela-
tionships of Glass−Ceramic Lithium Thiophosphate Electrolytes.
Chem. Mater. 2022, 34, 6702−6712.
(38) Mueller, T.; Hernandez, A.; Wang, C. Machine learning for
interatomic potential models. J. Chem. Phys. 2020, 152, 050902.

ACS Materials Au pubs.acs.org/materialsau Perspective

https://doi.org/10.1021/acsmaterialsau.2c00057
ACS Mater. Au 2023, 3, 75−82

81

https://www.nobelprize.org/prizes/chemistry/2019/press-release/
https://www.nobelprize.org/prizes/chemistry/2019/press-release/
https://doi.org/10.1038/d41586-019-02965-y
https://doi.org/10.1038/d41586-019-02965-y
https://doi.org/10.1103/PhysRevB.64.184307
https://doi.org/10.1103/PhysRevB.64.184307
https://doi.org/10.1038/ncomms15893
https://doi.org/10.1038/ncomms15893
https://doi.org/10.1103/PhysRevMaterials.1.025402
https://doi.org/10.1103/PhysRevMaterials.1.025402
https://doi.org/10.1038/s41524-018-0074-y
https://doi.org/10.1038/s41524-018-0074-y
https://doi.org/10.1038/s41563-019-0431-3
https://doi.org/10.1021/acs.chemrev.9b00747?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemrev.9b00747?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemrev.9b00747?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemrev.9b00601?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemrev.9b00601?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1146/annurev-matsci-081420-041617
https://doi.org/10.1146/annurev-matsci-081420-041617
https://doi.org/10.1021/acs.chemmater.1c04178?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemmater.1c04178?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1149/1945-7111/ac3940
https://doi.org/10.1149/1945-7111/ac3940
https://doi.org/10.1103/PhysRev.140.A1133
https://doi.org/10.1103/PhysRev.140.A1133
https://doi.org/10.1038/npjcompumats.2016.2
https://doi.org/10.1038/npjcompumats.2016.2
https://doi.org/10.1098/rsos.170824
https://doi.org/10.1098/rsos.170824
https://doi.org/10.1063/1.1323224
https://doi.org/10.1063/1.1323224
https://doi.org/10.1063/1.1323224
https://doi.org/10.1063/1.2841941
https://doi.org/10.1063/1.2841941
https://doi.org/10.1021/acs.chemmater.5b02342?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemmater.5b02342?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1038/s41467-017-01772-1
https://doi.org/10.1038/s41467-017-01772-1
https://doi.org/10.1021/acs.chemmater.9b02692?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemmater.9b02692?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1038/s41524-022-00837-0
https://doi.org/10.1038/s41524-022-00837-0
https://doi.org/10.1038/s41524-022-00837-0
https://doi.org/10.1016/0022-3697(57)90059-8
https://doi.org/10.1016/0022-3697(57)90059-8
https://doi.org/10.1107/S0108768101003068
https://doi.org/10.1107/S0108768101003068
https://doi.org/10.1016/j.ssi.2006.03.054
https://doi.org/10.1016/j.ssi.2006.03.054
https://doi.org/10.1039/C3CS60199D
https://doi.org/10.1039/C3CS60199D
https://doi.org/10.1039/C3CS60199D
https://doi.org/10.1103/PhysRevLett.116.135901
https://doi.org/10.1103/PhysRevLett.116.135901
https://doi.org/10.1021/jacs.7b10593?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jacs.7b10593?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemmater.9b01794?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemmater.9b01794?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemmater.9b01794?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1209/0295-5075/26/8/005
https://doi.org/10.1209/0295-5075/26/8/005
https://doi.org/10.1016/j.commatsci.2017.08.031
https://doi.org/10.1016/j.commatsci.2017.08.031
https://doi.org/10.1016/j.commatsci.2019.03.049
https://doi.org/10.1016/j.commatsci.2019.03.049
https://doi.org/10.1137/15M1054183
https://doi.org/10.1137/15M1054183
https://doi.org/10.1103/PhysRevLett.98.146401
https://doi.org/10.1103/PhysRevLett.98.146401
https://doi.org/10.1021/acs.chemmater.8b02812?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemmater.8b02812?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemmater.2c00267?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemmater.2c00267?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemmater.2c00267?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1063/1.5126336
https://doi.org/10.1063/1.5126336
pubs.acs.org/materialsau?ref=pdf
https://doi.org/10.1021/acsmaterialsau.2c00057?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(39) Wang, C.; Aoyagi, K.; Wisesa, P.; Mueller, T. Lithium Ion
Conduction in Cathode Coating Materials from On-the-Fly Machine
Learning. Chem. Mater. 2020, 32, 3741−3752.
(40) Qi, J.; Banerjee, S.; Zuo, Y.; Chen, C.; Zhu, Z.; Chandrappa, M.
H.; Li, X.; Ong, S. Bridging the gap between simulated and experimental
ionic conductivities in lithium superionic conductors. Mater. Today
Phys. 2021, 21, 100463.
(41) Wu, E. A.; et al. A stable cathode-solid electrolyte composite for
high-voltage, long-cycle-life solid-state sodium-ion batteries. Nat.
Commun. 2021, 12, 1256.
(42) Wang, J.; Panchal, A. A.; Gautam, G. S.; Canepa, P. The resistive
nature of decomposing interfaces of solid electrolytes with alkali metal
electrodes. J. Mater. Chem. A 2022, 10, 19732−19742.
(43) Van der Ven, A.; Thomas, J. C.; Xu, Q.; Swoboda, B.; Morgan, D.
Nondilute diffusion from first principles: Li diffusion in LixTiS2. Phys.
Rev. B 2008, 78, 104306.
(44) Bhattacharya, J.; Van der Ven, A. Phase stability and nondilute Li
diffusion in spinel Li1+xTi2O4. Phys. Rev. B 2010, 81, 104304.
(45) Puchala, B.; Lee, Y.-L.; Morgan, D. A-Site Diffusion in
La1−xSrxMnO3: Ab Initio and Kinetic Monte Carlo Calculations. ECS
Trans 2013, 50, 97−110.
(46) Li, C.; Nilson, T.; Cao, L.; Mueller, T. Predicting activation
energies for vacancy-mediated diffusion in alloys using a transition-state
cluster expansion. Phys. Rev. Materials 2021, 5, 013803.
(47) Kolli, S. K.; Van der Ven, A. Elucidating the Factors That Cause
Cation Diffusion Shutdown in Spinel-Based Electrodes. Chem. Mater.
2021, 33, 6421−6432.
(48) Kaufman, J. L.; Van der Ven, A. Cation Diffusion Facilitated by
Antiphase Boundaries in Layered Intercalation Compounds. Chem.
Mater. 2022, 34, 1889−1896.
(49) Deng, Z.; Mishra, T. P.; Mahayoni, E.; Ma, Q.; Tieu, A. J. K.;
Guillon, O.; Chotard, J.-N.; Seznec, V.; Cheetham, A. K.; Masquelier,
C.; Gautam, G. S.; Canepa, P. Fundamental investigations on the
sodium-ion transport properties of mixed polyanion solid-state battery
electrolytes. Nat. Commun. 2022, 13, 4470.
(50) Van der Ven, A.; Gerbrand, C. Lithium Diffusion in Layered
LixCoO2. Electrochem. Solid-State Lett. 1999, 3, 301.
(51) Hong, H.-P. Crystal structures and crystal chemistry in the
system Na1+xZr2SixP3−xO12. Mater. Res. Bull. 1976, 11, 173−182.
(52) Goodenough, J.; Hong, H.-P.; Kafalas, J. Fast Na+-ion transport
in skeleton structures. Mater. Res. Bull. 1976, 11, 203−220.
(53) Boilot, J.; Collin, G.; Colomban, P. Relation structure-fast ion
conduction in the NASICON solid solution. J. Solid State Chem. 1988,
73, 160−171.
(54) Masquelier, C.; Croguennec, L. Polyanionic (Phosphates,
Silicates, Sulfates) Frameworks as ElectrodeMaterials for Rechargeable
Li (or Na) Batteries. Chem. Rev. 2013, 113, 6552−6591.
(55) Deng, Z.; Gautam, G. S.; Kolli, S. K.; Chotard, J.-N.; Cheetham,
A. K.; Masquelier, C.; Canepa, P. Phase Behavior in Rhombohedral
NaSiCON Electrolytes and Electrodes. Chem. Mater. 2020, 32, 7908−
7920.
(56) Deb, D.; Gautam, G. S. Critical overview of polyanionic
frameworks as positive electrodes for Na-ion batteries. J. Mater. Res.
2022, DOI: 10.1557/s43578-022-00646-7.
(57) Bortz, A.; Kalos, M.; Lebowitz, J. A new algorithm for Monte
Carlo simulation of Ising spin systems. J. Comput. Phys. 1975, 17, 10−
18.
(58) He, B.; Chi, S.; Ye, A.; Mi, P.; Zhang, L.; Pu, B.; Zou, Z.; Ran, Y.;
Zhao, Q.; Wang, D.; Zhang, W.; Zhao, J.; Adams, S.; Avdeev, M.; Shi, S.
High-throughput screening platform for solid electrolytes combining
hierarchical ion-transport prediction algorithms. Sci. Data 2020, 7, 151.
(59) Zhang, L.; He, B.; Zhao, Q.; Zou, Z.; Chi, S.; Mi, P.; Ye, A.; Li, Y.;
Wang, D.; Avdeev, M.; Adams, S.; Shi, S. A Database of Ionic Transport
Characteristics for Over 29 000 Inorganic Compounds. Adv. Funct.
Mater. 2020, 30, 2003087.
(60) Wong, L. L.; Phuah, K. C.; Dai, R.; Chen, H.; Chew, W. S.;
Adams, S. Bond Valence Pathway Analyzer�An Automatic Rapid
Screening Tool for Fast Ion Conductors within softBV. Chem. Mater.
2021, 33, 625−641.

(61) Rong, Z.; Kitchaev, D.; Canepa, P.; Huang, W.; Ceder, G. An
efficient algorithm for finding the minimum energy path for cation
migration in ionic materials. J. Chem. Phys. 2016, 145, 074112.
(62) Bölle, F. T.; Mathiesen, N. R.; Nielsen, A. J.; Vegge, T.; Garcia-
Lastra, J. M.; Castelli, I. E. Autonomous Discovery of Materials for
Intercalation Electrodes. Batter. Supercaps 2020, 3, 488−498.
(63)Mathiesen, N. R.; Jónsson, H.; Vegge, T.; Lastra, J. M. G. R-NEB:
Accelerated Nudged Elastic Band Calculations by Use of Reflection
Symmetry. J. Chem. Theory Comput. 2019, 15, 3215−3222.
(64) Bölle, F. T.; Bhowmik, A.; Vegge, T.; Lastra, J. M. G.; Castelli, I.
E. Automatic Migration Path Exploration for Multivalent Battery
Cathodes using Geometrical Descriptors. Batter. Supercaps 2021, 4,
1516−1524.
(65) Zimmermann, N. E. R.; Hannah, D. C.; Rong, Z.; Liu, M.; Ceder,
G.; Haranczyk, M.; Persson, K. A. Electrostatic Estimation of
Intercalant Jump-Diffusion Barriers Using Finite-Size Ion Models. J.
Phys. Chem. Lett. 2018, 9, 628−634.
(66) Deng, Z.; Kumar, V.; Bölle, F. T.; Caro, F.; Franco, A. A.; Castelli,
I. E.; Canepa, P.; Seh, Z. W. Towards autonomous high-throughput
multiscale modelling of battery interfaces. Energy Environ. Sci. 2022, 15,
579−594.

ACS Materials Au pubs.acs.org/materialsau Perspective

https://doi.org/10.1021/acsmaterialsau.2c00057
ACS Mater. Au 2023, 3, 75−82

82

https://doi.org/10.1021/acs.chemmater.9b04663?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemmater.9b04663?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemmater.9b04663?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.mtphys.2021.100463
https://doi.org/10.1016/j.mtphys.2021.100463
https://doi.org/10.1038/s41467-021-21488-7
https://doi.org/10.1038/s41467-021-21488-7
https://doi.org/10.1039/D2TA02202H
https://doi.org/10.1039/D2TA02202H
https://doi.org/10.1039/D2TA02202H
https://doi.org/10.1103/PhysRevB.78.104306
https://doi.org/10.1103/PhysRevB.81.104304
https://doi.org/10.1103/PhysRevB.81.104304
https://doi.org/10.1149/05027.0097ecst
https://doi.org/10.1149/05027.0097ecst
https://doi.org/10.1103/PhysRevMaterials.5.013803
https://doi.org/10.1103/PhysRevMaterials.5.013803
https://doi.org/10.1103/PhysRevMaterials.5.013803
https://doi.org/10.1021/acs.chemmater.1c01668?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemmater.1c01668?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemmater.1c04152?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemmater.1c04152?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1038/s41467-022-32190-7
https://doi.org/10.1038/s41467-022-32190-7
https://doi.org/10.1038/s41467-022-32190-7
https://doi.org/10.1149/1.1391130
https://doi.org/10.1149/1.1391130
https://doi.org/10.1016/0025-5408(76)90073-8
https://doi.org/10.1016/0025-5408(76)90073-8
https://doi.org/10.1016/0025-5408(76)90077-5
https://doi.org/10.1016/0025-5408(76)90077-5
https://doi.org/10.1016/0022-4596(88)90065-5
https://doi.org/10.1016/0022-4596(88)90065-5
https://doi.org/10.1021/cr3001862?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/cr3001862?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/cr3001862?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemmater.0c02695?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemmater.0c02695?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1557/s43578-022-00646-7
https://doi.org/10.1557/s43578-022-00646-7
https://doi.org/10.1557/s43578-022-00646-7?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/0021-9991(75)90060-1
https://doi.org/10.1016/0021-9991(75)90060-1
https://doi.org/10.1038/s41597-020-0474-y
https://doi.org/10.1038/s41597-020-0474-y
https://doi.org/10.1002/adfm.202003087
https://doi.org/10.1002/adfm.202003087
https://doi.org/10.1021/acs.chemmater.0c03893?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemmater.0c03893?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1063/1.4960790
https://doi.org/10.1063/1.4960790
https://doi.org/10.1063/1.4960790
https://doi.org/10.1002/batt.201900152
https://doi.org/10.1002/batt.201900152
https://doi.org/10.1021/acs.jctc.8b01229?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.8b01229?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.8b01229?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1002/batt.202100086
https://doi.org/10.1002/batt.202100086
https://doi.org/10.1021/acs.jpclett.7b03199?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpclett.7b03199?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1039/D1EE02324A
https://doi.org/10.1039/D1EE02324A
pubs.acs.org/materialsau?ref=pdf
https://doi.org/10.1021/acsmaterialsau.2c00057?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

