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Abstract 

Background  Artemisia subg. Seriphidium, one of the most species-diverse groups within Artemisia, grows mainly in 
arid or semi-arid regions in temperate climates. Some members have considerable medicinal, ecological, and eco-
nomic value. Previous studies on this subgenus have been limited by a dearth of genetic information and inadequate 
sampling, hampering our understanding of their phylogenetics and evolutionary history. We therefore sequenced 
and compared the chloroplast genomes of this subgenus, and evaluated their phylogenetic relationships.

Results  We newly sequenced 18 chloroplast genomes of 16 subg. Seriphidium species and compared them with one 
previously published taxon. The chloroplast genomes, at 150,586–151,256 bp in length, comprised 133 genes, includ-
ing 87 protein-coding genes, 37 tRNA genes, 8 rRNA genes, and one pseudogene, with GC content of 37.40–37.46%. 
Comparative analysis showed that genomic structures and gene order were relatively conserved, with only some vari-
ation in IR borders. A total of 2203 repeats (1385 SSRs and 818 LDRs) and 8 highly variable loci (trnK – rps16, trnE – ropB, 
trnT, ndhC – trnV, ndhF, rpl32 – trnL, ndhG – ndhI and ycf1) were detected in subg. Seriphidium chloroplast genomes. 
Phylogenetic analysis of the whole chloroplast genomes based on maximum likelihood and Bayesian inference 
analyses resolved subg. Seriphidium as polyphyletic, and segregated into two main clades, with the monospecific sect. 
Minchunensa embedded within sect. Seriphidium, suggesting that the whole chloroplast genomes can be used as 
molecular markers to infer the interspecific relationship of subg. Seriphidium taxa.

Conclusion  Our findings reveal inconsistencies between the molecular phylogeny and traditional taxonomy of the 
subg. Seriphidium and provide new insights into the evolutionary development of this complex taxon. Meanwhile, 
the whole chloroplast genomes with sufficiently polymorphic can be used as superbarcodes to resolve interspecific 
relationships in subg. Seriphidium.
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Background
The genus Artemisia L., comprising ca. 500 herb and 
shrub species, is one of the largest in the Asteraceae [1–
5]. Members of this genus are distributed mainly in tem-
perate regions of the northern hemisphere [1, 6], with the 
current centers of species diversity located in China and 
surrounding areas followed by Russia and adjacent states, 
Europe, Americas and North Africa [7–9]. Artemisia typ-
ically attracts extensive scientific interest because of its 
antimalarial properties, and other pharmacological and 
economic value [1, 10, 11]. Although Artemisia is cur-
rently divided into the generally accepted five subgenera 
[subg. Artemisia, subg. Absinthium (Miller) Less., subg. 
Dracunculus (Besser) Rydb., subg. Tridentatae (Rydb.) 
McArthur. and subg. Seriphidium Besser ex Less] based 
on morphological and molecular data [12–18], there has 
been some controversy about its definition and infrage-
neric delimitation.

The subg. Seriphidium, one of the most diverse taxa 
in Artemisia [18], comprises ca. 130 species and 30 
infraspecific taxa worldwide [3, 9, 19]. This subgenus 
grows mainly in arid and semi-arid regions of Central 
Asia and Northwest China, with a few species spread-
ing to the Middle East, North Africa and Europe [19]. Its 
species are usually drought-, cold- and salinity-tolerant, 
and can become dominant in arid and semi-arid areas, 
playing an important ecological role in terms of wind and 
sand control [20]. In addition, some are rich in essential 
oils and terpenes, having anti-malarial, anticancer and 
antidiabetic properties [7, 20–22]. However, the gaps that 
remain in our knowledge of the subg. Seriphidium and of 
its taxonomic complexity still call for further research. 
Since Besser grouped all homogamous species of Artemi-
sia in sect. Seriphidium Besser [23, 24], the first compre-
hensive revision of Seriphidium taxa was not published 
until 1961, Poljakov separated the homogamous species 
from Artemisia in Eurasia and established the new genus 
Seriphidium (Besser) Poljakov [25]. However, the same 
author did not follow his own proposal in Flora of the 
USSR published the same year and still treated Seriphi-
dium as a subgenus within Artemisia [7], and divided the 
subg. Seriphidium into two sections: (i) sect. Seriphidium 
with pinnate-lobed leaves; and (ii) sect. Junceum with 
mostly 3-lobed lower stem leaves. After studying Seriphi-
dium in Eurasia and North Africa, Filatova in 1986 pro-
posed a different proposal from Poljakov’s on the two 
sections within subg. Seriphidium, dividing the subgenus 
into six sections [sect. Calciphilum, sect. Junceum, sect. 
Leucophyton, sect. Sclerophyllum, sect. Halophilum and 
sect. Pycnanthum] based on traits such as leaf type, leaf 
segments, involucre and florets [26].

When Ling studied the entire genus Artemisia and its 
allies [9, 19, 20, 27], he supported the taxonomic view of 

establishing Seriphidium as an independent genus based 
on homogamous flowers, involucral bracts multilayered 
and flowering pattern, and divided the 130 Seriphidium 
taxa (containing species and infraspecific taxa) into 
three sections: (i) sect. Seriphidium with pinnate-lobed 
leaves; (ii) sect. Junceum with mostly 3-lobed lower stem 
leaves; and (iii) sect. Minchunensa with pectinate or nar-
rowly serrate pinnatisect leaves. The first two sections are 
similar in species composition to the two sections within 
subg. Seriphidium established by Poljakov. Moreover, 
sect. Junceum (A. juncea) and sect. Minchunensa (A. 
minchunensis) are both monospecific groups. However, 
the rationality of the classification of subg. Seriphidium 
based on morphological traits remains to be further 
explored.

In the past two decades, the emergence of molecu-
lar systematics has provided new methods for studying 
the systematic relationships between complex taxa [28]. 
Some molecular markers from both the nuclear and plas-
tid genomes, including nuclear ribosomal DNA internal 
and external transcribed spacers (ITS and ETS) and chlo-
roplast fragments (matK, rbcL, rpl32 – trnL, ndhC – trnV 
and psbA – trnH) have been used to estimate phyloge-
netic relationships within Artemisia [4, 5, 12–18, 29–32]. 
Unfortunately, the subg. Seriphidium has received less 
attention in comparison to other subgenera of Artemisia 
[18]. Furthermore, many of the prior phylogenetic stud-
ies of subg. Seriphidium [4, 18, 31], based on plastid or 
nuclear gene fragments, have achieved low resolution at 
major clade nodes, owing to the high sequence similarity 
between its closely related taxa arising from its rapid evo-
lutionary radiation and hybridization. Recent molecular 
phylogenies did not support the traditional morphology-
based subg. Seriphidium classifications, have revealed 
that it is not monophyletic [18]. At present, phyloge-
netic relationships among the major lineages of the subg. 
Seriphidium remain uncertain, such as owing to limited 
sampling, the systematic position of the Chinese endemic 
species A. minchunensis which constitutes the mono-
specific group (sect. Minchunensa) has not been clari-
fied. Further investigations, based on a combination of 
representative sampling and sequences with rich genetic 
information, is therefore necessary to reconstruct these 
phylogenetic relationships.

The chloroplast, a multifunctional plant organelle, 
plays an important role in photosynthesis as well as vari-
ous metabolic processes [33–35]. In most angiosperms, 
the complete chloroplast genome is usually a double-
stranded, circular and quadripartite structure, consist-
ing of four evolutionarily relatively conserved regions: a 
large single copy region (LSC), a small single copy region 
(SSC) and a pair of inverted repeat regions (IRa and IRb) 
[36–38]. Compared to plant mitochondrial and nuclear 
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genomes, the chloroplast genomes of most land plants 
exhibit slow evolution and uniparental inheritance, and 
are appropriately sized and relatively conservative in 
structure [21, 39, 40]. Unlike gene fragments, complete 
chloroplast genome contains much genetic information 
and many mutation sites, contributing to resolving the 
complex evolutionary relationships in land plants [41]. 
The complete chloroplast genome is therefore widely 
used for phylogenetic inference and species delimita-
tion, such as Ligularia (Asteraceae) [42], Amomum (Zin-
giberaceae) [43], Calligonum (Polygonaceae) [44], Ilex 
(Aquifoliaceae) [45] and Rhododendron (Ericaceae) [46]. 
It is worth noting that a recent study analyzed 18 Arte-
misia species from East Asia using the whole chloroplast 
genome, and the results showed that whole chloroplast 
genomes with sufficient polymorphic genetic information 
loci could be used to resolve interspecific relationships 
within Artemisia [47]. Unfortunately, this study did not 
include any subg. Seriphidium species. Nevertheless, this 
provides a reference for exploring the use of whole chlo-
roplast genomes for resolving the systematic position and 
interspecific relationships of taxa in subg. Seriphidium.

To date, GenBank (National Center for Biotechnology 
Information; accessed 1 April 2022) contains the com-
plete chloroplast genome for only one species (A. mar-
itima) of subg. Seriphidium, accounting for ca. 1% of its 
species diversity. Based on the above problems of subg. 
Seriphidium, here we newly sequenced 18 complete 
chloroplast genomes from 16 subg. Seriphidium species, 
collected in arid and semi-arid regions of northwestern 
China and adjacent countries (Russia and Tajikistan). It is 
noteworthy that these samples have included representa-
tive species from three sections within subg. Seriphi-
dium with reference to Ling (1991) [19], particularly A. 
minchunensis which constitutes the monospecific group 
(sect. Minchunensa). The main objectives of the present 
study were: (1) to examine variation in the structure and 
composition of subg. Seriphidium chloroplast genomes; 
(2) to assess the ability of the complete chloroplast 
genome to resolve interspecific relationships within this 
subgenus, and (3) to explore the systematic position of 
the main subg. Seriphidium taxa, especially A. minchun-
ensis. This study provides guidance for the taxonomic 
revision of the entire subg. Seriphidium, and facilitates 
the development and utilization of its genetic resources.

Results
Subg. Seriphidium chloroplast genome structural variation
All of the 18 newly sequenced subg. Seriphidium chlo-
roplast genomes possessed the typical vascular plant 
quadripartite structure, comprising LSC, SSC, IRa 
and IRb regions (Fig.  1). Genome length ranged from 
150,586 bp (A. ferganensis) to 151,256 bp (A. santonicum). 

LSC region length ranged from 82,313 bp (A. fergan-
ensis) to 82,976 bp (A. santonicum). SSC region length 
ranged from 18,329 bp (A. ferganensis) to 18,379 bp (A. 
santolina). IR region length ranged from 24,959 bp (A. 
sawanensis and A. schrenkiana) to 24,972 bp (A. fergan-
ensis) (Table 1). Interestingly, while A. ferganensis had the 
shortest total chloroplast genome, and shortest LSC and 
SSC regions, it had the longest inverted repeat regions. 
There was slight variation in guanine-cytosine contents, 
at 37.40 to 37.46% (Table 1). All 18 plastomes contained 
87 protein-coding genes, 37 transfer RNA (tRNA) genes, 
8 ribosomal RNA (rRNA) genes, and one pseudogene, 
and exhibited the same order and orientation of syn-
tenic blocks (Table  1; Additional  file  1: Table  S2; Addi-
tional  file  2: Fig. S1), indicating that these chloroplast 
genomes are highly conserved and collinear.

IR expansion and contraction
Comparative sequence analysis of 17 subg. Seriphidium 
species (16 newly sequenced and one published [21]) 
revealed that chloroplast genome structure and gene 
order were highly conserved, although with slight varia-
tions at the IR boundaries (Fig. 2). The length of IR was 
relatively consistent among all subg. Seriphidium spe-
cies. A. sawanensis and A. schrenkiana had the shortest 
IR length (24,959 bp), while A. ferganensis had the long-
est (24,972 bp). All of the subg. Seriphidium chloroplast 
genomes had LSC/IRb junctions in gene rps19, with 60 to 
72 bp crossing into the IRb region, indicating an expan-
sion of the IR in these species (Fig.  2). Similarly, in all 
of subg. Seriphidium chloroplast genomes, the IRb/SSC 
junctions were located in gene ycf1, extending 17–35 bp 
into the SSC region, away from the ndhF gene. All of 
the subg. Seriphidium chloroplast genomes had SSC/
IRa junctions located in gene ycf1, extending 561–558 bp 
into the IRa region. Most of the IRa/LSC junctions were 
located between genes rpl2 and trnH, with 4–8 bp far 
from the gene trnH, although in A. finite, the IRa/LSC 
junction was located 106 bp far from gene trnH (Fig. 2).

Analysis of repeats
Simple sequence repeats (SSRs) are shorter tandem repeats 
consisting of 1–6 bp repeat units and are also known as 
microsatellite repeats. In total, 1385 SSRs were detected 
in the 20 subg. Seriphidium chloroplast genomes (17 spe-
cies), including 777 mononucleotides (mono-), 216 dinu-
cleotides (di-), 78 trinucleotides (tri-), 275 tetranucleotides 
(tetra-), 38 pentanucleotides (penta-), and one hexanucle-
otide (hex-) (Fig. S2a; Additional file 1: Table S3). Most of 
the SSRs were located in LSC regions (1088), followed by 
SSCs (181) and IR (116) regions (Fig. S2b; Additional file 1: 
Table  S3). Moreover, these SSRs were mainly distributed 
in intergenic spacer regions (IGS) (1017), with some in 
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CDS (227) and intron regions (141) (Fig. S2c; Additional 
file  1: Table  S3). Among the mononucleotide repeats, 
A/T repeats were most frequent; C repeats were present 
in all but two taxa (A. ferganensis and A. maritima); and 
no G repeats were detected (Fig. S2d; Additional file  1: 
Table S3). Dinucleotide repeats were represented by only 
the AT/TA motif. Trinucleotide repeats (ATT/TTC) were 

present in all 20 subg. Seriphidium chloroplast genomes 
analyzed, however only one trinucleotide repeat (AAT) 
was detected in A. finite. Tetra- and pentanucleotide 
contained motifs AATA/AATC, AAAT/AATT, ATTG/
CAAT, ATTT/TAAT, TATT/TTTC and TTAA/TTTA, 
as well as AAATT/ACGAC, ATAAA/ATATT, ATTTA/
TATAT, and TTAAT repeats, respectively. Furthermore, 

Fig. 1  Gene circle map of 16 newly sequenced Artemisia subg. Seriphidium species. Arrows indicate transcription direction. Genes located outside 
the outer circle were transcribed counter-clockwise, and those inside were transcribed clockwise. Colored bars indicate different functional 
groups. Thick lines of the large circle indicate the extent of inverted repeat regions (IRa and IRb) that separate the genome into large single and 
small copy regions (LSC and SSC, respectively). Darker gray columns in the inner circle correspond to guanine-cytosine content, and light gray to 
adenosine-thymine content
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Fig. 2  Comparison of the single copy-inverted repeat junctions among the 17 subg. Seriphidium species (16 newly sequenced and one published 
[21]). JLB, JSB, JSA and JLA: LSC/IRb, SSC/IRb, SSC/IRa and LSC/IRa, respectively. IRa, IRb: two IR regions that are identical but in opposite orientations; 
LSC: large single copy; SSC: small single copy
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only one hexanucleotide (AAT​ATA​) was detected distrib-
uted in LSC region of A. finita (Fig. S2d; Additional file 1: 
Table S3).

The forward (F), palindromic (P), reverse (R), and com-
plement (C) repeat sequences in the 20 subg. Seriphi-
dium chloroplast genomes (17 species) were detected 
using REPuter. In total, 818 long dispersed repeats were 
detected, including 398 forward, 394 palindromic, 25 
reverse and one complement repeats (Additional file  1: 
Table  S4). All species had forward and palindromic 
repeats, only one complement repeat was detected, in 
A. ferganensis. Approximately half (12/20) of the species 
had 1 or 2 reverses. Interestingly A. santonicum had 12 
reverses, far more than the other species (Fig. 3A; Addi-
tional file 1: Table S4). Long dispersed repeat length was 
variable, at 30–86 bp, most commonly 30–50 bp. How-
ever, there were only two repeat regions were > 60 bp long 
[A. finita (86 bp) and A. santonicum (85 bp)] (Fig.  3B; 
Additional file 1: Table S4).

Hypervariable regions and genomic divergence
Nucleotide variability (Pi) was 0.000–0.00557 (average, 
0.00115) for the 18 newly assembled plastomes and two 
A. maritima plastomes from GenBank (MK532038 and 
NC_045093). At the cutoff value of Pi > 0.0045, eight 
highly variable regions were identified: trnK-UUU​ – 
rps16, trnE-UUC​ – ropB, 35 bp + trnT-GGU​ + 508 bp, 
ndhC – trnV-UAC​, 123 bp + ndhF, rpl32 – trnL-UAG​, 
ndhG – ndhI and ycf1(1010–4275 bp) (Fig. S3; Additional 
file 1: Table S5). Four of these (trnK-UUU​ – rps16, trnE-
UUC​ – ropB, 35 bp + trnT-GGU​ + 508 bp and ndhC – 
trnV-UAC​) are located in the LSC region; while the other 
four are in the SSC region (Fig. S3). For these hypervari-
able loci, Pi ranges from 0.00451 (ndhC – trnV-UAC​) to 
0.00557 (ndhG – ndhI) (Additional file 1: Table S5).

The results of the sequence identity analysis of the 20 
subg. Seriphidium chloroplast genomes (17 species), with 
A. ferganensis chloroplast genome as reference (Addi-
tional file  2: Fig. S4), are consistent with those of the 

Fig. 3  Long dispersed repeats of 20 Artemisia subg. Seriphidium chloroplast genomes. A Numbers of the five long repeat types; B Long dispersed 
repeat size
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nucleotide diversity analysis: IR regions were more con-
served than SC regions, and non-coding regions were 
more divergent than coding regions. For the 20 chloro-
plast genomes, the divergent regions were in IGS, such as 
trnE-UUC​ – ropB, trnS-GGA​ – ycf3, trnV-UAC​ – ndhC, 
psbE – petL, rbcL – accD, petA – psbJ and rpl32 – trnL-
UAG​. One distinct gap was observed, in the psbM region 
of the A. sawanensis chloroplast genome (Additional 
file  2: Fig. S4). In total, 931 polymorphic sites, 273 sin-
gleton variable sites, and 658 parsimony informative 
sites were detected among the 20 chloroplast genome 
sequences.

Molecular markers for subg. Seriphidium species
To explore subg. Seriphidium molecular markers with 
increased resolution of phylogeny reconstruction, we 
tested eight screened highly variable regions and their 
combinations. Comparative sequence analysis revealed 
that ndhF is highly polymorphic in the subg. Seriphidium 
plastomes (Table  2). We constructed phylogenetic trees 
for each of the eight highly variable regions screened 
from whole chloroplast genes using 17 subg. Seriphidium 
species (16 newly sequenced and one published [21]) and 
assessed their potential potency. Our results revealed that 
the resolution of phylogenetic trees constructed based on 
each highly variable region was low (Additional file 2: Fig. 
S5–12). Moreover, the resolution of phylogenetic tree 
constructed using tandem sequences from eight highly 
variable regions was improved for the major clades com-
pared to each highly variable region, but there are still 
deficiencies in discriminating at interspecific relation-
ship (Additional file  2: Fig. S13). To further explore the 
resolution of phylogenetic tree, we made a first attempt 
to use whole chloroplast genome for 17 subg. Seriphidium 
species (16 newly sequenced and one published). We found 
that the resolution of phylogenetic tree was extremely high, 
both in the major clades and among species (Additional 
file 2: Fig. S14).

Phylogenetic analysis
To evaluate the monophyly of subg. Seriphidium and its 
phylogenetic relationship with other subgenus in Arte-
misia, we reconstructed phylogenetic relationships based 
on 52 complete chloroplast genomes and 80 protein-
coding genes from 38 Artemisia species, using Bayes-
ian inference (BI) and maximum likelihood (ML), with 
the closely related species Ajania pacifica (NC_050690 
and MN883841) as outgroup. The total alignment length 
(after removing one inverted repeat) was 125,171 bp, with 
849 singleton variable sites and 1707 parsimony inform-
ative sites. The backbones of the BI and ML trees were 
nearly identical, whether based on complete chloroplast 
genomes or protein-coding genes, hence we present only 
the tree (branch lengths were estimated by BI analysis) 
for the whole chloroplast genome with posterior prob-
ability (PP) and bootstrap support (BS) values shown 
(Fig. 4; BI PP: 1.00; ML BS: 100%).

Based on these phylogenetic analyses, Artemisia is 
monophyletic; most of the clades have high support, 
with all samples of the same species clustered together 
(Fig.  4). All individuals of subg. Dracunculus are clus-
tered together in a monophyletic clade (BI PP: 1.00; ML 
BS: 100%), but neither sect. Latilobus nor sect. Dracun-
culus within subg. Dracunculus are monophyletic. With 
the exception of sect. Viscidipubes and sect. Albibrac-
tea, the subg. Artemisia and its two other sections (sect. 
Artemsia and sect. Abrotanum) were recovered as poly-
phyletic (Fig.  4). Subg. Absinthium, with only one sect. 
Absinthium, was resolved as polyphyletic as well. Subg. 
Seriphidium is fully nested within genus Artemisia, form-
ing two highly supported clades (Fig. 4; BI PP: 1.00; ML 
BS: 100%). Within subg. Seriphidium, a small clade con-
taining A. juncea (sect. Juncea) forms a sister group to  
A. frigida (sect. Absinthium), and is located far from the other 
large monophyletic clade consisting of sect. Seriphidium 
and sect. Minchunensa. However, the inclusion of sect. 
Minchunensa within sect. Seriphidium is unexpected.

Table 2  DNA polymorphisms identified in 17 Artemisia subg. Seriphidium species (16 newly sequenced and one published)

Loci Length (bp) Number of sequence Polymorphic site Singleton variable 
sites

Parsimony 
informative 
sites

ndhC – trnV-UAC​ 1180 20 17 3 14

trnE-UUC​ – ropB 877 20 12 3 9

trnK-UUU​ – rps16 855 20 25 9 16

rpl32 – trnL-UAG​ 923 20 13 2 11

ndhG – ndhI 376 20 16 8 8

trnT-GGU​ 68 20 2 1 1

ndhF 2234 20 443 437 6

ycf1 5073 20 72 21 51
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Discussion
Comparison of subg. Seriphidium chloroplast genomes
As in most angiosperms [36], we found that subg. Seriph-
idium has highly conserved structure, gene content and 
gene order, with little variation between species, based 
on complete chloroplast genome analysis (20 samples of 
17 subg. Seriphidium species). Chloroplast genome size 
varied between the species, while there was sequence 
uniformity within species (Table  1). However, sequence 
variation has been reported within other species, such as 
Ilex viridis [45], Calligonum junceum [44] and Calanthe 
davidii [48]. Furthermore, this phenomenon was present 
in other subgenera of Artemisia [47, 49], such as Artemisia 
selengensis, Artemisia argyi, and Artemisai annua, however 
it is not found in subg. Seriphidium, probably due to the 
small sample size of the same species in the subgenus.

IR expansion and contraction is a common evolution-
ary phenomenon and often generates variation of chlo-
roplast genome length [50]. Although the IR junctions of 
these subg. Seriphidium chloroplast genomes exhibited 
modest expansion or contraction (Fig. 2), the IR regions, 
which varied by 13 bp, were more conserved than the SC 
regions, which varied by 663 bp (for LSC regions) and 
50 bp (for SSC regions) (Table 1). Moreover, IR expansion 

and contraction also play important roles in plas-
tome rearrangements and gene content variations [50]. 
Although genome rearrangement has been reported for 
Compositae [51], Plantaginaceae [52] and Hypericaceae 
[53], this has not been observed in subg. Seriphidium 
(Additional file 2: Fig. S1, S4) and in other subgenera of 
Artemisia [21, 47, 49, 54].

Repeated sequence analysis
As a result of their high rate of polymorphism and abun-
dant variation at the species level, SSRs are commonly 
employed in genetic diversity, population structure and 
species classifications [55–57]. SSR distributions can be 
used to infer highly polymorphic regions, contributing 
to the development of molecular markers for inferring 
phylogenetic relationships [58]. Among the 1385 SSR 
loci identified in the 20 subg. Seriphidium chloroplast 
genomes (Additional file 1: Table S3), A/T motif mono-
nucleotide repeats were abundant (Fig. S2d). This finding, 
which is consistent with similar pattern of SSRs distribu-
tion in chloroplast genomes of other subgenera in Arte-
misia and other genera in Asteraceae [21, 47, 49, 54, 58, 
59], may be because polyA and polyT have more stable 
structures than polyC and polyG [60].

Fig. 4  Phylogenetic tree inferred from Bayesian inference (BI) and maximum likelihood (ML) analyses, using the complete chloroplast genomes 
of 38 Artemisia species. Branch lengths were estimated using Bayesian inference. Numbers near the nodes are Bayesian posterior probabilities (to 
the left) and maximum likelihood bootstrap support values (to the right). Colored lines and braces at the right indicate the traditional section and 
subgenus classification of Artemisia. The sections of Artemisia subg. Seriphidium are divided according to Ling (1991) [19]
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In closely related species, the abundant variation in long 
dispersed repeats longer than 30 bp provides some evolu-
tionary flexibility [45]; further, it results in insertion/dele-
tion mismatches and genome rearrangement [58]. Among 
the 818 long dispersed repeats in the 20 subg. Seriphid-
ium chloroplast genomes (Additional file 1: Table S4), for-
ward and palindromic repeats accounted for 398 (48.66%) 
and 394 (48.17%) of all repeats, respectively, while reverse 
and complementary repeats were quite rare, accounting 
for just 25 (3.05%) and 1 (0.12%), respectively. This pattern 
of long dispersed repeats is similar to other subgenera of 
Artemisia and other angiosperms [21, 40, 45, 47, 61–63].

Hypervariable regions and molecular markers
Given that genes are not all equally important in the 
development of barcoding, or in population genetic 
and phylogenetic studies [21], screening of hypervari-
able regions can provide a wealth of phylogenetic infor-
mation for such research [64–66]. We identified eight 
hypervariable regions, all within SC regions, with IR 
regions exhibiting lower variation (Fig. S3), consistent 
with our genomic divergence analysis (Additional file  2: 
Fig. S4). Phylogenetic analyses of Artemisia have often been 
based on plastid markers (mainly matK, rbcL, trnL – trnF, 
psbA – trnH, rpl32 – trnL and ndhC – trnV), this has left 
many interspecific relationships poorly resolved, particu-
larly in subg. Seriphidium [16, 17, 31]. When comparing 
these markers with the highly variable regions identified 
here, only two (ndhC – trnV and rpl32 – trnL) have been 
used for phylogenetic inference in subg. Seriphidium, with 
weak resolution power [18]. Furthermore, the presence of 
rapid radiation differentiation in subg. Seriphidium has 
led to phylogenetic trees reconstructed based on either 
each highly variable regions screened or their tandem 
sequences being poorly resolved in terms of interspecific 
relationships (Additional file  2: Fig. S5–13). However, 
phylogenetic reconstructions of evolutionarily com-
plex taxa using complete chloroplast genomes, such as 
those for Calligonum [44], Hoya [67] and Ilex [45], typi-
cally provide higher resolution and more stable back-
bones than those based on multiple gene fragments. Our 
results also confirmed that the whole chloroplast genome 

resolves interspecific relationships well in subg. Seriphi-
dium (Additional file 2: Fig. S14), and the same effect was 
found in other subgenera of genus Artemisia [47, 61, 62]. 
This provides a good reference for using the whole chlo-
roplast genome as superbarcodes to analysis the phylo-
genetic relationship of Artemisia and its allies.

Phylogenetic inference
We have reconstructed the phylogenetic relationships of 
Artemisia via Bayesian inference and maximum likeli-
hood, using 38 Artemisia species representing the most 
extensive chloroplast genome sample to date (Fig.  4). 
This work provides a solid and high-resolution phyloge-
netic backbone of Artemisia, revealing inconsistencies 
between molecular systematics and traditional taxo-
nomic studies. Most of the morphologically derived sub-
genera and sections within Artemisia are revealed to be 
polyphyletic, suggesting that the morphologically derived 
classifications are inaccurate. To resolve the relationships 
within subg. Seriphidium, we sampled three major clades 
in this subgenus (Fig.  4). Our results validate the earlier 
molecular findings that merge the subg. Seriphidium into 
the genus Artemisia [4, 13, 15, 16, 18]. While some authors 
still consider Seriphidium to be an independent genus [17, 
68], this view not supported by the current knowledge.

Here, subg. Seriphidium was revealed to be polyphyl-
etic, divided into two clades separated by a large genetic 
distance, reaffirming previous molecular phylogenetic 
findings on subg. Seriphidium [18]. While various tax-
onomists have divided A. juncea into different sections 
or series within subg. Seriphidium based on morphology, 
none has been aware of its evolutionary differentiation 
extended beyond this subgenus boundaries [7, 19, 20, 26, 
68]. According to our results of molecular systematics, 
the proposal of removing A. juncea from subg. Seriphi-
dium to obtain a monophyletic subgenus [18] is sup-
ported. However, our observations on the morphological 
traits of A. juncea revealed that its bracts layer (4–5), 
homogamous bisexual florets (4–7) and leaf indumentum 
are consistent with the morphological characters of subg. 
Seriphidium taxa, but its palmately ternate leaf pattern 
is uncommon (Fig. 5A) in this subgenus. In view of this, 

Fig. 5  Leaves of four Artemisia subg. Seriphidium species. A  Artemisia juncea (sect. Juncea); B Artemisia minchunensis (sect. Minchunensa); 
C Artemisia sawanensis (sect. Seriphidium); D Artemisia schrenkiana (sect. Seriphidium). The sections of Artemisia subg. Seriphidium are divided 
according to Ling (1991) [19]
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the systematic position of A. juncea remains to be further 
explored by combining the evidence of morphology and 
molecular systematics.

Ling established A. minchunensis as a special group 
(sect. Minchunensa) within subg. Seriphidium mainly 
based on its leaves pectinately 2(or 3)-pinnatisect; lobules 
serrate or subserrate, arachnoid pubescent or glabrescent 
[19, 68]. The phylogenetic position of A. minchunensis 
has been unclear, owing to limited sampling in earlier 
molecular phylogenetic studies [18]. Here, our focused 
sampling revealed that A. minchunensis formed a highly 
supported (PP = 0.997; BS = 89) sister group to A. sawan-
ensis and A. schrenkiana in sect. Seriphidium. Apparently 
our molecular phylogenetic results did not support the 
establishment of sect. Minchunensa. Actually, after care-
ful observation of the leaf morphological characteristics 
of the above three species, we found that a high similar-
ity in leaf morphology and indumentum, such as pinnati-
sect (bipartite or ternate) ovate or broadly ovate and densely 
pilose, with pinnately divided pseudo-stipules (Fig. 5B – D). 
Based on our molecular phylogenetic studies and mor-
phological observations, it is considered inappropriate to 
establish morphologically-based sect. Minchunensa, which 
should be abolished and placed within sect. Seriphidium.

Conclusions
We newly sequenced 18 chloroplast genomes of 16 subg. 
Seriphidium species and compared them with one pre-
viously published taxon. Comparative analysis showed 
that genomic structures and gene order were relatively 
conserved, with only some variation in IR borders. Phy-
logenetic analysis revealed inconsistencies between the 
molecular phylogeny and traditional taxonomy of the 
subg. Seriphidium and the whole chloroplast genomes 
can be used as superbarcodes to resolve interspecific 
relationships in this subgenus. In future, combining com-
plete chloroplast genomes and morphological data, based 
on detailed sampling, could enhance our understanding 
of the complex phylogenetic relationships in this group, 
providing the basis for a worldwide taxonomic revision of 
Artemisia subg. Seriphidium.

Materials and methods
Taxon sampling, DNA extraction, and sequencing
In total, 18 samples of 16 Artemisia subg. Seriphidium 
species were collected from northwestern China and 
adjacent countries (Russia and Tajikistan). For most of 
the species in the subgenus, we sampled one individuals, 
except for A. minchunensis and A. juncea, for which we 
sampled two individuals each (Table 1). No specific per-
missions were required for our locations/activities. Addi-
tional file 1 (Table S1) provides GenBank information for 
the remaining species used in the phylogenetic analysis. 

Nomenclature follows the accepted World Flora Online 
(http://​www.​world​flora​online.​org/) species names for the 
subg. Seriphidium. Voucher specimens were deposited in 
the Herbarium of the Xinjiang Institute of Ecology and 
Geography Chinese Academy of Sciences (XJBI) and the 
Herbarium of the Institute of Botany, Chinese Academy 
of Sciences (PE).

Total genomic DNA was extracted from ca. 100 mg of 
silica-dried leaves and isolated according to the cetyl-
trimethyl ammonium bromide (CTAB) method [69]. 
Extracted DNA samples were randomly fragmented to 
construct a 300 bp short-insert library and − 2 × 150 bp 
paired-end (PE) reads were performed on DNBSEQ™ 
technology platforms at the Beijing Genomics Institute 
(BGI, Shenzhen, China). The raw reads were evaluated 
using fastQC 0.11.5 (http://​www.​bioin​forma​tics.​babra​
ham.​ac.​uk/​proje​cts/​fastqc/), and edited using Trim-
momatic 0.35 [70] to remove adapters and low-quality 
bases. Finally ca. 2.5 G bp paired-end clean read was 
obtained for each sample.

Chloroplast genome assembly and annotation
The clean data were assembled using GetOrganelle v. 1.7.1 
[71], The complete circular assembly graph was checked 
and further extracted using Bandage v. 0.8.1 [72]. The fin-
ished plastid genomes were annotated by DOGMA [73], 
and GeSeq [74], and then manually adjusted by Geneious 
v. 9.1.7 [75]. Gene start and stop codons were determined 
via comparison with the A. maritima (NC_045093) and 
A. annua (NC_034683) genomes. The annotated plastid 
genomes were submitted to GenBank (Table  1) and 
Organellar Genome Draw (OGDRAW) [76] was used to 
illustrate a circular genome map.

Genome comparison and divergence analysis
Sequence alignment of the 20 subg. Seriphidium sam-
ples complete chloroplast genomes was conducted using 
MAFFT v. 7 [77]. The Mauve v. 2.3.1 [78], with default 
parameters, was used to identify locally collinear blocks 
among the chloroplast genomes. The genome variability 
across the 20 subg. Seriphidium samples was assessed using 
mVISTA [79] in Shuffle-LAGAN mode. Expansions and 
contractions of inverted repeat regions were visualized at 
the junctions of the four main (LSC/IRb/SSC/IRa) of the 
chloroplast genome, via IRScope [80]. Nucleotide diversity 
(Pi) was estimated by sliding window analysis conducted in 
DnaSP v. 6 [81] (window length, 600 bp; step size, 200 bp).

Repetitive sequences analysis
Simple sequence repeats (SSRs) across the 20 plastomes 
were identified using web-MISA [82] with the following 
parameters: ten repetitions for mononucleotide motifs, 
five for dinucleotide motifs, four for trinucleotide motifs 

http://www.worldfloraonline.org/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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and three for tetranucleotide, pentanucleotide and hexa-
nucleotide motifs. The long dispersed repeats (LDRs): 
including forward (F), palindromic (P), reverse (R), and 
complement (C) repeats were identified using the online 
tool REPuter [83], with a Hamming distance of 3 and a 
minimum repeat size of 30 bp.

Phylogenetic analyses
Phylogenetic analyses were conducted using 80 protein-
coding genes and 52 complete chloroplast genomes 
(after removing one inverted repeat). In total 38 Artemi-
sia species from four subgenera and 10 sections, includ-
ing 17 subg. Seriphidium species from three sections, 
were used for phylogenetic analysis (Fig.  4). Ajania 
pacifica (Accessions NC_050690 and MN883841) was 
used as the outgroup. Genome alignment was per-
formed by MAFFT v. 7 [77] and trimmed using the 
“-gappyout” setting in trimAI v. 1.2, a PhyloSuite [84] 
plugin. According to the Bayesian information crite-
rion (BIC), the most appropriate substitution models, 
estimated using jModelTest2 [85], were TVM + I + G 
for the complete chloroplast genome sequences and the 
protein-coding genes. Maximum likelihood (ML) anal-
yses were conducted using RaxML-HPC v.8 [86], with 
1000 bootstrap iterations. Based on the eight hyper-
variable regions screened and their tandem sequences, 
using ML method to reconstruct phylogenetic tree 
respectively in accordance with the above method. 
Only first the eight hypervariable regions screened were 
manually extracted and concatenated from the whole 
chloroplast genomes of 17 subg. Seriphidium species 
(16 newly sequenced and one published) by Geneious v. 
9.1.7 [75]. Bayesian inference (BI) analysis was carried 
out using MrBayes v.3.2 [87], with Markov chain Monte 
Carlo simulations algorithm (MCMC) for 2,000,000,000 
generations, using four incrementally-heated chains. 
This was conducted on the CIPRES Science Gateway 
portal [88]. The final trees were visualized and edited 
using FigTree v. 1.4.2 [89].
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Additional file 2: Figure S1. Intraspecific synteny analyses of 20 subg. 
Seriphidium chloroplast genomes. The A. ferganensis chloroplast genome 
appears at the top as the reference sequence. Within each of the Mauve 
alignments, locally collinear blocks are indicated the same color and are 
connected by lines. Figure S2. Analysis of simple sequence repeats (SSRs) 
of the 20 Artemisia subg. Seriphidium chloroplast genomes. a. Numbers 
of the six SSR types; b. Numbers of SSRs distributed in the various copy 
regions; c. NumberS of SSRs distributed in various gene regions; d. Numbers 
of SSR repeat unit types. Figure S3. Sliding-window analysis of nucleotide 
diversity (Pi) of the aligned Artemisia subg. Seriphidium chloroplast genomes 
(window length 800 bp; step size 200 bp). Figure S4. Variation in subg. 
Seriphidium chloroplast genome sequences. Y axis: variation (50–100%). 
X axis: coordinate in the chloroplast genome. Figure S5. Phylogenetic 
tree constructed using the maximum likelihood method based on highly 
variable sequences (ndhC – trnV-UAC​) selected from 17 subg. Seriphidium 
species (16 newly sequenced and one published). Numbers near the nodes 
is maximum likelihood bootstrap support values. Figure S6. Phylogenetic 
tree constructed using the maximum likelihood method based on highly 
variable sequences (ndhF) selected from 17 subg. Seriphidium species 
(16 newly sequenced and one published). Numbers near the nodes is 
maximum likelihood bootstrap support values. Figure S7. Phylogenetic 
tree constructed using the maximum likelihood method based on highly 
variable sequences (ndhG – ndhI) selected from 17 subg. Seriphidium spe-
cies (16 newly sequenced and one published). Numbers near the nodes 
is maximum likelihood bootstrap support values. Figure S8. Phylogenetic 
tree constructed using the maximum likelihood method based on highly 
variable sequences (rpl32 – trnL-UAG​) selected from 17 subg. Seriphidium 
species (16 newly sequenced and one published). Numbers near the nodes 
is maximum likelihood bootstrap support values. Figure S9. Phylogenetic 
tree constructed using the maximum likelihood method based on highly 
variable sequences (trnE-UUC – ropB) selected from 17 subg. Seriphidium 
species (16 newly sequenced and one published). Numbers near the nodes 
is maximum likelihood bootstrap support values. Figure S10. Phylogenetic 
tree constructed using the maximum likelihood method based on highly 
variable sequences (trnK-UUU – rps16) selected from 17 subg. Seriphidium 
species (16 newly sequenced and one published). Numbers near the nodes is 
maximum likelihood bootstrap support values. Figure S11. Phylogenetic tree 
constructed using the maximum likelihood method based on highly variable 
sequences (trnT-GGU​) selected from 17 subg. Seriphidium species (16 newly 
sequenced and one published). Numbers near the nodes is maximum likeli-
hood bootstrap support values. Figure S12. Phylogenetic tree constructed 
using the maximum likelihood method based on highly variable sequences 
(ycf1) selected from 17 subg. Seriphidium species (16 newly sequenced and 
one published). Numbers near the nodes is maximum likelihood bootstrap 
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support values. Figure S13. Phylogenetic tree constructed using the 
maximum likelihood method based on tandem sequences from eight 
highly variable regions selected from 17 subg. Seriphidium species 
(16 newly sequenced and one published). Numbers near the nodes is 
maximum likelihood bootstrap support values. Figure S14. Phylogenetic 
tree constructed using the maximum likelihood method based on the 
whole chloroplast genomes of 17 subg. Seriphidium species (16 newly 
sequenced and one published). Numbers near the nodes is maximum 
likelihood bootstrap support values.
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