FN Clarivate Analytics Web of Science VR 1.0 PT J AU Zhang, ZJ AF Zhang, ZJ TI Therapeutic effects of herbal extracts and constituents in animal models of psychiatric disorders SO LIFE SCIENCES LA English DT Review DE herbal medicines; behavioral effects; animal models; anxiolytic; antidepressant; neuroleptic; antidementia; antisubstance abuse ID CENTRAL-NERVOUS-SYSTEM; GINKGO-BILOBA EXTRACT; RADIAL MAZE PERFORMANCE; SCOPOLAMINE-INDUCED AMNESIA; PASSIVE-AVOIDANCE PERFORMANCE; CYCLOHEXIMIDE-INDUCED AMNESIA; TRADITIONAL MEDICINAL-PLANT; APOCYNUM-VENETUM LEAVES; ACORI GRAMINEI RHIZOMA; FORCED SWIMMING TEST AB A search for novel pharmacotherapy from medicinal plants for psychiatric illnesses has progressed significantly in the past decade. This is reflected in the large number of herbal preparations for which psychotherapeutic potential has been evaluated in a variety of animal models. The objective of this review is to provide an overview of herbal extracts and constituents that have significant therapeutic effects in animal models of psychiatric illnesses. Eighty five individual herbs reviewed were classified as anxiolytic, antidepressant, neuroleptic, antidementia, or anti-substance abuse herbs. The full scientific name of each herb, herbal part used, active constituent, extract, dose range and route, animal model, possible mechanisms of action, and pertinent references are presented via synoptic tables. The herbal mixtures were also mentioned. A considerable number of herbal constituents whose behavioral effects and pharmacological actions have been well characterized may be good candidates for further investigations that may ultimately result in clinical use. The investigation of a large portion of the herbal extracts and herbal mixtures is in its infancy. Herbal remedies that have demonstrable psychotherapeutic activities have provided a potential to psychiatric pharmaceuticals and deserve increased attention in future studies. (C) 2004 Elsevier Inc. All rights reserved. C1 Uniformed Serv Univ Hlth Sci, Dept Physiol, Bethesda, MD 20814 USA. Xi An Jiao Tong Univ, Hosp 1, Coll Med, Dept Psychiat, Xian 710061, Peoples R China. RP Zhang, ZJ (corresponding author), Uniformed Serv Univ Hlth Sci, Dept Physiol, 4301 Jones Bridge Rd, Bethesda, MD 20814 USA. EM zzhang1@usuhs.mil CR Adzu B, 2002, J ETHNOPHARMACOL, V79, P13, DOI 10.1016/S0378-8741(01)00348-8 Ahn SH, 2004, J PHARM SCI-US, V93, P283, DOI 10.1002/jps.10546 Ai JL, 2001, PHARMACOLOGY, V63, P34, DOI 10.1159/000056110 Aji BM, 2001, J ETHNOPHARMACOL, V77, P143, DOI 10.1016/S0378-8741(01)00267-7 Akhondzadeh S, 2003, J NEUROL NEUROSUR PS, V74, P863, DOI 10.1136/jnnp.74.7.863 Ali BH, 2000, J PHARM PHARMACOL, V52, P1297, DOI 10.1211/0022357001777289 Ali BH, 1998, PHARMACOL BIOCHEM BE, V59, P547, DOI 10.1016/S0091-3057(97)00470-X Ali BH, 2000, PHYTOTHER RES, V14, P469, DOI 10.1002/1099-1573(200009)14:6<469::AID-PTR612>3.0.CO;2-W Almeida RN, 1998, J ETHNOPHARMACOL, V63, P247, DOI 10.1016/S0378-8741(98)00086-5 AMAGAYA S, 1990, J ETHNOPHARMACOL, V28, P349, DOI 10.1016/0378-8741(90)90086-9 Amos S, 2002, Boll Chim Farm, V141, P471 Amos S, 2003, FITOTERAPIA, V74, P23, DOI 10.1016/S0367-326X(02)00287-3 Amos S, 2001, J ETHNOPHARMACOL, V78, P33, DOI 10.1016/S0378-8741(01)00316-6 Amos S, 2001, PHYTOMEDICINE, V8, P356, DOI 10.1078/0944-7113-00056 An SJ, 2003, J NEUROSCI RES, V71, P534, DOI 10.1002/jnr.10502 Ang HH, 1999, JPN J PHARMACOL, V79, P497, DOI 10.1254/jjp.79.497 Assis TS, 2001, FITOTERAPIA, V72, P124, DOI 10.1016/S0367-326X(00)00268-9 Audi EA, 2002, FITOTERAPIA, V73, P517, DOI 10.1016/S0367-326X(02)00183-1 Bai DL, 2000, CURR MED CHEM, V7, P355, DOI 10.2174/0929867003375281 BARKATS M, 1994, LIFE SCI, V56, P213, DOI 10.1016/0024-3205(94)00915-5 BATATINHA MJM, 1995, J ETHNOPHARMACOL, V45, P53, DOI 10.1016/0378-8741(94)01195-6 Batey R, 2000, ALCOHOL CLIN EXP RES, V24, P852, DOI 10.1111/j.1530-0277.2000.tb02065.x Beaubrun G, 2000, PSYCHIATR SERV, V51, P1130, DOI 10.1176/appi.ps.51.9.1130 Beijamini V, 2003, PHARMACOL RES, V48, P199, DOI 10.1016/S1043-6618(03)00097-5 Beijamini V, 2003, PHARMACOL BIOCHEM BE, V74, P1015, DOI 10.1016/S0091-3057(03)00034-0 BEJAR E, 1993, J ETHNOPHARMACOL, V39, P141, DOI 10.1016/0378-8741(93)90029-5 BENISHIN CG, 1991, PHARMACOLOGY, V42, P223, DOI 10.1159/000138801 Bhattacharya SK, 2000, PHYTOTHER RES, V14, P174, DOI 10.1002/(SICI)1099-1573(200005)14:3<174::AID-PTR624>3.0.CO;2-O Bhattacharya SK, 2003, PHARMACOL BIOCHEM BE, V75, P547, DOI 10.1016/S0091-3057(03)00110-2 Bhattacharya SK, 2002, PHYTOMEDICINE, V9, P167, DOI 10.1078/0944-7113-00089 Bhattacharya SK, 2000, PHYTOMEDICINE, V7, P463, DOI 10.1016/S0944-7113(00)80030-6 Bilia AR, 2002, LIFE SCI, V70, P2581, DOI 10.1016/S0024-3205(02)01555-2 BIRKS J, 2002, COCHRANE DB SYST REV, DOI DOI 10.1002/14651858.CD003120 Bopaiah CP, 2000, J ETHNOPHARMACOL, V72, P411, DOI 10.1016/S0378-8741(00)00232-4 Bores GM, 1996, J PHARMACOL EXP THER, V277, P728 Butterweck V, 2000, PLANTA MED, V66, P3, DOI 10.1055/s-2000-11119 Butterweck V, 2003, PHARMACOL BIOCHEM BE, V75, P557, DOI 10.1016/S0091-3057(03)00118-7 Butterweck V, 2003, CNS DRUGS, V17, P539, DOI 10.2165/00023210-200317080-00001 Butterweck V, 1997, PHARMACOPSYCHIATRY, V30, P117, DOI 10.1055/s-2007-979531 Butterweck V, 2003, LIFE SCI, V73, P627, DOI 10.1016/S0024-3205(03)00314-X Butterweck V, 2001, BIOL PHARM BULL, V24, P848, DOI 10.1248/bpb.24.848 Calapai G, 2001, PHARMACOPSYCHIATRY, V34, pS8, DOI 10.1055/s-2001-15507 Calapai G, 2001, PHARMACOPSYCHIATRY, V34, P45, DOI 10.1055/s-2001-15180 Camps P, 2000, MOL PHARMACOL, V57, P409 Cao YH, 2003, ANAL BIOANAL CHEM, V376, P691, DOI 10.1007/s00216-003-1961-7 Capasso A, 1996, J PHARM PHARMACOL, V48, P592, DOI 10.1111/j.2042-7158.1996.tb05979.x Carlini EA, 2003, PHARMACOL BIOCHEM BE, V75, P501, DOI 10.1016/S0091-3057(03)00112-6 Cervo L, 2002, PSYCHOPHARMACOLOGY, V164, P423, DOI 10.1007/s00213-002-1229-5 Chatterjee SS, 1998, LIFE SCI, V63, P499, DOI 10.1016/S0024-3205(98)00299-9 Chattopadhyay D, 2003, J ETHNOPHARMACOL, V85, P99, DOI 10.1016/S0378-8741(02)00379-3 Chau DT, 2001, NEUROSCIENCE, V104, P791, DOI 10.1016/S0306-4522(01)00133-6 Cheng DH, 1996, NEUROREPORT, V8, P97, DOI 10.1097/00001756-199612200-00020 Cheng J, 1999, J Tradit Chin Med, V19, P135 Chindo BA, 2003, J ETHNOPHARMACOL, V85, P131, DOI 10.1016/S0378-8741(02)00376-8 Cho J, 2002, LIFE SCI, V71, P591, DOI 10.1016/S0024-3205(02)01729-0 Cho J, 2001, LIFE SCI, V68, P1567, DOI 10.1016/S0024-3205(01)00944-4 Cho JS, 2000, J ETHNOPHARMACOL, V73, P31, DOI 10.1016/S0378-8741(00)00262-2 CHOPIN P, 1992, PSYCHOPHARMACOLOGY, V106, P26, DOI 10.1007/BF02253584 Chu NS, 2001, J BIOMED SCI, V8, P229, DOI 10.1007/BF02256596 Chu NS, 2002, ADDICT BIOL, V7, P111, DOI 10.1080/13556210120091473 CHUNG IW, 1995, PSYCHOPHARMACOL BULL, V31, P139 Chung IW, 2002, PHARMACOL BIOCHEM BE, V71, P191, DOI 10.1016/S0091-3057(01)00648-7 Churchill JD, 2002, INTEGR PHYS BEH SCI, V37, P178, DOI 10.1007/BF02734180 Cifuentes CM, 2001, J ETHNOPHARMACOL, V76, P223, DOI 10.1016/S0378-8741(01)00235-5 Cohen-Salmon C, 1997, J PHYSIOL-PARIS, V91, P291, DOI 10.1016/S0928-4257(97)82409-6 Coleta M, 2001, PHARMACOPSYCHIATRY, V34, pS20, DOI 10.1055/s-2001-15460 Cui Chengbin, 1995, Zhongguo Zhongyao Zazhi, V20, P36 Dajas F, 2003, NEUROTOX RES, V5, P425, DOI 10.1007/BF03033172 Dar A, 2000, PHARMACOL BIOCHEM BE, V65, P1, DOI 10.1016/S0091-3057(99)00179-3 Dar A, 1997, PHYTOMEDICINE, V4, P41, DOI 10.1016/S0944-7113(97)80026-8 Dar A, 1997, PHYTOTHER RES, V11, P174, DOI 10.1002/(SICI)1099-1573(199703)11:2<174::AID-PTR65>3.3.CO;2-2 Das A, 2002, PHARMACOL BIOCHEM BE, V73, P893, DOI 10.1016/S0091-3057(02)00940-1 Daudt R, 2000, PHYTOTHER RES, V14, P344, DOI 10.1002/1099-1573(200008)14:5<344::AID-PTR586>3.0.CO;2-3 de Andres AI, 1999, PHYTOTHER RES, V13, P575, DOI 10.1002/(SICI)1099-1573(199911)13:7<575::AID-PTR506>3.0.CO;2-W De Feo V, 2003, PHYTOTHER RES, V17, P661, DOI 10.1002/ptr.1225 Desai AK, 2003, AM J GERIAT PSYCHIAT, V11, P498, DOI 10.1176/appi.ajgp.11.5.498 DeSmet PAGM, 1997, DRUGS, V54, P801, DOI 10.2165/00003495-199754060-00003 Deutsch SI, 2003, LIFE SCI, V73, P2355, DOI 10.1016/S0024-3205(03)00642-8 Devi P. Uma, 2001, Indian Journal of Experimental Biology, V39, P185 Dhara AK, 2002, PHYTOTHER RES, V16, P326, DOI 10.1002/ptr.891 Dhawan K, 2003, J PHARM PHARM SCI, V6, P215 Dhawan K, 2002, J ALTERN COMPLEM MED, V8, P283, DOI 10.1089/10755530260127970 Dhawan K, 2001, FITOTERAPIA, V72, P922, DOI 10.1016/S0367-326X(01)00322-7 Dhawan K, 2001, J ETHNOPHARMACOL, V78, P165, DOI 10.1016/S0378-8741(01)00339-7 Dhuley JN, 2001, PHYTOTHER RES, V15, P524, DOI 10.1002/ptr.874 DUFFIELD PH, 1989, ARCH INT PHARMACOD T, V301, P81 Egashira N, 2003, PHYTOMEDICINE, V10, P467, DOI 10.1078/094471103322331403 Faruqi S, 1995, CONVULSIVE THER, V11, P241 Feltenstein MW, 2003, PHYTOTHER RES, V17, P210, DOI 10.1002/ptr.1107 Flausino OA, 2002, PHARMACOL BIOCHEM BE, V71, P251, DOI 10.1016/S0091-3057(01)00665-7 Fugh-Berman A, 1999, PSYCHOSOM MED, V61, P712, DOI 10.1097/00006842-199909000-00012 Galvao SMP, 2002, J ETHNOPHARMACOL, V79, P305, DOI 10.1016/S0378-8741(01)00402-0 Gambarana C, 2001, PHARMACOPSYCHIATRY, V34, pS42, DOI 10.1055/s-2001-15515 Gao Y, 2000, ACTA PHARMACOL SIN, V21, P1169 Gattu M, 1997, PHARMACOL BIOCHEM BE, V57, P793, DOI 10.1016/S0091-3057(96)00391-7 Ghosh L, 2002, PHYTOMEDICINE, V9, P202, DOI 10.1078/0944-7113-00115 GIORGI R, 1991, J ETHNOPHARMACOL, V34, P189, DOI 10.1016/0378-8741(91)90036-D Goutman JD, 2003, EUR J PHARMACOL, V461, P79, DOI 10.1016/S0014-2999(03)01309-8 Greeson JM, 2001, PSYCHOPHARMACOLOGY, V153, P402, DOI 10.1007/s002130000625 Guaraldo L, 2000, J ETHNOPHARMACOL, V72, P61, DOI 10.1016/S0378-8741(00)00198-7 Gupta Sanjeev K, 2003, Drug Metabol Drug Interact, V19, P211 Gupta YK, 2003, PHARMACOL BIOCHEM BE, V74, P579, DOI 10.1016/S0091-3057(02)01044-4 Ha JH, 2000, J ETHNOPHARMACOL, V73, P329, DOI 10.1016/S0378-8741(00)00313-5 Ha JH, 2001, PLANTA MED, V67, P877, DOI 10.1055/s-2001-18844 Hadjiivanova CI, 2002, PHYTOTHER RES, V16, P488, DOI 10.1002/ptr.933 HAJI A, 1994, J NAT PROD, V57, P387, DOI 10.1021/np50105a009 Han BH, 1998, J MED CHEM, V41, P2626, DOI 10.1021/jm970569j Handu S. S., 1997, Indian Journal of Pharmacology, V29, P258 Hasenohrl RU, 1996, PHARMACOL BIOCHEM BE, V53, P271, DOI 10.1016/0091-3057(95)02001-2 Hasenohrl RU, 1998, PHARMACOL BIOCHEM BE, V59, P527, DOI 10.1016/S0091-3057(97)00406-1 Havsteen BH, 2002, PHARMACOL THERAPEUT, V96, P67, DOI 10.1016/S0163-7258(02)00298-X Hellion-Ibarrola MC, 1999, J ETHNOPHARMACOL, V66, P271, DOI 10.1016/S0378-8741(99)00002-1 HIEN TTM, 1991, J ETHNOPHARMACOL, V34, P201, DOI 10.1016/0378-8741(91)90038-F HIROKAWA S, 1994, BIOL PHARM BULL, V17, P1182, DOI 10.1248/bpb.17.1182 Hong Gengxin, 1994, Zhongguo Zhongyao Zazhi, V19, P687 Houghton PJ, 2003, PHARMACOL BIOCHEM BE, V75, P497, DOI 10.1016/S0091-3057(03)00161-8 HOWES MJ, 2003, PHARM BIOCH BEHAV, V75, P501 Howes MJR, 2003, PHYTOTHER RES, V17, P1, DOI 10.1002/ptr.1280 Hoyer S, 1999, J NEURAL TRANSM, V106, P1171, DOI 10.1007/s007020050232 Hsieh MT, 2003, BIOL PHARM BULL, V26, P156, DOI 10.1248/bpb.26.156 Hsieh MT, 2002, PLANTA MED, V68, P754, DOI 10.1055/s-2002-33800 Hsieh MT, 1999, PHYTOTHER RES, V13, P256, DOI 10.1002/(SICI)1099-1573(199905)13:3<256::AID-PTR435>3.0.CO;2-H Hsieh MT, 2001, PHARMACOL RES, V43, P17, DOI 10.1006/phrs.2000.0756 Hsieh MT, 1997, J ETHNOPHARMACOL, V56, P45, DOI 10.1016/S0378-8741(96)01501-2 Hsieh MT, 2000, PHYTOTHER RES, V14, P375, DOI 10.1002/1099-1573(200008)14:5<375::AID-PTR593>3.0.CO;2-5 Hsieh MT, 2000, AM J CHINESE MED, V28, P263, DOI 10.1142/S0192415X00000313 Hu JF, 2000, PLANTA MED, V66, P662, DOI 10.1055/s-2000-8628 Huang SH, 2003, EUR J PHARMACOL, V464, P1, DOI 10.1016/S0014-2999(03)01344-X Hui KM, 2002, BIOCHEM PHARMACOL, V64, P1415, DOI 10.1016/S0006-2952(02)01347-3 Ichikawa H, 2003, AM J CHINESE MED, V31, P509, DOI 10.1142/S0192415X03001193 Iliev A, 1999, METHOD FIND EXP CLIN, V21, P297, DOI 10.1358/mf.1999.21.4.538182 Irie T, 2001, NEUROSCI LETT, V312, P121, DOI 10.1016/S0304-3940(01)02201-7 Irie Y, 2003, BRAIN RES, V963, P282, DOI 10.1016/S0006-8993(02)04050-7 Ishikawa T, 2000, PSYCHIAT CLIN NEUROS, V54, P579, DOI 10.1046/j.1440-1819.2000.00756.x JAENICKE B, 1991, Archives of Pharmacal Research (Seoul), V14, P25, DOI 10.1007/BF02857809 Jain NN, 2003, PHARMACOL BIOCHEM BE, V75, P529, DOI 10.1016/S0091-3057(03)00130-8 Jaiswal Arun K., 1994, Indian Journal of Experimental Biology, V32, P489 Jin SH, 1999, J ETHNOPHARMACOL, V66, P123, DOI 10.1016/S0378-8741(98)00190-1 JOHNSTON GAR, 1975, NATURE, V258, P625, DOI 10.1038/258627a0 JUSSOFIE A, 1994, PSYCHOPHARMACOLOGY, V116, P469, DOI 10.1007/BF02247480 Kanchanapoom T, 2001, PHYTOCHEMISTRY, V58, P337, DOI 10.1016/S0031-9422(01)00236-9 Kang TH, 2002, EUR J PHARMACOL, V444, P39, DOI 10.1016/S0014-2999(02)01608-4 Kanski J, 2002, J NUTR BIOCHEM, V13, P273, DOI 10.1016/S0955-2863(01)00215-7 Kennedy DO, 2003, NEUROPSYCHOPHARMACOL, V28, P1871, DOI 10.1038/sj.npp.1300230 Kennedy DO, 2002, PHARMACOL BIOCHEM BE, V72, P953, DOI 10.1016/S0091-3057(02)00777-3 Kennedy DO, 2003, PHARMACOL BIOCHEM BE, V75, P687, DOI 10.1016/S0091-3057(03)00126-6 Keyler DE, 2002, J ALTERN COMPLEM MED, V8, P175, DOI 10.1089/107555302317371460 Khalifa AE, 2001, J ETHNOPHARMACOL, V76, P49, DOI 10.1016/S0378-8741(01)00210-0 Kim DW, 2000, PHYTOTHER RES, V14, P501, DOI 10.1002/1099-1573(200011)14:7<501::AID-PTR655>3.0.CO;2-B Kim DW, 2000, J ETHNOPHARMACOL, V72, P53, DOI 10.1016/S0378-8741(00)00197-5 Kim HJ, 2003, J ETHNOPHARMACOL, V84, P95, DOI 10.1016/S0378-8741(02)00290-8 Kim KA, 1999, PLANTA MED, V65, P39, DOI 10.1055/s-1999-13959 Kim SR, 2002, J NAT PROD, V65, P1696, DOI 10.1021/np0202172 Klusa V, 2001, PHARMACOPSYCHIATRY, V34, pS61, DOI 10.1055/s-2001-15451 Koo BS, 2003, BIOL PHARM BULL, V26, P978, DOI 10.1248/bpb.26.978 Koo KA, 2002, CHEM PHARM BULL, V50, P834, DOI 10.1248/cpb.50.834 Kumar MHV, 2002, J ETHNOPHARMACOL, V79, P253, DOI 10.1016/S0378-8741(01)00394-4 Kumar MHV, 2002, PHYTOMEDICINE, V9, P302, DOI 10.1078/0944-7113-00136 Kumar V, 2000, Indian J Exp Biol, V38, P36 Kumar V, 2000, J ETHNOPHARMACOL, V72, P119, DOI 10.1016/S0378-8741(00)00216-6 Kumar V, 2002, PHYTOTHER RES, V16, P210, DOI 10.1002/ptr.1101 Kumar Vikas, 2000, Indian Journal of Experimental Biology, V38, P343 Kumar Vikas, 1999, Indian Journal of Experimental Biology, V37, P1171 Kuribara H, 1999, PHYTOTHER RES, V13, P593, DOI 10.1002/(SICI)1099-1573(199911)13:7<593::AID-PTR520>3.0.CO;2-F Kuribara H, 2000, J PHARM PHARMACOL, V52, P1425, DOI 10.1211/0022357001777432 Kuribara H, 1998, J PHARM PHARMACOL, V50, P819, DOI 10.1111/j.2042-7158.1998.tb07146.x Kuribara H, 2001, PHYTOTHER RES, V15, P142, DOI 10.1002/ptr.698 Kuribara H, 2000, PHARMACOL BIOCHEM BE, V67, P597, DOI 10.1016/S0091-3057(00)00401-9 Lake J, 2000, ALTERN THER HEALTH M, V6, P36 Lee AL, 2002, BIPOLAR DISORD, V4, P117, DOI 10.1034/j.1399-5618.2002.01144.x Lee BB, 2003, LIFE SCI, V74, P435, DOI 10.1016/j.lfs.2003.06.034 Lee SC, 2000, J ETHNOPHARMACOL, V69, P1, DOI 10.1016/S0378-8741(99)00078-1 Lee TF, 2001, PLANTA MED, V67, P634, DOI 10.1055/s-2001-17366 Lee YS, 1999, ARCH PHARM RES, V22, P404, DOI 10.1007/BF02979066 Leewanich P, 1998, EUR J PHARMACOL, V348, P271, DOI 10.1016/S0014-2999(98)00147-2 Leewanich P, 1997, EUR J PHARMACOL, V332, P321, DOI 10.1016/S0014-2999(97)01097-2 Leewanich P, 1996, BIOL PHARM BULL, V19, P394, DOI 10.1248/bpb.19.394 Li JM, 2003, LIFE SCI, V74, P55, DOI 10.1016/j.lfs.2003.06.030 Li M, 2001, Zhong Yao Cai, V24, P40 Li YF, 2001, ACTA PHARMACOL SIN, V22, P1084 Li Z, 1999, J PHARM PHARMACOL, V51, P435, DOI 10.1211/0022357991772484 Liao JF, 2003, EUR J PHARMACOL, V464, P141, DOI 10.1016/S0014-2999(03)01422-5 Liao JF, 1998, PLANTA MED, V64, P571, DOI 10.1055/s-2006-957517 Liao JF, 1998, J ETHNOPHARMACOL, V61, P185, DOI 10.1016/S0378-8741(98)00042-7 Lilienfeld S, 2002, CNS DRUG REV, V8, P159 Lin CCK, 2003, NEUROPSYCHOBIOLOGY, V47, P47, DOI 10.1159/000068875 Lin RC, 1996, ALCOHOL CLIN EXP RES, V20, P659, DOI 10.1111/j.1530-0277.1996.tb01668.x Lin RC, 1998, AM J CLIN NUTR, V68, p1512S, DOI 10.1093/ajcn/68.6.1512S Lin YC, 2003, AM J CHINESE MED, V31, P543, DOI 10.1142/S0192415X03001302 Linde K, 2001, INT J EPIDEMIOL, V30, P526, DOI 10.1093/ije/30.3.526 Linde K, 2001, BMC Complement Altern Med, V1, P5, DOI 10.1186/1472-6882-1-5 Liu J, 1998, J Tradit Chin Med, V18, P49 LIU JK, 1993, NEUROPHARMACOLOGY, V32, P659 Liu Z Y, 1993, Zhongguo Zhong Xi Yi Jie He Za Zhi, V13, P675 LODGE D, 1977, BRAIN RES, V136, P513, DOI 10.1016/0006-8993(77)90075-0 Lopez S, 2002, LIFE SCI, V71, P2521, DOI 10.1016/S0024-3205(02)02034-9 Luo L, 2000, J ETHNOPHARMACOL, V73, P277, DOI 10.1016/S0378-8741(00)00242-7 MA TC, 1991, ACTA PHARM SINIC, V12, P403 Maity TK, 2000, PHYTOTHER RES, V14, P120, DOI 10.1002/(SICI)1099-1573(200003)14:2<120::AID-PTR557>3.0.CO;2-0 Marder M, 2003, PHARMACOL BIOCHEM BE, V75, P537, DOI 10.1016/S0091-3057(03)00121-7 Maruyama Y, 1998, J NAT PROD, V61, P135, DOI 10.1021/np9702446 Maruyama Y, 2000, CNS DRUG REV, V6, P35 Maruyama Y, 2001, J PHARM PHARMACOL, V53, P721, DOI 10.1211/0022357011775848 MEHTA AK, 1991, INDIAN J MED RES-B, V94, P312 Mizoguchi K, 2003, PHARMACOL BIOCHEM BE, V75, P419, DOI 10.1016/S0091-3057(03)00131-X Mizoguchi K, 2002, LIFE SCI, V72, P67, DOI 10.1016/S0024-3205(02)02199-9 Mizowaki M, 2001, LIFE SCI, V69, P2167, DOI 10.1016/S0024-3205(01)01290-5 Mizushima Y, 2003, PHYTOTHER RES, V17, P542, DOI 10.1002/ptr.1193 Mohamed AF, 2000, J PHARM PHARMACOL, V52, P1553, DOI 10.1211/0022357001777612 Molina M, 1999, PHYTOMEDICINE, V6, P319, DOI 10.1016/S0944-7113(99)80052-X MoraesCerdeira RM, 1997, PLANTA MED, V63, P472, DOI 10.1055/s-2006-957740 Morais LCSL, 1998, J ETHNOPHARMACOL, V62, P57, DOI 10.1016/S0378-8741(98)00044-0 Mukherjee K, 2002, PHYTOTHER RES, V16, P696, DOI 10.1002/ptr.1017 Mukherjee PK, 1996, J ETHNOPHARMACOL, V54, P63, DOI 10.1016/S0378-8741(96)01455-9 Muller WE, 1997, PHARMACOPSYCHIATRY, V30, P102, DOI 10.1055/s-2007-979528 Muller WE, 1998, PHARMACOPSYCHIATRY, V31, P16, DOI 10.1055/s-2007-979341 Muruganandam A V, 2001, Indian J Exp Biol, V39, P1302 Murugesan T, 2001, PHYTOMEDICINE, V8, P472, DOI 10.1078/S0944-7113(04)70068-9 Nahrstedt A, 1997, PHARMACOPSYCHIATRY, V30, P129, DOI 10.1055/s-2007-979533 Naidu Pattipati S., 2003, Journal of Medicinal Food, V6, P107 Nakazawa T, 2003, BIOL PHARM BULL, V26, P474, DOI 10.1248/bpb.26.474 NALINI K, 1995, J ETHNOPHARMACOL, V47, P101, DOI 10.1016/0378-8741(95)01264-E Nathan PJ, 2001, J PSYCHOPHARMACOL, V15, P47, DOI 10.1177/026988110101500109 Nguyen T T, 1995, Pharmacol Biochem Behav, V52, P427, DOI 10.1016/0091-3057(95)00133-H NISHIYAMA N, 1994, BIOL PHARM BULL, V17, P1679, DOI 10.1248/bpb.17.1679 NISHIYAMA N, 1995, BIOL PHARM BULL, V18, P1498, DOI 10.1248/bpb.18.1498 NISHIYAMA N, 1995, BIOL PHARM BULL, V18, P1513, DOI 10.1248/bpb.18.1513 NISHIYAMA N, 1994, BIOL PHARM BULL, V17, P1481, DOI 10.1248/bpb.17.1481 Nishiyama N, 1996, BIOL PHARM BULL, V19, P388, DOI 10.1248/bpb.19.388 NITTA H, 1995, BIOL PHARM BULL, V18, P1439, DOI 10.1248/bpb.18.1439 Nogueira E, 1998, J ETHNOPHARMACOL, V61, P111, DOI 10.1016/S0378-8741(98)00022-1 Nogueira E, 1998, J ETHNOPHARMACOL, V61, P119, DOI 10.1016/S0378-8741(98)00023-3 Nogueira E, 2000, J ETHNOPHARMACOL, V70, P275, DOI 10.1016/S0378-8741(99)00205-6 Noldner M, 2002, PLANTA MED, V68, P577, DOI 10.1055/s-2002-32908 Nomura Y, 1997, Nihon Yakurigaku Zasshi, V110 Suppl 1, p142P OHTA H, 1993, JPN J PHARMACOL, V62, P345, DOI 10.1254/jjp.62.345 OHTA H, 1993, PHARMACOL BIOCHEM BE, V45, P719, DOI 10.1016/0091-3057(93)90530-7 OHTA H, 1993, JPN J PHARMACOL, V62, P199, DOI 10.1254/jjp.62.199 Okuyama E, 1999, PLANTA MED, V65, P115, DOI 10.1055/s-1999-14055 Olajide OA, 1999, PHYTOTHER RES, V13, P425, DOI 10.1002/(SICI)1099-1573(199908/09)13:5<425::AID-PTR466>3.0.CO;2-1 Olin J., 2002, COCHRANE DB SYST REV, V3, DOI [10.1002/14651858.CD001747, DOI 10.1002/14651858.CD001747] Overstreet DH, 2003, PHARMACOL BIOCHEM BE, V75, P619, DOI 10.1016/S0091-3057(03)00114-X Pal S, 1999, J PHARM PHARMACOL, V51, P313, DOI 10.1211/0022357991772312 Panocka I, 2000, PHARMACOL BIOCHEM BE, V66, P105, DOI 10.1016/S0091-3057(00)00193-3 Park CH, 2002, J NEUROSCI RES, V70, P484, DOI 10.1002/jnr.10429 Park CH, 2000, J NEUROCHEM, V74, P244, DOI 10.1046/j.1471-4159.2000.0740244.x Park CH, 1996, PLANTA MED, V62, P405, DOI 10.1055/s-2006-957926 Park EJ, 2003, NEUROREPORT, V14, P399, DOI 10.1097/01.wnr.0000058035.29600.24 Park SY, 2002, J NAT PROD, V65, P1227, DOI 10.1021/np010039x Pawar R, 2001, PLANTA MED, V67, P752, DOI 10.1055/s-2001-18351 Peng WH, 2000, J ETHNOPHARMACOL, V72, P435, DOI 10.1016/S0378-8741(00)00255-5 Perez RM, 1998, J ETHNOPHARMACOL, V62, P43, DOI 10.1016/S0378-8741(98)00059-2 Perry EK, 1999, J PHARM PHARMACOL, V51, P527, DOI 10.1211/0022357991772808 Perry G, 2002, FREE RADICAL BIO MED, V33, P1475, DOI 10.1016/S0891-5849(02)01113-9 Perry NSL, 2003, PHARMACOL BIOCHEM BE, V75, P651, DOI 10.1016/S0091-3057(03)00108-4 Petkov V D, 1992, Acta Physiol Pharmacol Bulg, V18, P41 Pires SLD, 2000, PHYTOMEDICINE, V7, P91 Prado B, 2002, PHYTOTHER RES, V16, P740, DOI 10.1002/ptr.1060 Qian Yi-Hua, 2002, Anatomical Science International, V77, P196, DOI 10.1046/j.0022-7722.2002.00029.x Rai KS, 2002, FITOTERAPIA, V73, P685, DOI 10.1016/S0367-326X(02)00249-6 RAI KS, 2001, J PHARM, V45, P305 Rex A, 2002, PROG NEURO-PSYCHOPH, V26, P855, DOI 10.1016/S0278-5846(01)00330-X Rezvani AH, 2003, PHARMACOL BIOCHEM BE, V75, P593, DOI 10.1016/S0091-3057(03)00124-2 Rickard NS, 2001, PHARMACOL BIOCHEM BE, V69, P351, DOI 10.1016/S0091-3057(01)00522-6 Rocha FF, 2002, PHARMACOL BIOCHEM BE, V71, P183, DOI 10.1016/S0091-3057(01)00695-5 Rodrigues ALS, 2002, LIFE SCI, V70, P1347, DOI 10.1016/S0024-3205(01)01498-9 Rosse RB, 2002, CLIN NEUROPHARMACOL, V25, P272, DOI 10.1097/00002826-200209000-00010 Sairam K, 2002, PHYTOMEDICINE, V9, P207, DOI 10.1078/0944-7113-00116 Salgueiro JB, 1997, PHARMACOL BIOCHEM BE, V58, P887, DOI 10.1016/S0091-3057(97)00054-3 Salim KN, 1997, MOL BRAIN RES, V47, P177, DOI 10.1016/S0169-328X(97)00042-9 Samochocki M, 2003, J PHARMACOL EXP THER, V305, P1024, DOI 10.1124/jpet.102.045773 Sanchez-Mateo CC, 2002, J ETHNOPHARMACOL, V79, P119, DOI 10.1016/S0378-8741(01)00393-2 Santos ARS, 1999, J PHARMACOL EXP THER, V289, P417 Satyan KS, 1998, PSYCHOPHARMACOLOGY, V136, P148, DOI 10.1007/s002130050550 Savelev S, 2003, PHARMACOL BIOCHEM BE, V75, P661, DOI 10.1016/S0091-3057(03)00125-4 Schliebs R, 1997, NEUROCHEM INT, V30, P181, DOI 10.1016/S0197-0186(96)00025-3 Schulz V, 2003, PHYTOMEDICINE, V10, P74, DOI 10.1078/1433-187X-00302 Shaheen HM, 2000, PHYTOTHER RES, V14, P107, DOI 10.1002/(SICI)1099-1573(200003)14:2<107::AID-PTR602>3.0.CO;2-Z Shan SJ, 2002, PHYTOTHER RES, V16, P449, DOI 10.1002/ptr.965 Shen X. L., 1994, Yaoxue Xuebao, V29, P887 Shih HC, 2000, AM J CHINESE MED, V28, P77, DOI 10.1142/S0192415X00000106 Shou CH, 2002, PLANTA MED, V68, P799, DOI 10.1055/s-2002-34398 Siddiqui BS, 1997, J NAT PROD, V60, P540, DOI 10.1021/np960679d Sinclair S, 1998, Altern Med Rev, V3, P338 Singh R. K., 1998, Indian Journal of Experimental Biology, V36, P187 Singh YN, 2002, CNS DRUGS, V16, P731, DOI 10.2165/00023210-200216110-00002 Sloley BD, 1999, J PSYCHIATR NEUROSCI, V24, P442 Smith KK, 2001, PSYCHOPHARMACOLOGY, V155, P86, DOI 10.1007/s002130100686 SMRIGA M, 1995, BIOL PHARM BULL, V18, P518, DOI 10.1248/bpb.18.518 Soon Y. Y., 2002, SMJ Singapore Medical Journal, V43, P077 SOULIMANI R, 1991, PLANTA MED, V57, P105, DOI 10.1055/s-2006-960042 Soulimani R, 1997, J ETHNOPHARMACOL, V57, P11, DOI 10.1016/S0378-8741(97)00042-1 Squires RF, 1999, NEUROCHEM RES, V24, P1593, DOI 10.1023/A:1021116502548 Stoll S, 1996, PHARMACOPSYCHIATRY, V29, P144 Suba V, 2002, J ETHNOPHARMACOL, V81, P251, DOI 10.1016/S0378-8741(02)00087-9 Sukma M, 2003, J ETHNOPHARMACOL, V85, P175, DOI 10.1016/S0378-8741(02)00362-8 Sumathi T, 2002, J ETHNOPHARMACOL, V82, P75, DOI 10.1016/S0378-8741(02)00139-3 Sumathy T, 2002, FITOTERAPIA, V73, P381, DOI 10.1016/S0367-326X(02)00114-4 SWEENEY JE, 1990, PSYCHOPHARMACOLOGY, V102, P191, DOI 10.1007/BF02245921 SWEENEY JE, 1988, PHARMACOL BIOCHEM BE, V31, P141, DOI 10.1016/0091-3057(88)90325-5 SWEENEY JE, 1989, PHARMACOL BIOCHEM BE, V34, P129, DOI 10.1016/0091-3057(89)90364-X SWERDLOW NR, 1994, ARCH GEN PSYCHIAT, V51, P139 Tachikawa E, 1999, EUR J PHARMACOL, V369, P23, DOI 10.1016/S0014-2999(99)00043-6 Tadano T, 1998, AM J CHINESE MED, V26, P127, DOI 10.1142/S0192415X98000178 Tadano T, 2000, AM J CHINESE MED, V28, P97, DOI 10.1142/S0192415X0000012X Takeda H, 2002, EUR J PHARMACOL, V449, P261, DOI 10.1016/S0014-2999(02)02037-X Takeda Hiroshi, 2002, Nihon Shinkei Seishin Yakurigaku Zasshi, V22, P15 Thomas G, 1999, PHYTOTHER RES, V13, P9, DOI 10.1002/(SICI)1099-1573(199902)13:1<9::AID-PTR389>3.0.CO;2-E Thongsaard W, 2002, NEUROSCI LETT, V329, P129, DOI 10.1016/S0304-3940(02)00658-4 Thongsaard W, 1996, PHARMACOL BIOCHEM BE, V53, P753, DOI 10.1016/0091-3057(95)02088-8 Thongsaard W, 1997, EUR J PHARMACOL, V319, P157, DOI 10.1016/S0014-2999(96)00850-3 Tildesley NTJ, 2003, PHARMACOL BIOCHEM BE, V75, P669, DOI 10.1016/S0091-3057(03)00122-9 Toda S, 2000, PHYTOTHER RES, V14, P294, DOI 10.1002/1099-1573(200006)14:4<294::AID-PTR627>3.0.CO;2-6 Topic B, 2002, PHYTOTHER RES, V16, P312, DOI 10.1002/ptr.870 Topic B, 2002, NEUROBIOL AGING, V23, P135, DOI 10.1016/S0197-4580(01)00241-X Trentin AP, 1997, J PHARM PHARMACOL, V49, P567, DOI 10.1111/j.2042-7158.1997.tb06843.x Tripathi Yamini B., 1996, Indian Journal of Experimental Biology, V34, P523 Vandenbogaerde A, 2000, PHARMACOL BIOCHEM BE, V65, P627, DOI 10.1016/S0091-3057(99)00233-6 VIOLA H, 1994, J ETHNOPHARMACOL, V44, P47, DOI 10.1016/0378-8741(94)90098-1 VIOLA H, 1995, PLANTA MED, V61, P213, DOI 10.1055/s-2006-958058 Vohora D, 2000, J ETHNOPHARMACOL, V71, P383, DOI 10.1016/S0378-8741(99)00213-5 VOHORA SB, 1990, J ETHNOPHARMACOL, V28, P53, DOI 10.1016/0378-8741(90)90065-2 Wake G, 2000, J ETHNOPHARMACOL, V69, P105, DOI 10.1016/S0378-8741(99)00113-0 Walter G, 1999, AUST NZ J PSYCHIAT, V33, P482, DOI 10.1080/j.1440-1614.1999.00568.x Wang HH, 2001, EUR J PHARMACOL, V413, P221, DOI 10.1016/S0014-2999(00)00913-4 Wang HY, 2002, PLANTA MED, V68, P1059, DOI 10.1055/s-2002-36357 Wang LS, 2002, BRAIN RES, V949, P162, DOI 10.1016/S0006-8993(02)02977-3 Wang T, 1998, EUR J PHARMACOL, V349, P137, DOI 10.1016/S0014-2999(98)00199-X Ward CP, 2002, PHARMACOL BIOCHEM BE, V72, P913, DOI 10.1016/S0091-3057(02)00768-2 Wasowski C, 2002, PLANTA MED, V68, P934, DOI 10.1055/s-2002-34936 WATANABE H, 1983, J PHARMACOBIO-DYNAM, V6, P793 Watanabe H, 2003, PHARMACOL BIOCHEM BE, V75, P635, DOI 10.1016/S0091-3057(03)00109-6 Wei X L, 2000, Sheng Li Ke Xue Jin Zhan, V31, P227 Wen TC, 1996, ACTA NEUROPATHOL, V91, P15 WINTER E, 1991, PHARMACOL BIOCHEM BE, V38, P109, DOI 10.1016/0091-3057(91)90597-U WOLFMAN C, 1994, PHARMACOL BIOCHEM BE, V47, P1, DOI 10.1016/0091-3057(94)90103-1 Wong AHC, 1998, ARCH GEN PSYCHIAT, V55, P1033, DOI 10.1001/archpsyc.55.11.1033 Woodruff-Pak DS, 2003, NEUROSCIENCE, V117, P439, DOI 10.1016/S0306-4522(02)00872-2 Woodruff-Pak DS, 2001, P NATL ACAD SCI USA, V98, P2089, DOI 10.1073/pnas.031584398 Wu CR, 1996, PLANTA MED, V62, P317, DOI 10.1055/s-2006-957892 Wu W, 1997, J Tradit Chin Med, V17, P220 XIONG ZQ, 1995, PHARMACOL BIOCHEM BE, V51, P415, DOI 10.1016/0091-3057(94)00416-G Xu JH, 2000, J ETHNOPHARMACOL, V73, P405, DOI 10.1016/S0378-8741(00)00303-2 Yabe T, 2003, PHYTOMEDICINE, V10, P106, DOI 10.1078/094471103321659799 Yamazaki M, 2001, BIOL PHARM BULL, V24, P1434, DOI 10.1248/bpb.24.1434 Yan JJ, 2001, BRIT J PHARMACOL, V133, P89, DOI 10.1038/sj.bjp.0704047 YANG HO, 1995, PLANTA MED, V61, P37, DOI 10.1055/s-2006-957995 Yang HO, 1998, PLANTA MED, V64, P73, DOI 10.1055/s-2006-957371 Yao JK, 2001, CNS DRUGS, V15, P287, DOI 10.2165/00023210-200115040-00004 Ye JW, 1999, J PHARMACOL EXP THER, V288, P814 Ye JW, 2000, ACTA PHARMACOL SIN, V21, P65 Yu ZF, 2002, J ETHNOPHARMACOL, V83, P161, DOI 10.1016/S0378-8741(02)00211-8 Yuzurihara M, 1999, PHYTOTHER RES, V13, P233, DOI 10.1002/(SICI)1099-1573(199905)13:3<233::AID-PTR416>3.0.CO;2-R Yuzurihara M, 2000, PHARMACOL BIOCHEM BE, V67, P489, DOI 10.1016/S0091-3057(00)00393-2 Zangara A, 2003, PHARMACOL BIOCHEM BE, V75, P675, DOI 10.1016/S0091-3057(03)00111-4 Zanoli P, 2000, FITOTERAPIA, V71, pS117, DOI 10.1016/S0367-326X(00)00186-6 Zarotsky V, 2003, AM J HEALTH-SYST PH, V60, P446, DOI 10.1093/ajhp/60.5.446 Zhang JT, 2002, THERAPIE, V57, P137 Zhang XY, 2001, J CLIN PSYCHIAT, V62, P878, DOI 10.4088/JCP.v62n1107 ZHANG YX, 1994, BIOL PHARM BULL, V17, P1199, DOI 10.1248/bpb.17.1199 Zhang ZH, 2003, EUR J PHARMACOL, V467, P41, DOI 10.1016/S0014-2999(03)01597-8 Zhang ZJ, 2003, LIFE SCI, V73, P2443, DOI 10.1016/S0024-3205(03)00649-0 Zhang ZQ, 2002, PHARMACOL BIOCHEM BE, V72, P39, DOI 10.1016/S0091-3057(01)00730-4 Zhao RZ, 1998, NEUROREPORT, V9, P1619, DOI 10.1097/00001756-199805110-00066 Zhong YM, 2000, PHYSIOL BEHAV, V69, P511, DOI 10.1016/S0031-9384(00)00206-7 ZHOU YA, 1994, BIOCHEM BIOPH RES CO, V202, P148, DOI 10.1006/bbrc.1994.1905 Zia A, 1995, J ETHNOPHARMACOL, V49, P33, DOI 10.1016/0378-8741(95)01300-8 NR 367 TC 209 Z9 230 U1 1 U2 28 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0024-3205 EI 1879-0631 J9 LIFE SCI JI Life Sci. PD AUG 20 PY 2004 VL 75 IS 14 BP 1659 EP 1699 DI 10.1016/j.lfs.2004.04.014 PG 41 WC Medicine, Research & Experimental; Pharmacology & Pharmacy SC Research & Experimental Medicine; Pharmacology & Pharmacy GA 842NW UT WOS:000223012100001 PM 15268969 DA 2021-10-15 ER PT J AU Wang, LL Han, GT Zhang, YM AF Wang, Leilei Han, Guangting Zhang, Yuanming TI Comparative study of composition, structure and properties of Apocynum venetum fibers under different pretreatments SO CARBOHYDRATE POLYMERS LA English DT Article DE Apocynum veneturn; cellulose fiber; bast fiber ID CRYSTALLINITY; COMPONENTS; LUOBUMA AB in this paper, the chemical degumming methods, briefly, peeled bast by hand (Fiber-H) and by machine (Fiber-M), as well as the bacterial degumming method (Fiber-B), were used to obtain the Apocyntim venetum fibers and the fibers separately obtained by above-mentioned methods as well as the Bast of the Apocyntim venetum had been characterized by the Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM) and mechanical property measurement. It was found that the Bast showed the structure of cellulose I and the cellulose I structure was well preserved in all treated A. veneturn fibers according to the FTIR and XRD results. Meanwhile, as seen from the SEM images, the treated fibers can be directly suitable for textile industry, which was further confirmed by the mechanical property measurements. It is interesting to note that the crystallinity, the degree of orientation and the mechanical properties of Fiber-B only have slight differences with those of Fiber-H and Fiber-M. These results suggested that the bacterial degumming method had more industrial applications due to its high efficiency, low cost and especially environmentally-benign nature than the chemical degumming methods. (C) 2007 Elsevier Ltd. All rights reserved. C1 Qingdao Univ, Incubat Base, State Key Lab Adv Fiber Mat & Modern Text, Qingdao 266071, Peoples R China. RP Han, GT (corresponding author), Qingdao Univ, Incubat Base, State Key Lab Adv Fiber Mat & Modern Text, Qingdao 266071, Peoples R China. EM kychgt@qdu.edu.cn CR Butterweck V, 2003, PHARMACOL BIOCHEM BE, V75, P557, DOI 10.1016/S0091-3057(03)00118-7 Cao JN, 1999, POLYM INT, V48, P1027, DOI 10.1002/(SICI)1097-0126(199910)48:10<1027::AID-PI264>3.0.CO;2-9 Cave ID, 1997, WOOD SCI TECHNOL, V31, P143, DOI 10.1007/s002260050023 DURING JR, 1991, VIBRATIONAL SPECTRA Dyer J., 1985, HDB FIBER SCI TECHNO, V4, P774 Ganjyal GM, 2004, J APPL POLYM SCI, V93, P2627, DOI 10.1002/app.20843 Guo PZ, 2006, CHEMPHYSCHEM, V7, P385, DOI 10.1002/cphc.200500268 Hakkinen S, 1998, J CHROMATOGR A, V829, P91, DOI 10.1016/S0021-9673(98)00756-0 HAN GT, 2004, P 83 TIWC, V1, P24 HAN GT, 2004, P 83 TIWC, V2, P643 [韩光亭 HAN Guangting], 2006, [纺织学报, Journal of Textile Research], V27, P30 HINDELEH AM, 1971, J PHYS D APPL PHYS, V4, P259, DOI 10.1088/0022-3727/4/2/311 HINDELEH AM, 1980, TEXT RES J, V50, P667, DOI 10.1177/004051758005001106 Hu XP, 1996, J POLYM SCI POL PHYS, V34, P1451, DOI 10.1002/(SICI)1099-0488(199606)34:8<1451::AID-POLB8>3.0.CO;2-V Keekes J., 2003, NAT MATER, V2, P810 Lei Zhen-Huan, 1995, Natural Medicines, V49, P475 MEREDITH R, 1953, BRIT J APPL PHYS, V4, P369, DOI 10.1088/0508-3443/4/12/304 Mohanty A. K., 2005, NATURAL FIBERS BIOPL MORTON EW, 1993, PHYS PROPERTIES TEXT, P159 Murakami T, 2001, CHEM PHARM BULL, V49, P845, DOI 10.1248/cpb.49.845 Netravali A.N., 2003, MATER TODAY, V6, P22, DOI DOI 10.1016/S1369-7021(03)00427-9 NISHIBE S, 2002, FOREIGN MED TRIDIT C, V24, P182 Reddy N, 2005, POLYMER, V46, P5494, DOI 10.1016/j.polymer.2005.04.073 Segal L., 1959, TEXT RES J, V29, P786, DOI 10.1177/004051755902901003 Silverstein R.M., 1998, SPECTROMETRIC IDENTI, V6th SNYDER RG, 1967, J CHEM PHYS, V47, P1316, DOI 10.1063/1.1712087 Sun RC, 1996, J APPL POLYM SCI, V62, P1473 Weimick P. H., 2002, FALL TECHN C TRAD FA, P276 [吴红玲 Wu Hongling], 2004, [兰州理工大学学报, Journal of Gansu University of Technology], V30, P76 XING SY, 2001, BEIJING TEXTILE J, V22, P56 Yokozawa T, 2004, FOOD CHEM TOXICOL, V42, P975, DOI 10.1016/j.fct.2004.02.010 Yokozawa T, 2002, BIOL PHARM BULL, V25, P748, DOI 10.1248/bpb.25.748 YOKZAWA T, 2002, BIOL PHARM BULL, V25, P748 Zafeiropoulos NE, 2002, COMPOS PART A-APPL S, V33, P1083, DOI 10.1016/S1359-835X(02)00082-9 ZHANG YM, 2005, PLANT FIBERS PRODUCT, V27, P81 NR 35 TC 105 Z9 115 U1 2 U2 48 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0144-8617 EI 1879-1344 J9 CARBOHYD POLYM JI Carbohydr. Polym. PD JUN 1 PY 2007 VL 69 IS 2 BP 391 EP 397 DI 10.1016/j.carbpol.2006.12.028 PG 7 WC Chemistry, Applied; Chemistry, Organic; Polymer Science SC Chemistry; Polymer Science GA 173VQ UT WOS:000246901000025 DA 2021-10-15 ER PT J AU Grundmann, O Nakajima, JI Seo, S Butterweck, V AF Grundmann, Oliver Nakajima, Jun-Ichiro Seo, Shujiro Butterweck, Veronika TI Anti-anxiety effects of Apocynum venetum L. in the elevated plus maze test SO JOURNAL OF ETHNOPHARMACOLOGY LA English DT Article DE anxiolytic effect; benzodiazepines; elevated plus maze; open field; Apocynum venetum; GABA receptor; buspirone; 5-HT1A receptor ID ANTAGONIST; BUSPIRONE; RESPONSES; DIAZEPAM; EXTRACT; AGONIST AB The purpose of this study was to characterize the putative anxiolytic-like activity of an ethanolic extract prepared from the leaves of Apocynum venetum (AV) using the elevated plus maze (EPM) in mice. Male C75BL/6 mice were either treated orally with the AV extract or the positive controls diazepam and buspirone, respectively, 1 h before behavioral evaluation in the EPM. A single treatment of AV extract markedly increased the percentage time spent on and the number of entries into the open arms of the EPM in doses of 30 and 125 mg/kg p.o., respectively. This effect was comparable to that of the benzodiazepine diazepam (1.5 mg/kg p.o.) and the 5-HT1A agonist buspirone (10 mg/kg p.o.). The effects of AV in 125 mg/kg were effectively antagonized by the benzodiazepine antagonist flumazenil (0.3 mg/kg i.p.). However, the effects of AV extract could only partially be blocked by the unspecific 5-HT1A receptor antagonist WAY-100635 (0.5 mg/kg i.p.). Neither diazepam and buspirone nor the AV extract produced any overt behavioral change or motor dysfunction in the open field test. These results indicate that AV extract is an effective anxiolytic agent, and suggest that the anxiolytic-like activities of this plant are mainly mediated via the GABAergic system. (c) 2006 Elsevier Ireland Ltd. All rights reserved. C1 Univ Florida, Coll Pharm, Dept Pharmaceut, Gainesville, FL 32610 USA. Tokiwa Phytochem Co, Chiba 2850801, Japan. RP Butterweck, V (corresponding author), Univ Florida, Coll Pharm, Dept Pharmaceut, POB 100494, Gainesville, FL 32610 USA. EM butterwk@cop.ufl.edu OI Grundmann, Oliver/0000-0003-2302-8949 CR Butterweck V, 2003, PHARMACOL BIOCHEM BE, V75, P557, DOI 10.1016/S0091-3057(03)00118-7 Butterweck V, 2001, BIOL PHARM BULL, V24, P848, DOI 10.1248/bpb.24.848 Calabrese EJ, 1999, RISK ANAL, V19, P261, DOI 10.1111/j.1539-6924.1999.tb00404.x Calabrese EJ, 2001, ANNU REV PUBL HEALTH, V22, P15, DOI 10.1146/annurev.publhealth.22.1.15 CARLSTEDT T, 1986, PERIPH NERVE REPAIR, V1, P37 DAWSON GR, 1995, TRENDS PHARMACOL SCI, V16, P33, DOI 10.1016/S0165-6147(00)88973-7 Eguchi J, 2001, PHARMACOL BIOCHEM BE, V68, P677, DOI 10.1016/S0091-3057(01)00485-3 Eisenberg DM, 1998, JAMA-J AM MED ASSOC, V280, P1569, DOI 10.1001/jama.280.18.1569 Fernandez-Guasti A, 1998, PHARMACOL BIOCHEM BE, V60, P27, DOI 10.1016/S0091-3057(97)00482-6 FORSTER EA, 1995, EUR J PHARMACOL, V281, P81, DOI 10.1016/0014-2999(95)00234-C Griebel G, 2000, PSYCHOPHARMACOLOGY, V148, P164, DOI 10.1007/s002130050038 Griffiths R R, 1987, Psychopharmacol Ser, V3, P83 Helton DR, 1996, PHARMACOL BIOCHEM BE, V53, P493, DOI 10.1016/0091-3057(95)02122-1 Kobayashi M, 2004, BIOL PHARM BULL, V27, P1649, DOI 10.1248/bpb.27.1649 Kunovac JL, 1995, PSYCHIAT CLIN N AM, V18, P895, DOI 10.1016/S0193-953X(18)30030-3 LADER M, 1991, BRIT J ADDICT, V86, P823 LEE C, 1991, BEHAV PHARMACOL, V2, P491 Lowry CA, 2005, STRESS, V8, P233, DOI 10.1080/10253890500492787 Ma Y.X., 1989, ZHONG XI YI JIE HE Z, V9, P323 MADABUSHI R, 2006, EUR J CLIN PHARMACOL, P1 Martinez-Mota L, 2002, PSYCHOPHARMACOLOGY, V165, P60, DOI 10.1007/s00213-002-1222-z MOSER PC, 1989, PSYCHOPHARMACOLOGY, V99, P48, DOI 10.1007/BF00634451 PELLOW S, 1985, J NEUROSCI METH, V14, P149, DOI 10.1016/0165-0270(85)90031-7 Pringle AK, 1996, BRAIN RES, V715, P155, DOI 10.1016/0006-8993(95)01571-X QIAN Z, 1988, Bulletin of Chinese Materia Medica, V13, P44 RODGERS RJ, 1994, PHARMACOL BIOCHEM BE, V48, P959, DOI 10.1016/0091-3057(94)90205-4 Rodgers RJ, 1997, BEHAV PHARMACOL, V8, P477, DOI 10.1097/00008877-199711000-00003 Rowlett JK, 2001, J PHARMACOL EXP THER, V297, P247 Seale TW, 1996, NEUROREPORT, V7, P1803, DOI 10.1097/00001756-199607290-00023 Singh YN, 2005, J ETHNOPHARMACOL, V100, P108, DOI 10.1016/j.jep.2005.05.014 Yokozawa T, 2002, BIOL PHARM BULL, V25, P748, DOI 10.1248/bpb.25.748 Yokozawa Takako, 1997, Natural Medicines, V51, P325 2000, PHARM PEOPLES REPUBL, V1 NR 33 TC 99 Z9 117 U1 2 U2 30 PU ELSEVIER IRELAND LTD PI CLARE PA ELSEVIER HOUSE, BROOKVALE PLAZA, EAST PARK SHANNON, CO, CLARE, 00000, IRELAND SN 0378-8741 EI 1872-7573 J9 J ETHNOPHARMACOL JI J. Ethnopharmacol. PD APR 4 PY 2007 VL 110 IS 3 BP 406 EP 411 DI 10.1016/j.jep.2006.09.035 PG 6 WC Plant Sciences; Chemistry, Medicinal; Integrative & Complementary Medicine; Pharmacology & Pharmacy SC Plant Sciences; Pharmacology & Pharmacy; Integrative & Complementary Medicine GA 157DT UT WOS:000245699500004 PM 17101250 DA 2021-10-15 ER PT J AU Gerhards, R WysePester, DY Mortensen, D Johnson, GA AF Gerhards, R WysePester, DY Mortensen, D Johnson, GA TI Characterizing spatial stability of weed populations using interpolated maps SO WEED SCIENCE LA English DT Article DE linear interpolation; site-specific weed control; integrated weed management; ABUTH; APCCA; HELAN; SETLU; SETVI; velvetleaf, Abutilon theophrasti Medikus ABUTH; hemp dogbane, Apocynum cannabinum L APCCA; common sunflower, Helianthus annuus L HELAN; yellow foxtail, Setaria glauca (L) Beauv SETLU; green foxtail, Setaria viridis (L) Beauv SETVI; soybean, Glycine max (L) Merr Corn, Zea mays L ID FIELDS AB Intensive surveys were conducted in 2 fields in eastern Nebraska to determine the spatial stability of common sunflower, velvetleaf, green and yellow foxtail, and hemp dogbane over 4 yr (1992 to 1995). The 1st field was planted to soybean in 1992 and corn in 1993, 1994, and 1995. The 2nd field was planted to corn in 1992 and 1994 and soybean in 1993 and 1995. Weed density was sampled prior to post-emergence herbicide application at approximately 800 locations per year in each field on a regular 7 m grid. The same locations were sampled every year. Weed density at locations between the sample sires was determined by linear triangulation interpolation. Weed seedling distribution was significantly aggregated, with large weed-free areas in both fields. Common sunflower, velvetleaf, and hemp dogbane patches were very persistent in diameter in the east-west and north-south directions and in location and area over 4 yr in the Ist field. Foxtail distribution and density continuously increased in each of the 4 yr in the first field and decreased in the 2nd field. A geographic information system was used to overlay maps from each year for a species. This showed that 36% of the sampled area was continuously free of common sunflower, 62.5% was free of hemp dogbane, and 11.5% was free of velvetleaf in the Ist field, but only 1% was free of velvetleaf in the 2nd field. The persistence of broadleaf weed patches suggests that. weed seedling distributions mapped in one year are good predictors of future seedling distributions. Improved and more efficient sampling methods are needed. C1 UNIV NEBRASKA,DEPT AGRON,LINCOLN,NE 68583. UNIV MINNESOTA,SO EXPT STN,WASECA,MN 56093. OI Gerhards, Roland/0000-0002-6720-5938 CR Bender J, 1995, FUTURE HARVEST PESTI, P1 Burnside OC, 1996, WEED SCI, V44, P74, DOI 10.1017/S0043174500093589 COLLIVER CT, 1996, IN PRESS PRECISION A DIELEMAN JA, 1996, IN PRESS ADV SOIL SC GERHARDS R, 1993, J AGRON CROP SCI, V171, P321, DOI 10.1111/j.1439-037X.1993.tb00147.x Gerhards R, 1996, J AGRON CROP SCI, V176, P259, DOI 10.1111/j.1439-037X.1996.tb00470.x GERHARDS R, 1995, MITT GES PFL BAUWISS, V8, P172 GORWAY CA, 1996, IN PRESS SOIL SCI HOFMEISTER H, 1986, LEBENSRAUM ACKERPFLA, P112 ISAAKS EH, 1989, APPL GEOSTATISTICS, P249 JOHNSON GA, 1995, WEED RES, V35, P197, DOI 10.1111/j.1365-3180.1995.tb02033.x KNUF D, 1994, THESIS U BONN MARSHALL EJP, 1988, WEED RES, V28, P191, DOI 10.1111/j.1365-3180.1988.tb01606.x Mortensen David A., 1993, P113 NELSON T, 1993, WEED SCI AM ABSTR, V33, P43 NORDMEYER H, 1992, Z PFLKRANKH PFLSCHUT, V13, P539 THOMPSON JF, 1991, CROP PROT, V10, P254, DOI 10.1016/0261-2194(91)90002-9 VANGROENENDAEL JM, 1988, WEED RES, V28, P437 WALTER AM, 1996, COP 2 INT WEED C, P125 WILES LJ, 1992, WEED SCI, V40, P554, DOI 10.1017/S0043174500058124 WILSON BJ, 1991, WEED RES, V31, P367, DOI 10.1111/j.1365-3180.1991.tb01776.x WINKLE ME, 1981, WEED SCI, V29, P405, DOI 10.1017/S0043174500039904 WYSEPESTER DY, 1995, P N CENT WEED CONTR, V50, P152 NR 23 TC 83 Z9 85 U1 0 U2 8 PU WEED SCI SOC AMER PI CHAMPAIGN PA 309 W CLARK ST, CHAMPAIGN, IL 61820 SN 0043-1745 J9 WEED SCI JI Weed Sci. PD JAN-FEB PY 1997 VL 45 IS 1 BP 108 EP 119 DI 10.1017/S0043174500092559 PG 12 WC Agronomy; Plant Sciences SC Agriculture; Plant Sciences GA WT491 UT WOS:A1997WT49100016 DA 2021-10-15 ER PT J AU Xie, WY Zhang, XY Wang, T Hu, JJ AF Xie, Wenyan Zhang, Xiaoying Wang, Tian Hu, Jianjun TI Botany, traditional uses, phytochemistry and pharmacology of Apocynum venetum L. (Luobuma): A review SO JOURNAL OF ETHNOPHARMACOLOGY LA English DT Review DE Apocynum venetum L.; Luobuma; Phytochemistry; Pharmacology; Traditional medicine ID SODIUM-CHANNELS; CHEMICAL-CONSTITUENTS; AQUEOUS EXTRACT; FREE-RADICALS; LEAF EXTRACT; LEAVES; RATS; ANTIDEPRESSANTS; IDENTIFICATION; COMPONENTS AB Ethnopharmacological relevance: Apocynum venetum L (Apocynaceae, Luobuma (sic)) has a long history as a Chinese traditional medicine with uses to calm the liver, soothe the nerves, dissipate heat, and promote diuresis. Recently, Luobuma tea has been commercialized as a sedative and anti-aging supplement that has become increasingly popular in North American and East Asian health food markets. Aims of the review: The aim of this review is to provide an up-to-date and comprehensive overview of the botany, chemical constituents, traditional uses, pharmacological activities and safety aspects of Apocynum venetum in order to assess its ethnopharmacological use and to explore its therapeutic potentials and future opportunities for research. Background and methods: The accessible literature on Apocynum venetum written in English, Chinese and Japanese were collected and analyzed. The literatures included ancient Chinese herbal classics, pharmacopoeias and articles that included in Pubmed, Web of Science, Google Scholar and Wanfang. Key findings: Modern pharmacological studies demonstrated that Apocynum venetum possess wide pharmacological activities that include antihypertensive, cardiotonic, hepatoprotective, antioxidant, lipid-lowering, antidepressant and anxiolytic effects, which can be explained by the presence of various flavonoid compounds in this plant. The traditional (Lop Nor region) use of Apocynum venetum with tobacco as an agent to detoxify nicotine may receive interest as a possible therapeutic option to detoxify the body from smoking. Based on animal studies and clinical trials, Apocynum venetum causes no severe side effects, even in a stable daily dosage (50 mg/person/day) for more than three years. Conclusions: Apocynum venetum potentially has therapeutic potential in the prevention and treatment for the cardiovascular and neurological diseases, especially for high blood pressure, high cholesterol, neurasthenia, depression and anxiety. Further investigations are needed to explore individual bioactive compounds responsible for these in vitro and in vivo pharmacological effects and the mode of actions. Further safety assessments and clinical trials should be performed before it can be integrated into medicinal practices. 2012 Elsevier Ireland Ltd. All rights reserved. C1 [Xie, Wenyan; Zhang, Xiaoying; Wang, Tian] NW A&F Univ, Coll Vet Med, Yangling 712100, Shaanxi Provinc, Peoples R China. [Hu, Jianjun] Tarim Univ, Coll Anim Sci & Technol, Key Lab Tarim Anim Husb Sci & Technol, Alar 843300, Xinjiang Uygur, Peoples R China. RP Zhang, XY (corresponding author), NW A&F Univ, Coll Vet Med, Post Box 19,North Campus,Xinong Rd 22, Yangling 712100, Shaanxi Provinc, Peoples R China. EM zhang.xy@nwsuaf.edu.cn RI Zhang, Xiaoying/O-2606-2016; Zhang, Xiaoying/O-2606-2016 OI Zhang, Xiaoying/0000-0002-0055-7322; Zhang, Xiaoying/0000-0001-6491-6550 FU Ministry of Education; State Administration of Foreign Experts Affairs "overseas teacher" [MS2011XBNL057]; Northwest A&F University, China [01140407] FX This work was supported by the Ministry of Education and State Administration of Foreign Experts Affairs "overseas teacher" project (No. MS2011XBNL057) and a grant (No. 01140407) for returned overseas Chinese Scholars from Northwest A&F University, China. CR [Anonymous], 2010, CLIN TRIAL EFFECTS A Bourin M, 2009, CURR DRUG TARGETS, V10, P1052, DOI 10.2174/138945009789735138 Butterweck V, 2003, PHARMACOL BIOCHEM BE, V75, P557, DOI 10.1016/S0091-3057(03)00118-7 Butterweck V, 2001, BIOL PHARM BULL, V24, P848, DOI 10.1248/bpb.24.848 Cao YH, 2003, ANAL BIOANAL CHEM, V376, P691, DOI 10.1007/s00216-003-1961-7 CHACE KV, 1991, ARCH BIOCHEM BIOPHYS, V288, P473, DOI 10.1016/0003-9861(91)90223-6 Chen Long, 2005, Zhongguo Zhong Yao Za Zhi, V30, P1340 Dick IE, 2007, J PAIN, V8, P315, DOI 10.1016/j.jpain.2006.10.001 Dong Z.J., 1958, LUOBUMA Editorial Committee of Chinese Pharmacopoeia, 2010, CHIN PHARM Editorial Committee of the Flora of China of Chinese Academy of Science, 1977, FLOR CHIN, P157 [范维刚 FAN WeiGang], 2006, [光谱实验室, Chinese Journal of Spectroscopy laboratory], V23, P1174 Fan WZ, 1999, CHEM PHARM BULL, V47, P1049, DOI 10.1248/cpb.47.1049 Grundmann O, 2007, J ETHNOPHARMACOL, V110, P406, DOI 10.1016/j.jep.2006.09.035 Grundmann O, 2009, PHYTOMEDICINE, V16, P295, DOI 10.1016/j.phymed.2008.12.020 He S.Y., 1992, FLORA BEIJING, P759 Irie K, 2009, J NAT MED, V63, P111, DOI 10.1007/s11418-008-0296-2 Kamata K, 2008, J NAT MED-TOKYO, V62, P160, DOI 10.1007/s11418-007-0202-3 Kim DW, 2000, PHYTOTHER RES, V14, P501, DOI 10.1002/1099-1573(200011)14:7<501::AID-PTR655>3.0.CO;2-B Kim DW, 2000, J ETHNOPHARMACOL, V72, P53, DOI 10.1016/S0378-8741(00)00197-5 Kobayashi M, 2004, BIOL PHARM BULL, V27, P1649, DOI 10.1248/bpb.27.1649 Kuo CS, 2011, J ETHNOPHARMACOL, V136, P149, DOI 10.1016/j.jep.2011.04.035 Kwan CY, 2005, CLIN EXP PHARMACOL P, V32, P789, DOI 10.1111/j.1440-1681.2005.04255.x Liang TG, 2010, INT J MOL SCI, V11, P4452, DOI 10.3390/ijms11114452 Liu HH, 2008, J EXP BOT, V59, P633, DOI 10.1093/jxb/erm355 Liu Y.M., 1999, UYGUR MAT MED, P541 Lu CM, 2010, BIOL PHARM BULL, V33, P522, DOI 10.1248/bpb.33.522 Mirza NB, 2005, PSYCHOPHARMACOLOGY, V180, P159, DOI 10.1007/s00213-005-2146-1 Murakami T, 2001, CHEM PHARM BULL, V49, P845, DOI 10.1248/cpb.49.845 Shirai Mutsuko, 2005, J Med Invest, V52 Suppl, P249, DOI 10.2152/jmi.52.249 SOOS E, 1949, Sci Pharm, V17, P121 Tagawa C, 2004, YAKUGAKU ZASSHI, V124, P851, DOI 10.1248/yakushi.124.851 Xiong QB, 2000, PLANTA MED, V66, P127, DOI 10.1055/s-2000-11135 Yang X.B., 2009, WORLD CHINESE J DIGE, V17, P135 YIM HS, 1995, J BIOL CHEM, V270, P28228 Yokozawa T, 2004, FOOD CHEM TOXICOL, V42, P975, DOI 10.1016/j.fct.2004.02.010 Yokozawa T, 2002, BIOL PHARM BULL, V25, P748, DOI 10.1248/bpb.25.748 Yu SP, 2003, PROG NEUROBIOL, V70, P363, DOI 10.1016/S0301-0082(03)00090-X Yu Y.Y., 2006, J TONGJI U, V27, P24 Zhang Y.C., 2010, J SEP SCI, V33, P1 Zhang Y.C., 2009, J NANJING TCM U, V25, P212 Zhang YC, 2010, J CHROMATOGR B, V878, P3149, DOI 10.1016/j.jchromb.2010.09.027 Zheng MZ, 2012, PHYTOMEDICINE, V19, P145, DOI 10.1016/j.phymed.2011.06.029 Zheng MZ, 2011, CELL MOL NEUROBIOL, V31, P421, DOI 10.1007/s10571-010-9635-4 王东清, 2011, [江苏农业科学, Jiangsu Agricultural Sciences], V39, P310 虞颖映, 2006, [毒理学杂志, Journal of Toxicology], V20, P134 NR 46 TC 77 Z9 90 U1 6 U2 107 PU ELSEVIER IRELAND LTD PI CLARE PA ELSEVIER HOUSE, BROOKVALE PLAZA, EAST PARK SHANNON, CO, CLARE, 00000, IRELAND SN 0378-8741 J9 J ETHNOPHARMACOL JI J. Ethnopharmacol. PD MAY 7 PY 2012 VL 141 IS 1 BP 1 EP 8 DI 10.1016/j.jep.2012.02.003 PG 8 WC Plant Sciences; Chemistry, Medicinal; Integrative & Complementary Medicine; Pharmacology & Pharmacy SC Plant Sciences; Pharmacology & Pharmacy; Integrative & Complementary Medicine GA 949IY UT WOS:000304571100001 PM 22421379 DA 2021-10-15 ER PT J AU Butterweck, V Nishibe, S Sasaki, T Uchida, M AF Butterweck, V Nishibe, S Sasaki, T Uchida, M TI Antidepressant effects of Apocynum venetum leaves in a forced swimming test SO BIOLOGICAL & PHARMACEUTICAL BULLETIN LA English DT Article DE Apocynum venetum; leave extract; antidepressant effect; flavonoid ID BEHAVIORAL DESPAIR TEST; ANTI-DEPRESSANTS; FLAVONOIDS; MODEL AB An extract of the leaves of Apocynum venetum L. (Apocynaceae) markedly shortened the immobility time of male rats in a forced swimming test (FST) in a dose range of 30-125 mg/kg, indicating a possible antidepressant activity. This effect was comparable to that of the tricyclic antidepressant imipramine (20mg/kg), Neither imipramine (20 mg/kg) nor the Apocynum extract in various doses (30, 60, 125 mg/kg) produced any overt behavioural change or motor dysfunction in the open field test. This result confirms the assumption that the antidepressant effect of an Apocynum extract in the FST is specific. Further, it can be speculated that this effect might be related to hyperoside and isoquercitrin which are major flavonoids in the extract. C1 WWU Muenster, Inst Pharmacol & Toxicol, D-48149 Muenster, Germany. Hlth Sci Univ Hokkaido, Fac Pharmaceut Sci, Ishikari, Hokkaido 0610293, Japan. Tokiwa Phytochem Co Ltd, Chiba 2850801, Japan. RP Butterweck, V (corresponding author), WWU Muenster, Inst Pharmacol & Toxicol, Domagkstr 12, D-48149 Muenster, Germany. EM butterv@uni-muenster.de CR BETIN C, 1982, PHYSIOL BEHAV, V28, P307, DOI 10.1016/0031-9384(82)90080-4 BORSINI F, 1988, PSYCHOPHARMACOLOGY, V94, P147 BROWNE RG, 1979, EUR J PHARMACOL, V58, P331, DOI 10.1016/0014-2999(79)90483-7 Butterweck V, 2000, PLANTA MED, V66, P3, DOI 10.1055/s-2000-11119 CHEN M, 1991, CHIN J CHIN MAT MED, V16, P609 Di Carlo G, 1999, LIFE SCI, V65, P337, DOI 10.1016/S0024-3205(99)00120-4 KITADA Y, 1981, EUR J PHARMACOL, V72, P145, DOI 10.1016/0014-2999(81)90269-7 MA YX, 1989, CHIN J MOD DEV TRAD, V9, P335 MIDDLETON E, 1994, FLAVONOIDS ADV RES 1, P619 Nishibe Sansei, 1994, Natural Medicines, V48, P322 Paladini AC, 1999, J PHARM PHARMACOL, V51, P519, DOI 10.1211/0022357991772790 *PHARM COMM HLTH M, 2000, PHARM PEOPL REP CH 1, P170 PORSOLT RD, 1978, EUR J PHARMACOL, V47, P379, DOI 10.1016/0014-2999(78)90118-8 PORSOLT RD, 1977, NATURE, V266, P730, DOI 10.1038/266730a0 PORSOLT RD, 1981, ANTIDEPRESSANTS NEUR, P121 QIAN Z, 1988, Bulletin of Chinese Materia Medica, V13, P44 SCHLECHTER MD, 1979, EUR J PHARMACOL, V60, P139 WALLACH MB, 1979, COMMUN PSYCHOPHARMAC, V3, P35 WILLNER P, 1984, PSYCHOPHARMACOLOGY, V83, P1, DOI 10.1007/BF00427414 NR 19 TC 75 Z9 87 U1 0 U2 14 PU PHARMACEUTICAL SOC JAPAN PI TOKYO PA 2-12-15 SHIBUYA, SHIBUYA-KU, TOKYO, 150-0002, JAPAN SN 0918-6158 J9 BIOL PHARM BULL JI Biol. Pharm. Bull. PD JUL PY 2001 VL 24 IS 7 BP 848 EP 851 DI 10.1248/bpb.24.848 PG 4 WC Pharmacology & Pharmacy SC Pharmacology & Pharmacy GA 447MN UT WOS:000169577300022 PM 11456130 OA Bronze DA 2021-10-15 ER PT J AU RICKERL, DH SANCHO, FO ANANTH, S AF RICKERL, DH SANCHO, FO ANANTH, S TI VESICULAR-ARBUSCULAR ENDOMYCORRHIZAL COLONIZATION OF WETLAND PLANTS SO JOURNAL OF ENVIRONMENTAL QUALITY LA English DT Article ID SOIL-DISTURBANCE; MYCORRHIZAL FUNGI; MAIZE; SYMBIOSIS; INFECTION; ROOTS AB Mycorrhizal fungi colonize many terrestrial plants and often result in an increased uptake of P and several n-micronutrients. Little information is available on the relationships among vesicular-arbuscular endomycorrhizae (VAM), aquatic plants, and plant P concentrations. The major objectives of this study were to measure the degree of VAM colonization of wetland plants, and to determine the relationship between colonization and plant P concentrations when sampled from two contrasting water regimes (hydric soil with no surface water and hydric soil with a minimum of 10 cm of surface water). Two semipermanent wetlands in Lake County, South Dakota, were chosen for the study. Water regime did not have a significant effect on total or organic soil P concentration. Vesicular-arbuscular endomycorrhizal spore samples collected from wet soils averaged 5000 spores kg-1 compared with 2740 spores kg-1 in dry soils. The eight plant species evaluated to determine VAM colonization were reed canarygrass (Phalaris arundinacea L.), slough sedge (Carex atherodes Spreng.), river bulrush [Scirpus fluviatilis (Torr.) Gray], slender rush (Juncus tenuis Willd.), dogbane (Apocynum cannabinum L.), water smartweed (Polygonum amphibium L.), cattail (Typha X glauca Godr.), and wild licorice (Glycyrrhiza lepidota (Nutt.) Pursh). Vescular-arbuscular endomycorrhizal colonization ranged from 78% (wild licorice) to none (slough sedge and slender rush). Roots from dry areas averaged 27% colonization compared with less than 1% in wet areas. Colonization levels of dogbane and reed canarygrass in dry zones were highly correlated to plant P concentrations. The results of this study indicate that several wetland plant species develop substantial mycorrhizal associations, particularly in relatively dry environments. RP RICKERL, DH (corresponding author), S DAKOTA STATE UNIV, DEPT PLANT SCI, BROOKINGS, SD 57007 USA. CR ALLEN EB, 1980, J APPL ECOL, V17, P139, DOI 10.2307/2402969 ANANTH S, 1992, THESIS S DAKOTA STAT ARIAS I, 1991, PLANT SOIL, V132, P253, DOI 10.1007/BF00010406 BAYLIS G T S, 1969, New Zealand Journal of Botany, V7, P173 BENTIVENGA SP, 1992, MYCOLOGIA, V84, P522, DOI 10.2307/3760317 BRISTOW JM, 1974, DEV FUNCTION ROOTS Cowardin L.M., 1979, CLASSIFICATION WETLA EVANS DG, 1988, NEW PHYTOL, V110, P67, DOI 10.1111/j.1469-8137.1988.tb00238.x EVANS DG, 1990, NEW PHYTOL, V114, P65, DOI 10.1111/j.1469-8137.1990.tb00374.x GERDEMANN J. W., 1963, TRANS BRIT MYCOL SOC, V46, P235 Giovannetti M., 1980, New Phytologist, V84, P489, DOI 10.1111/j.1469-8137.1980.tb04556.x Harley J. L., 1970, Transactions and Proceedings of the Botanical Society of Edinburgh, V41, P65 HAYMAN DS, 1983, CAN J BOT, V61, P944, DOI 10.1139/b83-105 HENDRIX JW, 1990, MYCOLOGIA, V8, P576 HOWELER RH, 1987, PLANT SOIL, V100, P249, DOI 10.1007/BF02370945 Jackson M. L., 1958, Soil Chemical Analysis. JASPER DA, 1991, NEW PHYTOL, V118, P471, DOI 10.1111/j.1469-8137.1991.tb00029.x JOHNSON NC, 1991, NEW PHYTOL, V117, P657, DOI 10.1111/j.1469-8137.1991.tb00970.x KHALIL S, 1993, AGRONOMY ABSTRACTS, P253 KHAN AG, 1978, NEW PHYTOL, V81, P53, DOI 10.1111/j.1469-8137.1978.tb01603.x KOTHARI SK, 1991, PLANT SOIL, V131, P177, DOI 10.1007/BF00009447 LOUIS I, 1990, MYCOLOGIA, V82, P772, DOI 10.2307/3760165 MAEDA MASAYUKI, 1954, KUMAMOTO JOUR SCI SER B, V3, P57 MEJSTRIK V, 1965, PLANT MICROBES RELAT MILLER RM, 1979, CAN J BOT, V57, P619, DOI 10.1139/b79-079 PHILLIPS JM, 1970, T BRIT MYCOL SOC, V55, P158, DOI 10.1016/S0007-1536(70)80110-3 READ DJ, 1976, AM J BOT, V66, P6 REED PB, 1988, 88264 US FISH WILDL REEVES FB, 1979, AM J BOT, V66, P6, DOI 10.2307/2442618 Sommers L., 1982, METHODS SOIL ANAL, V9, P403, DOI DOI 10.2134/AGR0NM0N0GR9.2.2ED.C24 SONDERGAARD M, 1977, NATURE, V268, P232, DOI 10.1038/268232a0 TEWS LL, 1986, T BRIT MYCOL SOC, V87, P353, DOI 10.1016/S0007-1536(86)80210-8 1971, USEPA3653 METH 1986, SAS SYSTEM REGRESSIO NR 34 TC 69 Z9 80 U1 0 U2 23 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0047-2425 EI 1537-2537 J9 J ENVIRON QUAL JI J. Environ. Qual. PD SEP-OCT PY 1994 VL 23 IS 5 BP 913 EP 916 DI 10.2134/jeq1994.00472425002300050010x PG 4 WC Environmental Sciences SC Environmental Sciences & Ecology GA PG295 UT WOS:A1994PG29500009 DA 2021-10-15 ER PT J AU Xiong, QB Fan, WZ Tezuka, Y Adnyana, IK Stampoulis, P Hattori, M Namba, T Kadota, S AF Xiong, QB Fan, WZ Tezuka, Y Adnyana, IK Stampoulis, P Hattori, M Namba, T Kadota, S TI Hepatoprotective effect of Apocynum venetum and its active constituents SO PLANTA MEDICA LA English DT Article DE Apocynum venetum; Apocynaceae; flavonoids; hepatoprotective activity; carbon tetrachloride; D-galactosamine; tumor necrosis factor-alpha ID APOPTOSIS; FLAVONOIDS; ACTIVATION; NECROSIS; ANTIOXIDANT; METABOLISM AB The leaves of Apocynum venetum L. are used as a tea material in north China and japan. A water extract (500 mg/kg/day, one week administration) of the leaves of A. venetum showed protective effects against carbon tetrachloride (CCl4, 30 mu l/mouse) or D-galactosamine (D-GalN, 700 mg/kg)/lipopolysaccharide (LPS, 20 mu g/kg)-induced liver injury in mice. Tumor necrosis factor-alpha (TNF-alpha) secreted from LPS-stimulated macrophages is the most crucial mediator in the D-GalN/LPS-induced liver injury model. The extract had no significant inhibition on the increase of serum TNF-alpha (1169 +/- 132 pg/ml vs. 1595 +/- 314 pg/ml of control), but exhibited a complete inhibition at the concentration of 100 mu g/ml on TNF-alpha (100 ng/ml)-induced cell death in D-GalN (0.5 mM)-sensitized mouse hepatocytes. Further activity-guided fractionation resulted in the isolation of fifteen flavonoids viz.(-)-epicatechin (1), (-)-epigallocatechin (2), isoquercetin (3), hyperin (4), (+)-catechin (5), (+)-gallocatechin (6), kaempferol-6'-O-acetate (7), isoquercetin-6'-O-acetate (8), catechin-[8,7-e]-4 alpha-(3,4-dihydroxpyhenyl)-dihydro-2(3H)-pyranone (9), apocynin 8 (10), apocynin A (11), cinchonain 1a (12), apocynin C (13), apocynin D (14) and quercetin (15). All the compounds showed inhibitory effects on TNF-alpha-induced cell death with different intensities. The flavonol glycosides 3, 4, 7 and 8 and the phenylpropanoid-substituted flavan-3-ols 11 and 12 showed potent inhibitory effects on TNF-alpha-induced cell death with IC50 values of 37.5, 14.5, 31.2, 55.1, 71.9 and 41.2 mu M, respectively. In contrast, the clinically used 5 and its analogues 1, 2 and 6 showed apparent activity only at 80 mu M. These flavonoids appeared to be the hepatoprotective principles of the leaves of A. venetum. The hepatoprotective effects exhibited by the extract and its constituents suggest a validation of the leaves as a tea material. C1 Toyama Med & Pharmaceut Univ, Inst Nat Med, Toyama 9300194, Japan. RP Kadota, S (corresponding author), Toyama Med & Pharmaceut Univ, Inst Nat Med, 2630 Sugitani, Toyama 9300194, Japan. EM kadota@ms.toyama-mpu.ac.jp RI Adnyana, I/F-8199-2017; Tezuka, Yasuhiro/AAD-9606-2019 OI Adnyana, I Ketut/0000-0001-5217-2312 CR Bradham CA, 1998, AM J PHYSIOL-GASTR L, V275, pG387, DOI 10.1152/ajpgi.1998.275.3.G387 CHEN M, 1991, CHIN J CHIN MAT MED, V16, P609 Chen T, 1999, PLANTA MED, V65, P56, DOI 10.1055/s-1999-13963 Chosay JG, 1997, AM J PHYSIOL-GASTR L, V272, pG1195, DOI 10.1152/ajpgi.1997.272.5.G1195 de Groot H, 1998, FUND CLIN PHARMACOL, V12, P249 Di Carlo G, 1999, LIFE SCI, V65, P337, DOI 10.1016/S0024-3205(99)00120-4 Fan WZ, 1999, CHEM PHARM BULL, V47, P1049, DOI 10.1248/cpb.47.1049 Hase K, 1999, BIOCHEM PHARMACOL, V57, P1431, DOI 10.1016/S0006-2952(99)00042-8 Hollman PCH, 1997, BIOMED PHARMACOTHER, V51, P305, DOI 10.1016/S0753-3322(97)88045-6 ITO M, 1990, CHEM PHARM BULL, V38, P2201, DOI 10.1248/cpb.38.2102 Jaeschke H, 1998, J IMMUNOL, V160, P3480 Kim D. W., 1998, Journal of Traditional Medicines, V15, P40 Kim DW, 1998, PHYTOTHER RES, V12, P46, DOI 10.1002/(SICI)1099-1573(19980201)12:1<46::AID-PTR169>3.0.CO;2-I LEIST M, 1994, J IMMUNOL, V153, P1778 LEIST M, 1995, AM J PATHOL, V146, P1220 LETTERON P, 1990, BIOCHEM PHARMACOL, V39, P2027, DOI 10.1016/0006-2952(90)90625-U Li JX, 1998, PLANTA MED, V64, P628, DOI 10.1055/s-2006-957535 MA YX, 1989, CHIN J MOD DEV TRAD, V9, P335 Manna SK, 1998, J BIOL CHEM, V273, P13245, DOI 10.1074/jbc.273.21.13245 MCCAY PB, 1984, J BIOL CHEM, V259, P2135 MOREL I, 1993, BIOCHEM PHARMACOL, V45, P13, DOI 10.1016/0006-2952(93)90371-3 QIAN Z, 1988, Bulletin of Chinese Materia Medica, V13, P44 REUTTER W, 1980, BIOCHEM PHARMACOL, V29, P2258, DOI 10.1016/0006-2952(80)90209-9 Sai K, 1998, FOOD CHEM TOXICOL, V36, P1043, DOI 10.1016/S0278-6915(98)00073-8 SLATER AFG, 1995, BBA-MOL BASIS DIS, V1271, P59, DOI 10.1016/0925-4439(95)00010-2 The Pharmacopoeia Committee of the Health Ministry of People's Republic of China, 1995, PHARM PEOPL REP CHIN, V1, P182 Xiong QB, 1998, PLANTA MED, V64, P120, DOI 10.1055/s-2006-957387 Yokozawa Takako, 1997, Natural Medicines, V51, P325 NR 28 TC 66 Z9 80 U1 2 U2 30 PU GEORG THIEME VERLAG KG PI STUTTGART PA RUDIGERSTR 14, D-70469 STUTTGART, GERMANY SN 0032-0943 EI 1439-0221 J9 PLANTA MED JI Planta Med. PD MAR PY 2000 VL 66 IS 2 BP 127 EP 133 DI 10.1055/s-2000-11135 PG 7 WC Plant Sciences; Chemistry, Medicinal; Integrative & Complementary Medicine; Pharmacology & Pharmacy SC Plant Sciences; Pharmacology & Pharmacy; Integrative & Complementary Medicine GA 301PN UT WOS:000086318700007 PM 10763585 DA 2021-10-15 ER PT J AU Grundmann, O Nakajima, JI Kamata, K Seo, S Butterweck, V AF Grundmann, Oliver Nakajima, Jun-Ichiro Kamata, Kazuaki Seo, Shujiro Butterweck, Veronika TI Kaempferol from the leaves of Apocynum venetum possesses anxiolytic activities in the elevated plus maze test in mice SO PHYTOMEDICINE LA English DT Article DE Anxiolytic effect; Benzodiazepines; Elevated plus maze; Apocynum venetum; GABA receptor; Serotonin receptor; Kaempferol ID BENZODIAZEPINE-RECEPTOR LIGANDS; ANXIETY; IDENTIFICATION AB The present work evaluated the anxiolytic activity of an aqueous extract of Apocynum venetum L. (Apocynaceae) and bioguided its fractionation using the elevated plus maze (EPM) in mice as a model of anxiety. A single treatment of AV extract markedly increased the percentage time spent on the open arms of the EPM in two distinct concentration ranges of 22.5-30 and 100-125 mg/kg p.o., respectively, indicating a putative anxiolytic-like activity. Fractions showing anxiolytic effects in concentrations equal to 30 or 125 mg/kg of whole extract were antagonized using the benzodiazepinea antagonist flumazenil (3 mg/kg i.p.) or the 5-HT1A receptor antagonist WAY-100635 (0.5 mg/kg i.p.). All active fractions in a concentration equal to 125 mg/kg were effectively blocked by the benzodiazepine antagonist. flumazenil, while the anxiolytic activities of fractions in the lower dose equivalent to 30 mg/kg of whole extract were inhibited by the 5-HT1A receptor antagonist WAY-100635. Through further separation of AV fractions it was possible to isolate and characterize the flavonol kaempferol which showed an anxiolytic-like activity in concentrations from 0.02 to 1.0 mg/kg p.o. The anxiolytic activity of kaempferol was partially antagonized by concomitant administration of flumazenil, but not by WAY-100635. In conclusion, our study clearly demonstrates that AV extract possesses anxiolytic-like activity and that at least one of its flavonoids, kaempferol, can elicit the same kind of neuropharmacological activity. (C) 2009 Published by Elsevier GmbH. C1 [Grundmann, Oliver; Butterweck, Veronika] Univ Florida, Coll Pharm, Dept Pharmaceut, Gainesville, FL 32610 USA. [Nakajima, Jun-Ichiro; Kamata, Kazuaki; Seo, Shujiro] Tokiwa Phytochem Co, Chiba 2850801, Japan. RP Butterweck, V (corresponding author), Univ Florida, Coll Pharm, Dept Pharmaceut, POB 100494, Gainesville, FL 32610 USA. EM butterwk@cop.ufl.edu OI Grundmann, Oliver/0000-0003-2302-8949 FU Kevin Spelman for structural H-NMR FX We would like to thank Antje Pomerenke and Carmen Michalski for their excellent work and support with the animal behavior models and Kevin Spelman for structural H-NMR analysis of kaempferol. CR Butterweck V, 2001, BIOL PHARM BULL, V24, P848, DOI 10.1248/bpb.24.848 CARLINI EA, 1986, J ETHNOPHARMACOL, V17, P37, DOI 10.1016/0378-8741(86)90072-3 DeVane CL, 2005, AM J MANAG CARE, V11, pS344 Eisenberg JM, 1998, HEALTH AFFAIR, V17, P98, DOI 10.1377/hlthaff.17.1.98 Grundmann O, 2007, J ETHNOPHARMACOL, V110, P406, DOI 10.1016/j.jep.2006.09.035 Kunovac JL, 1995, PSYCHIAT CLIN N AM, V18, P895, DOI 10.1016/S0193-953X(18)30030-3 LADER M, 1991, BRIT J ADDICT, V86, P823 Li Li-Hong, 2006, Zhongguo Zhong Yao Za Zhi, V31, P1337 Marder M, 2001, BIOORGAN MED CHEM, V9, P323, DOI 10.1016/S0968-0896(00)00250-9 Marder Mariel, 2002, Current Topics in Medicinal Chemistry, V2, P853, DOI 10.2174/1568026023393462 Medina JH, 1997, NEUROCHEM RES, V22, P419, DOI 10.1023/A:1027303609517 PELLOW S, 1985, J NEUROSCI METH, V14, P149, DOI 10.1016/0165-0270(85)90031-7 Perez-Ortega G, 2008, J ETHNOPHARMACOL, V116, P461, DOI 10.1016/j.jep.2007.12.007 Samhan-Arias AK, 2004, FREE RADICAL BIO MED, V37, P48, DOI 10.1016/j.freeradbiomed.2004.04.002 Sheehan DV, 2007, PSYCHOPHARMACOL BULL, V40, P98 Sloley BD, 2000, J PHARM PHARMACOL, V52, P451, DOI 10.1211/0022357001774075 Tsaknis J, 2005, J AGR FOOD CHEM, V53, P6375, DOI 10.1021/jf0479261 VIOLA H, 1994, J ETHNOPHARMACOL, V44, P47, DOI 10.1016/0378-8741(94)90098-1 Wolfman C, 1996, EUR J PHARMACOL, V318, P23, DOI 10.1016/S0014-2999(96)00784-4 YONGXING M, 1989, CHIN J MOD DEV TRAD, V9, P335 NR 20 TC 65 Z9 74 U1 1 U2 22 PU ELSEVIER GMBH, URBAN & FISCHER VERLAG PI JENA PA OFFICE JENA, P O BOX 100537, 07705 JENA, GERMANY SN 0944-7113 J9 PHYTOMEDICINE JI Phytomedicine PD APR PY 2009 VL 16 IS 4 BP 295 EP 302 DI 10.1016/j.phymed.2008.12.020 PG 8 WC Plant Sciences; Chemistry, Medicinal; Integrative & Complementary Medicine; Pharmacology & Pharmacy SC Plant Sciences; Pharmacology & Pharmacy; Integrative & Complementary Medicine GA 435JC UT WOS:000265339200004 PM 19303276 DA 2021-10-15 ER PT J AU Livshultz, T Middleton, DJ Endress, ME Williams, JK AF Livshultz, Tatyana Middleton, David J. Endress, Mary E. Williams, Justin K. TI Phylogeny of Apocynoideae and the APSA clade (Apocynaceae s.l.) SO ANNALS OF THE MISSOURI BOTANICAL GARDEN LA English DT Article; Proceedings Paper CT Symposium on Recent Progress in the Systematica of Apocynaceae held at the 17th International Botanical Congress CY JUL, 2005 CL Vienna, AUSTRIA DE Apocynaceae; Apocynoideae; APSA clade; Asclepiadaceae; biogeography; evolution; molecular phylogenetics; morphology; Periplocoideae; systematics ID POLLINIUM STRUCTURE; POLLEN MORPHOLOGY; DNA PHYLOGENY; PLASTID MATK; ASCLEPIADACEAE; GENUS; CHARACTERS; EVOLUTION; REVISION; ASCLEPIADOIDEAE AB Phylogenetic relationships were reconstructed among 59 of 77 genera of subfamily Apocynoideae and exemplars of Periplocoideae, Secamonoideae, and Asclepiadoideae (collectively the APSA clade) using sequences from four regions of the chloroplast genome (trnL, intron and trnL-trnF spacer, rpl16 intron, rps16 intron, matK and 3' half of trnK intron) and 1.6 morphological characters. Apocynoideae are resolved as paraphyletic. The five tribes recognized within this subfamily in the classification of Endress and Bruyns are all paraphyletic or polyphyletic. Seven major clades of Apocynoideae are identified. The first three include genera classified predominantly in tribes Wrightieae and Malouctieae sensu Endress and Bruyns and form a paraphyletic grade to a crown clade. The crown clade includes four clades of Apocynoideae genera classified in tribes Apocyneae, Mesechiteac, and Echiteae together with Periplocoideae, Secamonoideae, and Asclepiadoideae; the latter three constitute the traditional Asclepiadaceae. Asclepiadaceae are resolved as polyphyletic, although the node that precludes a paraphyletic Asclepiadaceae does not have bootstrap support. The clade of Secamonoideae-Asclepiadoideae is well supported as sister to a clade of three African Apocynoideae genera (Baissea A. DC., Motandra A. DC., and Oncinotis Benth.). There is a strong correlation between geographic distribution and phylogeny among crown clade Apocynoideae. A New World clade is composed of American genera plus the predominantly Australasian Parsonsia R. Br. and Artia Guillaumin. An Asian clade is composed of Asian, Malesian, and Australasian genera plus the north temperate Apocynum L. Trachelospermurn Lem. is polyphyletic with American and Asian species nested in the New World and Asian clades, respectively. The implications of this phylogeny for the evolution of pollen aggregation and mass transfer, the traits that were used to separate Asclepiadaceae from Apocynaceae s. str., are discussed. C1 Harvard Univ Hebaria, Cambridge, MA 02138 USA. Royal Bot Garden, Edinburgh EH3 5LR, Midlothian, Scotland. Univ Zurich, Inst Systemat Bot, CH-8008 Zurich, Switzerland. Sam Houston State Univ, Dept Biol, Huntsville, TX 77341 USA. RP Livshultz, T (corresponding author), Univ Nebraska, Dept Biol, 6001 Dodge St, Omaha, NE 68182 USA. EM tlivshultz@mail.unomaha.edu; d.middleton@rbge.ac.uk; mendress@systbot.unizh.ch; BIO_JKW@exchange.shsu.edu CR Baum DA, 1998, SYST BIOL, V47, P181, DOI 10.1080/106351598260879 BEENTJE H J, 1982, Mededelingen Landbouwhogeschool Wageningen, V82, P1 Bentham G., 1876, GEN PLANTARUM, V2, P680 BOITEAU P, 1981, FLORE NOUVELLE CALED, V10, P5 Brown R, 1811, MEM WERN NAT HIST SO, V1, P12 Civeyrel L, 1998, MOL PHYLOGENET EVOL, V9, P517, DOI 10.1006/mpev.1997.0510 Civeyrel L, 2001, ANN MO BOT GARD, V88, P583, DOI 10.2307/3298635 CIVEYREL L, 1994, CR ACAD SCI III-VIE, V317, P1159 Cronquist A., 1981, INTEGRATED SYSTEM CL DANDICKOZAFIMAH.L, 1980, GRANA, V19, P85 Davis JI, 2004, SYST BOT, V29, P467, DOI 10.1600/0363644041744365 de Jussieu AL, 1789, GEN PLANTARUM DEKRUIF APM, 1983, MEDEDELINGEN LANDBOU, V83, P1 DEKRUIF APM, 1985, 85 WAG AGR U, P5 DEMETER K, 1922, FLORA, V115, P130 ENDLICHER SL, 1838, GEN PL, P577 Endress Mary, 2004, Telopea, V10, P525 Endress ME, 2000, BOT REV, V66, P1, DOI 10.1007/BF02857781 Endress ME, 1996, OPERA BOT BELG, V7, P59 Endress ME, 2001, HASELTONIA, P2 Endress ME, 2001, ANN MO BOT GARD, V88, P517, DOI 10.2307/3298631 ENDRESS ME, 1990, PLANT SYST EVOL, V171, P157, DOI 10.1007/BF00940603 Endress P.K, 1994, DIVERSITY EVOLUTIONA ENDRESS RWJ, 2007, ANN MISSOURI BOT GAR, V94, P1 EZCURRA C, 1999, FLORA PATAGONICA, V6, P56 Ezcurra C., 1992, FLORA PARAGUAY, V17, P1 Fallen M.E., 1986, BOT JB SYST, V106, P245 FELSENSTEIN J, 1985, EVOLUTION, V39, P783, DOI 10.1111/j.1558-5646.1985.tb00420.x Fishbein M, 2001, ANN MO BOT GARD, V88, P603, DOI 10.2307/3298636 Forster Paul I., 1993, Austrobaileya, V4, P109 Forster Paul I., 1992, Australian Systematic Botany, V5, P533, DOI 10.1071/SB9920533 Freudenstein JV, 2004, AM J BOT, V91, P149, DOI 10.3732/ajb.91.1.149 Freudenstein JV, 2003, CLADISTICS, V19, P333, DOI 10.1016/S0748-3007(03)00067-7 Frye TC, 1901, BOT GAZ, V32, P325, DOI 10.1086/328167 GOLOBOFF TC, 1996, BOT GAZ GOLOHOFF PA, 1996, NONA GRAY A, 1978, SYNOPTICAL FLORA N A, V2, P85 HANSEN BF, 1985, THESIS U S FLORIDA T Heads MJ, 1999, NEW ZEAL J BOT, V37, P1 HEGNAUER R, 1988, PHYTOCHEMISTRY, V27, P2423, DOI 10.1016/0031-9422(88)87006-7 Heywood V.H., 1993, FLOWERING PLANTS WOR HUBER H, 1983, REVISED HDB FLORA CE, V4, P182 Hufford L, 2003, AM J BOT, V90, P1215, DOI 10.3732/ajb.90.8.1215 Ionta GM, 2007, ANN MO BOT GARD, V94, P360, DOI 10.3417/0026-6493(2007)94[360:PRIPAS]2.0.CO;2 Johnson SA, 1998, AM J BOT, V85, P1316, DOI 10.2307/2446641 Judd W.S., 1994, HARVARD PAPERS BOTAN, V5, P1 KLACKENBERG J, 1992, OPERA BOT, V112, P1 KONZALOVA M, 1981, Vestnik Ustredniho Ustavu Geologickeho, V56, P79 Krings Alexander, 2003, SIDA Contributions to Botany, V20, P1641 KUNZE H, 1993, PLANT SYST EVOL, V185, P99, DOI 10.1007/BF00937723 Kunze H., 1990, TROP SUBTROP PFLANZE, V76, P7 Kunze Henning, 1996, Botanische Jahrbuecher fuer Systematik Pflanzengeschichte und Pflanzengeographie, V118, P547 Lahaye R, 2005, AM J BOT, V92, P1381, DOI 10.3732/ajb.92.8.1381 Lahaye R, 2007, ANN MO BOT GARD, V94, P376, DOI 10.3417/0026-6493(2007)94[376:PRBDAS]2.0.CO;2 Leeuwenberg A. J. M., 1997, Kew Bulletin, V52, P769, DOI 10.2307/4117814 LEEUWENBERG AJM, 2004, 94 WAG AGR U, P45 LI HL, 1998, FLORA TAIWAN, V4, P192 Liede-Schumann S, 2005, SYST BOT, V30, P184, DOI 10.1600/0363644053661832 Lipow SR, 1999, PLANT SYST EVOL, V219, P99, DOI 10.1007/BF01090302 Luckow M, 1997, CLADISTICS, V13, P145 LY TD, 1986, FEDDES REPERT, V97, P235 MACFARLANE JM, 1933, EVOLUTION DISTRIBUT MADDISON WP, 1993, SYST BIOL, V42, P576, DOI 10.2307/2992490 Manchester SR, 1999, ANN MO BOT GARD, V86, P472, DOI 10.2307/2666183 MARKGRAF F, 1976, FLORE MADAGASCAR COM, V169 MCNEAL JR, 2005, THESIS PENN STATE U MCNEIL J, 2006, INT CODE BOT NOMENCL, V146 MIDDLETON D. J., 1995, KEW B, V49, P757 Middleton David J., 2005, Harvard Papers in Botany, V10, P161, DOI 10.3100/1043-4534(2005)10[161:AROWAA]2.0.CO;2 Middleton David J., 2005, Harvard Papers in Botany, V10, P67, DOI 10.3100/1043-4534(2005)10[67:AROEAA]2.0.CO;2 Middleton DJ, 1996, BLUMEA, V41, P33 Middleton DJ, 1996, BLUMEA, V41, P69 MIDDLETON DJ, 1994, BLUMEA, V39, P73 Middleton DJ, 2006, TAXON, V55, P502, DOI 10.2307/25065598 Middleton DJ, 1997, BLUMEA, V42, P191 MIDDLETON DJ, 2001, THAI FOREST B BOT, V29, P1 MIDDLETON DJ, FLORE CAMBODGE LAOS MONACHINO J, 1958, MEM NEW YORK BOT GAR, V10, P117 Morales J. Francisco, 2005, SIDA Contributions to Botany, V21, P2053 Morales J. Francisco, 2004, SIDA Contributions to Botany, V21, P133 Morales JF, 1998, NOVON, V8, P429, DOI 10.2307/3391867 Morales JF, 1997, NOVON, V7, P59, DOI 10.2307/3392074 Morales JF, 1999, NOVON, V9, P89, DOI 10.2307/3392127 Morales JF, 1999, NOVON, V9, P83, DOI 10.2307/3392125 Morales JF, 2003, CANDOLLEA, V58, P305 Morales JF, 1997, BRITTONIA, V49, P328, DOI 10.2307/2807832 Morales JF, 2002, RHODORA, V104, P170 MUELLERARGOVIEN.J, 1860, FLORA BRASILIENSIS, V6, P1 MULLER J, 1981, BOT REV, V47, P1, DOI 10.1007/BF02860537 NGAN PHUNG TRUNG, 1965, ANN MISSOURI BOT GARD, V52, P114, DOI 10.2307/2394866 NILSSON S, 1993, GRANA, P3, DOI 10.1080/00173139309428973 Nilsson S., 1986, POLLEN SPORES FORM F, V12, P359 NISHINO E, 1982, BOT MAG TOKYO, V95, P1, DOI 10.1007/BF02493407 Nixon KC, 1999, CLADISTICS, V15, P407, DOI 10.1111/j.1096-0031.1999.tb00277.x Nixon KC, 1996, CLADISTICS, V12, P221, DOI 10.1111/j.1096-0031.1996.tb00010.x Ollerton J, 1997, BIOL J LINN SOC, V62, P593, DOI 10.1111/j.1095-8312.1997.tb00324.x OMINO E, 1996, BELMONTIA, V29, P1 Omlor Ralf, 1996, Kew Bulletin, V51, P695, DOI 10.2307/4119723 Oxelman B, 1997, PLANT SYST EVOL, V206, P393, DOI 10.1007/BF00987959 PAGEN FJJ, 1987, 872 AGR U WAG, P1 PICHON M., 1948, BULL MUS NATION HIST NAT [PARIS], V20, P190 PICHON M., 1949, BULL MUS NATION HIST NAT [PARIS], V21, P467 PICHON M., 1948, BULL MUS NATION HIST NAT [PARIS], V20, P101 Pichon M., 1950, Memoires du Museum National d'Histoire Naturelle, Paris Ser. B. Botanique, V1, P1 Pichon M., 1950, MEM MUS NAT HIST NAT, V1, P145 Potgieter K, 2001, ANN MO BOT GARD, V88, P523, DOI 10.2307/3298632 RAMBAUT A, 1996, SELAL SEQUENCE ALIGN Rapini A, 2003, TAXON, V52, P33, DOI 10.2307/3647300 ROSATTI TJ, 1989, J ARNOLD ARBORETUM, V70, P307, DOI 10.5962/bhl.part.19789 SAFWAT FUAD M., 1962, ANN MISSOURI BOT GARD, V49, P95, DOI 10.2307/2394742 Sattler, 1973, ORGANOGENESIS FLOWER Schumann K., 1895, NATURL PFLANZ, V4, P109 Sennblad B, 1996, PLANT SYST EVOL, V202, P153, DOI 10.1007/BF00983380 Sennblad B, 1998, AM J BOT, V85, P1143, DOI 10.2307/2446347 Sennblad B, 2002, SYST BIOL, V51, P389, DOI 10.1080/10635150290069869 Shaw J, 2005, AM J BOT, V92, P2011, DOI 10.3732/ajb.92.12.2011 Simmons MP, 2000, SYST BIOL, V49, P369, DOI 10.1093/sysbio/49.2.369 Simmons MP, 2002, CLADISTICS, V18, P354, DOI 10.1006/clad.2002.0201 Simoes AO, 2007, ANN MO BOT GARD, V94, P268, DOI 10.3417/0026-6493(2007)94[268:PASOTR]2.0.CO;2 Simoes AO, 2006, ANN MO BOT GARD, V93, P565, DOI 10.3417/0026-6493(2006)93[565:IMAMME]2.0.CO;2 Simoes AO, 2007, NOVON, V17, P87, DOI 10.3417/1055-3177(2007)17[87:NCIMLA]2.0.CO;2 Simoes AO, 2004, AM J BOT, V91, P1409, DOI 10.3732/ajb.91.9.1409 Swarupanandan K, 1996, BOT J LINN SOC, V120, P327, DOI 10.1006/bojl.1996.0018 TABERLET P, 1991, PLANT MOL BIOL, V17, P1105, DOI 10.1007/BF00037152 van der Ham R, 2001, GRANA, V40, P169, DOI 10.1080/001731301317223114 Van der Ploeg J., 1983, MEDED LANDBOUWHOGESC, V83, P1 Van Dilst F. J. H., 1995, Bulletin du Jardin Botanique National de Belgique, V64, P89, DOI 10.2307/3668374 VANDERPLOEG J, 1985, 85 WAG AGR U, P57 Venter H. Johan T., 2001, Annals of the Missouri Botanical Garden, V88, P550, DOI 10.2307/3298633 Verhoeven RL, 2003, GRANA, V42, P70, DOI 10.1080/001731310310012549 Verhoeven RL, 2001, ANN MO BOT GARD, V88, P569, DOI 10.2307/3298634 Verhoeven RL, 1998, GRANA, V37, P1, DOI 10.1080/00173139809362633 WADDINGTON K D, 1976, Southwestern Naturalist, V21, P31, DOI 10.2307/3670321 Wanntorp H.-E., 1988, OPERA BOT, V98, P1 Wilkinson M, 1995, CLADISTICS, V11, P297, DOI 10.1016/0748-3007(95)90017-9 WILLIAMS JB, 1996, FLORA AUSTR, V28, P154 Williams JK, 1995, BRITTONIA, V47, P403, DOI 10.2307/2807569 Williams JK, 1998, LUNDELLIA, V1, P78, DOI DOI 10.25224/1097-993X-1.1.78 Williams Justin K., 2004, SIDA Contributions to Botany, V21, P117 Williams Justin K., 2002, Lundellia, P47 Woodson Jr R.E., 1936, ANN MISSOURI BOT GAR, V23, P169 Woodson R.E, 1931, ANN MISSOURI BOT GAR, V18, P541 Woodson RE, 1933, ANN MISSOURI BOT GAR, V20, P605, DOI [10.2307/2394198, DOI 10.2307/2394198] WOODSON RE, 1930, ANN MO BOT GARD, V17, P1, DOI DOI 10.2307/2394074 WOODSON ROBERT E., 1954, ANN MISSOURI BOT GARD, V41, P1, DOI 10.2307/2394652 Wyatt R, 2000, SYST BOT, V25, P171, DOI 10.2307/2666636 XU Z, 1988, 886 WAG AGR U, P1 Young ND, 2003, BMC BIOINFORMATICS, V4, DOI 10.1186/1471-2105-4-6 ZARUCCHI JL, 1995, FLORA VENEZUELAN GUA, V2, P471 ZWETSLOOT H J C, 1981, Mededelingen Landbouwhogeschool Wageningen, V81, P1 NR 150 TC 65 Z9 79 U1 0 U2 27 PU MISSOURI BOTANICAL GARDEN PI ST LOUIS PA 2345 TOWER GROVE AVENUE, ST LOUIS, MO 63110 USA SN 0026-6493 EI 2162-4372 J9 ANN MO BOT GARD JI Ann. Mo. Bot. Gard. PY 2007 VL 94 IS 2 BP 324 EP 359 DI 10.3417/0026-6493(2007)94[324:POAATA]2.0.CO;2 PG 36 WC Plant Sciences SC Plant Sciences GA 196IH UT WOS:000248474400004 DA 2021-10-15 ER PT J AU Yokozawa, T Nakagawa, T AF Yokozawa, T Nakagawa, T TI Inhibitory effects of Luobuma tea and its components against glucose-mediated protein damage SO FOOD AND CHEMICAL TOXICOLOGY LA English DT Article DE luobuma; advanced glycation endproducts; (+/-)-gallocatechin; (-)-epigallocatechin; (+/-)-catechin; (-)-epicatechin; epicatechin-(4 beta-8)-gallocatechin; epigallocatechin-(4 beta-8)-epicatechin; procyanidin B-2 ID ADVANCED GLYCOSYLATION; FREE-RADICALS; DIABETES-MELLITUS; END-PRODUCTS; GREEN TEA; TANNINS; ATHEROSCLEROSIS; FLAVONOIDS; GLYCATION; TISSUE AB Luobuma tea, prepared from the leaves of Apocynum venetum L., is a popular beverage in China. In this study, the activity of Luobuma leaf extract and its components against the formation of advanced glycation endproducts (AGEs), which are largely involved in the pathogenesis of diabetic vascular complications, was examined using the in vitro glycation reaction. Strong inhibitory activity against the formation of AGEs was shown by Luobuma aqueous extract. Following further fractionation of this extract, seven polyphenolic compounds, i.e. (+/-)-gallocatechin, (-)-epigallocatechin, (+/-)-catechin, (-)-epicatechin, epicatechin-(4beta-8)-gallocatechin, epigallocatechin-(4beta-8)-epicatechin and procyanidin B-2, were isolated by Sephadex LH-20 column chromatography. These purified compounds also exerted inhibitory activities that were more potent than the positive control, aminoguanidine. Our findings may help to explain the beneficial effects of this plant against atherosclerosis. (C) 2004 Elsevier Ltd. All rights reserved. C1 Toyama Med & Pharmaceut Univ, Inst Nat Med, Toyama 9300194, Japan. RP Yokozawa, T (corresponding author), Toyama Med & Pharmaceut Univ, Inst Nat Med, 2630 Sugitani, Toyama 9300194, Japan. EM yokozawa@ms.toyama-mpu.ac.jp CR Bucala R, 1992, Adv Pharmacol, V23, P1 BUCALA R, 1993, P NATL ACAD SCI USA, V90, P6434, DOI 10.1073/pnas.90.14.6434 BUCALA R, 1991, J CLIN INVEST, V87, P432, DOI 10.1172/JCI115014 Cao GH, 1997, FREE RADICAL BIO MED, V22, P749, DOI 10.1016/S0891-5849(96)00351-6 CHACE KV, 1991, ARCH BIOCHEM BIOPHYS, V288, P473, DOI 10.1016/0003-9861(91)90223-6 Cullen P, 1999, CLIN CHIM ACTA, V286, P31, DOI 10.1016/S0009-8981(99)00092-3 ESPOSITO C, 1989, J EXP MED, V170, P1387, DOI 10.1084/jem.170.4.1387 Farouque HMO, 2000, AUST NZ J MED, V30, P608, DOI 10.1111/j.1445-5994.2000.tb00863.x Friedman EA, 1999, DIABETES CARE, V22, pB65 FU MX, 1994, DIABETES, V43, P676, DOI 10.2337/diabetes.43.5.676 Harrison D, 2003, AM J CARDIOL, V91, p7A HATANO T, 1989, CHEM PHARM BULL, V37, P2016 KASHIWADA Y, 1986, CHEM PHARM BULL, V34, P4083 Kim D. W., 1998, Journal of Traditional Medicines, V15, P40 Kim DW, 2000, J ETHNOPHARMACOL, V72, P53, DOI 10.1016/S0378-8741(00)00197-5 MONNIER VM, 1981, SCIENCE, V211, P491, DOI 10.1126/science.6779377 MORIMOTO S, 1986, CHEM PHARM BULL, V34, P633 NAKAMURA Y, 1993, AM J PATHOL, V143, P1649 NONAKA GI, 1984, PHYTOCHEMISTRY, V23, P1753, DOI 10.1016/S0031-9422(00)83484-6 NONAKA GI, 1983, CHEM PHARM BULL, V31, P3906 Oya T, 1997, BIOSCI BIOTECH BIOCH, V61, P263, DOI 10.1271/bbb.61.263 RiceEvans CA, 1996, FREE RADICAL BIO MED, V20, P933, DOI 10.1016/0891-5849(95)02227-9 SAKURAI T, 1988, FEBS LETT, V236, P406, DOI 10.1016/0014-5793(88)80066-8 Schleicher ED, 1997, J CLIN INVEST, V99, P457, DOI 10.1172/JCI119180 SMITH PR, 1992, EUR J BIOCHEM, V210, P729, DOI 10.1111/j.1432-1033.1992.tb17474.x Stitt AW, 1997, MOL MED, V3, P617, DOI 10.1007/BF03401819 Tanagho EA, 1992, CAMPBELLS UROLOGY, V1, P40 Vinson JA, 1996, J NUTR BIOCHEM, V7, P659, DOI 10.1016/S0955-2863(96)00128-3 VLASSARA H, 1988, SCIENCE, V240, P1546, DOI 10.1126/science.3259727 VLASSARA H, 1994, LAB INVEST, V70, P138 YAYLAYAN VA, 1994, CRIT REV FOOD SCI, V34, P321, DOI 10.1080/10408399409527667 YIM HS, 1995, J BIOL CHEM, V270, P28228 Yokozawa T., 1999, Journal of Traditional Medicines, V16, P141 Yokozawa T, 2002, BIOL PHARM BULL, V25, P748, DOI 10.1248/bpb.25.748 Yokozawa T, 1998, BIOCHEM PHARMACOL, V56, P213, DOI 10.1016/S0006-2952(98)00128-2 Yokozawa Takako, 1997, Natural Medicines, V51, P325 NR 36 TC 65 Z9 78 U1 2 U2 35 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0278-6915 EI 1873-6351 J9 FOOD CHEM TOXICOL JI Food Chem. Toxicol. PD JUN PY 2004 VL 42 IS 6 BP 975 EP 981 DI 10.1016/j.fct.2004.02.010 PG 7 WC Food Science & Technology; Toxicology SC Food Science & Technology; Toxicology GA 821GQ UT WOS:000221448800013 PM 15110107 DA 2021-10-15 ER PT J AU SCHULTZ, ME BURNSIDE, OC AF SCHULTZ, ME BURNSIDE, OC TI ABSORPTION, TRANSLOCATION, AND METABOLISM OF 2,4-D AND GLYPHOSATE IN HEMP DOGBANE (APOCYNUM-CANNABINUM) SO WEED SCIENCE LA English DT Article RP SCHULTZ, ME (corresponding author), UNIV NEBRASKA,DEPT AGRON,LINCOLN,NE 68583, USA. CR CASELEY JC, 1972, P BR WEED CONTROL C, V11, P641 CLAUS JS, 1976, WEED SCI, V24, P149, DOI 10.1017/S0043174500065644 FANG SC, 1951, ARCH BIOCHEM BIOPHYS, V32, P249, DOI 10.1016/0003-9861(51)90270-6 FAWCETT RS, 1976, P N CTR WEED CONTROL, V31, P159 GIGAX DR, 1976, P N CTR WEED CONTROL, V31, P29 GOTTRUP O, 1976, WEED RES, V16, P197, DOI 10.1111/j.1365-3180.1976.tb00402.x RIOUX R, 1974, CAN J PLANT SCI, V54, P397, DOI 10.4141/cjps74-060 SANDBERG CL, 1977, N CTR WEED CONTROL C, V34, P363 SCHULTZ ME, 1979, AGRON J, V71, P723, DOI 10.2134/agronj1979.00021962007100050007x SCHULTZ ME, 1979, WEED SCI, V27 SUWANKETNIKOM R, 1976, P N CENT WEED CONTRO, V31, P141 UPCHURCH RP, 1972, WEED SCI SOC AM ABST, P80 WEINTRAUB RL, 1952, PLANT PHYSIOL, V27, P293, DOI 10.1104/pp.27.2.293 WYRILL JB, 1976, WEED SCI, V24, P557, DOI 10.1017/S0043174500062949 ZANDSTRA BH, 1977, WEED SCI, V25, P268, DOI 10.1017/S0043174500033452 NR 15 TC 61 Z9 64 U1 0 U2 4 PU WEED SCI SOC AMER PI CHAMPAIGN PA 309 W CLARK ST, CHAMPAIGN, IL 61820 SN 0043-1745 J9 WEED SCI JI Weed Sci. PY 1980 VL 28 IS 1 BP 13 EP 20 DI 10.1017/S0043174500027685 PG 8 WC Agronomy; Plant Sciences SC Agriculture; Plant Sciences GA JE877 UT WOS:A1980JE87700004 DA 2021-10-15 ER PT J AU Cahill, JF Castelli, JP Casper, BB AF Cahill, JF Castelli, JP Casper, BB TI The herbivory uncertainty principle: Visiting plants can alter herbivory SO ECOLOGY LA English DT Article DE Apocynum cannabinum; Cirsium arvense; experimental methods; Heisenberg Uncertainty Principle; herbivory; Linaria vulgaris; observer effect; old field; Poa pratensis; Potentilla recta; Solanum carolinense; visitation effect ID INSECT HERBIVORY; COMPETITION; EXPRESSION; FITNESS; STRESS; GENES; TOUCH AB In 1927, Werner Heisenberg proposed that there are fundamental limitations to the study of subatomic particles, as the act of measuring them affects their behavior. Here we show that experimenter-induced uncertainty also applies in plant ecology, with potentially dramatic consequences for field biologists. We tested whether the simple act of visiting marked plants once per week for eight weeks influenced the intensity of herbivory experienced by six plant species in an old field community. Half of the plants were touched once per week to simulate taking morphological measures, while the other half were left undisturbed (neither Visited nor touched). After eight weeks, visitation resulted in (1) decreased leaf damage by insects on one species, (2) increased leaf damage on a second species, (3) a marginally significant increase in survival for a third species, and (4) no effect on the remaining three species. These results serve as an important reminder that seemingly benign experimental methods may themselves dramatically affect the performance of experimental subjects. Our results raise concern about studies that use repeated visitation of focal plants either to compare rates of herbivory among species or to investigate some factor that can either directly or indirectly be influenced by the rate of herbivory (e.g., seed production, competition, etc.). Since The six species in our study responded differently to visitation, visitation effects must be accounted for in the design of future field experiments. C1 Univ Delaware, Dept Biol Sci, Newark, DE 19716 USA. Univ Penn, Dept Biol, Philadelphia, PA 19104 USA. RP Cahill, JF (corresponding author), Univ Alberta, Dept Biol Sci, Edmonton, AB T6G 2E9, Canada. EM jc.cahill@ualberta.ca RI Cahill, James F/B-6147-2015 OI Cahill, James F/0000-0002-4110-1516 CR BIDDINGTON NL, 1986, PLANT GROWTH REGUL, V4, P103, DOI 10.1007/BF00025193 Bolter CJ, 1997, J CHEM ECOL, V23, P1003, DOI 10.1023/B:JOEC.0000006385.70652.5e BOWERS MD, 1993, ECOLOGY, V74, P1778, DOI 10.2307/1939936 BRAAM J, 1990, CELL, V60, P357, DOI 10.1016/0092-8674(90)90587-5 BRITTON N, 1970, ILLUSTRATED FLORA NO Cahill JF, 1999, ECOLOGY, V80, P466, DOI 10.1890/0012-9658(1999)080[0466:FEOIBA]2.0.CO;2 CAHILL JF, 1997, THESIS U PENNSYLVANI Cipollini DF, 1997, OECOLOGIA, V111, P84, DOI 10.1007/s004420050211 COLEY PD, 1985, SCIENCE, V230, P895, DOI 10.1126/science.230.4728.895 COLEY PD, 1983, ECOL MONOGR, V53, P209, DOI 10.2307/1942495 DUDT JF, 1994, ECOLOGY, V75, P86, DOI 10.2307/1939385 Fritz RS, 1992, PLANT RESISTANCE HER Harper J.L., 1977, POPULATION BIOL PLAN Heisenberg W., 1927, Zeitschrift fur Physik, V43, P172, DOI 10.1007/BF01397280 Jackson RV, 1999, OIKOS, V87, P561, DOI 10.2307/3546820 JAFFE MJ, 1993, PLANT GROWTH REGUL, V12, P313, DOI 10.1007/BF00027213 KRAUS E, 1994, PHYSIOL PLANTARUM, V91, P631, DOI 10.1111/j.1399-3054.1994.tb02998.x Latimer JG, 1999, HORTSCIENCE, V34, P235, DOI 10.21273/HORTSCI.34.2.235 LOUDA SM, 1984, ECOLOGY, V65, P1379, DOI 10.2307/1939118 LOUDA SM, 1995, ECOLOGY, V76, P229, DOI 10.2307/1940645 MALLET J, 1987, J ANIM ECOL, V56, P377, DOI 10.2307/5054 MARQUIS RJ, 1984, SCIENCE, V226, P537, DOI 10.1126/science.226.4674.537 Mauch F, 1997, PLANT PHYSIOL, V114, P1561, DOI 10.1104/pp.114.4.1561 MCEVOY PB, 1993, ECOL MONOGR, V63, P55, DOI 10.2307/2937123 Mizoguchi T, 1996, P NATL ACAD SCI USA, V93, P765, DOI 10.1073/pnas.93.2.765 Pare PW, 1997, PLANT PHYSIOL, V114, P1161, DOI 10.1104/pp.114.4.1161 READER RJ, 1992, ECOLOGY, V73, P373, DOI 10.2307/1938748 Rose USR, 1996, PLANT PHYSIOL, V111, P487, DOI 10.1104/pp.111.2.487 SINGER MC, 1981, ECOL ENTOMOL, V6, P215, DOI 10.1111/j.1365-2311.1981.tb00609.x *SPSS, 1998, SPSS 9 0 WIND vandeKoppel J, 1996, ECOLOGY, V77, P736, DOI 10.2307/2265498 VANEMDEN VK, 1990, ENTOMOLOGIST, V109, P184 White T.C., 1993, INADEQUATE ENV NITRO NR 33 TC 60 Z9 60 U1 1 U2 17 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0012-9658 EI 1939-9170 J9 ECOLOGY JI Ecology PD FEB PY 2001 VL 82 IS 2 BP 307 EP 312 DI 10.2307/2679860 PG 6 WC Ecology SC Environmental Sciences & Ecology GA 403VX UT WOS:000167064100001 DA 2021-10-15 ER PT J AU Guan, LP Liu, BY AF Guan, Li-Ping Liu, Bing-Yu TI Antidepressant-like effects and mechanisms of flavonoids and related analogues SO EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY LA English DT Review DE Flavonoids; Chalcones; Flavanones; Antidepressant-like effect; Structure-activity relationship ID APOCYNUM-VENETUM LEAVES; TAIL SUSPENSION TEST; HYPERICUM-PERFORATUM; XIAOBUXIN-TANG; GLYCYRRHIZA-URALENSIS; STANDARDIZED EXTRACT; MOUSE MODELS; INVOLVEMENT; DEPRESSION; HESPERIDIN AB Flavonoids, possessing a basic phenylbenzopyrone core, are important components of the human diet, and are found in many medicinal plants. Flavonoids include chalcones, flavanones and their derivatives. Synthetic and natural isolated flavonoids display an enormous number of biological activities such as antitumor, antiplatelet, anti-malarial, anti-inflammatory, antidepressant and anticonvulsant properties. This review article focuses on the antidepressant-like effect, structure activity relationship and mechanism of action of total flavonoid extracts isolation from natural sources, flavonoid compounds and their related analogues. (C) 2016 Elsevier Masson SAS. All rights reserved. C1 [Guan, Li-Ping] Zhejiang Ocean Univ, Food & Pharm Coll, Zhoushan 316022, Zhejiang, Peoples R China. Zhejiang Prov Engn Technol Res Ctr Marine Biomed, Zhoushan 316022, Zhejiang, Peoples R China. RP Guan, LP (corresponding author), Zhejiang Ocean Univ, Food & Pharm Coll, Zhoushan 316022, Zhejiang, Peoples R China. EM glp730@163.com FU National Science Foundation of ChinaNational Natural Science Foundation of China (NSFC) [30960458]; Natural Science Foundation of Zhejiang Province of ChinaNatural Science Foundation of Zhejiang Province [Y14C190001] FX This work was supported by the National Science Foundation of China (No. 30960458), and the Natural Science Foundation of Zhejiang Province of China (No. Y14C190001). We would like to express our gratitude to the past and present members of the group, as well as all of our collaborators for their contribution to our and studies over the years. CR Ahmed D, 2015, ANTIOXIDANTS-BASEL, V4, P394, DOI 10.3390/antiox4020394 Albuquerque TG, 2016, FOOD CHEM, V193, P187, DOI 10.1016/j.foodchem.2014.06.044 Ammendola S, 2015, Rev Med Brux, V36, P421 An L, 2008, PROG NEURO-PSYCHOPH, V32, P1484, DOI 10.1016/j.pnpbp.2008.05.005 An L, 2008, PHARMACOL BIOCHEM BE, V89, P572, DOI 10.1016/j.pbb.2008.02.014 Anjaneyulu M., 2003, MED FOOD, V6, P391 Arborelius L, 1999, J ENDOCRINOL, V160, P1, DOI 10.1677/joe.0.1600001 Bahramsoltani R, 2015, REV NEUROSCIENCE, V26, P699, DOI 10.1515/revneuro-2015-0009 BARDEN N, 1995, TRENDS NEUROSCI, V18, P6, DOI 10.1016/0166-2236(95)93942-Q Bhattamisra SK, 2008, J ETHNOPHARMACOL, V117, P51, DOI 10.1016/j.jep.2008.01.012 Bjorkholm C, 2016, NEUROPHARMACOLOGY, V102, P72, DOI 10.1016/j.neuropharm.2015.10.034 Bukhari SNA, 2012, MINI-REV MED CHEM, V12, P1394 Butterweck V, 2000, PLANTA MED, V66, P3, DOI 10.1055/s-2000-11119 Butterweck V, 2001, BIOL PHARM BULL, V24, P848, DOI 10.1248/bpb.24.848 Calapai G, 2001, PHARMACOPSYCHIATRY, V34, P45, DOI 10.1055/s-2001-15180 Can OD, 2013, EUR J PHARMACOL, V699, P250, DOI 10.1016/j.ejphar.2012.10.017 Carde Soufiane, 2016, Soins Psychiatr, P41, DOI 10.1016/j.spsy.2015.11.010 Cassani J, 2014, MOLECULES, V19, P21442, DOI 10.3390/molecules191221442 Coleta M, 2008, BEHAV BRAIN RES, V189, P75, DOI 10.1016/j.bbr.2007.12.010 Demir EA, 2016, ACTA NEUROPSYCHIATR, V28, P23, DOI 10.1017/neu.2015.45 Dhingra D, 2006, PROG NEURO-PSYCHOPH, V30, P449, DOI 10.1016/j.pnpbp.2005.11.019 Donato F, 2014, BRAIN RES BULL, V104, P19, DOI 10.1016/j.brainresbull.2014.03.004 Du Bingjian, 2014, BMC Complement Altern Med, V14, P326, DOI 10.1186/1472-6882-14-326 Duman RS, 1997, ARCH GEN PSYCHIAT, V54, P597 Ebrahimzadeh MA, 2013, EUR REV MED PHARMACO, V17, P2609 Ekeanyanwu RC, 2015, CHIN J NAT MEDICINES, V13, P183, DOI 10.1016/S1875-5364(15)30003-0 El-Marasy SA, 2014, CAN J PHYSIOL PHARM, V92, P945, DOI 10.1139/cjpp-2014-0281 Emami S, 2013, EUR J MED CHEM, V66, P480, DOI 10.1016/j.ejmech.2013.06.008 Fan Zi-Zhou, 2012, Yao Xue Xue Bao, V47, P1612 Filho CB, 2013, EUR J PHARMACOL, V698, P286, DOI 10.1016/j.ejphar.2012.11.003 Freitas M, 2014, EUR J MED CHEM, V86, P153, DOI 10.1016/j.ejmech.2014.08.035 Gaffrey MS, 2013, NEUROBIOL DIS, V52, P38, DOI 10.1016/j.nbd.2012.06.012 Gonzalez-Cortazar M, 2013, MOLECULES, V18, P13260, DOI 10.3390/molecules181113260 Guan L-P, 2013, Drug Res (Stuttg), V63, P46, DOI 10.1055/s-0032-1333229 Guan LP, 2014, NEUROCHEM RES, V39, P313, DOI 10.1007/s11064-013-1224-8 Guan LP, 2013, MED CHEM RES, V22, P5218, DOI 10.1007/s00044-013-0517-4 HAIER RJ, 1988, NEUROPSYCHOBIOLOGY, V20, P62, DOI 10.1159/000118474 Han XH, 2007, ARCH PHARM RES, V30, P13, DOI 10.1007/BF02977772 Harborne JB, 2000, PHYTOCHEMISTRY, V55, P481, DOI 10.1016/S0031-9422(00)00235-1 Herrera-Ruiz M, 2011, PHYTOMEDICINE, V18, P1255, DOI 10.1016/j.phymed.2011.06.018 Ishisaka M, 2011, BIOL PHARM BULL, V34, P1481, DOI 10.1248/bpb.34.1481 Jin X, 2012, EUR J MED CHEM, V56, P203, DOI 10.1016/j.ejmech.2012.08.026 Karakaya S, 1999, FOOD CHEM, V66, P289, DOI 10.1016/S0308-8146(99)00049-7 Kaster MP, 2016, EUR J PHARMACOL, V771, P236, DOI 10.1016/j.ejphar.2015.12.029 Katsori AM, 2011, EXPERT OPIN THER PAT, V21, P1575, DOI 10.1517/13543776.2011.596529 Kontogiorgis C, 2008, MINI-REV MED CHEM, V8, P1224, DOI 10.2174/138955708786141034 Lai Z., 2001, COLL TRADIT CHIN MED, V3, P266 Li LF, 2013, EUR J PHARMACOL, V711, P42, DOI 10.1016/j.ejphar.2013.04.008 Li RP, 2015, NEUROSCI LETT, V594, P17, DOI 10.1016/j.neulet.2015.03.040 Liu B, 2015, NEUROSCIENCE, V294, P193, DOI 10.1016/j.neuroscience.2015.02.053 Liu X, 2013, PHARMACOLOGY, V91, P185, DOI 10.1159/000346920 Liu X, 2012, J MED CHEM, V55, P8524, DOI 10.1021/jm301099x Liu X, 2010, J MED CHEM, V53, P8274, DOI 10.1021/jm101206p Lopez AD, 1998, NAT MED, V4, P1241, DOI 10.1038/3218 Losi G, 2004, EUR J PHARMACOL, V502, P41, DOI 10.1016/j.ejphar.2004.08.043 Lv QQ, 2014, BIOL PHARM BULL, V37, P987, DOI 10.1248/bpb.b13-00968 Machado Dariiele G., 2008, EUR J PHARMACOL, V587, P163 Mai LH, 2015, EUR J MED CHEM, V93, P93, DOI 10.1016/j.ejmech.2015.01.012 Matos M.J., 2014, EXPERT OPIN THER PAT, V25, P1 Meng C, 2015, PLANT PHYSIOL BIOCH, V96, P388, DOI 10.1016/j.plaphy.2015.08.019 Meng X, 1996, Zhongguo Zhong Yao Za Zhi, V21, P683 Messaoudi M, 2008, NUTR NEUROSCI, V11, P269, DOI 10.1179/147683008X344165 Middleton E, 2000, PHARMACOL REV, V52, P673 Mohan M, 2013, NAT PROD RES, V27, P2140, DOI 10.1080/14786419.2013.778853 Nakazawa T, 2003, BIOL PHARM BULL, V26, P474, DOI 10.1248/bpb.26.474 Naughton M, 2000, HUM PSYCHOPHARM CLIN, V15, P397, DOI 10.1002/1099-1077(200008)15:6<397::AID-HUP212>3.3.CO;2-C Nogueira MS, 2015, J AGR FOOD CHEM, V63, P6939, DOI 10.1021/acs.jafc.5b01588 Noldner M, 2002, PLANTA MED, V68, P577, DOI 10.1055/s-2002-32908 Nowakowska Z, 2007, EUR J MED CHEM, V42, P125, DOI 10.1016/j.ejmech.2006.09.019 Park Soo-Hyun, 2010, Exp Neurobiol, V19, P30, DOI 10.5607/en.2010.19.1.30 PETTY F, 1995, BIOL PSYCHIAT, V38, P578, DOI 10.1016/0006-3223(95)00049-7 Rahman M.A., 2011, CHEM SCI J, V2 Raj R, 2015, EUR J MED CHEM, V95, P230, DOI 10.1016/j.ejmech.2015.03.045 Roohbakhsh A, 2014, LIFE SCI, V113, P1, DOI 10.1016/j.lfs.2014.07.029 Saraceni Megan M, 2014, J Pharm Pract, V27, P389, DOI 10.1177/0897190013516504 [沈自尹 Shen Ziyin], 2004, [中国免疫学杂志, Chinese Journal of Immunology], V20, P59 Shewale PB, 2012, INDIAN J PHARMACOL, V44, P454, DOI 10.4103/0253-7613.99303 Singh P, 2014, EUR J MED CHEM, V85, P758, DOI 10.1016/j.ejmech.2014.08.033 Sinha S., 2013, J MOD MED CHEM, V1, P64 Souza LC, 2013, PROG NEURO-PSYCHOPH, V40, P103, DOI 10.1016/j.pnpbp.2012.09.003 Sui X, 2012, MED CHEM RES, V21, P1290, DOI 10.1007/s00044-011-9640-2 Thase ME, 2003, J CLIN PSYCHIAT, V64, P18 Wang WX, 2008, PROG NEURO-PSYCHOPH, V32, P1179, DOI 10.1016/j.pnpbp.2007.12.021 Wedzony K, 2013, PHARMACOL REP, V65, P1471 Wu M, 2015, MOLECULES, V20, P6925, DOI 10.3390/molecules20046925 Wurglics M, 2006, CLIN PHARMACOKINET, V45, P449, DOI 10.2165/00003088-200645050-00002 Xie C, 2014, MED CHEM, V10, P789, DOI 10.2174/1573406410666140328125641 Yadav VR, 2011, INT IMMUNOPHARMACOL, V11, P295, DOI 10.1016/j.intimp.2010.12.006 Yi LT, 2008, LIFE SCI, V82, P741, DOI 10.1016/j.lfs.2008.01.007 Yi LT, 2014, PROG NEURO-PSYCHOPH, V48, P135, DOI 10.1016/j.pnpbp.2013.10.002 Yi LT, 2010, PROG NEURO-PSYCHOPH, V34, P1223, DOI 10.1016/j.pnpbp.2010.06.024 Zhang M.Z., 2012, CHIN TRADIT HERB DRU, V43, P2468 Zhang M.Z., 2011, LI SHI ZHEN MED MAT, V22, P2319 Zhang You-Zhi, 2008, Zhongguo Yaolixue Yu Dulixue Zazhi, V22, P1 Zhang YZ, 2007, CHINESE MED J-PEKING, V120, P1792, DOI 10.1097/00029330-200710020-00012 Zhao DH, 2011, ASIAN J CHEM, V23, P1129 Zhao ZY, 2008, BEHAV BRAIN RES, V194, P108, DOI 10.1016/j.bbr.2008.06.030 Zhen LL, 2012, BEHAV BRAIN RES, V228, P359, DOI 10.1016/j.bbr.2011.12.017 Zhen XH, 2016, CHEM BIOL DRUG DES, V87, P858, DOI 10.1111/cbdd.12717 Zheng MZ, 2013, J ETHNOPHARMACOL, V147, P108, DOI 10.1016/j.jep.2013.02.015 Zheng MZ, 2012, PHYTOMEDICINE, V19, P145, DOI 10.1016/j.phymed.2011.06.029 赵东海, 2010, [时珍国医国药, Lishizhen Medicine and Materia Medica Research], V21, P1115 NR 102 TC 57 Z9 63 U1 1 U2 58 PU ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER PI ISSY-LES-MOULINEAUX PA 65 RUE CAMILLE DESMOULINS, CS50083, 92442 ISSY-LES-MOULINEAUX, FRANCE SN 0223-5234 EI 1768-3254 J9 EUR J MED CHEM JI Eur. J. Med. Chem. PD OCT 4 PY 2016 VL 121 BP 47 EP 57 DI 10.1016/j.ejmech.2016.05.026 PG 11 WC Chemistry, Medicinal SC Pharmacology & Pharmacy GA DU5RT UT WOS:000382269700005 PM 27214511 OA Bronze DA 2021-10-15 ER PT J AU Lee, EJ Kim, SR Kim, J Kim, YC AF Lee, EJ Kim, SR Kim, J Kim, YC TI Hepatoprotective phenylpropanoids from Scrophularia buergeriana roots against CCl4-induced toxicity: Action mechanism and structure-activity relationship SO PLANTA MEDICA LA English DT Article DE Scrophularia buergeriana; Scrophulariaceae; phenylpropanoids; carbon tetrachloride; hepatoprotective activity; structure-activity relationship ID MICROSOMAL GLUTATHIONE TRANSFERASE; RAT-LIVER; DEPENDENT PROTECTION; LIPID-PEROXIDATION; APOCYNUM-VENETUM; S-TRANSFERASES; FRUITS; NINGPOENSIS; GLYCOSIDES AB Phenylpropanoids isolated from the roots of Scrophalaria buergeriana MIQ. (Scrophulariaceae) protected primary cultures of rat hepatocytes from toxicity induced by carbon tetrachloride (CCl4). In this report, we show that two of these phenylpropanoids, 4-O-E-p-methoxycinnamoyl-alpha-L-rhamnopyranoside ester (1) and p-methoxycinnamic acid (3) have significant hepatoprotective activity; another phenylpropanoid used for comparison, isoferulic acid (11), was equally active. To determine the mechanism(s) by which these three phenylpropanoids exerted their hepatoprotective activity, we measured activities of enzymes involved in the glutathione (GSH) redox system and assayed the level of hepatic mitochondrial GSH. The GSH levels in primary cultures of rat hepatocytes were significantly reduced with CCl4 insult, but were significantly preserved by the treatment with these three phenylpropanoids. The activities of glutathione disulfide reductase and glutathione-S-transferase which normally decrease in CCl4-injured rat hepatocytes were significantly preserved by the treatment with these three phenylpropanoids. In addition, in CCl4-injured rat hepatocytes, the increased formation of malondialdehyde, a byproduct of lipid peroxidation, was reduced by the treatment with these phenylpropanoids. We determined the essential structural moiety within these three phenylpropanoids needed to exert hepatoprotective activity. The alpha,beta-unsaturated ester moiety seemed to be essential for exerting hepatoprotective activity. C1 Seoul Natl Univ, Coll Pharm, Kwanak Gu, Seoul 151742, South Korea. RP Kim, YC (corresponding author), Seoul Natl Univ, Coll Pharm, Kwanak Gu, San 56-1, Seoul 151742, South Korea. EM youngkim@plaza.snu.ac.kr RI Kim, Jinwoong/G-6289-2013 OI Kim, Jinwoong/0000-0001-9579-738X CR BERRY MN, 1969, J CELL BIOL, V43, P506, DOI 10.1083/jcb.43.3.506 BOYER TD, 1984, BIOCHEM J, V217, P179, DOI 10.1042/bj2170179 CALIS I, 1987, PHYTOCHEMISTRY, V26, P2057, DOI 10.1016/S0031-9422(00)81758-6 CARLBERG I, 1975, J BIOL CHEM, V250, P5475 Fan WZ, 1999, CHEM PHARM BULL, V47, P1049, DOI 10.1248/cpb.47.1049 FLOHE L, 1984, METHOD ENZYMOL, V105, P114 GIBSON GG, 1988, INTRO DRUG METABOLIS, P239 HABIG WH, 1974, J BIOL CHEM, V249, P7130 HIKINO H, 1984, PLANTA MED, V50, P248, DOI 10.1055/s-2007-969690 Ip SP, 1996, FREE RADICAL BIO MED, V21, P709, DOI 10.1016/0891-5849(96)00179-7 KAJIMOTO T, 1989, PHYTOCHEMISTRY, V28, P2701, DOI 10.1016/S0031-9422(00)98071-3 Kim SR, 2000, PHYTOCHEMISTRY, V54, P503, DOI 10.1016/S0031-9422(00)00110-2 Kim SY, 1997, ARCH PHARM RES, V20, P529, DOI 10.1007/BF02975206 Li JX, 1998, PLANTA MED, V64, P628, DOI 10.1055/s-2006-957535 Li YM, 1999, PHYTOCHEMISTRY, V50, P101, DOI 10.1016/S0031-9422(98)00477-4 LOWRY OH, 1951, J BIOL CHEM, V193, P265 MEISTER A, 1983, ANNU REV BIOCHEM, V52, P711, DOI 10.1146/annurev.bi.52.070183.003431 MOSIALOU E, 1989, ARCH BIOCHEM BIOPHYS, V275, P289, DOI 10.1016/0003-9861(89)90375-5 MOSIALOU E, 1993, BIOCHEM PHARMACOL, V45, P1645, DOI 10.1016/0006-2952(93)90305-G OHKAWA H, 1979, ANAL BIOCHEM, V95, P351, DOI 10.1016/0003-2697(79)90738-3 REITMAN S, 1957, AM J CLIN PATHOL, V28, P56, DOI 10.1093/ajcp/28.1.56 SLATER TF, 1984, BIOCHEM J, V222, P1 TIETZE F, 1969, ANAL BIOCHEM, V27, P502, DOI 10.1016/0003-2697(69)90064-5 Xiong QB, 2000, PLANTA MED, V66, P127, DOI 10.1055/s-2000-11135 YAMAMOTO A, 1993, CHEM PHARM BULL, V41, P1780 ZHU YP, 1998, CHINESE MATERIA MED, P161 NR 26 TC 53 Z9 55 U1 0 U2 12 PU GEORG THIEME VERLAG KG PI STUTTGART PA RUDIGERSTR 14, D-70469 STUTTGART, GERMANY SN 0032-0943 EI 1439-0221 J9 PLANTA MED JI Planta Med. PD MAY PY 2002 VL 68 IS 5 BP 407 EP 411 DI 10.1055/s-2002-32081 PG 5 WC Plant Sciences; Chemistry, Medicinal; Integrative & Complementary Medicine; Pharmacology & Pharmacy SC Plant Sciences; Pharmacology & Pharmacy; Integrative & Complementary Medicine GA 562WH UT WOS:000176221600005 PM 12058315 DA 2021-10-15 ER PT J AU Grant, JB AF Grant, Jacqualine B. TI Ontogenetic colour change and the evolution of aposematism: a case study in panic moth caterpillars SO JOURNAL OF ANIMAL ECOLOGY LA English DT Article DE fitness; Lepidoptera; life history; optimal foraging; warning colours ID WARNING COLORATION; APOCYNUM-CANNABINUM; PHYLOGENETIC ANALYSIS; GROUP-SIZE; SIGNALS; PREY; DEFENSE; GREGARIOUSNESS; ENCOUNTERS; SURVIVAL AB 1. Aposematism is a widely used antipredator strategy in which an organism possesses both warning coloration and unprofitable characters. Theoretical evidence suggests that aposematic colour should develop when high opportunity costs imposed by crypsis force an organism to engage in conspicuous behaviours. Hence, it is expected that ontogenetic colour change (OCC) in larval insects should include aposematism when foraging needs compel behavioural modifications that preclude a continued state of crypsis. 2. To test this idea, I first investigated whether OCC in caterpillars of the panic moth Saucrobotys futilalis was indicative of a switch from cryptic to aposematic coloration. I then examined the context of panic moth OCC as it related to foraging patterns and behavioural conspicuousness. 3. Early Saucrobotys instars are a cryptic green, but later instars become progressively more orange and develop black spots. Early instar larvae forage cryptically on the inner parenchyma of silked-together host plant leaves to avoid predation, but are rapidly forced to engage in conspicuous foraging behaviours as they outgrow the resources afforded by their shelters. Both coloration and behaviour reach maximal conspicuousness in final instar larvae. 4. As predicted, OCC encompassed a change from crypsis to aposematism in Saucrobotys. Aposematic function was demonstrated by changes in both antipredator behaviour patterns and effectiveness of predator deterrence in early and late instars. Moreover, increased opportunity costs of crypsis and behavioural conspicuousness coincided with the onset of aposematic coloration. 5. This pattern of OCC suggests that aposematic coloration in Saucrobotys develops as a response to constraints imposed by crypsis. Moreover, my study illustrates the importance of the study of ontogenetic patterns in determining how behaviour, morphology, and predator responses interact to influence the initial evolution of phenomena such as aposematism. C1 Cornell Univ, Dept Neurobiol & Behav, Ithaca, NY 14853 USA. RP Grant, JB (corresponding author), Michigan Technol Univ, Sch Forest Resources & Environm Sci, Houghton, MI 49931 USA. EM jbgrant@mtu.edu CR ABE F, 1994, CHEM PHARM BULL, V42, P2028, DOI 10.1248/cpb.42.2028 Alatalo RV, 1996, NATURE, V382, P708, DOI 10.1038/382708a0 ALLYSON S, 1981, CAN ENTOMOL, V113, P463, DOI 10.4039/Ent113463-6 Bleicher S, 2005, CONT COLOR THEORY US BOOTH CL, 1990, BIOL J LINN SOC, V40, P125, DOI 10.1111/j.1095-8312.1990.tb01973.x Bowers M. Deane, 1993, P331 Briscoe AD, 2001, ANNU REV ENTOMOL, V46, P471, DOI 10.1146/annurev.ento.46.1.471 BRODIE ED, 1981, J HERPETOL, V15, P235, DOI 10.2307/1563386 Brodie ED, 2001, P NATL ACAD SCI USA, V98, P7884, DOI 10.1073/pnas.141075998 BRODIE ED, 1977, COPEIA, P523, DOI 10.2307/1443271 BROWER LP, 1984, S R ENTOMOL SOC LOND, V11, P110 Clark BR, 1997, ECOL ENTOMOL, V22, P408, DOI 10.1046/j.1365-2311.1997.00091.x Costa James T., 1996, Journal of Research on the Lepidoptera, V32, P89 Cott H. B., 1940, ADAPTIVE COLORATION Dale J, 2000, P ROY SOC B-BIOL SCI, V267, P2143, DOI 10.1098/rspb.2000.1261 EISNER T, 1995, P NATL ACAD SCI USA, V92, P50, DOI 10.1073/pnas.92.1.50 EISNER T, 1991, Psyche (Cambridge), V98, P111, DOI 10.1155/1991/95350 Endler J.A., 1978, Evolutionary Biology (New York), V11, P319 Endler J. A., 1992, AM NAT, V139, P125 ENDLER JA, 1988, PHILOS T R SOC B, V319, P505, DOI 10.1098/rstb.1988.0062 Fordyce JA, 2001, J ANIM ECOL, V70, P997, DOI 10.1046/j.0021-8790.2001.00568.x Gamberale G, 1998, P ROY SOC B-BIOL SCI, V265, P889, DOI 10.1098/rspb.1998.0374 Gamberale-Stille G, 2001, BEHAV ECOL, V12, P768, DOI 10.1093/beheco/12.6.768 Gentry GL, 2002, ECOLOGY, V83, P3108, DOI 10.1890/0012-9658(2002)083[3108:OTCNON]2.0.CO;2 GOLAB T, 1959, HELV CHIM ACTA, V42, P2418, DOI 10.1002/hlca.19590420713 Grant JB, 2006, J EXP BIOL, V209, P3018, DOI 10.1242/jeb.02335 Hatle JD, 2002, EVOL ECOL, V16, P415, DOI 10.1023/A:1020814110102 Hatle JD, 2001, J INSECT BEHAV, V14, P479, DOI 10.1023/A:1011172006035 Hatle JD, 1998, OECOLOGIA, V115, P260, DOI 10.1007/s004420050515 HERREBOUT W. M., 1963, ARCH NEERLAND ZOOL, V15, P315 Hill GE, 2000, J AVIAN BIOL, V31, P559, DOI 10.1034/j.1600-048X.2000.310415.x Lederhouse R.C., 1990, P175 LEE PK, 1972, LLOYD, V35, P150 LEIMAR O, 1986, AM NAT, V128, P469, DOI 10.1086/284581 Lindstrom L, 2001, P ROY SOC B-BIOL SCI, V268, P357, DOI 10.1098/rspb.2000.1377 Lindstrom L, 1999, NATURE, V397, P249, DOI 10.1038/16692 LINTNER JA, 1896, 11 REPORT INJURIOUS Malcolm S.B., 1991, P251 Mappes J, 2005, TRENDS ECOL EVOL, V20, P598, DOI 10.1016/j.tree.2005.07.011 Marples NM, 2005, EVOLUTION, V59, P933 Merilaita S, 2005, EVOLUTION, V59, P38 Nakamura T, 2000, J COMP PHYSIOL A, V186, P897, DOI 10.1007/s003590000143 Nylin Soren, 2001, Journal of the Lepidopterists' Society, V55, P69 Oxford GS, 1998, ANNU REV ENTOMOL, V43, P619, DOI 10.1146/annurev.ento.43.1.619 PASTEELS JM, 1983, ANNU REV ENTOMOL, V28, P263, DOI 10.1146/annurev.en.28.010183.001403 Poulton EB, 1890, COLOURS ANIMALS THEI Rossini C, 2000, J CHEM ECOL, V26, P391, DOI 10.1023/A:1005457321701 Ruxton GD, 2004, AVOIDING ATTACK EVOL Servedio MR, 2000, EVOLUTION, V54, P751 Sherratt TN, 2003, AM NAT, V162, P377, DOI 10.1086/378047 SILLENTULLBERG B, 1983, EVOLUTION, V37, P993, DOI 10.1111/j.1558-5646.1983.tb05627.x SILLENTULLBERG B, 1988, EVOLUTION, V42, P293, DOI [10.2307/2409233, 10.1111/j.1558-5646.1988.tb04133.x] Speed M, 2002, NATURE, V416, P375, DOI 10.1038/416375a Speed MP, 2005, P ROY SOC B-BIOL SCI, V272, P431, DOI 10.1098/rspb.2004.2968 Stamp Nancy E., 1993, P283 Tullberg BS, 1996, BIOL J LINN SOC, V57, P253, DOI 10.1111/j.1095-8312.1996.tb00312.x Wallace AR., 1889, DARWINISM EXPOSITION WIKLUND C, 1985, EVOLUTION, V39, P1155, DOI 10.1111/j.1558-5646.1985.tb00456.x Yachi S, 1998, NATURE, V394, P882, DOI 10.1038/29751 Zar G, 1999, BIOSTATISTICAL ANAL, VFourth NR 60 TC 52 Z9 52 U1 0 U2 41 PU BLACKWELL PUBLISHING PI OXFORD PA 9600 GARSINGTON RD, OXFORD OX4 2DQ, OXON, ENGLAND SN 0021-8790 J9 J ANIM ECOL JI J. Anim. Ecol. PD MAY PY 2007 VL 76 IS 3 BP 439 EP 447 DI 10.1111/j.1365-2656.2007.01216.x PG 9 WC Ecology; Zoology SC Environmental Sciences & Ecology; Zoology GA 155WI UT WOS:000245608900003 PM 17439461 OA Bronze DA 2021-10-15 ER PT J AU Dobler, S Farrell, BD AF Dobler, S Farrell, BD TI Host use evolution in Chrysochus milkweed beetles: evidence from behaviour, population genetics and phylogeny SO MOLECULAR ECOLOGY LA English DT Article DE Chrysochus; Chrysomelidae; genetic differentiation; host plant evolution; host plant preference; specialization ID APPLE MAGGOT FLY; MITOCHONDRIAL-DNA; SWALLOWTAIL BUTTERFLIES; OVIPOSITION PREFERENCE; EUROSTA-SOLIDAGINIS; INSECT POPULATIONS; TRADE-OFFS; SPECIALIZATION; DIFFERENTIATION; DIVERSIFICATION AB In two sister species of leaf beetles with overlapping host associations, Chrysochus auratus and C. cobaltinus, we established diet breadth and food preference of local populations for evaluation together with genetic differentiation between populations. While C. auratus turned out to be monophagous on the same plant wherever we collected the beetles, the studied populations of C. cobaltinus fed on three different plant species in the field. Plant preference and ranking of the potential host plants significantly differed between these populations. The amount of genetic differentiation between populations was measured by a polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) assay of a 1300 bp mitochondrial DNA (mtDNA) sequence. In addition, the dominant genotypes of all populations were sequenced. No genetic differentiation between the populations of C. auratus could be detected in the RFLP assay and sequence divergence was low (= 0.3%). In C. cobaltinus, on the other hand, genetic differentiation between populations was high, revealing a lack of gene flow over a much smaller scale and a maximum of 1.3% sequence divergence. C. cobaltinus thereby has the prerequisites for host race formation on different plants from the original host spectrum. Our sequence-based phylogeny estimate allows us to reconstruct historical diet evolution in Chrysochus Starting from an original association with Asclepiadaceae, the common ancestor of C. auratus and C. cobaltinus included Apocynaceae in its diet. The strict specialization on Apocynum and the loss of acceptance of Asclepiadaceae observed in C. auratus could have resulted from a process similar to that displayed by C. cobaltinus populations. C1 Univ Freiburg, Inst Biol 1, D-79104 Freiburg, Germany. Harvard Univ, Museum Comparat Zool, Cambridge, MA 02138 USA. RP Dobler, S (corresponding author), Univ Freiburg, Inst Biol 1, Albertstr 21A, D-79104 Freiburg, Germany. EM doblers@uni-freiburg.de OI Dobler, Susanne/0000-0002-0635-7719 CR Arnett R.H., 1968, BEETLES US MANUAL ID AVISE JC, 1991, ANNU REV GENET, V25, P45, DOI 10.1146/annurev.ge.25.120191.000401 Bernays E. A., 1994, Host-plant selection by phytophagous insects. BROWER LP, 1982, J CHEM ECOL, V8, P579, DOI 10.1007/BF00989631 Brown JM, 1997, MOL ECOL, V6, P215, DOI 10.1046/j.1365-294X.1997.t01-1-00171.x BUSH GL, 1994, TRENDS ECOL EVOL, V9, P285, DOI 10.1016/0169-5347(94)90031-0 CLARY DO, 1985, J MOL EVOL, V22, P252, DOI 10.1007/BF02099755 CRAIG TP, 1993, EVOLUTION, V47, P1696, DOI [10.2307/2410214, 10.1111/j.1558-5646.1993.tb01262.x] CROZIER RH, 1993, GENETICS, V133, P97 DICKINSON JL, 1995, BEHAV ECOL, V6, P280, DOI 10.1093/beheco/6.3.280 Dobler S, 1998, CHEMOECOLOGY, V8, P111, DOI 10.1007/s000490050015 Erney SJ, 1996, ANN ENTOMOL SOC AM, V89, P804, DOI 10.1093/aesa/89.6.804 EXCOFFIER L, 1992, GENETICS, V131, P479 Farrell BD, 1998, BIOL J LINN SOC, V63, P553, DOI 10.1006/bijl.1997.0207 Farrell BD, 1998, SCIENCE, V281, P555, DOI 10.1126/science.281.5376.555 Farrell Brian D., 1993, P253 FEDER JL, 1994, P NATL ACAD SCI USA, V91, P7990, DOI 10.1073/pnas.91.17.7990 FERNALD M. L., 1950, GRAYS MANUAL BOT HDB Flook PK, 1995, J MOL EVOL, V41, P928, DOI 10.1007/BF00173173 FOX LR, 1981, SCIENCE, V211, P887, DOI 10.1126/science.211.4485.887 Fry JD, 1996, AM NAT, V148, pS84, DOI 10.1086/285904 FUNK DJ, 1995, EVOLUTION, V49, P1008, DOI [10.1111/j.1558-5646.1995.tb02335.x, 10.2307/2410422] Futuyama D.J., 1989, P557 Futuyama D.J., 1986, P295 FUTUYMA DJ, 1988, ANNU REV ECOL SYST, V19, P207, DOI 10.1146/annurev.es.19.110188.001231 FUTUYMA DJ, 1995, EVOLUTION, V49, P797, DOI [10.2307/2410403, 10.1111/j.1558-5646.1995.tb02316.x] Hatch M. H., 1953, BEETLES PACIFIC NW Hsiao T.H., 1982, Proceedings of the International Symposium on Insect-Plant Relationships, V5, P315 JAENIKE J, 1990, ANNU REV ECOL SYST, V21, P243, DOI 10.1146/annurev.ecolsys.21.1.243 Jermy T., 1987, P143 JOLIVET P, 1982, Bulletin Mensuel de la Societe Linneenne de Lyon, V51, P214 KAWECKI TJ, 1994, AM NAT, V144, P833, DOI 10.1086/285709 Kelley ST, 1998, EVOLUTION, V52, P1731, DOI 10.1111/j.1558-5646.1998.tb02253.x LOPATIN IK, 1984, LEAF BEETLES CHRYSOM Malcolm S.B., 1991, P251 MITTER C, 1988, AM NAT, V132, P107, DOI 10.1086/284840 Mopper S, 1996, TRENDS ECOL EVOL, V11, P235, DOI 10.1016/0169-5347(96)10036-7 PAPAJ DR, 1988, OECOLOGIA, V76, P538, DOI 10.1007/BF00397866 Peterson Merrill A., 1998, P263 ROININEN H, 1993, EVOLUTION, V47, P300, DOI [10.2307/2410137, 10.1111/j.1558-5646.1993.tb01218.x] SADY MB, 1994, COLEOPTS BULL, V48, P299 SCHNEIDER S, 1997, ARLEQUIN VERSION 1 1 Sennblad B, 1996, PLANT SYST EVOL, V202, P153, DOI 10.1007/BF00983380 SIMON C, 1994, ANN ENTOMOL SOC AM, V87, P651, DOI 10.1093/aesa/87.6.651 SINGER MC, 1989, ANIM BEHAV, V37, P751, DOI 10.1016/0003-3472(89)90061-4 SINGER MC, 1993, NATURE, V361, P251, DOI 10.1038/361251a0 SINGER MC, 1988, EVOLUTION, V42, P977, DOI [10.2307/2408913, 10.1111/j.1558-5646.1988.tb02516.x] SINGER MC, 1995, EVOLUTION, V49, P351 SLATKIN M, 1987, SCIENCE, V236, P787, DOI 10.1126/science.3576198 Strong DL, 1984, INSECTS PLANTS SWOFFORD DL, 1998, PAUP STAR PHYLOGENET TAKAHATA N, 1984, P NATL ACAD SCI-BIOL, V81, P1764, DOI 10.1073/pnas.81.6.1764 THOMAS CD, 1987, ECOLOGY, V68, P1262, DOI 10.2307/1939210 Thompson J.N., 1994, COEVOLUTIONARY PROCE THOMPSON JN, 1990, NATURE, V344, P148, DOI 10.1038/344148a0 THOMPSON JN, 1993, EVOLUTION, V47, P1585, DOI 10.2307/2410169 TONG M L, 1989, Journal of the Lepidopterists' Society, V43, P217 WARING GL, 1990, EVOLUTION, V44, P1648, DOI [10.2307/2409344, 10.1111/j.1558-5646.1990.tb03853.x] Wehling WF, 1997, OECOLOGIA, V111, P209, DOI 10.1007/s004420050227 WEIR BS, 1984, EVOLUTION, V38, P1358, DOI [10.2307/2408641, 10.1111/j.1558-5646.1984.tb05657.x] Whitlock MC, 1996, AM NAT, V148, pS65, DOI 10.1086/285902 Williams Charles E., 1992, Banisteria, V1, P8 WOODSON ROBERT E., 1954, ANN MISSOURI BOT GARD, V41, P1, DOI 10.2307/2394652 NR 63 TC 52 Z9 56 U1 0 U2 16 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0962-1083 EI 1365-294X J9 MOL ECOL JI Mol. Ecol. PD AUG PY 1999 VL 8 IS 8 BP 1297 EP 1307 DI 10.1046/j.1365-294X.1999.00693.x PG 11 WC Biochemistry & Molecular Biology; Ecology; Evolutionary Biology SC Biochemistry & Molecular Biology; Environmental Sciences & Ecology; Evolutionary Biology GA 230NB UT WOS:000082256300006 PM 10447870 DA 2021-10-15 ER PT J AU An, HJ Wang, H Lan, YX Hashi, Y Chen, SZ AF An, Haijuan Wang, Hong Lan, Yuexiang Hashi, Yuki Chen, Shizhong TI Simultaneous qualitative and quantitative analysis of phenolic acids and flavonoids for the quality control of Apocynum venetum L. leaves by HPLC-DAD-ESI-IT-TOF-MS and HPLC-DAD SO JOURNAL OF PHARMACEUTICAL AND BIOMEDICAL ANALYSIS LA English DT Article DE Apocynum venetum L. leaves; HPLC-DAD-ESI-IT-TOF-MS; Phenolic acids; Flavonoids; Quantitative determination; Cluster analysis ID OF-FLIGHT MASS; ELECTROSPRAY-IONIZATION; IDENTIFICATION; COMPONENTS AB A reliable method based on high performance liquid chromatography-diode array detector-electrospray ionization-ion trap-time of flight-mass spectrometry (HPLC-DAD-ESI-IT-TOF-MS) was developed for the identification of phenolic acids and flavonoids in Apocynum venetum L. leaves and its adulterant, Pocynum hendersonii (Hook. f.) Woodson leaves. A total of 21 compounds were identified or tentatively identified, including 4 phenolic acids and 17 flavonoids. 3-O-caffeoylquinic acid (3-CQA) and caffeic acid were detected for the first time in A. venetum leaves; 4-O-caffeoylquinic acid (4-CQA), 3-CQA, caffeic acid, quercetin-3-O-(6 ''-O-malonyl)-galactoside, quercetin-3-O-(6 ''-O-malonyl)-glucoside, kaempferol-3-O-(6 ''-O-malonyl)-glucoside, kaempferol-3-O-(6 ''-O-acetyl)-glucoside, and kaempferol-3-O-dihexoside were detected for the first time in P. hendersonii leaves. Cluster analysis was employed to analyze 24 batches of A. venetum leaves and 5 batches of P. hendersonii leaves collected from various regions in China. The analysis, which was based on the 21 compounds, indicated that profiles of these compounds were distinct between the two species, and among A. venetum leaf samples from different origins. 18 of these 21 compounds were selected as the markers and simultaneously analyzed by HPLC-DAD for the first time. The quantitative analytical method was validated and subsequently applied to the comprehensive quality evaluation of 24 batches of A. venetum leaves. (C) 2013 Elsevier B.V. All rights reserved. C1 [An, Haijuan; Wang, Hong; Lan, Yuexiang; Hashi, Yuki; Chen, Shizhong] Peking Univ, Sch Pharmaceut Sci, Beijing 100191, Peoples R China. [Hashi, Yuki] Shimadzu China Co Ltd, Beijing 100020, Peoples R China. RP Hashi, Y (corresponding author), Peking Univ, Sch Pharmaceut Sci, 38 Xueyuan Rd, Beijing 100191, Peoples R China. EM y-hashi@shimadzu.co.jp; chenshizhong66@163.com FU Peking University Comprehensive Platform for Innovative Drug Research and Development [2009ZX09301-010]; Shimadzu (China) Company Limited FX This research was supported by the Peking University Comprehensive Platform for Innovative Drug Research and Development (No. 2009ZX09301-010). Financial and technical support received from Shimadzu (China) Company Limited are gratefully acknowledged. CR Cao JG, 2013, FOOD CHEM TOXICOL, V51, P242, DOI 10.1016/j.fct.2012.09.039 Fabre N, 2001, J AM SOC MASS SPECTR, V12, P707, DOI 10.1016/S1044-0305(01)00226-4 Grundmann O, 2007, J ETHNOPHARMACOL, V110, P406, DOI 10.1016/j.jep.2006.09.035 Guo S, 2011, J PHARMACEUT BIOMED, V56, P264, DOI 10.1016/j.jpba.2011.05.025 Kamata K, 2008, J NAT MED-TOKYO, V62, P160, DOI 10.1007/s11418-007-0202-3 Li Li-Hong, 2006, Zhongguo Zhong Yao Za Zhi, V31, P1337 Li YL, 2005, ANTIVIR RES, V68, P1, DOI 10.1016/j.antiviral.2005.06.004 [李玉薇 Li Yuwei], 2012, [时珍国医国药, Lishizhen Medicine and Materia Medica Research], V23, P2971 Liu P., 2009, SPECIAL WILD EC ANIM, V3, P64 Liu W.F., 2009, CHIN ARCH TRAD CHIN, V27, P2677 Liu ZR, 2011, J PHARMACEUT BIOMED, V55, P557, DOI 10.1016/j.jpba.2011.02.007 March RE, 1997, J MASS SPECTROM, V32, P351, DOI 10.1002/(SICI)1096-9888(199704)32:4<351::AID-JMS512>3.0.CO;2-Y National Commission of Chinese Pharmacopoeia, 2010, PHARMACOPOEIA PEOPLE, V1, P196 QIAN Z, 1988, Bulletin of Chinese Materia Medica, V13, P44 Rao YK, 2005, J ETHNOPHARMACOL, V100, P249, DOI 10.1016/j.jep.2005.02.039 Shi JY, 2011, J LIQ CHROMATOGR R T, V34, P537, DOI 10.1080/10826076.2011.546173 Shi PY, 2007, ANAL CHIM ACTA, V598, P110, DOI 10.1016/j.aca.2007.07.027 The Pharmacopoeia Committee of the Health Ministry of People's Republic of China, 1995, PHARM PEOPL REP CHIN, V1, P182 [王李丽 WANG Lili], 2011, [药物分析杂志, Chinese Journal of Pharmaceutical Analysis], V31, P903 Wang S.W., 2008, J ASIA PACIFIC TRADI, V4, P9 Xie C.X., 2005, CHINESE TRADITIONAL, V36, P235 Xiong JH, 2013, FOOD CHEM, V138, P327, DOI 10.1016/j.foodchem.2012.10.127 Xiong QB, 2000, PLANTA MED, V66, P127, DOI 10.1055/s-2000-11135 Xu Hu, 2011, Yaoxue Xuebao, V46, P1004 [杨红 Yang Hong], 2012, [药物分析杂志, Chinese Journal of Pharmaceutical Analysis], V32, P2051 Ye M, 2005, RAPID COMMUN MASS SP, V19, P1469, DOI 10.1002/rcm.1944 Yin XY, 2012, ADV INTEL SOFT COMPU, V134, P925 Yokozawa T, 2002, BIOL PHARM BULL, V25, P748, DOI 10.1248/bpb.25.748 [张语迟 ZHANG Yu-chi], 2009, [分析测试学报, Journal of Instrumental Analysis], V28, P1148 Zhang YC, 2012, MED CHEM RES, V21, P1684, DOI 10.1007/s00044-011-9668-3 Zhang YC, 2012, MED CHEM RES, V21, P1077, DOI 10.1007/s00044-011-9624-2 Zhang YC, 2010, J CHROMATOGR B, V878, P3149, DOI 10.1016/j.jchromb.2010.09.027 Zheng MZ, 2012, LIAONING J TRAD CHIN, V39, P935 Zhi L., 2012, CHINESE TRADITIONAL, V43, P40 [周春玲 ZHOU Chun-ling], 2009, [药物分析杂志, Chinese Journal of Pharmaceutical Analysis], V29, P1001 Zhou Y, 2011, J PHARMACEUT BIOMED, V56, P916, DOI 10.1016/j.jpba.2011.07.045 NR 36 TC 51 Z9 64 U1 3 U2 101 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0731-7085 EI 1873-264X J9 J PHARMACEUT BIOMED JI J. Pharm. Biomed. Anal. PD NOV PY 2013 VL 85 BP 295 EP 304 DI 10.1016/j.jpba.2013.07.005 PG 10 WC Chemistry, Analytical; Pharmacology & Pharmacy SC Chemistry; Pharmacology & Pharmacy GA 217HS UT WOS:000324351200039 PM 23973760 DA 2021-10-15 ER PT J AU Kim, DW Yokozawa, T Hattori, M Kadota, S Namba, T AF Kim, DW Yokozawa, T Hattori, M Kadota, S Namba, T TI Effects of aqueous extracts of Apocynum venetum leaves on spontaneously hypertensive, renal hypertensive and NaCl-fed-hypertensive rats SO JOURNAL OF ETHNOPHARMACOLOGY LA English DT Article DE Apocynum venetum L.; spontaneously hypertensive rat; renal hypertensive rat; sodium-induced hypertensive rat ID CAPTOPRIL AB Effects of aqueous extracts of Apocynum venetum leaves (Luobuma extracts) on the blood pressure were evaluated in hypertensive animal models, such as spontaneously hypertensive rats (SHR), renal hypertensive rats and NaCl-induced hypertensive rats. In SHR, administration of Luobuma (heat-processed and unprocessed leaves) extracts at a dose of 70 mg/rat per day significantly decreased the systolic blood pressure value, but their decreasing effects were weaker than that of captopril. The urine volume, and the urinary Na+, K+ and protein excretions were not significantly different between Luobuma-treated and untreated groups. In 3/4 nephrectomized rats, the Luobuma extracts significantly decreased the systolic blood pressure value, accompanied by significant increases of the urine Volume and the urinary Na+ and K+ excretions. Furthermore, they decreased the blood urea nitrogen (BUN) level. In NaCl-induced hypertensive rats, the Luobuma extract decreased the systolic blood pressure value. However, it did not change the urinary excretions of Na+, K+ and protein. The BUN level was lower than that of control rats, but the serum total cholesterol (TC) level did not changed. From these findings, the Luobuma extracts have an anti-hypertensive effect, possibly due to amelioration of the kidney functions in the three experimental animal models. (C) 2000 Elsevier Science Ireland Ltd. All rights reserved. C1 Toyama Med & Pharmaceut Univ, Inst Nat Med, Toyama 9300194, Japan. RP Hattori, M (corresponding author), Toyama Med & Pharmaceut Univ, Inst Nat Med, 2630 Sugitani, Toyama 9300194, Japan. CR HUTCHINSON JS, 1980, HYPERTENSION, V2, P546, DOI 10.1161/01.HYP.2.4.546 ISHII K, 1987, J MED PHARM SOC WAKA, V4, P107 Kim D. W., 1998, Journal of Traditional Medicines, V15, P40 Kim DW, 1998, PHYTOTHER RES, V12, P46, DOI 10.1002/(SICI)1099-1573(19980201)12:1<46::AID-PTR169>3.0.CO;2-I KOIKE H, 1980, HYPERTENSION, V2, P299, DOI 10.1161/01.HYP.2.3.299 NISHIBE S, 1986, J TRAD MED, V3, P244 QING ZN, 1988, B CHIN MAT MED, V13, P44 SEKINE I, 1986, J MED PHARM SOC WAKA, V3, P71 TERRAGNO DA, 1975, CIRC RES, V36, P76, DOI 10.1161/01.RES.36.6.76 Yokozawa Takako, 1997, Natural Medicines, V51, P325 ZHU L, MING DYNASTY CHINESE, P4 NR 11 TC 51 Z9 62 U1 1 U2 25 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0378-8741 J9 J ETHNOPHARMACOL JI J. Ethnopharmacol. PD SEP PY 2000 VL 72 IS 1-2 BP 53 EP 59 DI 10.1016/S0378-8741(00)00197-5 PG 7 WC Plant Sciences; Chemistry, Medicinal; Integrative & Complementary Medicine; Pharmacology & Pharmacy SC Plant Sciences; Pharmacology & Pharmacy; Integrative & Complementary Medicine GA 352XM UT WOS:000089244700007 PM 10967454 DA 2021-10-15 ER PT J AU Zheng, MZ Liu, CM Pan, FG Shi, DF Zhang, YC AF Zheng, Meizhu Liu, Chunming Pan, Fengguang Shi, Dongfang Zhang, Yuchi TI Antidepressant-like effect of hyperoside isolated from Apocynum venetum leaves: Possible cellular mechanisms SO PHYTOMEDICINE LA English DT Article DE Hyperoside; Apocynum venetum; Antidepressant avtivity; Cytoprotective; PC12 cells; Corticosterone; Brain-derived neurotrophic factor; cAMP response element binding protein ID FORCED SWIMMING TEST; HIPPOCAMPAL-NEURONS; NEUROTROPHIC FACTOR; SUBEPENDYMAL ZONE; CURCUMA-LONGA; BRAIN; BDNF; GLUCOCORTICOIDS; IDENTIFICATION; CONSTITUENTS AB In the present work, we studied the possible cellular mechanisms of hyperoside isolated from Apocynum venetum leaves in corticosterone-induced neurotoxicity, using PC12 cells as a suitable in vitro model of depression. cell viability was quantitated by 3-(4, 5-dimethylthiazol-2-y1)-2, 5-diphenyltetrazolium bromide (MTT) assay. The release amount of lactic dehydrogenase (LDH) and intracellular Ca2+ concentration were measured using kit and transcript abundances of brain-derived neurotrophic factor (BDNF) and cAMP response element binding protein (CREB) were determined by real-time RT-PCR. The results of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MU) and lactic dehydrogenase (LDH) assays showed that 2.5, 5 and 10 mu g/ml hyperoside or 10 mu M fluoxetine (FLU) protected PC12 cells from the lesion induced by a 48h treatment with 10 mu M corticosterone. Fura-2/AM (acetoxymethyl ester) assays showed that 2.5, 5 and 10 mu g/ml hyperoside or 10 mu M FLU attenuated the intracellular Ca2+ overloading in PC12 cells induced by corticosterone. The transcript abundance of BDNF and CREB in PC12 cells was elevated upon hyperoside treatment. These results suggest that the possible cellular mechanisms of hyperoside antidepressant-like effect is a cytoprotective action related to elevation the expression of BDNF and CREB through the signal pathway AC-cAMP-CREB. (C) 2011 Elsevier GmbH. All rights reserved. C1 [Zheng, Meizhu; Liu, Chunming; Shi, Dongfang; Zhang, Yuchi] Changchun Normal Univ, Cent Lab, Changchun 130032, Jilin, Peoples R China. [Zheng, Meizhu; Pan, Fengguang] Jilin Univ, Coll Light Ind & Management Technol, Lab Nutr & Safety, Changchun 130062, Jilin, Peoples R China. RP Liu, CM (corresponding author), Changchun Normal Univ, Cent Lab, Changchun 130032, Jilin, Peoples R China. EM chunmingliu2000@yahoo.com.cn; panfengguang415@163.com FU National Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC) [30970299]; Natural Science Foundation of Jilin Province of China [20090936] FX This project was supported by the National Natural Science Foundation of China (30970299) and the Natural Science Foundation of Jilin Province of China (20090936). CR ANDERSON DJ, 1989, INT J DEV NEUROSCI, V7, P475, DOI 10.1016/0736-5748(89)90007-5 Butterweck V, 2000, PLANTA MED, V66, P3, DOI 10.1055/s-2000-11119 Butterweck V, 2001, BIOL PHARM BULL, V24, P848, DOI 10.1248/bpb.24.848 Di Carlo G, 1999, LIFE SCI, V65, P337, DOI 10.1016/S0024-3205(99)00120-4 Goldman SA, 1997, J NEUROBIOL, V32, P554, DOI 10.1002/(SICI)1097-4695(19970605)32:6<554::AID-NEU2>3.0.CO;2-Z GREENE LA, 1976, P NATL ACAD SCI USA, V73, P2424, DOI 10.1073/pnas.73.7.2424 Grundmann O, 2009, PHYTOMEDICINE, V16, P295, DOI 10.1016/j.phymed.2008.12.020 Kim JJ, 1998, TRENDS NEUROSCI, V21, P505, DOI 10.1016/S0166-2236(98)01322-8 KIRSCHENBAUM B, 1995, P NATL ACAD SCI USA, V92, P210, DOI 10.1073/pnas.92.1.210 Kwon S, 2010, PROG NEURO-PSYCHOPH, V34, P265, DOI 10.1016/j.pnpbp.2009.11.015 Li Li-Hong, 2006, Zhongguo Zhong Yao Za Zhi, V31, P1337 Li YF, 2004, LIFE SCI, V75, P1531, DOI 10.1016/j.lfs.2004.02.029 Liu P, 2010, PHYTOMEDICINE, V17, P794, DOI 10.1016/j.phymed.2010.01.004 Ma Y X, 1989, Zhong Xi Yi Jie He Za Zhi, V9, P335 Ma Y.X., 1989, ZHONG XI YI JIE HE Z, V9, P323 MATTSON MP, 1993, EXP NEUROL, V121, P1, DOI 10.1006/exnr.1993.1066 MIDDLETON E, 1994, FLAVONOIDS ADV RES 1, P619 Morilak DA, 2004, INT J NEUROPSYCHOPH, V7, P193, DOI 10.1017/S1461145704004080 Moussavi S, 2007, LANCET, V370, P851, DOI 10.1016/S0140-6736(07)61415-9 NIBUYA M, 1995, J NEUROSCI, V15, P7539 Pencea V, 2001, J NEUROSCI, V21, P6706, DOI 10.1523/JNEUROSCI.21-17-06706.2001 Rocha FF, 2007, PHYTOMEDICINE, V14, P396, DOI 10.1016/j.phymed.2007.03.011 Shieh PB, 1998, NEURON, V20, P727, DOI 10.1016/S0896-6273(00)81011-9 Tao X, 1998, NEURON, V20, P709, DOI 10.1016/S0896-6273(00)81010-7 Xia X, 2007, J ETHNOPHARMACOL, V110, P356, DOI 10.1016/j.jep.2006.09.042 Yu ZF, 2002, J ETHNOPHARMACOL, V83, P161, DOI 10.1016/S0378-8741(02)00211-8 Zhang YC, 2010, J CHROMATOGR B, V878, P3149, DOI 10.1016/j.jchromb.2010.09.027 Zhen H., 2009, J ETHNOPHARMACOL, V125, P456 Zhou D, 2010, PHARMACOL BIOCHEM BE, V94, P488, DOI 10.1016/j.pbb.2009.11.003 Zhu M, 2006, NEUROSCIENCE, V141, P2019, DOI 10.1016/j.neuroscience.2006.05.011 Zhu WL, 2006, LIFE SCI, V79, P749, DOI 10.1016/j.lfs.2006.02.015 NR 31 TC 49 Z9 59 U1 5 U2 57 PU ELSEVIER GMBH, URBAN & FISCHER VERLAG PI JENA PA OFFICE JENA, P O BOX 100537, 07705 JENA, GERMANY SN 0944-7113 J9 PHYTOMEDICINE JI Phytomedicine PD JAN 15 PY 2012 VL 19 IS 2 BP 145 EP 149 DI 10.1016/j.phymed.2011.06.029 PG 5 WC Plant Sciences; Chemistry, Medicinal; Integrative & Complementary Medicine; Pharmacology & Pharmacy SC Plant Sciences; Pharmacology & Pharmacy; Integrative & Complementary Medicine GA 893CI UT WOS:000300332800007 PM 21802268 DA 2021-10-15 ER PT J AU Zhang, YC Liu, CM Zhang, ZK Wang, J Wu, GM Li, SN AF Zhang, Yuchi Liu, Chunming Zhang, Zhengkun Wang, Jing Wu, Guimei Li, Sainan TI Comprehensive separation and identification of chemical constituents from Apocynum venetum leaves by high-performance counter-current chromatography and high performance liquid chromatography coupled with mass spectrometry SO JOURNAL OF CHROMATOGRAPHY B-ANALYTICAL TECHNOLOGIES IN THE BIOMEDICAL AND LIFE SCIENCES LA English DT Article DE Apocynum venetum L.; HPCCC; HPLC-MS; NMR; Separation and identification; Purification ID HYPERICUM-PERFORATUM EXTRACTS; LIGHT-SCATTERING DETECTION; DIODE-ARRAY DETECTION; PREPARATIVE ISOLATION; PURIFICATION; FLAVONOIDS; PRODUCTS; GLYCOSIDES; L. AB High-performance counter-current chromatography (HPCCC) and high performance liquid chromatography coupled with mass spectrometry (HPLC-MS) was efficiently utilized for the separation and identification of the chemical components with a wide range of polarity from the mixed extract of Chinese medicinal herb Apocynum venetum. For HPCCC separation, four sets of solvent systems. n-hexane-ethyl acetate-acetonitrile-water (1.5:3.5:2:4.5, v:v:v:v), ethyl acetate-methanol-water (5:2:5, v:v:v) and n-butanol-methanol-water (5:1:5, v:v:v) were used for the one-step separation by four stages. The HPCCC separation was initiated by filling the column with the lower phase of n-hexane-ethyl acetate-acetonitrile-water (1.5:3.5:2:5, v:v:v:v) as a stationary phase followed by elution with the upper phase of n-hexane-ethyl acetate-acetonitrile-water (1.5:3.5:2:5, v:v:v:v) to separate the hydrophobic compounds (tail to head). Then the mobile phase was switched to the upper phase of ethyl acetate-acetonitrile-water (5:3:7, v:v:v) to eluted the moderate hydrophobic compounds, then the mobile phase was switched to the upper phase of ethyl acetate-methanol-water (5:2:5. v:v:v) to eluted the moderate hydrophilic compounds, and finally the hydrophilic compounds still retained in the column was eluted by the upper phase of n-butanol-methanol-water (5:1:5, v:v:v). A total of 16 named compounds including adhyperforin, hyperforin, amentoflavone, biapigenin, quercetin, avicularin, acetylated isoquercetin, acetylated hyperoside, astragalin, trifolin, isoquercetin, hyperoside. querciturone, rutin. chlorogenic acid and quercetin-3-O-beta-D-glucosyl-beta-D-glucopyranoside were successfully separated via the four sets of solvent systems in one step operation for 130 min. The compounds separated by HPCCC were identified by comparing with mixed standards data of HPLC-MS as well as NMR data. Crown Copyright (C) 2010 Published by Elsevier B.V. All rights reserved. C1 [Zhang, Yuchi; Liu, Chunming; Wang, Jing; Wu, Guimei; Li, Sainan] Changchun Normal Univ, Cent Lab, Changchun 130032, Peoples R China. [Zhang, Zhengkun] Jilin Acad Agr Sci, Inst Plant Protect, Gongzhuling 136100, Peoples R China. RP Liu, CM (corresponding author), Changchun Normal Univ, Cent Lab, 677 N Changji Rd, Changchun 130032, Peoples R China. EM chunmingliu200@yahoo.com.cnl FU National Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC) [30970299]; Jilin Provincial Science and Technology Department [20090936] FX This work was supported by the National Natural Science Foundation of China (no. 30970299) and the key project of Jilin Provincial Science and Technology Department (no. 20090936). CR BOREL WR, 2006, J CHROMATOGR A, V1121, P200 Butterweck V, 2001, BIOL PHARM BULL, V24, P848, DOI 10.1248/bpb.24.848 Colovic M, 2008, J CHROMATOGR B, V863, P74, DOI 10.1016/j.jchromb.2008.01.014 Cuyckens F, 2001, J MASS SPECTROM, V36, P1203, DOI 10.1002/jms.224 Fabre N, 2001, J AM SOC MASS SPECTR, V12, P707, DOI 10.1016/S1044-0305(01)00226-4 Ganzera M, 2002, J PHARM SCI-US, V91, P623, DOI 10.1002/jps.10057 Gao M, 2006, J CHROMATOGR B, V838, P139, DOI 10.1016/j.jchromb.2006.04.030 Han X, 2007, J CHROMATOGR A, V1151, P180, DOI 10.1016/j.chroma.2007.02.105 Hvattum E, 2004, J MASS SPECTROM, V39, P1570, DOI 10.1002/jms.756 Hvattum E, 2003, J MASS SPECTROM, V38, P43, DOI 10.1002/jms.398 Ito Y, 2005, J CHROMATOGR A, V1065, P145, DOI 10.1016/j.chroma.2004.12.044 Kamata K, 2008, J NAT MED-TOKYO, V62, P160, DOI 10.1007/s11418-007-0202-3 Keller JH, 2003, ANAL CHEM, V75, P6084, DOI 10.1021/ac034520z Kim DW, 2000, J ETHNOPHARMACOL, V72, P53, DOI 10.1016/S0378-8741(00)00197-5 Lhuillier A, 2007, J CHROMATOGR A, V1160, P13, DOI 10.1016/j.chroma.2007.03.038 Li L, 2005, J CHROMATOGR A, V1063, P161, DOI 10.1016/j.chroma.2004.11.024 Lommen A, 2000, ANAL CHEM, V72, P1793, DOI 10.1021/ac9912303 Maier T, 2006, J CHROMATOGR A, V1128, P61, DOI 10.1016/j.chroma.2006.06.082 Murakami T, 2001, CHEM PHARM BULL, V49, P845, DOI 10.1248/cpb.49.845 Parejo I, 2004, J AGR FOOD CHEM, V52, P1890, DOI 10.1021/jf030717g Peng JY, 2006, J CHROMATOGR A, V1102, P44, DOI 10.1016/j.chroma.2005.10.045 Peng JY, 2005, J CHROMATOGR A, V1091, P89, DOI 10.1016/j.chroma.2005.07.072 Peng JY, 2005, J CHROMATOGR A, V1092, P235, DOI 10.1016/j.chroma.2005.07.073 Petsalo A, 2006, J CHROMATOGR A, V1112, P224, DOI 10.1016/j.chroma.2005.11.056 Sagratini G, 2007, J CHROMATOGR A, V1147, P135, DOI 10.1016/j.chroma.2007.02.066 Shibusawa Y, 2006, J CHROMATOGR A, V1133, P119, DOI 10.1016/j.chroma.2006.08.004 Tang QF, 2007, J CHROMATOGR A, V1144, P203, DOI 10.1016/j.chroma.2007.01.058 Tatsis EC, 2007, PHYTOCHEMISTRY, V68, P383, DOI 10.1016/j.phytochem.2006.11.026 Tolonen A, 2002, RAPID COMMUN MASS SP, V16, P396, DOI 10.1002/rcm.591 Veronika B, 2003, PHARM BIO BEHAV, V75, P557 Wei Y, 2006, J CHROMATOGR A, V1115, P112, DOI 10.1016/j.chroma.2006.02.081 Wu W, 2004, J CHROMATOGR A, V1047, P213, DOI [10.1016/S0021-9673(04)01135-5, 10.1016/j.chroma.2004.06.128] Yanagida A, 2007, J CHROMATOGR A, V1151, P74, DOI 10.1016/j.chroma.2007.03.071 [杨娟 YANG Juan], 2006, [中国药学杂志, Chinese Pharmaceutical Journal], V41, P255 Yao S, 2007, J CHROMATOGR A, V1139, P254, DOI 10.1016/j.chroma.2006.11.056 Zhou TT, 2006, J CHROMATOGR A, V1116, P97, DOI 10.1016/j.chroma.2006.03.041 NR 36 TC 48 Z9 56 U1 4 U2 62 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1570-0232 EI 1873-376X J9 J CHROMATOGR B JI J. Chromatogr. B PD NOV 15 PY 2010 VL 878 IS 30 BP 3149 EP 3155 DI 10.1016/j.jchromb.2010.09.027 PG 7 WC Biochemical Research Methods; Chemistry, Analytical SC Biochemistry & Molecular Biology; Chemistry GA 686BR UT WOS:000284672300015 PM 20965796 DA 2021-10-15 ER PT J AU Kim, JH Jang, BG Choi, BY Kim, HS Sohn, M Chung, TN Choi, HC Song, HK Suh, SW AF Kim, Jin Hee Jang, Bong Geom Choi, Bo Young Kim, Hyeong Seop Sohn, Min Chung, Tae Nyoung Choi, Hui Chul Song, Hong Ki Suh, Sang Won TI Post-treatment of an NADPH oxidase inhibitor prevents seizure-induced neuronal death SO BRAIN RESEARCH LA English DT Article DE Temporal lobe epilepsy; Seizure; NADPH oxidase; Reactive oxygen species; Blood brain barrier; Neurodegeneration; Microglia; Neurotrophil infiltration ID TEMPORAL-LOBE EPILEPSY; PILOCARPINE-INDUCED SEIZURES; OXIDATIVE STRESS; STATUS EPILEPTICUS; MICROGLIAL ACTIVATION; CEREBRAL-ISCHEMIA; NITRIC-OXIDE; CELL-DEATH; RATS; SUPEROXIDE AB The present study sought to evaluate the neuroprotective effects of apocynin, an NADPH oxidase assembly inhibitor, on seizure-induced neuronal death. Apocynin, also known as acetovanillone, is a natural organic compound isolated from the root of Canadian hemp (Apocynum cannabium). It has been extensively studied to determine its disease-fighting capabilities and application in several brain insults, such as traumatic brain injury and stroke. Here we tested the hypothesis that post-treatment of apocynin may prevent seizure-induced neuronal death by suppression of NADPH oxidase-mediated superoxide production. Temporal lobe epilepsy (TLE) was induced by intraperitoneal injection of pilocarpine (25 mg/kg) in male rats. Apocynin (30 mg/kg, i.p.) was injected into the intraperitoneal space two hours after seizure onset. A second injection was performed 24 h after seizure. To test whether apocynin inhibits NADPH oxidase activation-induced reactive oxygen species (ROS) production, dihydroethidium (dHEt, 5 mg/kg, i.p.) was injected before onset of seizure and ROS production was detected five hours after seizure onset. Neuronal oxidative injury (4HNE), neuronal death (Fluoro Jade-B), blood brain barrier (BBB) disruption (IgG leak), neurotrophil infiltration (MPO) and microglia activation (CD11b) in the hippocampus was evaluated at three days after status epilepticus (SE). Pilocarpine-induced seizure increased p47 immunofluorescence in the plasma membrane of hippocampal neurons at 12 h post-insult and apocynin treatment prevented this increase. The present study found that apocynin post-treatment decreased ROS production and lipid peroxidation after seizure and decreased the number of degenerating hippocampal neurons. Apocynin also reduced seizure-induced BBB disruption, neurotrophil infiltration and microglial activation. Taken together, the present results suggest that inhibition of NADPH oxidase by apocynin may have a high therapeutic potential to reduce seizure-induced neuronal dysfunction. (C) 2013 Elsevier B.V. All rights reserved. C1 [Kim, Jin Hee; Jang, Bong Geom; Choi, Bo Young; Kim, Hyeong Seop; Suh, Sang Won] Hallym Univ, Coll Med, Dept Physiol, Chunchon 200702, South Korea. [Sohn, Min] Inha Univ, Dept Nursing, Inchon, South Korea. [Chung, Tae Nyoung] CHA Univ, Sch Med, CHA Bundang Med Ctr, Gyeonggi Do, South Korea. [Choi, Hui Chul; Song, Hong Ki] Hallym Univ, Hallym Inst Epelepsy Res, Chunchon 200702, South Korea. RP Song, HK (corresponding author), Hallym Univ, Hallym Inst Epelepsy Res, Chunchon 200702, South Korea. EM hksong0@paran.com; swsuh@hallym.ac.kr RI Chung, Tae Nyoung/AAN-7886-2020 OI Chung, Tae Nyoung/0000-0003-3537-4136; SOHN, MIN/0000-0003-4021-2051; Choi, Bo Young/0000-0002-9579-3503 FU Hallym University Specialization Fund [HRF-S-41] FX This study was supported by a grant from the Hallym University Specialization Fund (HRF-S-41). The authors thank Aaron M. Hamby, University of California, Berkeley, for help with preparing the manuscript. CR Ashrafi MR, 2007, EPILEPSIA, V48, P1750, DOI 10.1111/j.1528-1167.2007.01143.x Bedard K, 2007, PHYSIOL REV, V87, P245, DOI 10.1152/physrev.00044.2005 Brennan AM, 2009, NAT NEUROSCI, V12, P857, DOI 10.1038/nn.2334 Cai AL, 2006, EUR J NEUROSCI, V24, P2169, DOI 10.1111/j.1460-9568.2006.05110.x Chan PH, 1998, J NEUROSCI, V18, P8292, DOI 10.1523/jneurosci.18-20-08292.1998 Chang YC, 2003, ANN NEUROL, V54, P706, DOI 10.1002/ana.10789 DELANEROLLE NC, 1989, BRAIN RES, V495, P387, DOI 10.1016/0006-8993(89)90234-5 Dodd-O JM, 2000, AM J PHYSIOL-HEART C, V279, pH303, DOI 10.1152/ajpheart.2000.279.1.H303 Frantseva MV, 2000, NEUROSCIENCE, V97, P431, DOI 10.1016/S0306-4522(00)00041-5 Freitas RM, 2005, FEBS J, V272, P1307, DOI 10.1111/j.1742-4658.2004.04537.x Groemping Y, 2005, BIOCHEM J, V386, P401, DOI 10.1042/BJ20041835 Holmes GL, 1998, ANN NEUROL, V44, P845, DOI 10.1002/ana.410440602 HSU SM, 1981, J HISTOCHEM CYTOCHEM, V29, P577, DOI 10.1177/29.4.6166661 Inamasu J, 2000, ACT NEUR S, V76, P525 Kauppinen TM, 2008, J NEUROSCI, V28, P5827, DOI 10.1523/JNEUROSCI.1236-08.2008 Kauppinen UM, 2005, J IMMUNOL, V174, P2288, DOI 10.4049/jimmunol.174.4.2288 Kilkenny C, 2010, PLOS BIOL, V8, DOI 10.1371/journal.pbio.1000412 Kim YH, 2002, EXP NEUROL, V177, P407, DOI 10.1006/exnr.2002.7990 Liu JZ, 2010, SEIZURE-EUR J EPILEP, V19, P165, DOI 10.1016/j.seizure.2010.01.010 de Freitas RLM, 2010, BRAIN RES BULL, V81, P505, DOI 10.1016/j.brainresbull.2009.09.014 Muller CJ, 2009, EUR J PHARMACOL, V619, P15, DOI 10.1016/j.ejphar.2009.07.020 Murakami K, 1998, J NEUROSCI, V18, P205 Nairismagi J, 2006, EPILEPSIA, V47, P479, DOI 10.1111/j.1528-1167.2006.00455.x Olney J W, 1986, Adv Neurol, V44, P857 Patel M, 2005, J NEUROCHEM, V92, P123, DOI 10.1111/j.1471-4159.2004.02838.x PERSINGER MA, 1988, PHYSIOL BEHAV, V44, P27, DOI 10.1016/0031-9384(88)90342-3 Pestana RRF, 2010, NEUROSCI LETT, V484, P187, DOI 10.1016/j.neulet.2010.08.049 RACINE RJ, 1972, BRAIN RES, V47, P262, DOI 10.1016/0006-8993(72)90268-5 Ravizza T, 2008, NEUROBIOL DIS, V29, P142, DOI 10.1016/j.nbd.2007.08.012 Rigau V, 2007, BRAIN, V130, P1942, DOI 10.1093/brain/awm118 Rogawski MA, 2004, NAT REV NEUROSCI, V5, P553, DOI 10.1038/nrn1430 ROGERS SW, 1994, SCIENCE, V265, P648, DOI 10.1126/science.8036512 RUTH RE, 1988, ACTA NEUROPATHOL, V76, P380, DOI 10.1007/BF00686975 Shapiro LA, 2008, EPILEPSIA, V49, P33, DOI 10.1111/j.1528-1167.2008.01491.x SLOVITER RS, 1987, SCIENCE, V235, P73, DOI 10.1126/science.2879352 STOLK J, 1994, AM J RESP CELL MOL, V11, P95, DOI 10.1165/ajrcmb.11.1.8018341 Suh SW, 2008, J CEREBR BLOOD F MET, V28, P1697, DOI 10.1038/jcbfm.2008.61 Suh SW, 2007, J CLIN INVEST, V117, P910, DOI 10.1172/JCI30077 Suh SW, 2008, ANN NEUROL, V64, P654, DOI 10.1002/ana.21511 Tang XN, 2008, NEUROSCIENCE, V154, P556, DOI 10.1016/j.neuroscience.2008.03.090 Tejada-Simon MV, 2005, MOL CELL NEUROSCI, V29, P97, DOI 10.1016/j.mcn.2005.01.007 Thompson HJ, 2005, J CEREBR BLOOD F MET, V25, P163, DOI 10.1038/sj.jcbfm.9600008 TURSKI WA, 1983, BEHAV BRAIN RES, V9, P315, DOI 10.1016/0166-4328(83)90136-5 NR 43 TC 46 Z9 46 U1 0 U2 16 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0006-8993 EI 1872-6240 J9 BRAIN RES JI Brain Res. PD MAR 7 PY 2013 VL 1499 BP 163 EP 172 DI 10.1016/j.brainres.2013.01.007 PG 10 WC Neurosciences SC Neurosciences & Neurology GA 113ZX UT WOS:000316710300016 PM 23313582 DA 2021-10-15 ER PT J AU Yokozawa, T Kashiwada, Y Hattori, M Chung, HY AF Yokozawa, T Kashiwada, Y Hattori, M Chung, HY TI Study on the components of luobuma with peroxynitrite-scavenging activity SO BIOLOGICAL & PHARMACEUTICAL BULLETIN LA English DT Article DE luobuma; leaf; peroxynitrite; epigallocatechin-(4 beta-8)-epicatechin ID LOW-DENSITY-LIPOPROTEIN; NITRIC-OXIDE; DEFENSE-MECHANISMS; OXIDATIVE STRESS; IN-VITRO; SUPEROXIDE; ATHEROSCLEROSIS; ANTIOXIDANTS; TANNINS; BIOLOGY AB The origin of the antioxidant activity of Luobuma aqueous extract was examined by measuring the peroxynitrite (ONOO-)-eliminating activities of fractions of this extract obtained by Sephadex LH-20 column chromatography. Three of the four fractions obtained, i.e., those excluding the H2O-eluted fraction, were found to possess ONOO--eliminating activity. These three fractions were combined and fractionated again by Sephadex LH-20 column chromatography, which yielded five fractions. Seven different compounds were isolated from two of these five fractions with high activity. Epigallocatechin-(4beta-8)-epicatechin showed the highest ONOO--eliminating activity. C1 Toyama Med & Pharmaceut Univ, Inst Nat Med, Toyama 9300194, Japan. Niigata Coll Pharm, Niigata 9502081, Japan. Pusan Natl Univ, Coll Pharm, Gumjung Ku, Pusan 609735, South Korea. RP Yokozawa, T (corresponding author), Toyama Med & Pharmaceut Univ, Inst Nat Med, 2630 Sugitani, Toyama 9300194, Japan. EM yokozawa@ms.toyama-mpu.ac.jp CR ALTHAUS JS, 1994, RES COMMUN CHEM PATH, V83, P243 BECKMAN JS, 1990, P NATL ACAD SCI USA, V87, P1620, DOI 10.1073/pnas.87.4.1620 BECKMAN JS, 1992, ARCH BIOCHEM BIOPHYS, V298, P438, DOI 10.1016/0003-9861(92)90432-V BECKMAN JS, 1991, J DEV PHYSIOL, V15, P53 BECKMANN JS, 1994, BIOL CHEM H-S, V375, P81, DOI 10.1515/bchm3.1994.375.2.81 BERLINER JA, 1995, CIRCULATION, V91, P2488, DOI 10.1161/01.CIR.91.9.2488 Crow JP, 1997, NITRIC OXIDE-BIOL CH, V1, P145, DOI 10.1006/niox.1996.0113 FULBERT JC, 1992, PATHOL BIOL, V40, P66 Hall J., 1858, T ALBANY I, V4, P1 HALLIWELL B, 1990, FREE RADICAL RES COM, V9, P1, DOI 10.3109/10715769009148569 KAHL R, 1993, Z LEBENSM UNTERS FOR, V196, P329, DOI 10.1007/BF01197931 Kim D. W., 1998, Journal of Traditional Medicines, V15, P40 Kim DW, 2000, PHYTOTHER RES, V14, P501, DOI 10.1002/1099-1573(200011)14:7<501::AID-PTR655>3.0.CO;2-B KOPPENOL WH, 1992, CHEM RES TOXICOL, V5, P834, DOI 10.1021/tx00030a017 NONAKA GI, 1983, CHEM PHARM BULL, V31, P3906 NONAKA GI, 1981, CHEM PHARM BULL, V29, P2862 RADI R, 1991, J BIOL CHEM, V266, P4244 REITER RJ, 1995, FASEB J, V9, P526, DOI 10.1096/fasebj.9.7.7737461 ROSS R, 1995, ANNU REV PHYSIOL, V57, P791, DOI 10.1146/annurev.ph.57.030195.004043 Sies H, 1997, EXP PHYSIOL, V82, P291, DOI 10.1113/expphysiol.1997.sp004024 SIES H, 1991, KLIN WOCHENSCHR, V69, P965, DOI 10.1007/BF01645140 SIMIONESCU N, 1986, AM J PATHOL, V123, P109 STEINBERG D, 1991, CIRCULATION, V84, P1420, DOI 10.1161/01.CIR.84.3.1420 STEINBRECHER UP, 1984, P NATL ACAD SCI-BIOL, V81, P3883, DOI 10.1073/pnas.81.12.3883 Yokozawa T, 1998, J AGR FOOD CHEM, V46, P2143, DOI 10.1021/jf970985c Yokozawa T., 1999, Journal of Traditional Medicines, V16, P141 Yokozawa T, 2001, J AM AGING ASSOC, V24, P19, DOI 10.1007/s11357-001-0003-7 Yokozawa T, 1998, BIOCHEM PHARMACOL, V56, P213, DOI 10.1016/S0006-2952(98)00128-2 NR 28 TC 45 Z9 49 U1 0 U2 10 PU PHARMACEUTICAL SOC JAPAN PI TOKYO PA 2-12-15 SHIBUYA, SHIBUYA-KU, TOKYO, 150-0002, JAPAN SN 0918-6158 J9 BIOL PHARM BULL JI Biol. Pharm. Bull. PD JUN PY 2002 VL 25 IS 6 BP 748 EP 752 DI 10.1248/bpb.25.748 PG 5 WC Pharmacology & Pharmacy SC Pharmacology & Pharmacy GA 557MA UT WOS:000175911300010 PM 12081141 OA Bronze DA 2021-10-15 ER PT J AU Cao, YH Chu, QC Ye, JN AF Cao, YH Chu, QC Ye, JN TI Determination of hydroxyl radical by capillary electrophoresis and studies on hydroxyl radical scavenging activities of Chinese herbs SO ANALYTICAL AND BIOANALYTICAL CHEMISTRY LA English DT Article DE capillary electrophoresis; electrochemical detection; hydroxyl radical; Chinese herbs ID POLYHYDROXY ANTIBIOTICS; AMPEROMETRIC DETECTION; ACTIVE INGREDIENTS; FENTON REACTION; FLAVONOIDS; CHEMILUMINESCENCE; ANTIOXIDANT; OXYGEN AB High-performance capillary electrophoresis (CE) with electrochemical detection (ED) was employed to determine hydroxyl radicals in the Fenton reaction. Hydroxyl radicals can react with salicylic acid to produce 2,3-dihydroxy benzoic acid and 2,5-dihydroxy benzoic acid, which can be analyzed by CE-ED. Based on this principle, hydroxyl radicals were determined indirectly. In a 20 mmol/L phosphate running buffer (pH 7.4), 2,3-dihydroxy benzoic acid and 2,5-dihydroxy benzoic acid would elute simultaneously from the capillary within 6 min. As the working electrode, a 300 mum diameter carbon-disk electrode exhibits good responses at +0.60 V (vs. SCE) for the two analytes. Peak currents of the two analytes are additive. Excellent linearity was obtained in the concentration range from 1.0x10(-3) mol/L to 5.0x10(-6) mol/L for 2,3-dihydroxy benzoic acid. The detection limit (S/N=3) was 2.0x10(-6) mol/L. This method was successfully applied for studying hydroxyl radical scavenging activities of Chinese herbs. It is testified that Apocynum Venetum L., Jinkgo bibola L., Morus alba L. and Rhododendron dauricum L. have strong hydroxyl radical scavenging activities. C1 E China Normal Univ, Dept Chem, Shanghai 200062, Peoples R China. So Yangtze Univ, Sch Chem & Mat Engn, Wuxi 214036, Peoples R China. RP Ye, JN (corresponding author), E China Normal Univ, Dept Chem, Shanghai 200062, Peoples R China. EM jiannongye@hotmail.com CR Cao GH, 1997, FREE RADICAL BIO MED, V22, P749, DOI 10.1016/S0891-5849(96)00351-6 Cao YH, 2002, J CHROMATOGR A, V943, P153, DOI 10.1016/S0021-9673(01)01434-0 Cao YH, 2001, MIKROCHIM ACTA, V137, P57, DOI 10.1007/s006040170028 Domingues P, 2001, J AM SOC MASS SPECTR, V12, P1214, DOI 10.1016/S1044-0305(01)00310-5 Fang XM, 1996, ANAL CHIM ACTA, V329, P49, DOI 10.1016/0003-2670(96)00092-X Fang YZ, 1995, CHEM J CHINESE U, V16, P1514 FRIDOVICH I, 1978, SCIENCE, V201, P875, DOI 10.1126/science.210504 Gao ZH, 2001, PHARMACOL RES, V43, P173, DOI 10.1006/phrs.2000.0761 GRYGLEWSKI RJ, 1987, BIOCHEM PHARMACOL, V36, P317, DOI 10.1016/0006-2952(87)90288-7 Gu Y. D., 1989, CHEM DICT HAN Q, 2000, CHINA SURFACTANT DET, V30, P14 HANASAKI Y, 1994, FREE RADICAL BIO MED, V16, P845, DOI 10.1016/0891-5849(94)90202-X HUSAIN SR, 1987, PHYTOCHEMISTRY, V26, P2489, DOI 10.1016/s0031-9422(00)83860-1 Joseph JM, 2001, WATER ENVIRON RES, V73, P243, DOI 10.2175/106143001X139236 Jurva U, 2002, RAPID COMMUN MASS SP, V16, P1934, DOI 10.1002/rcm.808 Lloyd RV, 1997, FREE RADICAL BIO MED, V22, P885, DOI 10.1016/S0891-5849(96)00432-7 Mizuta Y., 2002, J AGR FOOD CHEM, V50, P2772 Parejo L, 2000, J PHARMACOL TOX MET, V44, P507 Schickor P, 2000, METH MOL B, V148, P245 SCHIMMER O, 1986, DTSCH APOTH ZTG, V35, P1881 Shahat AA, 2002, PLANTA MED, V68, P539, DOI 10.1055/s-2002-32547 SHI HL, 1995, BIOCHEM MOL BIOL INT, V35, P981 Tsai CH, 2001, J AGR FOOD CHEM, V49, P2137, DOI 10.1021/jf001071k Tteiner M.G., 1990, ARCH BIOCHEM BIOPHYS, V278, P478 Vanhees I, 2001, J CHROMATOGR A, V915, P75, DOI 10.1016/S0021-9673(01)00649-5 Yang XF, 2001, ANALYST, V126, P1800, DOI 10.1039/b103208a Zou H, 2002, ANAL BIOANAL CHEM, V373, P111, DOI 10.1007/s00216-002-1254-6 NR 27 TC 43 Z9 48 U1 0 U2 49 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1618-2642 EI 1618-2650 J9 ANAL BIOANAL CHEM JI Anal. Bioanal. Chem. PD JUL PY 2003 VL 376 IS 5 BP 691 EP 695 DI 10.1007/s00216-003-1961-7 PG 5 WC Biochemical Research Methods; Chemistry, Analytical SC Biochemistry & Molecular Biology; Chemistry GA 698UV UT WOS:000184018400021 PM 12802570 DA 2021-10-15 ER PT J AU Liang, TG Yue, WY Li, QS AF Liang, Taigang Yue, Wenyan Li, Qingshan TI Comparison of the Phenolic Content and Antioxidant Activities of Apocynum venetum L. (Luo-Bu-Ma) and Two of Its Alternative Species SO INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES LA English DT Article DE Apocynum venetum L.; Poacynum pictum (Schrenk) Baill.; Poacynum hendersonii (Hook.f.) Woodson; antioxidant activity; phenolic; flavonoid; HPLC ID LIPID-PEROXIDATION; CONSTITUENTS; IDENTIFICATION; INHIBITORS; EXTRACTS; LEAVES AB The leaves of Apocynum venetum L. (AV), a native Chinese plant, have been used as folk medicine in China and Japan. This study evaluated the content of the active antioxidant component and antioxidant activities of AV, and its two alternative species, Poacynum pictum (Schrenk) Baill. (PP) and Poacynum hendersonii (Hook.f.) Woodson (PH). The total phenolic and total flavonoid contents were determined. In addition, the quantitative analysis of two major flavonoid compounds (hyperoside and isoquercitrin) was carried out by HPLC. The antioxidant activities were investigated by the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity method, the reducing power test and the chelating ability of ferrous ions. The highest total phenolic and flavonoid contents were observed in the AV methanolic extract, followed by the PP and PH methanolic extracts. HPLC analysis indicated that isoquercitrin was one of the major components in all three species, however, hyperoside was only detected in AV at high levels. All the antioxidant assays we performed demonstrated that the AV extract was markedly superior to those of the other two species. C1 [Liang, Taigang; Yue, Wenyan; Li, Qingshan] Shanxi Med Univ, Sch Pharmaceut Sci, Taiyuan 030001, Shanxi, Peoples R China. RP Li, QS (corresponding author), Shanxi Med Univ, Sch Pharmaceut Sci, 56 Xinjian Nan Rd, Taiyuan 030001, Shanxi, Peoples R China. EM ltaigang@gmail.com; yuewenyanhappy@163.com; qingshanl@yahoo.com FU Natural Science Foundation of Shanxi ProvinceNatural Science Foundation of Shanxi Province [2008021048] FX This study was supported by the Natural Science Foundation of Shanxi Province (No. 2008021048). CR BRAND-WILLIAMS W, 1995, FOOD SCI TECHNOL-LEB, V28, P25 BRANEN AL, 1975, J AM OIL CHEM SOC, V52, P59, DOI 10.1007/BF02901825 Butterweck V, 2001, BIOL PHARM BULL, V24, P848, DOI 10.1248/bpb.24.848 Cazarolli LH, 2008, MINI-REV MED CHEM, V8, P1429, DOI 10.2174/138955708786369564 Cesaratto Laura, 2004, Ann Hepatol, V3, P86 *COMPL LUOB UT ED, 1978, TOT UT LUOB, P57 Costa RM, 2009, FOOD CHEM TOXICOL, V47, P860, DOI 10.1016/j.fct.2009.01.019 DALLE DI, 2005, MASS SPECTROM REV, V24, P55 Davis JM, 2009, CURR SPORT MED REP, V8, P206, DOI 10.1249/JSR.0b013e3181ae8959 DINIS TCP, 1994, ARCH BIOCHEM BIOPHYS, V315, P161, DOI 10.1006/abbi.1994.1485 Duh PD, 1999, FOOD CHEM TOXICOL, V37, P1055, DOI 10.1016/S0278-6915(99)00096-4 Furukawa S, 2004, J CLIN INVEST, V114, P1752, DOI 10.1172/JCI20042162S Gomes A, 2008, CURR MED CHEM, V15, P1586, DOI 10.2174/092986708784911579 Grundmann O, 2007, J ETHNOPHARMACOL, V110, P406, DOI 10.1016/j.jep.2006.09.035 Halliwell B, 1996, BIOCHEM SOC T, V24, P1023, DOI 10.1042/bst0241023 Hoki Satoru, 2004, Natural Medicines, V58, P113 Hsu CL, 2003, FOOD CHEM, V83, P85, DOI 10.1016/S0308-8146(03)00053-0 HUDSON BJF, 1983, FOOD CHEM, V10, P47, DOI 10.1016/0308-8146(83)90040-7 Irie K, 2009, J NAT MED, V63, P111, DOI 10.1007/s11418-008-0296-2 Kamata K, 2008, J NAT MED-TOKYO, V62, P160, DOI 10.1007/s11418-007-0202-3 Kaur G, 2006, J ETHNOPHARMACOL, V108, P340, DOI 10.1016/j.jep.2006.05.021 Liao H, 2008, EVID-BASED COMPL ALT, V5, P429, DOI 10.1093/ecam/nem054 Lindsay D G, 1999, J Nutr Health Aging, V3, P84 Liu W.F., 2009, CHIN ARCH TRAD CHIN, V27, P2677 Meghashri S, 2010, FOOD CHEM, V122, P105, DOI 10.1016/j.foodchem.2010.02.023 MURALIKRISHNA AR, 2006, FREE RADIC BIOL MED, V40, P376, DOI DOI 10.1016/J.FREERADBIOMED.2005.08.044 Odabasoglu F, 2005, FITOTERAPIA, V76, P216, DOI 10.1016/j.fitote.2004.05.012 Ozturk M, 2007, FOOD CHEM, V103, P623, DOI 10.1016/j.foodchem.2006.09.005 Piao XL, 2009, ARCH PHARM RES, V32, P1689, DOI 10.1007/s12272-009-2204-z Sadani GR, 1996, CANCER LETT, V109, P231, DOI 10.1016/S0304-3835(96)04484-9 Safer AM, 1999, HISTOL HISTOPATHOL, V14, P391, DOI 10.14670/HH-14.391 SANCIN P, 1971, PLANTA MED, V20, P153, DOI 10.1055/s-0028-1099682 Shibano M, 2008, J NAT MED-TOKYO, V62, P349, DOI 10.1007/s11418-008-0244-1 Shirai Mutsuko, 2005, J Med Invest, V52 Suppl, P249, DOI 10.2152/jmi.52.249 Shukla S, 2009, FOOD CHEM TOXICOL, V47, P1848, DOI 10.1016/j.fct.2009.04.040 SLINKARD K, 1977, AM J ENOL VITICULT, V28, P49 Surveswaran S, 2007, FOOD CHEM, V102, P938, DOI 10.1016/j.foodchem.2006.06.033 Trachtenberg Barry H, 2009, Heart Fail Clin, V5, P561, DOI 10.1016/j.hfc.2009.04.003 Wang J, 2008, FOOD CHEM, V106, P804, DOI 10.1016/j.foodchem.2007.06.062 Wang K, 2010, MED CHEM RES, V19, P166, DOI 10.1007/s00044-009-9181-0 Wang KJ, 2005, J ETHNOPHARMACOL, V99, P259, DOI 10.1016/j.jep.2005.02.029 Xiong QB, 2000, PLANTA MED, V66, P127, DOI 10.1055/s-2000-11135 Yokozawa T, 2002, BIOL PHARM BULL, V25, P748, DOI 10.1248/bpb.25.748 You YL, 2007, MOLECULES, V12, P842, DOI 10.3390/12040842 [周春玲 ZHOU Chun-ling], 2009, [药物分析杂志, Chinese Journal of Pharmaceutical Analysis], V29, P1001 Zhu QY, 2002, J AGR FOOD CHEM, V50, P6929, DOI 10.1021/jf0206163 NR 46 TC 40 Z9 43 U1 1 U2 16 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND EI 1422-0067 J9 INT J MOL SCI JI Int. J. Mol. Sci. PD NOV PY 2010 VL 11 IS 11 BP 4452 EP 4464 DI 10.3390/ijms11114452 PG 13 WC Biochemistry & Molecular Biology; Chemistry, Multidisciplinary SC Biochemistry & Molecular Biology; Chemistry GA 684UB UT WOS:000284575100017 PM 21151449 OA Green Published, Green Submitted, gold DA 2021-10-15 ER PT J AU Kamata, K Seo, S Nakajima, JI AF Kamata, Kazuaki Seo, Shujiro Nakajima, Jun-Ichiro TI Constituents from leaves of Apocynum venetum L. SO JOURNAL OF NATURAL MEDICINES LA English DT Article DE Apocynum venetum; apocynaceae; LC-MS; NMR; malonated flavonol glycoside; antioxidant ID FLAVONOIDS; LUOBUMA AB An analysis using HPLC-MS revealed that an extract from dried leaves of Apocynum venetum L. contained more than 15 kinds of phenolic constituents. Two malonated flavonol glycosides were further isolated, and their structures were determined to be quercetin 3-O-(6''-O-malonyl)-beta-D-glucoside (1) and quercetin 3-O-(6''-O-malonyl)-beta-D-galactoside (2) by NMR spectroscopic analysis. This is the first report describing the isolation of these malonated flavonol glycosides from A. venetum L. Both glycosides showed strong scavenging activity against 1, 1-diphenyl-2-picrylhydrazyl (DPPH) radical. C1 [Kamata, Kazuaki; Seo, Shujiro; Nakajima, Jun-Ichiro] Tokiwa Phytochem Co Ltd, Chiba 2850801, Japan. RP Nakajima, JI (corresponding author), Tokiwa Phytochem Co Ltd, 158 Kinoko, Chiba 2850801, Japan. EM j-nakajima@tokiwaph.co.jp CR Azuma K, 1999, J AGR FOOD CHEM, V47, P3963, DOI 10.1021/jf990347p BLOIS MS, 1958, NATURE, V181, P1199, DOI 10.1038/1811199a0 Butterweck V, 2000, PLANTA MED, V66, P3, DOI 10.1055/s-2000-11119 Butterweck V, 2003, PHARMACOL BIOCHEM BE, V75, P557, DOI 10.1016/S0091-3057(03)00118-7 Butterweck V, 2001, BIOL PHARM BULL, V24, P848, DOI 10.1248/bpb.24.848 Fan WZ, 1999, CHEM PHARM BULL, V47, P1049, DOI 10.1248/cpb.47.1049 Ferreres F, 1997, J AGR FOOD CHEM, V45, P4249, DOI 10.1021/jf970399j GESLIN M, 1985, J NAT PROD, V48, P111, DOI 10.1021/np50037a020 Grundmann O, 2007, J ETHNOPHARMACOL, V110, P406, DOI 10.1016/j.jep.2006.09.035 IMPERATO F, 1982, CHEM IND, V21, P604 Murakami T, 2001, CHEM PHARM BULL, V49, P845, DOI 10.1248/cpb.49.845 *PHARM COMM HLTH M, 2000, PHARM PEOPL REP CH 1 Sakakibara H, 2006, BIOL PHARM BULL, V29, P1767, DOI 10.1248/bpb.29.1767 WALD B, 1989, PHYTOCHEMISTRY, V28, P663, DOI 10.1016/0031-9422(89)80083-4 Xiong QB, 2000, PLANTA MED, V66, P127, DOI 10.1055/s-2000-11135 Yokozawa T, 2002, BIOL PHARM BULL, V25, P748, DOI 10.1248/bpb.25.748 NR 16 TC 39 Z9 42 U1 2 U2 50 PU SPRINGER JAPAN KK PI TOKYO PA SHIROYAMA TRUST TOWER 5F, 4-3-1 TORANOMON, MINATO-KU, TOKYO, 105-6005, JAPAN SN 1340-3443 EI 1861-0293 J9 J NAT MED-TOKYO JI J. Nat. Med. PD APR PY 2008 VL 62 IS 2 BP 160 EP 163 DI 10.1007/s11418-007-0202-3 PG 4 WC Chemistry, Medicinal; Pharmacology & Pharmacy SC Pharmacology & Pharmacy GA 272YF UT WOS:000253896900005 PM 18404316 DA 2021-10-15 ER PT J AU Ming, DS Lopez, A Hillhouse, BJ French, CJ Hudson, JB Towers, GHN AF Ming, DS Lopez, A Hillhouse, BJ French, CJ Hudson, JB Towers, GHN TI Bioactive constituents from Iryanthera megistophylla SO JOURNAL OF NATURAL PRODUCTS LA English DT Article ID BRAZILIAN MYRISTICACEAE; APOCYNUM-VENETUM; MEDICINAL-PLANTS; GAMMA-LACTONES; CHEMISTRY; BUTANOLIDES; DERIVATIVES; INFECTIVITY; LAURACEAE; FRUITS AB Activity-guided fractionation of the 95% ethanol extract from the stem bark of Iryanthera megistophylla led to the isolation of two new compounds, named megislignan [2,3-dimethyl-4-(4-methoxyphenyl)-6-whydroxynaphthalene] (1) and megislactone [(2R,3R,4R)-3-hydroxy-4-methyl-2-(hexacos-17-enyl)butanolide] (2), along with seven known compounds, grandinolide (3), iryantherin K (4), iryantherin L (5), cinchonain I b (6), cinchonain I a (7), procyanidin B-2 (8), and cinchonain Ha (9). The structures of the new compounds were elucidated by spectral data interpretation. Isolates were evaluated for their antibacterial, antifungal, antiviral, and antiacetylcholinesterase activities. C1 Univ British Columbia, Dept Bot, Vancouver, BC V6T 1Z4, Canada. Agr & Agri Food Canada, Pacific Agri Food Res Ctr, Summerland, BC V0H 1Z0, Canada. Univ British Columbia, Dept Pathol & Lab Med, Vancouver, BC V5Z 1M9, Canada. RP Hudson, JB (corresponding author), Univ British Columbia, Dept Bot, 3529 Univ Blvd, Vancouver, BC V6T 1Z4, Canada. EM jbhudson@interchange.ubc.ca; ntowers@interchange.ubc.ca CR Anani K, 2000, PHARM BIOL, V38, P40, DOI 10.1076/1388-0209(200001)3811-BFT040 Chaves MH, 1997, PHYTOCHEMISTRY, V44, P523, DOI 10.1016/S0031-9422(96)00542-0 CONSERVA LM, 1990, PHYTOCHEMISTRY, V29, P3911, DOI 10.1016/0031-9422(90)85358-M ELLMAN GL, 1961, BIOCHEM PHARMACOL, V7, P88, DOI 10.1016/0006-2952(61)90145-9 Fan WZ, 1999, CHEM PHARM BULL, V47, P1049, DOI 10.1248/cpb.47.1049 FOO LY, 1987, PHYTOCHEMISTRY, V26, P2825, DOI 10.1016/S0031-9422(00)83598-0 FRANCA NC, 1975, PHYTOCHEMISTRY, V14, P590, DOI 10.1016/0031-9422(75)85143-0 FRENCH CJ, 1992, PHYTOCHEMISTRY, V31, P3017, DOI 10.1016/0031-9422(92)83438-5 FRENCH CJ, 1991, CAN J PLANT PATHOL, V13, P1 HANSEN AJ, 1989, CRIT REV PLANT SCI, V8, P45, DOI 10.1080/07352688909382270 HUDSON JB, 1994, PLANTA MED, V60, P329, DOI 10.1055/s-2006-959494 Hudson JB, 2000, PHARM BIOL, V38, P46, DOI 10.1076/1388-0209(200001)3811-BFT046 Kolodziej H, 2001, BIOL PHARM BULL, V24, P1016, DOI 10.1248/bpb.24.1016 Lopes NP, 1998, PHYTOCHEMISTRY, V49, P1405, DOI 10.1016/S0031-9422(97)01092-3 Lopez A, 2002, J NAT PROD, V65, P62, DOI 10.1021/np010410g Lopez A, 2001, J ETHNOPHARMACOL, V77, P189, DOI 10.1016/S0378-8741(01)00292-6 Magri FMM, 1996, PHYTOCHEMISTRY, V43, P669, DOI 10.1016/0031-9422(96)00332-9 MARTINEZ JC, 1981, PHYTOCHEMISTRY, V20, P459 NONAKA G, 1982, CHEM PHARM BULL, V30, P4277 RAHALISON L, 1994, PLANTA MED, V60, P41, DOI 10.1055/s-2006-959405 Satoh Mitsuru, 2000, Natural Medicines, V54, P97 SCHULTES RE, 1971, LLOYD, V34, P61 Silva DHS, 1999, J NAT PROD, V62, P1475, DOI 10.1021/np980509w Silva DHS, 2001, PHYTOCHEMISTRY, V57, P437, DOI 10.1016/S0031-9422(00)00477-5 SILVA DHS, 1995, PHYTOCHEMISTRY, V38, P1013, DOI 10.1016/0031-9422(94)00730-H TAKEDA K, 1972, TETRAHEDRON, V28, P3757, DOI 10.1016/S0040-4020(01)93822-0 VIEIRA PC, 1983, PHYTOCHEMISTRY, V22, P711, DOI 10.1016/S0031-9422(00)86967-8 Wirth C, 1997, PHYTOMEDICINE, V4, P265, DOI 10.1016/S0944-7113(97)80079-7 Xiong QB, 2000, PLANTA MED, V66, P127, DOI 10.1055/s-2000-11135 XIONG ZQ, 1995, PHARMACOL BIOCHEM BE, V51, P415, DOI 10.1016/0091-3057(94)00416-G NR 30 TC 39 Z9 40 U1 0 U2 21 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0163-3864 EI 1520-6025 J9 J NAT PROD JI J. Nat. Prod. PD OCT PY 2002 VL 65 IS 10 BP 1412 EP 1416 DI 10.1021/np020169l PG 5 WC Plant Sciences; Chemistry, Medicinal; Pharmacology & Pharmacy SC Plant Sciences; Pharmacology & Pharmacy GA 609YZ UT WOS:000178935100005 PM 12398535 DA 2021-10-15 ER PT J AU Dieleman, JA Mortensen, DA Buhler, DD Ferguson, RB AF Dieleman, JA Mortensen, DA Buhler, DD Ferguson, RB TI Identifying associations among site properties and weed species abundance. II. Hypothesis generation SO WEED SCIENCE LA English DT Article DE Abutilon theophrasti Medicus ABUTH, velvetleaf; Amaranthus spp., pigweed; Apocynum cannabinum L. APCCA, hemp dogbane; Helianthus annuus L. HELAN, common sunflower; Physalis subglabrata Mack. et Bush. PHYSU; smooth groundcherry; Setaria spp., foxtail; Solanum ptycanthum Dun. ex DC. SOLPT; eastern black nightshade; Strophostyles leiosperma (T. et G.) Piper, smooth-seed wildbean; Zea mays L., corn; canonical correlation analysis; grid-sampling; soil properties; spatial heterogeneity; ABUTH; AMASS; APCCA; HELAN; PHYSU; SETSS ID SOYBEAN GLYCINE-MAX; CORN ZEA-MAYS; SOIL PROPERTIES; ORGANIC-MATTER; FIELD-SCALE; VARIABILITY; HERBICIDES; COMMUNITY; EFFICACY; SORPTION AB Identification of associations between site properties and weed species abundance led to the generation of hypotheses as to why weed populations occur where they do, or do not, in agricultural fields. The objective of this research was to use a multivariate statistical technique, canonical correlation analysis, to identify the associations. Two continuous Zed mays production fields under center-pivot irrigation in the central Platte River Valley of Nebraska were grid-sampled between 1994 and 1997 for nine site properties and six to seven weed species. Weed species were identified and counted just prior to postemergence weed control in two adjacent quadrats (1 by 0.38 m) at each grid sampling point. These quadrats represented untreated weed populations emerging between crop rows and treated populations that survived preemergence herbicide banded within the crop row. Canonical correlation analysis identified one to five significant correlations between linear combinations of site properties and weed species abundance depending on field site, years, and between- vs. on-crop row weed populations. The first pair of linear combinations consistently described an association that separated weed species across-a gradient of topography and soil type. The second pair of linear combinations described associations between weed species and soil fertility In all cases, it was hypothesized that management practices strongly interacted with site properties to create the observed associations with weed populations. Other hypothesized mechanisms For weed patchiness include patchiness in available soil moisture that would influence weed seed germination, emergence, and seedling growth. Additional variation in plant-available preemergence herbicide concentration across the field site would vary weed control efficacy. Another mechanism would be variation in soil fertility that affects the growth, reproduction, and competitive ability of both the crop and the weed. C1 Univ Nebraska, Dept Agron, Lincoln, NE 68583 USA. USDA ARS, Natl Soil Tilth Lab, Ames, IA 50011 USA. S Cent Res & Extens Ctr, Clay Ctr, NE 68933 USA. RP Dieleman, JA (corresponding author), Kansas State Univ, Dept Agron, Manhattan, KS 66506 USA. CR ALMEKINDERS CJM, 1995, NETH J AGR SCI, V43, P127 ANDREASEN C, 1991, WEED RES, V31, P181, DOI 10.1111/j.1365-3180.1991.tb01757.x BLACKSHAW RE, 1994, CAN J PLANT SCI, V74, P177, DOI 10.4141/cjps94-037 BLUMHORST MR, 1990, WEED TECHNOL, V4, P279, DOI 10.1017/S0890037X00025392 CAMBARDELLA CA, 1994, SOIL SCI SOC AM J, V58, P1501, DOI 10.2136/sssaj1994.03615995005800050033x CARDINA J, 1995, WEED SCI, V43, P258, DOI 10.1017/S0043174500081157 DALE HM, 1965, CAN J BOTANY, V43, P1319, DOI 10.1139/b65-139 DALE MRT, 1992, CAN J BOT, V70, P1931, DOI 10.1139/b92-240 Dieleman JA, 2000, WEED SCI, V48, P567, DOI 10.1614/0043-1745(2000)048[0567:IAASPA]2.0.CO;2 DIELEMAN JA, 1999, 2 EUR C PREC AGR 11, P517 FIRBANK LG, 1990, J APPL ECOL, V27, P308, DOI 10.2307/2403587 GITTINS R, 1985, CANONICAL ANAL REV A, P13 GUPTA SC, 1979, WATER RESOUR RES, V15, P1633, DOI 10.1029/WR015i006p01633 Harper JL, 1977, POPULATION BIOL PLAN, P151 HAUSLER A, 1995, P SEM SIT SPEC FARM, P186 HUDSON BD, 1994, J SOIL WATER CONSERV, V49, P189 HUME L, 1982, CAN J PLANT SCI, V62, P741, DOI 10.4141/cjps82-107 JAMISON V.C, 1958, SOIL SCI SOC AMER PROC, V22, P189 JOHNSON GA, 1995, WEED SCI, V43, P604, DOI 10.1017/S0043174500081716 Johnson GA, 1996, WEED SCI, V44, P704, DOI 10.1017/S0043174500094571 JOHNSON RA, 1992, APPL MULTIVARIATE ST, P459 Mortensen David A., 1993, P113 Mulla D. J., 1993, P15 Novak JM, 1997, J ENVIRON QUAL, V26, P1271, DOI 10.2134/jeq1997.00472425002600050011x PYSEK P, 1991, J VEG SCI, V2, P237, DOI 10.2307/3235956 RAO PSC, 1985, WEED SCI, V33, P18, DOI 10.1017/S0043174500083764 SALTER PJ, 1966, J SOIL SCI, V17, P93, DOI 10.1111/j.1365-2389.1966.tb01455.x SAMPSON ARTHUR W., 1939, BOT REV, V5, P155, DOI 10.1007/BF02878423 *SAS, 1990, SAS STAT US GUID VER, V1, P367 *USDA, 1962, SOIL SURV HALL COUNT *USDA, 1974, SOIL SURV BUFF COUNT WEAVER SE, 1985, WEED SCI, V33, P447, DOI 10.1017/S0043174500082631 WOOD LS, 1987, J ENVIRON QUAL, V16, P251, DOI 10.2134/jeq1987.00472425001600030012x Zimdahl RL, 1999, WEED SCI, V47, P1 NR 34 TC 39 Z9 42 U1 0 U2 14 PU WEED SCI SOC AMER PI LAWRENCE PA 810 EAST 10TH ST, LAWRENCE, KS 66044-8897 USA SN 0043-1745 J9 WEED SCI JI Weed Sci. PD SEP-OCT PY 2000 VL 48 IS 5 BP 576 EP 587 PG 12 WC Agronomy; Plant Sciences SC Agriculture; Plant Sciences GA 362NB UT WOS:000089783100008 DA 2021-10-15 ER PT J AU Xie, WY Jiang, ZH Wang, J Zhang, XY Melzig, MF AF Xie, Wenyan Jiang, Zhihui Wang, Jian Zhang, Xiaoying Melzig, Matthias F. TI Protective effect of hyperoside against acetaminophen (APAP) induced liver injury through enhancement of APAP clearance SO CHEMICO-BIOLOGICAL INTERACTIONS LA English DT Article DE Hyperoside; Acetaminophen (APAP); Hepatic detoxification; Uridine diphoshate glucuronosyltransferases (UGTs); Sulfotransferases (SULTs) ID UDP-GLUCURONOSYLTRANSFERASE; INTERINDIVIDUAL VARIABILITY; HYDROGEN-PEROXIDE; OXIDATIVE STRESS; GENE-EXPRESSION; IN-VITRO; PROTEIN; CELLS; HEPATOTOXICITY; TOXICITY AB Acetaminphen (APAP) overdose leads to severe hepatotoxicity. Apocynum venetum L. (A. venetum) possess potent hepatoprotective effect. Hyperoside is one of the major compounds exist in Apocynum venetum L. and might be a potential agent to protect against APAP-induce liver injury. In this study, we investigated the effect of hyperoside on APAP hepatotoxicity in mice. Mice were treated intragastrically with hyperoside (10, 50 or 100 mg/kg) for 3 days before APAP (300 mg/kg) injection. APAP alone caused severe liver injury characterized by significantly increased serum aminotransferase levels, hepatic malondialdehyde (MDA) and 3-nitrotyrosine (3-NT) formation, as well as liver superoxide dismutase (SOD), glutathione peroxidase (GPx) and glutathione (GSH) depletions. Hyperoside significantly attenuated APAP-induced liver damages in a dose dependent manner, and 100 mg/kg was the most effective dose. Further study confirmed that hyperoside was able to increase activities and mRNA expressions of uridine diphoshate glucuronosyltransferases (UGTs) and sulfotransferases (SULTs), as well as to inhibit CYP2E1 activities, and thereby suppressed toxic intermediate formation and promoted APAP hepatic detoxification. Nrf-2 activation might be involved in hyperoside induced up-regulation of phase II enzymes. Collectively, our data provide evidence that hyperoside protected the liver against APAP induced injury mainly by accelerating APAP harmless metabolism, implying that hyperoside can be considered as a potential natural hepatoprotective agent. (C) 2016 Elsevier Ireland Ltd. All rights reserved. C1 [Xie, Wenyan; Jiang, Zhihui; Wang, Jian; Zhang, Xiaoying] Northwest A&F Univ, Coll Vet Med, Postbox 19, Yangling 712100, Shaanxi, Peoples R China. [Xie, Wenyan; Wang, Jian; Zhang, Xiaoying; Melzig, Matthias F.] Shaanxi Univ Technol, Coll Biol Sci & Engn, Hanzhong 723000, Peoples R China. [Xie, Wenyan; Melzig, Matthias F.] Free Univ Berlin, Inst Pharm, Konigin Luise Str 2 4, D-14195 Berlin, Germany. RP Zhang, XY (corresponding author), Northwest A&F Univ, Coll Vet Med, Postbox 19, Yangling 712100, Shaanxi, Peoples R China.; Zhang, XY (corresponding author), Shaanxi Univ Technol, Coll Biol Sci & Engn, Hanzhong 723000, Peoples R China. EM zhang.xy@nwsuaf.edu.cn RI Zhang, Xiaoying/O-2606-2016; Zhang, Xiaoying/O-2606-2016 OI Zhang, Xiaoying/0000-0002-0055-7322; Zhang, Xiaoying/0000-0001-6491-6550 FU High-end Foreign Experts Recruitment Program of State Administration of Foreign Experts Affairs [GDW20146100228]; Ministry of Education and State Administration of Foreign Experts Affairs "overseas teacher" project [MS2011XBNL057]; Key International Cooperation Base of Shaanxi Province, China [2015SD0018]; FUB - CSC Postdoctoral Research Program of China Scholarship Council (CSC) [201506300001]; Freie Universitat Berlin (FUB) FX This work was financially supported by the High-end Foreign Experts Recruitment Program of State Administration of Foreign Experts Affairs (GDW20146100228); the Ministry of Education and State Administration of Foreign Experts Affairs "overseas teacher" project (MS2011XBNL057); the Key International Cooperation Base of Shaanxi Province, China (2015SD0018) and the FUB - CSC Postdoctoral Research Program (201506300001) of the China Scholarship Council (CSC) and Freie Universitat Berlin (FUB). CR Abdelmegeed MA, 2013, FREE RADICAL BIO MED, V60, P211, DOI 10.1016/j.freeradbiomed.2013.02.018 Adjei AA, 2008, BIRTH DEFECTS RES A, V82, P155, DOI 10.1002/bdra.20535 Aleksunes LM, 2012, DRUG METAB DISPOS, V40, P1366, DOI 10.1124/dmd.112.045112 Bock KW, 2012, BIOCHEM PHARMACOL, V84, P1000, DOI 10.1016/j.bcp.2012.07.009 Brown JM, 2012, TOXICOL LETT, V212, P320, DOI 10.1016/j.toxlet.2012.05.018 Buckley DB, 2009, DRUG METAB DISPOS, V37, P834, DOI 10.1124/dmd.108.024224 Bunchorntavakul C, 2013, CLIN LIVER DIS, V17, P587, DOI 10.1016/j.cld.2013.07.005 Carvalho NR, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0081961 Chang Thomas K H, 2006, Methods Mol Biol, V320, P127 Cheung C, 2005, DRUG METAB DISPOS, V33, P449, DOI 10.1124/dmd.104.002402 Choi JH, 2011, J NAT PROD, V74, P1055, DOI 10.1021/np200001x Court MH, 2001, J PHARMACOL EXP THER, V299, P998 Dai GL, 2006, TOXICOL SCI, V92, P33, DOI 10.1093/toxsci/kfj192 de Achaval S, 2011, PHARMACOEPIDEM DR S, V20, P827, DOI 10.1002/pds.2162 Duanmu ZB, 2002, DRUG METAB DISPOS, V30, P997, DOI 10.1124/dmd.30.9.997 Fan YJ, 2013, FOOD CHEM TOXICOL, V55, P172, DOI 10.1016/j.fct.2013.01.003 Gueguen Y, 2007, TOXICOLOGY, V229, P62, DOI 10.1016/j.tox.2006.10.006 HINSON JA, 1995, DRUG METAB REV, V27, P73, DOI 10.3109/03602539509029816 Hinson JA, 2000, TOXICOL SCI, V53, P467, DOI 10.1093/toxsci/53.2.467 Hodgman MJ, 2012, CRIT CARE CLIN, V28, P499, DOI 10.1016/j.ccc.2012.07.006 James LP, 2003, FREE RADICAL RES, V37, P1289, DOI 10.1080/10715760310001617776 Kalthoff S, 2010, J BIOL CHEM, V285, P5993, DOI 10.1074/jbc.M109.075770 KAMATH SA, 1972, BIOCHEM BIOPH RES CO, V49, P52, DOI 10.1016/0006-291X(72)90008-3 Ku SK, 2015, INFLAMMATION, V38, P784, DOI 10.1007/s10753-014-9989-8 Ku SK, 2014, INFLAMMATION, V37, P1389, DOI 10.1007/s10753-014-9863-8 Larson AM, 2005, HEPATOLOGY, V42, P1364, DOI 10.1002/hep.20948 Li HB, 2008, PHARMACOLOGY, V82, P105, DOI 10.1159/000139146 Li WK, 2012, BIOANALYSIS, V4, P1429, DOI [10.4155/BIO.12.119, 10.4155/bio.12.119] Mansour S, 2014, ASIAN PAC J TROP MED, V7, pS514, DOI 10.1016/S1995-7645(14)60283-2 McGill MR, 2013, PHARM RES-DORDR, V30, P2174, DOI 10.1007/s11095-013-1007-6 Nakagawa T, 2012, PEDIATR INT, V54, P934, DOI 10.1111/j.1442-200X.2012.03602.x Okawa H, 2006, BIOCHEM BIOPH RES CO, V339, P79, DOI 10.1016/j.bbrc.2005.10.185 Piao MJ, 2008, BBA-GEN SUBJECTS, V1780, P1448, DOI 10.1016/j.bbagen.2008.07.012 Saini SPS, 2011, HEPATOLOGY, V54, P2208, DOI 10.1002/hep.24646 Seeff LB, 2001, HEPATOLOGY, V34, P595, DOI 10.1053/jhep.2001.27445 Sun XY, 1998, CANCER RES, V58, P2379 van der Logt EMJ, 2003, CARCINOGENESIS, V24, P1651, DOI 10.1093/carcin/bgg117 Williams JA, 2002, DRUG METAB DISPOS, V30, P1266, DOI 10.1124/dmd.30.11.1266 Wu LL, 2007, ACTA PHARMACOL SIN, V28, P404, DOI 10.1111/j.1745-7254.2007.00510.x Xie WY, 2015, AM J CHINESE MED, V43, P457, DOI 10.1142/S0192415X15500299 Xie WY, 2014, PHARMAZIE, V69, P379, DOI 10.1691/ph.2014.3805 Xie WY, 2012, J ETHNOPHARMACOL, V141, P1, DOI 10.1016/j.jep.2012.02.003 Xing HY, 2011, BIOCHEM BIOPH RES CO, V410, P759, DOI 10.1016/j.bbrc.2011.06.046 Yeager RL, 2009, TOXICOL SCI, V111, P238, DOI 10.1093/toxsci/kfp115 Zeng KW, 2011, EUR J PHARMACOL, V672, P45, DOI 10.1016/j.ejphar.2011.09.177 Zhai XH, 2013, MOL NUTR FOOD RES, V57, P249, DOI 10.1002/mnfr.201200536 Zhang YJ, 2014, PLOS ONE, V9, DOI [10.1371/journal.pone.0105725, 10.1371/journal.pone.0109159] Zheng MZ, 2012, PHYTOMEDICINE, V19, P145, DOI 10.1016/j.phymed.2011.06.029 NR 48 TC 37 Z9 40 U1 2 U2 26 PU ELSEVIER IRELAND LTD PI CLARE PA ELSEVIER HOUSE, BROOKVALE PLAZA, EAST PARK SHANNON, CO, CLARE, 00000, IRELAND SN 0009-2797 EI 1872-7786 J9 CHEM-BIOL INTERACT JI Chem.-Biol. Interact. PD FEB 25 PY 2016 VL 246 BP 11 EP 19 DI 10.1016/j.cbi.2016.01.004 PG 9 WC Biochemistry & Molecular Biology; Pharmacology & Pharmacy; Toxicology SC Biochemistry & Molecular Biology; Pharmacology & Pharmacy; Toxicology GA DC3XK UT WOS:000369152600002 PM 26772156 DA 2021-10-15 ER PT J AU Murakami, T Kishi, A Matsuda, H Hattori, M Yoshikawa, M AF Murakami, T Kishi, A Matsuda, H Hattori, M Yoshikawa, M TI Medicinal foodstuffs. XXIV. Chemical constituents of the processed leaves of Apocynum venetum L.: Absolute stereostructures of apocynosides I and II SO CHEMICAL & PHARMACEUTICAL BULLETIN LA English DT Article DE apocynoside; Apocynum venetum; ionone glucoside; absolute stereostructure; modified Mosher's method; circular dichroism helicity rule ID GASTROINTESTINAL TRANSIT; POSSIBLE INVOLVEMENT; NITRIC-OXIDE; 5-HT2 RECEPTORS; ESCIN IB; BAY LEAF; MICE; PROSTAGLANDINS; SESQUITERPENES; ACCELERATION AB Two new ionone glucosides, named apocynosides I and II, were isolated from the roasted leaves of Apocynum venetum L. together with nine known compounds. The absolute stereostructures of apocynosides I and II were determined by chemical and physicochemical evidence, which included the application of a modified Mosher's method and the circular dichroism helicity rule. C1 Kyoto Pharmaceut Univ, Yamashina Ku, Kyoto 6078412, Japan. Toyama Med & Pharmaceut Univ, Inst Nat Med, Toyama 9300194, Japan. RP Yoshikawa, M (corresponding author), Kyoto Pharmaceut Univ, Yamashina Ku, Kyoto 6078412, Japan. EM shoyaku@mb.kyoto-phu.ac.jp OI Matsuda, Hisashi/0000-0003-4217-065X CR BARBERA O, 1986, PHYTOCHEMISTRY, V25, P2361, DOI 10.1016/S0031-9422(00)81696-9 Fan WZ, 1999, CHEM PHARM BULL, V47, P1049, DOI 10.1248/cpb.47.1049 GRAMATICA P, 1987, TETRAHEDRON, V43, P4481, DOI 10.1016/S0040-4020(01)90325-4 HARA S, 1986, CHEM PHARM BULL, V34, P1843 Lei Zhen-Huan, 1995, Natural Medicines, V49, P475 Li YH, 2000, EUR J PHARMACOL, V387, P337, DOI 10.1016/S0014-2999(99)00772-4 Li YH, 2000, EUR J PHARMACOL, V392, P71, DOI 10.1016/S0014-2999(00)00121-7 Matsuda H, 2000, LIFE SCI, V67, P2921, DOI 10.1016/S0024-3205(00)00876-6 Matsuda H, 2000, LIFE SCI, V66, P2233, DOI 10.1016/S0024-3205(00)00551-8 Matsuda H, 2000, LIFE SCI, V66, P2151, DOI 10.1016/S0024-3205(00)00542-7 Matsuda H, 1999, LIFE SCI, V66, pPL41 Murakami T, 2001, CHEM PHARM BULL, V49, P73, DOI 10.1248/cpb.49.73 Murakami T, 2001, CHEM PHARM BULL, V49, P54, DOI 10.1248/cpb.49.54 Nishibe Sansei, 1993, Shoyakugaku Zasshi, V47, P27 OHTANI I, 1991, J AM CHEM SOC, V113, P4092, DOI 10.1021/ja00011a006 ORITANI T, 1972, TETRAHEDRON LETT, P2521 OTSUKA H, 1990, PHYTOCHEMISTRY, V29, P3681, DOI 10.1016/0031-9422(90)85306-Z SHIGEMATSU N, 1982, PHYTOCHEMISTRY, V21, P2156, DOI 10.1016/0031-9422(82)83079-3 SHOLICHIN M, 1980, CHEM PHARM BULL, V28, P1006, DOI 10.1248/cpb.28.1006 Yoshikawa M, 1997, CHEM PHARM BULL, V45, P464, DOI 10.1248/cpb.45.464 Yoshikawa M, 2000, BIOORGAN MED CHEM, V8, P2071, DOI 10.1016/S0968-0896(00)00127-9 NR 21 TC 35 Z9 38 U1 1 U2 16 PU PHARMACEUTICAL SOC JAPAN PI TOKYO PA 2-12-15 SHIBUYA, SHIBUYA-KU, TOKYO, 150-0002, JAPAN SN 0009-2363 J9 CHEM PHARM BULL JI Chem. Pharm. Bull. PD JUL PY 2001 VL 49 IS 7 BP 845 EP 848 DI 10.1248/cpb.49.845 PG 4 WC Chemistry, Medicinal; Chemistry, Multidisciplinary; Pharmacology & Pharmacy SC Pharmacology & Pharmacy; Chemistry GA 447MR UT WOS:000169577600008 PM 11456089 OA Bronze DA 2021-10-15 ER PT J AU Zheng, MZ Fan, YJ Shi, DF Liu, CM AF Zheng, Meizhu Fan, Yajun Shi, Dongfang Liu, Chunming TI Antidepressant-like effect of flavonoids extracted from Apocynum venetum leaves on brain monoamine levels and dopaminergic system SO JOURNAL OF ETHNOPHARMACOLOGY LA English DT Article DE Apocynum venetum; Antidepressant-like effect; Monoamine neurotransmitters; Dopaminergic system; Tail suspension test; Forced swimming test ID TAIL SUSPENSION TEST; REUPTAKE INHIBITORS; HOMOVANILLIC-ACID; AQUEOUS EXTRACTS; INVOLVEMENT; DEPRESSION; MICE; OFFICINALIS; RECEPTORS; MODEL AB Ethnopharmacological relevance: Apocynum venetum L. (Apocynaceae), a traditional medicinal plant, has been used for the improvement of emotions in Asian countries. Aim of the study: We explored the antidepressant-like effect and monoaminergic mechanism of a flavonoids extract from Apocynum venetum leaves (AV-extract). Materials and methods: Effect of AV-extract (25, 50 and 100 mg/kg, i.g.) on mice's immobility time was assessed in forced swim test (FST) and tail suspension test (TST). The locomotor activity was evaluated in the open-field test (OFT). Additionally, the main monoamine neurotransmitters serotonin (5-HT), noradrenaline (NA) and dopamine (DA) and their metabolites 5-hydroxyindole-3-acetic acid (5-HIAA), 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) in the mouse hippocampus involved in the antidepressant-like effect of AV-extract was also determined by liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI-MS-MS). Results: AV-extract (50 and 100 mg/kg, i.g.) administration significantly reduced the immobility time in both the FST and TST without accompanying changes in locomotor activity in the OFT. It was also found that the AV-extract significantly increased the concentrations of the main neurotransmitters NE and DA along with their respective metabolites DOPAC, HVA in the hippocampus. The antidepressant-like effect of the AV-extract (50 mg/kg, i.g.) was prevented by the pretreatment of mice with SCH23390 (0.05 mg/kg, i.g., a dopamine D-1 receptor antagonist) or sulpiride (50 mg/kg, i.g., a dopamine D-2 receptor antagonist). Conclusion: The AV-extract produced significant antidepressant-like effects, which likely attribute to increased NE and DA along with their respective metabolites DOPAC, HVA in the mouse hippocampus, and dependent on interaction with dopaminergic (D-1 and D-2 receptor) systems. (C) 2013 Elsevier Ireland Ltd. All rights reserved. C1 [Zheng, Meizhu; Shi, Dongfang; Liu, Chunming] Changchun Normal Univ, Cent Lab, Changchun 130032, Jilin, Peoples R China. [Fan, Yajun] Changchun Normal Univ, Coll Life Sci, Changchun 130032, Jilin, Peoples R China. RP Liu, CM (corresponding author), Changchun Normal Univ, Cent Lab, Changchun 130032, Jilin, Peoples R China. EM zhengmeizhu2008@sohu.com; ccsfxy777@163.com FU National Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC) [30970299, 31170326]; Natural Science Foundation of Jilin Province of China [[2012] D228]; Natural Science Foundation of Changchun Normal University [[2012] D010, [2012] D004] FX This project was supported by the National Natural Science Foundation of China (30970299 and 31170326) and the Natural Science Foundation of Jilin Province of China ([2012] D228) and Natural Science Foundation of Changchun Normal University ([2012] D010, [2012] D004). CR Baghai TC, 2007, INT J NEUROPSYCHOPH, V10, pS1, DOI 10.1017/S1461145707008255 Binfare RW, 2010, EUR J PHARMACOL, V638, P78, DOI 10.1016/j.ejphar.2010.04.011 Bourin M, 2005, BEHAV BRAIN RES, V164, P266, DOI 10.1016/j.bbr.2005.06.015 Butterweck V, 2003, PHARMACOL BIOCHEM BE, V75, P557, DOI 10.1016/S0091-3057(03)00118-7 Butterweck V, 2002, BRAIN RES, V930, P21, DOI 10.1016/S0006-8993(01)03394-7 Butterweck V, 2001, BIOL PHARM BULL, V24, P848, DOI 10.1248/bpb.24.848 Chung Moon Yong, 1993, Yonsei Medical Journal, V34, P266 Cryan JF, 2005, NEUROSCI BIOBEHAV R, V29, P571, DOI 10.1016/j.neubiorev.2005.03.009 Dailly E, 2004, FUND CLIN PHARMACOL, V18, P601, DOI 10.1111/j.1472-8206.2004.00287.x Delgado PL, 2006, J CLIN PSYCHIAT, V67, P22 Delgado PL, 2000, J CLIN PSYCHIAT, V61, P7 Elhwuegi AS, 2004, PROG NEURO-PSYCHOPH, V28, P435, DOI 10.1016/j.pnpbp.2003.11.018 Gay BM, 2010, NEUROPHARMACOLOGY, V59, P172, DOI 10.1016/j.neuropharm.2010.05.003 HEINZ A, 1994, PHARMACOPSYCHIATRY, V27, P7, DOI 10.1055/s-2007-1014317 Joca SRL, 2000, EUR NEUROPSYCHOPHARM, V10, P223, DOI 10.1016/S0924-977X(00)00079-1 Kim DW, 1998, PHYTOTHER RES, V12, P46, DOI 10.1002/(SICI)1099-1573(19980201)12:1<46::AID-PTR169>3.0.CO;2-I Kim JH, 2007, PHARMACOL BIOCHEM BE, V87, P41, DOI 10.1016/j.pbb.2007.03.018 Klimek V, 2002, BIOL PSYCHIAT, V52, P740, DOI 10.1016/S0006-3223(02)01383-5 Machado DG, 2009, PROG NEURO-PSYCHOPH, V33, P642, DOI 10.1016/j.pnpbp.2009.03.004 Matsuzaki K, 2006, NEUROSCI LETT, V400, P230, DOI 10.1016/j.neulet.2006.02.077 Mitani H, 2006, PROG NEURO-PSYCHOPH, V30, P531, DOI 10.1016/j.pnpbp.2005.11.021 MOUSSEAU DD, 1989, J NEURAL TRANSM, V75, P73, DOI 10.1007/BF01250645 Nemeroff CB, 2007, J PSYCHIATR RES, V41, P189, DOI 10.1016/j.jpsychires.2006.05.008 Papakostas GI, 2006, EUR NEUROPSYCHOPHARM, V16, P391, DOI 10.1016/j.euroneuro.2005.12.002 PORSOLT RD, 1977, ARCH INT PHARMACOD T, V229, P327 Renard CE, 2001, PSYCHOPHARMACOLOGY, V159, P42, DOI 10.1007/s002130100836 Sher L, 2006, J AFFECT DISORDERS, V90, P83, DOI 10.1016/j.jad.2005.10.002 STERU L, 1985, PSYCHOPHARMACOLOGY, V85, P367, DOI 10.1007/BF00428203 Su FL, 2009, CHROMATOGRAPHIA, V69, P207, DOI 10.1365/s10337-008-0879-9 Willner P, 2005, J AFFECT DISORDERS, V86, P37, DOI 10.1016/j.jad.2004.12.010 Xu Q, 2008, PROG NEURO-PSYCHOPH, V32, P715, DOI 10.1016/j.pnpbp.2007.11.020 Yamada J, 2004, EUR J PHARMACOL, V504, P207, DOI 10.1016/j.ejphar.2004.09.057 Yi LT, 2010, PROG NEURO-PSYCHOPH, V34, P1223, DOI 10.1016/j.pnpbp.2010.06.024 Yu ZF, 2002, J ETHNOPHARMACOL, V83, P161, DOI 10.1016/S0378-8741(02)00211-8 NR 34 TC 34 Z9 39 U1 3 U2 81 PU ELSEVIER IRELAND LTD PI CLARE PA ELSEVIER HOUSE, BROOKVALE PLAZA, EAST PARK SHANNON, CO, CLARE, 00000, IRELAND SN 0378-8741 EI 1872-7573 J9 J ETHNOPHARMACOL JI J. Ethnopharmacol. PD MAY 2 PY 2013 VL 147 IS 1 BP 108 EP 113 DI 10.1016/j.jep.2013.02.015 PG 6 WC Plant Sciences; Chemistry, Medicinal; Integrative & Complementary Medicine; Pharmacology & Pharmacy SC Plant Sciences; Pharmacology & Pharmacy; Integrative & Complementary Medicine GA 136TJ UT WOS:000318386000008 PM 23453939 DA 2021-10-15 ER PT J AU Griffiths, HM Sinclair, WA Boudon-Padieu, E Daire, X Lee, IM Sfalanga, A Bertaccini, A AF Griffiths, HM Sinclair, WA Boudon-Padieu, E Daire, X Lee, IM Sfalanga, A Bertaccini, A TI Phytoplasmas associated with elm yellows: Molecular variability and differentiation from related organisms SO PLANT DISEASE LA English DT Article ID 16S RIBOSOMAL-RNA; MYCOPLASMALIKE ORGANISMS; GENETIC RELATEDNESS; AMPLIFICATION; CLASSIFICATION; DNA; ASH AB Restriction fragment length polymorphism (RFLP) analyses were performed on polymerase chain reaction (PCR) amplimers of phytoplasmal DNA from eight samples obtained from Ulmus spp. (elms) affected by elm yellows (EY) in Italy and the United States, from Catharanthus roseus infected with strain EY1, and from five other plant species infected with phytoplasmas of the EY group sensu late (group 16SrV). RFLP profiles obtained with restriction enzyme TaqI from ribosomal DNA amplified with primer pair P1/P7 differentiated elm-associated phytoplasmas from strains originally detected in Apocynum cannabinum, Prunus spp., Rubus fruticosus, Vitis vinifera, and Ziziphus jujuba. RFLP profiles obtained similarly with BfaI differentiated strains from A. cannabinum and V. vinifera from other phytoplasmas of group 16SrV. Elm-associated strains from within the United States had two RFLP patterns in ribosomal DNA based on presence or absence of an RsaI site in the 16S-23S spacer. Elm-associated phytoplasma strains from Italy were distinguished from those of American origin by RFLPs obtained with MseI in the same fragment of non-ribosomal DNA. Strain HD1, which was discovered in A. cannabinum associated with EY-diseased elms in New York State, was unique among the strains studied. C1 Cornell Univ, Dept Plant Pathol, Ithaca, NY 14853 USA. INRA, Stn Rech Phytoplasmes, F-21034 Dijon, France. USDA ARS, Mol Plant Pathol Lab, Beltsville, MD 20705 USA. Univ Florence, Ist Patol & Zool Forestale & Agraria, I-50100 Florence, Italy. Univ Bologna, Ist Patol Vegetale, I-40126 Bologna, Italy. RP Griffiths, HM (corresponding author), Cornell Univ, Dept Plant Pathol, Ithaca, NY 14853 USA. OI Bertaccini, Assunta/0000-0002-5650-1512 CR Bertaccini A., 1995, Acta Horticulturae, P126 Daire X, 1997, EUR J PLANT PATHOL, V103, P507, DOI 10.1023/A:1008641411025 Dellaporta SL, 1983, PLANT MOL BIOL REP, V1, P19, DOI DOI 10.1007/BF02712670 DENG SJ, 1991, J MICROBIOL METH, V14, P53, DOI 10.1016/0167-7012(91)90007-D *DNASTAR INC, 1997, LASERGENE BIOC SOFTW GRIFFITHS HM, 1997, EUR J FOREST PATHOL, V28, P75 GRIFFITHS HM, 1994, IOM LETT, V3, P259 Lee I. M., 1995, Phytopathologia Mediterranea, V34, P174 Lee I.-M., 1995, Phytopathology, V85, P1179 LEE IM, 1993, PHYTOPATHOLOGY, V83, P834, DOI 10.1094/Phyto-83-834 Lee IM, 1998, INT J SYST BACTERIOL, V48, P1153, DOI 10.1099/00207713-48-4-1153 LEE IM, 1993, PHYTOPATHOLOGY, V83, P829, DOI 10.1094/Phyto-83-829 LIM PO, 1989, J BACTERIOL, V171, P5901, DOI 10.1128/jb.171.11.5901-5906.1989 Marcone C., 1994, Phytopathologia Mediterranea, V33, P194 MARCONE C, 1997, EUR J FOREST PATHOL, V27, P2745 MARTINI M, 1998, 12 IOM C SYDN AUSTR, P130 MATTEONI JA, 1989, PHYTOPROTECTION, V70, P137 MAURER R, 1993, PHYTOPATHOLOGY, V83, P971, DOI 10.1094/Phyto-83-971 Sambrook J, 1989, MOL CLONING LAB MANU Schneider B., 1995, MOL DIAGNOSTIC PROCE, V2, P369, DOI DOI 10.1016/B978-012583805-4/50040-6 SEEMUELLER E, 1976, Acta Horticulturae (Wageningen), V67, P109 Seemueller E., 1998, Journal of Plant Pathology, V80, P3 SINCLAIR WA, 1989, PLANT DIS, V73, P432, DOI 10.1094/PD-73-0432 SINCLAIR WA, 1981, COMPENDIUM ELM DIS, P25 NR 24 TC 34 Z9 37 U1 0 U2 4 PU AMER PHYTOPATHOLOGICAL SOC PI ST PAUL PA 3340 PILOT KNOB ROAD, ST PAUL, MN 55121 USA SN 0191-2917 J9 PLANT DIS JI PLANT DIS. PD DEC PY 1999 VL 83 IS 12 BP 1101 EP 1104 DI 10.1094/PDIS.1999.83.12.1101 PG 4 WC Plant Sciences SC Plant Sciences GA 258QP UT WOS:000083850100004 PM 30841130 OA hybrid DA 2021-10-15 ER PT J AU Liu, HH Liu, J Fan, SL Song, MZ Han, XL Liu, F Shen, FF AF Liu, H. H. Liu, J. Fan, S. L. Song, M. Z. Han, X. L. Liu, F. Shen, F. F. TI RETRACTED: Molecular cloning and characterization of a salinity stress-induced gene encoding DEAD-box helicase from the halophyte Apocynum venetum (Retracted article. See vol. 69, pg. 4145, 2018) SO JOURNAL OF EXPERIMENTAL BOTANY LA English DT Article; Proceedings Paper; Retracted Publication CT Annual Meeting of the Society-for-Experimental-Biology CY MAR 31-APR 04, 2007 CL Glasgow, SCOTLAND SP Soc Expt Biol DE Apocynum venetum; ATPase; ATP-dependent DNA helicase; ATP-independent RNA helicase; AvDH1; DEAD-box family; salt stress ID TRANSLATION INITIATION-FACTOR; DOUBLE-STRANDED-RNA; DNA HELICASE; PROTEIN FAMILY; ESCHERICHIA-COLI; SACCHAROMYCES-CEREVISIAE; ABIOTIC STRESS; PISUM-SATIVUM; FACTOR EIF-4A; SALT STRESS AB The genes encoding DEAD-box helicases play a key role in various abiotic stresses, including temperature, light, oxygen, and salt stress. A salt-responsive gene, designated AvDH1, was isolated from the halophyte dogbane (Apocynum venetum) by using suppression subtractive hybridization and RACE (rapid amplification of cDNA ends) PCR. The deduced amino acid sequence has nine conserved helicase motifs of the DEAD-box protein family. The AvDH1 gene is present as a single copy in the dogbane genome. This gene is expressed in response to NaCl and not polyethlene glycol (PEG) nor abscisic acid, and its expression increases with time. The transcription of AvDH1 is also induced by low temperature (4 degrees C), but its accumulation first increases then decreases with time. The purified recombinant protein contains ATP-dependent DNA helicase activity, ATP-independent RNA helicase activity, and DNA- or RNA-dependent ATPase activity. The ATPase activity of AvDH1 is stimulated more by single-stranded DNA than by double-stranded DNA or RNA. These results suggested that AvDH1 belonging to the DEAD-box helicase family is induced by salinity, functions as a typical helicase to unwind DNA and RNA, and may play an important role in salinity tolerance. C1 [Liu, H. H.; Liu, J.; Han, X. L.; Liu, F.; Shen, F. F.] Shandong Agr Univ, Coll Agron, State Key Lab Crop Biol, Tai An 271018, Shandong, Peoples R China. [Fan, S. L.; Song, M. Z.] Chinese Acad Agr Sci, Cotton Res Inst, Anyang 455100, Henan, Peoples R China. RP Shen, FF (corresponding author), Shandong Agr Univ, Coll Agron, State Key Lab Crop Biol, Tai An 271018, Shandong, Peoples R China. EM ffshen@sdau.edu.cn CR Aubourg S, 1999, NUCLEIC ACIDS RES, V27, P628, DOI 10.1093/nar/27.2.628 BAGLIONI C, 1978, EUR J BIOCHEM, V92, P155, DOI 10.1111/j.1432-1033.1978.tb12733.x BRANDER KA, 1995, BBA-GENE STRUCT EXPR, V1261, P442, DOI 10.1016/0167-4781(95)00052-I CANNON GC, 1990, PLANT MOL BIOL, V15, P457, DOI 10.1007/BF00019162 Chao DY, 2005, CELL RES, V15, P796, DOI 10.1038/sj.cr.7290349 CHEN Y., 2007, CHINESE WILD PLANT R, V26, P49 Cho HS, 1998, J BIOL CHEM, V273, P15045, DOI 10.1074/jbc.273.24.15045 Cordin O, 2006, GENE, V367, P17, DOI 10.1016/j.gene.2005.10.019 Diges CM, 2001, EMBO J, V20, P5503, DOI 10.1093/emboj/20.19.5503 EDY VG, 1976, EUR J BIOCHEM, V61, P563, DOI 10.1111/j.1432-1033.1976.tb10051.x Fuller-Pace Frances V., 1994, Trends in Cell Biology, V4, P271, DOI 10.1016/0962-8924(94)90210-0 Gong ZZ, 2005, PLANT CELL, V17, P256, DOI 10.1105/tpc.104.027557 Iost I, 1999, J BIOL CHEM, V274, P17677, DOI 10.1074/jbc.274.25.17677 JACOBSON AB, 1976, P NATL ACAD SCI USA, V73, P307, DOI 10.1073/pnas.73.2.307 Jankowsky E, 2007, CURR OPIN STRUC BIOL, V17, P316, DOI 10.1016/j.sbi.2007.05.007 Jones PG, 1996, P NATL ACAD SCI USA, V93, P76, DOI 10.1073/pnas.93.1.76 Kawasaki S, 2001, PLANT CELL, V13, P889, DOI 10.1105/tpc.13.4.889 Kikuma T, 2004, J BIOL CHEM, V279, P20692, DOI 10.1074/jbc.M400231200 KILEDJIAN M, 1992, EMBO J, V11, P2655, DOI 10.1002/j.1460-2075.1992.tb05331.x Kim DW, 2007, MOL CELLS, V24, P45 KOONIN EV, 1991, NATURE, V352, P290, DOI 10.1038/352290c0 Kreps JA, 2002, PLANT PHYSIOL, V130, P2129, DOI 10.1104/pp.008532 Liu HY, 2002, J BIOL CHEM, V277, P2637, DOI 10.1074/jbc.M109016200 Lorkovic ZJ, 1997, MOL CELL BIOL, V17, P2257, DOI 10.1128/MCB.17.4.2257 Mahajan S, 2005, ARCH BIOCHEM BIOPHYS, V444, P139, DOI 10.1016/j.abb.2005.10.018 Montero-Lomeli M, 2002, J BIOL CHEM, V277, P21542, DOI 10.1074/jbc.M201977200 Mukhopadhyay A, 2006, J BACTERIOL, V188, P4068, DOI 10.1128/JB.01921-05 Munns R, 2005, NEW PHYTOL, V167, P645, DOI 10.1111/j.1469-8137.2005.01487.x Nakamura T, 2004, PLANT SCI, V167, P63, DOI 10.1016/j.plantsci.2004.03.001 Owttrim GW, 2006, NUCLEIC ACIDS RES, V34, P3220, DOI 10.1093/nar/gkl408 Ozturk ZN, 2002, PLANT MOL BIOL, V48, P551, DOI 10.1023/A:1014875215580 PAUSE A, 1993, MOL CELL BIOL, V13, P6789, DOI 10.1128/MCB.13.11.6789 PAUSE A, 1992, EMBO J, V11, P2643, DOI 10.1002/j.1460-2075.1992.tb05330.x Pham XH, 2000, PLANT J, V24, P219, DOI 10.1046/j.1365-313x.2000.00869.x Phan TN, 2003, EUR J BIOCHEM, V270, P1735, DOI 10.1046/j.1432-1033.2003.03532.x Rausell A, 2003, PLANT J, V34, P257, DOI 10.1046/j.1365-313X.2003.01719.x Rensink Willem Albert, 2005, Functional & Integrative Genomics, V5, P201, DOI 10.1007/s10142-005-0141-6 RODRIGUEZ PL, 1993, J BIOL CHEM, V268, P8105 Sanan-Mishra N, 2005, P NATL ACAD SCI USA, V102, P509, DOI 10.1073/pnas.0406485102 SCHMID SR, 1992, MOL MICROBIOL, V6, P283, DOI 10.1111/j.1365-2958.1992.tb01470.x Steiner P, 2003, APPL MICROBIOL BIOT, V63, P293, DOI 10.1007/s00253-003-1405-5 Tuteja N, 1996, EUR J BIOCHEM, V238, P54, DOI 10.1111/j.1432-1033.1996.0054q.x Tuteja N, 1998, PLANT PHYSIOL, V118, P1029, DOI 10.1104/pp.118.3.1029 Tuteja N, 2004, EUR J BIOCHEM, V271, P1849, DOI 10.1111/j.1432-1033.2004.04094.x Tuteja N, 2004, EUR J BIOCHEM, V271, P1835, DOI 10.1111/j.1432-1033.2004.04093.x Tuteja N, 2003, J EXP BOT, V54, P2201, DOI 10.1093/jxb/erg246 Tuteja N, 2001, PLANT J, V25, P9, DOI 10.1046/j.1365-313x.2001.00918.x Vashisht AA, 2005, PLANT J, V44, P76, DOI 10.1111/j.1365-313X.2005.02511.x Vashisht AA, 2005, ARCH BIOCHEM BIOPHYS, V440, P79, DOI 10.1016/j.abb.2005.05.025 Vashisht AA, 2006, J PHOTOCH PHOTOBIO B, V84, P150, DOI 10.1016/j.jphotobiol.2006.02.010 WAIDTEE R, 2007, J BIOL CHEM, V282, P34185 Wang H, 2003, PLANT MOL BIOL, V52, P873, DOI 10.1023/A:1025029026375 Wong CE, 2006, PLANT PHYSIOL, V140, P1437, DOI 10.1104/pp.105.070508 Yamaguchi T, 2005, TRENDS PLANT SCI, V10, P615, DOI 10.1016/j.tplants.2005.10.002 Yang QS, 2005, BIOCHEMISTRY-US, V44, P13591, DOI 10.1021/bi0508946 Yu E, 2000, NUCLEIC ACIDS RES, V28, P3926, DOI 10.1093/nar/28.20.3926 NR 56 TC 32 Z9 39 U1 0 U2 14 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0022-0957 EI 1460-2431 J9 J EXP BOT JI J. Exp. Bot. PD FEB PY 2008 VL 59 IS 3 BP 633 EP 644 DI 10.1093/jxb/erm355 PG 12 WC Plant Sciences SC Plant Sciences GA 278NN UT WOS:000254293700018 PM 18272921 OA Bronze DA 2021-10-15 ER PT J AU Cao, YH Zhang, X Fang, YH Ye, JN AF Cao, YH Zhang, X Fang, YH Ye, JN TI Determination of active ingredients of Apocynum Venetum by capillary electrophoresis with electrochemical detection SO MIKROCHIMICA ACTA LA English DT Article DE capillary electrophoresis; electrochemical detection; d-catechin; rutin; quercetin; Apocynum Venetum ID POLYHYDROXY ANTIBIOTICS; AMPEROMETRIC DETECTION; CHROMATOGRAPHY; FLAVONOIDS; ELECTRODE AB A simple, reliable and reproducible method, based on capillary electrophoresis (CE) with electrochemical detection (ED), for the determination of three active ingredients of both Apocynum Venetum compound tablets and medicinal herbs was described. The active ingredients mainly consist of rutin, d-catechin and quercetin. Operated in a wall jet configuration, a 300 mum diameter carbon-disk electrode was used as the working electrode, which exhibits good responses at +950 mV (vs. SCE) for the three analytes. Under the optimum conditions, the analytes were base-line separated within 19 min, and excellent linearity was obtained in the concentration range from 1.0 x 10(-4) g/ml to 1.0 x 10(-6) g/ml. The detection limit (S/N = 3) was 3.0 x 10(-7) g/ml, 5.0 x 10(-7) g/ml, and 4.0 x 10(-7) g/ml, for d-catechin, rutin and quercetin, respectively. This work provides a useful method for the analysis of traditional Chinese medicines. C1 E China Normal Univ, Dept Chem, Shanghai 200062, Peoples R China. RP Ye, JN (corresponding author), E China Normal Univ, Dept Chem, Shanghai 200062, Peoples R China. CR BORS W, 1990, METHOD ENZYMOL, V186, P343 BRASSEUR T, 1989, J PHARM BELG, V44, P235 *ED COMM CHIN ENC, 1998, CHIN ENC MED, V2, P486 *ED COMM JIANGS NE, 1995, ENC TRAD CHIN MED, P1355 Fang XM, 1996, ANAL CHIM ACTA, V329, P49, DOI 10.1016/0003-2670(96)00092-X Fang YZ, 1995, CHEM J CHINESE U, V16, P1514 HOFFSTETTERKUHN S, 1991, ANAL CHEM, V63, P1541, DOI 10.1021/ac00015a009 LIU YM, 1999, CHIN FOOD FERMENT IN, V24, P47 PIETTA P, 1992, J CHROMATOGR, V593, P165, DOI 10.1016/0021-9673(92)80282-Y PIETTA PG, 1991, J CHROMATOGR, V549, P367, DOI 10.1016/S0021-9673(00)91447-X SCHIMMER O, 1986, DTSCH APOTH ZTG, V35, P1881 Watanabe T, 1998, ANAL SCI, V14, P435, DOI 10.2116/analsci.14.435 YI V, 1999, CHIN J PHARM ANAL, V19, P209 NR 13 TC 31 Z9 31 U1 1 U2 16 PU SPRINGER-VERLAG WIEN PI VIENNA PA SACHSENPLATZ 4-6, PO BOX 89, A-1201 VIENNA, AUSTRIA SN 0026-3672 J9 MIKROCHIM ACTA JI Mikrochim. Acta PY 2001 VL 137 IS 1-2 BP 57 EP 62 DI 10.1007/s006040170028 PG 6 WC Chemistry, Analytical SC Chemistry GA 478BZ UT WOS:000171324200010 DA 2021-10-15 ER PT J AU Bergweiler, CJ Manning, WJ AF Bergweiler, CJ Manning, WJ TI Inhibition of flowering and reproductive success in spreading dogbane (Apocynum androsaemifolium) by exposure to ambient ozone SO ENVIRONMENTAL POLLUTION LA English DT Article DE ozone; spreading dogbane; flowering; reproduction; bioindicator ID BRASSICA-NAPUS L; GROWTH; ALLOCATION; IMPACT; TREE; SO2 AB Ground-level ozone continues to be a cause for concern in terrestrial ecosystems in the northeastern United States and Canada. Spreading dogbane (Apocynum androsaemifolium L.) is one of many indigenous herbaceous plant species exhibiting foliar injury that are commonly monitored in ecosystem assessment programs. Details about possible effects of ambient ozone on reproductive components of these species are lacking. For 103 days, from 31 May to 10 September, A. androsaemifolium plants were grown in open-top chambers in either carbon-filtered air (CF), non-filtered air (NF) (approximately 1 x ambient), or chamberless ambient air plots (AA). Aspects of sexual reproduction were measured to determine whether impairment occurs in polluted air. Additionally, the ozone protectant chemical ethylenediurea (EDU) was applied to foliage to determine its effect on foliar injury. By the end of the experiment visible foliar injury was absent in CF air and nominal in the NF and AA treatments. Plants grown in CF-chamber air produced significantly more flowers and fruits than those grown in either NF-chamber air or AA plots. Flowers produced by plants grown in CF air also survived to mature fruits at a rate 1.7 x greater than plants in NF air and 1.5 x greater than plants in AA plots. We were unable to conclude whether EDU protected plants from foliar ozone injury due to the general lack of foliar injury in ozone-exposed plants. The results demonstrate that foliar injury is not necessarily required to elicit negative effects on sexual reproduction in A. androsaemifolium. Implications for the population biology of A, androsaemifolium related to adverse effects of chronic ozone exposure on sexual reproduction are discussed. (C) 1999 Elsevier Science Ltd. All rights reserved. C1 Univ Massachusetts, Dept Microbiol, Amherst, MA 01003 USA. RP Manning, WJ (corresponding author), Univ Massachusetts, Dept Microbiol, 203 Morrill Sci Ctr IVN,Box 35720, Amherst, MA 01003 USA. CR AMUNDSON RG, 1986, J ENVIRON QUAL, V15, P161, DOI 10.2134/jeq1986.00472425001500020015x BOSAC C, 1994, NEW PHYTOL, V126, P71, DOI 10.1111/j.1469-8137.1994.tb07531.x BOSAC C, 1993, NEW PHYTOL, V124, P439, DOI 10.1111/j.1469-8137.1993.tb03834.x Findley DA, 1997, ENVIRON POLLUT, V98, P105, DOI 10.1016/S0269-7491(97)00113-9 HARRISON BH, 1974, PHYTOPATHOLOGY, V64, P257, DOI 10.1094/Phyto-64-257 HEAGLE AS, 1979, CAN J BOT, V57, P1999, DOI 10.1139/b79-250 Kohut R., 1997, D175 NPS LAURENCE JA, 1994, J ENVIRON QUAL, V23, P412, DOI 10.2134/jeq1994.00472425002300030003x Lyons TM, 1998, NEW PHYTOL, V138, P83, DOI 10.1046/j.1469-8137.1998.00879.x MacConnell W. P., 1991, RES B, V740 MANNING WJ, 1992, P ANN M AIR WAST MAN MANNING WJ, 1991, P ANN M AIR WAST MAN MANNING WJ, 1994, MONITORING AMBIENT O MANNING WJ, 1992, SURFACE LEVEL OZONE, P93 *MASS DEP ENV PROT, 1996, AIR PROGR PLANN UN MUMFORD RA, 1972, ENVIRON SCI TECHNOL, V6, P427, DOI 10.1021/es60064a010 Ormrod D. P., 1996, P425 REICH PB, 1985, SCIENCE, V230, P566, DOI 10.1126/science.230.4725.566 Reich PB, 1987, TREE PHYSIOL, V3, P63, DOI 10.1093/treephys/3.1.63 REILING K, 1992, NEW PHYTOL, V120, P29, DOI 10.1111/j.1469-8137.1992.tb01055.x STEPHENSON AG, 1981, ANNU REV ECOL SYST, V12, P253, DOI 10.1146/annurev.es.12.110181.001345 Stewart CA, 1996, J PLANT PHYSIOL, V148, P172, DOI 10.1016/S0176-1617(96)80311-7 Taylor GE, 1992, AIR POLLUTION EFFECT, P111 *US EPA, 1997, OFF AIR QUAL PLANN S *USDA, 1995, FOR HLTH HIGHL NE ST WANG D, 1986, ENVIRON SCI TECHNOL, V20, P1122, DOI 10.1021/es00153a007 Whitfield CP, 1997, NEW PHYTOL, V137, P645, DOI 10.1046/j.1469-8137.1997.00860.x WOODSON RE, 1930, ANN MO BOT GARD, V17, P1, DOI DOI 10.2307/2394074 NR 28 TC 31 Z9 31 U1 0 U2 5 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0269-7491 J9 ENVIRON POLLUT JI Environ. Pollut. PY 1999 VL 105 IS 3 BP 333 EP 339 DI 10.1016/S0269-7491(99)00044-5 PG 7 WC Environmental Sciences SC Environmental Sciences & Ecology GA 196BN UT WOS:000080289300006 PM 15093075 DA 2021-10-15 ER PT J AU Li, XT Wu, T Yu, ZH Li, TT Zhang, JS Zhang, ZN Cai, M Zhang, W Xiang, J Cai, DF AF Li, Xiangting Wu, Ting Yu, Zhonghai Li, Tingting Zhang, Jingsi Zhang, Zhennian Cai, Min Zhang, Wen Xiang, Jun Cai, Dingfang TI Apocynum venetum leaf extract reverses depressive-like behaviors in chronically stressed rats by inhibiting oxidative stress and apoptosis SO BIOMEDICINE & PHARMACOTHERAPY LA English DT Article DE Apocynum venetum leaf extract; Chronic unpredictable mild stress; Major depressive disorder; Oxidative stress; Apoptosis ID NEUROTROPHIC FACTOR; MAJOR DEPRESSION; ANIMAL-MODEL; LIPID-PEROXIDATION; FKBP5 EXPRESSION; XANTHINE-OXIDASE; FREE-RADICALS; HPA AXIS; ANTIDEPRESSANT; BRAIN AB Background: Major depressive disorder (MDD) is a common but serious psychiatric disorder, but current treatments are inadequate for approximately half of the patients with MDD. Thus, better methods of treatment are urgently needed. This study aimed to investigate the antidepressant-like effects and potential mechanism of Apocynum venetum leaf extract (AVLE) in chronic unpredictable mild stress (CUMS) rat model of depression. Materials and methods: The CUMS rat model of depression was used to investigate the antidepressant-like activity and relevant mechanism of AVLE (30, 60, and 125 mg/kg, i.g.). Behavioral tests, including sucrose preference test (SPT), open field test (OFT), and forced swimming test (FST) were conducted to assess anhedonic, despairing, and spontaneous behaviors, respectively. The activity of the hypothalamic-pituitary-adrenal (HPA) axis was evaluated by measuring the serum adrenocorticotrophic hormone (ACTH) and corticosterone (CORT) concentrations. The underlying mechanism was further explored by assessing oxidative stress parameters, cell apoptosis, and brain-derived neurotrophic factor (BDNF) expression in the rat hippocampus exposed to CUMS. Results: The AVLE (36, 60, 125 mg/kg) treatment exerted antidepressant-like effects in CUMS-exposed rats similar to fluoxetine (10 mg/kg). The AVLE treatment reduced the serum CORT and ACTH levels in CUMS rats. It also increased the activities and gene expression of antioxidant enzymes (SOD, CAT, and GPx) and decreased the ROS generation levels and the lipid peroxidation marker MDA in the rat hippocampus subjected to CUMS. Additionally, it suppressed the apoptosis of hippocampus cells by modulating Bcl-2/Bax pathways and improved the hippocampal BDNF expressions of CUMS rats. Conclusion: Our findings suggested that AVLE exerted antidepressant-like effects in CUMS rats, which was possibly mediated by the prevention of oxidative stress, the inhibition of hippocampal neuronal apoptosis, and the upregulation of the hippocampal BDNF level. C1 [Li, Xiangting; Wu, Ting; Yu, Zhonghai; Zhang, Jingsi; Zhang, Zhennian; Cai, Min; Zhang, Wen; Xiang, Jun; Cai, Dingfang] Fudan Univ, Zhongshan Hosp, Dept Integrat Med, Shanghai 200032, Peoples R China. [Li, Xiangting; Wu, Ting; Yu, Zhonghai; Zhang, Jingsi; Zhang, Zhennian; Cai, Min; Zhang, Wen; Xiang, Jun; Cai, Dingfang] Fudan Univ, Inst Neurol, Acad Integrat Med, Shanghai 200032, Peoples R China. [Li, Tingting] Shanghai Univ Tradit Chinese Med, Dept Neurol, Shuguang Hosp, Shanghai 201203, Peoples R China. RP Xiang, J; Cai, DF (corresponding author), Fudan Univ, Zhongshan Hosp, Dept Integrat Med, Shanghai 200032, Peoples R China.; Xiang, J; Cai, DF (corresponding author), Fudan Univ, Inst Neurol, Acad Integrat Med, Shanghai 200032, Peoples R China. EM xiang.jun@mail.zs-hospital.sh.cn; dingfangcai@163.com FU Three-year development plan project for Traditional Chinese Medicine [ZY3-CCCX-3-7003]; National Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC) [81703857]; Special fund for Standardized training of resident physicians in Zhongshan Hospital [008] FX The work was supported by Grants from the Three-year development plan project for Traditional Chinese Medicine ( ZY3-CCCX-3-7003); The National Natural Science Foundation of China [ grant numbers 81703857] and The Special fund for Standardized training of resident physicians in Zhongshan Hospital [ grant number 008] CR Abelaira HM, 2013, NEUROSCI RES, V75, P324, DOI 10.1016/j.neures.2013.02.002 Adams JM, 1998, SCIENCE, V281, P1322, DOI 10.1126/science.281.5381.1322 Andersson DC, 2011, J PHYSIOL-LONDON, V589, P1791, DOI 10.1113/jphysiol.2010.202838 Ayuob NN, 2016, CELL TISSUE RES, V366, P271, DOI 10.1007/s00441-016-2468-9 Bahramsoltani R, 2015, REV NEUROSCIENCE, V26, P699, DOI 10.1515/revneuro-2015-0009 Balmus IM, 2016, OXID MED CELL LONGEV, V2016, DOI 10.1155/2016/3975101 Behr GA, 2012, OXID MED CELL LONGEV, V2012, DOI 10.1155/2012/609421 Bilici M, 2001, J AFFECT DISORDERS, V64, P43, DOI 10.1016/S0165-0327(00)00199-3 Birkenhager TK, 2012, J PSYCHIATR RES, V46, P285, DOI 10.1016/j.jpsychires.2011.12.006 Bortolato M, 2007, BIOL PSYCHIAT, V62, P1103, DOI 10.1016/j.biopsych.2006.12.001 BROWN GW, 1987, BRIT J PSYCHIAT, V150, P30, DOI 10.1192/bjp.150.1.30 Bruckheimer E M, 1998, Adv Biochem Eng Biotechnol, V62, P75, DOI 10.1007/BFb0102306 Bus BAA, 2015, MOL PSYCHIATR, V20, P602, DOI 10.1038/mp.2014.83 Butterweck V, 2001, BIOL PHARM BULL, V24, P848, DOI 10.1248/bpb.24.848 Cai L, 2015, EUR NEUROPSYCHOPHARM, V25, P1332, DOI 10.1016/j.euroneuro.2015.04.009 Christoffel DJ, 2012, NEUROPSYCHOPHARMACOL, V37, P2615, DOI 10.1038/npp.2012.121 Crupi R, 2013, CNS NEUROL DISORD-DR, V12, P474, DOI 10.2174/1871527311312040006 Cryan JF, 2005, NAT REV DRUG DISCOV, V4, P775, DOI 10.1038/nrd1825 Cryan JF, 2002, TRENDS PHARMACOL SCI, V23, P238, DOI 10.1016/S0165-6147(02)02017-5 Der-Avakian A, 2012, TRENDS NEUROSCI, V35, P68, DOI 10.1016/j.tins.2011.11.005 Farahani MS, 2015, REV NEUROSCIENCE, V26, P305, DOI 10.1515/revneuro-2014-0058 Fattorusso R, 2006, PHYTOMEDICINE, V13, P16, DOI 10.1016/j.phymed.2005.03.004 Fava M, 2000, NEURON, V28, P335, DOI 10.1016/S0896-6273(00)00112-4 Ferrari AJ, 2013, PSYCHOL MED, V43, P471, DOI 10.1017/S0033291712001511 Forman HJ, 2015, FREE RADICAL BIO MED, V78, P233, DOI 10.1016/j.freeradbiomed.2014.10.504 Galecki P, 2009, PHARMACOL REP, V61, P436 Grundmann O, 2007, J ETHNOPHARMACOL, V110, P406, DOI 10.1016/j.jep.2006.09.035 Guidotti G, 2013, NEUROPSYCHOPHARMACOL, V38, P616, DOI 10.1038/npp.2012.225 Hadwan MH, 2016, DATA BRIEF, V6, P194, DOI 10.1016/j.dib.2015.12.012 Halliwell B, 2007, BIOCHEM SOC T, V35, P1147, DOI 10.1042/BST0351147 Halliwell B, 2001, DRUG AGING, V18, P685, DOI 10.2165/00002512-200118090-00004 Herken H, 2007, ARCH MED RES, V38, P247, DOI 10.1016/j.arcmed.2006.10.005 Holmstrom KM, 2014, NAT REV MOL CELL BIO, V15, P411, DOI 10.1038/nrm3801 Holzmann I, 2015, PHARMACOL BIOCHEM BE, V136, P55, DOI 10.1016/j.pbb.2015.07.003 Hu M, 2016, OXID MED CELL LONGEV, V2016, DOI 10.1155/2016/2153745 JASKOT RH, 1983, J ANAL TOXICOL, V7, P86, DOI 10.1093/jat/7.2.86 Jayatissa MN, 2006, NEUROPSYCHOPHARMACOL, V31, P2395, DOI 10.1038/sj.npp.1301041 Jimenez-Fernandez S, 2015, J CLIN PSYCHIAT, V76, P1658, DOI 10.4088/JCP.14r09179 Jones DP, 2006, ANTIOXID REDOX SIGN, V8, P1865, DOI 10.1089/ars.2006.8.1865 Kamata K, 2008, J NAT MED-TOKYO, V62, P160, DOI 10.1007/s11418-007-0202-3 Kapczinski F, 2008, REV BRAS PSIQUIATR, V30, P243, DOI 10.1590/S1516-44462008000300011 Keller J, 2006, BIOL PSYCHIAT, V60, P275, DOI 10.1016/j.biopsych.2005.10.014 Kim DW, 2000, PHYTOTHER RES, V14, P501, DOI 10.1002/1099-1573(200011)14:7<501::AID-PTR655>3.0.CO;2-B Krishnan V, 2008, NATURE, V455, P894, DOI 10.1038/nature07455 Kwan CY, 2005, CLIN EXP PHARMACOL P, V32, P789, DOI 10.1111/j.1440-1681.2005.04255.x Lake J, 2000, ALTERN THER HEALTH M, V6, P36 Lang UE, 2013, CELL PHYSIOL BIOCHEM, V31, P761, DOI 10.1159/000350094 Lee G, 2017, BIOMED RES INT, V2017, DOI 10.1155/2017/6596241 Lembke A, 2013, PSYCHONEUROENDOCRINO, V38, P115, DOI 10.1016/j.psyneuen.2012.05.006 Li-Yang J., 2009, J NUTR FOOD, V12, P1 Liang TG, 2010, INT J MOL SCI, V11, P4452, DOI 10.3390/ijms11114452 Liu B, 2015, NEUROSCIENCE, V294, P193, DOI 10.1016/j.neuroscience.2015.02.053 Liu S, 2016, BEHAV BRAIN RES, V302, P191, DOI 10.1016/j.bbr.2016.01.037 Liu TY, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0114851 Livak KJ, 2001, METHODS, V25, P402, DOI 10.1006/meth.2001.1262 Lucassen PJ, 2001, AM J PATHOL, V158, P453, DOI 10.1016/S0002-9440(10)63988-0 Lucca G, 2009, J PSYCHIATR RES, V43, P864, DOI 10.1016/j.jpsychires.2008.11.002 Maes ME, 2017, PROG RETIN EYE RES, V57, P1, DOI 10.1016/j.preteyeres.2017.01.002 Mahar I, 2014, NEUROSCI BIOBEHAV R, V38, P173, DOI 10.1016/j.neubiorev.2013.11.009 Martinotti G, 2016, INT J NEUROPSYCHOPH, V19, DOI 10.1093/ijnp/pyw003 Mathers CD, 2006, PLOS MED, V3, DOI 10.1371/journal.pmed.0030442 Mazumder S, 2016, BIOCHEM PHARMACOL, V121, P33, DOI 10.1016/j.bcp.2016.09.027 McArthur R, 2006, PHARMACOL BIOCHEM BE, V84, P436, DOI 10.1016/j.pbb.2006.06.005 Michalski WP, 1996, J CHROMATOGR B, V684, P59, DOI 10.1016/0378-4347(96)00072-2 Michel TM, 2007, PSYCHIAT RES, V151, P145, DOI 10.1016/j.psychres.2006.04.013 Michel TM, 2012, CURR PHARM DESIGN, V18, P5890 Michel TM, 2010, WORLD J BIOL PSYCHIA, V11, P314, DOI 10.3109/15622970802123695 Molendijk ML, 2011, MOL PSYCHIATR, V16, P1088, DOI 10.1038/mp.2010.98 Moreau J L, 1992, Eur Neuropsychopharmacol, V2, P43 Ninan I, 2014, NEUROPHARMACOLOGY, V76, P684, DOI 10.1016/j.neuropharm.2013.04.011 Nishibe S., 2004, APOCYNUM VENETUM EXT OHKAWA H, 1979, ANAL BIOCHEM, V95, P351, DOI 10.1016/0003-2697(79)90738-3 Papakostas GI, 2008, J CLIN PSYCHIAT, V69, P1287, DOI 10.4088/JCP.v69n0812 Pittenger C, 2008, NEUROPSYCHOPHARMACOL, V33, P88, DOI 10.1038/sj.npp.1301574 PORSOLT RD, 1977, NATURE, V266, P730, DOI 10.1038/266730a0 Qin TT, 2017, BEHAV BRAIN RES, V317, P147, DOI 10.1016/j.bbr.2016.09.039 Schatzberg AF, 2014, MOL PSYCHIATR, V19, P220, DOI 10.1038/mp.2013.129 Schatzberg AF, 2015, WORLD J BIOL PSYCHIA, V16, P2, DOI 10.3109/15622975.2014.916414 Shen M, 2012, J BIOL CHEM, V287, P25727, DOI 10.1074/jbc.M112.349902 Shibano M, 2008, J NAT MED-TOKYO, V62, P349, DOI 10.1007/s11418-008-0244-1 Shirai Mutsuko, 2005, J Med Invest, V52 Suppl, P249, DOI 10.2152/jmi.52.249 Su GY, 2014, J ETHNOPHARMACOL, V152, P217, DOI 10.1016/j.jep.2014.01.006 Swaab DF, 2005, AGEING RES REV, V4, P141, DOI 10.1016/j.arr.2005.03.003 Trivedi MH, 2006, NEW ENGL J MED, V354, P1243, DOI 10.1056/NEJMoa052964 Tsujimoto Y, 1998, GENES CELLS, V3, P697, DOI 10.1046/j.1365-2443.1998.00223.x Valvassori SS, 2015, MOL NEUROBIOL, V52, P353, DOI 10.1007/s12035-014-8873-8 Weng QN, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0167869 Willner P, 2002, BEHAV PHARMACOL, V13, P169, DOI 10.1097/00008877-200205000-00001 Willner P, 1997, PSYCHOPHARMACOLOGY, V134, P319, DOI 10.1007/s002130050456 Wu AG, 2004, EUR J NEUROSCI, V19, P1699, DOI 10.1111/j.1460-9568.2004.03246.x Xiang J, 2010, CAN J PHYSIOL PHARM, V88, P907, DOI [10.1139/Y10-069, 10.1139/y10-069] Xie WY, 2012, J ETHNOPHARMACOL, V141, P1, DOI 10.1016/j.jep.2012.02.003 Xing Y, 2015, NEUROSCIENCE, V290, P255, DOI 10.1016/j.neuroscience.2015.01.044 Yu HY, 2014, BIOCHEM BIOPH RES CO, V451, P467, DOI 10.1016/j.bbrc.2014.07.041 Zhai XJ, 2015, J ETHNOPHARMACOL, V169, P363, DOI 10.1016/j.jep.2015.04.053 Zhang XY, 2015, PSYCHONEUROENDOCRINO, V51, P201, DOI 10.1016/j.psyneuen.2014.09.029 Zheng MZ, 2013, J ETHNOPHARMACOL, V147, P108, DOI 10.1016/j.jep.2013.02.015 Zhou CJ, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0172270 NR 98 TC 29 Z9 31 U1 5 U2 40 PU ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER PI ISSY-LES-MOULINEAUX PA 65 RUE CAMILLE DESMOULINS, CS50083, 92442 ISSY-LES-MOULINEAUX, FRANCE SN 0753-3322 EI 1950-6007 J9 BIOMED PHARMACOTHER JI Biomed. Pharmacother. PD APR PY 2018 VL 100 BP 394 EP 406 DI 10.1016/j.biopha.2018.01.137 PG 13 WC Medicine, Research & Experimental; Pharmacology & Pharmacy SC Research & Experimental Medicine; Pharmacology & Pharmacy GA FZ5PZ UT WOS:000427649200048 PM 29454288 DA 2021-10-15 ER PT J AU Lin, X Wang, YZ Liu, XJ Huang, SY Zeng, Q AF Lin, Xiao Wang, Yuzhi Liu, Xiaojie Huang, Songyun Zeng, Qun TI ILs-based microwave-assisted extraction coupled with aqueous two-phase for the extraction of useful compounds from Chinese medicine SO ANALYST LA English DT Article ID PERFORMANCE LIQUID-CHROMATOGRAPHY; TEMPERATURE IONIC LIQUID; APOCYNUM-VENETUM LEAVES; BIPHASIC SYSTEMS; PHASE; WATER; TETRAFLUOROBORATE; PLANTS; SALTS AB Ionic liquids-based microwave-assisted extraction (ILs-MAE) of medicinal or useful compounds from plants was investigated as an alternative to conventional organic solvent extractions. The extraction and the preconcentration of aqueous two-phase (ATP) systems have been integrated. Various operating parameters were systematically considered by single-factor and L-9 (3(4)) orthogonal array experiments. 1-Butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF4]) has been selected to extract Apocynum venetum. The extract was then converted to the top phase by [bmim][BF4]/NaH2PO4 system which was suitable for the preconcentration. Reversed phase high performance liquid chromatography (RP-HPLC) with ultraviolet detection was employed for the analysis of hyperin and isoquercitrin in Apocynum venetum. The optimal experiment approach could provide higher detection limit of hyperin and isoquercitrin which were 3.82 mu g L-1 and 3.00 mu g L-1 in Apocynum venetum. The recoveries of hyperin and isoquercitrin were 97.29% (RSD = 1.02%) and 99.40% (RSD = 1.13%) respectively, from aqueous samples of Apocynum venetum by the proposed method. Moreover, the extraction mechanism of ILs-MAE and the microstructures and chemical structures of the herb before and after extraction were also investigated. The method exhibited potential applicability with other complicated samples. C1 [Lin, Xiao; Wang, Yuzhi; Liu, Xiaojie; Huang, Songyun; Zeng, Qun] Hunan Univ, Coll Chem & Chem Engn, State Key Lab Chemo Biosensing & Chemometr, Changsha 410082, Hunan, Peoples R China. RP Wang, YZ (corresponding author), Hunan Univ, Coll Chem & Chem Engn, State Key Lab Chemo Biosensing & Chemometr, Changsha 410082, Hunan, Peoples R China. EM wyzss@hnu.edu.cn FU National Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC) [21175040] FX The authors greatly appreciate the financial support by the National Natural Science Foundation of China (no. 21175040). CR Arce A, 2006, J SOLUTION CHEM, V35, P63, DOI 10.1007/s10953-006-8939-y Carrillo-Carrion C, 2012, ANALYST, V137, P1152, DOI 10.1039/c2an15914g Chen CC, 2010, IND ENG CHEM RES, V49, P5925, DOI 10.1021/ie9020649 Du FY, 2009, TALANTA, V78, P1177, DOI 10.1016/j.talanta.2009.01.040 Earle MJ, 2006, NATURE, V439, P831, DOI 10.1038/nature04451 Fort DA, 2007, GREEN CHEM, V9, P63, DOI [10.1039/b607614a, 10.1039/B607614A] Grundmann O, 2009, PHYTOMEDICINE, V16, P295, DOI 10.1016/j.phymed.2008.12.020 Gutowski KE, 2003, J AM CHEM SOC, V125, P6632, DOI 10.1021/ja0351802 Kim KS, 2004, J CHEM ENG DATA, V49, P1550, DOI 10.1021/je034210d Li SH, 2005, J CHROMATOGR B, V826, P58, DOI 10.1016/j.jchromb.2005.08.005 Ma M, 2003, J AGR FOOD CHEM, V51, P2390, DOI 10.1021/jf021055i Marco R.P., 2004, J CHROMATOGR B, V807, P3 Memon AA, 2010, SEP PURIF TECHNOL, V76, P179, DOI 10.1016/j.seppur.2010.10.005 Nakashima T, 2003, J AM CHEM SOC, V125, P6386, DOI 10.1021/ja034954b Pei YC, 2009, SEP PURIF TECHNOL, V64, P288, DOI 10.1016/j.seppur.2008.10.010 Qiu HD, 2012, ANALYST, V137, P2553, DOI 10.1039/c2an35348b Roobol-Boza M, 2004, J CHROMATOGR A, V1043, P217, DOI 10.1016/j.chroma.2004.05.061 Soto A, 2005, SEP PURIF TECHNOL, V44, P242, DOI 10.1016/j.seppur.2005.01.013 Swatloski RP, 2002, J AM CHEM SOC, V124, P4974, DOI 10.1021/ja025790m Tan SN, 2011, TALANTA, V83, P891, DOI 10.1016/j.talanta.2010.10.048 Tang F, 2009, TRAC-TREND ANAL CHEM, V28, P1253, DOI 10.1016/j.trac.2009.09.004 Wang JH, 2007, ANAL CHEM, V79, P620, DOI 10.1021/ac061145c Wang Y, 2010, THERMOCHIM ACTA, V501, P112, DOI 10.1016/j.tca.2010.01.020 Willauer HD, 2002, IND ENG CHEM RES, V41, P2591, DOI 10.1021/ie0107800 Xiang DS, 2011, ANALYST, V136, P2837, DOI 10.1039/c1an00013f Yan MM, 2010, FOOD CHEM, V119, P1663, DOI 10.1016/j.foodchem.2009.09.021 Yuan Y, 2011, ANALYST, V136, P2294, DOI 10.1039/c0an00864h Zeng HA, 2010, TALANTA, V83, P582, DOI 10.1016/j.talanta.2010.10.006 Zhai YJ, 2009, J SEP SCI, V32, P3544, DOI 10.1002/jssc.200910204 Zhang YC, 2010, J CHROMATOGR B, V878, P3149, DOI 10.1016/j.jchromb.2010.09.027 Zheng MZ, 2012, PHYTOMEDICINE, V19, P145, DOI 10.1016/j.phymed.2011.06.029 Zhou Y, 2003, J AM CHEM SOC, V125, P14960, DOI 10.1021/ja0380998 NR 32 TC 29 Z9 33 U1 3 U2 85 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 0003-2654 J9 ANALYST JI Analyst PY 2012 VL 137 IS 17 BP 4076 EP 4085 DI 10.1039/c2an35476d PG 10 WC Chemistry, Analytical SC Chemistry GA 980ZJ UT WOS:000306932400029 PM 22785248 DA 2021-10-15 ER PT J AU Butterweck, V Simbrey, K Seo, S Sasaki, T Nishibe, S AF Butterweck, V Simbrey, K Seo, S Sasaki, T Nishibe, S TI Long-term effects of an Apocynum venetum extract on brain monoamine levels and beta-AR density in rats SO PHARMACOLOGY BIOCHEMISTRY AND BEHAVIOR LA English DT Article DE Apocynum venetum; antidepressant; serotonin; dopamine; norepinephrine; beta-receptor regulation ID ANTI-DEPRESSANT TREATMENT; CORTICOTROPIN-RELEASING HORMONE; MESSENGER-RNA LEVELS; ST-JOHNS WORT; THERAPEUTIC IMPLICATIONS; ANTIDEPRESSANT DRUGS; TYROSINE-HYDROXYLASE; CHRONIC DESIPRAMINE; FRONTAL-CORTEX; SEROTONIN AB The present study was designed to get further insight into the mode of antidepressant action of an extract prepared of the leaves of Apocynum venetum L. (AV). To evaluate biochemical changes, we used a high-performance liquid chromatography system to examine the effects of short-term (2 weeks) and long-term (8 weeks) administration of imipramine (15 mg/kg po) and an AV-extract (15, 60 and 250 mg/kg) on regional levels of serotonin (5-HT), norepinephrine (NE), dopamine (DA) and their metabolites in the rat hypothalamus, striatum and hippocampus. Pronounced changes in 5-HT, NE and DA levels were detected mainly after 8 weeks of daily imipramine treatment. Similar to imipramine, AV-extract reduced NE and DA concentrations after 8 weeks, whereas it failed to affect 5-HT levels. We speculate that the decrease in NE levels after chronic AV treatment might be based partly on the subsensitivity of presynaptic alpha(2)-receptors. In addition to the determination of central monoamine concentrations, quantitative radioligand receptor-binding studies were used to examine the effects of long-term administration of imipramine and AV-extract on beta-adrenergic binding in rat frontal cortex. [I-125]CYP binding to beta-adrenergic receptors was found to be decreased after 8 weeks treatment with imipramine, whereas AV-extract had no effect on beta-receptor binding. (C) 2003 Elsevier Science Inc. All rights reserved. C1 Univ Klinikum Muenster, Inst Pharmacol & Toxicol, D-48149 Munster, Germany. Tokiwa Phytochem Co Ltd, Sakura, Chiba 2850801, Japan. Hlth Sci Univ Hokkaido, Fac Pharmaceut Sci, Hokkaido 0610293, Japan. RP Butterweck, V (corresponding author), Univ Klinikum Muenster, Inst Pharmacol & Toxicol, Domagkstr 12, D-48149 Munster, Germany. CR Arborelius L, 1996, N-S ARCH PHARMACOL, V353, P630, DOI 10.1007/BF00167182 BARON BM, 1988, EUR J PHARMACOL, V154, P125, DOI 10.1016/0014-2999(88)90089-1 BRADY LS, 1992, BRAIN RES, V572, P117, DOI 10.1016/0006-8993(92)90459-M BRADY LS, 1991, J CLIN INVEST, V87, P831, DOI 10.1172/JCI115086 Butterweck V, 2002, BRAIN RES, V930, P21, DOI 10.1016/S0006-8993(01)03394-7 Butterweck V, 2001, BIOL PHARM BULL, V24, P848, DOI 10.1248/bpb.24.848 Butterweck V, 2001, MOL PSYCHIATR, V6, P547, DOI 10.1038/sj.mp.4000937 Chung Moon Yong, 1993, Yonsei Medical Journal, V34, P266 Delgado PL, 2000, J CLIN PSYCHIAT, V61, P7 DIGORY GL, 1984, EUR J PHARMACOL, V105, P257 Duman RS, 1997, ARCH GEN PSYCHIAT, V54, P597 DUMAN RS, 1997, NEW PHARM STRATEGIES, P172 FUXE K, 1983, NEUROPHARMACOLOGY, V22, P389, DOI 10.1016/0028-3908(83)90188-0 HOLCOMB HH, 1982, EUR J PHARMACOL, V82, P173, DOI 10.1016/0014-2999(82)90507-6 HOYER D, 1985, EUR J PHARMACOL, V118, P1, DOI 10.1016/0014-2999(85)90657-0 KAROUM F, 1984, EUR J PHARMACOL, V100, P137, DOI 10.1016/0014-2999(84)90215-2 Katz M M, 1996, Depress Anxiety, V4, P257, DOI 10.1002/(SICI)1520-6394(1996)4:6<257::AID-DA1>3.0.CO;2-9 Kim D. W., 1998, Journal of Traditional Medicines, V15, P40 Kim DW, 1998, PHYTOTHER RES, V12, P46, DOI 10.1002/(SICI)1099-1573(19980201)12:1<46::AID-PTR169>3.0.CO;2-I KOCH WJ, 1995, SCIENCE, V268, P1350, DOI 10.1126/science.7761854 KREISS DS, 1995, J PHARMACOL EXP THER, V274, P866 Langer S.Z., 1981, PHARMACOL REV, V32, P337 LOWRY OH, 1951, J BIOL CHEM, V193, P265 MA YX, 1989, CHIN J MOD DEV TRAD, V9, P335 MAGGI A, 1980, EUR J PHARMACOL, V61, P91, DOI 10.1016/0014-2999(80)90152-1 MISHRA R, 1979, EUR J PHARMACOL, V60, P379, DOI 10.1016/0014-2999(79)90246-2 MONTGOMERY SA, 1995, PSYCHOPHARMACOL BULL, V31, P41 MOUSSEAU DD, 1989, J NEURAL TRANSM, V75, P73, DOI 10.1007/BF01250645 Nalepa I, 1998, EUR NEUROPSYCHOPHARM, V8, P227, DOI 10.1016/S0924-977X(97)00078-3 PEROUTKA SJ, 1980, SCIENCE, V210, P88, DOI 10.1126/science.6251550 QING ZN, 1988, B CHIN MAT MED, V13, P44 QUITKIN FM, 1991, AM J PSYCHIAT, V148, P197 QUITKIN FM, 1984, ARCH GEN PSYCHIAT, V41, P782 Quitkin FM, 1996, ARCH GEN PSYCHIAT, V53, P785 SACCHETTI G, 2000, NS ARCH PHARM, V363, P66 SEDLOCK ML, 1985, BIOL PSYCHIAT, V20, P858, DOI 10.1016/0006-3223(85)90211-2 SERRA G, 1979, LIFE SCI, V25, P415, DOI 10.1016/0024-3205(79)90573-3 SERRA G, 1980, PHARMACOL RES COMMUN, V12, P619, DOI 10.1016/S0031-6989(80)80149-4 SIMONI MGD, 1986, EUR J PHARMACOL, V123, P433 SPYRAKI C, 1980, LIFE SCI, V27, P1863, DOI 10.1016/0024-3205(80)90431-2 STOLZ JF, 1983, PSYCHOPHARMACOLOGY, V80, P150, DOI 10.1007/BF00427959 SUGITA S, 1987, J CHROMATOGR, V421, P417 SULSER F, 1978, BIOCHEM PHARMACOL, V27, P257, DOI 10.1016/0006-2952(78)90226-5 SVENSSON TH, 1978, SCIENCE, V202, P1089, DOI 10.1126/science.213833 VETULANI J, 1976, N-S ARCH PHARMACOL, V293, P109, DOI 10.1007/BF00499215 WONG DT, 1985, J NEURAL TRANSM, V64, P251, DOI 10.1007/BF01256471 Yokozawa Takako, 1997, Natural Medicines, V51, P325 NR 47 TC 29 Z9 42 U1 0 U2 11 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0091-3057 J9 PHARMACOL BIOCHEM BE JI Pharmacol. Biochem. Behav. PD JUN PY 2003 VL 75 IS 3 BP 557 EP 564 DI 10.1016/S0091-3057(03)00118-7 PG 8 WC Behavioral Sciences; Neurosciences; Pharmacology & Pharmacy SC Behavioral Sciences; Neurosciences & Neurology; Pharmacology & Pharmacy GA 714QE UT WOS:000184924300007 PM 12895673 DA 2021-10-15 ER PT J AU Dobler, S Daloze, D Pasteels, JM AF Dobler, Susanne Daloze, Desire Pasteels, Jacques M. TI Sequestration of plant compounds in a leaf beetle's defensive secretion: cardenolides in Chrysochus SO CHEMOECOLOGY LA English DT Article DE insect chemical defense; defensive secretions; sequestration; cardenolides; diacetyl putrescine; amino acids; Coleoptera; Chrysomelidae; Chrysochus; Asclepiadaceae; Asclepias; Vincetoxicum; Apocynaceae; Apocynum AB Leaf beetles of the genus Chrysochus were shown to release secretions from pronotal and elytral glands when disturbed. This defensive reaction is similar to that observed in members of other, not closely related, subfamilies of the Chrysomelidae. In Chrysochus auratus and C. cobaltinus which both feed on plants of the genera Asclepias and Apocynum (Asclepiadaceae and Apocynaceae), the secretions contain cardenolides in a concentration of 77 to 358 mu g/mu l. Extracts of whole beetles contained cardenolides in concentrations too low for spectrophotometric quantification to a maximum of 748 mu g/g dry weight. The cardenolides are apparently taken up from the food plant, since both plant genera contain these toxins and cardenolide pattern and concentration of whole beetle extracts and of the beetles' secretion depended on the local host plant. In C. asclepiadeus, which feeds on Vincetoxicum hirundinaria (Asclepiadaceae) devoid of cardenolides, phenylalanine, tryptophane, leucine and diacetyl putrescine were identified as major constituents of the secretions. The volume of secretion produced in the three Chrysochus species seems to be inversely correlated with the known toxicity of the compounds present in the secretion. C1 [Dobler, Susanne] Univ Freiburg, D-79104 Freiburg, Germany. [Daloze, Desire] Univ Libre Bruxelles, Chim Bioorgan Lab, B-1050 Brussels, Belgium. [Pasteels, Jacques M.] Univ Libre Bruxelles, Lab Biol Anim & Cellulaire, B-1050 Brussels, Belgium. RP Dobler, S (corresponding author), Univ Freiburg, Hauptstr 1, D-79104 Freiburg, Germany. EM doblers@ruf.uni-freiburg.de OI Dobler, Susanne/0000-0002-0635-7719 FU NATONATO (North Atlantic Treaty Organisation); Fonds der Chemischen IndustrieFonds der Chemischen IndustrieEuropean Commission; "Fonds de la Recherche Fondamentale Collective'' (FRFC)Fonds de la Recherche Scientifique - FNRS [2.46570.93-96]; Communaute Francaise de BelgiqueAustralian Research Council [ARC 93/98-137] FX We would like to thank Mrs F. Broeders and Dr. M. Plehiers for help with the chemical analyses, and Drs. B. Farrell and M. Sady for indicating collecting points of the beetles. This work was supported by a NATO postdoctoral fellowship and the "Fonds der Chemischen Industrie'' (SD) and the "Fonds de la Recherche Fondamentale Collective'' (FRFC; Grant no 2.46570.93-96) and the "Communaute Francaise de Belgique'' (ARC 93/98-137) (JMP and DD). CR Bowers M.D., 1992, P216 BROWER LP, 1968, SCIENCE, V161, P1349, DOI 10.1126/science.161.3848.1349 BROWER LP, 1982, J CHEM ECOL, V8, P579, DOI 10.1007/BF00989631 BROWER LP, 1984, J CHEM ECOL, V10, P601, DOI 10.1007/BF00994224 BROWER LP, 1972, SCIENCE, V177, P426, DOI 10.1126/science.177.4047.426 BROWER LP, 1975, SCIENCE, V188, P19, DOI 10.1126/science.188.4183.19 Brown K.S. Jr, 1991, P375 DEROE C, 1982, J CHEM ECOL, V8, P67, DOI 10.1007/BF00984006 DOBLER S, 1994, J CHEM ECOL, V20, P555, DOI 10.1007/BF02059597 Dobler S, 1996, EVOLUTION, V50, P2372 EGGENBERGER F, 1994, EXPERIENTIA, V50, P766, DOI 10.1007/BF01919379 EGGENBERGER F, 1992, J CHEM ECOL, V18, P1375, DOI 10.1007/BF00994363 EGGENBERGER F, 1993, J INSECT PHYSIOL, V39, P751, DOI 10.1016/0022-1910(93)90050-2 Feeny P.P., 1976, RECENT ADV PHYTOCHEM, V10, P1, DOI DOI 10.1007/978-1-4684-2646-5_1 FERGUSON JE, 1985, J CHEM ECOL, V11, P311, DOI 10.1007/BF01411417 Hartmann T, 1997, PHYTOCHEMISTRY, V45, P489, DOI 10.1016/S0031-9422(97)00009-5 HEGNAUER R, 1964, CHEMOTAXONOMIE PFLAN, V3 HILKER M, 1989, ENTOMOL EXP APPL, V53, P237, DOI 10.1007/BF00162855 Hsiao T., 1994, NOVEL ASPECTS BIOL C, P237, DOI DOI 10.1007/978-94-011-1781-4_17 ISMAN MB, 1977, CAN J ZOOL, V55, P1024, DOI 10.1139/z77-130 JOLIVET P, 1982, Bulletin Mensuel de la Societe Linneenne de Lyon, V51, P214 JOLIVET P, 1988, BIOL CHRYSOMELIDAE, P1, DOI DOI 10.1007/978-94-009-3105-3_1 Malcolm S.B., 1991, P251 MALCOLM SB, 1989, EXPERIENTIA, V45, P284, DOI 10.1007/BF01951814 Morton TC, 1998, J CHEM ECOL, V24, P765, DOI 10.1023/A:1022382931766 Nishida R., 1992, Chemoecology, V3, P19, DOI 10.1007/BF01261452 Pasteels J.M., 1988, BIOL CHRYSOMELIDAE, P233, DOI DOI 10.1007/978-94-009-3105-3_14 PASTEELS JM, 1995, J CHEM ECOL, V21, P1163, DOI 10.1007/BF02228318 PASTEELS JM, 1990, J CHEM ECOL, V16, P211, DOI 10.1007/BF01021280 PASTEELS JM, 1993, BIOCHEM SYST ECOL, V21, P135, DOI 10.1016/0305-1978(93)90019-N PASTEELS JM, 1991, ENTOMOL GEN, V15, P227 PASTEELS JM, 1992, NATURWISSENSCHAFTEN, V79, P521, DOI 10.1007/BF01135774 Pasteels JM, 1989, EXPERIENTIA, V45, P297 REICHSTE.T, 1968, SCIENCE, V161, P861, DOI 10.1126/science.161.3844.861 Reid C.A.M., 1995, P559 Rhoades D.F., 1976, RECENT ADV PHYTOCHEM, V10, P168, DOI DOI 10.1007/978-1-4684-2646-5_4 Rothschild M., 1973, Symposia Royal Ent Soc Lond, V6, P59 ROWELLRAHIER M, 1995, ANIM BEHAV, V49, P709, DOI 10.1016/0003-3472(95)80203-7 SADY MB, 1994, COLEOPTS BULL, V48, P299 VANOYCKE S, 1987, EXPERIENTIA, V43, P460, DOI 10.1007/BF01940455 Vencl FV, 1998, CHEMOECOLOGY, V8, P25, DOI 10.1007/PL00001800 NR 41 TC 28 Z9 30 U1 1 U2 29 PU SPRINGER BASEL AG PI BASEL PA PICASSOPLATZ 4, BASEL, 4052, SWITZERLAND SN 0937-7409 EI 1423-0445 J9 CHEMOECOLOGY JI Chemoecology PD OCT PY 1998 VL 8 IS 3 BP 111 EP 118 DI 10.1007/s000490050015 PG 8 WC Biochemistry & Molecular Biology; Ecology SC Biochemistry & Molecular Biology; Environmental Sciences & Ecology GA V19QN UT WOS:000208087000002 DA 2021-10-15 ER PT J AU Yamatsu, A Yamashita, Y Maru, I Yang, JW Tatsuzaki, J Kim, M AF Yamatsu, Atsushi Yamashita, Yusuke Maru, Isafumi Yang, Jinwei Tatsuzaki, Jin Kim, Mujo TI The Improvement of Sleep by Oral Intake of GABA and Apocynum venetum Leaf Extract SO JOURNAL OF NUTRITIONAL SCIENCE AND VITAMINOLOGY LA English DT Article DE gamma-aminobutyric acid (GABA); Apocynum venetum; sleep quality; sleep latency; non-REM sleep ID SHOW ANTIDEPRESSANT ACTIVITY; AMINOBUTYRIC-ACID GABA; FORCED SWIMMING TEST; PSYCHOLOGICAL STRESS; METABOLITES; GLYCOSIDES; QUERCETIN; INSOMNIA; QUALITY; HUMANS AB The effects of two food materials, gamma-aminobutyric acid (GABA) produced by natural fermentation and Apocynum venetum leaf extract (AVLE), on the improvement of sleep were investigated in humans. The electroencephalogram (EEG) test revealed that oral administration of GABA (100 mg) and AVLE (50 mg) had beneficial effects on sleep. GABA shortened sleep latency by 5.3 min and AVLE increased non-rapid eye movement (REM) sleep time by 7.6%. Simultaneous intake of GABA and AVLE shortened sleep latency by 4.3 mm and increased non-REM sleep time by 5.1%. The result of questionnaires showed that GABA and AVLE enabled subjects to realize the effects on sleep. These results mean that GABA can help people to fall asleep quickly, AVLE induces deep sleep, and they function complementarily with simultaneous intake. Since both GABA and AVLE are materials of foods and have been ingested for a long time, they can be regarded as safe and appropriate for daily intake in order to improve the quality of sleep. C1 [Yamatsu, Atsushi; Yamashita, Yusuke; Maru, Isafumi; Kim, Mujo] Pharma Foods Int Co Ltd, Nishikyo Ku, Kyoto 6158245, Japan. [Yang, Jinwei; Tatsuzaki, Jin] Tokiwa Phytochem Co Ltd, Sakura, Chiba 2850801, Japan. RP Yamashita, Y (corresponding author), Pharma Foods Int Co Ltd, Nishikyo Ku, 1-49 Goryo Ohara, Kyoto 6158245, Japan. EM y-yamashita@pharmafoods.co.jp CR Abdou AM, 2006, BIOFACTORS, V26, P201, DOI 10.1002/biof.5520260305 ADAM K, 1982, BRIT J CLIN PHARMACO, V14, P57, DOI 10.1111/j.1365-2125.1982.tb04934.x Bettica P, 2012, NEUROPSYCHOPHARMACOL, V37, P1224, DOI 10.1038/npp.2011.310 Butterweck V, 2000, PLANTA MED, V66, P3, DOI 10.1055/s-2000-11119 Butterweck V, 2001, BIOL PHARM BULL, V24, P848, DOI 10.1248/bpb.24.848 BUYSSE DJ, 1989, PSYCHIAT RES, V28, P193, DOI 10.1016/0165-1781(89)90047-4 Day AJ, 2000, FEBS LETT, V468, P166, DOI 10.1016/S0014-5793(00)01211-4 Fujibayashi M., 2008, Journal of Japanese Society of Nutrition and Food Science, V61, P129 Grundmann O, 2007, J ETHNOPHARMACOL, V110, P406, DOI 10.1016/j.jep.2006.09.035 Iber C., 2007, AASM MANUAL SCORING Kim K, 2000, SLEEP, V23, P41 Lemma S, 2012, BMC PSYCHIATRY, V12, DOI 10.1186/1471-244X-12-237 Makino T, 2009, BIOL PHARM BULL, V32, P2034, DOI 10.1248/bpb.32.2034 Moser D, 2009, SLEEP, V32, P139, DOI 10.1093/sleep/32.2.139 Nakamura H, 2009, INT J FOOD SCI NUTR, V60, P106, DOI 10.1080/09637480802558508 Paulke A, 2008, PHARMAZIE, V63, P296, DOI 10.1691/ph.2008.7751 Tagawa C, 2004, YAKUGAKU ZASSHI, V124, P851, DOI 10.1248/yakushi.124.851 Takahashi H, 2013, J ORAL REHABIL, V40, P892, DOI 10.1111/joor.12110 Velez Juan Carlos, 2013, Sleep Disord, V2013, P910104, DOI 10.1155/2013/910104 Yamatsu A., 2013, JPN PHARMACOL THER, V41, P985 Yoshino S, 2011, NUTRITION, V27, P847, DOI 10.1016/j.nut.2010.09.002 Yoto A, 2012, AMINO ACIDS, V43, P1331, DOI 10.1007/s00726-011-1206-6 NR 22 TC 27 Z9 29 U1 4 U2 28 PU CENTER ACADEMIC PUBL JAPAN PI TOKYO PA 2-4-16 YAYOI, BUNKYO-KU, TOKYO, 113-0032, JAPAN SN 0301-4800 EI 1881-7742 J9 J NUTR SCI VITAMINOL JI J. Nutr. Sci. Vitaminol. PD APR PY 2015 VL 61 IS 2 BP 182 EP 187 DI 10.3177/jnsv.61.182 PG 6 WC Nutrition & Dietetics SC Nutrition & Dietetics GA CI8KA UT WOS:000355020000011 PM 26052150 OA gold DA 2021-10-15 ER PT J AU Thevs, N Zerbe, S Kyosev, Y Rozi, A Tang, B Abdusalih, N Novitskiy, Z AF Thevs, N. Zerbe, S. Kyosev, Y. Rozi, A. Tang, B. Abdusalih, N. Novitskiy, Z. TI Apocynum venetum L. and Apocynum pictum Schrenk (Apocynaceae) as multi-functional and multi-service plant species in Central Asia: a review on biology, ecology, and utilization SO JOURNAL OF APPLIED BOTANY AND FOOD QUALITY LA English DT Article ID TARIM RIVER; POPULUS-EUPHRATICA; AQUEOUS EXTRACTS; LEAVES; COMPONENTS; DYNAMICS; LUOBUMA; CONSTITUENTS; GROUNDWATER; FLOODPLAIN AB During the second half of the 20th century cotton was strongly promoted along the rivers of Central Asia. The irrigation agriculture resulted in wide spread soil salinization and severe water shortages within the river systems. Most prominent example is the desiccation of the Aral Sea. The natural vegetation along the rivers of Central Asia is adapted to periods of water shortage, is very productive, and contains plant species with valuable utilization opportunities. We reviewed the literature about Apocynum venetum L. and A. pictum Schrenk, two plant species of those riparian ecosystems, which are used as fibre and medicinal plants. A. venetum and A. pictum yield fibres, which can be used as textiles, though the fibres best are blended with cotton and/or chemical fibres. Though, the fibre extraction process needs more research attention. Furthermore, the literature shows that Apocynum leafs are used to produce anti-hypertonic tea and medicine. Both species grow under the arid climate of Central Asia without irrigation, because they exploit groundwater. Furthermore, both species can withstand higher soil salinization levels than cotton. Both species can be used and provide an income to local people under conditions, which are unfavourable to grow crops under irrigation. Such conditions are unreliable water supply for irrigation systems and/or saline soils. C1 [Thevs, N.; Rozi, A.; Tang, B.] Ernst Moritz Arndt Univ Greifswald, Inst Bot & Landscape Ecol, D-17487 Greifswald, Germany. [Zerbe, S.] Free Univ Bozen Bolzano, Fac Sci & Technol, I-39100 Bolzano, Italy. [Kyosev, Y.] Niederrhein Univ Appl Sci, Fac Text & Clothing Technol, D-41065 Monchengladbach, Germany. [Abdusalih, N.] Xinjiang Univ, Inst Resource & Environm Sci, Urumqi, Xinjiang, Peoples R China. [Novitskiy, Z.] Republican Res Ctr Forestry & Ornamental Gardenin, Tashkent, Uzbekistan. RP Thevs, N (corresponding author), Ernst Moritz Arndt Univ Greifswald, Inst Bot & Landscape Ecol, Grimmer Str 88, D-17487 Greifswald, Germany. RI Kyosev, Yordan/H-9955-2019 OI Kyosev, Yordan/0000-0003-3376-1423 FU Bauer-Hollmann Foundation within Junior Research Group Adaptation Strategies to Climate Change and Sustainable Land Use in Central Asia (Turkmenistan and Xinjiang, China); Helene and Rudolf Glaser Foundation; Robert-Bosch-Foundation; Federal Ministry for Education and Research, GermanyFederal Ministry of Education & Research (BMBF); German Academic Exchange Service (DAAD)Deutscher Akademischer Austausch Dienst (DAAD) FX We thank the Bauer-Hollmann Foundation and the Helene and Rudolf Glaser Foundation for funding personal costs within the Junior Research Group Adaptation Strategies to Climate Change and Sustainable Land Use in Central Asia (Turkmenistan and Xinjiang, China). Furthermore, we thank the Robert-Bosch-Foundation, the Federal Ministry for Education and Research, Germany, and the German Academic Exchange Service (DAAD) for funding travel costs to China and Uzbekistan, respectively. CR Bai L, 2005, CHINESE WILD PLANT R, V24, P65 BAO M.D., 2002, SHANDONG AGR SCI, V6, P11 Berljand S, 1950, AGROTECHNOLOGY KENDI Butterweck V, 2003, PHARMACOL BIOCHEM BE, V75, P557, DOI 10.1016/S0091-3057(03)00118-7 Butterweck V, 2001, BIOL PHARM BULL, V24, P848, DOI 10.1248/bpb.24.848 Cao YH, 2003, ANAL BIOANAL CHEM, V376, P691, DOI 10.1007/s00216-003-1961-7 CHEN Y., 2007, CHINESE WILD PLANT R, V26, P49 Chen YN, 2006, J ARID ENVIRON, V66, P231, DOI 10.1016/j.jaridenv.2005.11.009 [范维刚 FAN WeiGang], 2006, [光谱实验室, Chinese Journal of Spectroscopy laboratory], V23, P1174 Fan Z, 2000, RES WATER RESOURCES FORKUSTA I., 2006, MODELING WATER SALT Gao J, 2006, APPL GEOGR, V26, P312, DOI 10.1016/j.apgeog.2006.09.001 Glantz M.H, 1999, CREEPING ENV PROBLEM Gries D, 2003, PLANT CELL ENVIRON, V26, P725, DOI 10.1046/j.1365-3040.2003.01009.x Han X, 2006, MAOFANG KEJI, V2, P33 HAO X.M., 2008, ENVIRON MONIT ASSESS, V52, P167 He R.Y., 1997, CHINAS FIBRE CROPS, V19, P21 Hoppe T., 1992, CHINESISCHE AGRARPOL HU R, 1988, Acta Agronomica Sinica, V14, P28 Ibrakhimov M., 2007, Irrigation and Drainage Systems, V21, P219, DOI 10.1007/s10795-007-9033-3 KAMATA K., 2008, J NATURAL MED, V62 Kim DW, 2000, J ETHNOPHARMACOL, V72, P53, DOI 10.1016/S0378-8741(00)00197-5 Kim DW, 1998, PHYTOTHER RES, V12, P46, DOI 10.1002/(SICI)1099-1573(19980201)12:1<46::AID-PTR169>3.0.CO;2-I Kuzmina ZV, 1997, EURASIAN SOIL SCI+, V30, P642 Kwan CY, 2005, CLIN EXP PHARMACOL P, V32, P789, DOI 10.1111/j.1440-1681.2005.04255.x Li H., 2006, SHANDONG FANGZHI JIN, V134, P80 Liu Z., 2002, PLANT FIBRE PRODUCTS, V24, P30 LU R., 2006, ACTA ACAD MED QINGDA, V42, P71 Ma YX, 1999, CHIN J MOD DEV TRADI, V9, P335 Pavlov N. V., 1942, DIKIE POLEZNYE TEHNI PROZOROVSKII A.W., 1932, ILIYSKIY KENDYR Qian Z N, 1988, Zhong Yao Tong Bao, V13, P44 Raunkiaer C, 1934, LIFE FORMS PLANTS ST Romanovich V. V., 1951, KENDYR KASAHSTANIE SAKUSHIMA A, 1978, YAKUGAKU ZASSHI, V98, P1395, DOI 10.1248/yakushi1947.98.10_1395 Shirai Mutsuko, 2005, J Med Invest, V52 Suppl, P249, DOI 10.2152/jmi.52.249 SPOOR M., 1993, TRANSITION MARKET EC Tagawa C, 2004, YAKUGAKU ZASSHI, V124, P851, DOI 10.1248/yakushi.124.851 Tang X. Q., 2008, QINGHAI AGR, V17, P48 Thevs N, 2007, J APPL BOT FOOD QUAL, V81, P62 Thevs N, 2008, PHYTOCOENOLOGIA, V38, P65, DOI 10.1127/0340-269X/2008/0038-0065 Thevs N, 2008, FORESTRY, V81, P45, DOI 10.1093/forestry/cpm043 Thevs N, 2012, FORESTRY, V85, P193, DOI 10.1093/forestry/cpr056 Thomas FM, 2006, BASIC APPL ECOL, V7, P253, DOI 10.1016/j.baae.2005.07.008 [铁桂春 TIE Guichun], 2006, [草业科学, Pratacultural Science], V23, P46 Treshkin SY, 2001, SUSTAINABLE LAND USE IN DESERTS, P95 Wang LL, 2007, CARBOHYD POLYM, V69, P391, DOI 10.1016/j.carbpol.2006.12.028 Weber HC, 2003, ENVIRONMENTAL SIGNAL PROCESSING AND ADAPTATION, P57 Wei C., 2004, PINZHI XINGNENG FENX, V9, P25 Westermann J, 2008, J INTEGR PLANT BIOL, V50, P536, DOI 10.1111/j.1744-7909.2007.00626.x Wiehle M, 2009, TREES-STRUCT FUNCT, V23, P991, DOI 10.1007/s00468-009-0341-0 XU H., 2005, MAOFANG JISHU, V6, P37 Yokozawa T, 2004, FOOD CHEM TOXICOL, V42, P975, DOI 10.1016/j.fct.2004.02.010 Yokozawa T, 2002, BIOL PHARM BULL, V25, P748, DOI 10.1248/bpb.25.748 Zhang G., 2005, CHINESE WILD PLANT R, V25, P26 Zhang H, 2002, J ARID ENVIRON, V50, P489, DOI 10.1006/jare.2001.0863 [张磊 Zhang Lei], 2003, [新疆农业科学, Xinjiang agricultural sciences], V40, P172 Zhang S., 2002, PLANT J NW CHINA, V22, P1 Zhang W. M., 2006, CHINESE WILD PLANT R, V26, P11 Zhang W. M., 2006, CHIN WILD PLANT RESO, V25, P33 [张秀玲 Zhang Xiuling], 2007, [南开大学学报. 自然科学版, Acta Scientiarum Naturalium Universitatis Nankaiensis], V40, P13 Zhang Z.-G., 2001, SHANDONG TEXTILE SCI, V4, P11 Zhang ZJ, 2004, LIFE SCI, V75, P1659, DOI 10.1016/j.lfs.2004.04.014 Zhou BH, 2007, CHINA PHARMACIST, V10, P1173 Zhu X., 2006, WATERSHED FLOODPLAIN, P77 NR 65 TC 27 Z9 28 U1 1 U2 29 PU DRUCKEREI LIDDY HALM PI GOTTINGEN PA BACKHAUSSTRASSE 9B, 37081 GOTTINGEN, GERMANY SN 1439-040X J9 J APPL BOT FOOD QUAL JI J. Appl. Bot. Food Qual. PY 2012 VL 85 IS 2 BP 159 EP 167 PG 9 WC Plant Sciences SC Plant Sciences GA 210KM UT WOS:000323831700005 DA 2021-10-15 ER PT J AU Kwan, CY Zhang, WB Nishibe, S Seo, S AF Kwan, CY Zhang, WB Nishibe, S Seo, S TI A novel in vitro endothelium-dependent vascular relaxant effect of Apocynum venetum leaf extract SO CLINICAL AND EXPERIMENTAL PHARMACOLOGY AND PHYSIOLOGY LA English DT Article DE aorta; luobuma; medicinal herbs; mesenteric artery; vascular endothelium ID NITRIC-OXIDE; SMOOTH-MUSCLE; MECHANISMS; K+; TETRAMETHYLPYRAZINE; TETRANDRINE; ALKALOIDS; CHANNELS; LUOBUMA; DENSITY AB 1. In the present study, a novel in vitro vascular relaxant effect of Apocynum venetum leaf extract (AVLE; also called 'Luobuma'), obtained from a traditional Chinese medicinal herb with known antihypertensive effects, is reported in isometric contraction studies of rat aorta and superior mesenteric artery. At low concentrations (0.3-10 mu g/mL), AVLE had no effect on the resting tension of either blood vessel and caused relaxation in agonist-precontracted vessels with functionally intact endothelium. 2. We demonstrated pharmacologically that the AVLE-induced vasorelaxation was mediated selectively by the endothelial cells in both blood vessels. Using N-G-nitro-L-arginine methyl ester (L-NAME) and a low concentration of KCl (15 mmol/L), we also demonstrated that AVLE acted by releasing endothelium-derived relaxation factors; nitric oxide (NO) in the rat aorta and NO plus endothelium-derived hyperpolarizing factor in the rat mesenteric artery. 3. The vascular relaxation following brief exposure to AVLE appeared to persist even after subsequent prolonged washout; this was manifested as an attenuated contraction to subsequent application of phenylephrine (PE) compared with the PE-induced contraction after exposure to carbachol (CCh) and subsequent similar washout. The addition Of L-NAME at this point in the absence of AVLE totally restored the contraction to PE, suggesting that enzymatic generation of endothelial NO persisted even after brief exposure to AVLE. 4. Unlike the endothelium-dependent NO-mediated relaxation induced by CCh, which is mediated by endothelial muscarinic receptors (and inhibited by atropine), the relaxation induced by AVLE was not inhibited by atropine and, thus, was not mediated by muscarinic receptors. However, similar to CCh-induced relaxation, AVLE-induced relaxation was associated with the activation of K+ channels. 5. These results provide a strong scientific basis for the folk use of AVLE decoction for antihypertensive therapy in traditional Chinese medicine. C1 McMaster Univ, Fac Hlth Sci, Dept Med, Hamilton, ON L8N 3Z5, Canada. Hlth Sci Univ Hokkaido, Fac Pharmaceut Sci, Ishikari, Hokkaido 06102, Japan. Tokiwa Phytochem Co Ltd, Chiba, Japan. RP Kwan, CY (corresponding author), McMaster Univ, Fac Hlth Sci, Dept Med, Hamilton, ON L8N 3Z5, Canada. EM kwancy@univmail.mcmaster.ca CR Achike FI, 2003, CLIN EXP PHARMACOL P, V30, P605, DOI 10.1046/j.1440-1681.2003.03885.x ADEAGBO ASO, 1993, J CARDIOVASC PHARM, V21, P423, DOI 10.1097/00005344-199303000-00011 Butterweck V, 2003, PHARMACOL BIOCHEM BE, V75, P557, DOI 10.1016/S0091-3057(03)00118-7 Chen X, 1996, CLIN EXP PHARMACOL P, V23, P728, DOI 10.1111/j.1440-1681.1996.tb01767.x Gillis CN, 1997, BIOCHEM PHARMACOL, V54, P1, DOI 10.1016/S0006-2952(97)00193-7 GUAN YY, 1994, ACTA PHARM SINIC, V15, P392 HU XM, 1996, ZHONG HUA BEN CAO, V1, P1256 Huang K.C., 1999, PHARM CHINESE HERBS, V2nd JI YB, 1994, PHARM ACTION APPL AV Kim DW, 2000, PHYTOTHER RES, V14, P501, DOI 10.1002/1099-1573(200011)14:7<501::AID-PTR655>3.0.CO;2-B Kim DW, 2000, J ETHNOPHARMACOL, V72, P53, DOI 10.1016/S0378-8741(00)00197-5 Kim ND, 1999, EUR J PHARMACOL, V367, P51, DOI 10.1016/S0014-2999(98)00899-1 Kwan Chiu-Yin, 1995, Clinical and Experimental Pharmacology and Physiology, V22, pS297, DOI 10.1111/j.1440-1681.1995.tb02925.x KWAN CY, 1994, STEM CELLS, V12, P64, DOI 10.1002/stem.5530120111 Kwan CY, 2004, N-S ARCH PHARMACOL, V369, P473, DOI 10.1007/s00210-004-0927-4 Kwan CY, 2003, VASC PHARMACOL, V40, P229, DOI 10.1016/j.vph.2003.09.001 Kwan CY, 2003, N-S ARCH PHARMACOL, V368, P1, DOI 10.1007/s00210-003-0759-7 Kwan CY, 2002, ACTA PHARMACOL SIN, V23, P1057 KWAN CY, 2004, N-S ARCH PHARMACOL, V359, P206 MA YX, 1989, CHIN J MOD DEV TRAD, V9, P335 Nishibe Sansei, 1994, Natural Medicines, V48, P322 QIAN Z, 1988, Bulletin of Chinese Materia Medica, V13, P44 Shimokawa H, 1996, J CARDIOVASC PHARM, V28, P703, DOI 10.1097/00005344-199611000-00014 SUTTER MC, 1993, CARDIOVASC RES, V27, P1891, DOI 10.1093/cvr/27.11.1891 Tagawa C, 2004, YAKUGAKU ZASSHI, V124, P851, DOI 10.1248/yakushi.124.851 Tsai CC, 2002, LIFE SCI, V71, P1321, DOI 10.1016/S0024-3205(02)01852-0 Wang G, 2004, TRENDS PHARMACOL SCI, V25, P120, DOI 10.1016/j.tips.2004.01.009 Yokozawa T, 2002, BIOL PHARM BULL, V25, P748, DOI 10.1248/bpb.25.748 Zhang WB, 2004, N-S ARCH PHARMACOL, V369, P232, DOI 10.1007/s00210-003-0854-9 ZHENG XF, 1995, ACTA PHARM SINIC, V16, P385 NR 30 TC 27 Z9 32 U1 2 U2 15 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0305-1870 EI 1440-1681 J9 CLIN EXP PHARMACOL P JI Clin. Exp. Pharmacol. Physiol. PD SEP PY 2005 VL 32 IS 9 BP 789 EP 795 DI 10.1111/j.1440-1681.2005.04255.x PG 7 WC Pharmacology & Pharmacy; Physiology SC Pharmacology & Pharmacy; Physiology GA 962PF UT WOS:000231744000015 PM 16173937 DA 2021-10-15 ER PT J AU Ma, M Hong, CL An, SQ Li, B AF Ma, M Hong, CL An, SQ Li, B TI Seasonal, spatial, and interspecific variation in quercetin in Apocynum venetum and Poacynum hendersonii, Chinese traditional herbal teas SO JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY LA English DT Article DE quercetin; Apocynum venetum; Poacynum hendersonii; total phenolics; Chinese herbal tea ID POTENTIALLY ANTICARCINOGENIC FLAVONOIDS; VEGETABLES; GROWTH AB Quercetin is of particular importance as it has been found to have functions of suppressing tumors, reducing blood pressure, and scavenging free radicals. It is one of the major flavonoids in Apocynum, venetum and Poacynum hendersonii, whose leaves have long been used as traditional herbal teas in China and Japan. Both species are also cultivated as fiber plants because of their outstanding quality of phloem fiber in stems. To obtain high output of both quercetin and fiber, it is necessary to optimize harvesting time for their leaves. Thus, understanding the developmental patterns of quercetin in leaves and fiber in stems is crucial to achieving this goal. In the present study, temporal and interspecific variations in quercetin in the leaves between A. venetum and P. hendersonii and spatial variation among P. hendersonii populations were studied by HPLC during the period from April to October in 1999. The results show that the content of quercetin in both species reached its highest level in summer and its lowest in autumn. The quercetin content in the leaves of P. hendersonii was generally higher than that of A. venetum no matter when their leaves were harvested. There was significant difference in quercetin content among three geographical populations of P. hendersonii, which might be the result of climatic difference-cooler climate might favor accumulation of quercetin in the leaves of P. hendersonii. Furthermore, the developmental patterns of total phenolics in the leaves of the two species were the same as that of the quercetin, that is, summer is an optimal harvesting season for both quercetin and other phenolics. The results obtained here suggest that P. herdersonii is a better material for herbal tea or pharmaceutical purposes, and that the best harvest time of its leaves should be summer. C1 Fudan Univ, Inst Biodivers Sci, Minist Educ, Key Lab Biodivers Sci & Ecol Engn, Shanghai 200433, Peoples R China. Shihezi Univ, Sch Bioengn, Shihezi 832003, Xinjiang, Peoples R China. Nanjing Univ, Sch Life Sci, Nanjing 210093, Jiangsu, Peoples R China. RP Li, B (corresponding author), Fudan Univ, Inst Biodivers Sci, Minist Educ, Key Lab Biodivers Sci & Ecol Engn, 220 Handan Rd, Shanghai 200433, Peoples R China. EM bool@fudan.edu.cn RI Li, Bo/B-8016-2010; Li, Bo/AAA-8968-2020 OI Li, Bo/0000-0002-0439-5666; Li, Bo/0000-0002-7294-6888 CR Cao YH, 2001, MIKROCHIM ACTA, V137, P57, DOI 10.1007/s006040170028 CHENG SY, 2000, RESOUR SCI, V22, P46 DONG ZJ, 1958, SPOCYNUM VENETUM POA, P43 DONG ZJ, 1978, UTILIZATION APOCYNUM, P7 Duarte J, 2001, MOL CELL BIOCHEM, V221, P155, DOI 10.1023/A:1010956928584 GUAN YM, 2000, CHINESE TRADITIONAL, V22, P368 HERTOG MGL, 1992, J AGR FOOD CHEM, V40, P1591, DOI 10.1021/jf00021a023 HERTOG MGL, 1992, J AGR FOOD CHEM, V40, P2379, DOI 10.1021/jf00024a011 Jeppsson N, 2000, AGR FOOD SCI FINLAND, V9, P17, DOI 10.23986/afsci.5652 Kim DW, 1998, PHYTOTHER RES, V12, P46, DOI 10.1002/(SICI)1099-1573(19980201)12:1<46::AID-PTR169>3.0.CO;2-I Kosola KR, 2001, OECOLOGIA, V129, P65, DOI 10.1007/s004420100694 Laitinen ML, 2000, J CHEM ECOL, V26, P1609, DOI 10.1023/A:1005582611863 LI XY, 1998, J SHIHEZI U, V12, P289 Movileanu L, 2000, INT J PHARMACEUT, V205, P135, DOI 10.1016/S0378-5173(00)00503-2 MURZAGAL UM, 1973, KHIM PRIRODNYK SOEDI, P431 Nurmi K, 1996, J CHEM ECOL, V22, P2023, DOI 10.1007/BF02040093 Ranelletti FO, 2000, INT J CANCER, V85, P438, DOI 10.1002/(SICI)1097-0215(20000201)85:3<438::AID-IJC22>3.0.CO;2-F VOGT T, 1994, PHYTOCHEMISTRY, V36, P591, DOI 10.1016/S0031-9422(00)89780-0 Wang SY, 2001, J AGR FOOD CHEM, V49, P4977, DOI 10.1021/jf0106244 Xiong QB, 2000, PLANTA MED, V66, P127, DOI 10.1055/s-2000-11135 YIN S, 1959, CULTIVATION UTILIZAT, P19 Zhang Ying, 2002, Chemistry and Industry of Forest Products, V22, P65 王俊德, 1999, 分析化学, V27, P1076 1979, DETECTIS FLORAE REIP, V63, P157 NR 24 TC 27 Z9 32 U1 0 U2 23 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0021-8561 EI 1520-5118 J9 J AGR FOOD CHEM JI J. Agric. Food Chem. PD APR 9 PY 2003 VL 51 IS 8 BP 2390 EP 2393 DI 10.1021/jf021055i PG 4 WC Agriculture, Multidisciplinary; Chemistry, Applied; Food Science & Technology SC Agriculture; Chemistry; Food Science & Technology GA 663ZJ UT WOS:000182037000045 PM 12670186 DA 2021-10-15 ER PT J AU Fan, WZ Tezuka, Y Xiong, QB Hattori, M Namba, T Kadota, S AF Fan, WZ Tezuka, Y Xiong, QB Hattori, M Namba, T Kadota, S TI Apocynins A-D: New phenylpropanoid-substituted flavan-3-ols isolated from leaves of Apocynum venetum (Luobuma-Ye) SO CHEMICAL & PHARMACEUTICAL BULLETIN LA English DT Article DE apocynin; Apocynum venetum; phenylpropanoid-substituted flavan-3-ol; Luobuma-Ye; hepatoprotective activity; Apocynaceae ID CINCHONAINS; TANNINS AB Four new phenylpropanoid-substituted flavan-3-ols called apocynins A-D (1-4) have been isolated from the leaves of Apocynum venetum (Apocynaceae), together with two known phenylpropanoid-substituted flavan-3-ols, catechin-[8,7-e]-4 alpha- (3,4-dihydroxyphenyl)-dihydro-2(3H)-pyraone (5) and cinchonain Ia (6), and four known flavan-3-ols, (-)-epicatechin, (+)-catechin, (-)-epigallocatechin, and (+)-gallocatechin. Their structures were elucidated on the basis of spectral analysis, including 2D NMR and CD spectra. They showed hepatoprotective activity against D-galactosamine (D-GaIN)/tumor necrosis factor-alpha (TNF-alpha)-induced cell death in primary cultured mouse hepatocytes. C1 Toyama Med & Pharmaceut Univ, Inst Nat Med, Toyama 9300194, Japan. RP Kadota, S (corresponding author), Toyama Med & Pharmaceut Univ, Inst Nat Med, 2630 Sugitani, Toyama 9300194, Japan. RI Tezuka, Yasuhiro/AAD-9606-2019 CR CHEN HF, 1993, PHYTOCHEMISTRY, V33, P183, DOI 10.1016/0031-9422(93)85419-R FOO LY, 1987, PHYTOCHEMISTRY, V26, P2825, DOI 10.1016/S0031-9422(00)83598-0 Kim D. W., 1998, Journal of Traditional Medicines, V15, P40 Kim DW, 1998, PHYTOTHER RES, V12, P46, DOI 10.1002/(SICI)1099-1573(19980201)12:1<46::AID-PTR169>3.0.CO;2-I KIM DW, 1996, J TRAD MED, V13, P306 LEIST M, 1994, J IMMUNOL, V153, P1778 NONAKA G, 1982, CHEM PHARM BULL, V30, P4268 Wei J M, 1988, J Tradit Chin Med, V8, P34 Yokozawa Takako, 1997, Natural Medicines, V51, P325 1995, PHARMACOPOEIA PEOPLE, V1, P182 NR 10 TC 27 Z9 32 U1 0 U2 14 PU PHARMACEUTICAL SOC JAPAN PI TOKYO PA 2-12-15 SHIBUYA, SHIBUYA-KU, TOKYO, 150-0002, JAPAN SN 0009-2363 J9 CHEM PHARM BULL JI Chem. Pharm. Bull. PD JUL PY 1999 VL 47 IS 7 BP 1049 EP 1050 PG 2 WC Chemistry, Medicinal; Chemistry, Multidisciplinary; Pharmacology & Pharmacy SC Pharmacology & Pharmacy; Chemistry GA 217TR UT WOS:000081515500030 OA Bronze DA 2021-10-15 ER PT J AU Lipow, SR Wyatt, R AF Lipow, SR Wyatt, R TI Floral morphology and late-acting self-incompatibility in Apocynum cannabinum (Apocynaceae) SO PLANT SYSTEMATICS AND EVOLUTION LA English DT Article DE Apocynaceae; Apocynum; Asclepiadaceae; Asclepias; floral morphology; fruit-set; hand-pollinations; pollen tubes; self-incompatibility ID REPRODUCTIVE-BIOLOGY; FRUIT-SET; ASCLEPIAS-EXALTATA; BREEDING SYSTEM; POLLINATION; MILKWEED; SYRIACA AB Scanning electron and fluorescence microscopy were used to clarify some aspects of the floral morphology of Apocynum cannbinum. Insects are required for pollination, since the floral morphology prevents autogamy and minimizes intrafloral self-pollination. Flowers hand-pollinated with self-pollen never set fruit, but 10.6% of cross pollinations produced fruit. Self-pollen did germinate,, however, and produced abundant tubes that grew through the pistil and entered the ovule micropyles. The proportion of ovules penetrated by self- and outcross-pollen tubes was not statistically significantly different. These results suggest that A. cannabium possesses late-acting self-incompatibility, similar to that in the closely related Asclepiadaceae. C1 Univ Georgia, Dept Bot, Athens, GA 30602 USA. Univ Georgia, Inst Ecol, Athens, GA 30602 USA. RP Lipow, SR (corresponding author), Oregon State Univ, Dept Forest Sci, Corvallis, OR 97331 USA. CR ALBERTS P, 1994, 94 AGR U WAG, P63 ANDERSON AH, 1983, CACTUS SUCCULENT J, V55, P252 BARRETT S C H, 1990, Memoirs of the New York Botanical Garden, V55, P35 Barrett SCH, 1996, TRENDS ECOL EVOL, V11, P73, DOI 10.1016/0169-5347(96)81046-9 BREWBAKER JL, 1967, AM J BOT, V54, P1069, DOI 10.2307/2440530 Brown R, 1811, MEM WERN NAT HIST SO, V1, P12 BROYLES SB, 1993, AM J BOT, V80, P41, DOI 10.2307/2445118 Darwin Erasmus, 1791, BOT GARDEN 2 de Nettancourt D., 1977, INCOMPATIBILITY ANGI DEMETER K, 1922, FLORA, V115, P130 DETOURNEFORT JP, 1983, I REI HERBARIAE, V2 ENDRESS P K, 1983, Nordic Journal of Botany, V3, P293, DOI 10.1111/j.1756-1051.1983.tb01941.x Endress P.K, 1994, DIVERSITY EVOLUTIONA Fallen M.E., 1986, BOT JB SYST, V106, P245 FREE JB, 1993, INSECT POLLINATION C Frye TC, 1905, BOT GAZ, V40, P0049, DOI 10.1086/328645 GIBBS PE, 1993, BOT ACTA, V106, P64, DOI 10.1111/j.1438-8677.1993.tb00339.x HERRERA J, 1991, BOT J LINN SOC, V106, P147, DOI 10.1111/j.1095-8339.1991.tb02289.x Johnson Samuel A., 1996, American Journal of Botany, V83, P164 JUDD WS, 1994, HARVARD PAP BOT, V5, P3 KAHN AP, 1991, AM MIDL NAT, V126, P61, DOI 10.2307/2426149 KARALE AR, 1991, J MAHARASHTRA AGR U, V15, P109 KEPHART SR, 1981, AM J BOT, V68, P226, DOI 10.2307/2442854 KLEKOWKI EJ, 1988, MUTATION DEV SELECTI KUNZE H, 1991, PLANT SYST EVOL, V176, P227, DOI 10.1007/BF00937909 Kunze Henning, 1996, Botanische Jahrbuecher fuer Systematik Pflanzengeschichte und Pflanzengeographie, V118, P547 Lamarck J.-B. P. A., 1783, ENCY METHODIQUE BOT, V1 Liede Sigrid, 1996, P221 Linnaeus C., 1753, SPECIES PLANTARUM Lipow SR, 1998, J TORREY BOT SOC, V125, P183, DOI 10.2307/2997216 LIPOW SR, 1999, IN PRESS GENETICS MARTIN FW, 1959, STAIN TECHNOL, V34, P125, DOI 10.3109/10520295909114663 NILSSON S, 1993, GRANA S, V2, P3 PADRUTT J, 1992, J AM SOC HORTIC SCI, V117, P656, DOI 10.21273/JASHS.117.4.656 QUELLER DC, 1985, OIKOS, V44, P373, DOI 10.2307/3565777 REDDI C, 1979, BR CURR SCI, V48, P746 ROBERTSON C, 1891, BOT GAZ, V16, P70 ROSATTI TJ, 1989, J ARNOLD ARBORETUM, V70, P307, DOI 10.5962/bhl.part.19789 Sage T. L., 1994, Genetic control of self-incompatibility and reproductive development in flowering plants., P116 Sage T. L., 1991, Plant Cell Incompatibility Newsletter, P55 SCHICK B, 1982, FLORA, V172, P347 SCHICK B, 1980, FLORA, V170, P394 SCHLEIDEN MJ, 1949, PRINCIPLES SCI BOT SEAVEY SR, 1986, BOT REV, V52, P195, DOI 10.1007/BF02861001 SPARROW F. K., 1948, JOUR AGRIC RES, V77, P187 STRUWE L, 1994, CLADISTICS, V10, P175, DOI 10.1006/clad.1994.1011 VOGT T, 1994, PLANT CELL, V6, P11, DOI 10.1105/tpc.6.1.11 WADDINGTON K D, 1976, Southwestern Naturalist, V21, P31, DOI 10.2307/3670321 WASER NM, 1991, AM J BOT, V78, P1036, DOI 10.2307/2444892 WOLTERING EJ, 1995, PLANT PHYSIOL, V109, P1219, DOI 10.1104/pp.109.4.1219 WOODSON RE, 1930, ANN MO BOT GARD, V17, P1, DOI DOI 10.2307/2394074 WYATT R, 1994, ANNU REV ECOL SYST, V25, P423 WYATT R, 1976, AM J BOT, V63, P845, DOI 10.2307/2442044 WYATT R, 1982, AM J BOT, V69, P585, DOI 10.1002/j.1537-2197.1982.tb13295.x WYATT R, 1981, NEW PHYTOL, V88, P375, DOI 10.1111/j.1469-8137.1981.tb01732.x Wyatt R, 1996, B TORREY BOT CLUB, V123, P180, DOI 10.2307/2996792 NR 56 TC 26 Z9 32 U1 1 U2 20 PU SPRINGER-VERLAG WIEN PI VIENNA PA SACHSENPLATZ 4-6, PO BOX 89, A-1201 VIENNA, AUSTRIA SN 0378-2697 J9 PLANT SYST EVOL JI Plant Syst. Evol. PY 1999 VL 219 IS 1-2 BP 99 EP 109 DI 10.1007/BF01090302 PG 11 WC Plant Sciences; Evolutionary Biology SC Plant Sciences; Evolutionary Biology GA 272XG UT WOS:000084675800007 DA 2021-10-15 ER PT J AU Wen, SY Chen, YY Lu, YF Wang, YF Ding, LQ Jiang, MM AF Wen, Shiyuan Chen, Yanyan Lu, Yunfang Wang, Yuefei Ding, Liqin Jiang, Miaomiao TI Cardenolides from the Apocynaceae family and their anticancer activity SO FITOTERAPIA LA English DT Review DE Cardenolides; Apocynaceae; Anticancer; Structures ID FACTOR-KAPPA-B; OLEANDRIN SUPPRESSES ACTIVATION; CARDIAC-GLYCOSIDES; NERIUM-OLEANDER; NA+/K+-ATPASE; DIE GLYKOSIDE; SODIUM-PUMP; CELL-DEATH; ROOT BARK; CANCER AB Cardenolides, as a group of natural products that can bind to Na+/K+-ATPase with an inhibiting activity, are traditionally used to treat congestive heart failure. Recent studies have demonstrated that the strong tumor cytotoxicities of cardenolides are mainly due to inducing the tumor cells apoptosis through different expression and cellular location of Na+/K+-ATPase alpha-subunits. The leaves, flesh, seeds and juices of numerous plants from the genera of Nerium, Thevetia, Cerbera, Apocynum and Strophanthus in Apocynaceae family, are the major sources of natural cardenolides. So far, 109 cardenolides have been isolated and identified from this family, and about a quarter of them are reported to exhibit the capability to regulate cancer cell survival and death through multiple signaling pathways. In this review, we compile the phytochemical characteristics and anticancer activity of the cardenolides from this family. (C) 2016 Elsevier B.V. All rights reserved. C1 [Wen, Shiyuan; Chen, Yanyan; Lu, Yunfang; Wang, Yuefei; Ding, Liqin; Jiang, Miaomiao] Tianjin Univ Tradit Chinese Med, Tianjin State Key Lab Modern Chinese Med, Tianjin 300193, Peoples R China. [Wen, Shiyuan; Chen, Yanyan; Lu, Yunfang] Int Joint Acad Biotechnol & Med, Ctr Res & Dev, TCM, Tianjin 300457, Peoples R China. RP Jiang, MM (corresponding author), Tianjin Univ Tradit Chinese Med, Tianjin State Key Lab Modern Chinese Med, Tianjin 300193, Peoples R China. EM miaomiaojiang@126.com FU Tianjin Science and Technology Research Programs of Application Foundation and Advanced Technology [14JCYBJC29000] FX This work was supported by grant from Tianjin Science and Technology Research Programs of Application Foundation and Advanced Technology (14JCYBJC29000). CR ABE F, 1978, CHEM PHARM BULL, V26, P3023 ABE F, 1992, PHYTOCHEMISTRY, V31, P2459, DOI 10.1016/0031-9422(92)83299-E Abe F, 1996, PHYTOCHEMISTRY, V42, P45, DOI 10.1016/0031-9422(95)00837-3 ABE F, 1994, PHYTOCHEMISTRY, V37, P1429, DOI 10.1016/S0031-9422(00)90426-6 AEBI A, 1950, HELV CHIM ACTA, V33, P1013, DOI 10.1002/hlca.19500330431 Babula P, 2013, ANTI-CANCER AGENT ME, V13, P1069, DOI 10.2174/18715206113139990304 Bai LM, 2010, CHEM PHARM BULL, V58, P1088, DOI 10.1248/cpb.58.1088 Bai L, 2009, HETEROCYCLES, V78, P2361, DOI 10.3987/COM-09-11740 BAUER P, 1985, PLANTA MED, V51, P202, DOI 10.1055/s-2007-969456 Benfante R, 2005, BIOCHEM J, V386, P63, DOI 10.1042/BJ20041294 BHATIA ML, 1970, BMJ-BRIT MED J, V3, P740, DOI 10.1136/bmj.3.5725.740 Blanco G, 2005, SEMIN NEPHROL, V25, P292, DOI 10.1016/j.semnephrol.2005.03.004 Blanco G, 1999, BIOCHEMISTRY-US, V38, P13661, DOI 10.1021/bi991207b BLOOMFIELD RA, 1948, J CLIN INVEST, V27, P588, DOI 10.1172/JCI102004 CABRERA GM, 1993, PHYTOCHEMISTRY, V32, P1253, DOI 10.1016/S0031-9422(00)95101-X Calderon-Montano JM, 2014, ONCOGENE, V33, P2947, DOI 10.1038/onc.2013.229 Cheenpracha S, 2004, CHEM PHARM BULL, V52, P1023, DOI 10.1248/cpb.52.1023 Chen JQ, 2006, BREAST CANCER RES TR, V96, P1, DOI 10.1007/s10549-005-9053-3 CHEN RF, 1987, PHYTOCHEMISTRY, V26, P2351, DOI 10.1016/S0031-9422(00)84717-2 [程纹 Cheng Wen], 2014, [天然产物研究与开发, Natural Product Research and Development], V26, P218 ClinicalTrials.gov, CAP DIG MET BREAST C ClinicalTrials.gov, 2 LIN ERL TARC PLUS DEGRAFF AC, 1950, MED CLIN N AM, P663, DOI 10.1016/S0025-7125(16)35415-3 Dewick P M, 2002, MED NATURAL PRODUCTS Dong W.H., PLANTA MED, V77 Feng B, 2012, EXP TOXICOL PATHOL, V64, P403, DOI 10.1016/j.etp.2010.10.005 FREREJACQUE M, 1947, CR HEBD ACAD SCI, V225, P695 HANADA R, 1992, PHYTOCHEMISTRY, V31, P3183, DOI 10.1016/0031-9422(92)83471-A HELFENBERGER H, 1948, HELV CHIM ACTA, V31, P1470, DOI 10.1002/hlca.19480310605 Henary HA, 2011, J CLIN ONCOL, V29, DOI 10.1200/jco.2011.29.15_suppl.3023 Huq MM, 1999, FITOTERAPIA, V70, P5, DOI 10.1016/S0367-326X(98)00013-6 Huq MM, 1999, J NAT PROD, V62, P1065, DOI 10.1021/np990031b JAGER H, 1959, HELV CHIM ACTA, V42, P977, DOI 10.1002/hlca.19590420339 Janiak P.S., 1963, HELV CHIM ACTA, V46, P374 JOLAD SD, 1981, J ORG CHEM, V46, P1946, DOI 10.1021/jo00322a050 Kareru PG, 2010, AFR J TRADIT COMPLEM, V7, P214 Karkare S, 2007, J NAT PROD, V70, P1766, DOI 10.1021/np070336n KAWAGUCHI K, 1993, PHYTOCHEMISTRY, V34, P1317, DOI 10.1016/0031-9422(91)80023-T Kohls S, 2012, PHYTOCHEMISTRY, V75, P114, DOI 10.1016/j.phytochem.2011.11.019 Kubo S, 2015, NAT PROD COMMUN, V10, P27 Laphookhieo S, 2004, PHYTOCHEMISTRY, V65, P507, DOI 10.1016/j.phytochem.2003.10.019 Li XS, 2014, FITOTERAPIA, V97, P71, DOI 10.1016/j.fitote.2014.05.013 Li-Saw-Hee FL, 1998, QJM-MON J ASSOC PHYS, V91, P259, DOI 10.1093/qjmed/91.4.259 Lin Jianqing, 2014, Am J Cancer Ther Pharmacol, V2, P21 LIN SCC, 1982, BRAIN RES, V235, P387, DOI 10.1016/0006-8993(82)91018-6 LINGREL JB, 1994, J BIOL CHEM, V269, P19659 Lopez-Ladzaro M, 2005, J NAT PROD, V68, P1642, DOI 10.1021/np050226l Manna SK, 2006, J CELL PHYSIOL, V207, P195, DOI 10.1002/jcp.20555 Manna SK, 2000, CANCER RES, V60, P3838 McConkey DJ, 2000, CANCER RES, V60, P3807 Mekhail T, 2006, INVEST NEW DRUG, V24, P423, DOI 10.1007/s10637-006-7772-x Mijatovic T, 2007, J PATHOL, V212, P170, DOI 10.1002/path.2172 Mijatovic T, 2006, MOL CANCER THER, V5, P391, DOI 10.1158/1535-7163.MCT-05-0367 Mijatovic T, 2013, PLANTA MED, V79, P189, DOI 10.1055/s-0032-1328243 Miyatake K, 1959, CHEM PHARM BULL, V9, P634 Newman RA, 2008, MOL INTERV, V8, P36, DOI 10.1124/mi.8.1.8 Newman RA, 2007, INTEGR CANCER THER, V6, P354, DOI 10.1177/1534735407309623 Newman RA, 2006, J EXP THER ONCOL, V5, P167 Numazawa S, 1995, LEUKEMIA RES, V19, P945, DOI 10.1016/0145-2126(95)00081-X Osorio AA, 2014, PHYTOCHEMISTRY, V105, P60, DOI 10.1016/j.phytochem.2014.06.009 Pan Y, 2015, INVEST NEW DRUG, V33, P271, DOI 10.1007/s10637-014-0190-6 PAPER D, 1989, PLANTA MED, P30, DOI 10.1055/s-2006-961770 Pathak S, 2000, ANTI-CANCER DRUG, V11, P455, DOI 10.1097/00001813-200007000-00006 Prassas I, 2008, NAT REV DRUG DISCOV, V7, P926, DOI 10.1038/nrd2682 Raghavendra PB, 2007, MOL IMMUNOL, V44, P2292, DOI 10.1016/j.molimm.2006.11.009 Raghavendra PB, 2007, APOPTOSIS, V12, P307, DOI 10.1007/s10495-006-0626-3 Rao E. V., 1973, Indian Journal of Pharmacy, V35, P107 Rashan LJ, 2011, J ETHNOPHARMACOL, V134, P781, DOI 10.1016/j.jep.2011.01.038 ROSE AM, 1994, CLIN CHEM, V40, P1674 Schoner W, 2007, AM J PHYSIOL-CELL PH, V293, pC509, DOI 10.1152/ajpcell.00098.2007 Siddiqui BS, 1997, J NAT PROD, V60, P540, DOI 10.1021/np960679d SIDDIQUI S, 1987, PHYTOCHEMISTRY, V26, P237 Smith J.A., BIOCH PHARM, V62 Sreenivasan Y, 2003, BIOCHEM PHARMACOL, V66, P2223, DOI 10.1016/j.bcp.2003.07.010 Strese S, 2013, BMC CANCER, V13, DOI 10.1186/1471-2407-13-331 Svensson A, 2005, ANTICANCER RES, V25, P207 Tian DM, 2016, J NAT PROD, V79, P38, DOI 10.1021/acs.jnatprod.5b00611 TORI K, 1973, TETRAHEDRON LETT, P1077 Verheye-Dua FA, 2000, STRAHLENTHER ONKOL, V176, P186, DOI 10.1007/s000660050055 VOIGTLANDER HW, 1969, ARCHIV PHARM BERICHT, V302, P538, DOI 10.1002/ardp.19693020709 Wang GF, 2010, ENVIRON TOXICOL PHAR, V30, P31, DOI 10.1016/j.etap.2010.03.012 Wei D, 2013, INT J MOL SCI, V14, P7273, DOI 10.3390/ijms14047273 Wen P., 2013, J MED PHARM CHIN MIN, V4, P45 WILSON WE, 1970, MOL PHARMACOL, V6, P449 Wu L.J., 2012, NATURAL PHARM CHEM Xie Zijian, 2003, Mol Interv, V3, P157, DOI 10.1124/mi.3.3.157 YAMAUCHI T, 1978, TETRAHEDRON LETT, P1825, DOI 10.1016/S0040-4039(01)94681-7 YAMAUCHI T, 1976, PHYTOCHEMISTRY, V15, P1275, DOI 10.1016/0031-9422(76)85093-5 YAMAUCHI T, 1975, PHYTOCHEMISTRY, V14, P1379, DOI 10.1016/S0031-9422(00)98630-8 YAMAUCHI T, 1973, PHYTOCHEMISTRY, V12, P2737, DOI 10.1016/0031-9422(73)85091-5 Yang PY, 2014, MOL CARCINOGEN, V53, P253, DOI 10.1002/mc.21968 Ye C, 2015, STEROIDS, V93, P39, DOI 10.1016/j.steroids.2014.10.005 Ye QQ, 2013, J BIOL CHEM, V288, P5803, DOI 10.1074/jbc.M112.442608 Yeh J.Y., J UROL, V166 You HY, 2013, STEROIDS, V78, P1029, DOI 10.1016/j.steroids.2013.06.002 ZHANG LS, 1992, CANCER RES, V52, P4634 Zhang XJ, 2015, MOLECULES, V20, P5714, DOI 10.3390/molecules20045714 Zhao M, 2007, J NAT PROD, V70, P1098, DOI 10.1021/np068066g Zhao M, 2011, CHEM PHARM BULL, V59, P371, DOI 10.1248/cpb.59.371 Zhao XY, 2015, J NANOMATER, V2015, DOI 10.1155/2015/104193 NR 100 TC 25 Z9 26 U1 0 U2 36 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0367-326X EI 1873-6971 J9 FITOTERAPIA JI Fitoterapia PD JUL PY 2016 VL 112 BP 74 EP 84 DI 10.1016/j.fitote.2016.04.023 PG 11 WC Chemistry, Medicinal; Pharmacology & Pharmacy SC Pharmacology & Pharmacy GA DS6AZ UT WOS:000380865400010 PM 27167183 DA 2021-10-15 ER PT J AU Xiao, J Chen, G Li, N AF Xiao, Jiao Chen, Gang Li, Ning TI Ionic Liquid Solutions as a Green Tool for the Extraction and Isolation of Natural Products SO MOLECULES LA English DT Review DE ionic liquids; bioactive natural products; herbals; extraction and isolation; flavonoids; alkaloids; terpenoids; phenylpropanoids ID MICROWAVE-ASSISTED EXTRACTION; SOLID-PHASE EXTRACTION; AQUEOUS 2-PHASE SYSTEM; FLAVONOID GLYCOSIDES; MACROPOROUS RESIN; ALOE POLYSACCHARIDES; BIOACTIVE COMPOUNDS; SAMPLE PREPARATION; APOCYNUM-VENETUM; RADIX-PUERARIAE AB In the past few years, the application of ionic liquids (ILs) had attracted more attention of the researchers. Many studies focused on extracting active components from traditional herbals using ILs as alternative solvents so as to address the issue caused by the traditional methods for extraction of natural products (NPs) with organic chemical reagents. Through the summary of reported research work, an overview was presented for the application of ILs or IL-based materials in the extraction of NPs, including flavonoids, alkaloids, terpenoids, phenylpropanoids and so on. Here, we mainly describe the application of ILs to rich the extraction of critical bioactive constituents that were reported possessing multiple therapeutic effects or pharmacological activities, from medicinal plants. This review could shed some light on the wide use of ILs in the field of natural products chemistry to further reduce the environmental damage caused by large quantity of organic chemical reagents. C1 [Xiao, Jiao; Chen, Gang; Li, Ning] Shenyang Pharmaceut Univ, Sch Tradit Chinese Mat Med, Wenhua Rd 103, Shenyang 110016, Liaoning, Peoples R China. RP Li, N (corresponding author), Shenyang Pharmaceut Univ, Sch Tradit Chinese Mat Med, Wenhua Rd 103, Shenyang 110016, Liaoning, Peoples R China. EM xj110121@126.com; chengang1152001@163.com; liningsypharm@163.com OI Li, Ning/0000-0002-6518-2541 FU National Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC) [81473108, 81673323] FX The work was supported partially by National Natural Science Foundation of China (Grant No. 81473108, 81673323). CR Abe M, 2010, GREEN CHEM, V12, P1274, DOI 10.1039/c003976d Bi W, 2013, J LIQ CHROMATOGR R T, V36, P2029, DOI 10.1080/10826076.2012.706860 Bi WT, 2013, ANAL LETT, V46, P416, DOI 10.1080/00032719.2012.721106 Bi WT, 2013, J CHROMATOGR B, V913, P61, DOI 10.1016/j.jchromb.2012.11.018 Bi W, 2012, J CHROMATOGR B, V880, P108, DOI 10.1016/j.jchromb.2011.11.025 Bogdanov MG, 2015, SEP PURIF TECHNOL, V155, P13, DOI 10.1016/j.seppur.2015.02.003 Bucar F, 2013, NAT PROD REP, V30, P525, DOI 10.1039/c3np20106f Cao XJ, 2012, RAPID COMMUN MASS SP, V26, P740, DOI 10.1002/rcm.6158 Cao YH, 2001, MIKROCHIM ACTA, V137, P57, DOI 10.1007/s006040170028 Cao YF, 2012, J AGR FOOD CHEM, V60, P3432, DOI 10.1021/jf3003009 Chang CW, 2017, BIOMED CHROMATOGR, V31, DOI 10.1002/bmc.3925 Chang XL, 2011, J TAIWAN INST CHEM E, V42, P13, DOI 10.1016/j.jtice.2010.04.008 Chang XL, 2006, J FOOD ENG, V75, P245, DOI 10.1016/j.jfoodeng.2005.04.026 Chen FL, 2017, SEP PURIF TECHNOL, V183, P73, DOI 10.1016/j.seppur.2017.03.069 Chen FL, 2014, MOLECULES, V19, P9689, DOI 10.3390/molecules19079689 Chen XF, 2013, SEP SCI TECHNOL, V48, P2890, DOI 10.1080/01496395.2013.804558 Chen Y.Y., 2011, FOOD SCI TECHNOL, V11, P214 Chi YS, 2011, GREEN CHEM, V13, P666, DOI 10.1039/c0gc00864h Chu F.B., 2015, J ANHUI AGR SCI, V43, P84 Curko N, 2017, FOOD TECHNOL BIOTECH, V55, P429, DOI [10.17113/ftb.55.03.17.5200, 10.17113/ft b.55.03.17.5200] Sa RDDE, 2014, MOLECULES, V19, P1459, DOI 10.3390/molecules19021459 Dai YT, 2013, J NAT PROD, V76, P2162, DOI 10.1021/np400051w de Faria Emanuelle L P, 2018, Biophys Rev, V10, P915, DOI 10.1007/s12551-017-0387-y de Faria ELP, 2017, ACS SUSTAIN CHEM ENG, V5, P7344, DOI 10.1021/acssuschemeng.7b01616 Dias DA, 2012, METABOLITES, V2, DOI 10.3390/metabo2020303 Dong B, 2018, RSC ADV, V8, P262, DOI 10.1039/c7ra12687e Dong W, 2016, J CHROMATOGR B, V1008, P45, DOI 10.1016/j.jchromb.2015.11.022 Du F.Y., 2013, SCI TECH FOOD IND, V33, P222 Du KZ, 2018, FOOD CHEM, V244, P190, DOI 10.1016/j.foodchem.2017.10.057 Duan MH, 2013, SEP PURIF TECHNOL, V107, P26, DOI 10.1016/j.seppur.2013.01.003 Fang W., 1995, J CHIN PHARM SCI, V4, P47 Fang YT, 2017, J CHROMATOGR A, V1507, P63, DOI 10.1016/j.chroma.2017.05.048 Farid C., 2014, ALTERNATIVE SOLVENTS, P127 Feng XT, 2017, J MOL LIQ, V241, P27, DOI 10.1016/j.molliq.2017.06.012 Fukaya Y, 2016, B CHEM SOC JPN, V89, P879, DOI 10.1246/bcsj.20160073 Ge YR, 2012, CHINESE J ANAL CHEM, V40, P317, DOI 10.3724/SP.J.1096.2012.10828 Glowniak K, 1996, J PHARMACEUT BIOMED, V14, P1215, DOI 10.1016/S0731-7085(96)01728-1 Gong Y.J., 2014, CHEM BIOENG, V33, P27 Gu HY, 2016, J CHROMATOGR B, V1014, P45, DOI 10.1016/j.jchromb.2016.01.045 Guan LY, 2018, J SEP SCI, V41, P868, DOI 10.1002/jssc.201700970 Han D, 2011, J SCI FOOD AGR, V91, P2888, DOI 10.1002/jsfa.4553 Harde SM, 2014, IND CROP PROD, V61, P258, DOI 10.1016/j.indcrop.2014.07.016 Harvey AL, 2015, NAT REV DRUG DISCOV, V14, P111, DOI 10.1038/nrd4510 Helen P., 2014, GREEN CHEM, V16, P4786 Irfan M, 2017, J MOL LIQ, V241, P270, DOI 10.1016/j.molliq.2017.05.151 Jia Y. F., 2010, J JINGGANGSHAN U, V31, P112, DOI DOI 10.3969/J.ISSN.1674-8085.2010.05.026 John JE, 2009, CURR SCI INDIA, V96, P753 Ketchum REB, 1999, J LIQ CHROMATOGR R T, V22, P1715, DOI 10.1081/JLC-100101762 Kiyama R, 2017, EUR J PHARMACOL, V815, P405, DOI 10.1016/j.ejphar.2017.09.049 KOPYCKI WJ, 1994, J LIQ CHROMATOGR, V17, P2569, DOI 10.1080/10826079408013398 Kou XR, 2018, FOOD CHEM, V257, P223, DOI 10.1016/j.foodchem.2018.02.125 Kumar S., 2011, P INT C SUST MAN 10 Larsson J, 2007, J NAT PROD, V70, P789, DOI 10.1021/np070002y Lei Y.N., 2017, J SHAANXI AGR SCI, V63, P46 Li D, 2017, MOLECULES, V22, DOI 10.3390/molecules22040586 Li G, 2017, MOLECULES, V22, DOI 10.3390/molecules22071061 Li H.M., 2003, ACTA PALAEONTOL SIN, V42, P543 Li H.M., 2012, ULTRASON SONOCHEM, V20, P680 Li LH, 2012, CHROMATOGRAPHIA, V75, P131, DOI 10.1007/s10337-011-2177-1 Li LQ, 2017, J PHARMACEUT BIOMED, V135, P61, DOI 10.1016/j.jpba.2016.12.016 Li N, 2015, J FUNCT FOODS, V19, P563, DOI 10.1016/j.jff.2015.09.045 Li Q., 2011, J WUHAN I TECHNOL, V33, P31 Li Q, 2017, PROCESS BIOCHEM, V58, P282, DOI 10.1016/j.procbio.2017.04.030 Li SL, 2017, J SEP SCI, V40, P2565, DOI 10.1002/jssc.201700258 Li XY, 2015, FOOD BIOPROD PROCESS, V94, P547, DOI 10.1016/j.fbp.2014.08.001 Li Y.P., 2015, J SHAANXI AGR SCI, V43, P751 Lima AS, 2017, FLUID PHASE EQUILIBR, V451, P68, DOI 10.1016/j.fluid.2017.08.006 Lin X, 2012, ANALYST, V137, P4076, DOI 10.1039/c2an35476d Liu C.J., 2010, J ANHUI AGR SCI, V38, P4058 Liu F, 2013, SEP PURIF TECHNOL, V110, P86, DOI 10.1016/j.seppur.2013.03.012 Liu JL, 2014, MOLECULES, V19, P1887, DOI 10.3390/molecules19021887 Liu RM, 2010, J SEP SCI, V33, P1058, DOI 10.1002/jssc.200900612 Liu XJ, 2013, ANAL METHODS-UK, V5, P2591, DOI 10.1039/c3ay40202a Liu ZZ, 2015, J CHROMATOGR A, V1417, P8, DOI 10.1016/j.chroma.2015.09.037 Long LH, 2010, ACTA PHARMACOL SIN, V31, P1508, DOI 10.1038/aps.2010.122 Lu CX, 2011, CHROMATOGRAPHIA, V74, P139, DOI 10.1007/s10337-011-2023-5 Ma CY, 2013, J CHROMATOGR A, V1306, P12, DOI 10.1016/j.chroma.2013.07.052 Ma CH, 2015, J CHROMATOGR B, V976, P1, DOI 10.1016/j.jchromb.2014.11.003 Ma M, 2003, J AGR FOOD CHEM, V51, P2390, DOI 10.1021/jf021055i Ma SF, 2014, J SEP SCI, V37, P2314, DOI 10.1002/jssc.201400305 Ma W, 2017, SEP SCI TECHNOL, V52, P2547, DOI 10.1080/01496395.2017.1340952 Ma W, 2017, B KOREAN CHEM SOC, V38, P1183, DOI 10.1002/bkcs.11245 Ma W, 2017, J LIQ CHROMATOGR R T, V40, P459, DOI 10.1080/10826076.2017.1322522 Magiera S, 2017, J FOOD COMPOS ANAL, V57, P94, DOI 10.1016/j.jfca.2016.12.016 Maltese F, 2009, NAT PROD COMMUN, V4, P447 Michalczyk A, 2015, J CHIL CHEM SOC, V60, P2698, DOI 10.4067/S0717-97072015000400013 Miller LH, 2011, CELL, V146, P855, DOI 10.1016/j.cell.2011.08.024 Mocan A, 2018, FOOD CHEM TOXICOL, V112, P441, DOI 10.1016/j.fct.2017.08.009 Morais TR, 2017, J BRAZIL CHEM SOC, V28, P492, DOI 10.21577/0103-5053.20160215 Munakata K, 2017, AUST J CHEM, V70, P699, DOI 10.1071/CH16460 Murata C., 2017, ASIAN J CHEM, V29, P309, DOI DOI 10.14233/AJCHEM.2017.20175 Murata C, 2016, TETRAHEDRON LETT, V57, P5368, DOI 10.1016/j.tetlet.2016.10.072 Newman DJ, 2016, J NAT PROD, V79, P629, DOI 10.1021/acs.jnatprod.5b01055 Nie LR, 2015, SEP PURIF TECHNOL, V155, P2, DOI 10.1016/j.seppur.2015.01.037 Odendaal AY, 2011, CHEM SCI, V2, P760, DOI 10.1039/C0SC00620C Onda S, 2015, CHEM LETT, V44, P1461, DOI 10.1246/cl.150652 RAFFAUF RF, 1996, ALKALOIDS GUIDE THEI Rajabi M.S., 2015, AM J CHEM, V5, P7 Ribeiro BD, 2013, EUR FOOD RES TECHNOL, V237, P965, DOI 10.1007/s00217-013-2068-9 Seddon KR, 1997, J CHEM TECHNOL BIOT, V68, P351, DOI 10.1002/(SICI)1097-4660(199704)68:4<351::AID-JCTB613>3.0.CO;2-4 Sha K., 2010, FOOD SCI TECHNOL, V35, P244 Simon P., 2018, PHARMTECH, V13 Svinyarov I, 2016, SEP SCI TECHNOL, V51, P2691, DOI 10.1080/01496395.2016.1171783 Talebi M, 2004, J SEP SCI, V27, P1130, DOI 10.1002/jssc.200401754 Tan ZJ, 2012, DESALINATION, V286, P389, DOI 10.1016/j.desal.2011.11.053 Tan ZJ, 2016, MOLECULES, V21, DOI 10.3390/molecules21030262 Tan ZJ, 2012, SEP PURIF TECHNOL, V98, P150, DOI 10.1016/j.seppur.2012.06.021 Tang B, 2013, J CHROMATOGR B, V933, P8, DOI 10.1016/j.jchromb.2013.06.023 Tang B, 2012, J CHROMATOGR B, V904, P1, DOI 10.1016/j.jchromb.2012.07.020 Tian ML, 2013, ANAL LETT, V46, P1331, DOI 10.1080/00032719.2012.763170 Tian M, 2011, CHROMATOGRAPHIA, V73, P25, DOI 10.1007/s10337-010-1836-y Tu YY, 2011, NAT MED, V17, P1217, DOI 10.1038/nm.2471 Tucker M., 2017, J AM CHEM SOC, V46, P138 Usov AI, 2001, RUSS J BIOORG CHEM+, V27, P395, DOI 10.1023/A:1012992820204 Usuki T, 2017, B CHEM SOC JPN, V90, P1105, DOI 10.1246/bcsj.20170202 Wang HK, 2017, MOLECULES, V22, DOI 10.3390/molecules22122175 Wang R, 2014, J LIQ CHROMATOGR R T, V37, P2275, DOI 10.1080/10826076.2013.830269 Wang RP, 2016, SEP SCI TECHNOL, V51, P1093, DOI 10.1080/01496395.2016.1143006 Wang T, 2018, J CLEAN PROD, V172, P827, DOI 10.1016/j.jclepro.2017.10.185 Wang WC, 2015, ULTRASON SONOCHEM, V24, P13, DOI 10.1016/j.ultsonch.2014.10.009 Wang X.L., 2001, CHIN TRAD HERB DRUGS, V32, P703 Wang XZ, 2016, ANAL METHODS-UK, V8, P6566, DOI 10.1039/c6ay01139j Wang Y., 2016, CHEM IND ENG PROCESS, V35, P328 [王阳光 WANG Yangguang], 2011, [高校化学工程学报, Journal of Chemical Engineering of Chinese Universities], V25, P411 Wang Z.Y., 2018, CHIN TRAD PATENT MED, V40, P213 Wei W, 2012, J SEP SCI, V35, P2875, DOI 10.1002/jssc.201200473 Wolfender JL, 2009, PLANTA MED, V75, P719, DOI 10.1055/s-0028-1088393 Wu N, 2018, J SEP SCI, V41, P571, DOI 10.1002/jssc.201700851 Wu WN, 2011, BRIT J PHARMACOL, V164, P1445, DOI 10.1111/j.1476-5381.2011.01487.x Xiang X.S., 2013, CTR S PHARM, V4, P271 Xiao W, 2015, ANAL METHODS-UK, V7, P1098, DOI [10.1039/c4ay02374a, 10.1039/C4AY02374A] Xing JM, 2009, APPL BIOCHEM BIOTECH, V158, P11, DOI 10.1007/s12010-009-8641-9 Xiong H.T., 2015, MODERN CHEM RES, V5, P21 Xu C, 2017, CHROMATOGRAPHIA, V80, P335, DOI 10.1007/s10337-016-3230-x Xu D.P., 2013, GUIDE CHINA MED, V11, P30 Xu JJ, 2016, FOOD CHEM, V204, P167, DOI 10.1016/j.foodchem.2016.02.012 Xu W, 2012, MOLECULES, V17, P14323, DOI 10.3390/molecules171214323 Yan W, 2013, PHARMACOGN MAG, V9, P250, DOI 10.4103/0973-1296.113282 Yan Yun, 2012, Journal of Southeast University (Natural Science Edition), V42, P516, DOI 10.3969/j.issn.1001-0505.2012.03.024 Yang L, 2011, CHEM ENG J, V175, P539, DOI 10.1016/j.cej.2011.09.110 Yang L, 2011, CHEM ENG J, V172, P705, DOI 10.1016/j.cej.2011.06.039 Yang M.M., 2011, CHIN EXP TRAD MED FO, V17, P45 Yang QL, 2004, J PHOTOCH PHOTOBIO A, V165, P229, DOI 10.1016/j.jphotochem.2004.03.022 Yang Y., 2002, HDB COMPOSITIONS CRU, P140 Yao HH, 2012, INT J MOL SCI, V13, P8775, DOI 10.3390/ijms13078775 Yi B., 2011, ELECTROPHORESIS, V32, P1515 Yuan Y, 2011, ANALYST, V136, P2294, DOI 10.1039/c0an00864h Zeng HA, 2010, TALANTA, V83, P582, DOI 10.1016/j.talanta.2010.10.006 Zha D.C., 2007, MAT MED RES, V17, P110 [张爱丽 ZHANG Aili], 2011, [中国药房, China Pharmacy], V22, P2534 Zhang H, 2014, J CARBOHYD CHEM, V33, P225, DOI 10.1080/07328303.2014.913059 Zhang HF, 2010, TALANTA, V82, P1010, DOI 10.1016/j.talanta.2010.06.008 Zhang HG, 2007, BIOMED CHROMATOGR, V21, P1083, DOI 10.1002/bmc.859 Zhang L., 2017, GUANGDONG CHEM IND, V44, P73 Zhang L.Y., 2017, J CHIN MED MAT, V1, P152 Zhang LS, 2013, J PHARMACEUT BIOMED, V86, P36, DOI 10.1016/j.jpba.2013.07.007 Zhang LJ, 2010, J SEP SCI, V33, P2035, DOI 10.1002/jssc.201000076 Zhang Q, 2015, J CHROMATOGR B, V1002, P411, DOI 10.1016/j.jchromb.2015.08.021 [张喜峰 Zhang Xifeng], 2015, [食品科学, Food Science], V36, P50 Zhang Y.F., 2010, MAT MED REV, V8, P1975 Zhang YF, 2014, SEP PURIF TECHNOL, V129, P71, DOI 10.1016/j.seppur.2014.03.022 Zhang Z.Q., 1999, CHINESE J BIOCH PHAR, V20, P58 Zhang ZS, 2010, CARBOHYD POLYM, V82, P118, DOI 10.1016/j.carbpol.2010.04.031 Zhao C., 2014, SCI WORLD J, V2014, P1, DOI DOI 10.1155/2014/349341 Zhou Y, 2015, MOLECULES, V20, P7683, DOI 10.3390/molecules20057683 Zhu K. M., 2011, CHIN J EXP TRADIT ME, V17, P198 Zhu S, 2013, CHROMATOGRAPHIA, V76, P195, DOI 10.1007/s10337-012-2382-6 NR 167 TC 24 Z9 25 U1 3 U2 49 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND SN 1420-3049 J9 MOLECULES JI Molecules PD JUL PY 2018 VL 23 IS 7 AR 1765 DI 10.3390/molecules23071765 PG 23 WC Biochemistry & Molecular Biology; Chemistry, Multidisciplinary SC Biochemistry & Molecular Biology; Chemistry GA GU5CE UT WOS:000445301800268 PM 30021998 OA Green Published, Green Submitted, gold DA 2021-10-15 ER PT J AU Zhou, J Sun, JB Xu, XY Cheng, ZH Zeng, P Wang, FQ Zhang, Q AF Zhou, Jun Sun, Jiang Bing Xu, Xin Yu Cheng, Zhao Hui Zeng, Ping Wang, Feng Qiao Zhang, Qiong TI Application of mixed cloud point extraction for the analysis of six flavonoids in Apocynum venetum leaf samples by high performance liquid chromatography SO JOURNAL OF PHARMACEUTICAL AND BIOMEDICAL ANALYSIS LA English DT Article DE Apocynum venetum; Flavonoids; Mixed cloud point extraction; Genapol X-080; CTAB ID ATOMIC-ABSORPTION-SPECTROMETRY; SOLID-PHASE MICROEXTRACTION; MICELLE-MEDIATED EXTRACTION; NATURAL-WATERS; PRECONCENTRATION; SURFACTANT; SEPARATION; RESIDUES; PLANTS AB A simple, inexpensive and efficient method based on the mixed cloud point extraction (MCPE) combined with high performance liquid chromatography was developed for the simultaneous separation and determination of six flavonoids (rutin, hyperoside, quercetin-3-O-sophoroside, isoquercitrin, astragalin and quercetin) in Apocynum venetum leaf samples. The non-ionic surfactant Genapol X-080 and cetyl-trimethyl ammonium bromide (CTAB) was chosen as the mixed extracting solvent. Parameters that affect the MCPE processes, such as the content of Genapol X-080 and CTAB, pH, salt content, extraction temperature and time were investigated and optimized. Under the optimized conditions, the calibration curve for six flavonoids were all linear with the correlation coefficients greater than 0.9994. The intra-day and inter-day precision (RSD) were below 8.1% and the limits of detection (LOD) for the six flavonoids were 1.2-5.0 ng mL(-1) (S/N = 3). The proposed method was successfully used to separate and determine the six flavonoids in A. venetum leaf samples. (C) 2015 Elsevier B.V. All rights reserved. C1 [Zhou, Jun; Cheng, Zhao Hui; Zeng, Ping; Zhang, Qiong] Urumqi Gen Hosp PLA, Dept Pharm, Urumqi 830000, Xinjiang, Peoples R China. [Sun, Jiang Bing] 23 Hosp PLA, Dept Clin Lab, Urumqi 830000, Xinjiang, Peoples R China. [Xu, Xin Yu] Urumqi Gen Hosp PLA, Dept Tradit Chinese Med, Urumqi 830000, Xinjiang, Peoples R China. [Wang, Feng Qiao] Fourth Mil Med Univ, Dept Chem, Xian 710032, Shanxi, Peoples R China. RP Zhang, Q (corresponding author), Urumqi Gen Hosp PLA, Dept Pharm, Urumqi 830000, Xinjiang, Peoples R China. EM sjbzj415@163.com FU National Natural Science Foundation of China (NSFC)National Natural Science Foundation of China (NSFC) [21102175] FX This work was financially supported by the National Natural Science Foundation of China (NSFC No. 21102175). CR Afkhami A, 2007, TALANTA, V71, P1103, DOI 10.1016/j.talanta.2006.06.004 Barnes BB, 2012, J CHROMATOGR A, V1226, P110, DOI 10.1016/j.chroma.2011.09.056 Carabias-Martinez R, 2000, J CHROMATOGR A, V902, P251, DOI 10.1016/S0021-9673(00)00837-2 Chen Long, 2005, Zhongguo Zhong Yao Za Zhi, V30, P1340 de Wuilloud JCA, 2003, ANALYST, V128, P453, DOI 10.1039/b300862m Froschl B, 1997, FRESEN J ANAL CHEM, V357, P743, DOI 10.1007/s002160050241 Hartmann G, 2013, ANAL CHIM ACTA, V761, P27, DOI 10.1016/j.aca.2012.11.050 Kolachi NF, 2011, FOOD CHEM TOXICOL, V49, P2548, DOI 10.1016/j.fct.2011.06.065 Kukusamude C, 2010, TALANTA, V81, P486, DOI 10.1016/j.talanta.2009.12.029 Lee MH, 2007, FOOD CHEM, V105, P223, DOI 10.1016/j.foodchem.2006.11.009 Liu B, 2006, J PHARMACEUT BIOMED, V41, P1056, DOI 10.1016/j.jpba.2006.01.034 Man BKW, 2002, ENVIRON SCI TECHNOL, V36, P3985, DOI 10.1021/es020620v Memon A.A., 2013, SEP PURIF TECHNOL, V110, P57 Paleologos EK, 2005, TRAC-TREND ANAL CHEM, V24, P426, DOI 10.1016/j.trac.2005.01.013 Romanik G, 2007, J BIOCHEM BIOPH METH, V70, P253, DOI 10.1016/j.jbbm.2006.09.012 Santalad A, 2009, ANAL BIOANAL CHEM, V394, P1307, DOI 10.1007/s00216-009-2663-6 Sun C, 2008, ANAL CHIM ACTA, V612, P160, DOI 10.1016/j.aca.2008.02.040 Sun H.W., 2006, CHEM J INT, V18, P40 Tian ML, 2009, J CHROMATOGR B, V877, P738, DOI 10.1016/j.jchromb.2009.02.012 Tigrine-Kordjani N, 2007, ANAL BIOANAL CHEM, V389, P631, DOI 10.1007/s00216-007-1441-6 Xie WY, 2012, J ETHNOPHARMACOL, V141, P1, DOI 10.1016/j.jep.2012.02.003 Yan YY, 2014, J CHROMATOGR A, V1368, P1, DOI 10.1016/j.chroma.2014.09.068 Yu HX, 2004, ANAL CHIM ACTA, V509, P63, DOI 10.1016/j.aca.2003.12.019 Zhang Qunlin, 2011, Zhongguo Zhong Yao Za Zhi, V36, P589 Zhou J, 2008, J CHROMATOGR A, V1200, P93, DOI 10.1016/j.chroma.2008.04.070 Zhu RH, 2014, ASIAN J CHEM, V26, P5058, DOI 10.14233/ajchem.2014.16318 NR 26 TC 24 Z9 30 U1 0 U2 58 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0731-7085 EI 1873-264X J9 J PHARMACEUT BIOMED JI J. Pharm. Biomed. Anal. PD MAR 25 PY 2015 VL 107 BP 273 EP 279 DI 10.1016/j.jpba.2015.01.003 PG 7 WC Chemistry, Analytical; Pharmacology & Pharmacy SC Chemistry; Pharmacology & Pharmacy GA CD5GV UT WOS:000351116900036 PM 25625477 DA 2021-10-15 ER PT J AU Feleafel, MN Mirdad, ZM AF Feleafel, M. N. Mirdad, Z. M. TI Hazard and Effects of Pollution by Lead on Vegetable Crops SO JOURNAL OF AGRICULTURAL & ENVIRONMENTAL ETHICS LA English DT Article DE Hazard of lead pollution; Vegetable; Lead uptake; Unsafe; Unethical agriculture practices; Remediation ID NITRATE REDUCTASE-ACTIVITY; HEAVY-METAL CONTAMINATION; PHASEOLUS-VULGARIS; WASTE-WATER; TRACE-ELEMENTS; ALLIUM-CEPA; NITROGEN-FIXATION; RADISH PLANTS; SOIL; GROWTH AB Lead (Pb) contamination of the environment is an important human health problem. Children are vulnerable to Pb toxicity; it causes damage to the central nervous system and, in some extreme cases, can cause death. Lead is widespread, especially in the urban environment, and is present in the atmosphere, soil, water and food. Pb tends to accumulate in surface soil because of its low solubility, mobility, and relative freedom from microbial degradation of this element in the soil. Lead is present in soil as a result to weathering and other pedogenic processes acting on the soil parent material; or from pollution arising caused by the anthropogenic activities; such as mining, smelting and waste disposal; or through the adoption of the unsafe and unethical agricultural practices such as using of sewage sludge, and waste water in production of vegetable crops or cultivation of vegetables near highways and industry regions. Lead concentrations are generally higher in the leafy vegetables than the other vegetables. Factors affecting lead uptake included its concentration in the soil, soil pH, soil type, organic matter content, plant species, and unsafe agriculture practices. Generally, as Pb concentration increased; dry matter yields of roots, stems and leaves as well as total yield decreased. The mechanism of growth inhibition by lead involve: a decrease in number of dividing cells, a reduction on chlorophyll synthesis, induced water stress to plants, and decreased NO (3) (-) uptake, reduced nitrate and nitrite reductase activity, a direct effect of lead on protein synthesis, a decrease on the uptake and concentration of nutrients in plants. The strategies to minimize Pb hazard can be represented in: (a) Phytoremediation, through natural plants are able to bio-accumulate Pb in their above-ground parts, which are then harvested for removal such as, using Indian Mustard (Brassica juncea), Ragweed (Ambrosia artemisiifolia), Hemp Dogbane (Apocynum cannabium), or Poplar trees, which sequester lead in its biomass. (b) Good and ethical agricultural practices such as cultivation of vegetables crops as far from busy streets or highways and industry regions as well as nonuse of sewage sludge and waste water in cultivated soils. (c) Increasing the absorptive capacity of the soil by adding organic matter and humic acid. (d) Growing vegetable crops and cultivars with a low potential to accumulate lead, especially in soils exposed to atmospheric pollution. (e) Washing of leafy vegetables by water containing 1 % vinegar or peeling roots, tubers, and some fruits of vegetables before consumption may be an important factor in reducing the lead concentration. C1 [Feleafel, M. N.; Mirdad, Z. M.] King Abdulaziz Univ, Fac Meteorol Environm & Arid Land Agr, Dept Arid Land Agr, Jeddah 80208, Saudi Arabia. [Feleafel, M. N.] Univ Alexandria, Fac Agr, Dept Vegetable Crops, Alexandria, Egypt. RP Feleafel, MN (corresponding author), King Abdulaziz Univ, Fac Meteorol Environm & Arid Land Agr, Dept Arid Land Agr, Jeddah 80208, Saudi Arabia. EM most363@gmail.com; zmirdad1@yahoo.com RI Feleafel, Mostafa/I-7575-2012 CR Abd El-Halaem S. H., 1984, THESIS AIN SHAMS U Abd El-Shakour E. A., 1982, THESIS CAIRO U Al Jassir MS, 2005, B ENVIRON CONTAM TOX, V75, P1020, DOI 10.1007/s00128-005-0851-4 Angima S. D., 2008, OREGON STATE U EXTEN, VEC 1616-E Antosiewicz Danuta Maria, 1992, Acta Societatis Botanicorum Poloniae, V61, P281, DOI 10.5586/asbp.1992.026 ANTOSIEWICZ DM, 1993, ENVIRON EXP BOT, V33, P575, DOI 10.1016/0098-8472(93)90032-B Arai S, 2002, BRIT J NUTR, V88, pS139, DOI 10.1079/BJN2002678 BAGHDADY NH, 1984, ACTA AGR SCAND, V34, P345, DOI 10.1080/00015128409435402 BEHBAHANINIA A., 2008, WORLD ACAD SCI ENG T, V43, P56 Berti WR, 1996, J ENVIRON QUAL, V25, P1025, DOI 10.2134/jeq1996.00472425002500050014x BRACKUP I, 1985, ENVIRON EXP BOT, V25, P145, DOI 10.1016/0098-8472(85)90020-6 BURZYNSKI M, 1987, ACTA PHYSIOL PLANT, V9, P229 BURZYNSKI M, 1987, ACTA SOC BOT POL, V56, P271, DOI 10.5586/asbp.1987.026 BURZYNSKI M, 1985, ACTA SOC BOT POL, V54, P95, DOI 10.5586/asbp.1985.009 BURZYNSKI M, 1984, ACTA SOC BOT POL, V53, P77, DOI 10.5586/asbp.1984.009 Cieslinski G., 1993, Acta Horticulturae, P278 COX W J, 1972, Journal of Environmental Quality, V1, P167, DOI 10.2134/jeq1972.00472425000100020013x CZUBA M, 1980, J ENVIRON QUAL, V9, P566, DOI 10.2134/jeq1980.00472425000900040006x Davies BE, 1995, LEAD HEAVY METALS SO, P206 De Nicola F, 2008, ENVIRON POLLUT, V153, P376, DOI 10.1016/j.envpol.2007.08.008 Drechsel P., 2010, WASTEWATER IRRIGATIO El-Koumey B. Y., 1999, J AGR RES, V24, P2087 El-Sayed E. A., 1993, J AGR RES DEV, V7, P46 El-Shebiny G. M., 1989, THESIS ALEXANDRIA U El-Sikhry E. M., 1985, THESIS AIN SHAMS U ELRASHIDI MA, 1979, AGROCHIMICA, V23, P245 Elsokkary I. H., 1978, Proceedings of the 13th International Colloquium on Atmospheric Pollution 1978, P25 Farooq M, 2008, PAK J BOT, V40, P2099 FLEMING GA, 1977, IRISH J AGR RES, V16, P35 Forstner U., 1983, METAL POLLUTION AQUA GUTTENBERGER H, 1989, PHYTON-ANN REI BOT A, V29, P255 Hamid N, 2010, PAK J BOT, V42, P239 Hassan S. A., 1994, THESIS AINS SHAMS U HEINRICHS H, 1977, J ENVIRON QUAL, V6, P402, DOI 10.2134/jeq1977.00472425000600040014x HLUSEK J, 1992, ROST VYROBA, V38, P97 Jaafarzadeh N., 1996, P 2 NAT WAT SOIL C Jain Mamta, 1997, Indian Journal of Plant Physiology, V2, P5 Jarvis MD, 2002, ENVIRON EXP BOT, V48, P21, DOI 10.1016/S0098-8472(02)00005-9 Jinadasa KBPN, 1997, J ENVIRON QUAL, V26, P924, DOI 10.2134/jeq1997.00472425002600040002x JOHN M K, 1972, Journal of Environmental Quality, V1, P169, DOI 10.2134/jeq1972.00472425000100020014x JONES LHP, 1973, PLANT SOIL, V38, P605, DOI 10.1007/BF00010700 Kabata-Pendias A., 1992, Trace elements in soils and plants. Kachenko A, 2006, WATER AIR SOIL POLL, V169, P101, DOI 10.1007/s11270-006-2027-1 Khairiah J., 2004, Pakistan Journal of Biological Sciences, V7, P1438, DOI 10.3923/pjbs.2004.1438.1442 KHAN DH, 1983, PLANT SOIL, V70, P335, DOI 10.1007/BF02374890 KHAN S, 1983, PLANT SOIL, V74, P387, DOI 10.1007/BF02181356 Kim B. Y., 1988, J KOREAN SOC SOIL SC, V21, P426 Krzeslowska M, 1996, BIOL PLANTARUM, V38, P253, DOI 10.1007/BF02873855 KUMAR G, 1993, WATER AIR SOIL POLL, V66, P163, DOI 10.1007/BF00477067 Kupper H, 2017, METAL IONS LIFE SCI, V17, P491, DOI 10.1515/9783110434330-015 Lacatusu R, 2008, CARPATH J EARTH ENV, V3, P115 Lehoczky E., 1998, Agrokemia es Talajtan, V47, P229 Leschber R., 1985, INT C HEAV MET ENV A, V1, P576 LIU DH, 1994, ENVIRON POLLUT, V86, P1, DOI 10.1016/0269-7491(94)90002-7 Malavolta E., 1994, FERTILIZANTES SEU IM, P40 Mapanda F, 2005, AGR ECOSYST ENVIRON, V107, P151, DOI 10.1016/j.agee.2004.11.005 McBride MB, 2003, ADV ENVIRON RES, V8, P5, DOI 10.1016/S1093-0191(02)00141-7 Meagher RB, 2000, CURR OPIN PLANT BIOL, V3, P153, DOI 10.1016/S1369-5266(99)00054-0 Mengle K., 1980, PRINCIPLES PLANT NUT Mensah E., 2008, INT J AGR RES, V3, P243, DOI DOI 10.3923/ijar.2008.243.251 MERAKCHIISKA M, 1976, DOKL BOLG AKAD NAUK, V29, P1819 Merakchiiska N., 1983, FIZIOL RAST, V9, P48 MERRY RH, 1986, PLANT SOIL, V95, P255, DOI 10.1007/BF02375077 Michalak E, 1998, PLANT SOIL, V199, P251, DOI 10.1023/A:1004321331708 Muchuweti A, 2006, AGR ECOSYST ENVIRON, V112, P41, DOI 10.1016/j.agee.2005.04.028 Munday V., 1975, Dissertation Abstracts International, B, V36, P27 NASRALLA MM, 1985, AGR ECOSYST ENVIRON, V13, P73, DOI 10.1016/0167-8809(85)90102-1 NICKLOW CW, 1983, J AM SOC HORTIC SCI, V108, P193 PAIVOKE A, 1983, ANN BOT FENN, V20, P297 PATEL PM, 1977, COMMUN SOIL SCI PLAN, V8, P733, DOI 10.1080/00103627709366767 Patra M, 2004, ENVIRON EXP BOT, V52, P199, DOI 10.1016/j.envexpbot.2004.02.009 POSKUTA JW, 1987, ACTA SOC BOT POL, V56, P127, DOI 10.5586/asbp.1987.014 PRASAD DDK, 1989, BIOCHEM INT, V19, P1403 PRASAD DDK, 1987, PHYTOCHEMISTRY, V26, P881, DOI 10.1016/S0031-9422(00)82310-9 Rabie F. H., 1999, B ENV RES, V2, P11 Radwan MA, 2006, FOOD CHEM TOXICOL, V44, P1273, DOI 10.1016/j.fct.2006.02.004 Ramadan M. A., 1995, THESIS CAIRO U EGYPT Rashed I. F., 1995, Egyptian Journal of Soil Science, V35, P239 Raskin Ilya, 1994, Current Opinion in Biotechnology, V5, P285, DOI 10.1016/0958-1669(94)90030-2 Sabnis D. D., 1969, PLANT PHYSIOL, V44, P63 SALIM R, 1992, J ENVIRON SCI HEAL A, VA27, P1739, DOI 10.1080/10934529209375823 Sengar RS, 1996, BIOL PLANTARUM, V38, P459, DOI 10.1007/BF02896681 Sharma RK, 2006, B ENVIRON CONTAM TOX, V77, P312, DOI 10.1007/s00128-006-1065-0 Sharma RK, 2008, ENVIRON MONIT ASSESS, V142, P269, DOI 10.1007/s10661-007-9924-7 Sharma RK, 2008, ENVIRON POLLUT, V154, P254, DOI 10.1016/j.envpol.2007.10.010 Sharma RK, 2007, ECOTOX ENVIRON SAFE, V66, P258, DOI 10.1016/j.ecoenv.2005.11.007 Sharma RK, 2009, FOOD CHEM TOXICOL, V47, P583, DOI 10.1016/j.fct.2008.12.016 Singh A, 2010, TROP ECOL, V51, P375 Singh KP, 2004, CHEMOSPHERE, V55, P227, DOI 10.1016/j.chemosphere.2003.10.050 Singh RP, 1998, BIOL PLANTARUM, V40, P399, DOI 10.1023/A:1001155431519 Singh RP, 2003, CHEMOSPHERE, V52, P1245, DOI 10.1016/S0045-6535(03)00318-7 Singh S, 2006, ENVIRON MONIT ASSESS, V120, P79, DOI 10.1007/s10661-005-9050-3 SINHA SK, 1988, ACTA SOC BOT POL, V57, P457, DOI 10.5586/asbp.1988.043 Sorial M. E., 2001, J PEST CONTROL ENV S, V9, P161 STEFANOV K, 1992, PHYTOCHEMISTRY, V31, P3745, DOI 10.1016/S0031-9422(00)97520-4 STEFANOV KL, 1995, BIOL PLANTARUM, V37, P251, DOI 10.1007/BF02913222 Suruchi, 2011, Research Journal of Environmental Toxicology, V5, P162, DOI 10.3923/rjet.2011.162.179 Tavares T. M., 1992, QUIM NOVA, V15, P147 TAYLOR RW, 1981, PLANT SOIL, V62, P147, DOI 10.1007/BF02205035 Thornton I., 1984, P 13 ANN C TOMASEVIC M, 1991, PERIOD BIOL, V93, P337 Tung G, 1996, ENVIRON TOXICOL CHEM, V15, P906, DOI [10.1897/1551-5028(1996)015<0906:HDOLIP>2.3.CO;2, 10.1002/etc.5620150612] Vassil AD, 1998, PLANT PHYSIOL, V117, P447, DOI 10.1104/pp.117.2.447 WAGATSUMA T, 1985, Journal of the Yamagata Agriculture and Forestry Society, P65 Warren H. V., 1987, BIOGEOCHEMICAL PROSP, P395 Watanabe T., 1972, Bulletin, Agricultural Chemical Inspection Station, P105 Weigert P, 1991, METALS THEIR COMPOUN, P449 Whatmuff MS, 2002, AUST J SOIL RES, V40, P1041, DOI 10.1071/SR99066 WIERZBICKA M, 1989, ENVIRON EXP BOT, V29, P123, DOI 10.1016/0098-8472(89)90044-0 Wierzbicka M, 1999, ENVIRON POLLUT, V104, P41, DOI 10.1016/S0269-7491(98)00156-0 WIERZBICKA M, 1994, ENVIRON EXP BOT, V34, P173, DOI 10.1016/0098-8472(94)90036-1 WOZNY A, 1991, BIOL PLANTARUM, V33, P32, DOI 10.1007/BF02873785 XIAN XF, 1989, ENVIRON POLLUT, V57, P127, DOI 10.1016/0269-7491(89)90005-5 XIAN XF, 1989, WATER AIR SOIL POLL, V45, P265, DOI 10.1007/BF00283457 Xiong ZT, 2006, ENVIRON TOXICOL, V21, P147, DOI 10.1002/tox.20167 Yousary M., 1977, Egyptian Journal of Soil Science, V17, P115 Yusuf K. A., 2006, Pakistan Journal of Scientific and Industrial Research, V49, P88 Zaman MS, 1998, B ENVIRON CONTAM TOX, V61, P44, DOI 10.1007/s001289900727 Zhu YG, 2004, ENVIRON INT, V30, P351, DOI 10.1016/j.envint.2003.07.001 NR 119 TC 24 Z9 27 U1 3 U2 254 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1187-7863 EI 1573-322X J9 J AGR ENVIRON ETHIC JI J. Agric. Environ. Ethics PD JUN PY 2013 VL 26 IS 3 BP 547 EP 567 DI 10.1007/s10806-012-9403-1 PG 21 WC Agriculture, Multidisciplinary; Ethics; Environmental Sciences; History & Philosophy Of Science SC Agriculture; Social Sciences - Other Topics; Environmental Sciences & Ecology; History & Philosophy of Science GA 157HT UT WOS:000319887800003 DA 2021-10-15 ER PT J AU Cahill, JF Castelli, JP Casper, BB AF Cahill, JF Castelli, JP Casper, BB TI Separate effects of human visitation and touch on plant growth and herbivory in an old-field community SO AMERICAN JOURNAL OF BOTANY LA English DT Article DE experimental methods; herbivory uncertainty principle; old-field; thigmomorphogenesis; visitation effect ID BELOW-GROUND COMPETITION; SOUTHWESTERN CORN-BORER; MECHANICAL PERTURBATION; INSECT HERBIVORY; NEST PREDATION; SURVIVAL; RESPONSES; BIOMASS; CAPTURE; WIND AB Although animal scientists have long been aware that methods used to measure an experimental system can affect the subject of measurements similar confounding effects of commonly used field methods have only recently been acknowledged by plant ecologists. Here we demonstrate significant effects of weekly visitation (walking up to a focal plant) and handling (taking morphological measures) on plant growth and herbivory in an old-field community. Of the three species examined, Apocynum cannabinum. was the most severely affected by our treatments. For Apocynum, weekly visitations resulted in a positive relationship between initial and final size, which did not occur in the unvisited plants. Visitation also increased leaf herbivory, resulting in a reduced leaf:stem biomass ratio. Handling the plants nearly doubled the proportion of individuals with a stem borer emergence hole. Growth of the other species in this study, Potentilla recta and Erigeron philadelphicus, was altered by either visitation, or visitation plus handling. Visiting plants in order to observe them and touching them as one would when making morphological measurements can have important biological consequences. We suggest that plant ecologists treat repeated entry into a natural system as a research method, subject to the same scrutiny and justification as all other experimental methods. C1 Univ Alberta, Dept Biol Sci, Edmonton, AB T6G 2E9, Canada. Univ Penn, Dept Biol, Philadelphia, PA 19104 USA. RP Cahill, JF (corresponding author), Univ Alberta, Dept Biol Sci, Edmonton, AB T6G 2E9, Canada. RI Cahill, James F/B-6147-2015 OI Cahill, James F/0000-0002-4110-1516 CR Baldwin I.T., 1997, INDUCED RESPONSES HE Bolter CJ, 1997, J CHEM ECOL, V23, P1003, DOI 10.1023/B:JOEC.0000006385.70652.5e Bown AW, 2000, CAN J BOT, V78, P119, DOI 10.1139/cjb-78-1-119 Cahill JF, 1999, ECOLOGY, V80, P466, DOI 10.1890/0012-9658(1999)080[0466:FEOIBA]2.0.CO;2 Cahill JF, 2001, ECOLOGY, V82, P307, DOI 10.1890/0012-9658(2001)082[0307:THUPVP]2.0.CO;2 Cahill JF, 2000, OIKOS, V90, P311, DOI 10.1034/j.1600-0706.2000.900211.x Casper BB, 1998, NEW PHYTOL, V140, P231, DOI 10.1046/j.1469-8137.1998.00271.x Cipollini DF, 1998, AM J BOT, V85, P1586, DOI 10.2307/2446485 Cipollini DF, 1999, INT J PLANT SCI, V160, P735, DOI 10.1086/314164 Cipollini DF, 1997, OECOLOGIA, V111, P84, DOI 10.1007/s004420050211 COHEN JA, 1983, J CHEM ECOL, V9, P521, DOI 10.1007/BF00990224 Coutand C, 2000, J EXP BOT, V51, P1813, DOI 10.1093/jexbot/51.352.1813 Cox RR, 1998, J FIELD ORNITHOL, V69, P276 Dobler S, 1998, CHEMOECOLOGY, V8, P111, DOI 10.1007/s000490050015 FORBES WTM, 1954, LEPIDOPTERA NEW YO 3 Goodman AM, 1998, ANN BOT-LONDON, V82, P347, DOI 10.1006/anbo.1998.0693 GOSS MJ, 1977, J EXP BOT, V28, P96, DOI 10.1093/jxb/28.1.96 HEDIN PA, 1993, J CHEM ECOL, V19, P301, DOI 10.1007/BF00993697 HEDIN PA, 1984, J AGR FOOD CHEM, V32, P262, DOI 10.1021/jf00122a022 Heisenberg W., 1927, Zeitschrift fur Physik, V43, P172, DOI 10.1007/BF01397280 Jackson RV, 1999, OIKOS, V87, P561, DOI 10.2307/3546820 Jaffe MJ, 2002, AM J BOT, V89, P375, DOI 10.3732/ajb.89.3.375 JAFFE MJ, 1993, PLANT GROWTH REGUL, V12, P313, DOI 10.1007/BF00027213 Kessler A, 2001, SCIENCE, V291, P2141, DOI 10.1126/science.291.5511.2141 Klaring HP, 1999, SCI HORTIC-AMSTERDAM, V81, P369, DOI 10.1016/S0304-4238(99)00022-9 LITTEL RC, 1996, SAS SYSTEM MIXED MOD MACIVOR LH, 1990, J WILDLIFE MANAGE, V54, P443, DOI 10.2307/3809656 MAJOR RE, 1990, IBIS, V132, P608, DOI 10.1111/j.1474-919X.1990.tb00285.x MALLET J, 1987, J ANIM ECOL, V56, P377, DOI 10.2307/5054 Mauch F, 1997, PLANT PHYSIOL, V114, P1561, DOI 10.1104/pp.114.4.1561 Niklas K. J., 1992, PLANT BIOMECHANICS E Niklas KJ, 1998, ANN BOT-LONDON, V82, P147, DOI 10.1006/anbo.1998.0658 Pare PW, 1997, PLANT PHYSIOL, V114, P1161, DOI 10.1104/pp.114.4.1161 Pietsch GS, 1999, J WILDLIFE DIS, V35, P735, DOI 10.7589/0090-3558-35.4.735 Place NJ, 2000, J COMP PHYSIOL B, V170, P245, DOI 10.1007/s003600050282 Preston CA, 2001, BIOCHEM SYST ECOL, V29, P1007, DOI 10.1016/S0305-1978(01)00047-3 Pruyn ML, 2000, TREE PHYSIOL, V20, P535 ROESE USR, 1996, PLANT PHYSIOL, V111, P487 SAS INSTITUTE, 1999, SAS SYST WIND Schwinning S, 1998, OECOLOGIA, V113, P447, DOI 10.1007/s004420050397 Sedinger JS, 1997, J WILDLIFE MANAGE, V61, P782, DOI 10.2307/3802185 SINGER MC, 1981, ECOL ENTOMOL, V6, P215, DOI 10.1111/j.1365-2311.1981.tb00609.x Thellier M, 2000, CR ACAD SCI III-VIE, V323, P81, DOI 10.1016/S0764-4469(00)00108-6 TURGEON R, 1971, SCIENCE, V174, P961, DOI 10.1126/science.174.4012.961 WALLIN JE, 1995, T AM FISH SOC, V124, P736, DOI 10.1577/1548-8659(1995)124<0736:IEOSSS>2.3.CO;2 WEINER J, 1986, OIKOS, V47, P211, DOI 10.2307/3566048 NR 46 TC 24 Z9 24 U1 0 U2 14 PU BOTANICAL SOC AMER INC PI COLUMBUS PA OHIO STATE UNIV-DEPT BOTANY, 1735 NEIL AVE, COLUMBUS, OH 43210 USA SN 0002-9122 J9 AM J BOT JI Am. J. Bot. PD SEP PY 2002 VL 89 IS 9 BP 1401 EP 1409 DI 10.3732/ajb.89.9.1401 PG 9 WC Plant Sciences SC Plant Sciences GA 683CY UT WOS:000183130900004 PM 21665741 OA Bronze DA 2021-10-15 ER PT J AU Liu, J Song, Y Han, GT Han, YH Zhang, YY Jiang, W AF Liu, Jing Song, Yan Han, Guangting Han, Yuhui Zhang, Yuanyuan Jiang, Wei TI The Dimensional Distribution of Kenaf and Apocynum Fibers SO JOURNAL OF NATURAL FIBERS LA English DT Article DE Apocynum; diameter; kenaf; length; natural fiber ID VENETUM FIBERS; MECHANICAL-PROPERTIES; DISCOLORATION; BAST AB In this research, single fiber cell separation method was studied and optimized. More than 200 fiber cell dimensional sizes of kenaf and apocynum were analyzed. Furthermore, the diameter changes of kenaf fiber cell before and after different degumming treatments were also explored. Results showed that the average length and diameter of kenaf fiber are 2.16 mm and 10.56 mu m, while the average length and diameter of apocynum fiber are 9.04 mm and 7.41 mu m. It was also found that the average diameter of kenaf and apocynum fibers decreased with the degumming process, and the diameter distribution became more even. C1 [Liu, Jing; Song, Yan; Jiang, Wei] Qingdao Univ, Sch Text & Garment, Qingdao, Shandong, Peoples R China. [Liu, Jing; Han, Guangting; Jiang, Wei] Qingdao Univ, State Key Lab Biofibers & Ecotext, Qingdao, Shandong, Peoples R China. [Han, Yuhui; Zhang, Yuanyuan] Donghua Univ, Coll Text, Shanghai, Peoples R China. RP Jiang, W (corresponding author), Qingdao Univ, Qingdao 266071, Peoples R China. EM weijiangqd@gmail.com FU Award Funds for Outstanding Middle-Aged and Young Scientists of the Shandong Province [ZR2017BEM045]; key research and development program of the Shandong Province [2016ZDJS08A04, 2016GSF117008]; Research on Application program for Postdoctoral of Qingdao [2016011] FX This work was supported by the Award Funds for Outstanding Middle-Aged and Young Scientists of the Shandong Province [ZR2017BEM045], the key research and development program of the Shandong Province [2016ZDJS08A04 and 2016GSF117008], and the Research on Application program for Postdoctoral of Qingdao [2016011]. CR Amel BA, 2013, IND CROP PROD, V46, P117, DOI 10.1016/j.indcrop.2012.12.015 Gao SC, 2015, BIORESOURCES, V10, P5476 Han GT, 2008, CARBOHYD POLYM, V72, P652, DOI 10.1016/j.carbpol.2007.10.002 Jiang W., 2017, J STRUCT ENG, P1 Jiang W, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-01388-x Li MH, 2012, FIBER POLYM, V13, P322, DOI 10.1007/s12221-012-0322-6 Li MH, 2010, FIBER POLYM, V11, P48, DOI 10.1007/s12221-010-0048-2 Liu Y, 2015, BIORESOURCES, V10, P5607 Liu Y, 2015, APPL SURF SCI, V331, P353, DOI 10.1016/j.apsusc.2015.01.091 Ochi S, 2008, MECH MATER, V40, P446, DOI 10.1016/j.mechmat.2007.10.006 Song Y, 2017, J TEXT I, V108, P1762, DOI 10.1080/00405000.2017.1285200 Statistics F., 2005, JUT KEN SIS AB COIR, V20 Thevs N, 2012, J APPL BOT FOOD QUAL, V85, P159 Wang JH, 2003, TEXT RES J, V73, P339 Wang LL, 2007, CARBOHYD POLYM, V69, P391, DOI 10.1016/j.carbpol.2006.12.028 Webber CL, 2002, IND CROP PROD, V16, P81, DOI 10.1016/S0926-6690(02)00011-0 Yang B, 2014, COMPOS PART B-ENG, V56, P926, DOI 10.1016/j.compositesb.2013.09.022 Yang FR, 2016, J TEXT I, V107, P1450, DOI 10.1080/00405000.2015.1127550 Zhang Xiao, 2014, Sheng Wu Gong Cheng Xue Bao, V30, P734 NR 19 TC 23 Z9 24 U1 4 U2 16 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA SN 1544-0478 EI 1544-046X J9 J NAT FIBERS JI J. Nat. Fibers PD MAY 3 PY 2020 VL 17 IS 5 BP 738 EP 744 DI 10.1080/15440478.2018.1532857 PG 7 WC Materials Science, Textiles SC Materials Science GA KY5YT UT WOS:000522649800010 DA 2021-10-15 ER PT J AU Martins, J Brijesh, S AF Martins, Jeanette Brijesh, S. TI Phytochemistry and pharmacology of anti-depressant medicinal plants: A review SO BIOMEDICINE & PHARMACOTHERAPY LA English DT Review DE Depression; Medicinal plants; Serotonin; TST; FST; MAO; Antidepressant ID ANTIDEPRESSANT-LIKE ACTIVITY; FORCED SWIMMING TEST; WORKING-MEMORY PERFORMANCE; APOCYNUM-VENETUM LEAVES; TAIL SUSPENSION TEST; SCHINUS-MOLLE L.; MONOAMINE-OXIDASE; HYDROALCOHOLIC EXTRACT; ETHANOLIC EXTRACT; NEUROTROPHIC FACTOR AB Stress renders an individual to experience mental pressure and exhaustion which brings about feelings of anxiety, depression, anger and/or other negative emotions. Depression affects a person's state of mind, behaviour, health and is often associated with suicide. The use of anti-depressant drugs as therapeutic agents is associated with symptoms such as, delayed onset of action, side-effects, drug-drug and dietary interactions, sexual dysfunction, cardiac toxicity, etc. Thus, there is need to target these issues and improve current treatment options. Medicinal plants have long been used in discovering novel treatment strategies and compounds with promising roles in treating various disease conditions. There has been an increase, worldwide, in the use of medicinal plants and herbs for developing nutraceuticals for treatment of depression and other psychiatric disorders. Medicinal plants in their natural forms are valuable as they are rich in various phytochemical compounds. These phytochemical compounds have pharmacological roles in treating various diseases conditions; apart from being widely available in nature and commercially beneficial. The phytochemical compounds in plants are constantly being explored through various experimental studies to determine the molecular basis of how medicinal plants work in relation to drugs and diseases and to develop neutraceuticals for improving conditions. This review summarizes 110 medicinal plants and their phytochemical constituents that have been shown to possess antidepressant activity. This review also highlights the various mechanisms of anti-depressant action of some of these plants and their plant parts like roots, stem, leaves, flowers, fruit or whole plant; phytochemical compounds showing anti-depressant activity such flavanoids, steroids, saponins, sugars, lectins, alkaloids, etc.; and various anti-depressant screening models used such as tail suspension test, forced swim test, chronic unpredictable stress test, sucrose preference test, monoamine oxidase inhibition assay, learned helplessness test, open field test, hole board test, etc. However, mechanistic evaluation of many of these plants still needs to be investigated and explored. C1 [Martins, Jeanette; Brijesh, S.] NMIMS Deemed To Be Univ, Sunandan Divatia Sch Sci, 3rd Floor,Bhaidas Sabhagriha Bldg, Bombay 400056, Maharashtra, India. RP Brijesh, S (corresponding author), NMIMS Deemed To Be Univ, Sunandan Divatia Sch Sci, 3rd Floor,Bhaidas Sabhagriha Bldg, Bombay 400056, Maharashtra, India. EM jeanette.martins28@gmail.com; brijeshsuku@gmail.com RI Cioanca, Oana/E-2127-2014; Sukumaran, Brijesh/B-8003-2016; , Brijesh/O-7586-2019 OI Cioanca, Oana/0000-0001-9173-4832; Sukumaran, Brijesh/0000-0002-5948-7082; , Brijesh/0000-0002-5948-7082 CR Abbas G, 2013, PHYTOTHER RES, V27, P39, DOI 10.1002/ptr.4674 Adebiyi RA, 2006, J ETHNOPHARMACOL, V107, P234, DOI 10.1016/j.jep.2006.03.017 Ahangar N., 2011, PHARMACOLOGYONLINE, V1, P825, DOI DOI 10.4314/AJB.V8I24.68818 Al-Tubuly RA, 2008, LIBYAN J MED, V3, P78, DOI 10.4176/080101 Ali BH, 1998, PHARMACOL BIOCHEM BE, V59, P671, DOI 10.1016/S0091-3057(97)00464-4 Ali BH, 1998, PHARMACOL BIOCHEM BE, V59, P547, DOI 10.1016/S0091-3057(97)00470-X Almeida RN, 1998, J ETHNOPHARMACOL, V63, P247, DOI 10.1016/S0378-8741(98)00086-5 American Psychiatric Association, DIAGN STAT MAN MENT, V2013, P155 Anand S., 2011, STUDY ANTIDEPRESSANT Aragao GF, 2006, PHARMACOL BIOCHEM BE, V85, P827, DOI 10.1016/j.pbb.2006.11.019 ARNSTEN AFT, 1985, SCIENCE, V230, P1273, DOI 10.1126/science.2999977 Barauna SC, 2006, PHARMACOL BIOCHEM BE, V85, P160, DOI 10.1016/j.pbb.2006.07.030 Baum SS, 1998, PROG NEURO-PSYCHOPH, V22, P1105, DOI 10.1016/S0278-5846(98)00062-1 Bech Per, 2006, Dialogues Clin Neurosci, V8, P207 Bevilacqua L, 2013, PHILOS T R SOC B, V368, DOI 10.1098/rstb.2012.0380 Bhagwagar Z, 2004, MOL PSYCHIATR, V9, P386, DOI 10.1038/sj.mp.4001401 Bhattacharya SK, 2000, PHYTOMEDICINE, V7, P463, DOI 10.1016/S0944-7113(00)80030-6 Bhattamisra SK, 2008, J ETHNOPHARMACOL, V117, P51, DOI 10.1016/j.jep.2008.01.012 Birnbaum S, 1999, BIOL PSYCHIAT, V46, P1266, DOI 10.1016/S0006-3223(99)00138-9 Biswas U. K., 2012, Journal of Global Trends in Pharmaceutical Sciences, V3, P585 Boldrini M, 2008, J PSYCHIATR RES, V42, P433, DOI 10.1016/j.jpsychires.2007.05.004 Braida D, 2009, BRIT J PHARMACOL, V157, P844, DOI 10.1111/j.1476-5381.2009.00230.x Burdette JE, 2003, J AGR FOOD CHEM, V51, P5661, DOI 10.1021/jf034264r Butterweck V, 2001, BIOL PHARM BULL, V24, P848, DOI 10.1248/bpb.24.848 CAI JX, 1993, BRAIN RES, V614, P191 Campos AR, 2005, PHYTOTHER RES, V19, P441, DOI 10.1002/ptr.1471 Campos MM, 2005, PSYCHOPHARMACOLOGY, V182, P45, DOI 10.1007/s00213-005-0052-1 Carbajal D, 2009, PHARMACOL BIOCHEM BE, V92, P465, DOI 10.1016/j.pbb.2009.01.008 Carpenter LL, 1999, J CLIN PSYCHIAT, V60, P45, DOI 10.4088/JCP.v60n0110 Centuriao FB, 2014, PHARM BIOL, V52, P105, DOI 10.3109/13880209.2013.816970 Cervo L, 2002, PSYCHOPHARMACOLOGY, V164, P423, DOI 10.1007/s00213-002-1229-5 Chatterjee M, 2011, PHARM BIOL, V49, P477, DOI 10.3109/13880209.2010.523832 Chen PJ, 2009, AM J CHINESE MED, V37, P1113, DOI 10.1142/S0192415X09007533 Chen Yao, 2005, Zhong Yao Cai, V28, P492 Chen Yao, 2003, Zhong Yao Cai, V26, P870 Cheng MC, 2006, J NAT PROD, V69, P1305, DOI 10.1021/np060207r Chenu F, 2008, J PSYCHIATR NEUROSCI, V33, P541 Chilmonczyk Z, 2015, INT J MOL SCI, V16, P18474, DOI 10.3390/ijms160818474 Chourbaji S, 2008, PHARMACOL RES, V58, P302, DOI 10.1016/j.phrs.2008.09.002 Chowdhury B., 2011, PHARM ONLINE, V2, P405 Christopher W., 1994, J PSYCHIAT, V12 Conductier G, 2006, EUR J NEUROSCI, V24, P1053, DOI 10.1111/j.1460-9568.2006.04943.x Cragg GM, 1997, J NAT PROD, V60, P52, DOI 10.1021/np9604893 Cremers TIFH, 2004, NEUROPSYCHOPHARMACOL, V29, P1782, DOI 10.1038/sj.npp.1300474 Cui Chengbin, 1995, Zhongguo Zhongyao Zazhi, V20, P36 Cuijpers P, 2010, CLIN PSYCHOL REV, V30, P51, DOI 10.1016/j.cpr.2009.09.003 DAQUILA PS, 1994, EUR J PHARMACOL, V262, P107, DOI 10.1016/0014-2999(94)90033-7 Dar A, 2000, PHARMACOL BIOCHEM BE, V65, P1, DOI 10.1016/S0091-3057(99)00179-3 Dar A, 1997, PHYTOMEDICINE, V4, P41, DOI 10.1016/S0944-7113(97)80026-8 David-Ferdon C, 2008, J CLIN CHILD ADOLESC, V37, P62, DOI 10.1080/15374410701817865 Deepa B., 2013, International Journal of Research in Ayurveda and Pharmacy (IJRAP), V4, P101 Dhanarasu S, 2013, ASIAN J PHYTOMED CLI, V1, P123 Dhingra D, 2006, J MED FOOD, V9, P84, DOI 10.1089/jmf.2006.9.84 Dhingra D, 2006, PROG NEURO-PSYCHOPH, V30, P449, DOI 10.1016/j.pnpbp.2005.11.019 Dhingra D, 2008, INDIAN J PHARM SCI, V70, P761, DOI 10.4103/0250-474X.49118 Dhingra D, 2007, PHARM ONLINE, V3, P133 Dhingra D., 2011, CNS NEUROSCI THER, P1 Dhingra D, 2007, PHARM ONLINE, V1, P262 Dhingra D, 2008, INDIAN J EXP BIOL, V46, P212 Dhingra D, 2012, J PHARMACOL PHARMACO, V3, P60, DOI 10.4103/0976-500X.92521 Dinan TG, 1999, BRIT MED J, V318, P826, DOI 10.1136/bmj.318.7187.826 Dougherty LR, 2016, PSYCHOL MED, V46, P1103, DOI 10.1017/S0033291715002809 Duke J. A., 1993, MED PLANTS PHARM IND, P664 Duman RS, 2001, NEUROPSYCHOPHARMACOL, V25, P836, DOI 10.1016/S0893-133X(01)00358-X Edmondson DE, 2004, CURR MED CHEM, V11, P1983, DOI 10.2174/0929867043364784 Ettehadi H., 2013, J BEHAV BRAIN SCI, V3, DOI DOI 10.4236/JBBS.2013.33031 Fajemiroye JO, 2016, FUND CLIN PHARMACOL, V30, P198, DOI 10.1111/fcp.12186 Fan Zi-Zhou, 2012, Yao Xue Xue Bao, V47, P1612 Felipe FCB, 2007, PHYTOMEDICINE, V14, P605, DOI 10.1016/j.phymed.2006.12.015 FINLAY JM, 1995, NEUROSCIENCE, V64, P619, DOI 10.1016/0306-4522(94)00331-X Freitas AE, 2013, J ETHNOPHARMACOL, V145, P737, DOI 10.1016/j.jep.2012.11.040 Gabriela GC, 2012, AM J CHINESE MED, V40, P753, DOI 10.1142/S0192415X12500565 Gadaga LL, 2011, HUM EXP TOXICOL, V30, P972, DOI 10.1177/0960327110384524 Galdino PM, 2009, J ETHNOPHARMACOL, V124, P581, DOI 10.1016/j.jep.2009.05.001 Gambarana C, 2001, PHARMACOPSYCHIATRY, V34, pS42, DOI 10.1055/s-2001-15515 Gaur V., 2012, BIOMED AGING PATHOL, V2, P121 Girish C., 2016, INT J BASIC CLIN PHA, V3, P914 Goldstein LE, 1996, J NEUROSCI, V16, P4787 Goulart YCF, 2007, PHARM BIOL, V45, P169, DOI 10.1080/13880200701212981 GOZLAN H, 1983, NATURE, V305, P140, DOI 10.1038/305140a0 Guadarrama-Cruz G, 2008, J ETHNOPHARMACOL, V120, P277, DOI 10.1016/j.jep.2008.08.013 Gupta V, 2010, DUNCAN ASIAN J PHARM, V3, P98 Hadizadeh, 2007, PHARM ONLINE, V2, P367 Han XH, 2007, ARCH PHARM RES, V30, P13, DOI 10.1007/BF02977772 Hattesohl M, 2008, PHYTOMEDICINE, V15, P2, DOI 10.1016/j.phymed.2007.11.027 Hawiset T., 2011, American Journal of Applied Sciences, V8, P695, DOI 10.3844/ajassp.2011.695.702 Hazra S, 2012, DRUG DISCOV, V2, P8 Hellion-Ibarrola MC, 2008, PHYTOMEDICINE, V15, P478, DOI 10.1016/j.phymed.2007.11.018 Herrera-Ruiz M, 2006, PHYTOMEDICINE, V13, P23, DOI 10.1016/j.phymed.2005.03.003 Hosseinzadeh H, 2004, ACTA HORTIC, P435, DOI 10.17660/ActaHortic.2004.650.54 Hritcu L, 2012, PHYTOMEDICINE, V19, P529, DOI 10.1016/j.phymed.2012.02.002 Hu Y, 2011, J PHARM PHARMACOL, V63, P869, DOI 10.1111/j.2042-7158.2011.01281.x Hu Y, 2010, PHARM BIOL, V48, P794, DOI 10.3109/13880200903280034 Idayu NF, 2011, PHYTOMEDICINE, V18, P402, DOI 10.1016/j.phymed.2010.08.011 Ishola I.O., 2013, DRUG RES STUTTG, V64, P368 Ito N, 2008, BIOL PHARM BULL, V31, P1376, DOI 10.1248/bpb.31.1376 Ittiyavirah S.P., 2013, J PHARMACOGN PHYTOTH, V5, P101 Jain NN, 2003, PHARMACOL BIOCHEM BE, V75, P529, DOI 10.1016/S0091-3057(03)00130-8 Jin ZL, 2012, PHARMACOL BIOCHEM BE, V100, P431, DOI 10.1016/j.pbb.2011.10.001 Jones F., 2001, STRESS MYTH THEORY R Kageyama A, 2012, FOOD SCI TECHNOL RES, V18, P473, DOI 10.3136/fstr.18.473 Kalgutkar AS, 2001, CHEM RES TOXICOL, V14, P1139, DOI 10.1021/tx010073b Karkada Gloria, 2012, J Nat Sci Biol Med, V3, P125, DOI 10.4103/0976-9668.101879 Kim JH, 2007, PHARMACOL BIOCHEM BE, V87, P41, DOI 10.1016/j.pbb.2007.03.018 Kimura Y, 2004, J ETHNOPHARMACOL, V95, P447, DOI 10.1016/j.jep.2004.08.027 Kwon S, 2010, PROG NEURO-PSYCHOPH, V34, P265, DOI 10.1016/j.pnpbp.2009.11.015 Lee SA, 2005, CHEM PHARM BULL, V53, P832, DOI 10.1248/cpb.53.832 Lee SA, 2008, ARCH PHARM RES, V31, P679, DOI 10.1007/s12272-001-1212-7 Teixeira CPL, 2013, FUND CLIN PHARMACOL, V27, P129, DOI [10.1, 10.1111/j.1472-8206.2011.00973.x] Lemonde S, 2003, J NEUROSCI, V23, P8788 Li M, 2001, Zhong Yao Cai, V24, P40 Li M., 2004, ACAD J GUANGDONG COL, V20, P141 Li Y, 2015, BEHAV BRAIN RES, V279, P100, DOI 10.1016/j.bbr.2014.11.016 Liao JC, 2013, BMC COMPLEM ALTERN M, V13, DOI 10.1186/1472-6882-13-299 Liu XG, 2012, FITOTERAPIA, V83, P599, DOI 10.1016/j.fitote.2012.01.004 Machado DG, 2012, PHARMACOL BIOCHEM BE, V103, P204, DOI 10.1016/j.pbb.2012.08.016 Machado DG, 2008, EUR J PHARMACOL, V587, P163, DOI 10.1016/j.ejphar.2008.03.021 Machado DG, 2007, PROG NEURO-PSYCHOPH, V31, P421, DOI 10.1016/j.pnpbp.2006.11.004 Machado DG, 2013, FOOD CHEM, V136, P999, DOI 10.1016/j.foodchem.2012.09.028 Maeda H, 1997, LIFE SCI, V61, P2435, DOI 10.1016/S0024-3205(97)00978-8 Mahmoudi M, 2009, AFR J BIOTECHNOL, V8, P7170 Maity T, 2011, Nepal Med Coll J, V13, P250 Maleki S. A., 2013, CHIN J INTEGR MED, V19, P153 Mannucci C, 2012, PHYTOMEDICINE, V19, P1117, DOI 10.1016/j.phymed.2012.07.001 Mao QQ, 2008, J ETHNOPHARMACOL, V119, P272, DOI 10.1016/j.jep.2008.07.008 Mao QQ, 2008, PHYTOTHER RES, V22, P1496, DOI 10.1002/ptr.2519 Marmat A., 2013, International Journal of Pharmaceutical Innovations (IJPI), V3, P99 Martins J. V. C., 2006, Indian Journal of Pharmacology, V38, P427 Martins J. V. C., 2004, HLTH SCI, V26, P365 McGaugh JL, 1996, P NATL ACAD SCI USA, V93, P13508, DOI 10.1073/pnas.93.24.13508 Mendonca-Netto S, 2008, REV BRAS FARMACOGN, V18, P165, DOI 10.1590/S0102-695X2008000200004 Meneses A, 1999, NEUROSCI BIOBEHAV R, V23, P1111, DOI 10.1016/S0149-7634(99)00067-6 Messaoudi M, 2008, NUTR NEUROSCI, V11, P269, DOI 10.1179/147683008X344165 Moinuddin G, 2012, AVICENNA J PHYTOMEDI, V2, P72 Molina M, 1999, PHYTOMEDICINE, V6, P319, DOI 10.1016/S0944-7113(99)80052-X Mora S, 2006, J ETHNOPHARMACOL, V106, P76, DOI 10.1016/j.jep.2005.12.004 Mora S, 2005, PHARMACOL BIOCHEM BE, V82, P373, DOI 10.1016/j.pbb.2005.09.007 Mora S, 2005, J ETHNOPHARMACOL, V97, P191, DOI 10.1016/j.jep.2004.10.028 Mork A, 2012, J PHARMACOL EXP THER, V340, P666, DOI 10.1124/jpet.111.189068 Morteza-Semnani K, 2007, PHARM BIOL, V45, P464, DOI 10.1080/13880200701389177 Mukhtar E. J. A., 2013, MED J BABYLON, V10, P803 Nakazawa T, 2003, J PHARM PHARMACOL, V55, P1583, DOI 10.1211/0022357022188 Nakazawa T, 2003, BIOL PHARM BULL, V26, P474, DOI 10.1248/bpb.26.474 Nehlig A, 2013, BRIT J CLIN PHARMACO, V75, P716, DOI 10.1111/j.1365-2125.2012.04378.x Newman DJ, 2003, J NAT PROD, V66, P1022, DOI 10.1021/np030096l Nielsen ND, 2004, J ETHNOPHARMACOL, V94, P159, DOI 10.1016/j.jep.2004.05.013 Octobone F. J., 2007, INDIAN J PHARM, V39, P75 OHara MW, 1996, INT REV PSYCHIATR, V8, P37, DOI 10.3109/09540269609037816 OSHIMA Y, 1995, CHEM PHARM BULL, V43, P169, DOI 10.1248/cpb.43.169 Otobone FJ, 2007, PHYTOTHER RES, V21, P531, DOI 10.1002/ptr.2089 Overstreet DH, 2008, PHARMACOL BIOCHEM BE, V89, P623, DOI 10.1016/j.pbb.2008.02.020 Pan Sheng-li, 2005, Yaoxue Xuebao, V40, P355 Pan Y, 2007, PHARMACOL BIOCHEM BE, V87, P130, DOI 10.1016/j.pbb.2007.04.009 Parvathi M., 2013, Journal of Natural Remedies, V13, P19, DOI 10.18311/jnr/2013/113 Pedersen ME, 2008, J ETHNOPHARMACOL, V119, P542, DOI 10.1016/j.jep.2008.08.030 Pemminati S., 2010, INT J APPL BIOL PHAR, V1, P449 Piato AL, 2009, PHYTOTHER RES, V23, P519, DOI 10.1002/ptr.2664 Piccinni A, 2009, EUR NEUROPSYCHOPHARM, V19, P349, DOI 10.1016/j.euroneuro.2009.01.002 PINTO A, 1993, ADOLESCENCE, V28, P661 Qiu FM, 2013, EXP THER MED, V5, P1113, DOI 10.3892/etm.2013.925 Rahman Khaleequr, 2012, Journal of Pharmaceutical and Scientific Innovation (JPSI), V1, P1 Rahul Trivedi, 2011, International Journal of Pharmaceutical and Biological Archives, V2, P996 Rama P, 1996, PHARMACOL BIOCHEM BE, V55, P415, DOI 10.1016/S0091-3057(96)00111-6 Ramos BP, 2005, BIOL PSYCHIAT, V58, P894, DOI 10.1016/j.biopsych.2005.05.022 Ramos BP, 2006, LEARN MEMORY, V13, P770, DOI 10.1101/lm.298006 Rapkin AJ, 2013, WOMENS HEALTH, V9, P537, DOI [10.2217/whe.13.62, 10.2217/WHE.13.62] Rashid M. M. U., 2013, e-Journal of Science & Technology, V8, P39 Ren LX, 2006, BIOL PHARM BULL, V29, P2304, DOI 10.1248/bpb.29.2304 Rodrigues ALS, 2002, LIFE SCI, V70, P1347, DOI 10.1016/S0024-3205(01)01498-9 Rubio Julio, 2006, BMC Complement Altern Med, V6, P23, DOI 10.1186/1472-6882-6-23 Ruiz M. H., 2006, J ETHNOPHARMACOL, V107, P53 Rupke SJ, 2006, AM FAM PHYSICIAN, V73, P83 Sah SP, 2011, PHYTOMEDICINE, V18, P1269, DOI 10.1016/j.phymed.2011.06.009 Sah SP, 2011, J ETHNOPHARMACOL, V135, P197, DOI 10.1016/j.jep.2011.02.018 Sairam K, 2002, PHYTOMEDICINE, V9, P207, DOI 10.1078/0944-7113-00116 Sakakibara H, 2008, BIOSCI BIOTECH BIOCH, V72, P94, DOI 10.1271/bbb.70454 SAKAMOTO T, 1992, CHEM PHARM BULL, V40, P758, DOI 10.1248/cpb.40.758 Sallinen J, 2007, BRIT J PHARMACOL, V150, P391, DOI 10.1038/sj.bjp.0707005 Sanchez-Mateo CC, 2007, J ETHNOPHARMACOL, V112, P115, DOI 10.1016/j.jep.2007.02.019 Sanchez-Mateo CC, 2005, J ETHNOPHARMACOL, V97, P541, DOI 10.1016/j.jep.2004.12.019 Santarelli L, 2003, SCIENCE, V301, P805, DOI 10.1126/science.1083328 Sattayasai J, 2008, PHYTOTHER RES, V22, P487, DOI 10.1002/ptr.2346 Sayyah M, 2009, PROG NEURO-PSYCHOPH, V33, P1513, DOI 10.1016/j.pnpbp.2009.08.021 SCHILDKRAUT JJ, 1965, AM J PSYCHIAT, V122, P509, DOI 10.1176/ajp.122.5.509 da Silva AFS, 2006, PHARMACOL BIOCHEM BE, V85, P148, DOI 10.1016/j.pbb.2006.07.027 Sela VR, 2010, PHYTOMEDICINE, V17, P274, DOI 10.1016/j.phymed.2009.07.002 Selvi P. T., 2012, Asian Journal of Research Pharmaceutical Sciences, V2, P76 홍순상, 2013, [The Korean Society of Oriental Neuropsychiatry, 동의신경정신과학회지], V24, P281 Sharma V. K., 2009, International Journal of Phytomedicine, V1, P12 Shastry R., 2012, AM J PHARMTECH RES, V2, P2249 Shelton RC, 2001, AM J PSYCHIAT, V158, P131, DOI 10.1176/appi.ajp.158.1.131 Shenoy AM, 2012, INT J PHARM SCI RES, V3, P1498, DOI 10.13040/IJPSR.0975-8232.3(5).1498-01 Shimizu E, 2003, BIOL PSYCHIAT, V54, P70, DOI 10.1016/S0006-3223(03)00181-1 Silva FO, 2011, J YOUNG PHARM, V3, P232, DOI 10.4103/0975-1483.83772 Singal Anjali, 2006, Indian Journal of Experimental Biology, V44, P913 Singh GK, 2009, PHARMACOL BIOCHEM BE, V91, P283, DOI 10.1016/j.pbb.2008.07.010 Singh R, 2014, PHYTOTHER RES, V28, P1419, DOI 10.1002/ptr.5116 Siqueira IR, 2004, LIFE SCI, V75, P1897, DOI 10.1016/j.lfs.2004.06.001 Sousa FCF, 2004, PHARMACOL BIOCHEM BE, V78, P27, DOI 10.1016/j.pbb.2004.01.019 Sreemantula S., 2005, BMC COMPLEM ALTERN M, V5 Stahl SM, 1998, J AFFECT DISORDERS, V51, P215, DOI 10.1016/S0165-0327(98)00221-3 SUBARNAS A, 1993, LIFE SCI, V52, P289, DOI 10.1016/0024-3205(93)90220-W SUBARNAS A, 1992, J PHARM SCI, V81, P620, DOI 10.1002/jps.2600810705 Subhan F, 2010, PHYTOTHER RES, V24, P686, DOI 10.1002/ptr.2980 Sudhakar Pemminati, 2010, Journal of Pharmacy Research, V3, P624 Sun XiuPing, 2012, Journal of Medicinal Plants Research, V6, P4308 Tabassum I, 2010, INDIAN J PHARMACOL, V42, P283, DOI 10.4103/0253-7613.70108 Taiwo AE, 2012, INDIAN J PHARMACOL, V44, P189, DOI 10.4103/0253-7613.93846 Tatsumi M, 1997, EUR J PHARMACOL, V340, P249, DOI 10.1016/S0014-2999(97)01393-9 Taylor C, 2005, CELL SIGNAL, V17, P549, DOI 10.1016/j.cellsig.2004.12.007 Tomic M, 2005, PHARMACOL BIOCHEM BE, V81, P535, DOI 10.1016/j.pbb.2005.03.019 Uebelhack R, 1998, PHARMACOPSYCHIATRY, V31, P187, DOI 10.1055/s-2007-979325 UNESCO, 1996, CLTDECPRO1996 UNESCO, P129 van Diermen D, 2009, J ETHNOPHARMACOL, V122, P397, DOI 10.1016/j.jep.2009.01.007 VELRAJ M, 2009, DRUG INVESTIG TODAY, V1, P112 Veni Bharti, 2013, Pharmacologia, V4, P249, DOI 10.5567/pharmacologia.2013.249.253 Viana A, 2005, NEUROPHARMACOLOGY, V49, P1042, DOI 10.1016/j.neuropharm.2005.06.002 Viana AF, 2006, FUND CLIN PHARMACOL, V20, P507, DOI 10.1111/j.1472-8206.2006.00440.x Vilela FC, 2010, J MED FOOD, V13, P219, DOI 10.1089/jmf.2008.0303 WACHTEL H, 1986, PSYCHOPHARMACOLOGY, V90, P430 Wang WX, 2008, PROG NEURO-PSYCHOPH, V32, P1179, DOI 10.1016/j.pnpbp.2007.12.021 Wesolowska A, 2007, NEUROPHARMACOLOGY, V52, P1274, DOI 10.1016/j.neuropharm.2007.01.007 Wesolowska A, 2006, NEUROPHARMACOLOGY, V51, P578, DOI 10.1016/j.neuropharm.2006.04.017 Williams J. W., 2011, OVERVIEW COMPLEMENTA World Health Organization, 2016, F00F99 WHO, V1, P332 World Health Organization, 2017, DEPR FACT SHEET World Health Organization (WHO), 2013, WHO TRADITIONAL MED, V54, P2014 WU JC, 1990, AM J PSYCHIAT, V147, P14 Xie H, 2011, FITOTERAPIA, V82, P1086, DOI 10.1016/j.fitote.2011.07.006 Xu C, 2004, J ETHNOPHARMACOL, V91, P345, DOI 10.1016/j.jep.2004.01.012 Xu Q, 2008, BIOL PHARM BULL, V31, P1109, DOI 10.1248/bpb.31.1109 Xu Q, 2008, PROG NEURO-PSYCHOPH, V32, P715, DOI 10.1016/j.pnpbp.2007.11.020 Yan B, 2004, PHARMACOL BIOCHEM BE, V78, P319, DOI 10.1016/j.pbb.2004.04.010 Yao CY, 2009, PHYTOMEDICINE, V16, P823, DOI 10.1016/j.phymed.2009.02.008 Yi LT, 2008, PROG NEURO-PSYCHOPH, V32, P510, DOI 10.1016/j.pnpbp.2007.10.005 Yi LT, 2013, J ETHNOPHARMACOL, V147, P245, DOI 10.1016/j.jep.2013.03.015 Young SN, 2002, PHARMACOL BIOCHEM BE, V71, P857, DOI 10.1016/S0091-3057(01)00670-0 Yu NJ, 2006, J ASIAN NAT PROD RES, V8, P385, DOI 10.1080/10286020500034832 Yu ZF, 2002, J ETHNOPHARMACOL, V83, P161, DOI 10.1016/S0378-8741(02)00211-8 Zanoli P, 2005, J ETHNOPHARMACOL, V102, P102, DOI 10.1016/j.jep.2005.05.040 Zhang ZQ, 2002, PHARMACOL BIOCHEM BE, V72, P39, DOI 10.1016/S0091-3057(01)00730-4 Zhao ZY, 2008, BEHAV BRAIN RES, V194, P108, DOI 10.1016/j.bbr.2008.06.030 Zheng MZ, 2013, J ETHNOPHARMACOL, V147, P108, DOI 10.1016/j.jep.2013.02.015 Zhong HL, 2012, PSYCHOPHARMACOLOGY, V219, P1, DOI 10.1007/s00213-011-2463-5 Zhou BH, 2006, FITOTERAPIA, V77, P592, DOI 10.1016/j.fitote.2006.06.016 Zhou D, 2010, PHARMACOL BIOCHEM BE, V94, P488, DOI 10.1016/j.pbb.2009.11.003 NR 246 TC 23 Z9 26 U1 3 U2 40 PU ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER PI ISSY-LES-MOULINEAUX PA 65 RUE CAMILLE DESMOULINS, CS50083, 92442 ISSY-LES-MOULINEAUX, FRANCE SN 0753-3322 EI 1950-6007 J9 BIOMED PHARMACOTHER JI Biomed. Pharmacother. PD AUG PY 2018 VL 104 BP 343 EP 365 DI 10.1016/j.biopha.2018.05.044 PG 23 WC Medicine, Research & Experimental; Pharmacology & Pharmacy SC Research & Experimental Medicine; Pharmacology & Pharmacy GA GL1BQ UT WOS:000436830700040 PM 29778018 DA 2021-10-15 ER PT J AU Tan, ZJ Yi, YJ Wang, HY Zhou, WL Wang, CY AF Tan, Zhijian Yi, Yongjian Wang, Hongying Zhou, Wanlai Wang, Chaoyun TI Extraction, Preconcentration and Isolation of Flavonoids from Apocynum venetum L. Leaves Using Ionic Liquid-Based Ultrasonic-Assisted Extraction Coupled with an Aqueous Biphasic System SO MOLECULES LA English DT Article DE ionic liquids; ultrasonic-assisted extraction; flavonoids; aqueous biphasic system; isolation ID MASS-SPECTROMETRY; HPLC-DAD; CHROMATOGRAPHY; 2-PHASE; WATER; CONSTITUENTS; SOLVENTS; SAMPLES; LUOBUMA; SCALE AB Background: Ionic liquids (ILs) are considered as green solvents, and widely applied for the extraction of various compounds. Methods: The present research focuses on the extraction of flavonoids from Apocynumvenetum L. leaves by ultrasound-assisted extraction (UAE). Several major influencing factors were optimized. Then, an aqueous biphasic system (ABS) was applied for further isolation of flavonoids. Results: The flavonoids were mainly distributed in the top phase, while impurities were extracted to the bottom phase. The parameters influencing the extraction, namely type and concentration of salt, temperature, and pH, were studied in detail. Under optimized conditions (72.43% IL extract, 28.57% (NH4)(2)SO4, 25 degrees C temperature, pH 4.5), the preconcentration factor and extraction efficiency were found to be 3.78% and 93.35%, respectively. Conclusions: This simple and efficient methodology is expected to see great use in the extraction and isolation of pharmaceutically active components from medicinal plant resources. C1 [Tan, Zhijian; Yi, Yongjian; Wang, Hongying; Zhou, Wanlai; Wang, Chaoyun] Chinese Acad Agr Sci, Inst Bast Fiber Crops, Changsha 410205, Hunan, Peoples R China. RP Tan, ZJ; Wang, CY (corresponding author), Chinese Acad Agr Sci, Inst Bast Fiber Crops, Changsha 410205, Hunan, Peoples R China. EM tanzhijian@caas.cn; ibfcyyj@163.com; Cswhy328@126.com; aruofly@126.com; ibfcwcy@139.com RI Zhou, Wanlai/AAG-9973-2019; Tan, Zhijian/O-9266-2019; Tan, Zhijian/H-3997-2017 OI Tan, Zhijian/0000-0002-3976-0117; Tan, Zhijian/0000-0002-3976-0117 FU National Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC) [21406262]; earmarked fund for the China Agriculture Research System [CARS-19]; Agricultural Science and Technology Innovation Program [ASTIP-IBFC07] FX This work was financially supported by the National Natural Science Foundation of China (No. 21406262), the earmarked fund for the China Agriculture Research System (No. CARS-19), and the Agricultural Science and Technology Innovation Program (No. ASTIP-IBFC07). CR Albishri HM, 2014, TALANTA, V118, P129, DOI 10.1016/j.talanta.2013.10.015 An HJ, 2013, J PHARMACEUT BIOMED, V85, P295, DOI 10.1016/j.jpba.2013.07.005 Archer DG, 2005, J CHEM ENG DATA, V50, P1484, DOI 10.1021/je050136i Bogdanov MG, 2014, GREEN CHEM SUSTAIN T, P127, DOI 10.1007/978-3-662-43628-8_7 Bogdanov MG, 2015, SEP PURIF TECHNOL, V155, P13, DOI 10.1016/j.seppur.2015.02.003 Cao XJ, 2012, RAPID COMMUN MASS SP, V26, P740, DOI 10.1002/rcm.6158 Cao XJ, 2009, ANAL CHIM ACTA, V640, P47, DOI 10.1016/j.aca.2009.03.029 Cao YH, 2001, MIKROCHIM ACTA, V137, P57, DOI 10.1007/s006040170028 Chatel G, 2014, CHEM SOC REV, V43, P8132, DOI 10.1039/c4cs00193a Claudio AFM, 2014, PHYS CHEM CHEM PHYS, V16, P6593, DOI 10.1039/c3cp55285c Claudio AFM, 2012, SEP PURIF TECHNOL, V97, P142, DOI 10.1016/j.seppur.2012.02.036 Duan MH, 2013, SEP PURIF TECHNOL, V107, P26, DOI 10.1016/j.seppur.2013.01.003 Fan JP, 2012, SEP SCI TECHNOL, V47, P1740, DOI 10.1080/01496395.2012.659787 Fredlake CP, 2004, J CHEM ENG DATA, V49, P954, DOI 10.1021/je034261a Freire MG, 2010, GREEN CHEM, V12, P1715, DOI 10.1039/c0gc00179a Freire MG, 2010, J PHYS CHEM A, V114, P3744, DOI 10.1021/jp903292n Grundmann O, 2007, J ETHNOPHARMACOL, V110, P406, DOI 10.1016/j.jep.2006.09.035 Gutowski KE, 2003, J AM CHEM SOC, V125, P6632, DOI 10.1021/ja0351802 Han D, 2011, B KOREAN CHEM SOC, V32, P2212, DOI 10.5012/bkcs.2011.32.7.2212 Irie K, 2009, J NAT MED, V63, P111, DOI 10.1007/s11418-008-0296-2 Kamata K, 2008, J NAT MED-TOKYO, V62, P160, DOI 10.1007/s11418-007-0202-3 Liang TG, 2010, INT J MOL SCI, V11, P4452, DOI 10.3390/ijms11114452 Lin HM, 2013, ULTRASON SONOCHEM, V20, P680, DOI 10.1016/j.ultsonch.2012.10.003 Lin X, 2012, ANALYST, V137, P4076, DOI 10.1039/c2an35476d Ma CH, 2011, ANAL CHIM ACTA, V689, P110, DOI 10.1016/j.aca.2011.01.012 Ma M, 2003, J AGR FOOD CHEM, V51, P2390, DOI 10.1021/jf021055i Neves CMSS, 2009, J PHYS CHEM B, V113, P5194, DOI 10.1021/jp900293v Ozsoy N, 2008, FOOD CHEM, V110, P571, DOI 10.1016/j.foodchem.2008.02.037 Rogers RD, 2007, NATURE, V447, P917, DOI 10.1038/447917a Saleh A, 2009, J CHROMATOGR A, V1216, P6673, DOI 10.1016/j.chroma.2009.08.001 Shi JY, 2011, J LIQ CHROMATOGR R T, V34, P537, DOI 10.1080/10826076.2011.546173 Stoppa A, 2009, J CHEM ENG DATA, V54, P472, DOI 10.1021/je800468h Tan ZJ, 2012, SEP PURIF TECHNOL, V98, P150, DOI 10.1016/j.seppur.2012.06.021 Tang SK, 2012, CHEM SOC REV, V41, P4030, DOI 10.1039/c2cs15362a Xie WY, 2012, J ETHNOPHARMACOL, V141, P1, DOI 10.1016/j.jep.2012.02.003 Yang L, 2011, CHEM ENG J, V175, P539, DOI 10.1016/j.cej.2011.09.110 Yang L, 2011, CHEM ENG J, V172, P705, DOI 10.1016/j.cej.2011.06.039 Yoshida Y, 2007, J PHYS CHEM B, V111, P12204, DOI 10.1021/jp0745236 Zhang LJ, 2010, J SEP SCI, V33, P2035, DOI 10.1002/jssc.201000076 Zhang YC, 2010, J CHROMATOGR B, V878, P3149, DOI 10.1016/j.jchromb.2010.09.027 Zhang YF, 2014, SEP PURIF TECHNOL, V135, P285, DOI 10.1016/j.seppur.2014.04.044 Zhao H, 2005, J CHEM TECHNOL BIOT, V80, P1089, DOI 10.1002/jctb.1333 NR 42 TC 23 Z9 24 U1 2 U2 64 PU MDPI AG PI BASEL PA POSTFACH, CH-4005 BASEL, SWITZERLAND SN 1420-3049 J9 MOLECULES JI Molecules PD MAR PY 2016 VL 21 IS 3 AR 262 DI 10.3390/molecules21030262 PG 11 WC Biochemistry & Molecular Biology; Chemistry, Multidisciplinary SC Biochemistry & Molecular Biology; Chemistry GA DI9DR UT WOS:000373802200104 PM 26959002 OA Green Published, gold, Green Submitted DA 2021-10-15 ER PT J AU GRIFFITHS, HM SINCLAIR, WA DAVIS, RE LEE, IM DALLY, EL GUO, YH CHEN, TA HIBBEN, CR AF GRIFFITHS, HM SINCLAIR, WA DAVIS, RE LEE, IM DALLY, EL GUO, YH CHEN, TA HIBBEN, CR TI CHARACTERIZATION OF MYCOPLASMALIKE ORGANISMS FROM FRAXINUS, SYRINGA, AND ASSOCIATED PLANTS FROM GEOGRAPHICALLY DIVERSE SITES SO PHYTOPATHOLOGY LA English DT Article ID LILAC WITCHES-BROOM; EASTERN X-DISEASE; ASH YELLOWS; MONOCLONAL-ANTIBODIES; WHITE ASH; STRAIN CLUSTER; DNA PROBES; IDENTIFICATION; SEQUENCE; DECLINE AB Mycoplasmalike organisms (MLOs) in six species of ash (Fraxinus) and lilac (Syringa) at 13 locations from southern Quebec and Massachusetts to Zion National Park, Utah, were detected by the DAPI (4'-6-diamidino-2-phenylindole-2HCl) fluorescence test. Relatedness of these MLOs to one another was established through dot hybridization of DNA samples from diseased plants with four ash yellows (AshY)-specific DNA probes and through immunofluorescence microscopy with an AshY-specific monoclonal antibody. In a search for possible alternative plant hosts of the AshY agent, the DAPI test was utilized to detect MLOs in 13 other species growing in the vicinity of diseased ash in central New York State and in two species in Zion National Park. These species were (asterisks indicate first record of microscopic detection of MLOs) *Apocynum cannabinum, *Asclepias syriaca, Aster novae-angliae, *Carya cordiformis, *Cornus racemosa, *Chrysopsis villosa, *Chrysothamnus nauseosus, *Epilobium ciliatum, *Lotus corniculatus, Prunus virginiana, Salix sp., *Solidago rugosa, and *Spiraea tomentosa. With the exception of P. virginiana, which contained an X-disease MLO, none of these species was found to be diseased at more than three of the 24 sites of AshY occurrence that were surveyed. Diseased phloem of 10 of these species was tested with the AshY-specific monoclonal antibody and did not react with it. A 1.2-kb fragment of DNA of the 16S ribosomal RNA gene was amplified by polymerase chain reaction from each of four MLO strains from ash and lilac, one strain each from A. syriaca, C. racemosa, S. rugosa, and S. tomentosa, and three reference strains from other sources, maintained in periwinkle (Catharanthus roseus). Restriction fragments obtained by digestion of the amplified products with enzymes AluI, KpnI, and MseI were similar for the ash and lilac MLOs and differentiated them from the others tested. The MLOs detected in A. novae-angliae, C. racemosa, and L. corniculatus were related to members of the aster yellows MLO group on the basis of reaction with an aster yellows-specific monoclonal antibody. This finding for C. racemosa was supported by results of restriction enzyme analysis of the 16S ribosomal DNA fragment. To date, Syringa spp. are the only known alternative hosts of AshY MLOs. C1 USDA ARS,MOLEC PLANT PATHOL LAB,BELTSVILLE,MD 20705. RUTGERS STATE UNIV,COOK COLL,DEPT PLANT PATHOL,NEW BRUNSWICK,NJ 08903. BROOKLYN BOTAN GARDEN,BROOKLYN,NY. RP GRIFFITHS, HM (corresponding author), CORNELL UNIV,DEPT PLANT PATHOL,ITHACA,NY 14853, USA. CR AHRENS U, 1992, PHYTOPATHOLOGY, V82, P828, DOI 10.1094/Phyto-82-828 BEGTRUP J, 1975, Phytopathologische Zeitschrift, V83, P119 BRAUN EJ, 1979, PHYTOPATHOLOGY, V69, P354, DOI 10.1094/Phyto-69-354 Bricker J. S., 1992, Phytopathology, V82, P1170 CONNERS IL, 1944, 23RD CAN DEP AGR CAN CRAFT CM, 1987, THESIS STATE U NEW Y DAVIS RE, 1992, MOL PLANT MICROBE IN, V5, P163, DOI 10.1094/MPMI-5-163 DAVIS RE, 1990, PHYTOPATHOLOGY, V80, P789, DOI 10.1094/Phyto-80-789 ERRAMPALLI D, 1991, PLANT DIS, V75, P579, DOI 10.1094/PD-75-0579 FERRIS MA, 1989, PHYTOPATHOLOGY, V79, P579, DOI 10.1094/Phyto-79-579 FRAZIER N. W., 1945, Hilgardia, V16, P621 FREITAG JH, 1962, PHYTOPATHOLOGY, V52, P128 GILMER RM, 1960, PHYTOPATHOLOGY, V50, P636 Golino DA., 1989, MYCOPLASMAS, P545, DOI [10.1016/B978-0-12-078405-9.50019-7, DOI 10.1016/B978-0-12-078405-9.50019-7] Griffiths H. M., 1992, Phytopathology, V82, P1170 Guo Y. H., 1993, Phytopathology, V83, P243 HARRISON NA, 1992, PHYTOPATHOLOGY, V82, P216, DOI 10.1094/Phyto-82-216 HIBBEN C R, 1989, Journal of Environmental Horticulture, V7, P163 HIBBEN CR, 1971, PHYTOPATHOLOGY, V61, P151, DOI 10.1094/Phyto-61-151 HIBBEN CR, 1991, PLANT DIS, V75, P1227, DOI 10.1094/PD-75-1227 HIBBEN CR, 1986, PLANT DIS, V70, P342, DOI 10.1094/PD-70-342 HOLMES FO, 1972, PHYTOPATHOLOGY, V62, P826, DOI 10.1094/Phyto-62-826 JIANG YP, 1989, CAN J PLANT PATHOL, V11, P325, DOI 10.1080/07060668909501074 KIRKPATRICK BC, 1987, SCIENCE, V238, P198 Lee I. M., 1988, Molecular Plant-Microbe Interactions, V1, P303, DOI 10.1094/MPMI-1-303 LEE IM, 1992, J BACTERIOL, V174, P6694, DOI 10.1128/JB.174.20.6694-6698.1992 LEE IM, 1990, APPL ENVIRON MICROB, V56, P1471, DOI 10.1128/AEM.56.5.1471-1475.1990 LEE IM, 1993, PHYTOPATHOLOGY, V83, P834, DOI 10.1094/Phyto-83-834 LEE IM, 1991, APPL ENVIRON MICROB, V57, P3565, DOI 10.1128/AEM.57.12.3565-3569.1991 LEE IM, 1992, PHYTOPATHOLOGY, V82, P977, DOI 10.1094/Phyto-82-977 LEE IM, 1993, PHYTOPATHOLOGY, V83, P829, DOI 10.1094/Phyto-83-829 Lee Ing-Ming, 1992, P379 LIM PO, 1989, J BACTERIOL, V171, P5901, DOI 10.1128/jb.171.11.5901-5906.1989 LIN CP, 1985, SCIENCE, V227, P1233, DOI 10.1126/science.227.4691.1233 LIN CP, 1986, PHYTOPATHOLOGY, V76, P45, DOI 10.1094/Phyto-76-45 LULEY CJ, 1992, PLANT DIS, V76, P1209, DOI 10.1094/PD-76-1209 Matteoni J. A., 1988, Tree mycoplasmas and mycoplasma diseases., P19 MATTEONI JA, 1983, PHYTOPATHOLOGY, V73, P398, DOI 10.1094/Phyto-73-398 MATTEONI JA, 1985, PHYTOPATHOLOGY, V75, P355, DOI 10.1094/Phyto-75-355 MAURER R, 1992, IOM LETT, V2, P149 RAJU BC, 1976, PLANT DIS REP, V60, P462 Sambrook J, 1989, MOL CLONING LABORATO SCHAFF D, 1992, BIOCHEM BIOPH RES CO, V186, P1503, DOI 10.1016/S0006-291X(05)81576-1 SCHNEIDER B, 1993, J GEN MICROBIOL, V139, P519, DOI 10.1099/00221287-139-3-519 SEEMUELLER E, 1976, Acta Horticulturae (Wageningen), V67, P109 SINCLAIR W A, 1991, Phytopathology, V81, P1235 SINCLAIR WA, 1990, PLANT DIS, V74, P604, DOI 10.1094/PD-74-0604 SINCLAIR WA, 1989, PLANT DIS, V73, P432, DOI 10.1094/PD-73-0432 SINCLAIR WA, 1993, CAN J FOREST RES, V23, P2467, DOI 10.1139/x93-306 SINCLAIR WA, 1992, PLANT DIS, V76, P154, DOI 10.1094/PD-76-0154 STUTZ J C, 1989, Phytopathology, V79, P1149 THORNBERRY HH, 1966, USDA AGR HDB, V307 NR 52 TC 23 Z9 24 U1 0 U2 6 PU AMER PHYTOPATHOLOGICAL SOC PI ST PAUL PA 3340 PILOT KNOB ROAD, ST PAUL, MN 55121 SN 0031-949X J9 PHYTOPATHOLOGY JI Phytopathology PD FEB PY 1994 VL 84 IS 2 BP 119 EP 126 DI 10.1094/Phyto-84-119 PG 8 WC Plant Sciences SC Plant Sciences GA NA578 UT WOS:A1994NA57800003 DA 2021-10-15 ER PT J AU NILSSON, S ENDRESS, ME GRAFSTROM, E AF NILSSON, S ENDRESS, ME GRAFSTROM, E TI ON THE RELATIONSHIP OF THE APOCYNACEAE AND PERIPLOCACEAE SO GRANA LA English DT Article AB It is generally agreed that the Periplocaceae arose from apocynaceous ancestors. Whether these ancestors were from the Plumerioideae, Cerberoideae or Apocynoideae has long been in dispute. This investigation is a comparative study of the pollen morphology and floral structure of selected genera of Apocynaceae and Periplocaceae. The examinded genera of the Plumerioideae and the Cerberoideae have 3-colporate, smooth to sculptured pollen grains. In the Apocynoideae there are single, smooth, 2-3-porate pollen grains or 3-to multiporate grains loosely united in tetrads of variable size and shape. The exine consists of an outer thick, homogeneous stratum subtended by a very thin, granular-fibrillar stratum, and globules; the internal septa are double-layered due to partial fusion of the tecta of the individual grains. The genera of Periplocaceae have pollen grains united in elongated, rhomboidal to rounded, or tetrahedral and decussate tetrads with few to many pores, pairwise, opposite or irregularly arranged. The exine consists of a homogeneous outer stratum and a thin granular stratum below. The internal walls (septa) are relatively thin, and perforate. Hemidesmus has an aggregation (massula) of elongated tetrads with indistinct pores. The exine is divided into a compact outer stratum and an inner, fairly thick, granular stratum. The inner walls (septa) are thin, granular, and non-perforated. Trends in floral structure center around increasing precision of the pollination mechanism for transport of pollen en masse. In the Apocynaceae this is mainly effected by the androceum and gynoecium. In the Periplocaceae the corona is also incorporated. Porate tetrads are correlated to a large extent with the advent of translators. Style-head secretions evolve from foamy adhesive for the transport of single pollen grains in the Apocynaceae to firm translators transporting pollen tetrads in the Periplocaceae and in Forsteronia, Apocynum, Poacynum and Trachomitum. The latter three genera are so similar in all respects that recognition of more than one genus seems unjustified. With special reference to pollen morphology a possible trend of evolution is postulated from taxa with single, 3-colporate grains to 3-porate grains and from taxa with pollen united in tetrads with compact inner walls as in the Apocynoideae, to taxa of the Periplocaceae with tetrads perforated septa and to taxa with pollen (tetrads) in masses. The Periplocaceae appear unrelated to the Plumerioideae and the Cerberoideae. The similarity between tetrads of Apocynum s.l. and Periplocaceae is here regarded as parallel evolution within two closely related lineages. RP NILSSON, S (corresponding author), SWEDISH MUSEUM NAT HIST,PALYNOL LAB,S-10405 STOCKHOLM,SWEDEN. NR 0 TC 23 Z9 27 U1 0 U2 3 PU SCANDINAVIAN UNIVERSITY PRESS PI OSLO PA PO BOX 2959 TOYEN, JOURNAL DIVISION CUSTOMER SERVICE, N-0608 OSLO, NORWAY SN 0017-3134 J9 GRANA JI Grana PY 1993 SU 2 BP 3 EP 20 DI 10.1080/00173139309428973 PG 18 WC Plant Sciences SC Plant Sciences GA PF063 UT WOS:A1993PF06300002 OA Bronze DA 2021-10-15 ER PT J AU Kim, DW Yokozawa, T Hattori, M Kadota, S Namba, T AF Kim, DW Yokozawa, T Hattori, M Kadota, S Namba, T TI Inhibitory effects of an aqueous extract of Apocynum venetum leaves and its constituents on Cu2+-induced oxidative modification of low density lipoprotein SO PHYTOTHERAPY RESEARCH LA English DT Article DE Apocynum venetum; LDL; TBARS formation; conjugated-diene ID INVITRO OXIDATION; DIABETIC-PATIENTS; HEART-DISEASE; FLAVONOIDS; PLASMA; SUSCEPTIBILITY; CHOLESTEROL; LDL AB An aqueous extract of Apocynum venetum leaves and its constituents inhibited thiobarbituric acid reactive substances (TBARS) and conjugated-diene formation in the Cu2+-induced oxidation of low density lipoprotein (LDL) in vitro, The TEARS formation was most strongly inhibited by chlorogenic acid with an IC50 value of 1.9 muM, but other constituents were in a range of 2.3-23.3 muM. On the other hand, the lag time in the conjugated-diene formation was dose-dependently prolonged by addition of the aqueous extract, Catechin prolonged the lag time more than 300 min and other constituents such as chlorogenic acid, epicatechin, epigallocatechin, hyperoside and isoquercitrin led to no conjugated-diene formation within 700 min under the experimental conditions, Copyright (C) 2000 John Wiley & Sons, Ltd. C1 Toyama Med & Pharmaceut Univ, Inst Nat Med, Toyama 9300194, Japan. RP Hattori, M (corresponding author), Toyama Med & Pharmaceut Univ, Inst Nat Med, 2630 Sugitani, Toyama 9300194, Japan. CR CESTARO B, 1994, BIOCHEM MOL BIOL INT, V32, P983 DEWHALLEY CV, 1990, BIOCHEM PHARMACOL, V39, P1743, DOI 10.1016/0006-2952(90)90120-A ESTERBAUER H, 1989, FREE RADICAL RES COM, V6, P67, DOI 10.3109/10715768909073429 FRANKEL EN, 1993, LANCET, V341, P454, DOI 10.1016/0140-6736(93)90206-V GUGLIUCCI A, 1994, BIOCHEM MOL BIOL INT, V32, P139 Kim D. W., 1998, Journal of Traditional Medicines, V15, P40 Kim DW, 1998, PHYTOTHER RES, V12, P46, DOI 10.1002/(SICI)1099-1573(19980201)12:1<46::AID-PTR169>3.0.CO;2-I Laranjinha J, 1996, BIOCHEM PHARMACOL, V51, P395, DOI 10.1016/0006-2952(95)02171-X LAVY A, 1991, METABOLISM, V40, P794, DOI 10.1016/0026-0495(91)90005-H LOWRY OH, 1951, J BIOL CHEM, V193, P265 MA YX, 1989, CHIN J MOD DEV TRAD, V9, P335 MIURA S, 1994, BIOL PHARM BULL, V17, P1567 MYARA I, 1993, J PHARMACOL TOXICOL, V30, P69, DOI 10.1016/1056-8719(93)90009-4 NENSETER MS, 1994, BBA-LIPID LIPID MET, V1213, P207, DOI 10.1016/0005-2760(94)90028-0 QING ZN, 1988, B CHIN MAT MED, V13, P44 SATO K, 1990, ARCH BIOCHEM BIOPHYS, V279, P402, DOI 10.1016/0003-9861(90)90508-V STEINBERG D, 1993, NEW ENGL J MED, V328, P1487, DOI 10.1056/NEJM199305203282012 STEINBERG D, 1989, NEW ENGL J MED, V320, P915 VINSON JA, 1995, J AGR FOOD CHEM, V43, P2800, DOI 10.1021/jf00059a005 YAGI K, 1976, BIOCHEM MED METAB B, V15, P212, DOI 10.1016/0006-2944(76)90049-1 Yamanaka N, 1997, FEBS LETT, V405, P186, DOI 10.1016/S0014-5793(97)00185-3 Yokozawa Takako, 1997, Natural Medicines, V51, P325 NR 22 TC 22 Z9 27 U1 0 U2 13 PU JOHN WILEY & SONS LTD PI W SUSSEX PA BAFFINS LANE CHICHESTER, W SUSSEX PO19 1UD, ENGLAND SN 0951-418X J9 PHYTOTHER RES JI Phytother. Res. PD NOV PY 2000 VL 14 IS 7 BP 501 EP 504 DI 10.1002/1099-1573(200011)14:7<501::AID-PTR655>3.0.CO;2-B PG 4 WC Chemistry, Medicinal; Pharmacology & Pharmacy SC Pharmacology & Pharmacy GA 371WN UT WOS:000165202400004 PM 11054838 DA 2021-10-15 ER PT J AU Xiang, J Tang, YP Zhou, ZY Wu, P Wang, Z Mori, M Cai, DF AF Xiang, Jun Tang, Yu-Ping Zhou, Zi-Yi Wu, Pin Wang, Zhong Mori, Masao Cai, Ding-Fang TI Apocynum venetum leaf extract protects rat cortical neurons from injury induced by oxygen and glucose deprivation in vitro SO CANADIAN JOURNAL OF PHYSIOLOGY AND PHARMACOLOGY LA English DT Article DE Apocynum venetum leaf extract; oxygen and glucose deprivation; apoptosis; neuron ID FOCAL CEREBRAL-ISCHEMIA; MEDIATED APOPTOSIS; ARTERY OCCLUSION; CELL-DEATH; INHIBITION; MECHANISMS; COMPONENTS; PENUMBRA; LUOBUMA; LEAVES AB This study aimed to investigate the protective effect of Apocynum venetum leaf extract (AVLE) on an in vitro model of ischemia-reperfusion induced by oxygen and glucose deprivation (OGD) and further explored the possible mechanisms underlying protection. Cell injury was assessed by morphological examination using phase-contrast microscopy and quantified by measuring the amount of lactate dehydrogenase (LDH) leakage; cell viability was measured by XTT reduction. Neuronal apoptosis was determined by flow cytometry, and electron microscopy was used to study morphological changes of neurons. Caspase-3, -8, and -9 activation and Bcl-2/Bax protein expression were determined by Western blot analysis. We report that treatment with AVLE (5 and 50 mu g/mL) effectively reduced neuronal cell death and relieved cell injury induced by OGD. Moreover, AVLE decreased the percentage of apoptotic neurons, relieved neuronal morphological damage, suppressed overexpression of active caspase-3 and -8 and Box, and inhibited the reduction of Bcl-2 expression. These findings indicate that AVLE protects against OGD-induced injury by inhibiting apoptosis in rat cortical neurons by down-regulating caspase-3 activation and modulating the Bcl-2/Bax ratio. C1 [Xiang, Jun; Tang, Yu-Ping; Zhou, Zi-Yi; Wu, Pin; Cai, Ding-Fang] Fudan Univ, Zhongshan Hosp, Lab Neurol, Inst Integrat Med, Shanghai 200032, Peoples R China. [Zhou, Zi-Yi] Guangzhou Univ Tradit Chinese Med, Guangdong Prov Hosp Tradit Chinese Med, Affiliated Hosp 2, Dept Neurol 1, Guangzhou 510120, Guangdong, Peoples R China. [Wang, Zhong; Mori, Masao] Wakan Shoyaku Bot Inst, Tokyo 999001, Japan. RP Cai, DF (corresponding author), Fudan Univ, Zhongshan Hosp, Lab Neurol, Inst Integrat Med, 180 Fenglin Rd, Shanghai 200032, Peoples R China. EM dingfangcai@163.com FU National Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC) [30700252] FX AVLE was kindly provided by the Wakan Shoyaku Botany Institute, Tokyo, Japan. This study was supported by the National Natural Science Foundation of China (grant No. 30700252). CR [Anonymous], 2002, SPSS 11 5 WIND COMP Benchoua A, 2001, J NEUROSCI, V21, P7127, DOI 10.1523/JNEUROSCI.21-18-07127.2001 Bosel J, 2005, J NEUROCHEM, V92, P1386, DOI 10.1111/j.1471-4159.2004.02980.x Canas PT, 2006, ANESTHESIOLOGY, V105, P990, DOI 10.1097/00000542-200611000-00021 Chen J, 1998, J NEUROSCI, V18, P4914 Dirnagl U, 1999, TRENDS NEUROSCI, V22, P391, DOI 10.1016/S0166-2236(99)01401-0 Eldadah BA, 1997, J NEUROSCI, V17, P6105 Fattorusso R, 2006, PHYTOMEDICINE, V13, P16, DOI 10.1016/j.phymed.2005.03.004 Ferrer I, 2003, J NEUROPATH EXP NEUR, V62, P329, DOI 10.1093/jnen/62.4.329 Fisher M, 2004, CEREBROVASC DIS, V17, P1, DOI 10.1159/000074790 GOLDBERG MP, 1993, J NEUROSCI, V13, P3510 Gong QH, 2007, ACTA PHARMACOL SIN, V28, P1724, DOI 10.1111/j.1745-7254.2007.00666.x Gottron FJ, 1997, MOL CELL NEUROSCI, V9, P159, DOI 10.1006/mcne.1997.0618 Grundmann O, 2007, J ETHNOPHARMACOL, V110, P406, DOI 10.1016/j.jep.2006.09.035 Kim DW, 2000, PHYTOTHER RES, V14, P501, DOI 10.1002/1099-1573(200011)14:7<501::AID-PTR655>3.0.CO;2-B Kim DW, 2000, J ETHNOPHARMACOL, V72, P53, DOI 10.1016/S0378-8741(00)00197-5 Kwan CY, 2005, CLIN EXP PHARMACOL P, V32, P789, DOI 10.1111/j.1440-1681.2005.04255.x Lei B, 2004, NEUROSCIENCE, V125, P691, DOI 10.1016/j.neuroscience.2004.02.034 Li H, 2000, STROKE, V31, P176, DOI 10.1161/01.STR.31.1.176 LI Y, 1995, J CEREBR BLOOD F MET, V15, P389, DOI 10.1038/jcbfm.1995.49 Li Y, 1998, J NEUROL SCI, V156, P119, DOI 10.1016/S0022-510X(98)00036-7 Malagelada C, 2005, NEUROBIOL DIS, V20, P27, DOI 10.1016/j.nbd.2005.01.028 Malagelada C, 2004, STROKE, V35, P2396, DOI 10.1161/01.STR.0000141160.66818.24 Shibata M, 2003, NEUROSCIENCE, V118, P491, DOI 10.1016/S0306-4522(02)00910-7 Vaghefi H, 2004, J BIOL CHEM, V279, P15604, DOI 10.1074/jbc.M311500200 Yokozawa T, 2004, FOOD CHEM TOXICOL, V42, P975, DOI 10.1016/j.fct.2004.02.010 Yokozawa T, 2002, BIOL PHARM BULL, V25, P748, DOI 10.1248/bpb.25.748 Yu XQ, 2008, LIFE SCI, V82, P68, DOI 10.1016/j.lfs.2007.10.019 Zhang WH, 2003, P NATL ACAD SCI USA, V100, P16012, DOI 10.1073/pnas.2534856100 NR 29 TC 21 Z9 21 U1 0 U2 15 PU CANADIAN SCIENCE PUBLISHING PI OTTAWA PA 65 AURIGA DR, SUITE 203, OTTAWA, ON K2E 7W6, CANADA SN 0008-4212 EI 1205-7541 J9 CAN J PHYSIOL PHARM JI Can. J. Physiol. Pharmacol. PD SEP PY 2010 VL 88 IS 9 BP 907 EP 917 DI 10.1139/Y10-069 PG 11 WC Pharmacology & Pharmacy; Physiology SC Pharmacology & Pharmacy; Physiology GA 658GU UT WOS:000282479300006 PM 20921977 DA 2021-10-15 ER PT J AU Zhuang, L Chen, YN AF Zhuang, L Chen, YN TI Physiological responses of three contrasting plant species to groundwater level changes in an arid environment SO JOURNAL OF INTEGRATIVE PLANT BIOLOGY LA English DT Article DE Apocynum venetumas; groundwater level; membership function method; Populus euphratica; Tamarix ramosissima; Tarim River ID LEAVES AB Plants growing on both sides of the Tarim River in western China serve as a natural barrier containing the deserts and protecting the oasis, and their growth is greatly affected by water conditions in their local habitat. We studied the physiological responses of three different types plants (i.e. Populus euphratica Oliver, Tamarix ramosissima L., and Apocynum venetumas Linn) to changing groundwater levels by analyzing changes in chlorophyll, soluble sugar, proline (Pro), malondialdehyde (MDA), superoxide dismutase (SOD), peroxidase (POD), indoleacetic acid (IAA), giberellic acid, abscisic acid (ABA) and cytokinin (CK). Relationships between these physiological characteristics and groundwater levels were analyzed in order to assess the drought tolerance of the three plant species based on the values of average membership function. We found that MDA, SOD and ABA were more susceptible to changes in groundwater level, followed by POD, IAA and CK. Among the three plant species, Populus euphratica responded physiologically less to changing groundwater level than T. ramosissima and A. venetumas. C1 Chinese Acad Sci, Xinjiang Inst Ecol & Geog, Urumqi 830011, Peoples R China. RP Chen, YN (corresponding author), Chinese Acad Sci, Xinjiang Inst Ecol & Geog, Urumqi 830011, Peoples R China. EM chenyn@ms.xjb.ac.cn RI Chen, Yaning/A-2338-2019; chen, yaning/AAN-8170-2020; chen, yaning/D-4047-2013 CR Babitha MP, 2002, PLANT PATHOL, V51, P480, DOI 10.1046/j.1365-3059.2002.00733.x [曹琴 Cao Qin], 2004, [生态学报, Acta Ecologica Sinica], V24, P806 Cavalcanti FR, 2004, NEW PHYTOL, V163, P563, DOI 10.1111/j.1469-8137.2004.01139.x Chen YN, 2004, ACTA BOT SIN, V46, P1393 CHEN YN, 2004, PROG NAT SCI, V14, P49 Conklin PL, 2004, PLANT CELL ENVIRON, V27, P959, DOI 10.1111/j.1365-3040.2004.01203.x Ederli L, 2004, PHYSIOL PLANTARUM, V121, P66, DOI 10.1111/j.0031-9317.2004.00295.x Gao Jie, 2004, Acta Phytoecologica Sinica, V28, P186 Goh CH, 2003, PLANT J, V36, P240, DOI 10.1046/j.1365-313X.2003.01872.x Jin S, 2000, PLANT CELL ENVIRON, V23, P51, DOI 10.1046/j.1365-3040.2000.00520.x [刘加珍 Liu Jiazhen], 2004, [生态学报, Acta Ecologica Sinica], V24, P379 Luna C, 2000, PLANT BREEDING, V119, P341, DOI 10.1046/j.1439-0523.2000.00504.x Maggio A, 1997, PHYSIOL PLANTARUM, V101, P240, DOI 10.1034/j.1399-3054.1997.1010131.x Nicotra AB, 2003, PLANT CELL ENVIRON, V26, P1893, DOI 10.1046/j.1365-3040.2003.01106.x Prakash M, 2000, J AGRON CROP SCI, V184, P153, DOI 10.1046/j.1439-037x.2000.00330.x REN HX, 2001, ACTA PHYTOECOL SIN, V25, P709 RUAN X, 2000, ACTA PHYTOPHYSIOLOGI, V26, P402 Sofo A, 2004, PHYSIOL PLANTARUM, V121, P58, DOI 10.1111/j.0031-9317.2004.00294.x Song Y. D., 2000, RES WATER RESOURCE E Xiao CW, 2005, TREES-STRUCT FUNCT, V19, P711, DOI 10.1007/s00468-005-0435-2 Xiao CW, 2005, PHOTOSYNTHETICA, V43, P467, DOI 10.1007/s11099-005-0075-1 Yang ShuShen, 2004, Scientia Agricultura Sinica, V37, P460 Ye CJ, 2002, ACTA BOT SIN, V44, P788 YMAMOTO A, 2001, WEED BIOL MANAG, V3, P98 YUE SJ, 1994, PLANT PHYSL COMMUN, V30, P207 ZHU GL, 1983, PLANT PHYSL COMMUNIC, V4, P1 陈亚宁, 2004, [中国科学. D辑, 地球科学, Science in China], V34, P475 NR 27 TC 21 Z9 31 U1 0 U2 20 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1672-9072 EI 1744-7909 J9 J INTEGR PLANT BIOL JI J. Integr. Plant Biol. PD MAY PY 2006 VL 48 IS 5 BP 520 EP 526 DI 10.1111/j.1744-7909.2006.00238.x PG 7 WC Biochemistry & Molecular Biology; Plant Sciences SC Biochemistry & Molecular Biology; Plant Sciences GA 038VM UT WOS:000237257600004 DA 2021-10-15 ER PT J AU Hao, XL Kang, Y Li, JK Li, QS Liu, EL Liu, XX AF Hao, Xu-Liang Kang, Ya Li, Jian-Kuan Li, Qing-Shan Liu, En-Li Liu, Xiao-Xia TI Protective effects of hyperoside against H2O2-induced apoptosis in human umbilical vein endothelial cells SO MOLECULAR MEDICINE REPORTS LA English DT Article DE hyperoside; HUVECs; hydrogen peroxide; apoptosis; oxidative stress ID TERT-BUTYL HYDROPEROXIDE; BCL-2 FAMILY PROTEINS; APOCYNUM-VENETUM; HYDROGEN-PEROXIDE; OXIDATIVE STRESS; INDUCED INJURY; NITRIC-OXIDE; ATHEROSCLEROSIS; DYSFUNCTION; MODULATE AB The vascular endothelium is important in the physiological homeostasis of blood vessels. Increasing evidence demonstrates that oxidative stress-induced endothelial damage is involved in the pathogenesis of several cardiovascular diseases, including atherosclerosis. Hyperoside, one of major active components from Apocynum venetum L. (Luo-Bu-Ma), which is a traditional Chinese herbal medicine commonly used for the prevention of cardiovascular diseases, exhibits diverse bioactivities, including anti-inflammatory and antioxidant effects. In the present study, the protective effects of hyperoside against hydrogen peroxide (H2O2)-induced apoptosis of human umbilical vein endothelial cells (HUVECs) were investigated. The results demonstrated that hyperoside significantly prevented the loss of cell viability, the increase of endothelial Ca2+ content and apoptosis in H2O2-induced HUVECs. Additionally, reverse transcription-polymerase chain reaction and western blot analysis revealed that hyperoside significantly decreased the mRNA expression levels of B-cell lymphoma (Bcl)-2 associated X protein (Bax), cleaved caspase-3 and phosphorylated-p38, while increasing the mRNA expression of Bcl-2 in H2O2-induced HUVECs. The present findings suggested that hyperoside has protective effects against H2O2-induced apoptosis in HUVECs and serves a key role in the prevention of cardiovascular diseases. C1 [Hao, Xu-Liang; Kang, Ya; Liu, Xiao-Xia] Shanxi Prov Acad Tradit Chinese Med, Inst Chinese Med Prescript, 121 Univ Ave, Taiyuan 030012, Shanxi, Peoples R China. [Li, Jian-Kuan; Li, Qing-Shan; Liu, En-Li] Shanxi Med Univ, Sch Pharmaceut Sci, 56 Xinjian South Rd, Taiyuan 030012, Shanxi, Peoples R China. RP Hao, XL (corresponding author), Shanxi Prov Acad Tradit Chinese Med, Inst Chinese Med Prescript, 121 Univ Ave, Taiyuan 030012, Shanxi, Peoples R China.; Li, QS (corresponding author), Shanxi Med Univ, Sch Pharmaceut Sci, 56 Xinjian South Rd, Taiyuan 030012, Shanxi, Peoples R China. EM hxliang-01@163.com; sxlqs2012@163.com RI Jiankuan, Li/J-7237-2019 OI Jiankuan, Li/0000-0001-5615-9588 FU National Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC) [81274132, 81172938]; Top Science and Technology Innovation Teams of Higher Learning Institutions of Shanxi Province FX The present study was financially supported by the National Natural Science Foundation of China (nos. 81274132 and 81172938), and the Top Science and Technology Innovation Teams of Higher Learning Institutions of Shanxi Province. CR Antonsson B, 2004, MOL CELL BIOCHEM, V256, P141, DOI 10.1023/B:MCBI.0000009865.70898.36 Burlacu A, 2003, J CELL MOL MED, V7, P249, DOI 10.1111/j.1582-4934.2003.tb00225.x Cai H, 2000, CIRC RES, V87, P840, DOI 10.1161/01.RES.87.10.840 Chen Hong-yan, 2010, Yaoxue Xuebao, V45, P26 Chen ZW, 1999, ACTA PHARMACOL SIN, V20, P27 Choy JC, 2001, J MOL CELL CARDIOL, V33, P1673, DOI 10.1006/jmcc.2001.1419 Cory S, 2002, NAT REV CANCER, V2, P647, DOI 10.1038/nrc883 Deanfield JE, 2007, CIRCULATION, V115, P1285, DOI 10.1161/CIRCULATIONAHA.106.652859 Harrison D, 2003, AM J CARDIOL, V91, p7A Hetz C, 2006, SCIENCE, V312, P572, DOI 10.1126/science.1123480 Ju HY, 2012, FOOD CHEM TOXICOL, V50, P492, DOI 10.1016/j.fct.2011.11.036 Kasimu R, 2015, J ETHNOPHARMACOL, V168, P116, DOI 10.1016/j.jep.2015.03.013 Kim YJ, 2012, BIOL PHARM BULL, V35, P2023, DOI 10.1248/bpb.b12-00592 Ku SK, 2015, INFLAMMATION, V38, P784, DOI 10.1007/s10753-014-9989-8 Lau YS, 2012, J ETHNOPHARMACOL, V143, P565, DOI 10.1016/j.jep.2012.07.012 Li HB, 2008, PHARMACOLOGY, V82, P105, DOI 10.1159/000139146 Li ZL, 2012, J ETHNOPHARMACOL, V139, P388, DOI 10.1016/j.jep.2011.11.020 Liu RL, 2012, BRAIN RES, V1469, P164, DOI 10.1016/j.brainres.2012.06.044 Liu ZY, 2005, BIOMED PHARMACOTHER, V59, P481, DOI 10.1016/j.biopha.2005.06.009 Mates JM, 2000, INT J BIOCHEM CELL B, V32, P157, DOI 10.1016/S1357-2725(99)00088-6 Riedl SJ, 2004, NAT REV MOL CELL BIO, V5, P897, DOI 10.1038/nrm1496 Runchel C, 2011, ANTIOXID REDOX SIGN, V15, P205, DOI 10.1089/ars.2010.3733 Tornero D, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0020423 Wang WQ, 2015, AM J CHINESE MED, V43, P71, DOI 10.1142/S0192415X15500056 XIA ZG, 1995, SCIENCE, V270, P1326, DOI 10.1126/science.270.5240.1326 Xie WY, 2012, J ETHNOPHARMACOL, V141, P1, DOI 10.1016/j.jep.2012.02.003 Youle RJ, 2008, NAT REV MOL CELL BIO, V9, P47, DOI 10.1038/nrm2308 NR 27 TC 20 Z9 24 U1 2 U2 21 PU SPANDIDOS PUBL LTD PI ATHENS PA POB 18179, ATHENS, 116 10, GREECE SN 1791-2997 EI 1791-3004 J9 MOL MED REP JI Mol. Med. Rep. PD JUL PY 2016 VL 14 IS 1 BP 399 EP 405 DI 10.3892/mmr.2016.5235 PG 7 WC Oncology; Medicine, Research & Experimental SC Oncology; Research & Experimental Medicine GA DQ9TH UT WOS:000379551700052 PM 27176644 OA Bronze DA 2021-10-15 ER PT J AU Zhou, CL Liu, Y Su, D Gao, GH Zhou, XM Sun, LL Ba, XG Chen, XH Bi, KS AF Zhou, Chunling Liu, Yang Su, Dan Gao, Guanghui Zhou, Xiaomian Sun, Lingling Ba, Xinguo Chen, Xiaohui Bi, Kaishun TI A Sensitive LC-MS-MS Method for Simultaneous Quantification of Two Structural Isomers, Hyperoside and Isoquercitrin: Application to Pharmacokinetic Studies SO CHROMATOGRAPHIA LA English DT Article DE Column liquid chromatography-tandem mass spectrometry; Pharmacokinetics; Hyperoside; Isoquercitrin ID APOCYNUM-VENETUM L.; ANTIOXIDANT ACTIVITY; IN-VITRO; ABSORPTION; FLAVONOIDS; RATS; QUERCETIN; CONSTITUENTS; COMPONENTS; GLYCOSIDES AB We report the development and validation of a rapid, specific, and sensitive liquid chromatographic-tandem mass spectrometric (LC-MS-MS) method for analysis and pharmacokinetic study, in rats, of hyperoside and isoquercitrin, two bioactive structural isomers present in the leaves of Apocynum venetum L. After simple deproteinization by addition of acetonitrile, the analytes were separated on a C-18 column. Detection was by tandem mass spectrometry in multiple reaction monitoring mode. The method was linear over the concentration range 3.9-195 ng mL(-1) for both hyperoside and isoquercitrin. Intra-day and inter-day precision for both hyperoside and isoquercitrin were < 13.1%, and relative errors were all within 7.1% at all QC levels. The method was used to study the pharmacokinetic performance of the compounds after oral administration of an extract of Apocynum venetum L. leaves to rats. C1 [Zhou, Chunling; Zhou, Xiaomian; Chen, Xiaohui; Bi, Kaishun] Shenyang Pharmaceut Univ, Dept Pharmaceut Anal, Shenyang 110016, Peoples R China. [Zhou, Chunling; Liu, Yang; Gao, Guanghui; Sun, Lingling; Ba, Xinguo] Liaoning Prov Inst Control Food & Drugs, Shenyang 110023, Peoples R China. [Su, Dan] NPEC, Nanchang 330006, Peoples R China. [Su, Dan] Jiangxi Univ Chinese Tradit Med, Nanchang 330006, Peoples R China. RP Bi, KS (corresponding author), Shenyang Pharmaceut Univ, Dept Pharmaceut Anal, 103 Wenhua Rd, Shenyang 110016, Peoples R China. EM bikaishun@yahoo.com CR Aziz AA, 1998, FREE RADICAL RES, V29, P257, DOI 10.1080/10715769800300291 Butterweck V, 2003, PHARMACOL BIOCHEM BE, V75, P557, DOI 10.1016/S0091-3057(03)00118-7 Cao YH, 2001, MIKROCHIM ACTA, V137, P57, DOI 10.1007/s006040170028 Chang Q, 2005, EUR J PHARM BIOPHARM, V59, P549, DOI 10.1016/j.ejpb.2004.10.004 Chang Q, 2001, J CHROMATOGR B, V760, P227, DOI 10.1016/S0378-4347(01)00273-0 China Pharmacopoeia Committee, 2005, PHARM PEOPL REP CHIN, V1, P147 Grundmann O, 2007, J ETHNOPHARMACOL, V110, P406, DOI 10.1016/j.jep.2006.09.035 Hernandez MF, 2010, FOOD CHEM, V120, P1076, DOI 10.1016/j.foodchem.2009.11.055 Lee S, 2008, PHYTOTHER RES, V22, P1552, DOI 10.1002/ptr.2529 Manach C, 1997, FEBS LETT, V409, P12, DOI 10.1016/S0014-5793(97)00467-5 Paganga G, 1997, FEBS LETT, V401, P78, DOI 10.1016/S0014-5793(96)01442-1 Piao MJ, 2008, BBA-GEN SUBJECTS, V1780, P1448, DOI 10.1016/j.bbagen.2008.07.012 Silva CG, 2009, PHYTOMEDICINE, V16, P761, DOI 10.1016/j.phymed.2008.12.019 Spencer JPE, 1999, FEBS LETT, V458, P224, DOI 10.1016/S0014-5793(99)01160-6 Su J, 2008, J PHARMACEUT BIOMED, V46, P342, DOI 10.1016/j.jpba.2007.10.032 Tagawa C, 2004, YAKUGAKU ZASSHI, V124, P851, DOI 10.1248/yakushi.124.851 Tsuda T, 1999, FEBS LETT, V449, P179, DOI 10.1016/S0014-5793(99)00407-X Walle T, 2000, J NUTR, V130, P2658, DOI 10.1093/jn/130.11.2658 Xiong QB, 2000, PLANTA MED, V66, P127, DOI 10.1055/s-2000-11135 Yokozawa T, 2002, BIOL PHARM BULL, V25, P748, DOI 10.1248/bpb.25.748 Yu YY, 2006, J TONGJI U MED EDN, V27, P40 Zhang ZJ, 2004, LIFE SCI, V75, P1659, DOI 10.1016/j.lfs.2004.04.014 Zuo F, 1999, J JIANGXI COL TRADIT, V11, P104 Zuo Z, 2006, LIFE SCI, V79, P2455, DOI 10.1016/j.lfs.2006.08.014 NR 24 TC 20 Z9 22 U1 2 U2 31 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 0009-5893 EI 1612-1112 J9 CHROMATOGRAPHIA JI Chromatographia PD FEB PY 2011 VL 73 IS 3-4 BP 353 EP 359 DI 10.1007/s10337-010-1879-0 PG 7 WC Biochemical Research Methods; Chemistry, Analytical SC Biochemistry & Molecular Biology; Chemistry GA 719KQ UT WOS:000287204000019 DA 2021-10-15 ER PT J AU Li, MH Han, GT Yu, JY AF Li, Minghua Han, Guangting Yu, Jianyong TI Microstructure and Mechanical Properties of Apocynum Venetum Fibers Extracted by Alkali-assisted Ultrasound with Different Frequencies SO FIBERS AND POLYMERS LA English DT Article DE AV fiber; Ultrasound; Alkali treatment ID C-13 NMR; CELLULOSE; HEMP; HEMICELLULOSES; MORPHOLOGY; LIGNINS; WOOD AB Apocynum Venetum (AV) fibers were extracted by the combination of low (28 kHz) and high frequency (53 kHz) ultrasonic treatment after aqueous alkali maceration. The Surface impurities and cementing components between fibers in the rail-e of 10-50 mu m were removed by low frequency ultrasound. The surface impurities in the range of 2-8 mu m, as well as the residuals in the surface depression and inner cavum of fibers were further eliminated by high frequency ultrasonic irradiation. The treatment did not change crystal structure of cellulose I of AV fibers and could lead to a higher degree of crystallinity. Meanwhile, the examination of mechanical properties showed that the AV fibers Could be used tor textile industry. It is demonstrated that the combination of low and high frequency ultrasound after alkali treatment is simpler, more controllable and more environment-friendly and is a promising degumming method for textile industry. C1 [Li, Minghua; Han, Guangting] Qingdao Univ, Growing Base State Key Lab, Lab Fiber Mat & Modern Text, Qingdao 266071, Peoples R China. [Li, Minghua] Donghua Univ, Coll Text, Shanghai 201620, Peoples R China. [Yu, Jianyong] Donghua Univ, Modern Text Inst, Shanghai 200051, Peoples R China. RP Han, GT (corresponding author), Qingdao Univ, Growing Base State Key Lab, Lab Fiber Mat & Modern Text, Qingdao 266071, Peoples R China. EM kychgt@qdu.edu.cn FU National Natural Science Foundation ChinaNational Natural Science Foundation of China (NSFC) [50573035]; Provincial Key Sci-Tech Special Projects of Shandong Province, China [2006GG1103088] FX This work was Supported by the National Natural Science Foundation China (Project No.: 50573035) and Provincial Key Sci-Tech Special Projects of Shandong Province, China (Project No.: 2006GG1103088). The authors are very grateful to Prof. Yiqian Wang at Qingdao University for helpful discussions. CR ATALLA RH, 1980, J AM CHEM SOC, V102, P3249, DOI 10.1021/ja00529a063 Bhattacharya D, 2008, CARBOHYD POLYM, V73, P371, DOI 10.1016/j.carbpol.2007.12.005 Cave ID, 1997, WOOD SCI TECHNOL, V31, P143, DOI 10.1007/s002260050023 CUI Y, 1998, TEXT RES J, V19, P371 EARL WL, 1981, MACROMOLECULES, V14, P570, DOI 10.1021/ma50004a023 FENG R, 1999, ULTRASONIC HDB, P658 HAN GT, 2004, P 83 TIWC, V1, P643 HAN GT, 2004, P 83 TIWC, V1, P24 Han GT, 2008, CARBOHYD POLYM, V72, P652, DOI 10.1016/j.carbpol.2007.10.002 Hu XP, 1996, J POLYM SCI POL PHYS, V34, P1451, DOI 10.1002/(SICI)1099-0488(199606)34:8<1451::AID-POLB8>3.0.CO;2-V Jahn A, 2002, SPECTROCHIM ACTA A, V58, P2271, DOI 10.1016/S1386-1425(01)00697-7 JIANG GH, 2003, PLANT FIBER PRODUCTS, V25, P83 Le Troedec M, 2008, COMPOS PART A-APPL S, V39, P514, DOI 10.1016/j.compositesa.2007.12.001 MACIEL GE, 1982, MACROMOLECULES, V15, P686, DOI 10.1021/ma00230a097 Mwaikambo LY, 2002, J APPL POLYM SCI, V84, P2222, DOI 10.1002/app.10460 Pappas C, 2002, ULTRASON SONOCHEM, V9, P19, DOI 10.1016/S1350-4177(01)00095-5 Reddy N, 2005, POLYMER, V46, P5494, DOI 10.1016/j.polymer.2005.04.073 Salisova M, 1997, ULTRASON SONOCHEM, V4, P131, DOI 10.1016/S1350-4177(97)00032-1 Segal L., 1959, TEXT RES J, V29, P786, DOI 10.1177/004051755902901003 Sun JX, 2005, J APPL POLYM SCI, V97, P322, DOI 10.1002/app.21728 Sun RC, 2002, CARBOHYD POLYM, V50, P263, DOI 10.1016/S0144-8617(02)00037-1 Sun RC, 2002, ULTRASON SONOCHEM, V9, P85, DOI 10.1016/S1350-4177(01)00106-7 Sun XF, 2005, CARBOHYD RES, V340, P97, DOI 10.1016/j.carres.2004.10.022 SUSLICK KS, 1990, SCIENCE, V247, P1439, DOI 10.1126/science.247.4949.1439 VANDERHART DL, 1984, MACROMOLECULES, V17, P1465, DOI 10.1021/ma00138a009 Vilkhu K, 2008, INNOV FOOD SCI EMERG, V9, P161, DOI 10.1016/j.ifset.2007.04.014 Wang B, 2007, APPL COMPOS MATER, V14, P89, DOI 10.1007/s10443-006-9032-9 Wang LL, 2007, CARBOHYD POLYM, V69, P391, DOI 10.1016/j.carbpol.2006.12.028 Xiao B, 2001, POLYM DEGRAD STABIL, V74, P307, DOI 10.1016/S0141-3910(01)00163-X Yang Y., 2005, CHINA TEXT LEADER, V5, P74 ZHANG YM, 2005, INT TEXT LEADER, V3, P14 NR 31 TC 20 Z9 25 U1 2 U2 37 PU KOREAN FIBER SOC PI SEOUL PA KOREA SCIENCE TECHNOLOGY CTR #501 635-4 YEOGSAM-DONG, KANGNAM-GU, SEOUL 135-703, SOUTH KOREA SN 1229-9197 EI 1875-0052 J9 FIBER POLYM JI Fiber. Polym. PD FEB PY 2010 VL 11 IS 1 BP 48 EP 53 DI 10.1007/s12221-010-0048-2 PG 6 WC Materials Science, Textiles; Polymer Science SC Materials Science; Polymer Science GA 563LG UT WOS:000275132900008 DA 2021-10-15 ER PT J AU Schoennagel, TL Waller, DM AF Schoennagel, TL Waller, DM TI Understory responses to fire and artificial seeding in an eastern Cascades Abies grandis forest, USA SO CANADIAN JOURNAL OF FOREST RESEARCH-REVUE CANADIENNE DE RECHERCHE FORESTIERE LA English DT Article AB To mitigate erosion after fire, land managers often seed non-native grasses onto burned slopes. To assess how post-fire seeding affects plant recovery, we compared areas that were either unseeded or artificially seeded after high-intensity fire in a dry Abies grandis (Dougl.) Lindl. forest in the northeastern Cascades. Seeding with a mix of non-native grasses and a legume significantly reduced the cover of native plants and shifted patterns of relative abundance after 2 years. Although seeding did not significantly affect total cover or native species richness, it reduced overall native plant cover by 47%. Species that recolonize via wind-dispersed seeds (e.g., Epilobium angustifolium L., Lactuca serriola L., and Arenaria macrophylla Hook.), species with long-lived seeds that germinate after fire (e.g., Ceanothus velutinus Dougl.), and species with wide successional amplitudes that resprout after fire (e.g., Apocynum androsaemifolium L. and Salix scouleriana Barratt) all declined steeply in cover on seeded plots. In addition, conifer seedlings were only half as abundant on seeded plots. As seeding after fire does not boost total plant cover and limits conifer tree establishment on the study area, it appears to do little to reduce the risk of soil erosion. It also appears to inhibit native shrub and herb re-establishment. These substantial effects on native species appear to alter plant communities well beyond the life of the seeded species. C1 Univ Wisconsin, Dept Bot, Madison, WI 53706 USA. RP Waller, DM (corresponding author), Univ Wisconsin, Dept Bot, 132 Birge Hall,430 Lincoln Dr, Madison, WI 53706 USA. CR Agee J.K., 1993, FIRE ECOLOGY PACIFIC AMOUR CD, 1984, J RANGE MANAGE, V37, P44 ANDERSON EW, 1975, J RANGE MANAGE, V28, P394, DOI 10.2307/3897503 Arno S. F., 1991, Western Wildlands, V17, P40 ARNO SF, 1980, J FOREST, V78, P460 ARNO SF, 1997, INTRP495 USDA FOR SE ARNO SF, IN PRESS VEGETATION ARNO SF, 1995, INTRP481 USDA FOR SE Bailey A.W., 1982, FIRE ECOLOGY US SO C BOYLE G, 1982, PSWGTR58 USDA FOR SE CAMP A, 1995, FIRE WILDERNESS PARK, P169 CLARY P, 1988, INTRN384 USDA FOR SE Conard S.G., 1991, P 11 C FIR FOR MET 1, P314 CONARD SG, 1989, PSWGTR109 USDA FOR S CORBETT ES, 1965, PSWRN22 USDA FOR SER COUNTRYMAN CM, 1974, PSWGTR7 USDA FOR SER CRANE MF, 1983, INTGTR319 USDA FOR S DODGE M, 1972, SCIENCE, V177, P139, DOI 10.1126/science.177.4044.139 EBERHARDT LL, 1991, ECOL MONOGR, V61, P1646 GEIERHAYES K, 1995, P FIR EFF THREAT END, P15 GILFILLAN ES, 1996, AM SOC TESTING MAT S, V1219 GROSS E, 1989, FIRE WATERSHED MANAG, P109 Hitchcock CL, 1973, FLORA PACIFIC NW HURLBERT SH, 1984, ECOL MONOGR, V54, P187, DOI 10.2307/1942661 JOHNSON CG, 1994, PNWGTR322 USDA FOR S KAUFFMAN J. B, 1990, NATURAL PRESCRIBED F, P39 KRAMMES JS, 1960, PSWRN171 USDA FOR SE KRAMMES JS, 1963, PSWRN29 USDA FOR SER Langston N, 1995, FOREST DREAMS FOREST LEEGE TA, 1985, NORTHWEST SCI, V59, P134 LILLYBRIDGE TR, 1995, PNWGTR359 USDA FOR S LYON J, 1984, INTRP330 USDA LYON JL, 1976, P TALL TIMB FIRE ECO, V14, P355 MUTCH RW, 1993, PNWGTR310 USDA FOR S Nadkarni N.M., 1986, P CHAP EC RES C CAL, P115 NOSTE NV, 1987, GTRINT239 USDA FOR S PALMER MW, 1995, NAT AREA J, V15, P124 Pyne S.J., 1982, FIRE AM CULTURAL HIS ROBY K, 1989, FIRE WATERSHED MANAG, P131 Rowe J.S., 1983, ROLE FIRE NO CIRCUMP, P135 Ruby E.C., 1989, P S FIR WAT MAN 26 2, P125 *SPSS INC, 1994, SPSS VERS 6 1 WIND U STEELE R, 1995, INTGTR331 USDA FOR S STEELE R, 1992, INTGTR284 USDA FOR S STICKNEY PF, 1986, INTGTR197 USDA FOR S TASKEY RD, 1989, FIRE WATERSHED MANAG, P115 TIEDEMANN AR, 1973, PNWRN195 USDA FOR SE Turner MG, 1997, ECOL MONOGR, V67, P411, DOI 10.1890/0012-9615(1997)067[0411:EOFSAP]2.0.CO;2 *USDA, 1978, USDA FSH PUBL *USDA, 1995, BURN AR EM REH FIN A *USDA, 1990, DINK FIR BURN AR EM *USDA, 1990, SOIL SURV CASHM MOUN WELLS WG, 1986, P CHAPARRAL ECOSYSTE, P57 WIENS JA, 1995, ECOL APPL, V5, P1228 WILSON CC, 1971, J FOREST, V69, P471 WISCHNOFSKE MG, 1983, NATURAL ROLE FIRE WE WRIGHT HA, 1982, J RANAGE MANAGE, V35, P352 NR 57 TC 20 Z9 21 U1 0 U2 7 PU NATL RESEARCH COUNCIL CANADA PI OTTAWA PA RESEARCH JOURNALS, MONTREAL RD, OTTAWA, ONTARIO K1A 0R6, CANADA SN 0045-5067 J9 CAN J FOREST RES JI Can. J. For. Res.-Rev. Can. Rech. For. PD SEP PY 1999 VL 29 IS 9 BP 1393 EP 1401 DI 10.1139/cjfr-29-9-1393 PG 9 WC Forestry SC Forestry GA 250DM UT WOS:000083373800011 DA 2021-10-15 ER PT J AU Gunther, J Thevs, N Gusovius, HJ Sigmund, I Bruckner, T Beckmann, V Abdusalik, N AF Guenther, Jasmin Thevs, Niels Gusovius, Hans-Joerg Sigmund, Ina Brueckner, Torsten Beckmann, Volker Abdusalik, Nurbay TI Carbon and phosphorus footprint of the cotton production in Xinjiang, China, in comparison to an alternative fibre (Apocynum) from Central Asia SO JOURNAL OF CLEANER PRODUCTION LA English DT Article DE Agricultural emissions; Phosphorus use; Natural fibres; Textiles; Irrigated agriculture; Central Asia AB Agriculture significantly contributes to greenhouse gas emissions and thus to climate change, directly through farm operations and indirectly through the energy needed to produce input materials, most prominently fertiliser, as well as through nitrous oxide (N2O) emissions from soils. Agriculture is the largest consumer of phosphorus, which is a non-renewable resource. Cotton accounts for one third of all natural and synthetic fibres of the total textile production. Today, Xinjiang, China, has become one of the most important cotton producers with highest yields worldwide. The aim of this study was to calculate the carbon (climate footprint and energy footprint) and phosphorus footprint of this high yielding cotton. production and compare it to a theoretical production of an alternative fibre from Apocynum (local name: Kendyr or Kutra), which is a bast fibre plant native in Xinjiang and Central Asia. The data of the cotton production was collected through farm interviews during six years in Xinjiang. The data for Apocynum was compiled by literature from field experiments in the former Soviet Union. Cotton fibres, mainly due to high fertiliser inputs, caused a climate footprint of 4.43 kg CO2e/kg fibre, an energy footprint of 30.90 MJ/kg fibre, and a phosphorus footprint of 101 g P/kg fibre. The footprints of Apocynum are significantly lower with a climate footprint of 1.93 kg CO2e/kg fibre, an energy footprint of 21.85 Mj/kg fibre, and a phosphorus footprint of 1.6 g P/kg fibre. In cotton production, 63.9% of the climate footprint and 68.4% of the energy footprint are attributed to fertiliser production. Soil emissions of N2O account for another 22.2% of the climate footprint of cotton. The biggest potential to reduce carbon and phosphorus footprints of cotton production lie in reduced fertiliser application and re-use of plant residues. In the case of Apocynum, 65.1% of the climate footprint and 64.1% of the energy footprint are attributed to chemical treatment of the fibres in the extraction process. (C) 2017 Elsevier Ltd. All rights reserved. C1 [Guenther, Jasmin; Thevs, Niels; Beckmann, Volker] Ernst Moritz Arndt Univ Greifswald, Inst Bot & Landscape Ecol, Greifswald, Germany. [Thevs, Niels] Cent Asia Off, World Agroforestry Ctr, Bishkek, Kyrgyzstan. [Gusovius, Hans-Joerg] Leibniz Inst Agr Engn Potsdam Bornim, Potsdam, Germany. [Sigmund, Ina] Saxonian Text Res Inst, Chemnitz, Germany. [Brueckner, Torsten] Sachsen Leinen GmbH, Waldernburg, Germany. [Abdusalik, Nurbay] Xinjiang Univ, Inst Resource & Environm Sci, Urumqi, Peoples R China. RP Thevs, N (corresponding author), Ernst Moritz Arndt Univ Greifswald, Inst Bot & Landscape Ecol, Greifswald, Germany. EM N.Thevs@cgiar.org RI Beckmann, Volker/Q-7377-2018; Gusovius, Hans-Jorg Dr./AAM-8079-2020 OI Beckmann, Volker/0000-0001-6595-7995; Gusovius, Hans-Jorg Dr./0000-0002-8563-1391 FU Volkswagen Foundation, GermanyVolkswagen; Bauer-Hollmann Foundation; Rudolf and Helene Glaser-Foundation, within the German Science Centre; Ministry of Education and Research of Germany within the SuMaRiO cluster FX The data used come from different projects funded by the Volkswagen Foundation, Germany, the Bauer-Hollmann Foundation and the Rudolf and Helene Glaser-Foundation, within the German Science Centre, and Ministry of Education and Research of Germany within the SuMaRiO cluster. We express our thanks to all those funding institutions. We also express thanks to reviewers, who helped to improve this paper. CR Berljand S, 1950, AGROTECHNOLOGY KENDI Bewley J. D., 2006, ENCY SEEDS SCI TECHN British Standards Institution, 2011, GUID PAS 2050 2011 C British Standards Institution, 2011, GREENH GAS PROT QUAN Brunner P.H., 2004, PRACTICAL HDB MAT FL Carbon Trust, 2014, CARB FOOTPR Chen G., 2007, DEV ENERGYCALC TOOL Cherrett N., 2005, ECOLOGICAL FOOTPRINT Cordell D., 2010, SUSTAINABLE USE PHOS Cordell D, 2011, SUSTAINABILITY-BASEL, V3, P2027, DOI 10.3390/su3102027 Cotton Incorporated, 2009, LIF CYCL INV COTT Cucek L, 2012, J CLEAN PROD, V34, P9, DOI 10.1016/j.jclepro.2012.02.036 Dagistan E, 2009, AFR J AGR RES, V4, P599 FAO and International Cotton Advisory Committee, 2013, APP FIB CONS SURV Feike T., 2014, ENV EARTH SCI UNPUB Hammond G., 2008, INVENTORY CARBON ENE Harper H. J., 1933, P OKLA ACAD SCI, P36 Hoekstra A. Y., 2011, WATER FOOTPRINT ASSE Hofmann S., 2006, WATERSHED FLOODPLAIN, P359 Hoppe T., 1992, CHINESISCHE AGRARPOL Ismail SA, 2011, BIOSYST ENG, V109, P140, DOI 10.1016/j.biosystemseng.2011.02.010 Khabbaz G. B., 2010, LIFE CYCLE ENERGY US Kool A., 2012, LCI DATA CALCULATION Lal R, 2004, ENVIRON INT, V30, P981, DOI 10.1016/j.envint.2004.03.005 Li P.T., 1995, FLORA CHINA, V16, P143 Liu M. G., 1997, ATLAS PHYS GEOGRAPHY Lott John N. A., 2009, International Journal of Agricultural Resources Governance and Ecology, V8, P351 Mulder H. A. J., 1998, TRANSITION SUSTAINAB Pavlov N. V., 1942, DIKIE POLEZNYE TEHNI Persson UM, 2014, GLOBAL CHANGE BIOL, V20, P3482, DOI 10.1111/gcb.12635 Reay DS, 2012, NAT CLIM CHANGE, V2, P410, DOI 10.1038/NCLIMATE1458 Romanovich V. V., 1951, KENDYR KASAHSTANIE Rumbaur C, 2015, EARTH SYST DYNAM, V6, P83, DOI 10.5194/esd-6-83-2015 Schonefeld H., 1955, BASTFASERN FASERSTOF Smith K., 2000, GOOD PRACTICE GUIDAN, P53 Smith P, 2014, CLIMATE CHANGE 2014: MITIGATION OF CLIMATE CHANGE, P811 Snyder C., 2003, NEWS VIEWS POTASH PH, P1 Thevs N, 2012, J APPL BOT FOOD QUAL, V85, P159 Volker U., 2006, FASER ZUM STOFF TEXT Wiedmann T., 2008, DEFINITION CARBON FO Zahedi M., 2014, IRAN INT J ENERGY EC, V4, P43 [张磊 Zhang Lei], 2003, [新疆农业科学, Xinjiang agricultural sciences], V40, P172 Zhang W. M., 2006, CHIN WILD PLANT RESO, V25, P33 NR 43 TC 19 Z9 19 U1 4 U2 94 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0959-6526 EI 1879-1786 J9 J CLEAN PROD JI J. Clean Prod. PD APR 1 PY 2017 VL 148 BP 490 EP 497 DI 10.1016/j.jclepro.2017.01.153 PG 8 WC Green & Sustainable Science & Technology; Engineering, Environmental; Environmental Sciences SC Science & Technology - Other Topics; Engineering; Environmental Sciences & Ecology GA EQ9SO UT WOS:000398425700049 DA 2021-10-15 ER PT J AU Song, RJ Zhou, J AF Song, Rui Juan Zhou, Jun TI Microemulsion liquid chromatographic method for simultaneous separation and determination of six flavonoids of Apocynum venetum leaf extract SO JOURNAL OF CHROMATOGRAPHY B-ANALYTICAL TECHNOLOGIES IN THE BIOMEDICAL AND LIFE SCIENCES LA English DT Article DE Apocynum venetum; Flavonoids; Microemulsion ID FAT-SOLUBLE VITAMINS; WATER; OPTIMIZATION; MELC; FOOD; PHARMACEUTICALS; LEAVES AB A simple, cost-effective, and efficient method was developed for the rapid simultaneous separation and determination of six flavonoids (rutin, hyperoside, quercetin-3-O-sophoroside, isoquercitrin, astragalin and quercetin) of Apocynum venetum leaf extract by reversed phase high performance liquid chromatography using a microemulsion system mixture as the mobile phase. Separations were performed on the Zorbax Extend-C-18 column with UV detection at 360 nm. The flow rate was 0.8 mL min(-1). The optimized microemulsion mobile phase consisted of 2.5% (v/v) n-butanol, 1.2% (v/v) of Genapol X-080, 0.5% (v/v) ethyl acetate and 95.8% (w/v) of aqueous 20 mM phosphoric acid, pH adjusted to 6.0 with 0.3% triethylamine. Under the optimized conditions, the calibration curve for six flavonoids was linear in the range of 5-1000 mu g mL(-1) with the correlation coefficients greater than 0.9994. The intra-day and inter-day precision (RSD) were below 8.11% and the limits of detection (LOD) for the six flavonoids were 1.7-6.0 mu g mL(-1) (S/N = 3). The microemulsion liquid chromatography (MELC) method was successfully applied to separate and determine the six flavonoids of A. venetum leaf extract. (C) 2015 Elsevier B.V. All rights reserved. C1 [Song, Rui Juan] Xian Univ, Sch Chem & Chem Engn, Xian 710065, Shanxi, Peoples R China. [Zhou, Jun] PLA, Dept Pharm, Urumqi Gen Hosp, Urumqi 830000, Xinjiang, Peoples R China. RP Zhou, J (corresponding author), PLA, Dept Pharm, Urumqi Gen Hosp, Urumqi 830000, Xinjiang, Peoples R China. EM sjbzj415@163.com FU Science Research Foundation of Department of Education of Shaanxi Province of China [14JK2132] FX This work was financially supported by the Science Research Foundation of Department of Education of Shaanxi Province of China (No. 14JK2132). CR An HJ, 2013, J PHARMACEUT BIOMED, V85, P295, DOI 10.1016/j.jpba.2013.07.005 BERTHOD A, 1992, ANAL CHEM, V64, P2267, DOI 10.1021/ac00043a015 Chen Long, 2005, Zhongguo Zhong Yao Za Zhi, V30, P1340 Chiang JS, 2007, TALANTA, V71, P882, DOI 10.1016/j.talanta.2006.05.065 El-Sherbiny DT, 2005, J SEP SCI, V28, P197, DOI 10.1002/jssc.200401830 Garti N, 2001, J AGR FOOD CHEM, V49, P2552, DOI 10.1021/jf001390b Jancic B, 2005, J CHROMATOGR A, V1088, P187, DOI 10.1016/j.chroma.2005.05.038 Kienen V, 2008, TALANTA, V75, P141, DOI 10.1016/j.talanta.2007.10.043 Liu JF, 2008, J CHROMATOGR A, V1198, P164, DOI 10.1016/j.chroma.2008.05.065 Liu JF, 2007, J CHROMATOGR A, V1164, P129, DOI 10.1016/j.chroma.2007.06.066 Marsh A, 2005, J SEP SCI, V28, P2023, DOI 10.1002/jssc.200500129 Marsh A, 2005, CHROMATOGRAPHIA, V61, P539, DOI 10.1365/s10337-005-0552-5 Marsh A, 2004, CHROMATOGRAPHIA, V59, P531, DOI 10.1365/s10337-004-0262-4 Mason TG, 2006, J PHYS-CONDENS MAT, V18, pR635, DOI 10.1088/0953-8984/18/41/R01 McEvoy E, 2007, J PHARMACEUT BIOMED, V44, P137, DOI 10.1016/j.jpba.2007.02.025 Momenbeik F, 2005, J PHARMACEUT BIOMED, V37, P383, DOI 10.1016/j.jpba.2004.10.018 Momenbeik F, 2010, J CHROMATOGR A, V1217, P3770, DOI 10.1016/j.chroma.2010.04.012 Vidotti EC, 2006, TALANTA, V68, P516, DOI 10.1016/j.talanta.2005.01.059 Watarai H, 1997, J CHROMATOGR A, V780, P93, DOI 10.1016/S0021-9673(97)00444-5 Xie WY, 2012, J ETHNOPHARMACOL, V141, P1, DOI 10.1016/j.jep.2012.02.003 Zhang Qunlin, 2011, Zhongguo Zhong Yao Za Zhi, V36, P589 Zhang Y.C., 2009, J INSTRUM ANAL, V10, P1114 Zhang YC, 2010, J CHROMATOGR B, V878, P3149, DOI 10.1016/j.jchromb.2010.09.027 NR 23 TC 19 Z9 20 U1 0 U2 56 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1570-0232 EI 1873-376X J9 J CHROMATOGR B JI J. Chromatogr. B PD JUL 15 PY 2015 VL 995 BP 8 EP 14 DI 10.1016/j.jchromb.2015.05.019 PG 7 WC Biochemical Research Methods; Chemistry, Analytical SC Biochemistry & Molecular Biology; Chemistry GA CL8SA UT WOS:000357243200002 PM 26021846 DA 2021-10-15 ER PT J AU Zheng, MZ Liu, CM Pan, FG Shi, DF Ma, FS Zhang, YC Zhang, YJ AF Zheng, Meizhu Liu, Chunming Pan, Fengguang Shi, Dongfang Ma, Fengshan Zhang, Yuchi Zhang, Yujing TI Protective Effects of Flavonoid Extract from Apocynum venetum Leaves Against Corticosterone-Induced Neurotoxicity in PC12 Cells SO CELLULAR AND MOLECULAR NEUROBIOLOGY LA English DT Article DE Apocynum venetum extract; Corticosterone; PC12 cells; Neuroprotective effect; Brain-derived neurotrophic factor; Antidepressant ID MESSENGER-RNA EXPRESSION; NEUROTROPHIC FACTOR; MAJOR DEPRESSION; MORINDA-OFFICINALIS; AQUEOUS EXTRACTS; HIPPOCAMPAL; STRESS; ANTIDEPRESSANTS; APOPTOSIS; NEURONS AB Depression is a major psychiatric disorder affecting nearly 21% of the world population and imposes a substantial health burden on society. Although significant progress has been made in depression research, the common molecular mechanism of antidepressants is still far from clearly understood. The neuroprotective effect of antidepressants has been proposed as a possible mechanism. Although Apocynum venetum (AV) L. (Apocynaceae) was previously shown to produce an antidepressant-like effect in the tail suspension test, the mechanisms underlying such antidepressant-like effect are yet to be understood. In this work, we studied the neuroprotective effect of AV leaf flavonoid extract in corticosterone-induced neurotoxicity, using PC12 cells as a suitable in vitro model of depression. Cell viability was quantitated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The release amount of lactic dehydrogenase (LDH) and intracellular Ca2+ concentration were measured using kit, cell period change was tested by flow cytometry, and transcript abundances of brain-derived neurotrophic factor (BDNF) and microtubule-associated protein 4 (MAP4) were determined by real-time RT-PCR. The results showed that AV extract (25, 50, and 100 mu g/ml) increased the A490 nm values, but decreased LDH release and Ca2+ concentration, suppressed the apoptosis of PC12 cells and up-regulated BDNF and MAP4 transcript abundances compared with the corresponding corticosterone-treated group. These results suggest that the AV extract could generate a neuroprotective effect on corticosterone-induced neurotoxicity in PC12 cells, pointing to a possible action pathway by decreasing the Ca2+ concentration and up-regulating BDNF and MAP4 genes. C1 [Zheng, Meizhu; Liu, Chunming; Shi, Dongfang] Changchun Normal Univ, Cent Lab, Changchun 130032, Jilin, Peoples R China. [Zheng, Meizhu; Pan, Fengguang] Jilin Univ, Coll Anim Sci & Vet, Changchun 130062, Jilin, Peoples R China. [Ma, Fengshan] Wilfrid Laurier Univ, Dept Biol, Waterloo, ON N2L 3C5, Canada. RP Liu, CM (corresponding author), Changchun Normal Univ, Cent Lab, Changchun 130032, Jilin, Peoples R China. EM zhengmeizhu2008@yahoo.com.cn; chunmingliu2000@yahoo.com.cn; hao.yu@med.lu.se FU National Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC) [30970299]; Natural Science Foundation of Jilin Province of China [20090936] FX This project was supported by the National Natural Science Foundation of China (30970299) and the Natural Science Foundation of Jilin Province of China (20090936). CR Altar CA, 2003, BIOL PSYCHIAT, V54, P703, DOI 10.1016/S0006-3223(03)00073-8 Antai-Otong D, 2004, PERSPECT PSYCHIATR C, V40, P29, DOI 10.1111/j.1744-6163.2004.00029.x Baldwin D, 2006, J PSYCHOPHARMACOL, V20, P91, DOI 10.1177/0269881105056666 Bilia AR, 2002, LIFE SCI, V70, P3077, DOI 10.1016/S0024-3205(02)01566-7 Bouvier N, 2003, PRESSE MED, V32, P519 Butterweck V, 2001, BIOL PHARM BULL, V24, P848, DOI 10.1248/bpb.24.848 DAN Z, 2010, PHARM BIOCH BEHAV, V94, P488 De Foubert G, 2004, NEUROSCIENCE, V128, P597, DOI 10.1016/j.neuroscience.2004.06.054 Dias BG, 2003, NEUROPHARMACOLOGY, V45, P553, DOI 10.1016/S0028-3908(03)00198-9 Fava M, 2003, BIOL PSYCHIAT, V53, P649, DOI 10.1016/S0006-3223(03)00231-2 FUCHS B, 2004, B AM COLL SURG, V89, P8 Gao M, 2009, BASIC CLIN PHARMACOL, V104, P236, DOI 10.1111/j.1742-7843.2008.00369.x Goldman SA, 1997, J NEUROBIOL, V32, P554, DOI 10.1002/(SICI)1097-4695(19970605)32:6<554::AID-NEU2>3.0.CO;2-Z GONCALVES FA, 2006, ACTA MEDICA PORT, V19, P9 Hayashi K, 1999, J NEUROSCI, V19, P3918 Kang M, 2005, AM J CHINESE MED, V33, P205, DOI 10.1142/S0192415X05002874 Katoh-Semba R, 2002, FASEB J, V16, P1328, DOI 10.1096/fj.02-0143fje Khurana RN, 2003, AM J MED, V115, P676, DOI 10.1016/S0002-9343(03)00472-8 Kim D. W., 1998, Journal of Traditional Medicines, V15, P40 Kim DW, 1998, PHYTOTHER RES, V12, P46, DOI 10.1002/(SICI)1099-1573(19980201)12:1<46::AID-PTR169>3.0.CO;2-I Kim JH, 2007, PHARMACOL BIOCHEM BE, V87, P41, DOI 10.1016/j.pbb.2007.03.018 KIRSCHENBAUM B, 1995, P NATL ACAD SCI USA, V92, P210, DOI 10.1073/pnas.92.1.210 Kosten TA, 2008, NEUROPSYCHOPHARMACOL, V33, P1545, DOI 10.1038/sj.npp.1301527 Kwon S, 2010, PROG NEURO-PSYCHOPH, V34, P265, DOI 10.1016/j.pnpbp.2009.11.015 Lee J, 2002, J NEUROCHEM, V82, P1367, DOI 10.1046/j.1471-4159.2002.01085.x Li YF, 2003, EUR J PHARMACOL, V469, P81, DOI 10.1016/S0014-2999(03)01735-7 Li YF, 2004, LIFE SCI, V75, P1531, DOI 10.1016/j.lfs.2004.02.029 Li YF, 2003, ACTA PHARMACOL SIN, V24, P996 Li YF, 2003, LIFE SCI, V72, P933, DOI 10.1016/S0024-3205(02)02331-7 Lucassen Paul J., 2006, CNS & Neurological Disorders-Drug Targets, V5, P531, DOI 10.2174/187152706778559273 Lucassen PJ, 2004, BIOL PSYCHIAT, V55, P789, DOI 10.1016/j.biopsych.2003.12.014 Lucassen PJ, 2001, AM J PATHOL, V158, P453, DOI 10.1016/S0002-9440(10)63988-0 MA YX, 1989, CHIN J MOD DEV TRAD, V9, P335 MAGARINOS AM, 1995, NEUROSCIENCE, V69, P89, DOI 10.1016/0306-4522(95)00259-L Manji H K, 2001, Psychopharmacol Bull, V35, P5 Molteni R, 2006, INT J NEUROPSYCHOPH, V9, P307, DOI 10.1017/S1461145705005766 Murry VM, 2008, FAM RELAT, V57, P117, DOI 10.1111/j.1741-3729.2008.00488.x Park IY, 2005, MOL PHARMACOL, V67, P97, DOI 10.1124/mol.104.005744 Pencea V, 2001, J NEUROSCI, V21, P6706, DOI 10.1523/JNEUROSCI.21-17-06706.2001 QING ZN, 1988, B CHIN MAT MED, V13, P44 QING ZN, 1988, B CHIN MAT MED, V13, P64 Sapolsky RM, 2000, BIOL PSYCHIAT, V48, P755, DOI 10.1016/S0006-3223(00)00971-9 Saylam C, 2006, SURG RADIOL ANAT, V28, P82, DOI 10.1007/s00276-005-0050-3 Stockmeier CA, 2004, BIOL PSYCHIAT, V56, P640, DOI 10.1016/j.biopsych.2004.08.022 Yang HJ, 2003, NEUROSCI LETT, V351, P206, DOI 10.1016/j.neulet.2003.08.006 Yokozawa Takako, 1997, Natural Medicines, V51, P325 Yu ZF, 2002, J ETHNOPHARMACOL, V83, P161, DOI 10.1016/S0378-8741(02)00211-8 Zhen H., 2009, J ETHNOPHARMACOL, V125, P456 ZHONG XM, 2006, CHIN J MOD APPL PH S, V2, P733 Zhu M, 2006, NEUROSCIENCE, V141, P2019, DOI 10.1016/j.neuroscience.2006.05.011 Zhu WL, 2006, LIFE SCI, V79, P749, DOI 10.1016/j.lfs.2006.02.015 NR 51 TC 19 Z9 23 U1 3 U2 57 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0272-4340 EI 1573-6830 J9 CELL MOL NEUROBIOL JI Cell. Mol. Neurobiol. PD APR PY 2011 VL 31 IS 3 BP 421 EP 428 DI 10.1007/s10571-010-9635-4 PG 8 WC Cell Biology; Neurosciences SC Cell Biology; Neurosciences & Neurology GA 742PT UT WOS:000288957400011 PM 21170580 DA 2021-10-15 ER PT J AU Zhang, YC Liu, CM Zhang, ZK Qi, YJ Wu, GM Li, SN AF Zhang, Yuchi Liu, Chunming Zhang, Zhengkun Qi, Yanjuan Wu, Guimei Li, Sainan TI Solvent gradient elution for comprehensive separation of constituents with wide range of polarity in Apocynum venetum leaves by high-speed counter-current chromatography SO JOURNAL OF SEPARATION SCIENCE LA English DT Article DE Apocynum venetum L.; Gradient elution mode; High-speed counter-current chromatography; Separation and purification ID PREPARATIVE ISOLATION; PURIFICATION; FLAVONOIDS; ACIDS AB A novel gradient elution was efficiently utilized for the separation of the chemical components with a wide range of polarity from the mixed extract of the Chinese medicinal herb Apocynum venetum or mixed standards by high-speed counter-current chromatography. Three sets of solvent systems, n-hexane-ethyl acetate-methanol-water (1.5:3.5:2:4.5 v/v/v/v), ethyl acetate-methanol-water (5:2:5 v/v/v) and n-butanol-methanol-water (5:1:5 v/v/v) were used for the one-step elution. The separation was initiated by filling the column with the lower phase of n-hexane-ethyl acetate-methanol-water (1.5:3.5:2:4.5 v/v/v/v) as a stationary phase followed by elution with the upper phase of n-hexane-ethyl acetate-methanol-water (1.5:3.5:2:4.5 v/v/v/v) to separate the hydrophobic compounds (tail to head). Then the mobile phase was switched to the upper phase of ethyl acetate-methanol-water (5:2:5 v/v/v) to elute the. moderate hydrophobic compounds, and finally the hydrophilic compounds still retained in the column were fractionated by eluting the column with the upper phase of n-butanol-methanol-water (5:1:5 v/v/v). A total of 13 compounds induding adhyperforin, hyperforin, amentoflavone, biapigenin, quercetin, astragalin, trifolin, isoquercetin, hyperside, acetyled hyperside, rutin, chlorogenic acid and quercetin-3-O-beta-D-glucosyl-beta-D-glucopyranoside were successfully separated via the three sets of solvent systems in one-step operation for 90 min. C1 [Zhang, Yuchi; Liu, Chunming; Qi, Yanjuan; Wu, Guimei; Li, Sainan] Changchun Normal Univ, Cent Lab, Changchun 130032, Peoples R China. [Zhang, Zhengkun] Jilin Acad Agr Sci, Inst Plant Protect, Gongzhuling, Peoples R China. RP Liu, CM (corresponding author), Changchun Normal Univ, Cent Lab, 677 N Changji Rd, Changchun 130032, Peoples R China. EM chunmingliu2000@yahoo.com.cn FU National Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC) [30970299] FX This work was supported by the National Natural Science Foundation of China (No. 30970299). CR BOREL WR, 2006, J CHROMATOGR A, V1121, P200 Butterweck V, 2001, BIOL PHARM BULL, V24, P848, DOI 10.1248/bpb.24.848 Chen JH, 2006, TALANTA, V69, P172, DOI 10.1016/j.talanta.2005.09.041 Gao M, 2006, J CHROMATOGR B, V838, P139, DOI 10.1016/j.jchromb.2006.04.030 Kamata K, 2008, J NAT MED-TOKYO, V62, P160, DOI 10.1007/s11418-007-0202-3 Kim DW, 2000, J ETHNOPHARMACOL, V72, P53, DOI 10.1016/S0378-8741(00)00197-5 Maier T, 2006, J CHROMATOGR A, V1128, P61, DOI 10.1016/j.chroma.2006.06.082 Murate T, 2001, J HISTOCHEM CYTOCHEM, V49, P845, DOI 10.1177/002215540104900705 Peng JY, 2006, J CHROMATOGR A, V1102, P44, DOI 10.1016/j.chroma.2005.10.045 Peng JY, 2005, J CHROMATOGR A, V1091, P89, DOI 10.1016/j.chroma.2005.07.072 Peng JY, 2005, J CHROMATOGR A, V1092, P235, DOI 10.1016/j.chroma.2005.07.073 Shibusawa Y, 2006, J CHROMATOGR A, V1133, P119, DOI 10.1016/j.chroma.2006.08.004 Veronika B, 2003, PHARM BIO BEHAV, V75, P557 Wei Y, 2006, J CHROMATOGR A, V1115, P112, DOI 10.1016/j.chroma.2006.02.081 Yanagida A, 2006, J CHROMATOGR A, V1112, P195, DOI 10.1016/j.chroma.2005.09.086 Yanagida A, 2007, J CHROMATOGR A, V1151, P74, DOI 10.1016/j.chroma.2007.03.071 Yao S, 2006, J CHROMATOGR A, V1115, P64, DOI 10.1016/j.chroma.2006.02.071 Zhou TT, 2006, J CHROMATOGR A, V1116, P97, DOI 10.1016/j.chroma.2006.03.041 NR 18 TC 19 Z9 20 U1 1 U2 28 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 1615-9306 EI 1615-9314 J9 J SEP SCI JI J. Sep. Sci. PD SEP PY 2010 VL 33 IS 17-18 BP 2743 EP 2748 DI 10.1002/jssc.201000308 PG 6 WC Chemistry, Analytical SC Chemistry GA 660BJ UT WOS:000282612900023 PM 20730835 DA 2021-10-15 ER PT J AU Irie, K Sato, T Tanaka, I Nakajima, J Kawaguchi, M Himi, T AF Irie, Kaoru Sato, Takahiro Tanaka, Ippei Nakajima, Jun-ichiro Kawaguchi, Maiko Himi, Toshiyuki TI Cardiotonic effect of Apocynum venetum L. extracts on isolated guinea pig atrium SO JOURNAL OF NATURAL MEDICINES LA English DT Article DE Apocynum venetum L.; Cymarin; Guinea pig atrium; Mechanical activity; Phosphodiesterase 3 ID NUCLEOTIDE PHOSPHODIESTERASE; LEAF EXTRACT; LEAVES AB The effects on guinea-pig heart muscle of extracts of Apocynum venetum L. leaf, root, stem, old stem and Venetron-a polyphenol-rich extract of leaves-were studied by recording the mechanical activity and heart rate of isolated right atria. Cymarin-a cardiac glycoside-was also determined in A. venetum extracts by LC-MS/MS analysis. All extracts examined here showed a weak cardiotonic effect, i.e., induced a contractile response of the isolated atria and increased the pulse at a concentration of 1 mg/mL, which was not inhibited by propranolol (1 mu M)-a beta-adrenoceptor blocker. The cymarin content in extracts of A. venetum was ranked as follows: old stem >> stem > root > leaf >> Venetron. Since the cardiotonic effects of A. venetum extracts did not reflect the cymarin content, a possible mechanism other than that of cardiac glycosides was investigated. The inhibitory effects on phosphodiesterase 3 (PDE3) were studied in a cell-free enzyme assay; all extracts of various parts of A. venetum inhibited PDE purified from human platelets. These results suggest that PDE3 inhibition may contribute to the cardiotonic effects of A. venetum extracts. C1 [Irie, Kaoru; Kawaguchi, Maiko; Himi, Toshiyuki] Musashino Univ, Fac Pharm, Tokyo 2028585, Japan. [Irie, Kaoru; Kawaguchi, Maiko; Himi, Toshiyuki] Musashino Univ, Pharmaceut Sci Res Inst, Tokyo 2028585, Japan. [Sato, Takahiro] Tokyo Med & Dent Univ, Grad Sch, Dept Nat Resources & Physiol Chem, Bunkyo Ku, Tokyo 1138549, Japan. [Tanaka, Ippei; Nakajima, Jun-ichiro] Tokiwa Phytochem, Sakura Ku, Chiba 2850801, Japan. RP Irie, K (corresponding author), Musashino Univ, Fac Pharm, 1-1-20 Shinmachi, Tokyo 2028585, Japan. EM k_irie@musashino-u.ac.jp FU MEXT. HAITEKUMinistry of Education, Culture, Sports, Science and Technology, Japan (MEXT) [2004-2008] FX We thank Ms. Ayako Inoue for her technical assistance. Part of this work was supported by MEXT. HAITEKU (2004-2008) (to T. H.). CR Butterweck V, 2001, BIOL PHARM BULL, V24, P848, DOI 10.1248/bpb.24.848 FUJITA H, 2005, IGAKU YAKUGAKU, V54, P491 Grou, 1978, COMPLICATION LUOBUMA, P57 Grundmann O, 2007, J ETHNOPHARMACOL, V110, P406, DOI 10.1016/j.jep.2006.09.035 HIDAKA H, 1976, BIOCHIM BIOPHYS ACTA, V429, P485, DOI 10.1016/0005-2744(76)90296-5 Hoki Satoru, 2004, Natural Medicines, V58, P113 IMAI K, 1957, TAKAMINE KENKYU NENP, V9, P31 Kamata K, 2008, J NAT MED-TOKYO, V62, P160, DOI 10.1007/s11418-007-0202-3 Kwan CY, 2005, CLIN EXP PHARMACOL P, V32, P789, DOI 10.1111/j.1440-1681.2005.04255.x Lugnier C, 2006, PHARMACOL THERAPEUT, V109, P366, DOI 10.1016/j.pharmthera.2005.07.003 *MIN PUBL HLTH PEO, 2000, CHIN PHARM, V1, P170 Tagawa C, 2004, YAKUGAKU ZASSHI, V124, P851, DOI 10.1248/yakushi.124.851 XU C, 1966, YAOXUE XUEBAO, V13, P589 NR 13 TC 19 Z9 22 U1 2 U2 26 PU SPRINGER TOKYO PI TOKYO PA 1-11-11 KUDAN-KITA, CHIYODA-KU, TOKYO, 102-0073, JAPAN SN 1340-3443 J9 J NAT MED JI J. Nat. Med. PD APR PY 2009 VL 63 IS 2 BP 111 EP 116 DI 10.1007/s11418-008-0296-2 PG 6 WC Chemistry, Medicinal; Pharmacology & Pharmacy SC Pharmacology & Pharmacy GA 454EE UT WOS:000266664100001 PM 19002560 DA 2021-10-15 ER PT J AU Zhang, W Dong, Z Chang, XJ Zhang, CH Rong, GH Gao, XD Zeng, Z Wang, CP Chen, Y Rong, YH Qu, JH Liu, Z Lu, YY AF Zhang, Wei Dong, Zheng Chang, Xiujuan Zhang, Cuihong Rong, Guanghua Gao, Xudong Zeng, Zhen Wang, Chunping Chen, Yan Rong, Yihui Qu, Jianhui Liu, Ze Lu, Yinying TI Protective effect of the total flavonoids from Apocynum venetum L. on carbon tetrachloride-induced hepatotoxicity in vitro and in vivo SO JOURNAL OF PHYSIOLOGY AND BIOCHEMISTRY LA English DT Article DE Total flavonoids; Apocynum venetum L.; Carbon tetrachloride; Oxidative stress; Hepatoprotection ID ACUTE LIVER-INJURY; OXIDATIVE STRESS; ACTIVE CONSTITUENTS; MICE; POLYPHENOLS; MECHANISMS; DISEASES; ANTIOXIDANTS; PHARMACOLOGY; HYPEROSIDE AB Apocynum venetum L., belonging to the family Apocynaceae, is a popular medicinal plant, which is commonly used in the treatment of hypertension, neurasthenia, and hepatitis in China. In the present study, the total flavonoids (TFs) were prepared from the leaves of A. venetum, and its protective effects on carbon tetrachloride (CCl4)-induced hepatotoxicity in a cultured HepG2 cell line and in mice were investigated. Cell exposed to 0.4% CCl4 (v/v) for 6 h led to a significant decrease in cell viability, increased LDH leakage, and intracellular reactive oxygen species (ROS). CCl4 also induced cell marked apoptosis, which was accompanied by the loss of mitochondrial membrane potential (MMP). Pretreatment with TFs at concentrations of 25, 50, and 100 mu g/mL effectively relieved CCl4-induced cellular damage in a dose-dependent manner. In vivo, TFs (100, 200, and 400 mg/kg BW) were administered via gavage daily for 14 days before CCl4 treatment. The high serum ALT and AST levels induced by CCl4 were dose-dependently suppressed by pretreatment of TFs (200 and 400 mg/kg BW). Histological analysis also supported the results obtained from serum assays. Furthermore, TFs could prevent CCl4-caused oxidative damage by decreasing the MDA formation and increasing antioxidant enzymes (CAT, SOD, GSH-Px) activities in liver tissues. In summary, both in vitro and in vivo data suggest that TFs, prepared from A. venetum, showed a remarkable hepatoprotective and antioxidant activity against CCl4-induced liver damage. C1 [Zhang, Wei; Dong, Zheng; Chang, Xiujuan; Zhang, Cuihong; Rong, Guanghua; Gao, Xudong; Zeng, Zhen; Wang, Chunping; Chen, Yan; Rong, Yihui; Qu, Jianhui; Liu, Ze; Lu, Yinying] Beijing 302 Hosp, Comprehens Liver Canc Ctr, Beijing 100039, Peoples R China. RP Lu, YY (corresponding author), Beijing 302 Hosp, Comprehens Liver Canc Ctr, Beijing 100039, Peoples R China. EM luyinying1973@163.com RI RONG, GUANGHUA/G-6529-2012 OI RONG, GUANGHUA/0000-0002-6419-1227 FU National Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC) [81302154, 81470865] FX Financial supports form the National Natural Science Foundation of China (no. 81302154, 81470865). CR An HJ, 2013, J PHARMACEUT BIOMED, V85, P295, DOI 10.1016/j.jpba.2013.07.005 Bajt ML, 2004, TOXICOL SCI, V80, P343, DOI 10.1093/toxsci/kfh151 BEHL C, 1994, CELL, V77, P817, DOI 10.1016/0092-8674(94)90131-7 Butterweck V, 2003, PHARMACOL BIOCHEM BE, V75, P557, DOI 10.1016/S0091-3057(03)00118-7 Chen J, 2013, J ETHNOPHARMACOL, V148, P835, DOI 10.1016/j.jep.2013.05.020 Choi JH, 2011, J NAT PROD, V74, P1055, DOI 10.1021/np200001x Dalle-Donne I, 2006, CLIN CHEM, V52, P601, DOI 10.1373/clinchem.2005.061408 Dhiman RK, 2005, DIGEST DIS SCI, V50, P1807, DOI 10.1007/s10620-005-2942-9 Dryden GW, 2006, CURR OPIN GASTROEN, V22, P165, DOI 10.1097/01.mog.0000208463.69266.8c Duarte S, 2015, MATRIX BIOL, V44-46, P147, DOI 10.1016/j.matbio.2015.01.004 Elmore S, 2007, TOXICOL PATHOL, V35, P495, DOI 10.1080/01926230701320337 Farghali H, 2015, PHARM BIOL, V53, P781, DOI 10.3109/13880209.2014.950387 Finkel T, 2000, NATURE, V408, P239, DOI 10.1038/35041687 Galleano M, 2010, CURR PHARM BIOTECHNO, V11, P837, DOI 10.2174/138920110793262114 Grundmann O, 2007, J ETHNOPHARMACOL, V110, P406, DOI 10.1016/j.jep.2006.09.035 Guan LP, 2005, ARCH PHARM RES, V28, P81, DOI 10.1007/BF02975140 Gui SY, 2005, WORLD J GASTROENTERO, V11, P2984, DOI 10.3748/wjg.v11.i19.2984 Higuchi M, 1998, ONCOGENE, V17, P2753, DOI 10.1038/sj.onc.1202211 Kwan CY, 2005, CLIN EXP PHARMACOL P, V32, P789, DOI 10.1111/j.1440-1681.2005.04255.x Li S, 2015, INT J MOL SCI, V16, P26087, DOI 10.3390/ijms161125942 Liang TG, 2010, INT J MOL SCI, V11, P4452, DOI 10.3390/ijms11114452 Liju VB, 2013, FOOD CHEM TOXICOL, V53, P52, DOI 10.1016/j.fct.2012.11.027 Malhi H, 2008, GASTROENTEROLOGY, V134, P1641, DOI 10.1053/j.gastro.2008.03.002 Mersch-Sundermann V, 2004, TOXICOLOGY, V198, P329, DOI 10.1016/j.tox.2004.02.009 Perry SW, 2011, BIOTECHNIQUES, V50, P98, DOI 10.2144/000113610 Rahman K, 2007, CLIN INTERV AGING, V2, P219 Romano B, 2013, PHYTOTHER RES, V27, P1588, DOI 10.1002/ptr.5023 Schmatz R, 2012, BIOCHIMIE, V94, P374, DOI 10.1016/j.biochi.2011.08.005 SIPES IG, 1991, ADV EXP MED BIOL, V283, P489 Tacke F, 2009, CLIN REV ALLERG IMMU, V36, P4, DOI 10.1007/s12016-008-8091-0 Vauzour D, 2010, NUTRIENTS, V2, P1106, DOI 10.3390/nu2111106 Weber LWD, 2003, CRIT REV TOXICOL, V33, P105, DOI 10.1080/713611034 Xie WY, 2016, CHEM-BIOL INTERACT, V246, P11, DOI 10.1016/j.cbi.2016.01.004 Xie WY, 2015, AM J CHINESE MED, V43, P457, DOI 10.1142/S0192415X15500299 Xie WY, 2012, J ETHNOPHARMACOL, V141, P1, DOI 10.1016/j.jep.2012.02.003 Xiong QB, 2000, PLANTA MED, V66, P127, DOI 10.1055/s-2000-11135 Yokozawa T, 2002, BIOL PHARM BULL, V25, P748, DOI 10.1248/bpb.25.748 Zhang S, 2013, FOOD CHEM TOXICOL, V55, P60, DOI 10.1016/j.fct.2012.12.041 NR 38 TC 18 Z9 19 U1 5 U2 36 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1138-7548 EI 1877-8755 J9 J PHYSIOL BIOCHEM JI J. Physiol. Biochem. PD MAY PY 2018 VL 74 IS 2 BP 301 EP 312 DI 10.1007/s13105-018-0618-0 PG 12 WC Biochemistry & Molecular Biology; Physiology SC Biochemistry & Molecular Biology; Physiology GA GH2HR UT WOS:000433223400010 PM 29541948 DA 2021-10-15 ER PT J AU Li, HJ Liu, Y Yi, YT Miao, Q Liu, SJ Zhao, F Cong, W Wang, CH Xia, CH AF Li, Hongjuan Liu, Ying Yi, Yuetao Miao, Qin Liu, Sujing Zhao, Feng Cong, Wei Wang, Chunhua Xia, Chuanhai TI Purification of quercetin-3-0-sophoroside and isoquercitrin from Poacynum hendersonii leaves using macroporous resins followed by Sephadex LH-20 column chromatography SO JOURNAL OF CHROMATOGRAPHY B-ANALYTICAL TECHNOLOGIES IN THE BIOMEDICAL AND LIFE SCIENCES LA English DT Article DE Macroporous resins; Quercetin-3-0-sophoroside; Isoquercitrin; Purification; Poacynum hendersonii ID APOCYNUM-VENETUM L.; PREPARATIVE SEPARATION; QUANTITATIVE-ANALYSIS; ADSORPTION; FLAVONOIDS; ANTIOXIDANT; ACID AB In China, Poacynum hendersonii is frequently used as a substitute for Apoacynum venetum L (Luobuma), which is a famous traditional Chinese medicine. Quercetin-3-0-sophoroside and isoquercitrin are two major flavonoids in Poacynum hendersonii leaves. In this work, a suitable method was established for the large-scale preparation of quercetin-3-0-sophoroside (QOS) and isoquercitrin (ISO) from Poacynum hendersonii leaves using macroporous resin combined with Sephadex LH-20 column chromatography. The adsorption/desorption capacities and desorption ratios of six macroporous resins were evaluated using static experiments. The HPD-300 resin had the best adsorption performance because it had the largest surface area, and was selected for further study. Compared with pseudo -first-order and intraparticle diffusion kinetics models, the pseudo -second-order model could better fit the adsorption kinetics of both QOS and ISO on the HPD-300 resin. In addition, the adsorption isotherms of the two compounds on the HPD-300 resin were fitted well to the Langmuir model. Under optimal conditions, the purities of QOS and ISO in the product were increased from 2.16% and 1.26% to 21.34% and 10.70% with recovery yields of 82.1% and 77.3%, respectively. Subsequently, Sephadex LH-20 column chromatography was employed for improving the purities of the two compounds. After separation by Sephadex LH-20 column chromatography, the purities of QOS and ISO achieved 93.5% and 95.6%, respectively. (c)2017 Elsevier B.V. All rights reserved. C1 [Li, Hongjuan; Yi, Yuetao; Miao, Qin; Liu, Sujing] Chinese Acad Sci, Yantai Inst Coastal Zone Res, Yantai 264003, Peoples R China. [Liu, Ying; Xia, Chuanhai] Ludong Univ, Sch Resources & Environm Engn, Middle Hongqi Rd 186, Yantai 264025, Peoples R China. [Li, Hongjuan; Zhao, Feng; Cong, Wei; Wang, Chunhua] Binzhou Med Univ, Sch Pharm, Yantai 264003, Peoples R China. [Li, Hongjuan; Miao, Qin] Univ Chinese Acad Sci, 19 Yuquan Rd, Beijing 100049, Peoples R China. RP Xia, CH (corresponding author), Ludong Univ, Sch Resources & Environm Engn, Middle Hongqi Rd 186, Yantai 264025, Peoples R China.; Wang, CH (corresponding author), Binzhou Med Univ, Sch Pharm, Yantai 264003, Peoples R China. EM chunhuawang508@126.com; chxia_ldu@hotmail.com FU Project of the Cultivation Plan of Superior Discipline Talent Teams of Universities in Shandong Province; Foundation of Shandong ProvinceNatural Science Foundation of Shandong Province [2014CGZH1316, ZR2014HP006]; Shandong Provincial Medical and Health Technology Development Program [2015WS0496] FX This study was funded by the Project of the Cultivation Plan of Superior Discipline Talent Teams of Universities in Shandong Province: "the Coastal Resources and Environment team for Blue -Yellow Area", the Foundation of Shandong Province (No. 2014CGZH1316 and ZR2014HP006), and Shandong Provincial Medical and Health Technology Development Program (No. 2015WS0496). CR An HJ, 2013, J PHARMACEUT BIOMED, V85, P295, DOI 10.1016/j.jpba.2013.07.005 Bai CL, 2015, J SEP SCI, V38, P2833, DOI 10.1002/jssc.201500416 Cano A, 2002, REDOX REP, V7, P379, DOI 10.1179/135100002125001153 Chen Y, 2016, FOOD CHEM, V194, P712, DOI 10.1016/j.foodchem.2015.08.084 Gasparotto A, 2012, J ETHNOPHARMACOL, V141, P501, DOI 10.1016/j.jep.2012.03.018 Gasparotto A, 2011, J ETHNOPHARMACOL, V134, P363, DOI 10.1016/j.jep.2010.12.026 Grundmann O, 2007, J ETHNOPHARMACOL, V110, P406, DOI 10.1016/j.jep.2006.09.035 Guo HD, 2015, J CHROMATOGR B, V980, P8, DOI 10.1016/j.jchromb.2014.12.014 Kamata K, 2008, J NAT MED-TOKYO, V62, P160, DOI 10.1007/s11418-007-0202-3 Kasimu R, 2015, J ETHNOPHARMACOL, V168, P116, DOI 10.1016/j.jep.2015.03.013 Kuhn S, 2014, FOOD RES INT, V65, P103, DOI 10.1016/j.foodres.2014.03.014 Lau YS, 2012, J ETHNOPHARMACOL, V143, P565, DOI 10.1016/j.jep.2012.07.012 Lee DY, 2012, J MED FOOD, V15, P399, DOI 10.1089/jmf.2011.1905 Lin X, 2012, ANALYST, V137, P4076, DOI 10.1039/c2an35476d Liu Z, 2013, PHARM BIOL, V51, P899, DOI 10.3109/13880209.2013.770537 Ma Cheng, 2010, Zhongguo Yaolixue Tongbao, V26, P397 Morikawa T, 2012, J NAT MED-TOKYO, V66, P39, DOI 10.1007/s11418-011-0549-3 Palazzolo G, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0049979 Rogerio AP, 2007, INFLAMM RES, V56, P402, DOI 10.1007/s00011-007-7005-6 Sevillano DM, 2014, FOOD BIOPROD PROCESS, V92, P192, DOI 10.1016/j.fbp.2014.02.002 Shi JY, 2011, PHYTOCHEM ANALYSIS, V22, P450, DOI 10.1002/pca.1301 Sukito Agus, 2014, Pak J Biol Sci, V17, P999, DOI 10.3923/pjbs.2014.999.1006 Xie WY, 2016, LIFE SCI, V152, P180, DOI 10.1016/j.lfs.2016.04.002 Xie WY, 2012, J ETHNOPHARMACOL, V141, P1, DOI 10.1016/j.jep.2012.02.003 Yang Y, 2009, CHROMATOGRAPHIA, V69, P963, DOI 10.1365/s10337-009-0986-2 Yao LY, 2015, J CHROMATOGR B, V989, P122, DOI 10.1016/j.jchromb.2014.09.028 Yun J, 2015, BBA-BIOMEMBRANES, V1848, P695, DOI 10.1016/j.bbamem.2014.11.019 Zhao P, 2015, J CHROMATOGR B, V1007, P8, DOI 10.1016/j.jchromb.2015.10.019 Zheng MZ, 2013, J ETHNOPHARMACOL, V147, P108, DOI 10.1016/j.jep.2013.02.015 NR 29 TC 18 Z9 21 U1 1 U2 60 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 1570-0232 EI 1873-376X J9 J CHROMATOGR B JI J. Chromatogr. B PD MAR 24 PY 2017 VL 1048 BP 56 EP 63 DI 10.1016/j.jchromb.2017.01.041 PG 8 WC Biochemical Research Methods; Chemistry, Analytical SC Biochemistry & Molecular Biology; Chemistry GA EP9IE UT WOS:000397686500007 PM 28213296 DA 2021-10-15 ER PT J AU Zhao, J Wu, HL Niu, JF Yu, YJ Yu, LL Kang, C Li, Q Zhang, XH Yu, RQ AF Zhao, Juan Wu, Hai-Long Niu, Jing-Fang Yu, Yong-Jie Yu, Li-Li Kang, Chao Li, Quan Zhang, Xiao-Hua Yu, Ru-Qin TI Chemometric resolution of coeluting peaks of eleven antihypertensives from multiple classes in high performance liquid chromatography: A comprehensive research in human serum, health product and Chinese patent medicine samples SO JOURNAL OF CHROMATOGRAPHY B-ANALYTICAL TECHNOLOGIES IN THE BIOMEDICAL AND LIFE SCIENCES LA English DT Article DE Second-order calibration; High performance liquid chromatography; Antihypertensives; Human serum; Health product; Chinese patent medicine ID II RECEPTOR ANTAGONISTS; HUMAN PLASMA; APOCYNUM-VENETUM; MOBILE-PHASE; MULTIVARIATE CALIBRATION; HYPERTENSION GUIDELINES; IONIZABLE COMPOUNDS; NATIONAL-INSTITUTE; BLOOD-PRESSURE; HPLC METHOD AB A novel chemometric-assisted high performance liquid chromatography method coupled with diode array detector (HPLC-DAD) was presented for the simultaneous determination of eleven antihypertensives from multiple classes in most concerned matrix systems. With the aid of second-order calibration which enables specific information of analytes to be well extracted, the heavily overlapping profiles between analytes and the coeluting interferences can be successfully separated and thus accurately quantified. A great advantage of the novel strategy lies in the fact that the analysis could be carried out with the same isocratic mobile phase (methanol/KH2PO4: 58:42, v/v, pH 2.60) in a short time regardless of the changes of matrices, such as human serum, health product and Chinese patent medicine. Both qualitative and quantitative results indicate that the hybrid strategy that using HPLC-DAD coupled with second-order chemometric method would be a high performance approach for the purpose of simultaneously quantifying multiple classes of antihypertensives in complex systems. Additionally, the analytical strategy can potentially benefit drug monitoring in both therapeutic research and pharmaceutical quality control. Moreover, the accuracy and reliability of the proposed methodology has been evaluated using several statistical parameters such as root mean squared error of prediction (RMSEP), figures of merit (FOM) and reproducibility of inter-day analysis. (C) 2012 Elsevier B.V. All rights reserved. C1 [Zhao, Juan; Wu, Hai-Long; Niu, Jing-Fang; Yu, Yong-Jie; Yu, Li-Li; Kang, Chao; Li, Quan; Zhang, Xiao-Hua; Yu, Ru-Qin] Hunan Univ, State Key Lab Chemo Biosensing & Chemometr, Coll Chem & Chem Engn, Changsha 410082, Hunan, Peoples R China. RP Wu, HL (corresponding author), Hunan Univ, State Key Lab Chemo Biosensing & Chemometr, Coll Chem & Chem Engn, Changsha 410082, Hunan, Peoples R China. EM hlwu@hnu.edu.cn RI Wu, Hailong/L-7397-2019; Zhang, Xiao-Hua/AAI-8899-2021; Kang, Chao/D-6131-2015 OI Zhang, Xiao-Hua/0000-0003-4993-6013; Kang, Chao/0000-0002-5156-4506 FU National Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC) [21175041]; National Basic Research ProgramNational Basic Research Program of China [2012CB910602]; Program for Changjiang Scholars and Innovative Research Team in University (PCSIRT)Program for Changjiang Scholars & Innovative Research Team in University (PCSIRT) FX The authors thank to the National Natural Science Foundation of China (Grant No. 21175041), the National Basic Research Program (Grant No. 2012CB910602) and the Program for Changjiang Scholars and Innovative Research Team in University (PCSIRT) for their financial supports. CR Afridi I, 2003, J HYPERTENS, V21, P1983, DOI 10.1097/01.hjh.0000084751-37215.d2 [Anonymous], 1997, ARCH INTERN MED, V157, P2413, DOI 10.1001/archinte.1997.00440420033005 Asmar R, 2001, J HYPERTENS, V19, P1727, DOI 10.1097/00004872-200110000-00005 Baranda AB, 2004, J CHROMATOGR A, V1031, P275, DOI 10.1016/j.chroma.2003.11.019 Basci NE, 1998, J PHARMACEUT BIOMED, V18, P745, DOI 10.1016/S0731-7085(98)00278-7 Boque R, 2002, ANAL CHIM ACTA, V451, P313, DOI 10.1016/S0003-2670(01)01395-2 Bortolato SA, 2010, CHEMOMETR INTELL LAB, V101, P30, DOI 10.1016/j.chemolab.2009.12.001 Borzecki AM, 2003, ARCH INTERN MED, V163, P2705, DOI 10.1001/archinte.163.22.2705 Bosch E, 1996, ANAL CHEM, V68, P3651, DOI 10.1021/ac960104l Bro R, 2003, J CHEMOMETR, V17, P274, DOI 10.1002/cem.801 Brown MJ, 2003, J HUM HYPERTENS, V17, P81, DOI 10.1038/sj.jhh.1001511 Canada-Canada F, 2009, J CHROMATOGR A, V1216, P4868, DOI 10.1016/j.chroma.2009.04.033 Chai X, 2012, J PHARMACEUT BIOMED, V57, P52, DOI 10.1016/j.jpba.2011.08.023 Chalmers J, 1999, J HYPERTENS, V17, P151 Chen ZP, 2001, ANAL CHIM ACTA, V444, P295, DOI 10.1016/S0003-2670(01)01179-5 Chobanian AV, 2003, JAMA-J AM MED ASSOC, V289, P2560, DOI 10.1161/01.HYP.0000107251.49515.c2 Comas E, 2002, ANAL CHIM ACTA, V470, P163, DOI 10.1016/S0003-2670(02)00769-9 Deyama T, 2001, ACTA PHARMACOL SIN, V22, P1057 Elgawish MS, 2011, SAUDI PHARM J, V19, P43, DOI 10.1016/j.jsps.2010.10.003 Escandar GM, 2006, MICROCHEM J, V82, P29, DOI 10.1016/j.microc.2005.07.001 Escandar GM, 2007, TRAC-TREND ANAL CHEM, V26, P752, DOI 10.1016/j.trac.2007.04.006 Ferreiros N, 2007, TALANTA, V73, P748, DOI 10.1016/j.talanta.2007.04.062 Fornstedt T, 1999, J AM CHEM SOC, V121, P1164, DOI 10.1021/ja9831296 Gomez V, 2008, ANAL CHIM ACTA, V627, P169, DOI 10.1016/j.aca.2008.07.054 Gu Q, 2004, J CHROMATOGR B, V813, P337, DOI 10.1016/j.jchromb.2004.09.031 Hill J, 2011, ANN INTERN MED, V154, DOI 10.7326/0003-4819-154-11-201106070-00007 [胡青 Hu Qing], 2010, [中国医药工业杂志, Chinese Journal of Pharmaceuticals], V41, P601 Huang TM, 2006, J PHARMACEUT BIOMED, V41, P644, DOI 10.1016/j.jpba.2005.12.007 Kim DW, 2000, J ETHNOPHARMACOL, V72, P53, DOI 10.1016/S0378-8741(00)00197-5 Li YN, 2010, ANAL CHIM ACTA, V678, P26, DOI 10.1016/j.aca.2010.08.007 Liu J.J., 2008, CHIN J MOD APPL PHAR, V25, P717 Lorber A, 1997, ANAL CHEM, V69, P1620, DOI 10.1021/ac960862b LORBER A, 1986, ANAL CHEM, V58, P1167, DOI 10.1021/ac00297a042 Luo LF, 2010, J ETHNOPHARMACOL, V129, P238, DOI 10.1016/j.jep.2010.03.019 Mas S, 2010, TALANTA, V80, P1052, DOI 10.1016/j.talanta.2009.09.044 Mohammadi A, 2007, J CHROMATOGR B, V846, P215, DOI 10.1016/j.jchromb.2006.09.007 Nie J, 2005, J CHROMATOGR B, V828, P62, DOI 10.1016/j.jchromb.2005.09.015 Polinko M, 2003, J PHARMACEUT BIOMED, V33, P73, DOI 10.1016/S0731-7085(03)00348-0 Prazen BJ, 1998, ANAL CHEM, V70, P218, DOI 10.1021/ac9706335 Roses M, 1996, ANAL CHEM, V68, P4094, DOI 10.1021/ac960105d Sagirli O, 2004, J CHROMATOGR B, V809, P159, DOI 10.1016/j.jchromb.2004.06.014 Sever P, 2006, J RENIN-ANGIO-ALDO S, V7, P61, DOI 10.3317/jraas.2006.011 Tagawa C, 2004, YAKUGAKU ZASSHI, V124, P851, DOI 10.1248/yakushi.124.851 Wu HL, 2009, ANAL CHIM ACTA, V650, P131, DOI 10.1016/j.aca.2009.05.041 Wu HL, 1998, J CHEMOMETR, V12, P1, DOI 10.1002/(SICI)1099-128X(199801/02)12:1<1::AID-CEM492>3.0.CO;2-4 Xiong QB, 2000, PLANTA MED, V66, P127, DOI 10.1055/s-2000-11135 Xu L, 2008, ANAL CHIM ACTA, V613, P121, DOI 10.1016/j.aca.2008.02.061 Yen GC, 1998, J AGR FOOD CHEM, V46, P3952, DOI 10.1021/jf9800458 Yu Q, 2011, CHROMATOGRAPHIA, V73, P257, DOI 10.1007/s10337-010-1883-4 Yu YJ, 2011, TALANTA, V85, P1549, DOI 10.1016/j.talanta.2011.06.044 Zarghi A., 2005, Farmaco (Lausanne), V60, P789, DOI 10.1016/j.farmac.2005.06.012 NR 51 TC 18 Z9 19 U1 0 U2 30 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 1570-0232 EI 1873-376X J9 J CHROMATOGR B JI J. Chromatogr. B PD AUG 1 PY 2012 VL 902 BP 96 EP 107 DI 10.1016/j.jchromb.2012.06.032 PG 12 WC Biochemical Research Methods; Chemistry, Analytical SC Biochemistry & Molecular Biology; Chemistry GA 986SY UT WOS:000307367100013 PM 22795572 DA 2021-10-15 ER PT J AU Li, C Tan, F Yang, JJ Yang, Y Gou, YT Li, ST Zhao, X AF Li, Chong Tan, Fang Yang, Jianjun Yang, Yue Gou, Yuting Li, Shuting Zhao, Xin TI Antioxidant Effects of Apocynum venetum Tea Extracts on d-Galactose-Induced Aging Model in Mice SO ANTIOXIDANTS LA English DT Article DE Apocynum venetum tea extracts; d-galactose; mice; oxidative damage; biological components ID OXIDATIVE STRESS; HEALTH; ACID; PROLIFERATION; SENESCENCE; APOPTOSIS; ENZYMES; CELLS; LIVER AB As a traditional Chinese medicinal drink, Apocynum venetum, a local tea from Xinjiang, China, is favored for its rich flavor and biological functionality. This study looked at aging mice induced by d-galactose to determine the in vivo anti-aging effect of Apocynum venetum tea extracts (AVTEs) and its bioactive components. We evaluated the weight of major organs (via organ index) and pathological changes in the liver. We also detailed the effects of AVTE (250 mg/kg in the low dose group, 500 mg/kg in the high dose group) on biochemical parameters (malondialdehyde, superoxide dismutase, glutathione, glutathione peroxidase, catalase, total antioxidant capacity, and nitric oxide) and cytokines (IL-6, IL-12, TNF-alpha and IL-1 beta) in the serum of aging mice. We investigated the anti-aging effects of AVTE in d-galactose-induced aging mice via quantitative real-time reverse transcription-polymerase chain reaction (RT-qPCR) assay. In addition, we analyzed the biological components of AVTEs by high performance liquid chromatography (HPLC). The results were remarkable, suggesting that AVTE significantly improved d-galactose-induced aging mice, with the high dose group showing the best results among other groups. ATVE can effectively alleviate hepatocyte edema, as well as inflammatory cell infiltration and injury in mice, induce a protective effect via up-regulation of glutathione (GSH), glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), and catalase (CAT) antioxidant related factors, and play an important role in the up-regulation of anti-inflammatory factors (IL-10) and the down-regulation of pro-inflammatory factors (IL-6, TNF-alpha and IL-1 beta). At the same time, HPLC analysis showed that AVTEs contain neochlorogenic acid, chlorogenic acid, cryptochlorogenic acid, rutin, isoquercitrin, isochlorogenic acid B, isochlorogenic acid A, astragalin, isochlorogenic acid C, rosmarinic acid, and trans-cinnamic acid. Thus, AVTE appears to be an effectively functional drink due to its rich functional components and anti-aging activities. C1 [Li, Chong; Yang, Jianjun; Yang, Yue; Gou, Yuting; Li, Shuting; Zhao, Xin] Chongqing Univ Educ, Chongqing Collaborat Innovat Ctr Funct Food, Chongqing 400067, Peoples R China. [Li, Chong; Zhao, Xin] Chongqing Univ Educ, Chongqing Engn Res Ctr Funct Food, Chongqing 400067, Peoples R China. [Li, Chong; Zhao, Xin] Chongqing Univ Educ, Chongqing Engn Lab Res & Dev Funct Food, Chongqing 400067, Peoples R China. [Tan, Fang] Our Lady Fatima Univ, Dept Publ Hlth, Valenzuela 838, Philippines. [Yang, Jianjun; Yang, Yue; Gou, Yuting; Li, Shuting] Chongqing Univ Educ, Coll Biol & Chem Engn, Chongqing 400067, Peoples R China. RP Zhao, X (corresponding author), Chongqing Univ Educ, Chongqing Collaborat Innovat Ctr Funct Food, Chongqing 400067, Peoples R China.; Zhao, X (corresponding author), Chongqing Univ Educ, Chongqing Engn Res Ctr Funct Food, Chongqing 400067, Peoples R China.; Zhao, X (corresponding author), Chongqing Univ Educ, Chongqing Engn Lab Res & Dev Funct Food, Chongqing 400067, Peoples R China. EM zhaoxin@cque.edu.cn FU Program for Innovation Team Building at Institutions of Higher Education in Chongqing [CXTDX201601040]; Research Project of Chongqing University of Education [KY201921C] FX This research was funded by the Program for Innovation Team Building at Institutions of Higher Education in Chongqing [CXTDX201601040], and the Research Project of Chongqing University of Education [KY201921C], China. CR Amoah SKS, 2016, PLANTA MED, V82, P388, DOI 10.1055/s-0035-1568274 Aydin AF, 2016, METAB BRAIN DIS, V31, P337, DOI 10.1007/s11011-015-9755-0 BOLWELL GP, 1988, PHYTOCHEMISTRY, V27, P2109, DOI 10.1016/0031-9422(88)80106-7 Case AJ, 2017, ANTIOXIDANTS-BASEL, V6, DOI 10.3390/antiox6040082 Chandrasekaran A, 2017, REDOX BIOL, V11, P91, DOI 10.1016/j.redox.2016.11.005 Chung SS, 2017, MEDIAT INFLAMM, V2017, P1, DOI DOI 10.1155/2017/5958429 Comert ED, 2018, FOOD RES INT, V105, P76, DOI 10.1016/j.foodres.2017.10.056 Crawford A, 2012, GENE, V501, P89, DOI 10.1016/j.gene.2012.04.011 Dieleman LA, 1998, CLIN EXP IMMUNOL, V114, P385 Dong FX, 2017, BIOCHEM BIOPH RES CO, V491, P636, DOI 10.1016/j.bbrc.2017.07.151 DRAPER HH, 1990, METHOD ENZYMOL, V186, P421 Dumitru CD, 2000, CELL, V103, P1071, DOI 10.1016/S0092-8674(00)00210-5 Ghasemi H, 2018, OCUL IMMUNOL INFLAMM, V26, P37, DOI 10.1080/09273948.2016.1277247 Glorieux C, 2017, BIOL CHEM, V398, P1095, DOI 10.1515/hsz-2017-0131 Gonthier MP, 2003, J NUTR, V133, P1853, DOI 10.1093/jn/133.6.1853 Gullon B, 2017, TRENDS FOOD SCI TECH, V67, P220, DOI 10.1016/j.tifs.2017.07.008 Gupta S, 2019, BASIC CLIN PHARMACOL, V124, P351, DOI 10.1111/bcpt.13032 Han R, 2018, CHEMOSPHERE, V200, P283, DOI 10.1016/j.chemosphere.2018.02.137 Harman D, 2006, ANN NY ACAD SCI, V1067, P10, DOI 10.1196/annals.1354.003 He SH, 2017, CELL, V169, P1000, DOI 10.1016/j.cell.2017.05.015 Henning SM, 2018, EUR J NUTR, V57, P2759, DOI 10.1007/s00394-017-1542-8 Ho SC, 2003, BIOGERONTOLOGY, V4, P15, DOI 10.1023/A:1022417102206 Hollyfield JG, 2008, NAT MED, V14, P194, DOI 10.1038/nm1709 Huang SP, 2017, NUTRIENTS, V9, DOI 10.3390/nu9090948 Irie K, 2009, J NAT MED, V63, P111, DOI 10.1007/s11418-008-0296-2 Jia YN, 2018, INT IMMUNOPHARMACOL, V56, P105, DOI 10.1016/j.intimp.2018.01.014 Junzhen W., 2014, BIOMED RES INT, V2014 Jurk D, 2014, NAT COMMUN, V5, DOI 10.1038/ncomms5172 Keles MS, 2001, CAN J NEUROL SCI, V28, P141, DOI 10.1017/S0317167100052823 Kobayashi S, 2017, NUTR J, V16, DOI 10.1186/s12937-017-0250-9 Lakatta EG, 2003, CIRCULATION, V107, P490, DOI 10.1161/01.CIR.0000048894.99865.02 Li C, 2019, APPL SCI-BASEL, V9, DOI 10.3390/app9071325 Li W, 2017, J AGR FOOD CHEM, V65, P5961, DOI 10.1021/acs.jafc.7b02120 Liang N, 2016, NUTRIENTS, V8, DOI 10.3390/nu8010016 Liguori I, 2018, CLIN INTERV AGING, V13, P757, DOI 10.2147/CIA.S158513 Liu HY, 2018, FOOD AGR IMMUNOL, V29, P316, DOI 10.1080/09540105.2017.1376037 Long P, 2014, ACTA PHARM SIN B, V4, P227, DOI 10.1016/j.apsb.2014.02.006 Mates JM, 1999, CLIN BIOCHEM, V32, P595, DOI 10.1016/S0009-9120(99)00075-2 Mattout A, 2006, CURR OPIN CELL BIOL, V18, P335, DOI 10.1016/j.ceb.2006.03.007 McKay DL, 2002, J AM COLL NUTR, V21, P1 McKim DB, 2018, MOL PSYCHIATR, V23, P1421, DOI 10.1038/mp.2017.64 Naik E, 2011, J EXP MED, V208, P417, DOI 10.1084/jem.20110367 Pacher P, 2007, PHYSIOL REV, V87, P315, DOI 10.1152/physrev.00029.2006 Song X, 1999, MECH AGEING DEV, V108, P239, DOI 10.1016/S0047-6374(99)00022-6 SOOS E, 1949, Sci Pharm, V17, P121 Tamareille S, 2011, BASIC RES CARDIOL, V106, P1329, DOI 10.1007/s00395-011-0210-z Villarreal-Soto SA, 2018, J FOOD SCI, V83, P580, DOI 10.1111/1750-3841.14068 [王海明 Wang Haiming], 2007, [食品科学, Food Science], V28, P326 WILKE BC, 1992, CLIN CHIM ACTA, V207, P137, DOI 10.1016/0009-8981(92)90157-L Wu P, 2017, FOOD FUNCT, V8, P3707, DOI 10.1039/c7fo00778g Xie WY, 2012, J ETHNOPHARMACOL, V141, P1, DOI 10.1016/j.jep.2012.02.003 Xiong QB, 2000, PLANTA MED, V66, P127, DOI 10.1055/s-2000-11135 Zhang W, 2018, J PHYSIOL BIOCHEM, V74, P301, DOI 10.1007/s13105-018-0618-0 Zhang XL, 2013, FOOD CHEM TOXICOL, V58, P50, DOI 10.1016/j.fct.2013.04.006 NR 54 TC 17 Z9 17 U1 9 U2 17 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND EI 2076-3921 J9 ANTIOXIDANTS-BASEL JI Antioxidants PD SEP PY 2019 VL 8 IS 9 AR 381 DI 10.3390/antiox8090381 PG 16 WC Biochemistry & Molecular Biology; Chemistry, Medicinal; Food Science & Technology SC Biochemistry & Molecular Biology; Pharmacology & Pharmacy; Food Science & Technology GA JA6MU UT WOS:000487957300045 PM 31500342 OA Green Submitted, gold, Green Published DA 2021-10-15 ER PT J AU Khan, H Perviz, S Sureda, A Nabavi, SM Tejada, S AF Khan, Haroon Perviz, Sadia Sureda, Antoni Nabavi, Seyed M. Tejada, Silvia TI Current standing of plant derived flavonoids as an antidepressant SO FOOD AND CHEMICAL TOXICOLOGY LA English DT Article; Proceedings Paper CT 3rd International Symposium on Phytochemicals in Medicine and Food (ISPMF) CY AUG 25-30, 2018 CL Kunming, PEOPLES R CHINA SP Phytochem Soc Europe, Int Soc Chinese Med, Physiol Soc Japan, Phytochem Soc Asia DE Natural flavonoids; Structure activity relationship studies; Monoamine oxidase; BDNF; Serotonergic system; Dopaminergic system ID TO-MODERATE DEPRESSION; CROCUS-SATIVUS L.; ST JOHNS WORT; EVIDENCE-BASED PHARMACOTHERAPY; OXIDASE INHIBITORY COMPONENTS; APOCYNUM-VENETUM LEAVES; CITRUS-AURANTIUM L.; SCHINUS-MOLLE L.; DOUBLE-BLIND; INVOLVEMENT AB Depression, a multifactorial brain disorder, is one of the most prevalent diseases worldwide. Several strategies have been developed to counteract the main symptoms and disorders. However, the treatments are usually associated with different side effects or poor effect. For that reason, new necessary approaches are emerging; among them, natural products are good alternatives since no interactions have been described up to now. Flavonoids have been related to antidepressant effects in cell lines and animal models by their action on the amine mechanisms protecting the neuroendocrine and immune systems. The current review includes an approach of some of the main results related to the action of flavonoids on depression found in the literature and a short view of the possible mechanisms involved. Thus, it highlights the potential emerging candidates with strong antidepressant effects which could be effective new compounds. C1 [Khan, Haroon; Perviz, Sadia] Abdul Wall Khan Univ Mardan, Dept Pharm, Mardan 23200, Pakistan. [Sureda, Antoni] Univ Balearic Isl, Res Grp Community Nutr & Oxidat Stress, CIBEROBN, Physiopathol Obes & Nutr, E-07122 Palma De Mallorca, Balearic Island, Spain. [Nabavi, Seyed M.] Baqiyatallah Univ Med Sci, Appl Biotechnol Res Ctr, Tehran, Iran. [Tejada, Silvia] Univ Balearic Isl, Dept Biol, Neurophysiol Lab, Ctra Valldemossa,Km 7,5,Ed Guillem Colon, E-07122 Palma De Mallorca, Balearic Island, Spain. RP Khan, H (corresponding author), Abdul Wall Khan Univ Mardan, Dept Pharm, Mardan 23200, Pakistan.; Tejada, S (corresponding author), Univ Balearic Isl, Dept Biol, Neurophysiol Lab, Ctra Valldemossa,Km 7,5,Ed Guillem Colon, E-07122 Palma De Mallorca, Balearic Island, Spain. EM haroordthan@awkum.edu.pk; silvia.tejada@uib.es RI , Antoni/AAB-5250-2019; Gomila, Antonio Sureda/L-7191-2014; Tejada, Silvia/L-7297-2014; Nabavi, Seyed Mohammad/G-5335-2010; Khan, Haroon/AAY-1785-2020; Sureda, Antoni/N-9588-2019 OI , Antoni/0000-0001-8656-6838; Gomila, Antonio Sureda/0000-0003-2101-616X; Tejada, Silvia/0000-0002-7498-6090; Khan, Haroon/0000-0002-1736-4404; Sureda, Antoni/0000-0001-8656-6838 FU Spanish Instituto the Salud Carlos IIIInstituto de Salud Carlos III [CIBEROBN - CB12/03/30038] FX This work was partially supported by the Spanish Instituto the Salud Carlos III (CIBEROBN - CB12/03/30038. CR Abbas G, 2015, NAT PROD RES, V29, P302, DOI 10.1080/14786419.2014.942661 Aburawi Sm, 2007, Libyan J Med, V2, P169, DOI 10.4176/070909 Alexander RC, 2014, CURR OPIN PHARMACOL, V14, P6, DOI 10.1016/j.coph.2013.09.016 Ali M, 2017, CURR TOP MED CHEM, V17, P383, DOI 10.2174/1568026616666160824101429 An L., 2011, EVID-BASED COMPL ALT, V36, P619 An L, 2008, PROG NEURO-PSYCHOPH, V32, P1484, DOI 10.1016/j.pnpbp.2008.05.005 Athira KV, 2016, CHEM-BIOL INTERACT, V248, P18, DOI 10.1016/j.cbi.2016.02.005 Atteritano M, 2014, OSTEOPOROSIS INT, V25, P1123, DOI 10.1007/s00198-013-2512-5 Bahramsoltani R, 2015, REV NEUROSCIENCE, V26, P699, DOI 10.1515/revneuro-2015-0009 Barbour PM, 2014, BIOORG MED CHEM LETT, V24, P5602, DOI 10.1016/j.bmcl.2014.10.094 Barreca D, 2011, FOOD CHEM, V124, P576, DOI 10.1016/j.foodchem.2010.06.076 Benazzi F, 1997, J AFFECT DISORDERS, V46, P73, DOI 10.1016/S0165-0327(97)00082-7 Berrocoso E, 2009, CURR PHARM DESIGN, V15, P1612, DOI 10.2174/138161209788168100 Bhattamisra SK, 2008, J ETHNOPHARMACOL, V117, P51, DOI 10.1016/j.jep.2008.01.012 Bjorkholm C, 2016, NEUROPHARMACOLOGY, V102, P72, DOI 10.1016/j.neuropharm.2015.10.034 Bouayed J, 2010, CURR NUTR FOOD SCI, V6, P13, DOI 10.2174/157340110790909608 Brattstrom A, 2009, PHYTOMEDICINE, V16, P277, DOI 10.1016/j.phymed.2008.12.023 Bruneton J., 1999, Pharmacognosy, phytochemistry, medicinal plants. Bugel SM, 2018, TOXICOL APPL PHARM, V344, P23, DOI 10.1016/j.taap.2018.02.019 Bukhari SNA, 2012, MINI-REV MED CHEM, V12, P1394 Burton G, 2010, LIFE SCI, V45, P3063 Busch C, 2015, CLIN EPIGENETICS, V7, DOI 10.1186/s13148-015-0095-z Butterweck V, 2000, PLANTA MED, V66, P3, DOI 10.1055/s-2000-11119 Butterweck V, 2003, CNS DRUGS, V17, P539, DOI 10.2165/00023210-200317080-00001 Cao JG, 2013, FOOD CHEM TOXICOL, V51, P242, DOI 10.1016/j.fct.2012.09.039 Carde Soufiane, 2016, Soins Psychiatr, P41, DOI 10.1016/j.spsy.2015.11.010 Carradori S, 2016, J AGR FOOD CHEM, V64, P9004, DOI 10.1021/acs.jafc.6b03529 Casilla-Lennon MM, 2016, AM J OBSTET GYNECOL, V215, DOI 10.1016/j.ajog.2016.01.170 Chang SC, 2016, AM J CLIN NUTR, V104, P704, DOI 10.3945/ajcn.115.124545 Chang XR, 2016, BRAIN RES, V1642, P219, DOI 10.1016/j.brainres.2016.03.010 Chen YG, 2013, MOLECULES, V18, P4221, DOI 10.3390/molecules18044221 Clement Kimberly, 2006, Holist Nurs Pract, V20, P197 de la Pena JBI, 2014, ARCH PHARM RES, V37, P263, DOI 10.1007/s12272-013-0229-9 de Sousa-Munoz RL, 2009, MATURITAS, V63, P89, DOI 10.1016/j.maturitas.2009.02.008 Donato F, 2014, BRAIN RES BULL, V104, P19, DOI 10.1016/j.brainresbull.2014.03.004 Dwyer AV, 2011, ALTERN MED REV, V16, P40 El-Alfy AT, 2012, CURT MED CHEM, V19 Farah IN, 2011, PHYTOMEDICINE, V18, P402, DOI DOI 10.1016/J.PHYMED.2010.08.011 Fineberg NA, 2012, INT J NEUROPSYCHOPH, V15, P1173, DOI 10.1017/S1461145711001829 Flament MF, 2012, INT J NEUROPSYCHOPH, V15, P189, DOI 10.1017/S1461145711000381 Frandsen JR, 2018, REDOX BIOL, V14, P465, DOI 10.1016/j.redox.2017.10.015 Gaffrey MS, 2013, NEUROBIOL DIS, V52, P38, DOI 10.1016/j.nbd.2012.06.012 Garg U, 2012, THERAPEUTIC DRUG MONITORING: NEWER DRUGS AND BIOMARKERS, P269, DOI 10.1016/B978-0-12-385467-4.00013-0 GILL R, 1987, J CHROMATOGR, V391, P461, DOI 10.1016/S0021-9673(01)94351-1 Gong J., 2014, CURR OPIN COMPLEMENT, V1 Grant J. E. P. M., 2012, OXFORD HDB IMPULSE C Guan LP, 2016, EUR J MED CHEM, V121, P47, DOI 10.1016/j.ejmech.2016.05.026 Guan Li-Ping, 2016, EUROPEAN J MED CHEM, P30414 Han XH, 2007, ARCH PHARM RES, V30, P13, DOI 10.1007/BF02977772 Harborne JB, 2000, PHYTOCHEMISTRY, V55, P481, DOI 10.1016/S0031-9422(00)00235-1 Hou WC, 2005, J ETHNOPHARMACOL, V100, P216, DOI 10.1016/j.jep.2005.03.017 Hritcu L, 2017, OXID MED CELL LONGEV, V2017, DOI 10.1155/2017/5762172 Hua XL, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0151134 Hwang JS, 2005, ARCH PHARM RES, V28, P190, DOI 10.1007/BF02977714 Ishisaka M, 2011, BIOL PHARM BULL, V34, P1481, DOI 10.1248/bpb.34.1481 Ishola IO, 2012, PHARMACOL BIOCHEM BE, V103, P322, DOI 10.1016/j.pbb.2012.08.017 Jaeger BN, 2018, MOL ASPECTS MED, V61, P50, DOI 10.1016/j.mam.2017.11.003 Kang SR, 2011, FOOD CHEM, V129, P1721, DOI 10.1016/j.foodchem.2011.06.039 Kashtriya R. B., 2015, Journal of Applicable Chemistry, V4, P801 Kasper S, 2006, BMC MED, V4, DOI 10.1186/1741-7015-4-14 Kaster MP, 2016, EUR J PHARMACOL, V771, P236, DOI 10.1016/j.ejphar.2015.12.029 Katsori AM, 2011, EXPERT OPIN THER PAT, V21, P1575, DOI 10.1517/13543776.2011.596529 Kawabata K, 2010, J NUTR BIOCHEM, V21, P374, DOI 10.1016/j.jnutbio.2009.01.008 Khalid S, 2017, NUTRIENTS, V9, DOI 10.3390/nu9020158 Khalid S, 2016, BRIT J NUTR, V116, P2097, DOI 10.1017/S0007114516004359 Khan H, 2018, BIOMED PHARMACOTHER, V101, P860, DOI 10.1016/j.biopha.2018.03.007 Knorr U, 2017, PSYCHIAT RES, V256, P176, DOI 10.1016/j.psychres.2017.06.057 Kontogiorgis C, 2008, MINI-REV MED CHEM, V8, P1224, DOI 10.2174/138955708786141034 Lan J., 2008, TSINGHUA SCI TECHNOL, V13, P485, DOI [10.1016/S1007-0214(08)70078-6, DOI 10.1016/S1007-0214(08)70078-6] Lee B, 2012, KOREAN J PHYSIOL PHA, V16, P379, DOI 10.4196/kjpp.2012.16.6.379 Lee MH, 2001, J AGR FOOD CHEM, V49, P5551, DOI 10.1021/jf010622j Li LF, 2013, EUR J PHARMACOL, V711, P42, DOI 10.1016/j.ejphar.2013.04.008 Li Y. F., 2000, ANTIDEPRESSANT EFFEC, V14, P1125 Li YC, 2013, PROG NEURO-PSYCHOPH, V40, P138, DOI 10.1016/j.pnpbp.2012.09.007 Li Yun-feng, 2006, Zhongguo Yaolixue Tongbao, V22, P60 Li Z. P., 2006, SHI ZHEN GUO YI GUO, V17, P1388 Linde K, 2015, ANN FAM MED, V13, P69, DOI 10.1370/afm.1687 Lipovac M, 2010, MATURITAS, V65, P258, DOI 10.1016/j.maturitas.2009.10.014 Liu B, 2015, NEUROSCIENCE, V294, P193, DOI 10.1016/j.neuroscience.2015.02.053 Lopez-Rubalcava C, 2016, J ETHNOPHARMACOL, V186, P377, DOI 10.1016/j.jep.2016.03.053 Lu P, 2010, BEHAV BRAIN RES, V207, P387, DOI 10.1016/j.bbr.2009.10.024 Lunn M. P., 2014, COCHRANE DATABASE SY, V1 Lv QQ, 2014, BIOL PHARM BULL, V37, P987, DOI 10.1248/bpb.b13-00968 Machado DG, 2008, EUR J PHARMACOL, V587, P163, DOI 10.1016/j.ejphar.2008.03.021 Machado DG, 2007, PROG NEURO-PSYCHOPH, V31, P421, DOI 10.1016/j.pnpbp.2006.11.004 Mannel M, 2010, J PSYCHIATR RES, V44, P760, DOI 10.1016/j.jpsychires.2010.01.010 Mannucci C, 2012, PHYTOMEDICINE, V19, P1117, DOI 10.1016/j.phymed.2012.07.001 Meyer E, 2017, BEHAV BRAIN RES, V316, P59, DOI 10.1016/j.bbr.2016.08.048 Mihrshahi S, 2015, EUR J CLIN NUTR, V69, P585, DOI 10.1038/ejcn.2014.222 Mlynarcikova AB, 2018, ENVIRON TOXICOL PHAR, V59, P66, DOI 10.1016/j.etap.2018.03.001 Mori-Okamoto J, 2004, J ETHNOPHARMACOL, V92, P93, DOI 10.1016/j.jep.2004.02.006 Moshiri E, 2006, PHYTOMEDICINE, V13, P607, DOI 10.1016/j.phymed.2006.08.006 Nabavi SF, 2018, PHARMACOL RES, V128, P359, DOI 10.1016/j.phrs.2017.10.008 Nabavi SM, 2017, NUTR NEUROSCI, V20, P180, DOI 10.1080/1028415X.2015.1103461 Nakazawa T, 2003, BIOL PHARM BULL, V26, P474, DOI 10.1248/bpb.26.474 Naughton M, 2000, HUM PSYCHOPHARM CLIN, V15, P397, DOI 10.1002/1099-1077(200008)15:6<397::AID-HUP212>3.3.CO;2-C Nikfar S., 2012, DARU, V20 Noldner M, 2002, PLANTA MED, V68, P577, DOI 10.1055/s-2002-32908 Noorbala AA, 2005, J ETHNOPHARMACOL, V97, P281, DOI 10.1016/j.jep.2004.11.004 Olsen HT, 2008, J ETHNOPHARMACOL, V117, P500, DOI 10.1016/j.jep.2008.02.015 Pan Y, 2007, PHARMACOL BIOCHEM BE, V87, P130, DOI 10.1016/j.pbb.2007.04.009 Pan Y, 2006, BIOL PHARM BULL, V29, P2399, DOI 10.1248/bpb.29.2399 Pase MP, 2013, J PSYCHOPHARMACOL, V27, P451, DOI 10.1177/0269881112473791 Patil S. P., 2014, J TRADITIONAL CHINES, V1, P28 Paulke A, 2008, PHARMAZIE, V63, P296, DOI 10.1691/ph.2008.7751 Peluso I, 2015, BIOMED PHARMACOTHER, V71, P102, DOI 10.1016/j.biopha.2015.02.028 Peng KZ, 2016, J ETHNOPHARMACOL, V192, P161, DOI 10.1016/j.jep.2016.07.012 Perez-Vizcaino F, 2018, ARCH BIOCHEM BIOPHYS, V646, P107, DOI 10.1016/j.abb.2018.03.022 Qiao H, 2017, BRAIN RES, V1663, P29, DOI 10.1016/j.brainres.2017.02.020 Ramesh Patel T. J., 2012, REV INT J PHYTOPHARM, V2, P30 Rapaport MH, 2011, J PSYCHIATR RES, V45, P931, DOI 10.1016/j.jpsychires.2011.05.001 Rauf A, 2017, CURR TOP MED CHEM, V17, P412, DOI 10.2174/1568026616666160824103615 Rauf A, 2016, COMPLEMENT THER MED, V25, P132, DOI 10.1016/j.ctim.2016.02.002 Rauf A, 2015, NAT PROD RES, V29, P1775, DOI 10.1080/14786419.2014.999336 Rauf A, 2015, FITOTERAPIA, V103, P129, DOI 10.1016/j.fitote.2015.03.019 Rauf A, 2015, EVID-BASED COMPL ALT, V2015, DOI 10.1155/2015/506564 Saaby L, 2009, J ETHNOPHARMACOL, V121, P178, DOI 10.1016/j.jep.2008.10.012 Sarris J, 2011, EUR NEUROPSYCHOPHARM, V21, P841, DOI 10.1016/j.euroneuro.2011.04.002 Sathyanarayana Rao T S, 2009, Indian J Psychiatry, V51, P65, DOI 10.4103/0019-5545.44910 Shahmansouri N, 2014, J AFFECT DISORDERS, V155, P216, DOI 10.1016/j.jad.2013.11.003 Singh P, 2014, EUR J MED CHEM, V85, P758, DOI 10.1016/j.ejmech.2014.08.033 Sloley BD, 2000, J PHARM PHARMACOL, V52, P451, DOI 10.1211/0022357001774075 Souza LC, 2013, PROG NEURO-PSYCHOPH, V40, P103, DOI 10.1016/j.pnpbp.2012.09.003 Spagnuolo C, 2018, EUR J MED CHEM, V153, P105, DOI 10.1016/j.ejmech.2017.09.001 Tondo L, 2003, CNS DRUGS, V17, P491, DOI 10.2165/00023210-200317070-00003 Vauzour D, 2008, GENES NUTR, V3, P115, DOI 10.1007/s12263-008-0091-4 Wang WX, 2008, PROG NEURO-PSYCHOPH, V32, P1179, DOI 10.1016/j.pnpbp.2007.12.021 Wang WX, 2007, ZHONG CAO YAO, V38, P900 Wasowski Cristina, 2012, J Exp Pharmacol, V4, P9, DOI 10.2147/JEP.S23105 Weili Zhu S. M., 2008, MICE AND RATS, P503 Woo HD, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0075604 Xiao JB, 2018, FOOD CHEM TOXICOL, V119, P3, DOI 10.1016/j.fct.2018.03.051 Xiao JB, 2017, CRIT REV FOOD SCI, V57, P1874, DOI 10.1080/10408398.2015.1032400 Xiao JB, 2016, CRIT REV FOOD SCI, V56, pS29, DOI 10.1080/10408398.2015.1067595 Xie YX, 2014, FOOD FUNCT, V5, P2582, DOI [10.1039/C4FO00287C, 10.1039/c4fo00287c] Xu ML, 2016, CHEM-BIOL INTERACT, V259, P295, DOI 10.1016/j.cbi.2016.03.025 Yadav VR, 2011, INT IMMUNOPHARMACOL, V11, P295, DOI 10.1016/j.intimp.2010.12.006 Yan L., 2016, SCI REPORTS, V6 Yi LT, 2008, LIFE SCI, V82, P741, DOI 10.1016/j.lfs.2008.01.007 Yi LT, 2012, PROG NEURO-PSYCHOPH, V39, P175, DOI 10.1016/j.pnpbp.2012.06.009 Yi LT, 2011, PHYSIOL BEHAV, V102, P1, DOI 10.1016/j.physbeh.2010.10.008 Yi LT, 2010, PROG NEURO-PSYCHOPH, V34, P1223, DOI 10.1016/j.pnpbp.2010.06.024 Yu XJ, 2017, BIOMED PHARMACOTHER, V88, P1, DOI 10.1016/j.biopha.2016.12.130 Zhang Q J, 2001, Zhongguo Zhong Yao Za Zhi, V26, P511 Zhao Nan, 2007, Zhongguo Yaolixue Yu Dulixue Zazhi, V21, P179 Zheng MZ, 2013, J ETHNOPHARMACOL, V147, P108, DOI 10.1016/j.jep.2013.02.015 Zheng MZ, 2012, PHYTOMEDICINE, V19, P145, DOI 10.1016/j.phymed.2011.06.029 Zhu JTT, 2007, J AGR FOOD CHEM, V55, P2438, DOI 10.1021/jf063299z NR 148 TC 17 Z9 18 U1 3 U2 24 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0278-6915 EI 1873-6351 J9 FOOD CHEM TOXICOL JI Food Chem. Toxicol. PD SEP PY 2018 VL 119 BP 176 EP 188 DI 10.1016/j.fct.2018.04.052 PG 13 WC Food Science & Technology; Toxicology SC Food Science & Technology; Toxicology GA GS4YQ UT WOS:000443664200022 PM 29704578 DA 2021-10-15 ER PT J AU Kim, DW Yokozawa, T Hattori, M Kadota, S Namba, T AF Kim, DW Yokozawa, T Hattori, M Kadota, S Namba, T TI Effects of aqueous extracts of Apocynum venetum leaves on hypercholesterolaemic rats SO PHYTOTHERAPY RESEARCH LA English DT Article DE Apocynum venetum; atherogenic index; HDL-cholesterol; cholesterol-fed rats; LDL-cholesterol ID HIGH-DENSITY; HEART-DISEASE; LIPOPROTEIN; TEA; ATHEROSCLEROSIS; CHOLESTEROL AB The extracts of dried leaves of Apocynum venetum collected in different places in China (Luobuma I and II), and two processed leaves (Luobuma III and IV), were investigated on serum lipid and hepatic total cholesterol levels in cholesterol-fed rats. The serum total cholesterol levels were significantly reduced on day 40 in rats given the roasted leaf extracts (Luobuma III and IV) with p<0.05 and p<0.0l, respectively, when compared with a control value of cholesterol-fed rats. In the serum lipoproteins, the LDL-cholesterol levels were significantly lower in rats given each sample extract on day 40, compared with the control value, and the HDL-cholesterol levels were significantly higher than that of a control group, except for a group given Luobuma I. Furthermore, the respective atherogenic indices were significantly lower in all groups given Luobuma I to IV, compared with the control value. The hepatic total cholesterol levels were also significantly lower in all of the groups given the Luobuma extracts than that of control rats on day 40. These results suggest that the extract of A. venetum leaves is effective for hypercholesteraemia and the prevention of atherosclerosis. (C) 1998 John Wiley & Sons, Ltd. C1 Toyama Med & Pharmaceut Univ, Res Inst Tradit Sino Japanese Med, Toyama 93001, Japan. RP Hattori, M (corresponding author), Toyama Med & Pharmaceut Univ, Res Inst Tradit Sino Japanese Med, 2630 Sugitani, Toyama 93001, Japan. CR BUJA LM, 1979, AM J PATHOL, V97, P327 CHOI JS, 1991, J NAT PROD, V54, P218, DOI 10.1021/np50073a022 FENTON G, 1989, J MED CHEM, V32, P265, DOI 10.1021/jm00121a047 FUJITA Y, 1989, JPN J CANCER RES, V80, P503, DOI 10.1111/j.1349-7006.1989.tb01666.x LOU FQ, 1989, CHINESE MED J-PEKING, V102, P579 MA YX, 1989, CHIN J MOD DEV TRAD, V9, P335 MATSUDA H, 1986, J ETHNOPHARMACOL, V17, P213, DOI 10.1016/0378-8741(86)90110-8 MILLER GJ, 1975, LANCET, V1, P16 MURAMATSU K, 1986, J NUTR SCI VITAMINOL, V32, P613, DOI 10.3177/jnsv.32.613 NOMA A, 1978, CLIN CHEM, V24, P1504 QIAN Z, 1988, Bulletin of Chinese Materia Medica, V13, P44 RHOADS GG, 1976, NEW ENGL J MED, V294, P293, DOI 10.1056/NEJM197602052940601 SCHMIDT SB, 1985, AM J CARDIOL, V55, P1459, DOI 10.1016/0002-9149(85)90953-1 NR 13 TC 17 Z9 19 U1 0 U2 5 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0951-418X EI 1099-1573 J9 PHYTOTHER RES JI Phytother. Res. PD FEB PY 1998 VL 12 IS 1 BP 46 EP 48 DI 10.1002/(SICI)1099-1573(19980201)12:1<46::AID-PTR169>3.0.CO;2-I PG 3 WC Chemistry, Medicinal; Pharmacology & Pharmacy SC Pharmacology & Pharmacy GA YX735 UT WOS:000072072000012 DA 2021-10-15 ER PT J AU Cui, YN Xia, ZR Ma, Q Wang, WY Chai, WW Wang, SM AF Cui, Yan-Nong Xia, Zeng-Run Ma, Qing Wang, Wen-Ying Chai, Wei-Wei Wang, Suo-Min TI The synergistic effects of sodium and potassium on the xerophyte Apocynum venetum in response to drought stress SO PLANT PHYSIOLOGY AND BIOCHEMISTRY LA English DT Article DE Apocynum venetum; Potassium efficiency; Osmotic stress; Sodium; Osmotic adjustment; Photosynthesis ID WATER-USE EFFICIENCY; OSMOTIC ADJUSTMENT; GENOTYPES DIFFER; POLYETHYLENE-GLYCOL; GAS-EXCHANGE; K+-UPTAKE; MECHANISMS; LEAVES; PLANTS; NA+ AB Apocynum venetum is an eco-economic plant species with high adaptability to saline and arid environments. Our previous work has found that A. venetum could absorb large amount of Na+. and maintain high K+ level under saline conditions. To investigate whether K+ and Na+ could simultaneously enhance drought resistance in A. venetum, seedlings were exposed to osmotic stress (-0.2 MPa) in the presence or absence of additional 25 mM NaCl under low (0.01 mM) and normal (2.5 mM) K+ supplying conditions, respectively. The results showed that A. venetum should be considered as a typical K+-efficient species since its growth was unimpaired and possessed a strong K+ uptake and prominent K+ utilization efficiency under K+ deficiency condition. Leaf K+ concentration remained stable or was even significantly increased under osmotic stress in the presence or absence of NaCl, compared with that under control condition, regardless of whether the K+ supply was sufficient or not, and the contribution of K+ to leaf osmotic potential consistently exceeded 37%, indicating K+ is the uppermost contributor to osmotic adjustment of A. venetum. Under osmotic stress, the addition of 25 mM NaCl significantly increase Na+ accumulation in leaves and the contribution of Na+ to osmotic adjustment, thus improving the relative water content, concomitantly, promoting the photosynthetic activity resulting in an enhancement of overall plant growth. These findings suggested that, K+ and Na+ simultaneously play crucial roles in the osmotic adjustment and the maintenance of water status and photosynthetic activity, which is beneficial for A. venetum to cope with drought stress. C1 [Cui, Yan-Nong; Xia, Zeng-Run; Ma, Qing; Wang, Wen-Ying; Chai, Wei-Wei; Wang, Suo-Min] Lanzhou Univ, Coll Pastoral Agr Sci & Technol, State Key Lab Grassland Agroecosyst, Lanzhou 730000, Peoples R China. [Xia, Zeng-Run] Minist Agr, Ankang R&D Ctr Se Enriched Prod, Key Lab Se Enriched Prod Dev & Qual Control, Ankang 725000, Shaanxi, Peoples R China. RP Wang, SM (corresponding author), Lanzhou Univ, Coll Pastoral Agr Sci & Technol, State Key Lab Grassland Agroecosyst, Lanzhou 730000, Peoples R China. EM smwang@lzu.edu.cn FU National Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC) [31730093, 31470503] FX This work was financially supported by the National Natural Science Foundation of China (Grant No. 31730093 and 31470503). CR Abbadi J., 2017, WORLD J AGR RES, V5, P244, DOI [10.12691/wjar-5-5-1, DOI 10.12691/WJAR-5-5-1] Alves AAC, 2004, ENVIRON EXP BOT, V51, P259, DOI 10.1016/j.envexpbot.2003.11.005 Amtmann A, 2007, CELL RES, V17, P483, DOI 10.1038/cr.2007.49 Anschutz U, 2014, J PLANT PHYSIOL, V171, P670, DOI 10.1016/j.jplph.2014.01.009 Ashraf M, 2010, BIOTECHNOL ADV, V28, P169, DOI 10.1016/j.biotechadv.2009.11.005 Baligar VC, 2001, COMMUN SOIL SCI PLAN, V32, P921, DOI 10.1081/CSS-100104098 Battie-Laclau P, 2014, NEW PHYTOL, V203, P401, DOI 10.1111/nph.12810 Battie-Laclau P, 2014, PLANT CELL ENVIRON, V37, P70, DOI 10.1111/pce.12131 Ben Hassine A, 2010, ACTA PHYSIOL PLANT, V32, P325, DOI 10.1007/s11738-009-0410-4 Benito B, 2014, J PLANT PHYSIOL, V171, P723, DOI 10.1016/j.jplph.2013.10.014 Britto DT, 2015, J PLANT PHYSIOL, V186, P1, DOI 10.1016/j.jplph.2015.08.002 Britto DT, 2006, TRENDS PLANT SCI, V11, P529, DOI 10.1016/j.tplants.2006.09.011 Britzke D, 2012, J SOIL SEDIMENT, V12, P185, DOI 10.1007/s11368-011-0431-7 Brownell PF, 1996, AUST J PLANT PHYSIOL, V23, P171, DOI 10.1071/PP9960171 Cakmak I, 2005, J PLANT NUTR SOIL SC, V168, P521, DOI 10.1002/jpln.200420485 Carmo-Silva AE, 2012, ENVIRON EXP BOT, V83, P1, DOI 10.1016/j.envexpbot.2012.04.001 Chaves MM, 2004, J EXP BOT, V55, P2365, DOI 10.1093/jxb/erh269 Chen JJ, 2000, SCI HORTIC-AMSTERDAM, V83, P213, DOI 10.1016/S0304-4238(99)00079-5 Choluj D, 2008, ACTA PHYSIOL PLANT, V30, P679, DOI 10.1007/s11738-008-0166-2 Coskun D, 2013, PLANT PHYSIOL, V162, P496, DOI 10.1104/pp.113.215913 Damon PM, 2007, EUPHYTICA, V156, P387, DOI 10.1007/s10681-007-9388-4 Damon PM, 2011, CROP PASTURE SCI, V62, P550, DOI 10.1071/CP11071 Egilla JN, 2005, PHOTOSYNTHETICA, V43, P135, DOI 10.1007/s11099-005-5140-2 Farooq M, 2009, AGRON SUSTAIN DEV, V29, P185, DOI 10.1051/agro:2008021 Franks PJ, 2007, PLANT PHYSIOL, V143, P78, DOI 10.1104/pp.106.089367 Franks PJ, 2006, PLANT CELL ENVIRON, V29, P584, DOI 10.1111/j.1365-3040.2005.01434.x Garg B. K., 2003, Current Agriculture, V27, P1 George MS, 2002, FIELD CROP RES, V77, P7, DOI 10.1016/S0378-4290(02)00043-6 Gierth M, 2005, PLANT PHYSIOL, V137, P1105, DOI 10.1104/pp.104.057216 Giorio P, 1999, ENVIRON EXP BOT, V42, P95, DOI 10.1016/S0098-8472(99)00023-4 Glenn EP, 1998, AM J BOT, V85, P10, DOI 10.2307/2446548 Guerrier G, 1996, PHYSIOL PLANTARUM, V97, P583, DOI 10.1111/j.1399-3054.1996.tb00519.x Hang J. G., 2004, PROTEOMICS, V4, P3549, DOI [10.1002/pmic.200400898, DOI 10.1002/PMIC.200400898] Hedrich R, 2018, CURR OPIN PLANT BIOL, V46, P87, DOI 10.1016/j.pbi.2018.07.015 Heidecker M, 2003, PLANT CELL ENVIRON, V26, P1035, DOI 10.1046/j.1365-3040.2003.01028.x Hirsch RE, 1998, SCIENCE, V280, P918, DOI 10.1126/science.280.5365.918 Hong FH, 2005, BIOL TRACE ELEM RES, V105, P269, DOI 10.1385/BTER:105:1-3:269 INSKEEP WP, 1985, PLANT PHYSIOL, V77, P483, DOI 10.1104/pp.77.2.483 Jaleel CA, 2009, INT J AGRIC BIOL, V11, P100 Jiang L, 2014, FLORA, V209, P285, DOI 10.1016/j.flora.2014.03.007 Kim DW, 2000, J ETHNOPHARMACOL, V72, P53, DOI 10.1016/S0378-8741(00)00197-5 Lebaudy A, 2007, FEBS LETT, V581, P2357, DOI 10.1016/j.febslet.2007.03.058 Li MH, 2010, FIBER POLYM, V11, P48, DOI 10.1007/s12221-010-0048-2 Ma J., 2000, ACTA BOT BOREALI-OCC, V20, P476 Ma Q, 2012, TREE PHYSIOL, V32, P4, DOI 10.1093/treephys/tpr098 Ma TL, 2012, BMC PLANT BIOL, V12, DOI 10.1186/1471-2229-12-161 Marschner P, 2012, MARSCHNER'S MINERAL NUTRITION OF HIGHER PLANTS, 3RD EDITION, P1 Martineau E, 2017, ENVIRON EXP BOT, V134, P62, DOI 10.1016/j.envexpbot.2016.11.004 Martinez JP, 2005, J EXP BOT, V56, P2421, DOI 10.1093/jxb/eri235 Martinez JP, 2004, J PLANT PHYSIOL, V161, P1041, DOI 10.1016/j.jplph.2003.12.009 McDowell N, 2008, NEW PHYTOL, V178, P719, DOI 10.1111/j.1469-8137.2008.02436.x MCWILLIAMS D, 2003, 582 NEW MEX STAT U C Mishra AK, 2010, J HYDROL, V391, P204, DOI 10.1016/j.jhydrol.2010.07.012 Munns R, 2005, NEW PHYTOL, V167, P645, DOI 10.1111/j.1469-8137.2005.01487.x Munns R, 2008, ANNU REV PLANT BIOL, V59, P651, DOI 10.1146/annurev.arplant.59.032607.092911 Ning Jian-feng, 2010, Yingyong Shengtai Xuebao, V21, P325 Oosterhuis DM, 2014, ADV AGRON, V126, P203, DOI 10.1016/B978-0-12-800132-5.00003-1 OOSTERHUIS DM, 1987, PLANT PHYSIOL, V84, P1154, DOI 10.1104/pp.84.4.1154 Patakas A, 1999, J PLANT PHYSIOL, V154, P767, DOI 10.1016/S0176-1617(99)80256-9 Pettigrew WT, 2008, PHYSIOL PLANTARUM, V133, P670, DOI 10.1111/j.1399-3054.2008.01073.x Pilon-Smits EAH, 2009, CURR OPIN PLANT BIOL, V12, P267, DOI 10.1016/j.pbi.2009.04.009 Rampino P, 2006, PLANT CELL ENVIRON, V29, P2143, DOI 10.1111/j.1365-3040.2006.01588.x Ran F, 2010, PLANT SOIL, V337, P205, DOI 10.1007/s11104-010-0517-9 Rengel Z, 2008, PHYSIOL PLANTARUM, V133, P624, DOI 10.1111/j.1399-3054.2008.01079.x Rivero RM, 2007, P NATL ACAD SCI USA, V104, P19631, DOI 10.1073/pnas.0709453104 Sambatti JBM, 2007, NEW PHYTOL, V175, P70, DOI 10.1111/j.1469-8137.2007.02067.x Shabala Sergey, 2011, Biomol Concepts, V2, P407, DOI 10.1515/BMC.2011.032 Slama I, 2007, J PLANT RES, V120, P291, DOI 10.1007/s10265-006-0056-x Song ZZ, 2013, WEED SCI, V61, P77, DOI 10.1614/WS-D-12-00100.1 Subbarao GV, 1999, J PLANT NUTR, V22, P1745, DOI 10.1080/01904169909365751 Subbarao GV, 2003, CRIT REV PLANT SCI, V22, P391, DOI 10.1080/07352680390243495 SYVERTSEN JP, 1988, AUST J AGR RES, V39, P619, DOI 10.1071/AR9880619 Szczerba MW, 2009, J PLANT PHYSIOL, V166, P447, DOI 10.1016/j.jplph.2008.12.009 Tang XL, 2015, CRIT REV BIOTECHNOL, V35, P425, DOI 10.3109/07388551.2014.889080 Tang ZH, 2015, ACTA PHYSIOL PLANT, V37, DOI 10.1007/s11738-015-1901-0 Teaster N. D., 2015, American Journal of Plant Sciences, V6, P2989, DOI 10.4236/ajps.2015.619294 Wang BS, 2001, J EXP BOT, V52, P2355, DOI 10.1093/jexbot/52.365.2355 Wang CM, 2009, PLANT CELL ENVIRON, V32, P486, DOI 10.1111/j.1365-3040.2009.01942.x Wang LL, 2007, CARBOHYD POLYM, V69, P391, DOI 10.1016/j.carbpol.2006.12.028 Wang M, 2013, INT J MOL SCI, V14, P7370, DOI 10.3390/ijms14047370 Wang SM, 2002, J ARID ENVIRON, V52, P457, DOI 10.1006/jare.2002.1015 Wang SM, 2007, PLANT PHYSIOL, V145, P559, DOI 10.1104/pp.107.104315 Wang Y, 2010, MOL PLANT, V3, P280, DOI 10.1093/mp/ssq006 Wei R, 2015, PHOTOSYNTHETICA, V53, P336, DOI 10.1007/s11099-015-0107-4 Wright PR, 1997, ANN BOT-LONDON, V80, P313, DOI 10.1006/anbo.1997.0444 Wu GQ, 2015, ACTA PHYSIOL PLANT, V37, DOI 10.1007/s11738-015-1816-9 Wu GQ, 2014, SOIL SCI PLANT NUTR, V60, P565, DOI 10.1080/00380768.2014.921579 Xia Y, 2013, J FOOD AGRIC ENVIRON, V11, P472 [夏曾润 Xia Zengrun], 2014, [草业科学, Pratacultural Science], V31, P2088 Xie WY, 2012, J ETHNOPHARMACOL, V141, P1, DOI 10.1016/j.jep.2012.02.003 Yang XE, 2003, NUTR CYCL AGROECOSYS, V67, P273, DOI 10.1023/B:FRES.0000003665.90952.0c Yao RL, 2012, PLANT GROWTH REGUL, V68, P351, DOI 10.1007/s10725-012-9723-1 Yordanov I, 2000, PHOTOSYNTHETICA, V38, P171, DOI 10.1023/A:1007201411474 Yue LJ, 2012, J ARID ENVIRON, V87, P153, DOI 10.1016/j.jaridenv.2012.06.002 Zhang GP, 1999, NUTR CYCL AGROECOSYS, V54, P41 Zheng MZ, 2012, PHYTOMEDICINE, V19, P145, DOI 10.1016/j.phymed.2011.06.029 Zhu JK, 2003, CURR OPIN PLANT BIOL, V6, P441, DOI 10.1016/S1369-5266(03)00085-2 Zhu JK, 2001, TRENDS PLANT SCI, V6, P66, DOI 10.1016/S1360-1385(00)01838-0 Zhu L, 2013, PLANT CELL, V25, P851, DOI 10.1105/tpc.113.110528 Zorb C, 2014, J PLANT PHYSIOL, V171, P656, DOI 10.1016/j.jplph.2013.08.008 NR 100 TC 15 Z9 19 U1 4 U2 33 PU ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER PI ISSY-LES-MOULINEAUX PA 65 RUE CAMILLE DESMOULINS, CS50083, 92442 ISSY-LES-MOULINEAUX, FRANCE SN 0981-9428 J9 PLANT PHYSIOL BIOCH JI Plant Physiol. Biochem. PD FEB PY 2019 VL 135 BP 489 EP 498 DI 10.1016/j.plaphy.2018.11.011 PG 10 WC Plant Sciences SC Plant Sciences GA HK1JA UT WOS:000457659900053 PM 30447942 DA 2021-10-15 ER PT J AU Xie, WY Chen, C Jiang, ZH Wang, J Melzig, MF Zhang, XY AF Xie, Wenyan Chen, Chen Jiang, Zhihui Wang, Jian Melzig, Matthias F. Zhang, Xiaoying TI Apocynum venetum Attenuates Acetaminophen-Induced Liver Injury in Mice SO AMERICAN JOURNAL OF CHINESE MEDICINE LA English DT Article DE Apocynum venetum; Flavonoids; Acetaminophen; Hepatotoxicity; Oxidative Stress; HPLC-MS/MS ID INDUCED HEPATOTOXICITY; OXIDATIVE STRESS; IN-VITRO; MITOCHONDRIAL DYSFUNCTION; AQUEOUS EXTRACT; PROTEIN ADDUCTS; CYTOCHROME-C; LEAVES; L.; HYPEROSIDE AB Apocynum venetum L. (A. venetum) has long been used in oriental folk medicine for the treatment of some liver diseases; however, the underlying mechanisms remain to be fully elucidated. Acetaminphen (APAP) is a widely used analgesic drug that can cause acute liver injury in overdose situations. In this study, we investigated the potential protective effect of A. venetum leaf extract (ALE) against APAP-induced hepatotoxicity. Mice were intragastrically administered with ALE once daily for 3 consecutive days prior to receiving a single intraperitoneal injection of APAP. The APAP group showed severe liver injury characterized by the noticeable fluctuations in the following parameters: serum aminotransferases; hepatic malondialdehyde (MDA), 3-nitrotyrosine (3-NT), superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GR) and glutathione (GSH). These liver damages induced by APAP were significantly attenuated by ALE pretreatments. A collective analysis of histopathological examination, DNA laddering and western blot for caspase-3 and cytochrome c indicated that the ALE is also capable of preventing APAP-induced hepatocyte death. Hyperoside, isoquercitrin and their derivatives have been identified as the major components of ALE using HPLC-MS/MS. Taken together, the A. venetum possesses hepatoprotective effects partially due to its anti-oxidant action. C1 [Xie, Wenyan; Jiang, Zhihui; Zhang, Xiaoying] Northwest A&F Univ, Coll Vet Med, Yangling 712100, Shaanxi, Peoples R China. [Chen, Chen; Wang, Jian; Melzig, Matthias F.] Shaanxi Univ Technol, Coll Biol Sci & Engn, Hanzhong 723000, Peoples R China. [Melzig, Matthias F.] Free Univ Berlin, Inst Pharm, D-14195 Berlin, Germany. RP Zhang, XY (corresponding author), Northwest A&F Univ, Coll Vet Med, POB 19, Yangling 712100, Shaanxi, Peoples R China. EM zhang.xy@nwsuaf.edu.cn RI Zhang, Xiaoying/O-2606-2016; Zhang, Xiaoying/O-2606-2016 OI Zhang, Xiaoying/0000-0002-0055-7322; Zhang, Xiaoying/0000-0001-6491-6550 FU High-End Foreign Experts Recruitment Program of State Administration of Foreign Experts Affairs [GDW20146100228]; State Key Laboratory of Natural Medicines, China Pharmaceutical University [SKLNMKF201221]; International S&T Cooperation Project of Northwest AF University; Ministry of Education and State Administration of Foreign Experts Affairs "Overseas Teacher" Project [MS2011XBNL057] FX This work was financially supported by the High-End Foreign Experts Recruitment Program of State Administration of Foreign Experts Affairs (GDW20146100228); Open Project Program of State Key Laboratory of Natural Medicines, China Pharmaceutical University (No. SKLNMKF201221); International S&T Cooperation Project of Northwest A&F University (2013) and the Ministry of Education and State Administration of Foreign Experts Affairs "Overseas Teacher" Project (No. MS2011XBNL057). CR Abdelmegeed MA, 2013, FREE RADICAL BIO MED, V60, P211, DOI 10.1016/j.freeradbiomed.2013.02.018 An HJ, 2013, J PHARMACEUT BIOMED, V85, P295, DOI 10.1016/j.jpba.2013.07.005 Breinholt VM, 2002, FOOD CHEM TOXICOL, V40, P609, DOI 10.1016/S0278-6915(01)00125-9 Brown JM, 2012, TOXICOL LETT, V212, P320, DOI 10.1016/j.toxlet.2012.05.018 Bunchorntavakul C, 2013, CLIN LIVER DIS, V17, P587, DOI 10.1016/j.cld.2013.07.005 Butterweck V, 2003, PHARMACOL BIOCHEM BE, V75, P557, DOI 10.1016/S0091-3057(03)00118-7 Butterweck V, 2001, BIOL PHARM BULL, V24, P848, DOI 10.1248/bpb.24.848 Cao YH, 2003, ANAL BIOANAL CHEM, V376, P691, DOI 10.1007/s00216-003-1961-7 Carvalho NR, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0081961 Choi JH, 2011, J NAT PROD, V74, P1055, DOI 10.1021/np200001x Cover C, 2005, J PHARMACOL EXP THER, V315, P879, DOI 10.1124/jpet.105.088898 D'Amours D, 1998, RADIAT RES, V150, P3, DOI 10.2307/3579638 de Achaval S, 2011, PHARMACOEPIDEM DR S, V20, P827, DOI 10.1002/pds.2162 Ganetsky M, 2013, J CLIN PHARMACOL, V53, P413, DOI 10.1002/jcph.24 Grundmann O, 2007, J ETHNOPHARMACOL, V110, P406, DOI 10.1016/j.jep.2006.09.035 Grundmann O, 2009, PHYTOMEDICINE, V16, P295, DOI 10.1016/j.phymed.2008.12.020 Gum SI, 2013, LIVER INT, V33, P1071, DOI 10.1111/liv.12046 HINSON JA, 1995, DRUG METAB REV, V27, P73, DOI 10.3109/03602539509029816 Hinson JA, 2000, TOXICOL SCI, V53, P467, DOI 10.1093/toxsci/53.2.467 Hwang YP, 2007, ARCH PHARM RES, V30, P1309, DOI 10.1007/BF02980272 James LP, 2003, FREE RADICAL RES, V37, P1289, DOI 10.1080/10715760310001617776 Jemmerson R, 2002, CELL DEATH DIFFER, V9, P538, DOI 10.1038/sj.cdd.4400981 Jeong HG, 1999, TOXICOL LETT, V105, P215, DOI 10.1016/S0378-4274(99)00004-1 Ji LL, 2013, J NUTR BIOCHEM, V24, P1911, DOI 10.1016/j.jnutbio.2013.05.007 Kamata K, 2008, J NAT MED-TOKYO, V62, P160, DOI 10.1007/s11418-007-0202-3 Kim DW, 2000, PHYTOTHER RES, V14, P501, DOI 10.1002/1099-1573(200011)14:7<501::AID-PTR655>3.0.CO;2-B Kim DW, 2000, J ETHNOPHARMACOL, V72, P53, DOI 10.1016/S0378-8741(00)00197-5 Kon K, 2004, HEPATOLOGY, V40, P1170, DOI 10.1002/hep.20437 Kuo CS, 2011, J ETHNOPHARMACOL, V136, P149, DOI 10.1016/j.jep.2011.04.035 Kwan CY, 2005, CLIN EXP PHARMACOL P, V32, P789, DOI 10.1111/j.1440-1681.2005.04255.x Larson AM, 2005, HEPATOLOGY, V42, P1364, DOI 10.1002/hep.20948 Li RJ, 2011, N-S ARCH PHARMACOL, V383, P437, DOI 10.1007/s00210-011-0613-2 Li YZ, 1999, MOL MED, V5, P232, DOI 10.1007/BF03402120 Liang TG, 2010, INT J MOL SCI, V11, P4452, DOI 10.3390/ijms11114452 Lin Y, 2012, CHROMATOGRAPHIA, V75, P655, DOI 10.1007/s10337-012-2239-z [刘国强 LIU Guo-qiang], 2009, [质谱学报, Journal of Chinese Mass Spectrometry Society], V30, P287 Lu YH, 2013, FOOD CHEM TOXICOL, V62, P707, DOI 10.1016/j.fct.2013.09.025 Mamat SS, 2013, BMC COMPLEM ALTERN M, V13, DOI 10.1186/1472-6882-13-326 McGill MR, 2012, TOXICOL APPL PHARM, V264, P387, DOI 10.1016/j.taap.2012.08.015 McGill MR, 2012, J CLIN INVEST, V122, P1574, DOI 10.1172/JCI59755 McIlwain DR, 2013, CSH PERSPECT BIOL, V5, DOI 10.1101/cshperspect.a008656 Melo CC, 2014, CURR DRUG METAB, V15, P120, DOI 10.2174/1389200215666140130125339 Noh JR, 2013, FOOD CHEM TOXICOL, V58, P14, DOI 10.1016/j.fct.2013.04.005 Ojo OO, 2006, AFR J BIOTECHNOL, V5, P1227 Oliveira E. J., 2002, Xenobiotica, V32, P279, DOI 10.1080/00498250110107886 Shih TY, 2013, AAPS J, V15, P753, DOI 10.1208/s12248-013-9490-6 Shirai Mutsuko, 2005, J Med Invest, V52 Suppl, P249, DOI 10.2152/jmi.52.249 Song M, 2013, FOOD CHEM TOXICOL, V59, P549, DOI 10.1016/j.fct.2013.06.055 Sukito Agus, 2014, Pak J Biol Sci, V17, P999, DOI 10.3923/pjbs.2014.999.1006 Tagawa C, 2004, YAKUGAKU ZASSHI, V124, P851, DOI 10.1248/yakushi.124.851 Tang YH, 2013, PHYTOMEDICINE, V20, P699, DOI 10.1016/j.phymed.2013.03.010 Valentova K, 2014, FOOD CHEM TOXICOL, V68, P267, DOI 10.1016/j.fct.2014.03.018 Vrba J, 2012, PHYTOTHER RES, V26, P1746, DOI 10.1002/ptr.4637 Wang AY, 2010, WORLD J GASTROENTERO, V16, P384, DOI 10.3748/wjg.v16.i3.384 Wolf BB, 1999, J BIOL CHEM, V274, P30651, DOI 10.1074/jbc.274.43.30651 Xie WY, 2014, PHARMAZIE, V69, P379, DOI 10.1691/ph.2014.3805 Xie WY, 2012, J ETHNOPHARMACOL, V141, P1, DOI 10.1016/j.jep.2012.02.003 Xiong QB, 2000, PLANTA MED, V66, P127, DOI 10.1055/s-2000-11135 Yang X.B., 2009, WORLD CHINESE J DIGE, V17, P135 Yokozawa T, 2004, FOOD CHEM TOXICOL, V42, P975, DOI 10.1016/j.fct.2004.02.010 Yokozawa T, 2002, BIOL PHARM BULL, V25, P748, DOI 10.1248/bpb.25.748 Yousef MI, 2010, FOOD CHEM TOXICOL, V48, P3246, DOI 10.1016/j.fct.2010.08.034 Yuan HD, 2010, J ETHNOPHARMACOL, V127, P528, DOI 10.1016/j.jep.2009.10.002 Zhang YC, 2010, J CHROMATOGR B, V878, P3149, DOI 10.1016/j.jchromb.2010.09.027 Zhao L, 2014, J SEP SCI, V37, P515, DOI 10.1002/jssc.201301036 Zhao XM, 2012, TOXICOL LETT, V214, P69, DOI 10.1016/j.toxlet.2012.08.005 Zheng MZ, 2012, PHYTOMEDICINE, V19, P145, DOI 10.1016/j.phymed.2011.06.029 Zheng MZ, 2011, CELL MOL NEUROBIOL, V31, P421, DOI 10.1007/s10571-010-9635-4 NR 68 TC 15 Z9 18 U1 1 U2 28 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0192-415X EI 1793-6853 J9 AM J CHINESE MED JI Am. J. Chin. Med. PY 2015 VL 43 IS 3 BP 457 EP 476 DI 10.1142/S0192415X15500299 PG 20 WC Integrative & Complementary Medicine; Medicine, General & Internal SC Integrative & Complementary Medicine; General & Internal Medicine GA CI0FJ UT WOS:000354411700005 PM 25967663 DA 2021-10-15 ER PT J AU Jiang, L Wang, L Mu, SY Tian, CY AF Jiang, Li Wang, Lei Mu, Shu-Yong Tian, Chang-Yan TI Apocynum venetum: A newly found lithium accumulator SO FLORA LA English DT Article DE Apocynum venetum; Bioconcentration factor; Lithium; Luobuma; Translocation factor ID TOXICITY AB Apocynum venetum has antidepressant and anxiolytic effects according to the traditional Chinese medicine. Lithium (Li) is a proven mood stabilizer. According to the similar drug efficacy, we hypothesized that A. venetum may contain high levels of Li. Here, we investigated Li tolerance and accumulation potential of A. venetum in the field and in greenhouse cultivation. Li concentration in leaves of A. venetum was substantially higher than that of its main accompanying plants. Under a soil Li supply of 50 mg kg(-1) the plant did not show obvious symptom of phytotoxicity. Rather, A. venetum could accumulate >1800 mg kg(-1) Li in leaf tissues, and survived still under 400 mg kg(-1) Li supply. The bioconcentration factor (except control) and translocation factor values were greater than 1.0. Thus, A. venetum has the characteristics of, at least, a Li-accumulator, if not a Li-hyperaccumulator. A. venetum may serve as an interesting model species to study the influence of Li on plants. (C) 2014 Elsevier GmbH. All rights reserved. C1 [Jiang, Li; Wang, Lei; Mu, Shu-Yong; Tian, Chang-Yan] Chinese Acad Sci, Xinjiang Inst Ecol & Geog, State Key Lab Desert & Oasis Ecol, Urumqi 830011, Xinjiang, Peoples R China. RP Wang, L (corresponding author), Chinese Acad Sci, Xinjiang Inst Ecol & Geog, 818 South Beijing Rd, Urumqi 830011, Xinjiang, Peoples R China. EM egiwang@ms.xjb.ac.cn; halophyte@gmail.com OI tian, zhang yan/0000-0002-8994-386X FU National High Technology Research and Development Program of ChinaNational High Technology Research and Development Program of China [2012AA101404-6]; West Light Foundation of the CASChinese Academy of Sciences [XBBS201101] FX This research work was financially, supported by the National High Technology Research and Development Program of China (2012AA101404-6) and the West Light Foundation of the CAS (XBBS201101). CR Allagui MS, 2007, BBA-MOL CELL RES, V1773, P1107, DOI 10.1016/j.bbamcr.2007.04.007 [Anonymous], 1977, FLORA CHINA, V53, P480 Aral H, 2008, ECOTOX ENVIRON SAFE, V70, P349, DOI 10.1016/j.ecoenv.2008.02.026 BAKER A J M, 1989, Biorecovery, V1, P81 BRADFORD G. R., 1961, California Agriculture, V15, P14 Cluis C., 2004, BIOTEACH J, V2, P60 Editorial Committee of Chinese Pharmacopoeia, 2010, CHINESE PHARMACOPOEI Hawrylak-Nowak B, 2012, BIOL TRACE ELEM RES, V149, P425, DOI 10.1007/s12011-012-9435-4 Kabata-Pendias A, 1992, TRACE ELEMENTS SOILS Khasraw M, 2012, BMC MED, V10, DOI 10.1186/1741-7015-10-131 LICHTENTHALER HK, 1987, METHOD ENZYMOL, V148, P350 SALT DE, 1995, PLANT PHYSIOL, V109, P1427, DOI 10.1104/pp.109.4.1427 Schrauzer GN, 2002, J AM COLL NUTR, V21, P14, DOI 10.1080/07315724.2002.10719188 SNEVA FA, 1979, PLANT SOIL, V53, P219, DOI 10.1007/BF02181893 Tolgyesi G., 1983, Lithium. 4. Spurenelementsymposium, P39 van der Ent A, 2013, PLANT SOIL, V362, P319, DOI 10.1007/s11104-012-1287-3 Wang HJ, 2011, ADV MATER RES-SWITZ, V233-235, P2328, DOI 10.4028/www.scientific.net/AMR.233-235.2328 Xie WY, 2012, J ETHNOPHARMACOL, V141, P1, DOI 10.1016/j.jep.2012.02.003 Zhou Q.X., 2004, SCI CHINA SER C, V33, P566 NR 19 TC 15 Z9 15 U1 3 U2 36 PU ELSEVIER GMBH PI MUNICH PA HACKERBRUCKE 6, 80335 MUNICH, GERMANY SN 0367-2530 EI 1618-0585 J9 FLORA JI Flora PY 2014 VL 209 IS 5-6 BP 285 EP 289 DI 10.1016/j.flora.2014.03.007 PG 5 WC Plant Sciences; Ecology SC Plant Sciences; Environmental Sciences & Ecology GA AI4XD UT WOS:000336868900008 DA 2021-10-15 ER PT J AU Wyatt, R Lipow, SR AF Wyatt, Robert Lipow, Sara R. TI A new explanation for the evolution of pollinia and loss of carpel fusion in Asclepias and the Apocynaceae s.l. SO ANNALS OF THE MISSOURI BOTANICAL GARDEN LA English DT Article; Proceedings Paper CT Symposium on Recent Progress in the Systematica of Apocynaceae held at the 17th International Botanical Congress CY JUL, 2005 CL Vienna, AUSTRIA DE Apocynaceae; Apocynoideae; Asclepiadoideae; Asclepias; carpel fusion; compitum; late-acting self-incompatibility; Periplocoideae; pollinia; Secamonoideae ID POLLEN-OVULE RATIOS; BREEDING SYSTEMS; REPRODUCTIVE-BIOLOGY; SELF-INCOMPATIBILITY; PHYLOGENETIC-RELATIONSHIPS; MULTIPLE PATERNITY; ACACIA-RETINODES; SYRIACA-L; MILKWEED; CLASSIFICATION AB The demonstration of postzygotic self-incompatibility in Asclepias L. prompted us to reconsider explanations for several unusual features of the Apocynaceae. With such late-acting self-incompatibility, mixed loads of self- and cross-pollen can be extremely wasteful by causing abortion of whole fruits and consequent wastage of both cross-pollen and cross-fertilized ovules. We contend that the evolution of pollinia and loss of carpel fusion in certain Apocynaceae represent adaptations to prevent or compensate for these negative effects of mixed pollen loads. Trends in the agglutination of pollen can be seen in the tetrads of Apocynum L., which are transported on sticky band-like translators; the masses of tetrads of Periplocoideac, which are deposited onto the sticky scoop portion of a spoon-like translator; The pollinia of Secamonoideae, which have a clip-like translator but no outer covering; and the pollinia of Asclepiadoideac, which are completely enclosed by a waxy outer covering. In many genera of the Rauvolfioideae, the ovary is syncarpous, but in most Apocynoideae and all Periplocoideae and Secamonoideae, the gynoecium consists of two carpels that are free in the ovule-bearing region but fused in the upper region to produce a compitum, which enables pollen placed on one stigmatic area to supply pollen tubes to both ovaries. In at least some Asclepiadoideae, however, a compitum is lacking, although postgenital fusion between the carpel apices still takes place. Parallel trends in pollen delivery and receipt also occur in taxa from other angiosperm families in which late-acting self-incompatibility systems have been implicated. C1 Univ Georgia, Inst Ecol, Athens, GA 30602 USA. Oregon Dept Forestry, Salem, OR 97310 USA. RP Wyatt, R (corresponding author), Univ Georgia, Inst Ecol, Athens, GA 30602 USA. EM rewyatt@uga.edu CR Armbruster WS, 2002, J EVOLUTION BIOL, V15, P657, DOI 10.1046/j.1420-9101.2002.00414.x Kalin A. M. T., 1981, Advances in legume systematics. Part 2 [Polhill, R.M.; Raven, P.H. (Editors)], P723 Backlund M, 2000, AM J BOT, V87, P1029, DOI 10.2307/2657003 BAWA KS, 1985, AM J BOT, V72, P331, DOI 10.2307/2443526 BAWA KS, 1974, EVOLUTION, V28, P85, DOI 10.1111/j.1558-5646.1974.tb00729.x BAWA KS, 1979, NEW ZEAL J BOT, V17, P521, DOI 10.1080/0028825X.1979.10432567 BENTHAM G, 1876, ORDO CVI APOCYNACEAE BERNHARDT P, 1984, ANN MO BOT GARD, V71, P17, DOI 10.2307/2399054 BROWN R, 1995, EVOLUTION, V49, P89 Brown R, 1811, MEM WERN NAT HIST SO, V1, P12 BROWN R, 1993, AM J BOT, V80, P41 BROYLES SB, 1990, EVOLUTION, V44, P1454, DOI 10.1111/j.1558-5646.1990.tb03838.x BURKHARDT F, 1990, CORRESPONDENCE C DAR Copenhaver Gregory P., 2005, Journal of the North Carolina Academy of Science, V121, P17 CRUDEN RW, 1977, EVOLUTION, V31, P32, DOI 10.1111/j.1558-5646.1977.tb00979.x DANNENBAUM C, 1991, BIBLIOTHECA BOT, V141, P1 de Nettancourt D., 1977, INCOMPATIBILITY ANGI ENDLICHER SL, 1841, ENCHIRIDION BOT Endress ME, 2000, BOT REV, V66, P1, DOI 10.1007/BF02857781 ENDRESS P K, 1983, Nordic Journal of Botany, V3, P293, DOI 10.1111/j.1756-1051.1983.tb01941.x Endress P.K, 1994, DIVERSITY EVOLUTIONA ENDRESS PK, 1982, TAXON, V31, P48, DOI 10.2307/1220588 ENDRESS PK, 1990, BIOL J LINN SOC, V39, P217 Fallen M.E., 1986, BOT JB SYST, V106, P245 FALLEN ME, 1985, AM J BOT, V72, P572, DOI 10.2307/2443590 Fishbein M, 2001, ANN MO BOT GARD, V88, P603, DOI 10.2307/3298636 Gibbs PE, 1999, INT J PLANT SCI, V160, P72, DOI 10.1086/314108 GOLD JJ, 1995, CAN J BOT, V73, P1212, DOI 10.1139/b95-131 Ionta GM, 2007, ANN MO BOT GARD, V94, P360, DOI 10.3417/0026-6493(2007)94[360:PRIPAS]2.0.CO;2 KENRICK J, 1981, AUST J BOT, V29, P733, DOI 10.1071/BT9810733 KENRICK J, 1982, ANN BOT-LONDON, V50, P721, DOI 10.1093/oxfordjournals.aob.a086414 KENRICK J, 1986, PLANTA, V169, P245, DOI 10.1007/BF00392321 KEPHART SR, 1981, AM J BOT, V68, P226, DOI 10.2307/2442854 KNOX RB, 1983, POLLEN BIOL IMPLICAT, P441 KNOX RB, 1984, EVOLUTION, V38, P1130 KOPTUR S, 1983, SYST BOT, V8, P354, DOI 10.2307/2418355 KUNZE H, 1991, PLANT SYST EVOL, V176, P227, DOI 10.1007/BF00937909 KUNZE H, 1991, PLANT SYST EVOL, V178, P95, DOI 10.1007/BF00937984 KUNZE H, 1993, PLANT SYST EVOL, V185, P99, DOI 10.1007/BF00937723 Kunze Henning, 1996, Botanische Jahrbuecher fuer Systematik Pflanzengeschichte und Pflanzengeographie, V118, P547 Lahaye R, 2007, ANN MO BOT GARD, V94, P376, DOI 10.3417/0026-6493(2007)94[376:PRBDAS]2.0.CO;2 LEEUWENBERG AJM, 1994, 943 WAG AGR U, P45 LIEDE S, 1994, TAXON, V43, P201, DOI 10.2307/1222878 Liede Sigrid, 1996, P221 Lipow SR, 1998, J TORREY BOT SOC, V125, P183, DOI 10.2307/2997216 Lipow SR, 1999, PLANT SYST EVOL, V219, P99, DOI 10.1007/BF01090302 Lipow SR, 2000, GENETICS, V154, P893 LIPOW SR, 1998, THESIS U GEORGIA ATH Livshultz T, 2007, ANN MO BOT GARD, V94, P324, DOI 10.3417/0026-6493(2007)94[324:POAATA]2.0.CO;2 LY TD, 1986, FEDDES REPERT, V97, P235 MORSE DH, 1994, AM J BOT, V81, P322, DOI 10.2307/2445459 MORSE DH, 1982, OECOLOGIA, V53, P187, DOI 10.1007/BF00545662 NILSSON S, 1993, GRANA S, V2, P3 Otte D., 1989, SPECIATION ITS CONSE, P458 PADRUTT J, 1992, J AM SOC HORTIC SCI, V117, P656, DOI 10.21273/JASHS.117.4.656 Pichi-Sermolli R. E. G., 1948, WEBBIA, V6, P1, DOI DOI 10.1080/00837792.1948.10669585 PLEASANTS JM, 1991, FUNCT ECOL, V5, P75, DOI 10.2307/2389557 Potgieter K, 2001, ANN MO BOT GARD, V88, P523, DOI 10.2307/3298632 Rapini A, 2003, TAXON, V52, P33, DOI 10.2307/3647300 ROSATTI TJ, 1989, J ARNOLD ARBORETUM, V70, P307, DOI 10.5962/bhl.part.19789 RUIZ T, 1978, BIOTROPICA, V10, P221 SAFWAT FUAD M., 1962, ANN MISSOURI BOT GARD, V49, P95, DOI 10.2307/2394742 Sage T. L., 1994, Genetic control of self-incompatibility and reproductive development in flowering plants., P116 SAGE TL, 1990, ISRAEL J BOT, V39, P187 SAGE TL, 1993, CELL INCOMP NEWSL, V23, P55 SAGE TL, 1982, TROP SUBTROP PFLANZE, V40, P513 SCHICK B, 1982, FLORA, V172, P347 Schumann K., 1895, NATURL PFLANZ, V4, P109 Sennblad B, 1996, PLANT SYST EVOL, V202, P153, DOI 10.1007/BF00983380 Simoes AO, 2007, ANN MO BOT GARD, V94, P268, DOI 10.3417/0026-6493(2007)94[268:PASOTR]2.0.CO;2 SPARROW F. K., 1948, JOUR AGRIC RES, V77, P187 Stebbins G.L., 1974, FLOWERING PLANTS EVO Steenis C. G. G. J. van., 1969, Biological Journal of the Linnean Society, V1, P97, DOI 10.1111/j.1095-8312.1969.tb01815.x STRUWE L, 1994, CLADISTICS, V10, P175, DOI 10.1006/clad.1994.1011 Van der Pijl L., 1966, ORCHID FLOWERS THEIR Venter HJT, 1997, TAXON, V46, P705, DOI 10.2307/1224476 Verhoeven RL, 2003, GRANA, V42, P70, DOI 10.1080/001731310310012549 Verhoeven RL, 2001, ANN MO BOT GARD, V88, P569, DOI 10.2307/3298634 WALKER DB, 1978, AM J BOT, V65, P119, DOI 10.2307/2442561 WILBUR HM, 1976, J ECOL, V64, P223, DOI 10.2307/2258693 Williams EG, 1984, PLANT CELL INCOMPATI, V16, P10 WOODSON RE, 1930, ANN MO BOT GARD, V17, P1, DOI DOI 10.2307/2394074 WOODSON ROBERT E., 1954, ANN MISSOURI BOT GARD, V41, P1, DOI 10.2307/2394652 WYATT R, 1994, ANNU REV ECOL SYST, V25, P423 WYATT R, 1976, AM J BOT, V63, P845, DOI 10.2307/2442044 Wyatt R, 2000, SYST BOT, V25, P171, DOI 10.2307/2666636 Wyatt R, 1998, SYST BOT, V23, P151, DOI 10.2307/2419584 Wyatt R, 1996, B TORREY BOT CLUB, V123, P180, DOI 10.2307/2996792 WYRATT R, 1977, THESIS DUKE U DURHAM Zomlefer W.B., 1994, GUIDE FLOWERING PLAN NR 90 TC 15 Z9 17 U1 0 U2 17 PU MISSOURI BOTANICAL GARDEN PI ST LOUIS PA 2345 TOWER GROVE AVENUE, ST LOUIS, MO 63110 USA SN 0026-6493 J9 ANN MO BOT GARD JI Ann. Mo. Bot. Gard. PY 2007 VL 94 IS 2 BP 474 EP 484 DI 10.3417/0026-6493(2007)94[474:ANEFTE]2.0.CO;2 PG 11 WC Plant Sciences SC Plant Sciences GA 196IH UT WOS:000248474400012 DA 2021-10-15 ER PT J AU Webster, TM Cardina, J AF Webster, TM Cardina, J TI Accuracy of a global positioning system (GPS) for weed mapping SO WEED TECHNOLOGY LA English DT Article DE Hemp dogbane; Apocynum cannabinum L #(3) APCCA; spatial weed dynamics; vegetation mapping ID FIELD AB Experiments were conducted to test the accuracy of a global positioning system (GPS) in measuring the area of simulated weed patches nf varying size and to determine the accuracy in navigating back to particular points in a field. Circular areas of 5, 50, and 500 m(2) were established and measured using point and polygon features of a GPS. The GPS estimations of the area of those patches had errors ranging from 7 to 45%, 6 to 15%, and 3 to 6%, respectively, when compared to actual measurements. As patch size increased, errors decreased. A curve describing the relationship between GPS error and patch size had an excellent fit (r(2) = 0.92). The error remained the same in all measurements across all patch sizes, but composed a smaller percentage of large patches. The GPS had submeter accuracy in navigation to the correct quadrat 73% of the time, located the correct quadrat 27% of the time, and invariably navigated to within 1.58 m of the correct quadrat. The relationship between patch size and measurement error was applied to natural infestations of hemp dogbane. RP Webster, TM (corresponding author), OHIO STATE UNIV,OHIO AGR RES & DEV CTR,DEPT HORT & CROP SCI,WOOSTER,OH 44691, USA. RI Webster, Theodore/A-4468-2009 OI Webster, Theodore/0000-0002-8259-2059 CR AMOR RL, 1975, WEED RES, V15, P407, DOI 10.1111/j.1365-3180.1975.tb01338.x HOROWITZ M, 1973, WEED RES, V13, P200, DOI 10.1111/j.1365-3180.1973.tb01264.x KVIEN C, 1995, PRECISION FARMIN DEC, P13 LASS LW, 1993, WEED TECHNOL, V7, P249, DOI 10.1017/S0890037X00037222 Schueller JK, 1996, COMPUT ELECTRON AGR, V14, P249, DOI 10.1016/0168-1699(95)00051-8 Stafford J. V., 1994, Computers and Electronics in Agriculture, V11, P23, DOI 10.1016/0168-1699(94)90050-7 Stafford JV, 1996, COMPUT ELECTRON AGR, V14, P235, DOI 10.1016/0168-1699(95)00050-X *TRIMBL NAV, 1997, CHAR ACC TRIMBL PATH *TRIMBL NAV, 1996, TDC1 ASS SURV SOFTW WILSON BJ, 1990, INTEGRATED WEED MANAGEMENT IN CEREALS - SYMPOSIUM : EWRS 1990 PROCEEDINGS, P45 NR 10 TC 15 Z9 16 U1 0 U2 3 PU WEED SCI SOC AMER PI CHAMPAIGN PA 309 W CLARK ST, CHAMPAIGN, IL 61820 SN 0890-037X J9 WEED TECHNOL JI Weed Technol. PD OCT-DEC PY 1997 VL 11 IS 4 BP 782 EP 786 DI 10.1017/S0890037X00043438 PG 5 WC Agronomy; Plant Sciences SC Agriculture; Plant Sciences GA YL202 UT WOS:A1997YL20200027 DA 2021-10-15 ER PT J AU Li, GQ Song, LX Jin, CQ Li, M Gong, SP Wang, YF AF Li, Guo-qi Song, Li-xiao Jin, Chang-qing Li, Miao Gong, Shi-pei Wang, Ya-fang TI Genome survey and SSR analysis of Apocynum venetum SO BIOSCIENCE REPORTS LA English DT Article ID LEAF EXTRACT; SIZE; SEQUENCE AB Apocynum venetum is an eco-economic plant that exhibits high stress resistance. In the present paper, we carried out a whole-genome survey of A. venetum in order to provide a foundation for its whole-genome sequencing. High-throughput sequencing technology (Illumina NovaSep) was first used to measure the genome size of A. venetum, and bioinformatics methods were employed for the evaluation of the genome size, heterozygosity ratio, repeated sequences, and GC content in order to provide a foundation for subsequent whole-genome sequencing. The sequencing analysis results indicated that the preliminary estimated genome size of A. venetum was 254.40 Mbp, and its heterozygosity ratio and percentage of repeated sequences were 0.63 and 40.87%, respectively, indicating that it has a complex genome. We used k-mer = 41 to carry out a preliminary assembly and obtained contig N50, which was 3841 bp with a total length of 223949699 bp. We carried out further assembly to obtain scaffold N50, which was 6196 bp with a total length of 227322054 bp. We performed simple sequence repeat (SSR) molecular marker prediction based on the A. venetum genome data and identified a total of 101918 SSRs. The differences between the different types of nucleotide repeats were large, with mononucleotide repeats being most numerous and hexanucleotide repeats being least numerous. We recommend the use of the '2+3' (Illumina+PacBio) sequencing combination to supplement the Hi-C technique and resequencing technique in future whole-genome research in A. venetum. C1 [Li, Guo-qi; Song, Li-xiao; Jin, Chang-qing; Li, Miao; Gong, Shi-pei; Wang, Ya-fang] Breeding Base State Key Lab Land Degradat & Ecol, Ningxia 750021, Peoples R China. [Li, Guo-qi; Song, Li-xiao; Jin, Chang-qing; Gong, Shi-pei; Wang, Ya-fang] Minist Educ, Key Lab Restorat & Reconstruct Degraded Ecosyst N, Ningxia 750021, Peoples R China. [Li, Miao] Ningxia Acad Agroforestry Sci, Ningxia 750002, Peoples R China. RP Li, GQ; Song, LX (corresponding author), Breeding Base State Key Lab Land Degradat & Ecol, Ningxia 750021, Peoples R China.; Li, GQ; Song, LX (corresponding author), Minist Educ, Key Lab Restorat & Reconstruct Degraded Ecosyst N, Ningxia 750021, Peoples R China. EM guoqilee@163.com; 1186720040@qq.com OI LI, Guoqi/0000-0002-6176-3621 FU Construction Project of the First Class University in Western China, Ningxia University [GZXM2017001]; First Class Discipline Construction Project in College of Ningxia Hui Autonomous Region (Ecology) [GZXM2017001, NXYLXK2017B06] FX This work was supported by the Construction Project of the First Class University in Western China, Ningxia University [grant number GZXM2017001]; and the First Class Discipline Construction Project in College of Ningxia Hui Autonomous Region (Ecology) [grant numbers GZXM2017001, NXYLXK2017B06]. CR Aird D, 2011, GENOME BIOL, V12, DOI 10.1186/gb-2011-12-2-r18 [Anonymous], 2000, NATURE, V408 Cai B., 2009, J NANJING AGR U, V26, P2 CHEN HW, 1990, J BACTERIOL, V172, P4206, DOI 10.1128/jb.172.8.4206-4213.1990 [陈敏 Chen Min], 2016, [中国沙漠, Journal of Desert Research], V36, P124 Chen WB, 2015, INSECTS, V6, P704, DOI 10.3390/insects6030704 Chen Y. Y., 2006, BIOTECHNOLOGY, V16, P72 DeVita R, 1997, EUR J HISTOCHEM, V41, P175 Dolezel J, 2003, CYTOM PART A, V51A, P127, DOI 10.1002/cyto.a.10013 Dong Z. J., 1957, APOCYNUM CHIN SCI B, V19, P607 Fleischmann A, 2014, ANN BOT-LONDON, V114, P1651, DOI 10.1093/aob/mcu189 FRENKEL N, 1971, J VIROL, V8, P591, DOI 10.1128/JVI.8.4.591-593.1971 Goff SA, 2002, SCIENCE, V296, P92, DOI 10.1126/science.1068275 Huang SW, 2009, NAT GENET, V41, P1275, DOI 10.1038/ng.475 Kuo CS, 2011, J ETHNOPHARMACOL, V136, P149, DOI 10.1016/j.jep.2011.04.035 Lau YS, 2012, J ETHNOPHARMACOL, V143, P565, DOI 10.1016/j.jep.2012.07.012 Li G. Q., 2012, PHYSIOECOLOGY APOCYN Li LB, 2008, CHINESE B BOT, V25, P574 [李苗 Li Miao], 2015, [西北农业学报, Acat Agriculturae Boreali-Occidentalis Sinica], V24, P85 Li RQ, 2010, GENOME RES, V20, P265, DOI 10.1101/gr.097261.109 Li RQ, 2010, NATURE, V463, P311, DOI 10.1038/nature08696 Li XT, 2018, BIOMED PHARMACOTHER, V100, P394, DOI 10.1016/j.biopha.2018.01.137 Liu X. C., 2012, HEILONGJIANG AGR SCI, V23, P24 Paterson AH, 2009, NATURE, V457, P551, DOI 10.1038/nature07723 Pellicer J, 2010, BOT J LINN SOC, V164, P10, DOI 10.1111/j.1095-8339.2010.01072.x Schnable PS, 2009, SCIENCE, V326, P1112, DOI 10.1126/science.1178534 Shangguan LF, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0069890 [石米娟 Shi Mijuan], 2016, [科学通报, Chinese Science Bulletin], V61, P3188 Song L. X., 2019, J PLANT GENET RES Tang Q., 2015, GUIHAIA, V35 Wang Dong-qing, 2012, Xibei Zhiwu Xuebao, V32, P1198 [王雪 Wang Xue], 2018, [植物遗传资源学报, Journal of Plant Genetic Resources], V19, P143 Wu Y. F., 2014, PRESL J PLANT GENET, V15 Xie WY, 2012, J ETHNOPHARMACOL, V141, P1, DOI 10.1016/j.jep.2012.02.003 Xu M, 2010, NEW FOREST, V40, P361, DOI 10.1007/s11056-010-9205-0 [徐宗昌 Xu Zongchang], 2018, [植物学报, Chinese Bulletin of Botany], V53, P382 Zhang Yong-Xia, 2007, Xibei Zhiwu Xuebao, V27, P2555 Zhong Y. D., 2017, SARG MOL PLANT BREED, V15 [周佳熠 Zhou Jiayi], 2017, [基因组学与应用生物学, Genomics and Applied Biology], V36, P4334 NR 39 TC 14 Z9 14 U1 1 U2 9 PU PORTLAND PRESS LTD PI LONDON PA CHARLES DARWIN HOUSE, 12 ROGER STREET, LONDON WC1N 2JU, ENGLAND SN 0144-8463 EI 1573-4935 J9 BIOSCIENCE REP JI Biosci. Rep. PD JUN 25 PY 2019 VL 39 AR BSR20190146 DI 10.1042/BSR20190146 PN 6 PG 11 WC Biochemistry & Molecular Biology; Cell Biology SC Biochemistry & Molecular Biology; Cell Biology GA IQ5EE UT WOS:000480773800001 PM 31189745 OA gold, Green Published, Green Submitted DA 2021-10-15 ER PT J AU Wang, LL Zhang, XF Niu, YY Ahmed, AF Wang, JM Kang, WY AF Wang, Lili Zhang, Xiaofeng Niu, Yingying Ahmed, Adel Fahmi Wang, Jinmei Kang, Wenyi TI Anticoagulant activity of two novel polysaccharides from flowers of Apocynum venetum L. SO INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES LA English DT Article DE Apocynum venetum L.; Polysaccharide; Anticoagulant activity ID STRUCTURAL-CHARACTERIZATION; PECTIC POLYSACCHARIDES; ANTIOXIDANT ACTIVITIES; ARABINOGALACTAN; PURIFICATION; EXTRACT AB Two novel polysaccharides were obtained from flowers of Apocynum venetum L, and named as Vp2a-II and Vp3. Their average molecular weights were 7 kDa and 9 kDa, respectively. Methods of monosaccharide analysis, acid hydrolysis and methylation analysis, Fourier transform-infrared spectroscopy (FT-IR), gas chromatography-mass spectrometry (GC-MS) and nuclear magnetic resonance (NMR) spectroscopy were used to identify the structure of Vp2a-II and Vp3. Vp2a-II was composed of -> 6)-beta-n-Glcp-(1 -> 6)-alpha-h-Galp-(1 -> residues. Vp3 was composed of alpha-D-GlcpA-(3 -> alpha-D-GalpA residues. The anticoagulant activity was evaluated by activated partial thromboplastin time (APTT), thrombin time (TT), prothrombin time (PT), and fibrinogen (FIB) assays in vitro. Results indicated that Vp3 exhibited the anticoagulant activity. (C) 2018 Published by Elsevier B.V. C1 [Wang, Lili; Zhang, Xiaofeng; Niu, Yingying; Wang, Jinmei; Kang, Wenyi] Henan Univ, Natl Ctr Res & Dev Edible Fungus Proc Technol, Kaifeng 475004, Peoples R China. [Ahmed, Adel Fahmi; Wang, Jinmei; Kang, Wenyi] Joint Int Res Lab Food & Med Resource Funct, Kaifeng 475004, Henan, Peoples R China. [Ahmed, Adel Fahmi] Agr Res Ctr, Hort Res Inst, Med & Aromat Plants Res Dept, Giza, Egypt. RP Wang, JM; Kang, WY (corresponding author), Henan Univ, Natl Ctr Res & Dev Edible Fungus Proc Technol, Kaifeng 475004, Peoples R China.; Wang, JM; Kang, WY (corresponding author), Joint Int Res Lab Food & Med Resource Funct, Kaifeng 475004, Henan, Peoples R China. EM wangjinmeiscp@126.com; kangweny@hotmail.com FU Key Project in Science and Technology Agency of Henan Province [182102110092, 182102110473] FX This work was supported by Key Project in Science and Technology Agency of Henan Province (182102110092 and 182102110473). CR BLUMENKR.N, 1973, ANAL BIOCHEM, V54, P484, DOI 10.1016/0003-2697(73)90377-1 de Oliveira AJB, 2013, CARBOHYD POLYM, V94, P179, DOI 10.1016/j.carbpol.2012.12.068 Butterweck V, 2001, BIOL PHARM BULL, V24, P848, DOI 10.1248/bpb.24.848 Cantu-Jungles TM, 2015, CARBOHYD POLYM, V122, P276, DOI 10.1016/j.carbpol.2014.12.085 Cao JM, 2012, AQUACULT NUTR, V18, P35, DOI 10.1111/j.1365-2095.2011.00874.x Cerna M, 2003, CARBOHYD POLYM, V51, P383, DOI 10.1016/S0144-8617(02)00259-X Chinese Pharmacopoeia Commission, 2015, PHARMACOPOEIA PEOPLE, P196 CIUCANU I, 1984, CARBOHYD RES, V131, P209, DOI 10.1016/0008-6215(84)85242-8 Cordeiro LMC, 2012, FOOD CHEM, V130, P937, DOI 10.1016/j.foodchem.2011.08.020 DUBOIS M, 1956, ANAL CHEM, V28, P350, DOI 10.1021/ac60111a017 Franz G, 1995, INT J BIOL MACROMOL, V17, P311, DOI 10.1016/0141-8130(96)81837-X Galinari E, 2017, CARBOHYD POLYM, V157, P1298, DOI 10.1016/j.carbpol.2016.11.015 Grundmann O, 2007, J ETHNOPHARMACOL, V110, P406, DOI 10.1016/j.jep.2006.09.035 Grundmann O, 2009, PHYTOMEDICINE, V16, P295, DOI 10.1016/j.phymed.2008.12.020 Guo QB, 2015, FOOD HYDROCOLLOID, V44, P320, DOI 10.1016/j.foodhyd.2014.09.031 Guo Q, 2012, CARBOHYD RES, V350, P31, DOI 10.1016/j.carres.2011.10.020 Jiang JY, 2016, CARBOHYD POLYM, V147, P365, DOI 10.1016/j.carbpol.2016.04.001 Kacurakova M., 2010, CARBOHYDRATES, DOI [10.1002/chin.200123299, DOI 10.1002/CHIN.200123299] Kang J, 2011, FOOD HYDROCOLLOID, V25, P1999, DOI 10.1016/j.foodhyd.2010.11.020 Kobayashi M, 2004, BIOL PHARM BULL, V27, P1649, DOI 10.1248/bpb.27.1649 Le Costaouec T, 2017, ALGAL RES, V26, P172, DOI 10.1016/j.algal.2017.07.021 [李波 Li Bo], 2012, [天然产物研究与开发, Natural Product R & D], V24, P79 Maity K, 2011, INT J BIOL MACROMOL, V49, P555, DOI 10.1016/j.ijbiomac.2011.06.007 Matulova M, 2011, CARBOHYD RES, V346, P1029, DOI 10.1016/j.carres.2011.03.016 Ning Y. C., 2000, STRUCTURAL IDENTIFIC, P322 Peng XB, 2010, INT J BIOL MACROMOL, V47, P304, DOI 10.1016/j.ijbiomac.2010.03.018 Ren HL, 2008, N HORT, V7, P87 Ru QM, 2012, MOLECULES, V17, P11281, DOI 10.3390/molecules170911281 Shakhmatov EG, 2016, CARBOHYD POLYM, V136, P1358, DOI 10.1016/j.carbpol.2015.10.041 Wang CZ, 2015, MOLECULES, V20, P4162, DOI 10.3390/molecules20034162 Wang JM, 2017, CHEM CENT J, V11, DOI 10.1186/s13065-017-0243-y Wu JS, 2015, INT J MOL SCI, V16, P15560, DOI 10.3390/ijms160715560 Xie JH, 2016, FOOD HYDROCOLLOID, V53, P7, DOI 10.1016/j.foodhyd.2015.02.018 Xie JH, 2010, FOOD CHEM, V119, P1626, DOI 10.1016/j.foodchem.2009.09.055 Xie PY, 2017, FOOD FUNCT, V8, P2000, DOI 10.1039/c6fo01717g Xv C. P., 2014, FOOD R D, P111, DOI [10.3969/j.issn.1005-65212014.14.031, DOI 10.3969/J.ISSN.1005-65212014.14.031] Zhang H, 2017, CARBOHYD POLYM, V158, P58, DOI 10.1016/j.carbpol.2016.11.088 Zhang H, 2014, FOOD HYDROCOLLOID, V36, P339, DOI 10.1016/j.foodhyd.2013.08.029 Zhang L-M., 2009, CHEMINFORM, P40, DOI [10.1016/j.carbpol.2008.12.015, DOI 10.1016/J.CARBPOL.2008.12.015] NR 39 TC 14 Z9 16 U1 3 U2 40 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0141-8130 EI 1879-0003 J9 INT J BIOL MACROMOL JI Int. J. Biol. Macromol. PD MAR 1 PY 2019 VL 124 BP 1230 EP 1237 DI 10.1016/j.ijbiomac.2018.12.015 PG 8 WC Biochemistry & Molecular Biology; Chemistry, Applied; Polymer Science SC Biochemistry & Molecular Biology; Chemistry; Polymer Science GA HJ1CK UT WOS:000456899300129 PM 30521914 DA 2021-10-15 ER PT J AU Wang, WQ Liang, XY Fu, D Tie, R Xing, WJ Ji, LL Liu, FG Zhang, HF Li, R AF Wang, Wenqing Liang, Xiangyan Fu, Dong Tie, Ru Xing, Wenjuan Ji, Lele Liu, Fange Zhang, Haifeng Li, Rong TI Apocynum venetum Leaf Attenuates Myocardial Ischemia/Reperfusion Injury by Inhibiting Oxidative Stress SO AMERICAN JOURNAL OF CHINESE MEDICINE LA English DT Article DE Apocynum venetum; Oxidative Stress; Myocardial Ischemia/Reperfusion Injury; Akt; ERK1/2 ID REPERFUSION INJURY; CELL-SURVIVAL; IN-VITRO; ISCHEMIA; EXTRACT; RATS; PROTECTS; PATHWAY; CARDIOPROTECTION; LEAVES AB Apocynum venetum, a Chinese medicinal herb, is reported to be neuroprotective. However, whether Apocynum venetum leaf extract (AVLE) protects against ischemic myocardium remains elusive. Our present study was aimed to observe the effects of AVLE preconditioning on myocardial ischemia/reperfusion (MI/R) injury and to investigate the possible mechanisms. Rats were treated with AVLE (500 mg/kg/d, o.g.) or distilled water once daily for one week. Afterward, all the animals were subjected to 30 min of myocardial ischemia followed by 4 h of reperfusion. AVLE preconditioning for one week significantly improved cardiac function following MI/R. Meanwhile, AVLE reduced infarct size, plasma creatine kinase (CK)/lactate dehydrogenase (LDH) activities and myocardial apoptosis at the end of reperfusion in rat hearts. Moreover, AVLE preconditioning significantly inhibited superoxide generation, gp91(phox) expression, malonaldialdehyde formation and enhanced superoxide dismutase (SOD) activity in I/R hearts. Furthermore, AVLE treatment increased Akt and extracellular regulated protein kinases 1/2 (ERK1/2) phosphorylations in I/R rat heart. Either the Phosphatidylinositide 3-kinase (PI3K) inhibitor wortmannin or the ERK1/2 inhibitor PD98059 blocked AVLE-stimulated anti-oxidative effects and cardioprotection. Our study demonstrated for the first time that AVLE reduces oxidative stress and exerts cardioprotection against MI/R injury in rats. C1 [Wang, Wenqing] Fourth Mil Med Univ, Tangdu Hosp, Dept Hematol, Xian 710038, Peoples R China. [Wang, Wenqing; Liang, Xiangyan; Fu, Dong; Tie, Ru; Ji, Lele; Liu, Fange; Zhang, Haifeng] Fourth Mil Med Univ, Xijing Hosp, Expt Teaching Ctr, Xian 710032, Peoples R China. [Xing, Wenjuan] Fourth Mil Med Univ, Xijing Hosp, Dept Physiol, Xian 710032, Peoples R China. [Li, Rong] Fourth Mil Med Univ, Xijing Hosp, Dept Geratol, Xian 710032, Peoples R China. RP Li, R (corresponding author), Fourth Mil Med Univ, Xijing Hosp, Dept Geratol, 15 Changlexi Rd, Xian 710032, Peoples R China. EM liufange@fmmu.edu.cn; hfzhang@fmmu.edu.cn; wwqlrrs@fmmu.edu.cn FU National Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC) [81470413, 81270401, 81270330, 81300190]; Shaanxi Province Science and Technology Research and Development Program [2013KJXX-89]; Shaanxi Province Social Development Project in Science and Technology Research [2014K11-02-03-02]; Shaanxi Province Principal Project on Natural Science Research [2014JZ010] FX This study was supported by grants from the National Natural Science Foundation of China (Nos. 81470413, 81270401, 81270330, and 81300190), Shaanxi Province Science and Technology Research and Development Program (No. 2013KJXX-89), Shaanxi Province Social Development Project in Science and Technology Research (No. 2014K11-02-03-02) and Shaanxi Province Principal Project on Natural Science Research (No. 2014JZ010). CR Butterweck V, 2001, BIOL PHARM BULL, V24, P848, DOI 10.1248/bpb.24.848 Dhalla NS, 2000, CARDIOVASC RES, V47, P446, DOI 10.1016/S0008-6363(00)00078-X Dong LY, 2013, AM J CHINESE MED, V41, P1251, DOI 10.1142/S0192415X13500845 Fattorusso R, 2006, PHYTOMEDICINE, V13, P16, DOI 10.1016/j.phymed.2005.03.004 Fu F, 2014, AM J CHINESE MED, V42, P95, DOI 10.1142/S0192415X14500062 Grundmann O, 2007, J ETHNOPHARMACOL, V110, P406, DOI 10.1016/j.jep.2006.09.035 Grundmann O, 2009, PHYTOMEDICINE, V16, P295, DOI 10.1016/j.phymed.2008.12.020 Gu LL, 2013, AM J CHINESE MED, V41, P1297, DOI 10.1142/S0192415X13500870 Hausenloy DJ, 2007, HEART FAIL REV, V12, P217, DOI 10.1007/s10741-007-9026-1 Ji LL, 2010, AM J PHYSIOL-ENDOC M, V298, pE871, DOI 10.1152/ajpendo.00623.2009 Jung DH, 2010, EUR J PHARMACOL, V641, P7, DOI 10.1016/j.ejphar.2010.04.061 Kim DW, 2000, PHYTOTHER RES, V14, P501, DOI 10.1002/1099-1573(200011)14:7<501::AID-PTR655>3.0.CO;2-B Kleikers PWM, 2012, J MOL MED, V90, P1391, DOI 10.1007/s00109-012-0963-3 Kwan CY, 2005, CLIN EXP PHARMACOL P, V32, P789, DOI 10.1111/j.1440-1681.2005.04255.x Liu AH, 2013, AM J CHINESE MED, V41, P789, DOI 10.1142/S0192415X13500535 Lu ZM, 2006, IUBMB LIFE, V58, P621, DOI 10.1080/15216540600957438 Madamanchi NR, 2013, FREE RADICAL BIO MED, V61, P473, DOI 10.1016/j.freeradbiomed.2013.04.001 Moens AL, 2005, INT J CARDIOL, V100, P179, DOI 10.1016/j.ijcard.2004.04.013 Raedschelders K, 2012, PHARMACOL THERAPEUT, V133, P230, DOI 10.1016/j.pharmthera.2011.11.004 Saeed Sheikh Arshad, 2005, J Coll Physicians Surg Pak, V15, P507 Song G, 2005, J CELL MOL MED, V9, P59, DOI 10.1111/j.1582-4934.2005.tb00337.x Su H, 2007, AM J PHYSIOL-ENDOC M, V293, pE629, DOI 10.1152/ajpendo.00221.2007 Su H, 2013, J CELL MOL MED, V17, P181, DOI 10.1111/j.1582-4934.2012.01661.x Tie R, 2013, INT J MOL SCI, V14, P19792, DOI 10.3390/ijms141019792 Xiang J, 2012, NEUROCHEM RES, V37, P1820, DOI 10.1007/s11064-012-0796-z Xiang J, 2010, CAN J PHYSIOL PHARM, V88, P907, DOI [10.1139/Y10-069, 10.1139/y10-069] Xie NL, 2011, ARCH MED RES, V42, P171, DOI 10.1016/j.arcmed.2011.04.008 Zhang KR, 2007, APOPTOSIS, V12, P1579, DOI 10.1007/s10495-007-0090-8 Zhu M, 2006, CARDIOVASC RES, V72, P152, DOI 10.1016/j.cardiores.2006.06.027 NR 29 TC 14 Z9 16 U1 1 U2 32 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0192-415X EI 1793-6853 J9 AM J CHINESE MED JI Am. J. Chin. Med. PY 2015 VL 43 IS 1 BP 71 EP 85 DI 10.1142/S0192415X15500056 PG 15 WC Integrative & Complementary Medicine; Medicine, General & Internal SC Integrative & Complementary Medicine; General & Internal Medicine GA CB5WS UT WOS:000349699300005 PM 25579758 DA 2021-10-15 ER PT J AU Sarris, J McIntyre, E Camfield, DA AF Sarris, Jerome McIntyre, Erica Camfield, David A. TI Plant-Based Medicines for Anxiety Disorders, Part 1 A Review of Preclinical Studies SO CNS DRUGS LA English DT Review ID ELEVATED PLUS-MAZE; STACHYS-LAVANDULIFOLIA VAHL; SPONTANEOUS MOTOR-ACTIVITY; CECROPIA-GLAZIOUI SNETH; ANXIOLYTIC-LIKE ACTIONS; WATER-ALCOHOL EXTRACT; SONCHUS-OLERACEUS L.; APOCYNUM-VENETUM L.; CROCUS-SATIVUS L.; ERYTHRINA-MULUNGU AB Research in the area of herbal psychopharmacology has revealed a variety of promising medicines that may provide benefit in the treatment of general anxiety and specific anxiety disorders. However, a comprehensive review of plant-based anxiolytics has been absent to date. This article (part 1) reviews herbal medicines for which only preclinical investigations for anxiolytic activity have been performed. In part 2, we review herbal medicines for which there have been clinical investigations for anxiolytic activity. An open-ended, language-restricted (English) search of MEDLINE (PubMed), CINAHL, Scopus and the Cochrane Library databases was conducted (up to 28 October 2012) using specific search criteria to identify herbal medicines that have been investigated for anxiolytic activity. This search of the literature revealed 1,525 papers, from which 53 herbal medicines were included in the full review (having at least one study using the whole plant extract). Of these plants, 21 had human clinical trial evidence (reviewed in part 2), with another 32 having solely preclinical studies (reviewed here in part 1). Preclinical evidence of anxiolytic activity (without human clinical trials) was found for Albizia julibrissin, Sonchus oleraceus, Uncaria rhynchophylla, Stachys lavandulifolia, Cecropia glazioui, Magnolia spp., Eschscholzia californica, Erythrina spp., Annona spp., Rubus brasiliensis, Apocynum venetum, Nauclea latifolia, Equisetum arvense, Tilia spp., Securidaca longepedunculata, Achillea millefolium, Leea indica, Juncus effusus, Coriandrum sativum, Eurycoma longifolia, Turnera diffusa, Euphorbia hirta, Justicia spp., Crocus sativus, Aloysia polystachya, Albies pindrow, Casimiroa edulis, Davilla rugosa, Gastrodia elata, Sphaerathus indicus, Zizyphus jujuba and Panax ginseng. Common mechanisms of action for the majority of botanicals reviewed primarily involve GABA, either via direct receptor binding or ionic channel or cell membrane modulation; GABA transaminase or glutamic acid decarboxylase inhibition; a range of monoaminergic effects; and potential cannabinoid receptor modulation. Future research should focus on conducting human clinical trials on the plants reviewed with promising anxiolytic activity. C1 [Sarris, Jerome] Univ Melbourne, Fac Med, Dept Psychiat, Richmond, Vic 3121, Australia. [Sarris, Jerome] Swinburne Univ Technol, Ctr Human Psychopharmacol, Hawthorn, Vic 3122, Australia. [McIntyre, Erica] Charles Sturt Univ, Sch Psychol, Bathurst, NSW 2795, Australia. [Camfield, David A.] Swinburne Univ Technol, Ctr Human Psychopharmacol, Melbourne, Vic, Australia. RP Sarris, J (corresponding author), Univ Melbourne, Fac Med, Dept Psychiat, 2 Salisbury St, Richmond, Vic 3121, Australia. EM jsarris@unimelb.edu.au RI McIntyre, Erica/K-2297-2019; McIntyre, Erica/V-6669-2018 OI McIntyre, Erica/0000-0002-3970-9979; Camfield, David/0000-0001-7925-2566 FU Australian National Health & Medical Research Council fellowship (NHMRC) [628875] FX Dr Jerome Sarris is funded by an Australian National Health & Medical Research Council fellowship (NHMRC funding ID 628875), in a strategic partnership with The University of Melbourne, The Centre for Human Psychopharmacology at Swinburne University of Technology. All authors have no conflicts of interest directly relevant to the content of this article. CR Abascal K, 2004, ALTERN COMPLEMENT TH, V10, P309, DOI DOI 10.1089/ACT.2004.10.309 Adeyemi OO, 2010, J ETHNOPHARMACOL, V130, P191, DOI 10.1016/j.jep.2010.04.028 Aguirre-Hernandez E, 2007, J ETHNOPHARMACOL, V109, P140, DOI 10.1016/j.jep.2006.07.017 Aguirre-Hernandez E, 2010, J ETHNOPHARMACOL, V127, P91, DOI 10.1016/j.jep.2009.09.044 Akhondzadeh Shahin, 2004, BMC Complement Altern Med, V4, P12, DOI 10.1186/1472-6882-4-12 Alexeev M, 2012, NEUROPHARMACOLOGY, V62, P2507, DOI 10.1016/j.neuropharm.2012.03.002 American Psychiatric Association, 2000, DIAGNOSTIC STAT MANU Ang HH, 1999, JPN J PHARMACOL, V79, P497, DOI 10.1254/jjp.79.497 Anuradha H, 2008, J NEURAL TRANSM, V115, P35, DOI 10.1007/s00702-007-0821-6 Awad R, 2007, CAN J PHYSIOL PHARM, V85, P933, DOI 10.1139/Y07-083 Baretta IP, 2012, J ETHNOPHARMACOL, V140, P46, DOI 10.1016/j.jep.2011.11.047 BHATTACHARYA SK, 1991, J ETHNOPHARMACOL, V34, P87, DOI 10.1016/0378-8741(91)90193-H Bum EN, 2009, EPILEPSY BEHAV, V15, P434, DOI 10.1016/j.yebeh.2009.05.014 Carr MN, 2006, EUR J PHARMACOL, V531, P160, DOI 10.1016/j.ejphar.2005.12.014 Cha HY, 2005, BIOL PHARM BULL, V28, P1621, DOI 10.1248/bpb.28.1621 Dang HX, 2009, PROG NEURO-PSYCHOPH, V33, P1417, DOI 10.1016/j.pnpbp.2009.07.020 Rejon-Orantes JDC, 2011, PLANTA MED, V77, P322, DOI 10.1055/s-0030-1250406 Emamghoreishi M, 2005, J ETHNOPHARMACOL, V96, P365, DOI 10.1016/j.jep.2004.06.022 Gonzalez-Trujano ME, 2009, EPILEPSY BEHAV, V16, P590, DOI 10.1016/j.yebeh.2009.09.018 Flausino OA, 2007, BIOL PHARM BULL, V30, P375, DOI 10.1248/bpb.30.375 Galani Varsha J, 2010, Int J Ayurveda Res, V1, P247, DOI 10.4103/0974-7788.76790 Galani Varsha J, 2010, Int J Ayurveda Res, V1, P87, DOI 10.4103/0974-7788.64412 Geng JS, 2010, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD007769.pub2 Ghadrdoost B, 2011, EUR J PHARMACOL, V667, P222, DOI 10.1016/j.ejphar.2011.05.012 Gonzalez-Trujano E, 2006, PLANTA MED, V72, P703, DOI 10.1055/s-2006-931598 Grundmann O, 2007, J ETHNOPHARMACOL, V110, P406, DOI 10.1016/j.jep.2006.09.035 Guaraldo L, 2000, J ETHNOPHARMACOL, V72, P61, DOI 10.1016/S0378-8741(00)00198-7 Han H, 2011, J MED FOOD, V14, P724, DOI 10.1089/jmf.2010.1111 Hellion-Ibarrola MC, 2006, J ETHNOPHARMACOL, V105, P400, DOI 10.1016/j.jep.2005.11.013 Herrera-Ruiz M, 2008, J ETHNOPHARMACOL, V118, P312, DOI 10.1016/j.jep.2008.04.019 Hosseinzadeh H, 2007, PHYTOMEDICINE, V14, P256, DOI 10.1016/j.phymed.2006.03.007 Hosseinzadeh H, 2009, PHYTOTHER RES, V23, P768, DOI 10.1002/ptr.2597 HSIEH M-T, 1986, Proceedings of the National Science Council Republic of China Part B Life Sciences, V10, P43 Jung JW, 2006, BIOL PHARM BULL, V29, P261, DOI 10.1248/bpb.29.261 Jung JW, 2005, PHARMACOL BIOCHEM BE, V81, P205, DOI 10.1016/j.pbb.2005.03.014 Kalman DS, 2008, NUTR J, V7, DOI 10.1186/1475-2891-7-11 Kim TW, 2009, PLANTA MED, V75, P836, DOI 10.1055/s-0029-1185402 Kim WK, 2004, LIFE SCI, V75, P2787, DOI 10.1016/j.lfs.2004.05.024 Klvana M, 2006, PHYTOCHEM ANALYSIS, V17, P236, DOI 10.1002/pca.913 Koetter U, 2009, J ETHNOPHARMACOL, V124, P421, DOI 10.1016/j.jep.2009.05.040 Ku TH, 2011, PHYTOMEDICINE, V18, P1126, DOI 10.1016/j.phymed.2011.03.007 Kumar S, 2008, INDIAN J PHARM SCI, V70, P847, DOI 10.4103/0250-474X.49143 Kumar Suresh, 2005, Journal of Herbal Pharmacotherapy, V5, P13, DOI 10.1080/J157v05n04_02 Kumar V, 2006, PHYTOTHER RES, V20, P1023, DOI 10.1002/ptr.1970 Kumar Vikas, 2000, Indian Journal of Experimental Biology, V38, P343 Kuo CS, 2011, J ETHNOPHARMACOL, V136, P149, DOI 10.1016/j.jep.2011.04.035 Kuribara H, 2000, J PHARM PHARMACOL, V52, P1425, DOI 10.1211/0022357001777432 Lakhan SE, 2010, NUTR J, V9, DOI 10.1186/1475-2891-9-42 LANHERS MC, 1990, J ETHNOPHARMACOL, V29, P189, DOI 10.1016/0378-8741(90)90055-X Lechtenberg M, 2008, PLANTA MED, V74, P764, DOI 10.1055/s-2008-1074535 Liao YJ, 2011, PLANTA MED, V77, P416, DOI 10.1055/s-0030-1250517 LISTER RG, 1987, PSYCHOPHARMACOLOGY, V92, P180 Lopez-Rubalcava C, 2006, LIFE SCI, V78, P730, DOI 10.1016/j.lfs.2005.05.078 Mahendra P, 2011, INDIAN J PHARMACOL, V43, P574, DOI 10.4103/0253-7613.84975 Martinez AL, 2006, J ETHNOPHARMACOL, V106, P250, DOI 10.1016/j.jep.2006.01.003 McDowell A, 2011, PHYTOTHER RES, V25, P1876, DOI 10.1002/ptr.3648 Molina-Hernandez M, 2004, J ETHNOPHARMACOL, V93, P93, DOI 10.1016/j.jep.2004.03.039 Mora S, 2005, PHARMACOL BIOCHEM BE, V82, P373, DOI 10.1016/j.pbb.2005.09.007 Mora S, 2005, J ETHNOPHARMACOL, V97, P191, DOI 10.1016/j.jep.2004.10.028 Navarro E, 2004, PHYTOMEDICINE, V11, P498, DOI 10.1016/j.phymed.2003.06.003 Nemeth E, 2008, CURR PHARM DESIGN, V14, P3151, DOI 10.2174/138161208786404281 Nogueira E, 1998, J ETHNOPHARMACOL, V61, P111, DOI 10.1016/S0378-8741(98)00022-1 Nogueira E, 1998, J ETHNOPHARMACOL, V61, P119, DOI 10.1016/S0378-8741(98)00023-3 Nogueira E, 2000, J ETHNOPHARMACOL, V70, P275, DOI 10.1016/S0378-8741(99)00205-6 Noorbala AA, 2005, J ETHNOPHARMACOL, V97, P281, DOI 10.1016/j.jep.2004.11.004 Onusic GM, 2003, BIOL PHARM BULL, V26, P1538, DOI 10.1248/bpb.26.1538 Onusic GM, 2002, BRAZ J MED BIOL RES, V35, P473, DOI 10.1590/S0100-879X2002000400011 Panossian A, 2005, PHYTOTHER RES, V19, P819, DOI 10.1002/ptr.1751 Park JH, 2005, PROG NEURO-PSYCHOPH, V29, P893, DOI 10.1016/j.pnpbp.2005.04.016 Peng WH, 2000, J ETHNOPHARMACOL, V72, P435, DOI 10.1016/S0378-8741(00)00255-5 Perez-Ortega G, 2008, J ETHNOPHARMACOL, V116, P461, DOI 10.1016/j.jep.2007.12.007 Pitsikas N, 2008, PHYTOMEDICINE, V15, P1135, DOI 10.1016/j.phymed.2008.06.005 Rabbani M, 2005, PHYTOTHER RES, V19, P854, DOI 10.1002/ptr.1701 Rabbani M, 2003, J ETHNOPHARMACOL, V89, P271, DOI 10.1016/j.jep.2003.09.008 Raihan MO, 2011, DRUG DISCOV THER, V5, P185, DOI 10.5582/ddt.2011.v5.4.185 Raupp IM, 2008, J ETHNOPHARMACOL, V118, P295, DOI 10.1016/j.jep.2008.04.016 Ribeiro MD, 2006, BRAZ J MED BIOL RES, V39, P263, DOI 10.1590/S0100-879X2006000200013 Rocha FF, 2007, PHYTOMEDICINE, V14, P396, DOI 10.1016/j.phymed.2007.03.011 Rocha FF, 2002, PHARMACOL BIOCHEM BE, V71, P183, DOI 10.1016/S0091-3057(01)00695-5 Rolland A, 2001, PHYTOTHER RES, V15, P377, DOI 10.1002/ptr.884 ROLLAND A, 1991, PLANTA MED, V57, P212, DOI 10.1055/s-2006-960076 Sarris J, CNS DRUGS IN PRESS Sarris J, 2007, PHYTOTHER RES, V21, P703, DOI 10.1002/ptr.2187 Sarris J, 2011, EUR NEUROPSYCHOPHARM, V21, P841, DOI 10.1016/j.euroneuro.2011.04.002 Sarris J, 2009, J ALTERN COMPLEM MED, V15, P827, DOI 10.1089/acm.2009.0066 Schmidt M, 2007, WIEN MED WOCHENSCHR, V157, P315, DOI 10.1007/s10354-007-0428-4 Seo JJ, 2007, PROG NEURO-PSYCHOPH, V31, P1363, DOI 10.1016/j.pnpbp.2007.05.009 Singh N, 2011, INDIAN J EXP BIOL, V49, P352 Singhuber J, 2012, PLANTA MED, V78, P455, DOI 10.1055/s-0031-1298174 Spinella M., 2001, BRAIN BEHAV Srinivasan GV, 2008, ACTA PHARMACEUT, V58, P207, DOI 10.2478/v10007-008-0002-7 Venancio ET, 2011, PHYTOTHER RES, V25, P444, DOI 10.1002/ptr.3274 Vilela FC, 2009, J ETHNOPHARMACOL, V124, P325, DOI 10.1016/j.jep.2009.04.029 Wang YG, 2012, NAT PROD RES, V26, P1234, DOI 10.1080/14786419.2011.561491 Xie WY, 2012, J ETHNOPHARMACOL, V141, P1, DOI 10.1016/j.jep.2012.02.003 Zhang M, 2003, PLANTA MED, V69, P692, DOI 10.1055/s-2003-42786 Zhou JY, 2010, J ETHNOPHARMACOL, V132, P15, DOI 10.1016/j.jep.2010.08.041 NR 97 TC 14 Z9 17 U1 2 U2 125 PU ADIS INT LTD PI NORTHCOTE PA 5 THE WAREHOUSE WAY, NORTHCOTE 0627, AUCKLAND, NEW ZEALAND SN 1172-7047 EI 1179-1934 J9 CNS DRUGS JI CNS Drugs PY 2013 VL 27 IS 3 BP 207 EP 219 DI 10.1007/s40263-013-0044-3 PG 13 WC Clinical Neurology; Pharmacology & Pharmacy; Psychiatry SC Neurosciences & Neurology; Pharmacology & Pharmacy; Psychiatry GA 138TK UT WOS:000318532700005 PM 23436255 OA Green Submitted DA 2021-10-15 ER PT J AU Lau, YS Kwan, CY Ku, TC Hsieh, WT Wang, HD Nishibe, S Dharmani, M Mustafa, MR AF Lau, Y. S. Kwan, C. Y. Ku, T. C. Hsieh, W. T. Wang, H. D. Nishibe, S. Dharmani, M. Mustafa, M. R. TI Apocynum venetum leaf extract, an antihypertensive herb, inhibits rat aortic contraction induced by angiotensin II: A nitric oxide and superoxide connection SO JOURNAL OF ETHNOPHARMACOLOGY LA English DT Article DE Angiotensin II; Phenylephrine; Nitric oxide; Superoxide anion; Medicinal herb; Apocynum venetum; Vascular contractility ID NADPH OXIDASE; ENDOTHELIAL DYSFUNCTION; OXIDATIVE STRESS; NAD(P)H OXIDASE; MUSCLE-CELLS; RECEPTOR; HYPERTENSION; QUERCETIN; LUOBUMA; LEAVES AB Ethnopharmacological relevance: The leaves extract of Apocynum venetum (AVLE), also known as "luobuma", have long been used in traditional Chinese medicine to treat hypertension and depression in parts of China and it has been shown to possess anti-oxidant and anti-lipid peroxidation effects. AVLE (10 mu g/ml) has been reported to have a long-lasting endothelium-dependent relaxant effect and this effect has been proposed to be due to its nitric oxide(NO)-releasing and superoxide anion(SOA)-scavenging properties. Aim of the study: The present study seeks to evaluate the differential actions of AVLE extract between Ang II- and PE-induced vasoconstriction and the involvement of superoxide anions. Materials and methods: Single dose of Ang II (100 nM and 1 nM)- or PE (0.1 mu M)-induced contraction were assessed in both endothelium-intact and -denuded aortic rings after pre-incubation of AVLE (10 mu g/m1) for 15 min. The experiment was repeated in either the presence of NO synthase inhibitor, L-NAME (300 mu M) or selective AT(1) receptor inhibitor, losartan (0.1 nM), or superoxide scavenger, tiron (1 mM) or a combination of L-NAME and AVLE. Superoxide production was measured by using enhanced-chemiluminescence assay. Results: We have demonstrated that AVLE (10 mu g/ml) effectively suppressed the Ang II-induced contraction (100 nM and 1 nM) of both endothelium-intact and -denuded rat aortic rings. In endothelium-intact rings, L-NAME, reversed AVLE-induced inhibition of Ang II-contraction. PE-induced contraction was significantly inhibited by AVLE in endothelium-intact rings, but not in endothelium-denuded rings. The inhibition by AVLE of PE-induced contraction was totally abolished in the presence of L-NAME. Ang II-induced SOA production concentration dependently with the optimal effect seen at 100 nM of Ang II, and AVLE (0.3, 1, 10 mu g/ml) reduced this effect. SOA production in Ang II-stimulated rings was significantly higher than unstimulated control rings, while PE did not stimulate SOA production at all. SOA formation in the presence of Ang II was also inhibited in the presence of SOD (superoxide scavenger), DPI (NADPH inhibitor) and losartan (specific AT(1) receptor antagonist). Conclusion: These results collectively suggest that the ability of AVLE in inhibiting Ang II-induced contraction via its SOA scavenging properties and nitric oxide releasing effect may account for its usage as an antihypertensive treatment in traditional folk medicine. (C) 2012 Elsevier Ireland Ltd. All rights reserved. C1 [Lau, Y. S.; Dharmani, M.; Mustafa, M. R.] Univ Malaya, Fac Med, Dept Pharmacol, Kuala Lumpur 50603, Malaysia. [Kwan, C. Y.; Ku, T. C.; Hsieh, W. T.] China Med Univ & Hosp, Grad Inst Basic Med Sci, Taichung, Taiwan. [Kwan, C. Y.; Ku, T. C.; Hsieh, W. T.] China Med Univ & Hosp, Vasc Biol Grp, Taichung, Taiwan. [Wang, H. D.] Fac Appl Hlth Sci, Dept Community Hlth, St Catharines, ON, Canada. [Nishibe, S.] Hlth Sci Univ Hokkaido, Sapporo, Hokkaido, Japan. RP Mustafa, MR (corresponding author), Univ Malaya, Fac Med, Dept Pharmacol, Kuala Lumpur 50603, Malaysia. EM rais@um.edu.my RI Lau, Yeh Siang/D-2136-2016; Mustafa, Mohamed R/B-1647-2009; MURUGAN, DHARMANI DEVI/B-8436-2010; Hsieh, Wen-Tsong/AAY-3089-2020 OI Lau, Yeh Siang/0000-0002-1770-3058; Mustafa, Mohamed R/0000-0002-7864-5189; Hsieh, Wen-Tsong/0000-0002-2330-8898 FU High Impact Factor Research Grant (University of Malaya, Malaysia) [H-20001-00-E000055]; China Medical University, TaiwanChina Medical University FX This study was funded by the High Impact Factor Research Grant (H-20001-00-E000055, University of Malaya, Malaysia) and a research seeding fund (China Medical University, Taiwan). Professor S. Nishibe (Hokaido, Japan) and Dr. HD Wang (St. Catharines, Canada) provided helpful expertise and technical consultation. Generous gift of AVLE from Tokiwa Pharmaceutical Company (Tokyo, Japan) is highly appreciated. CR Achike FI, 2003, CLIN EXP PHARMACOL P, V30, P605, DOI 10.1046/j.1440-1681.2003.03885.x Ajay M, 2006, VASC PHARMACOL, V45, P127, DOI 10.1016/j.vph.2006.05.001 Barreras Amy, 2003, Proc (Bayl Univ Med Cent), V16, P123 Butterweck V, 2003, PHARMACOL BIOCHEM BE, V75, P557, DOI 10.1016/S0091-3057(03)00118-7 Cifuentes ME, 2000, AM J PHYSIOL-HEART C, V279, pH2234, DOI 10.1152/ajpheart.2000.279.5.H2234 Di Wang H, 1998, CIRC RES, V82, P810, DOI 10.1161/01.RES.82.7.810 Dinh DT, 2001, CLIN SCI, V100, P481, DOI 10.1042/CS20000263 Furukawa S, 2004, J CLIN INVEST, V114, P1752, DOI 10.1172/JCI20042162S Garrido AM, 2009, MOL CELL ENDOCRINOL, V302, P148, DOI 10.1016/j.mce.2008.11.003 GODFRAIND T, 1985, CLIN SCI, V68, pS65, DOI 10.1042/cs068s065 GRIENDLING KK, 1994, CIRC RES, V74, P1141, DOI 10.1161/01.RES.74.6.1141 Irie K, 2009, J NAT MED, V63, P111, DOI 10.1007/s11418-008-0296-2 Ishikawa A, 2007, ANESTH ANALG, V105, P97, DOI 10.1213/01.ane.0000265851.37923.ec Kalinowski L, 2004, ACTA BIOCHIM POL, V51, P459 Kamata K, 2008, J NAT MED-TOKYO, V62, P160, DOI 10.1007/s11418-007-0202-3 Kim DW, 2000, J ETHNOPHARMACOL, V72, P53, DOI 10.1016/S0378-8741(00)00197-5 Kuo CS, 2011, J ETHNOPHARMACOL, V136, P149, DOI 10.1016/j.jep.2011.04.035 Kwan CY, 2005, CLIN EXP PHARMACOL P, V32, P789, DOI 10.1111/j.1440-1681.2005.04255.x Kwan CY, 2004, N-S ARCH PHARMACOL, V369, P473, DOI 10.1007/s00210-004-0927-4 Kwan CY, 2003, VASC PHARMACOL, V40, P229, DOI 10.1016/j.vph.2003.09.001 Kwan CY, 2004, N-S ARCH PHARMACOL, V369, P206, DOI 10.1007/s00210-003-0822-4 Lapante MA, 2005, FREE RADICAL BIO MED, V38, P589, DOI 10.1016/j.freeradbiomed.2004.11.026 Nickenig G, 2002, CIRCULATION, V105, P393, DOI 10.1161/hc0302.102618 Polizio AH, 2007, PHARMACOL RES, V56, P86, DOI 10.1016/j.phrs.2007.04.004 Qin FZ, 2006, FREE RADICAL BIO MED, V40, P236, DOI 10.1016/j.freeradbiomed.2005.08.010 Rahman M, 2004, EUR J PHARMACOL, V485, P243, DOI 10.1016/j.ejphar.2003.11.074 Rajagopalan S, 1996, J CLIN INVEST, V97, P1916, DOI 10.1172/JCI118623 Romano L, 2002, CAN J PHYSIOL PHARM, V80, P1022, DOI 10.1139/Y02-130 Sanchez M, 2006, J HYPERTENS, V24, P75, DOI 10.1097/01.hjh.0000198029.22472.d9 Sanchez M, 2007, J NUTR, V137, P910, DOI 10.1093/jn/137.4.910 Siddiqui AH, 2007, AM J PHYSIOL-HEART C, V292, pH1722, DOI 10.1152/ajpheart.00612.2006 Touyz RM, 2002, CIRC RES, V90, P1205, DOI 10.1161/01.RES.0000020404.01971.2F Virdis A, 2004, J HYPERTENS, V22, P535, DOI 10.1097/00004872-200403000-00016 Wang HD, 2002, AM J PHYSIOL-HEART C, V282, pH1697, DOI 10.1152/ajpheart.00914.2001 Welch WJ, 2008, HYPERTENSION, V52, P51, DOI 10.1161/HYPERTENSIONAHA.107.090472 Woodman OL, 2009, LIFE SCI, V85, P54, DOI 10.1016/j.lfs.2009.04.012 Xie WY, 2012, J ETHNOPHARMACOL, V141, P1, DOI 10.1016/j.jep.2012.02.003 Yokozawa T, 2002, BIOL PHARM BULL, V25, P748, DOI 10.1248/bpb.25.748 Zhang H, 1999, CARDIOVASC RES, V44, P215, DOI 10.1016/S0008-6363(99)00183-2 ZHANG JS, 1994, EUR J PHARMACOL, V262, P247, DOI 10.1016/0014-2999(94)90738-2 Zhou MS, 2004, SEMIN NEPHROL, V24, P366, DOI 10.1016/j.semnephrol.2004.04.008 NR 41 TC 14 Z9 17 U1 2 U2 36 PU ELSEVIER IRELAND LTD PI CLARE PA ELSEVIER HOUSE, BROOKVALE PLAZA, EAST PARK SHANNON, CO, CLARE, 00000, IRELAND SN 0378-8741 J9 J ETHNOPHARMACOL JI J. Ethnopharmacol. PD SEP 28 PY 2012 VL 143 IS 2 BP 565 EP 571 DI 10.1016/j.jep.2012.07.012 PG 7 WC Plant Sciences; Chemistry, Medicinal; Integrative & Complementary Medicine; Pharmacology & Pharmacy SC Plant Sciences; Pharmacology & Pharmacy; Integrative & Complementary Medicine GA 015YU UT WOS:000309485000021 PM 22835814 DA 2021-10-15 ER PT J AU Gibson, DM Krasnoff, SB Biazzo, J Milbrath, L AF Gibson, Donna M. Krasnoff, Stuart B. Biazzo, Jeromy Milbrath, Lindsey TI Phytotoxicity of Antofine from Invasive Swallow-Worts SO JOURNAL OF CHEMICAL ECOLOGY LA English DT Article DE Antofine; Phytotoxin; Swallow-worts; Vincetoxicum; Cynanchum; Allelopathy; Invasiveness; Allelopathic potential ID VINE VINCETOXICUM-ROSSICUM; NEW-YORK-STATE; CYNANCHUM-VINCETOXICUM; L PERS; PHENANTHROINDOLIZIDINE ALKALOIDS; SPOTTED KNAPWEED; REPRODUCTIVE-BIOLOGY; COMPETITIVE ABILITY; LIGHT ENVIRONMENTS; CYTOTOXIC ACTIVITY AB Pale swallow-wort (Vincetoxicum rossicum) and black swallow-wort (V. nigrum) are two emerging invasive plant species in the northeastern United States and southeastern Canada that have shown rapid population expansion over the past 20 years. Using bioassay-guided fractionation, the known phytochemical phenanthroindolizidine alkaloid, (-)-antofine, was identified as a potent phytotoxin in roots, leaves, and seeds of both swallow-wort species. In seedling bioassays, (-)-antofine, at mu M concentrations, resulted in greatly reduced root growth of Asclepias tuberosa, A. syriaca, and Apocynum cannabinum, three related, native plant species typically found in habitats where large stands of swallow-wort are present. In contrast, antofine exhibited moderate activity against lettuce, and it had little effect on germination and root growth of either black or pale swallow-wort. In disk diffusion assays, antifungal activity was observed at 10 mu g and 100 mu g, while antibacterial activity was seen only at the higher level. Although both swallow-wort species display multiple growth and reproductive characteristics that may play an important role in their invasiveness, the presence of the highly bioactive phytochemical (-)-antofine in root and seed tissues indicates a potential allelopathic role in swallow-worts' invasiveness. C1 [Gibson, Donna M.; Krasnoff, Stuart B.; Biazzo, Jeromy; Milbrath, Lindsey] ARS, USDA, Biol Integrated Pest Management Res Unit, Robert W Holley Ctr Agr & Hlth, Ithaca, NY 14853 USA. RP Gibson, DM (corresponding author), ARS, USDA, Biol Integrated Pest Management Res Unit, Robert W Holley Ctr Agr & Hlth, Ithaca, NY 14853 USA. EM Donna.Gibson@ars.usda.gov CR Bais HP, 2010, SCIENCE, V327, P781 Bais HP, 2003, SCIENCE, V301, P1377, DOI 10.1126/science.1083245 BAUMGARTNER B, 1990, PHYTOCHEMISTRY, V29, P3327, DOI 10.1016/0031-9422(90)80209-Y Blair AC, 2005, ECOL LETT, V8, P1039, DOI 10.1111/j.1461-0248.2005.00805.x Blair AC, 2006, J CHEM ECOL, V32, P2327, DOI 10.1007/s10886-006-9168-y Callaway RM, 2000, SCIENCE, V290, P521, DOI 10.1126/science.290.5491.521 Callaway RM, 2004, FRONT ECOL ENVIRON, V2, P436, DOI 10.2307/3868432 CAPO M, 1989, J NAT PROD, V52, P389, DOI 10.1021/np50062a030 Cappuccino N, 2004, OIKOS, V106, P3, DOI 10.1111/j.0030-1299.2004.12863.x Cappuccino N, 2006, BIOL LETTERS, V2, P189, DOI 10.1098/rsbl.2005.0433 Christensen T., 1998, WILDFLOWER, V14, P21 Cui LJ, 2004, RAPID COMMUN MASS SP, V18, P184, DOI 10.1002/rcm.1297 DiTommaso A, 2005, CAN J PLANT SCI, V85, P243, DOI 10.4141/P03-056 DiTommaso A, 2005, CAN J BOT, V83, P102, DOI [10.1139/B04-154, 10.1139/b04-154] Douglass C. H., 2009, V5, P261 Douglass CH, 2011, INVAS PLANT SCI MANA, V4, P133, DOI 10.1614/IPSM-D-10-00021.1 Duke SO, 2009, J CHEM ECOL, V35, P141, DOI 10.1007/s10886-008-9587-z Ernst CM, 2005, BIOL INVASIONS, V7, P417, DOI 10.1007/s10530-004-4062-4 FERENCZY L, 1965, ACTA MICROBIOL HUNG, V12, P337 Gassmann A, 2002, USDA FOREST SERVICE, V4, P209 Greipsson S., 2006, Ecological Restoration, V24, P236, DOI 10.3368/er.24.4.236 HAEGGSTROM C-A, 1990, Acta Botanica Fennica, V141, P1 Haribal M, 1998, J CHEM ECOL, V24, P891, DOI 10.1023/A:1022377618562 HAZNAGY A, 1973, PHARMAZIE, V28, P210 Hierro JL, 2003, PLANT SOIL, V256, P29, DOI 10.1023/A:1026208327014 Hotchkiss EE, 2008, AM J BOT, V95, P447, DOI 10.3732/ajb.95.4.447 Inderjit, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0002536 KARTESZ JT, 1999, SYNTHESIS N AM FLORA Ladd D, 2005, CAN J BOT, V83, P1181, DOI 10.1139/b05-093 Lavault M., 1994, PHARM ACTA HELV, V68, P225, DOI DOI 10.1016/0031-6865(94)90052-3 LAWLER FM, 2000, HERBICIDAL TREATMENT LEE SK, 2003, Patent No. 2003016774 LUMER C, 1995, B TORREY BOT CLUB, V122, P15, DOI 10.2307/2996399 MAGIDOW LC, 2008, P NE WEED SOC, P21 MARKGRAF F, 1972, FLORA EUROPAEA, P71 Milbrath LR, 2010, ENVIRON ENTOMOL, V39, P68, DOI 10.1603/EN09116 Milbrath LR, 2008, BOTANY, V86, P1279, DOI 10.1139/B08-092 Mogg C, 2008, BIOCHEM SYST ECOL, V36, P383, DOI 10.1016/j.bse.2008.01.001 Norton AP, 2008, BIOL INVASIONS, V10, P79, DOI 10.1007/s10530-007-9111-3 Pollock JL, 2008, BIOL INVASIONS, V10, P875, DOI 10.1007/s10530-008-9239-9 PRINGLE J S, 1973, Canadian Field-Naturalist, V87, P27 Rao KN, 2000, TOXICOL IN VITRO, V14, P53, DOI 10.1016/S0887-2333(99)00092-2 Sheeley SE, 1996, B TORREY BOT CLUB, V123, P148, DOI 10.2307/2996072 Smith LL, 2006, CAN J BOT, V84, P1771, DOI 10.1139/B06-132 Smith LL, 2008, INVAS PLANT SCI MANA, V1, P142, DOI 10.1614/IPSM-07-010.1 St Denis M, 2004, J TORREY BOT SOC, V131, P8, DOI 10.2307/4126923 Staerk D, 2005, BIOCHEM SYST ECOL, V33, P957, DOI 10.1016/j.bse.2005.01.004 Staerk D, 2002, J NAT PROD, V65, P1299, DOI 10.1021/np0106384 Staerk D, 2000, J NAT PROD, V63, P1584, DOI 10.1021/np0003443 Streibig J. C., 1993, Herbicide bioassays., P29 Thorpe AS, 2009, J ECOL, V97, P641, DOI 10.1111/j.1365-2745.2009.01520.x *USDA, 2009, PLANTS DAT Weir TL, 2009, J CHEM ECOL, V35, P860, DOI 10.1007/s10886-009-9671-z Weir TL, 2003, J CHEM ECOL, V29, P2397, DOI 10.1023/A:1026313031091 WIEGREBE W, 1969, LIEBIGS ANN CHEM, V721, P154, DOI 10.1002/jlac.19697210120 WIEGREBE W, 1970, ARCHIV PHARM BERICHT, V303, P1009, DOI 10.1002/ardp.19703031211 NR 56 TC 14 Z9 20 U1 1 U2 39 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0098-0331 EI 1573-1561 J9 J CHEM ECOL JI J. Chem. Ecol. PD AUG PY 2011 VL 37 IS 8 BP 871 EP 879 DI 10.1007/s10886-011-9994-4 PG 9 WC Biochemistry & Molecular Biology; Ecology SC Biochemistry & Molecular Biology; Environmental Sciences & Ecology GA 801BZ UT WOS:000293412700008 PM 21739223 OA Green Submitted DA 2021-10-15 ER PT J AU Han, GT Wang, LL Liu, MN Zhang, YM AF Han, Guangting Wang, Leilei Liu, Meina Zhang, Yuanming TI Component analysis and microfiber arrangement of Apocynum venetum fibers: The MS and AFM study SO CARBOHYDRATE POLYMERS LA English DT Article DE Apocynum venetum fiber; ESI-MS; TOF-MS; AFM AB In this paper, electrospray ionization/mass spectrometry (ESI-MS) was used to investigate the changes of flavonoids in the extract of the bast of AV and AV fibers. It is suggested that the quercetin structure maybe exist in the extract of the bast of AV, and then high resolution time-of-flight (TOF) MS was used to further characterize the possible ions. The identification of quercetin in the extract of the bast of AV was confirmed, while it was disappeared or tailed off in that of AV fibers. This indicated that such kind of compounds maybe destroyed during the degumming process. The microstructures of AV fibers and ramie fibers have been studied by atomic force microscopy (AFM) and it can be seen that the arrangements of microfiber of ramie were more compact than that of the AV fibers. These results may contribute to further clarify the functions of health-care and antibacterial functions of the AV fabrics. (C) 2007 Elsevier Ltd. All rights reserved. C1 [Han, Guangting; Wang, Leilei; Liu, Meina; Zhang, Yuanming] Qingdao Univ, Growing Base State Key Lab, Lab New Fiber Mat & Modern Text, Qingdao 266071, Peoples R China. RP Han, GT (corresponding author), Qingdao Univ, Growing Base State Key Lab, Lab New Fiber Mat & Modern Text, Qingdao 266071, Peoples R China. EM kychgt@qdu.edu.cn CR Berglund L, 2005, NATURAL FIBERS, BIOPOLYMERS, AND BIOCOMPOSITES, P807 [韩光亭 HAN Guangting], 2006, [纺织学报, Journal of Textile Research], V27, P30 Lei Zhen-Huan, 1995, Natural Medicines, V49, P475 Murakami T, 2001, CHEM PHARM BULL, V49, P845, DOI 10.1248/cpb.49.845 Netravali A.N., 2003, MATER TODAY, V6, P22, DOI DOI 10.1016/S1369-7021(03)00427-9 Nishibe Sansei, 2001, Natural Medicines, V55, P38 Wang LL, 2007, CARBOHYD POLYM, V69, P391, DOI 10.1016/j.carbpol.2006.12.028 [吴红玲 Wu Hongling], 2004, [兰州理工大学学报, Journal of Gansu University of Technology], V30, P76 Yokozawa T, 2002, BIOL PHARM BULL, V25, P748, DOI 10.1248/bpb.25.748 YOKZAWA T, 2004, FOOD CHEM TOXICOL, V42, P975 Zhang Y. M., 2006, J DONGHUA U, V23, P84 ZHANG YM, 2005, PLANT FIBERS PRODUCT, V27, P81 NR 12 TC 14 Z9 18 U1 1 U2 37 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0144-8617 EI 1879-1344 J9 CARBOHYD POLYM JI Carbohydr. Polym. PD JUN 10 PY 2008 VL 72 IS 4 BP 652 EP 656 DI 10.1016/j.carbpol.2007.10.002 PG 5 WC Chemistry, Applied; Chemistry, Organic; Polymer Science SC Chemistry; Polymer Science GA 289VT UT WOS:000255082700010 DA 2021-10-15 ER PT J AU ORFANEDES, MS WAX, LM LIEBL, RA AF ORFANEDES, MS WAX, LM LIEBL, RA TI ABSENCE OF A ROLE FOR ABSORPTION, TRANSLOCATION, AND METABOLISM IN DIFFERENTIAL SENSITIVITY OF HEMP DOGBANE (APOCYNUM-CANNABINUM) TO 2 PYRIDINE HERBICIDES SO WEED SCIENCE LA English DT Article DE UPTAKE; TRANSLOCATION; METABOLISM; SELECTIVITY; APCCA ID THISTLE CIRSIUM-ARVENSE; COMMON MILKWEED; PICLORAM; 2,4-D; CHLORSULFURON; GLYPHOSATE; TRICLOPYR; ACID; ACCUMULATION; GLANDULOSA AB Hemp dogbane is sensitive to fluroxypyr and tolerant to clopyralid. Absorption, translocation, and metabolism of clopyralid and fluroxypyr were studied in hemp dogbane to determine if differences in these processes could be responsible for differential sensitivity. In addition, the effect of growth stage on herbicide absorption and translocation was evaluated. The C-14-herbicides were applied to the adaxial side of a single leaf located near the midpoint of hydroponically cultured plants. Uptake of fluroxypyr was more rapid than clopyralid. At 72 h after treatment (HAT), fluroxypyr and clopyralid absorption was 62 and 38%, respectively. Clopyralid was much more mobile than fluroxypyr, with 75% of the absorbed C-14 from C-14-clopyralid recovered outside the treated leaf compared to only 45% for fluroxypyr 72 HAT. Relative to fluroxypyr, a higher percentage of C-14-clopyralid recovered outside the treated leaf translocated acropetally, especially when plants were treated during the vegetative stage. Treatment during the early reproductive stage increased basipetal and reduced acropetal translocation relative to the vegetative stage. Neither herbicide was metabolized rapidly. Approximately 60 and 90% of the recovered C-14 was attributable to unaltered fluroxypyr and clopyralid, respectively, 72 HAT. Some differences in absorption, translocation, and metabolism between clopyralid and fluroxypyr exist, but they cannot fully account for differential sensitivity of hemp dogbane to these two herbicides. Differences in activity at the target site may be responsible for differential activity of these herbicides on hemp dogbane. C1 USDA ARS,DEPT AGRON,WASHINGTON,DC 20250. USDA ARS,CROP PROT RES UNIT,WASHINGTON,DC 20250. UNIV ILLINOIS,DEPT AGRON,URBANA,IL 61801. CR BALBACH HE, 1965, WEEDS TODAY, P15 BOVEY RW, 1986, WEED SCI, V34, P211, DOI 10.1017/S0043174500066698 BOVEY RW, 1983, WEED SCI, V31, P807, DOI 10.1017/S0043174500070788 COBLE HD, WEED SCI, V18, P653 CRAFTS AS, 1964, PHYSIOLOGY BIOCHEMIS, P75 DEVINE M D, 1989, Reviews of Weed Science, V4, P191 DEVINE MD, 1985, WEED SCI, V33, P524, DOI 10.1017/S0043174500082783 DEVINE MD, 1987, PLANT PHYSIOL, V85, P82, DOI 10.1104/pp.85.1.82 DEVINE MD, 1990, WEED SCI, V38, P1 EAMES AJ, 1950, AM J BOT, V37, P840, DOI 10.2307/2437763 GORRELL RM, 1988, WEED SCI, V36, P447, DOI 10.1017/S0043174500075184 Haagsma T., 1975, Down to Earth, V30, P1 HALL JC, 1989, PESTIC BIOCHEM PHYS, V33, P1, DOI 10.1016/0048-3575(89)90070-9 HALL JC, 1988, WEED SCI, V36, P9, DOI 10.1017/S0043174500074373 HODGSON JM, 1974, LEEDS TODAY, P10 HORAK MJ, 1990, THESIS U ILLINOIS UR Jacob F., 1983, Pesticide chemistry: human welfare and the environment. Volume 1. Synthesis and structure-activity relationships, P357 KIRKLAND KJ, 1977, CAN J PLANT SCI, V57, P1015, DOI 10.4141/cjps77-150 KLEIER DA, 1988, PLANT PHYSIOL, V86, P803, DOI 10.1104/pp.86.3.803 LEWER P, 1989, PESTIC BIOCHEM PHYS, V33, P249, DOI 10.1016/0048-3575(89)90123-5 LYM RG, 1989, WEED SCI, V37, P498, DOI 10.1017/S0043174500072301 MCALLISTER RS, 1985, WEED SCI, V33, P148, DOI 10.1017/S004317450008200X ORFANEDES MS, 1991, WEED TECHNOL, V5, P781 OSULLIVAN PA, 1984, WEED RES, V24, P17, DOI 10.1111/j.1365-3180.1984.tb00566.x RADOSEVICH SR, 1979, WEED SCI, V27, P22, DOI 10.1017/S0043174500043411 ROBISON LR, 1972, WEED SCI, V20, P156, DOI 10.1017/S0043174500035244 SCHULTZ ME, 1980, WEED SCI, V28, P13, DOI 10.1017/S0043174500027685 SHARMA MP, 1973, WEED SCI, V21, P350, DOI 10.1017/S0043174500027168 SHARMA MP, 1971, WEED SCI, V19, P349, DOI 10.1017/S0043174500049134 SHOBER AE, 1986, P W SOC WEED SCI, V39, P167 TURNBULL GC, 1985, WEED SCI, V33, P143, DOI 10.1017/S0043174500081996 WALDECKER MA, 1985, WEED SCI, V33, P605, DOI 10.1017/S0043174500082953 WYRILL JB, 1976, WEED SCI, V24, P557, DOI 10.1017/S0043174500062949 YAMAGUCH.S, 1965, HILGARDIA, V36, P349, DOI 10.3733/hilg.v36n09p349 1948, KANSAS STATE COLL AG, V331 NR 35 TC 14 Z9 14 U1 0 U2 7 PU WEED SCI SOC AMER PI CHAMPAIGN PA 309 W CLARK ST, CHAMPAIGN, IL 61820 SN 0043-1745 J9 WEED SCI JI Weed Sci. PD JAN-MAR PY 1993 VL 41 IS 1 BP 1 EP 6 PG 6 WC Agronomy; Plant Sciences SC Agriculture; Plant Sciences GA LC517 UT WOS:A1993LC51700001 DA 2021-10-15 ER PT J AU Chen, CH Wang, CC Liu, ZX Liu, XH Zou, LS Shi, JJ Chen, SY Chen, JL Tan, MX AF Chen, Cuihua Wang, Chengcheng Liu, Zixiu Liu, Xunhong Zou, Lisi Shi, Jingjing Chen, Shuyu Chen, Jiali Tan, Mengxia TI Variations in Physiology and Multiple Bioactive Constituents under Salt Stress Provide Insight into the Quality Evaluation of Apocyni Veneti Folium SO INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES LA English DT Article DE Apocyni Veneti Folium; salt stress; multiple bioactive constituents; physiological changes; multivariate statistical analysis ID ABIOTIC STRESS; SALINITY STRESS; SALICYLIC-ACID; ABSCISIC-ACID; ANTIOXIDANT ACTIVITIES; SECONDARY METABOLITES; PROLINE METABOLISM; TOLERANCE; L.; RESPONSES AB As one of the major abiotic stresses, salinity stress may affect the physiology and biochemical components of Apocynum venetum L. To systematically evaluate the quality of Apocyni Veneti Folium (AVF) from the perspective of physiological and the wide variety of bioactive components response to various concentrations of salt stress, this experiment was arranged on the basis of ultra-fast liquid chromatography tandem triple quadrupole mass spectrometry (UFLC-QTRAP-MS/MS) technology and multivariate statistical analysis. Physiological characteristics of photosynthetic pigments, osmotic homeostasis, lipid peroxidation product, and antioxidative enzymes were introduced to investigate the salt tolerance mechanism of AVF under salinity treatments of four concentrations (0, 100, 200, and 300 mM NaCl, respectively). Furthermore, a total of 43 bioactive constituents, including 14 amino acids, nine nucleosides, six organic acids, and 14 flavonoids were quantified in AVF under salt stress. In addition, multivariate statistical analysis, including hierarchical clustering analysis, principal component analysis (PCA), and gray relational analysis (GRA) was employed to systematically cluster, distinguish, and evaluate the samples, respectively. Compared with the control, the results demonstrated that 200 mM and 100 mM salt stress contributed to maintain high quality of photosynthesis, osmotic balance, antioxidant enzyme activity, and the accumulation of metabolites, except for total organic acids, and the quality of AVF obtained by these two groups was better than others; however, under severe stress, the accumulation of the oxidative damage and the reduction of metabolite caused by inefficiently scavenging reactive oxygen species (ROS) lead to lower quality. In summary, the proposed method may provide integrated information for the quality evaluation of AVF and other salt-tolerant Chinese medicines. C1 [Chen, Cuihua; Wang, Chengcheng; Liu, Zixiu; Liu, Xunhong; Zou, Lisi; Shi, Jingjing; Chen, Shuyu; Chen, Jiali; Tan, Mengxia] Nanjing Univ Chinese Med, Coll Pharm, Nanjing 210023, Jiangsu, Peoples R China. [Liu, Xunhong] Collaborat Innovat Ctr Chinese Med Resources Ind, Nanjing 210023, Jiangsu, Peoples R China. [Liu, Xunhong] Natl & Local Collaborat Engn Ctr Chinese Med Reso, Nanjing 210023, Jiangsu, Peoples R China. RP Liu, XH (corresponding author), Nanjing Univ Chinese Med, Coll Pharm, Nanjing 210023, Jiangsu, Peoples R China.; Liu, XH (corresponding author), Collaborat Innovat Ctr Chinese Med Resources Ind, Nanjing 210023, Jiangsu, Peoples R China.; Liu, XH (corresponding author), Natl & Local Collaborat Engn Ctr Chinese Med Reso, Nanjing 210023, Jiangsu, Peoples R China. EM cuihuachen2013@163.com; ccw199192@163.com; liuzixiu3221@126.com; liuxunh1959@163.com; zlstcm@126.com; shijingjingquiet@163.com; 18305172513@163.com; 18994986833@163.com; 18816250751@163.com OI CHEN, CUI-HUA/0000-0001-7722-2160 FU Priority Academic Program Development of Jiangsu Higher Education Institutions of China [ysxk-2014]; Postgraduate Research & Practice Innovation Program of Jiangsu Province [KYCX18_1606] FX This research was supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions of China (NO. ysxk-2014) and Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX18_1606). CR Abbaspour H., 2012, Journal of Medicinal Plants Research, V6, P2468 Aghaei Keyvan, 2013, Front Plant Sci, V4, P8, DOI 10.3389/fpls.2013.00008 An HJ, 2013, J PHARMACEUT BIOMED, V85, P295, DOI 10.1016/j.jpba.2013.07.005 Apel K, 2004, ANNU REV PLANT BIOL, V55, P373, DOI 10.1146/annurev.arplant.55.031903.141701 Arbona V, 2013, INT J MOL SCI, V14, P4885, DOI 10.3390/ijms14034885 Bajji M, 2002, PLANT GROWTH REGUL, V36, P61, DOI 10.1023/A:1014732714549 Bettaieb I, 2011, J AGR FOOD CHEM, V59, P328, DOI 10.1021/jf1037618 Chen CH, 2017, MICROSC RES TECHNIQ, V80, P1315, DOI 10.1002/jemt.22943 Chen CH, 2018, MOLECULES, V23, DOI 10.3390/molecules23030573 Chen F, 2014, J CHROMATOGR SCI, V52, P852, DOI 10.1093/chromsci/bmt128 Chisari M, 2010, FOOD CHEM, V119, P1502, DOI 10.1016/j.foodchem.2009.09.033 Close DC, 2002, OIKOS, V99, P166, DOI 10.1034/j.1600-0706.2002.990117.x Coban O, 2016, IND CROP PROD, V86, P251, DOI 10.1016/j.indcrop.2016.03.049 Cuin TA, 2007, PLANT CELL ENVIRON, V30, P875, DOI 10.1111/j.1365-3040.2007.01674.x D'Souza MR, 2010, ACTA PHYSIOL PLANT, V32, P341, DOI 10.1007/s11738-009-0412-2 Deinlein U, 2014, TRENDS PLANT SCI, V19, P371, DOI 10.1016/j.tplants.2014.02.001 Flowers TJ, 2008, NEW PHYTOL, V179, P945, DOI 10.1111/j.1469-8137.2008.02531.x Flowers TJ, 2015, ANN BOT-LONDON, V115, P419, DOI 10.1093/aob/mcu217 Golldack D, 2014, FRONT PLANT SCI, V5, DOI 10.3389/fpls.2014.00151 Gururani MA, 2015, MOL PLANT, V8, P1304, DOI 10.1016/j.molp.2015.05.005 Gururani MA, 2015, INT J MOL SCI, V16, P19055, DOI 10.3390/ijms160819055 Hirayama T, 2010, PLANT J, V61, P1041, DOI 10.1111/j.1365-313X.2010.04124.x Hua YJ, 2017, MOLECULES, V22, DOI 10.3390/molecules22010013 Jaleel CA, 2009, ACTA PHYSIOL PLANT, V31, P427, DOI 10.1007/s11738-009-0275-6 Kang GZ, 2003, ENVIRON EXP BOT, V50, P9, DOI 10.1016/S0098-8472(02)00109-0 Kim YH, 2014, BMC PLANT BIOL, V14, DOI 10.1186/1471-2229-14-13 Kim YH, 2007, J CELL BIOCHEM, V100, P998, DOI 10.1002/jcb.21098 Ksouri R, 2007, PLANT PHYSIOL BIOCH, V45, P244, DOI 10.1016/j.plaphy.2007.02.001 Kumar SG, 2003, PLANT SCI, V165, P1245, DOI 10.1016/S0168-9452(03)00332-7 Lee BH, 2005, MOL CELLS, V20, P69 Lim JH, 2012, FOOD CHEM, V135, P1065, DOI 10.1016/j.foodchem.2012.05.068 Liu AN, 2018, PSYCHOL HEALTH MED, V23, P1125, DOI 10.1080/13548506.2018.1465575 [刘训红 LIU Xun-hong], 2010, [中国药学杂志, Chinese Pharmaceutical Journal], V45, P464 March RE, 1997, J MASS SPECTROM, V32, P351, DOI 10.1002/(SICI)1096-9888(199704)32:4<351::AID-JMS512>3.0.CO;2-Y Mateos-Naranjo E, 2013, PLANT PHYSIOL BIOCH, V63, P115, DOI 10.1016/j.plaphy.2012.11.015 Melo AMP, 1996, BBA-BIOENERGETICS, V1276, P133, DOI 10.1016/0005-2728(96)00068-0 Mishra A, 2015, J FUNCT FOODS, V13, P21, DOI 10.1016/j.jff.2014.12.027 Mittal S, 2012, PLANT PHYSIOL BIOCH, V54, P17, DOI 10.1016/j.plaphy.2012.02.003 Moradi F, 2007, ANN BOT-LONDON, V99, P1161, DOI 10.1093/aob/mcm052 Munns R, 2008, ANNU REV PLANT BIOL, V59, P651, DOI 10.1146/annurev.arplant.59.032607.092911 Murillo-Amador B, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0094870 Nichenametla SN, 2006, CRIT REV FOOD SCI, V46, P161, DOI 10.1080/10408390591000541 NIU XM, 1995, PLANT PHYSIOL, V109, P735, DOI 10.1104/pp.109.3.735 Nwugo CC, 2011, J PROTEOME RES, V10, P518, DOI 10.1021/pr100716h Parihar P, 2015, ENVIRON SCI POLLUT R, V22, P4056, DOI 10.1007/s11356-014-3739-1 Pharmacopoeia Commission of the Ministry of Health of the People's Republic of China, 2015, PHARMACOPOEIA PEOPLE, P211 Qi ZY, 2013, J INTEGR PLANT BIOL, V55, P1119, DOI 10.1111/jipb.12101 Rosa M, 2009, PLANT SIGNAL BEHAV, V4, P388, DOI 10.4161/psb.4.5.8294 Roy SJ, 2014, CURR OPIN BIOTECH, V26, P115, DOI 10.1016/j.copbio.2013.12.004 Sharma S, 2010, PLANT CELL ENVIRON, V33, P1838, DOI 10.1111/j.1365-3040.2010.02188.x Shi JY, 2011, J LIQ CHROMATOGR R T, V34, P537, DOI 10.1080/10826076.2011.546173 Szabados L, 2010, TRENDS PLANT SCI, V15, P89, DOI 10.1016/j.tplants.2009.11.009 Tang XL, 2015, CRIT REV BIOTECHNOL, V35, P425, DOI 10.3109/07388551.2014.889080 Tasgin E, 2006, PHYTOCHEMISTRY, V67, P710, DOI 10.1016/j.phytochem.2006.01.022 The Pharmacopoeia Committee of the Health Ministry of People's Republic of China, 1995, PHARM PEOPL REP CHIN, P182 Tran LSP, 2007, P NATL ACAD SCI USA, V104, P20623, DOI 10.1073/pnas.0706547105 Wahid A, 2006, J PLANT PHYSIOL, V163, P723, DOI 10.1016/j.jplph.2005.07.007 Wang QH, 2013, J PLANT GROWTH REGUL, V32, P721, DOI 10.1007/s00344-013-9339-3 Wang X. R., 2015, PRINCIPLES TECHNIQUE Wang ZY, 2011, PLANT CELL, V23, P1971, DOI 10.1105/tpc.110.081943 Winkel-Shirley B, 2002, CURR OPIN PLANT BIOL, V5, P218, DOI 10.1016/S1369-5266(02)00256-X Wu FB, 2003, ENVIRON EXP BOT, V50, P67, DOI 10.1016/S0098-8472(02)00113-2 Yamauchi Y, 2010, PLANTA, V231, P1077, DOI 10.1007/s00425-010-1112-2 Yokozawa T, 2002, BIOL PHARM BULL, V25, P748, DOI 10.1248/bpb.25.748 Yuan M, 2012, NAT PROTOC, V7, P872, DOI 10.1038/nprot.2012.024 Zeng JW, 2013, J AGR FOOD CHEM, V61, P5720, DOI 10.1021/jf401237x Zenki M, 2004, TALANTA, V64, P1273, DOI 10.1016/j.talanta.2004.05.052 Zhang BG, 2013, INT J MOL SCI, V14, P7032, DOI 10.3390/ijms14047032 Zhao GM, 2015, IND CROP PROD, V64, P175, DOI 10.1016/j.indcrop.2014.10.058 Zhao GM, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0089624 Zhao XQ, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0108020 Zhou CL, 2011, J MED PLANTS RES, V5, P735 Zhou Y, 2018, INT J MOL SCI, V19, DOI 10.3390/ijms19010252 NR 73 TC 13 Z9 13 U1 2 U2 5 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND EI 1422-0067 J9 INT J MOL SCI JI Int. J. Mol. Sci. PD OCT PY 2018 VL 19 IS 10 AR 3042 DI 10.3390/ijms19103042 PG 16 WC Biochemistry & Molecular Biology; Chemistry, Multidisciplinary SC Biochemistry & Molecular Biology; Chemistry GA GY9HB UT WOS:000448951000197 PM 30301190 OA Green Submitted, gold, Green Published DA 2021-10-15 ER PT J AU Xiang, J Lan, R Tang, YP Chen, YP Cai, DF AF Xiang, Jun Lan, Rui Tang, Yu-Ping Chen, Yi-Ping Cai, Ding-Fang TI Apocynum venetum Leaf Extract Attenuates Disruption of the Blood-Brain Barrier and Upregulation of Matrix Metalloproteinase-9/-2 in a Rat Model of Cerebral Ischemia-Reperfusion Injury SO NEUROCHEMICAL RESEARCH LA English DT Article DE Apocynum venetum leaf extract; Cerebral ischemia-reperfusion; Blood-brain barrier; Matrix metalloproteinase-9/-2 ID INDUCED INCREASE; PERMEABILITY; ANTIOXIDANT; PROTEOLYSIS; PROTEINS; PROTECTS; HEALTH; LEAVES; OXYGEN; ROLES AB We investigated the neuroprotective effects of Apocynum venetum leaf extract (AVLE) on a rat model of cerebral ischemia-reperfusion injury and explored the underlying mechanisms. Rats were randomly divided into five groups: sham, ischemia-reperfusion, AVLE125, AVLE250, and AVLE500. Cerebral ischemia was induced by 1.5 h of occlusion of the middle cerebral artery. Cerebral infarct area was measured by tetrazolium staining at 24 and 72 h after reperfusion, and neurological function was evaluated at 24, 48 and 72 h after reperfusion. Pathological changes on the ultrastructure of the blood-brain barrier (BBB) were observed by transmission electron microscopy. BBB permeability was assessed by detecting leakage of Evan's blue (EB) dye in brain tissue. The expression and activities of matrix metalloproteinase (MMP)-9/-2 were measured by western blot analyses and gelatin zymography at 24 h after reperfusion. AVLE (500 mg/kg/day) significantly reduced cerebral infarct area, improved recovery of neurological function, relieved morphological damage to the BBB, reduced water content and EB leakage in the brain, and downregulated the expression and activities of MMP-9/-2. These findings suggest that AVLE protects against cerebral ischemia-reperfusion-induced injury by alleviating BBB disruption. This action may be due to its inhibitory effects on the expression and activities of MMP-9/-2. C1 [Xiang, Jun; Lan, Rui; Chen, Yi-Ping; Cai, Ding-Fang] Fudan Univ, Zhongshan Hosp, Dept Integrat Med, Shanghai 200032, Peoples R China. [Xiang, Jun; Lan, Rui; Chen, Yi-Ping; Cai, Ding-Fang] Fudan Univ, Inst Integrat Med, Lab Neurol, Shanghai 200032, Peoples R China. [Xiang, Jun] Shanghai Univ Tradit Chinese Med, Longhua Hospial, Shanghai 200032, Peoples R China. [Tang, Yu-Ping] Fudan Univ, Huashan Hosp, Dept Neurol, Shanghai 200040, Peoples R China. RP Cai, DF (corresponding author), Fudan Univ, Zhongshan Hosp, Dept Integrat Med, Shanghai 200032, Peoples R China. EM dingfangcai@163.com CR Abbott NJ, 2000, CELL MOL NEUROBIOL, V20, P131, DOI 10.1023/A:1007074420772 Asahi M, 2001, J NEUROSCI, V21, P7724, DOI 10.1523/JNEUROSCI.21-19-07724.2001 Ballabh P, 2004, NEUROBIOL DIS, V16, P1, DOI 10.1016/j.nbd.2003.12.016 Butterweck V, 2001, BIOL PHARM BULL, V24, P848, DOI 10.1248/bpb.24.848 Cuevas E, 2009, EUR J PHARMACOL, V616, P122, DOI 10.1016/j.ejphar.2009.06.013 Date I, 2006, NEUROSCI LETT, V407, P141, DOI 10.1016/j.neulet.2006.08.050 Fattorusso R, 2006, PHYTOMEDICINE, V13, P16, DOI 10.1016/j.phymed.2005.03.004 Grundmann O, 2007, J ETHNOPHARMACOL, V110, P406, DOI 10.1016/j.jep.2006.09.035 Grundmann O, 2009, PHYTOMEDICINE, V16, P295, DOI 10.1016/j.phymed.2008.12.020 Hawkins BT, 2005, PHARMACOL REV, V57, P173, DOI 10.1124/pr.57.2.4 Heo JH, 2005, FREE RADICAL BIO MED, V39, P51, DOI 10.1016/j.freeradbiomed.2005.03.035 Heo JH, 1999, J CEREBR BLOOD F MET, V19, P624, DOI 10.1097/00004647-199906000-00005 Higdon JV, 2003, CRIT REV FOOD SCI, V43, P89, DOI 10.1080/10408690390826464 Jin R, 2010, NEUROBIOL DIS, V38, P376, DOI 10.1016/j.nbd.2010.03.008 Kim DW, 2000, PHYTOTHER RES, V14, P501, DOI 10.1002/1099-1573(200011)14:7<501::AID-PTR655>3.0.CO;2-B Kwan CY, 2005, CLIN EXP PHARMACOL P, V32, P789, DOI 10.1111/j.1440-1681.2005.04255.x Liu KH, 2005, FREE RADICAL BIO MED, V39, P71, DOI 10.1016/j.freeadbiomed.2005.03.033 Lo EH, 2002, J NEUROSCI RES, V69, P1, DOI 10.1002/jnr.10270 LONGA EZ, 1989, STROKE, V20, P84, DOI 10.1161/01.STR.20.1.84 Mayhan WG, 2000, BRAIN RES, V866, P101, DOI 10.1016/S0006-8993(00)02254-X Ohsawa I, 2007, NAT MED, V13, P688, DOI 10.1038/nm1577 Qu YZ, 2009, EUR J PHARMACOL, V606, P137, DOI 10.1016/j.ejphar.2009.01.022 Rodriguez-Ramiro I, 2011, J NUTR BIOCHEM, V22, P1186, DOI 10.1016/j.jnutbio.2010.10.005 Rosell A, 2008, STROKE, V39, P1121, DOI 10.1161/STROKEAHA.107.500868 Rosell A, 2008, CURR OPIN PHARMACOL, V8, P82, DOI 10.1016/j.coph.2007.12.001 Rosenberg GA, 2002, GLIA, V39, P279, DOI 10.1002/glia.10108 ROSENBERG GA, 1995, J NEUROTRAUM, V12, P833, DOI 10.1089/neu.1995.12.833 Rosenberg GA, 2004, E SCHERING RES FDN W, V47, P1 Shibayama M, 1997, ACT NEUR S, V70, P220 Wang ZF, 2011, J CEREBR BLOOD F MET, V31, P52, DOI 10.1038/jcbfm.2010.195 Xiang J, 2010, CAN J PHYSIOL PHARM, V88, P907, DOI [10.1139/Y10-069, 10.1139/y10-069] Yagi K, 2009, STROKE, V40, P626, DOI 10.1161/STROKEAHA.108.520262 Yang Y, 2007, J CEREBR BLOOD F MET, V27, P697, DOI 10.1038/sj.jcbfm.9600375 Zhou J, 2011, J CEREBR BLOOD F MET, V31, P924, DOI 10.1038/jcbfm.2010.171 NR 34 TC 13 Z9 20 U1 0 U2 21 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0364-3190 EI 1573-6903 J9 NEUROCHEM RES JI Neurochem. Res. PD AUG PY 2012 VL 37 IS 8 BP 1820 EP 1828 DI 10.1007/s11064-012-0796-z PG 9 WC Biochemistry & Molecular Biology; Neurosciences SC Biochemistry & Molecular Biology; Neurosciences & Neurology GA 968AJ UT WOS:000305949100023 PM 22592643 DA 2021-10-15 ER PT J AU Qu, CX Wang, SD AF Qu, Caixin Wang, Shudong TI Macro-micro Structure, Antibacterial Activity, and Physico-mechanical Properties of the Mulberry Bast Fibers SO FIBERS AND POLYMERS LA English DT Article DE AMBET; Mulberry fibers; Macro-micro structure; Antimicrobial activities; Physical properties ID APOCYNUM-VENETUM FIBERS; CELLULOSE AB In this paper, the mulberry fibers were successfully obtained by a new pretreatment named alkali-assisted microwave plus biological enzymatic technique (AMBET). The morphology, microstructure, physico-mechanical and antibacterial properties of the mulberry bast fibers were investigated by means of scanning electron microscope (SEM), Fourier Transform-Infrared (FTIR), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), X-ray diffraction (X.RD), instron tensile tester and antibacterial testing. The results showed that impurities of the bast fibers could be removed by AMBET treatment. AMBET treated mulberry fiber was even, smooth and fine, and typical cellulose I in the mulberry fibers was confirmed by FTIR and X.R.D analysis. The crystallinity of the AM BET treated fibers was higher than that of the raw mulberry and chemical treated mulberry fibers. Thermal analysis indicated that the mulberry fibers had a good thermal stability. Moreover, the AMBET treated mulberry fibers showed excellent antimicrobial activities against S.aureus. The physical properties of the mulberry fibers indicated the AMBET treated mulberry fibers were ideal candidates for new textile materials. C1 [Qu, Caixin; Wang, Shudong] Yancheng Text Vocat Technol Coll, Dept Text Engn, Yancheng 224005, Peoples R China. RP Wang, SD (corresponding author), Yancheng Text Vocat Technol Coll, Dept Text Engn, 265 S Jiefang Rd, Yancheng 224005, Peoples R China. EM sdwang1983@163.com OI Wang, Shu-Dong/0000-0001-6541-9142 FU cooperative innovation in the trinity of enterprises, campuses and research institutes in Jiangsu Province, China [BY2010129] FX This research is funded by the cooperative innovation in the trinity of enterprises, campuses and research institutes in Jiangsu Province, China (BY2010129). We are also indebted to the Testing Center of Soochow University for experimental support. CR Akin DE, 2000, TEXT RES J, V70, P486, DOI 10.1177/004051750007000604 CAO JW, 1992, ENZYME MICROB TECH, V14, P1013, DOI 10.1016/0141-0229(92)90087-5 Carrillo A, 2004, EUR POLYM J, V40, P2229, DOI 10.1016/j.eurpolmj.2004.05.003 Chen J, 2009, CELLULOSE, V16, P1133, DOI 10.1007/s10570-009-9343-8 Du J, 2003, PHYTOCHEMISTRY, V62, P1235, DOI 10.1016/S0031-9422(02)00753-7 Garcia-Jaldon C, 1998, BIOMASS BIOENERG, V14, P251, DOI 10.1016/S0961-9534(97)10039-3 Hu XP, 1996, J POLYM SCI POL PHYS, V34, P1451, DOI 10.1002/(SICI)1099-0488(199606)34:8<1451::AID-POLB8>3.0.CO;2-V Jayaramudu J, 2010, CARBOHYD POLYM, V79, P847, DOI 10.1016/j.carbpol.2009.10.046 Kapoor M, 2001, PROCESS BIOCHEM, V36, P803, DOI 10.1016/S0032-9592(00)00282-X Le Troedec M, 2008, COMPOS PART A-APPL S, V39, P514, DOI 10.1016/j.compositesa.2007.12.001 Li MH, 2010, FIBER POLYM, V11, P48, DOI 10.1007/s12221-010-0048-2 Li RJ, 2009, CARBOHYD POLYM, V76, P94, DOI 10.1016/j.carbpol.2008.09.034 Lima MMD, 2004, MACROMOL RAPID COMM, V25, P771, DOI 10.1002/marc.200300268 Nam S, 2006, FIBER POLYM, V7, P372, DOI 10.1007/BF02875769 Ouajai S, 2005, POLYM DEGRAD STABIL, V89, P327, DOI 10.1016/j.polymdegradstab.2005.01.016 Reddy N, 2005, POLYMER, V46, P5494, DOI 10.1016/j.polymer.2005.04.073 Wang B, 2007, APPL COMPOS MATER, V14, P89, DOI 10.1007/s10443-006-9032-9 Wang LL, 2007, CARBOHYD POLYM, V69, P391, DOI 10.1016/j.carbpol.2006.12.028 Wang WM, 2009, FIBER POLYM, V10, P776, DOI 10.1007/s12221-009-0776-3 [许云辉 XU Yunhui], 2006, [纺织学报, Journal of Textile Research], V27, P1 Zhang CD, 2006, BIOMACROMOLECULES, V7, P139, DOI 10.1021/bm050465n NR 21 TC 13 Z9 14 U1 0 U2 35 PU KOREAN FIBER SOC PI SEOUL PA KOREA SCIENCE TECHNOLOGY CTR #501 635-4 YEOGSAM-DONG, KANGNAM-GU, SEOUL 135-703, SOUTH KOREA SN 1229-9197 EI 1875-0052 J9 FIBER POLYM JI Fiber. Polym. PD JUL 30 PY 2011 VL 12 IS 4 BP 471 EP 477 DI 10.1007/s12221-011-0471-z PG 7 WC Materials Science, Textiles; Polymer Science SC Materials Science; Polymer Science GA 778LF UT WOS:000291704800007 DA 2021-10-15 ER PT J AU Webster, TM Cardina, J Woods, SJ AF Webster, TM Cardina, J Woods, SJ TI Spatial and temporal expansion patterns of Apocynum cannabinum patches SO WEED SCIENCE LA English DT Article DE Apocynum cannabinum L. APCCA, hemp dogbane; Glycine max (L.) Merr., soybean; GDU; growing degree units; patch expansion; perennial weed; spatial dynamics AB There is little information published on patch expansion of perennial weeds and none for Apocynum cannabinum. Studies were conducted to measure the between-season and in-season expansion patterns of natural A. cannabinum patches over three growing seasons. Regression analysis indicated strong relations between patch area in consecutive years 1996 to 1997 (r(2) = 0.81) and 1997 to 1998 (r(2) = 0.76). Patches less than 20 m(2) in 1996 increased in area by more than 100% in 1997 during a fallow season. However, parches decreased in size 6 to 51% between 1997 and 1998 when Glycine max was grown. Evidence suggested that a late-season mowing of the A. cannabinum patches in 1997 contributed more to the decline in patch area than competition from G, max during the 1998 season. The relations between patch area and growing degree units (r(2) = 0.97) indicated that greater than 89% of the terminal patch expansion occurred prior to the accumulation of 435 growing degree units (GDU) (June 19, 1997; May 31, 1998; June 9, 30-yr average), with minimal patch expansion between 435 and 1,000 GDU. Patches were at 50% of their final area on May 27, 1997, and May 14, 1998, a time when only 22% of the A. cannabinum population had emerged (r(2) = 0.99). Knowledge of patch size and expansion could help growers time weed scouting, to account for the later emergence patterns of this species, as well as assist in timing appropriate weed management efforts. This information could also be used in conjunction with aerial photographs to project potential patch size for sire-specific management of this weed. C1 Ohio State Univ, Ohio Agr Res & Dev Ctr, Dept Hort & Crop Sci, Wooster, OH 44691 USA. Ohio State Univ, Agr Tech Inst, Dept Agr Technol, Wooster, OH 44691 USA. RP Webster, TM (corresponding author), USDA ARS, Crop Protect & Management Res Unit, Coastal Plain Expt Stn, Tifton, GA 31793 USA. RI Webster, Theodore/A-4468-2009 OI Webster, Theodore/0000-0002-8259-2059 CR ARMOR RL, 1975, WEED RES, V15, P407 Becker RL, 1998, WEED SCI, V46, P358, DOI 10.1017/S0043174500089542 CARDINA J, 1995, WEED SCI, V43, P258, DOI 10.1017/S0043174500081157 *CONS TILL INF CTR, 2000, NAT CROP RES MAN SUR Cousens R, 1995, DYNAMICS WEED POPULA Gerhards R, 1997, WEED SCI, V45, P108, DOI 10.1017/S0043174500092559 HOROWITZ M, 1973, WEED RES, V13, P200, DOI 10.1111/j.1365-3180.1973.tb01264.x HOROWITZ M, 1972, WEED RES, V12, P373, DOI 10.1111/j.1365-3180.1972.tb01231.x LOUX MM, 1991, WEED TECHNOL, V5, P460, DOI 10.1017/S0890037X00028438 LOUX MM, 1998, OHIO STATE U EXTENSI, V789 SCHULTZ ME, 1979, WEED SCI, V27, P565, DOI 10.1017/S0043174500044623 Webster TM, 1997, WEED TECHNOL, V11, P782, DOI 10.1017/S0890037X00043438 Webster TM, 1999, WEED SCI, V47, P524, DOI 10.1017/S0043174500092213 Webster TM, 2000, WEED SCI, V48, P716, DOI 10.1614/0043-1745(2000)048[0716:ACIINT]2.0.CO;2 WERNER PA, 1980, CAN J PLANT SCI, V60, P1393, DOI 10.4141/cjps80-194 NR 15 TC 13 Z9 13 U1 0 U2 3 PU WEED SCI SOC AMER PI LAWRENCE PA 810 EAST 10TH ST, LAWRENCE, KS 66044-8897 USA SN 0043-1745 J9 WEED SCI JI Weed Sci. PD NOV-DEC PY 2000 VL 48 IS 6 BP 728 EP 733 DI 10.1614/0043-1745(2000)048[0728:SATEPO]2.0.CO;2 PG 6 WC Agronomy; Plant Sciences SC Agriculture; Plant Sciences GA 388LT UT WOS:000166182800014 DA 2021-10-15 ER PT J AU Chen, CH Liu, ZX Zou, LS Liu, XH Chai, C Zhao, H Yan, Y Wang, CC AF Chen, Cuihua Liu, Zixiu Zou, Lisi Liu, Xunhong Chai, Chuan Zhao, Hui Yan, Ying Wang, Chengcheng TI Quality Evaluation of Apocyni Veneti Folium from Different Habitats and Commercial Herbs Based on Simultaneous Determination of Multiple Bioactive Constituents Combined with Multivariate Statistical Analysis SO MOLECULES LA English DT Article DE Apocyni Veneti Folium; multiple bioactive constituents; UFLC-QTRAP-MS/MS; simultaneous determination; multivariate statistical analysis ID PERFORMANCE LIQUID-CHROMATOGRAPHY; AMINO-ACIDS; HPLC-DAD; QUANTITATIVE-ANALYSIS; L. LUOBUMA; FLAVONOIDS; LEAVES; COMPONENTS; IDENTIFICATION; ANTIOXIDANT AB Apocyni Veneti Folium (AVF) is a kind of staple traditional Chinese medicine with vast clinical consumption because of its positive effects. However, due to the habitats and adulterants, its quality is uneven. To control the quality of this medicinal herb, in this study, the quality of AVF was evaluated based on simultaneous determination of multiple bioactive constituents combined with multivariate statistical analysis. A reliable method based on ultra-fast liquid chromatography tandem triple quadrupole mass spectrometry (UFLC-QTRAP-MS/MS) was developed for the simultaneous determination of a total of 43 constituents, including 15 flavonoids, 6 organic acids, 13 amino acids, and 9 nucleosides in 41 Luobumaye samples from different habitats and commercial herbs. Furthermore, according to the contents of these 43 constituents, principal component analysis (PCA) was employed to classify and distinguish between AVF and its adulterants, leaves of Poacynum hendersonii (PHF), and gray relational analysis (GRA) was performed to evaluate the quality of the samples. The proposed method was successfully applied to the comprehensive quality evaluation of AVF, and all results demonstrated that the quality of AVF was higher than the PHF. This study will provide comprehensive information necessary for the quality control of AVF. C1 [Chen, Cuihua; Liu, Zixiu; Zou, Lisi; Liu, Xunhong; Chai, Chuan; Zhao, Hui; Yan, Ying; Wang, Chengcheng] Nanjing Univ Chinese Med, Coll Pharm, Nanjing 210023, Jiangsu, Peoples R China. RP Liu, XH (corresponding author), Nanjing Univ Chinese Med, Coll Pharm, Nanjing 210023, Jiangsu, Peoples R China. EM cuihuachen2013@163.com; liuzixiu3221@126.com; zlstcm@126.com; liuxunh1959@163.com; echo_0523@hotmail.com; zhaohui_199301@163.com; yanying931y@163.com; ccw199192@163.com OI CHEN, CUI-HUA/0000-0001-7722-2160 FU Priority Academic Program Development of Jiangsu Higher Education Institutions of China [ysxk-2014] FX This research was supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions of China (NO. ysxk-2014). CR An HJ, 2013, J PHARMACEUT BIOMED, V85, P295, DOI 10.1016/j.jpba.2013.07.005 Anfossi G, 2001, EUR J CLIN INVEST, V31, P452, DOI 10.1046/j.1365-2362.2001.00815.x Aurelio M., 2006, TRENDS SAMPLE PREPAR, P15 Cao JG, 2013, FOOD CHEM TOXICOL, V51, P242, DOI 10.1016/j.fct.2012.09.039 Cao YH, 2001, MIKROCHIM ACTA, V137, P57, DOI 10.1007/s006040170028 Chen CH, 2017, MICROSC RES TECHNIQ, V80, P1315, DOI 10.1002/jemt.22943 Ferraro V, 2015, WASTE BIOMASS VALORI, V6, P1115, DOI 10.1007/s12649-015-9416-x Fifield F. W., 2000, ENV ANAL CHEM, P4 Grundmann O, 2007, J ETHNOPHARMACOL, V110, P406, DOI 10.1016/j.jep.2006.09.035 Guo S, 2011, J PHARMACEUT BIOMED, V56, P264, DOI 10.1016/j.jpba.2011.05.025 Irie K, 2009, J NAT MED, V63, P111, DOI 10.1007/s11418-008-0296-2 Li YL, 2005, ANTIVIR RES, V68, P1, DOI 10.1016/j.antiviral.2005.06.004 Munro NJ, 2000, ANAL CHEM, V72, P2765, DOI 10.1021/ac9914871 Priyakumar UD, 2010, J MOL BIOL, V396, P1422, DOI 10.1016/j.jmb.2009.12.024 Qian Z N, 1988, Zhong Yao Tong Bao, V13, P44 Rao YK, 2005, J ETHNOPHARMACOL, V100, P249, DOI 10.1016/j.jep.2005.02.039 Shi JY, 2011, J LIQ CHROMATOGR R T, V34, P537, DOI 10.1080/10826076.2011.546173 Song CH, 2012, INT J FOOD SCI NUTR, V63, P170, DOI 10.3109/09637486.2011.610780 Tan ZJ, 2016, MOLECULES, V21, DOI 10.3390/molecules21030262 The Pharmacopoeia Committee of the Health Ministry of People's Republic of China, 1995, PHARM PEOPL REP CHIN, P182 Thevs N, 2012, J APPL BOT FOOD QUAL, V85, P159 Wang HQ, 2013, J SEP SCI, V36, P2244, DOI 10.1002/jssc.201300266 Xie WY, 2012, J ETHNOPHARMACOL, V141, P1, DOI 10.1016/j.jep.2012.02.003 Xiong JH, 2013, FOOD CHEM, V138, P327, DOI 10.1016/j.foodchem.2012.10.127 Xiong QB, 2000, PLANTA MED, V66, P127, DOI 10.1055/s-2000-11135 Xu XF, 2017, MOLECULES, V22, DOI 10.3390/molecules22050717 Yokozawa T, 2002, BIOL PHARM BULL, V25, P748, DOI 10.1248/bpb.25.748 Zhang YC, 2012, MED CHEM RES, V21, P1684, DOI 10.1007/s00044-011-9668-3 Zhang YC, 2012, MED CHEM RES, V21, P1077, DOI 10.1007/s00044-011-9624-2 Zhang YC, 2010, J CHROMATOGR B, V878, P3149, DOI 10.1016/j.jchromb.2010.09.027 Zheng MZ, 2012, LIAONING J TRAD CHIN, V39, P935 Zhi L., 2012, CHINESE TRADITIONAL, V43, P540 Zhou CL, 2011, J MED PLANTS RES, V5, P735 NR 33 TC 12 Z9 13 U1 5 U2 10 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND SN 1420-3049 J9 MOLECULES JI Molecules PD MAR PY 2018 VL 23 IS 3 AR 573 DI 10.3390/molecules23030573 PG 14 WC Biochemistry & Molecular Biology; Chemistry, Multidisciplinary SC Biochemistry & Molecular Biology; Chemistry GA GA7KD UT WOS:000428514100064 PM 29510487 OA Green Published, Green Submitted, gold DA 2021-10-15 ER PT J AU Guo, JM Lin, P Duan, JA Shang, EX Qian, DW Tang, YP AF Guo, Jian-ming Lin, Ping Duan, Jin-ao Shang, Er-xin Qian, Da-wei Tang, Yu-ping TI Application of microdialysis for elucidating the existing form of hyperoside in rat brain: Comparison between intragastric and intraperitoneal administration SO JOURNAL OF ETHNOPHARMACOLOGY LA English DT Article DE Hyperoside; 3 '-O-methyl-hyperoside; UPLC-MS/MS; Microdialysate ID PERFORMANCE LIQUID-CHROMATOGRAPHY; COUNTER-CURRENT CHROMATOGRAPHY; FLIGHT MASS-SPECTROMETRY; APOCYNUM-VENETUM LEAVES; IN-VIVO MICRODIALYSIS; FORCED SWIMMING TEST; FLAVONOID GLYCOSIDES; HYDROGEN-PEROXIDE; LC-MS; IDENTIFICATION AB Ethnopharmacological relevance: Hypericum perforatum (St. John's wort) is an important anti-depressant herb used in clinic and commonly prescribed for mild depression. Hyperoside is one of the major components of H. perforatum and is also detected in many plant species such as Abelmoschus manihot, Black Currant, Rosa agrestis, Apocynum venetum and Nelumbo nucifera. Aim of the study: As the hyperoside showed CNS (central nervous system) protective activity (e.g. antidepressant-like effect), the possibility of hyperoside or its metabolites to reach CNS should be investigated. Moreover, the pharmacokinetics profile of hyperoside or its metabolites in rat brain should be studied for further elucidating the mechanism of hyperoside action on CNS. Material and Methods: A simple method for simultaneous determination of unbound hyperoside and its metabolite 3'-O-methyl-hyperoside in rat brain was developed by using ultra-high performance liquid chromatography coupled with tandem mass spectrometry (UPLC-MS/MS) and microdialysis technique. This method was applied for pharmacokinetics study of hyperoside and 3'-O-methyl-hyperoside in rat brain after intragastric (i.g.) and intraperitoneally (i.p.) administration of hyperoside in vivo. Results: Results showed that neither hyperoside nor its metabolites were detected in rat brain after i.g. administration but both compounds could be detected after i.p. administration. Considering the activity of hyperoside through both i.g. and i.p. administration, our results imply that the active components of hyperoside in vivo might be different. Therefore, further studies are needed to identify the active components of hyperoside in vivo through these two different routes. Moreover, non-oral administration route (e.g., i.p.) should be further investigated and be explored to obtain higher bioavailability and better activity for hyperoside. Our results also showed that the real existing form of hyperoside in rat brain were hyperoside and its methylated metabolite with maximum concentration to be 63.78 ng/mL and 24.66 ng/mL after 20 mg/kg i.p. administration, respectively. Therefore, a more reasonable concentration of hyperoside should be considered in in vitro assay to reflect the real situation of hyperoside concentration in vivo. Conclusion: Due to the wide use of herbal remedies containing hyperoside, our investigation will contribute to further clarifying the action of this substance. Moreover, this method will be applied for clinical pharmacokinetics study of hyperoside and its metabolite as well as herbs that contain hyperoside. (C) 2012 Elsevier Ireland Ltd. All rights reserved. C1 [Guo, Jian-ming; Duan, Jin-ao; Shang, Er-xin; Qian, Da-wei; Tang, Yu-ping] Nanjing Univ Chinese Med, Jiangsu Key Lab High Technol Res TCM Formulae, Nanjing 210046, Jiangsu, Peoples R China. [Lin, Ping] Jiangsu SZYY Grp Pharmaceut Ltd, Nanjing 210016, Jiangsu, Peoples R China. RP Duan, JA (corresponding author), Nanjing Univ Chinese Med, Jiangsu Key Lab High Technol Res TCM Formulae, Xianlin Rd, Nanjing 210046, Jiangsu, Peoples R China. EM njuguo@gmail.com FU National Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC) [30902006]; National Basic Research Program of China ("973 Program")National Basic Research Program of China [2011CB505300-03]; Priority Academic Program Development of Jiangsu Higher Education Institutions [ysxk-2010] FX This work was supported by National Natural Science Foundation of China (NO.30902006), National Basic Research Program of China ("973 Program") (2011CB505300-03), Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (ysxk-2010). We are also pleased to thank Waters China for technical support. CR [Anonymous], 1996, GUIDE CARE USE LAB A Arts ICW, 2004, BRIT J NUTR, V91, P841, DOI 10.1079/BJN20041123 Bitis L, 2010, NAT PROD RES, V24, P580, DOI 10.1080/14786410903075507 Butterweck V, 2000, PLANTA MED, V66, P3, DOI 10.1055/s-2000-11119 Cano-Cebrian MJ, 2005, CURR DRUG METAB, V6, P83, DOI 10.2174/1389200053586109 Cao XL, 2011, J CHROMATOGR B, V879, P480, DOI 10.1016/j.jchromb.2011.01.007 Chang Q, 2005, EUR J PHARM BIOPHARM, V59, P549, DOI 10.1016/j.ejpb.2004.10.004 Chen Zhiwu, 1998, Yaoxue Xuebao, V33, P14 Choi JH, 2011, J NAT PROD, V74, P1055, DOI 10.1021/np200001x Deng SG, 2009, J CHROMATOGR B, V877, P2487, DOI 10.1016/j.jchromb.2009.06.026 Guo JM, 2007, CLIN CHEM, V53, P465, DOI 10.1373/clinchem.2006.077297 Guo JM, 2011, J CHROMATOGR B, V879, P1987, DOI 10.1016/j.jchromb.2011.04.031 Guo JM, 2011, FITOTERAPIA, V82, P441, DOI 10.1016/j.fitote.2010.12.002 Guo JM, 2010, RAPID COMMUN MASS SP, V24, P443, DOI 10.1002/rcm.4416 Haas JS, 2011, PLANTA MED, V77, P334, DOI 10.1055/s-0030-1250386 He DJ, 2010, J LIQ CHROMATOGR R T, V33, P615, DOI 10.1080/10826071003608447 Huang HF, 2008, J CHROMATOGR B, V874, P77, DOI 10.1016/j.jchromb.2008.09.005 Juergenliemk G, 2003, PLANTA MED, V69, P1013, DOI 10.1055/s-2003-45148 Kim SJ, 2011, AM J CHINESE MED, V39, P171, DOI 10.1142/S0192415X11008737 Li JY, 2008, BIOL PHARM BULL, V31, P743, DOI 10.1248/bpb.31.743 Liu X, 2010, YAKUGAKU ZASSHI, V130, P873, DOI 10.1248/yakushi.130.873 Ma RH, 2012, J PHARMACEUT BIOMED, V61, P22, DOI 10.1016/j.jpba.2011.11.014 Mannisto PT, 1999, PHARMACOL REV, V51, P593 Piao MJ, 2008, BBA-GEN SUBJECTS, V1780, P1448, DOI 10.1016/j.bbagen.2008.07.012 Wei Y, 2009, J CHROMATOGR A, V1216, P4313, DOI 10.1016/j.chroma.2008.12.056 Xing HY, 2011, BIOCHEM BIOPH RES CO, V410, P759, DOI 10.1016/j.bbrc.2011.06.046 Xue CF, 2011, J CHROMATOGR B, V879, P317, DOI 10.1016/j.jchromb.2010.12.016 Yeniceli D, 2011, TALANTA, V84, P19, DOI 10.1016/j.talanta.2010.11.063 Zeng KW, 2011, EUR J PHARMACOL, V672, P45, DOI 10.1016/j.ejphar.2011.09.177 Zhang Li, 2011, Chinese Journal of Natural Medicines, V9, P450, DOI 10.3724/SP.J.1009.2011.00450 Zhang YC, 2010, J CHROMATOGR B, V878, P3149, DOI 10.1016/j.jchromb.2010.09.027 Zheng MZ, 2012, PHYTOMEDICINE, V19, P145, DOI 10.1016/j.phymed.2011.06.029 Zhou CL, 2011, CHROMATOGRAPHIA, V73, P353, DOI 10.1007/s10337-010-1879-0 Zuo Z, 2006, LIFE SCI, V79, P2455, DOI 10.1016/j.lfs.2006.08.014 NR 34 TC 12 Z9 14 U1 5 U2 40 PU ELSEVIER IRELAND LTD PI CLARE PA ELSEVIER HOUSE, BROOKVALE PLAZA, EAST PARK SHANNON, CO, CLARE, 00000, IRELAND SN 0378-8741 J9 J ETHNOPHARMACOL JI J. Ethnopharmacol. PD DEC 18 PY 2012 VL 144 IS 3 BP 664 EP 670 DI 10.1016/j.jep.2012.10.008 PG 7 WC Plant Sciences; Chemistry, Medicinal; Integrative & Complementary Medicine; Pharmacology & Pharmacy SC Plant Sciences; Pharmacology & Pharmacy; Integrative & Complementary Medicine GA 068UI UT WOS:000313391300026 PM 23063958 DA 2021-10-15 ER PT J AU Morikawa, T Imura, K Miyake, S Ninomiya, K Matsuda, H Yamashita, C Muraoka, O Hayakawa, T Yoshikawa, M AF Morikawa, Toshio Imura, Katsuya Miyake, Sohachiro Ninomiya, Kiyofumi Matsuda, Hisashi Yamashita, Chihiro Muraoka, Osamu Hayakawa, Takao Yoshikawa, Masayuki TI Promoting the effect of chemical constituents from the flowers of Poacynum hendersonii on adipogenesis in 3T3-L1 cells SO JOURNAL OF NATURAL MEDICINES LA English DT Article DE Poacynum hendersonii; Kaempferol 3-O-sophoroside; Poacynose; Quantitative analysis; Apocynaceae ID MACROPHYLLA VAR. THUNBERGII; NUCLEAR MAGNETIC-RESONANCE; ACTIVATED-RECEPTOR-GAMMA; APOCYNUM-VENETUM; PROCESSED LEAVES; GLUCOSE-UPTAKE; NORWAY SPRUCE; LEAF EXTRACT; GLYCOSIDES; FLAVONOIDS AB A novel sugar ester poacynose (1) was isolated from the flowers of Poacynum hendersonii together with 31 known compounds. The structure of 1 was established mainly on the basis of 1D and 2D NMR spectral data. Among the isolates, several constituents, such as kaempferol 3-O-sophoroside (5), picein (16), and 4-hydroxybenzoic acid 4-O-beta-d-glucopyranoside (17) moderately promoted adipogenesis of 3T3-L1 cells. In addition, simultaneous quantitative analysis of eight flavonoid constituents from the flower and leaf parts of P. hendersonii was developed. C1 [Morikawa, Toshio; Imura, Katsuya; Miyake, Sohachiro; Ninomiya, Kiyofumi; Muraoka, Osamu; Hayakawa, Takao] Kinki Univ, Pharmaceut Res & Technol Inst, Higashiosaka, Osaka 5778502, Japan. [Matsuda, Hisashi; Yamashita, Chihiro; Yoshikawa, Masayuki] Kyoto Pharmaceut Univ, Yamashina Ku, Kyoto 6078412, Japan. RP Morikawa, T (corresponding author), Kinki Univ, Pharmaceut Res & Technol Inst, 3-4-1 Kowakae, Higashiosaka, Osaka 5778502, Japan. EM morikawa@kindai.ac.jp OI Morikawa, Toshio/0000-0003-2794-5365; Matsuda, Hisashi/0000-0003-4217-065X FU MEXT (Ministry of Education, Culture, Sports, Science and Technology)Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT); Grants-in-Aid for Scientific ResearchMinistry of Education, Culture, Sports, Science and Technology, Japan (MEXT)Japan Society for the Promotion of ScienceGrants-in-Aid for Scientific Research (KAKENHI) [22510240] Funding Source: KAKEN FX The authors are sincerely grateful to Professor Jia Xiaogung, President of Xinjiang Institute of Chinese Ethnic Medicine, Urumqi China, for the botanical identification of P. hendersonii. This work was supported by 'High-Tech Research Center' Project for Private Universities: matching fund subsidy from MEXT (Ministry of Education, Culture, Sports, Science and Technology), 2007-2011 and a Grant-in Aid for Scientific Research from MEXT. CR Baderschneider B, 2001, J AGR FOOD CHEM, V49, P2788, DOI 10.1021/jf010396d Burns D, 2000, MAGN RESON CHEM, V38, P488, DOI 10.1002/1097-458X(200007)38:7<488::AID-MRC704>3.3.CO;2-7 Butterweck V, 2001, BIOL PHARM BULL, V24, P848, DOI 10.1248/bpb.24.848 Champavier Y, 1999, PHYTOCHEMISTRY, V50, P1219, DOI 10.1016/S0031-9422(98)00697-9 DeRosa S, 1996, PHYTOCHEMISTRY, V42, P1031, DOI 10.1016/0031-9422(96)00083-0 Fan WZ, 1999, CHEM PHARM BULL, V47, P1049, DOI 10.1248/cpb.47.1049 FANG JM, 1992, PHYTOCHEMISTRY, V31, P3659, DOI 10.1016/0031-9422(92)83753-L Foo LY, 2000, PHYTOCHEMISTRY, V54, P539, DOI 10.1016/S0031-9422(00)00124-2 Fresco P, 2010, CURR PHARM DESIGN, V16, P114, DOI 10.2174/138161210789941856 Go ML, 2005, CURR MED CHEM, V12, P483, DOI 10.2174/0929867053363153 Han KL, 2006, BIOL PHARM BULL, V29, P110, DOI 10.1248/bpb.29.110 Harmon AW, 2003, BIOCHEM BIOPH RES CO, V305, P229, DOI 10.1016/S0006-291X(03)00720-4 HERZ W, 1972, PHYTOCHEMISTRY, V11, P3061, DOI 10.1016/0031-9422(72)80106-7 Hoki Satoru, 2004, Natural Medicines, V58, P113 Iorizzi M, 2001, J AGR FOOD CHEM, V49, P2022, DOI 10.1021/jf0013454 Kadowaki T, 2005, ENDOCR REV, V26, P439, DOI 10.1210/er.2005-0005 Kagawa Tamami, 2004, Natural Medicines, V58, P109 Kagawa Tamami, 2004, Natural Medicines, V58, P295 Kagawa Tamami, 2004, Natural Medicines, V58, P299 Knekt P, 2002, AM J CLIN NUTR, V76, P560, DOI 10.1093/ajcn/76.3.560 Kwan CY, 2005, CLIN EXP PHARMACOL P, V32, P789, DOI 10.1111/j.1440-1681.2005.04255.x Lei Zhen-Huan, 1995, Natural Medicines, V49, P475 Liang TG, 2010, INT J MOL SCI, V11, P4452, DOI 10.3390/ijms11114452 Lopez-Lazaro M, 2009, MINI-REV MED CHEM, V9, P31, DOI 10.2174/138955709787001712 Ma M, 2003, J AGR FOOD CHEM, V51, P2390, DOI 10.1021/jf021055i Ma ZZ, 2004, TETRAHEDRON LETT, V45, P3261, DOI 10.1016/j.tetlet.2004.02.113 MARKHAM KR, 1978, TETRAHEDRON, V34, P1389, DOI 10.1016/0040-4020(78)88336-7 Matsuda H, 2003, BIOORGAN MED CHEM, V11, P1995, DOI 10.1016/S0968-0896(03)00067-1 Matsuda H, 2007, BIOORGAN MED CHEM, V15, P1539, DOI 10.1016/j.bmc.2006.09.024 Mohamed KM, 1999, PHYTOCHEMISTRY, V50, P859, DOI 10.1016/S0031-9422(98)00603-7 Moon JH, 1996, BIOSCI BIOTECH BIOCH, V60, P1815, DOI 10.1271/bbb.60.1815 MUKHERJEE KS, 1982, PHYTOCHEMISTRY, V21, P2416, DOI 10.1016/0031-9422(82)85223-0 Murakami T, 2001, CHEM PHARM BULL, V49, P845, DOI 10.1248/cpb.49.845 NISHIBE S, 1984, CHEM PHARM BULL, V32, P4653 Nishibe Sansei, 1994, Natural Medicines, V48, P322 Nishibe Sansei, 1993, Shoyakugaku Zasshi, V47, P27 NOHARA T, 1982, CHEM PHARM BULL, V30, P1851 Nomura M, 2008, BIOL PHARM BULL, V31, P1403, DOI 10.1248/bpb.31.1403 Norbaek R, 1999, PHYTOCHEMISTRY, V51, P1113, DOI 10.1016/S0031-9422(99)00109-0 OHMOTO T, 1977, YAKUGAKU ZASSHI, V97, P176, DOI 10.1248/yakushi1947.97.2_176 OTSUKA H, 1995, CHEM PHARM BULL, V43, P754 OTSUKA H, 1981, CHEM PHARM BULL, V29, P3099 OTSUKA H, 1990, PHYTOCHEMISTRY, V29, P3681, DOI 10.1016/0031-9422(90)85306-Z Parker JC, 2002, ADV DRUG DELIVER REV, V54, P1173, DOI 10.1016/S0169-409X(02)00093-5 POEHLAND BL, 1987, J NAT PROD, V50, P706, DOI 10.1021/np50052a022 Saito T, 2007, BIOCHEM BIOPH RES CO, V357, P371, DOI 10.1016/j.bbrc.2007.03.169 Shang WB, 2007, LIFE SCI, V80, P618, DOI 10.1016/j.lfs.2006.10.021 Sharma B, 2008, FOOD CHEM TOXICOL, V46, P2376, DOI 10.1016/j.fct.2008.03.020 SHOLICHIN M, 1980, CHEM PHARM BULL, V28, P1006, DOI 10.1248/cpb.28.1006 SLIMESTAD R, 1995, PHYTOCHEMISTRY, V40, P1537, DOI 10.1016/0031-9422(95)00383-I STRACK D, 1989, PHYTOCHEMISTRY, V28, P2071, DOI 10.1016/S0031-9422(00)97922-6 Tagawa C, 2004, YAKUGAKU ZASSHI, V124, P851, DOI 10.1248/yakushi.124.851 Takaya Y, 2003, J AGR FOOD CHEM, V51, P8061, DOI 10.1021/jf0346206 Tsuchida A, 2005, J PHARMACOL SCI, V97, P164, DOI 10.1254/jphs.FMJ04008X2 USHIYAMA M, 1989, PHYTOCHEMISTRY, V28, P3009, DOI 10.1016/0031-9422(89)80269-9 Van Dyck SMO, 2001, TETRAHEDRON-ASYMMETR, V12, P785, DOI 10.1016/S0957-4166(01)00135-5 Wang MF, 1999, J AGR FOOD CHEM, V47, P1911, DOI 10.1021/jf981282d Xiong QB, 2000, PLANTA MED, V66, P127, DOI 10.1055/s-2000-11135 Zhang HL, 2008, BIOORG MED CHEM LETT, V18, P3272, DOI 10.1016/j.bmcl.2008.04.052 Zhang H, 2007, BIOORG MED CHEM LETT, V17, P4972, DOI 10.1016/j.bmcl.2007.06.027 Zhang HL, 2009, EUR J PHARMACOL, V606, P255, DOI 10.1016/j.ejphar.2009.01.005 NR 61 TC 12 Z9 12 U1 2 U2 8 PU SPRINGER JAPAN KK PI TOKYO PA CHIYODA FIRST BLDG EAST, 3-8-1 NISHI-KANDA, CHIYODA-KU, TOKYO, 101-0065, JAPAN SN 1340-3443 EI 1861-0293 J9 J NAT MED-TOKYO JI J. Nat. Med. PD JAN PY 2012 VL 66 IS 1 BP 39 EP 48 DI 10.1007/s11418-011-0549-3 PG 10 WC Chemistry, Medicinal; Pharmacology & Pharmacy SC Pharmacology & Pharmacy GA 858JL UT WOS:000297792800006 PM 21647585 DA 2021-10-15 ER PT J AU Lei, R Xu, XQ Xu, D Zhu, G Li, N Liu, HW Li, KA AF Lei, Rong Xu, Xiao Xu, Da Zhu, Gang Li, Na Liu, Huwei Li, Ke'an TI Enhanced anodic Ru(bpy)(3)(2+) electrogenerated chemiluminescence by polyphenols SO ANALYTICA CHIMICA ACTA LA English DT Article DE quercetin; polyphenols; electrogenerated chemiluminescence; reactive oxygen species; spin trapping-electron spin resonance ID HYDROXYL RADICAL GENERATION; TRIS(2,2'-BIPYRIDINE) RUTHENIUM(II); ELECTROCHEMICAL OXIDATION; ANTIOXIDANT ACTIVITY; LIPID-PEROXIDATION; APOCYNUM-VENETUM; FENTON REACTION; QUERCETIN; SYSTEM; ELECTROCHEMILUMINESCENCE AB Anodic Ru(bpy)(3)(2+) electrogenerated chemiluminescence (ECL) can be enhanced by polyphenols in alkaline solution. Spin trapping-electron spin resonance (ESR) experiments verified that reactive oxygen species (ROS) were generated during the electrolysis of Ru(bpy)(3)(2+) in alkaline solution, and oxidation of quercetin enhanced Ru(bpy)(3)(2+) ECL at anodic potential by producing additional ROS. This ECL enhancement can be used to analyze real sample and evaluate antioxidant activity of polyphenols. (c) 2008 Elsevier B.V All rights reserved. C1 [Lei, Rong; Xu, Xiao; Xu, Da; Zhu, Gang; Li, Na; Liu, Huwei; Li, Ke'an] Peking Univ, Coll Chem & Mol Engn, Minist Educ, Key Lab Bioorgan Chem & Mol Engn, Beijing 100871, Peoples R China. RP Li, N (corresponding author), Peking Univ, Coll Chem & Mol Engn, Minist Educ, Key Lab Bioorgan Chem & Mol Engn, Beijing 100871, Peoples R China. EM lina@pku.edu.cn FU National Nature Sciences Foundation of ChinaNational Natural Science Foundation of China (NSFC) [20475004, 90713013, 20775004] FX This work was supported by the National Nature Sciences Foundation of China (No. 20475004, 90713013 and 20775004). The authors thank Prof Yang Liu for his profound discussion and suggestion of the ESR experiment. CR Amic D, 2007, CURR MED CHEM, V14, P827, DOI 10.2174/092986707780090954 Blasco AJ, 2004, ANAL CHIM ACTA, V511, P71, DOI 10.1016/j.aca.2004.01.038 Brett AMO, 2003, ELECTROANAL, V15, P1745, DOI 10.1002/elan.200302800 BRITIGAN BE, 1990, J BIOL CHEM, V265, P2650 Cao YH, 2001, MIKROCHIM ACTA, V137, P57, DOI 10.1007/s006040170028 Chen X, 1998, MICROCHEM J, V58, P13, DOI 10.1006/mchj.1997.1503 Chen X, 1997, ANAL SCI, V13, P71, DOI 10.2116/analsci.13.Supplement_71 Chen X, 1998, MICROCHEM J, V59, P427, DOI 10.1006/mchj.1998.1628 CREUTZ C, 1975, P NATL ACAD SCI USA, V72, P2858, DOI 10.1073/pnas.72.8.2858 Dangles O, 2000, J CHEM SOC PERK T 2, V6, P1215 DANGLES O, 1999, J CHEM SOC P2, V7, P1387 Gonzalez JM, 2000, ANALYST, V125, P765, DOI 10.1039/a909529b Gross EM, 2001, J PHYS CHEM B, V105, P8732, DOI 10.1021/jp011434z GUTTERIDGE JMC, 1986, BIOCHEM J, V234, P225, DOI 10.1042/bj2340225 HENDRICKSON HP, 1994, J PHARMACEUT BIOMED, V12, P325, DOI 10.1016/0731-7085(94)90007-8 HERCULES DM, 1966, J AM CHEM SOC, V88, P4745, DOI 10.1021/ja00972a052 HODNICK WF, 1986, BIOCHEM PHARMACOL, V35, P2345, DOI 10.1016/0006-2952(86)90461-2 Honda K, 2003, J PHYS CHEM B, V107, P1653, DOI 10.1021/jp022187h Janeiro P, 2004, ANAL CHIM ACTA, V518, P109, DOI 10.1016/j.aca.2004.05.038 KADIISKA MB, 1992, MOL PHARMACOL, V42, P723 KALYANARAMAN B, 1986, FASEB J, V45, P1931 Kamata K, 2008, J NAT MED-TOKYO, V62, P160, DOI 10.1007/s11418-007-0202-3 Kanoufi F, 2001, J PHYS CHEM B, V105, P210, DOI 10.1021/jp002880+ KNIGHT AW, 1995, ANALYST, V120, P2543, DOI 10.1039/an9952002543 KOTAKE Y, 1991, J AM CHEM SOC, V113, P9503, DOI 10.1021/ja00025a013 LAUGHTON MJ, 1989, BIOCHEM PHARMACOL, V38, P2859, DOI 10.1016/0006-2952(89)90442-5 Lei R, 2008, TALANTA, V75, P1068, DOI 10.1016/j.talanta.2008.01.010 Lei R, 2006, CHINESE CHEM LETT, V17, P1499 Li F, 2004, ANAL CHEM, V76, P1768, DOI 10.1021/ac035181c Lotito SB, 2006, FREE RADICAL BIO MED, V41, P1727, DOI 10.1016/j.freeradbiomed.2006.04.033 McCall J, 2000, ANALYST, V125, P545, DOI 10.1039/a904540f McCall J, 1999, ANAL CHEM, V71, P2523, DOI 10.1021/ac981322c Mennen LI, 2005, AM J CLIN NUTR, V81, p326S, DOI 10.1093/ajcn/81.1.326S Metodiewa D, 1999, FREE RADICAL BIO MED, V26, P107, DOI 10.1016/S0891-5849(98)00167-1 Miao WJ, 2002, J AM CHEM SOC, V124, P14478, DOI 10.1021/ja027532v Miura YH, 1998, BIOL PHARM BULL, V21, P93, DOI 10.1248/bpb.21.93 OCHIAI M, 1984, MUTAT RES, V129, P19, DOI 10.1016/0027-5107(84)90118-0 RiceEvans CA, 1996, FREE RADICAL BIO MED, V20, P933, DOI 10.1016/0891-5849(95)02227-9 Scalbert A, 2005, AM J CLIN NUTR, V81, p215S, DOI 10.1093/ajcn/81.1.215S Sun YG, 2000, ANAL CHIM ACTA, V423, P247, DOI 10.1016/S0003-2670(00)01121-1 Takeshita K, 2004, FREE RADICAL BIO MED, V36, P1134, DOI 10.1016/j.freeradbiomed.2004.02.016 Wang HY, 2001, ANALYST, V126, P1095, DOI 10.1039/b100376n WU WC, 1991, HDB STANDARD ELECTRO, P158 Xu GB, 1999, ANALYST, V124, P1085, DOI 10.1039/a901153f Yokozawa T, 2004, FOOD CHEM TOXICOL, V42, P975, DOI 10.1016/j.fct.2004.02.010 Yu F, 2008, J AGR FOOD CHEM, V56, P730, DOI 10.1021/jf072383r Zheng HZ, 2005, J PHYS CHEM B, V109, P16047, DOI 10.1021/jp052843o Zorzi M, 2000, ANAL CHEM, V72, P4934, DOI 10.1021/ac991222m Zu YB, 2000, ANAL CHEM, V72, P3223, DOI 10.1021/ac000199y Zu YB, 2001, ANAL CHEM, V73, P3960, DOI 10.1021/ac010230b NR 50 TC 12 Z9 12 U1 4 U2 34 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0003-2670 EI 1873-4324 J9 ANAL CHIM ACTA JI Anal. Chim. Acta PD SEP 5 PY 2008 VL 625 IS 1 BP 13 EP 21 DI 10.1016/j.aca.2008.07.011 PG 9 WC Chemistry, Analytical SC Chemistry GA 351GW UT WOS:000259413700003 PM 18721534 DA 2021-10-15 ER PT J AU Awale, S Tezuka, Y Wang, SM Kadota, S AF Awale, S Tezuka, Y Wang, SM Kadota, S TI Facile and regioselective synthesis of phenylpropanoid-substituted flavan-3-ols SO ORGANIC LETTERS LA English DT Article ID COMBRETUM QUADRANGULARE; HYDROLYZABLE TANNINS; APOCYNUM-VENETUM; CONSTITUENTS; CINCHONAINS; CATECHINS; BARK AB [GRAPHICS] A highly efficient, facile, one-pot regioselective synthesis of a series of phenylpropanoid-substituted flavan-3-ols is described. The mechanism involves dienone-phenol rearrangement followed by a Michael-type reaction. C1 Toyama Med & Pharmaceut Univ, Inst Nat Med, Sugitani, Toyama 9300194, Japan. RP Kadota, S (corresponding author), Toyama Med & Pharmaceut Univ, Inst Nat Med, 2630, Sugitani, Toyama 9300194, Japan. EM kadota@ms.toyama-mpu.ac.jp RI Awale, Suresh/B-6354-2017; Tezuka, Yasuhiro/AAD-9606-2019; Awale, Suresh/G-1995-2012 OI Awale, Suresh/0000-0002-5299-193X; Awale, Suresh/0000-0002-5299-193X CR Adnyana IK, 2000, BIOL PHARM BULL, V23, P1328, DOI 10.1248/bpb.23.1328 Adnyana IK, 2001, PLANTA MED, V67, P370, DOI 10.1055/s-2001-14318 Banskota AH, 2000, BIOL PHARM BULL, V23, P456, DOI 10.1248/bpb.23.456 CHEN HF, 1993, PHYTOCHEMISTRY, V33, P183, DOI 10.1016/0031-9422(93)85419-R COREY EJ, 1977, TETRAHEDRON LETT, P3923 DAVID JM, 1994, PHYTOCHEMISTRY, V35, P545, DOI 10.1016/S0031-9422(00)94800-3 Fan WZ, 1999, CHEM PHARM BULL, V47, P1049, DOI 10.1248/cpb.47.1049 Khanbabaee K, 2001, NAT PROD REP, V18, P641, DOI 10.1039/b101061l Le Tran Q, 2001, J NAT PROD, V64, P456, DOI 10.1021/np000393f NONAKA G, 1982, CHEM PHARM BULL, V30, P4268 OGURA K, 1971, TETRAHEDRON LETT, P3151 OKUDA T, 1983, CHEM PHARM BULL, V31, P333 ROSSITER BE, 1992, CHEM REV, V92, P771, DOI 10.1021/cr00013a002 SAIJO R, 1989, CHEM PHARM BULL, V37, P2063 Tillekeratne LMV, 2001, BIOORG MED CHEM LETT, V11, P2763, DOI 10.1016/S0960-894X(01)00577-7 VITULLO VP, 1969, J ORG CHEM, V34, P224, DOI 10.1021/jo00838a050 VITULLO VP, 1970, J ORG CHEM, V35, P3976, DOI 10.1021/jo00836a094 VITULLO VP, 1972, J AM CHEM SOC, V94, P3844, DOI 10.1021/ja00766a030 Xiong QB, 2000, PLANTA MED, V66, P127, DOI 10.1055/s-2000-11135 Xiong QB, 1999, LIFE SCI, V65, P421, DOI 10.1016/S0024-3205(99)00263-5 YOSHIDA T, 1991, CHEM PHARM BULL, V39, P2233, DOI 10.1248/cpb.39.2233 NR 21 TC 12 Z9 13 U1 0 U2 9 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1523-7060 EI 1523-7052 J9 ORG LETT JI Org. Lett. PD MAY 16 PY 2002 VL 4 IS 10 BP 1707 EP 1709 DI 10.1021/ol020042n PG 3 WC Chemistry, Organic SC Chemistry GA 551WC UT WOS:000175585000019 PM 12000279 DA 2021-10-15 ER PT J AU Glenn, S Phillips, WH Kalnay, P AF Glenn, S Phillips, WH Kalnay, P TI Long-term control of perennial broadleaf weeds and triazine-resistant common lambsquarters (Chenopodium album) in no-till corn (Zea mays) SO WEED TECHNOLOGY LA English DT Article DE atrazine, 6-chloro-N-ethyl-N'-(1-methylethyl)-1,3,5-triazine-2,4-diamine; dicamba, 3,6-dichloro-2-methoxybenzoic acid; metolachlor, [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)acetamid e]; nicosulfuron, 2-[[[[(4,6-dimethoxy-2-pyrimidinyl)amino]-carbonyl]amino]sulfonyl]-N,N-d imethyl-3-pyridinecarboxamide; paraquat, 1,1'-dimethyl-4,4'-bipyridiniumion; primisulfuron, methyl 2-[[[[[4,6-bis(difluoromethoxy)-2-pyrimidinyl]amino]carbonyl]amino]sulfo nyl]benzoic acid; 2,4-D, (2,4-dichlorophenoxy) acetic acid; common lambsquarters, Chenopodium album L. #(3) CHEAL; hemp dogbane, Apocynum cannabium L. # APCCA; wild blackberry, Rubus allegheniensis Porter # RUBAL; corn, Zea mays L.; no-till; perennial weed control; regrowth; atrazine; dicamba; nicosulfuron; primisulfuron; 2,4-D; APCCA; CHEAL; RUBAL ID DOGBANE APOCYNUM-CANNABINUM AB Control and regrowth of hemp dogbane, wild blackberry, and triazine-resistant common lambsquarters (TR-CHEAL) were studied in no-till corn from 1992 to 1994. Hemp dogbane, wild blackberry, and TR-CHEAL population increased 10, 123, and 177%, respectively, between 1992 and 1994 in plots treated with PRE applications of paraquat, atrazine, and metolachlor (weedy checks). POST applications of tank mixtures of 35 g ai/ha nicosulfuron or 20 g/ha primisulfuron with 280 g/ha 2,4-D or 140 g/ha dicamba, and 560 g/ha dicamba applied alone controlled hemp dogbane, wild blackberry, and TR-CHEAL 67 to 98%. These treatments reduced the population or prevented expansion of these weeds the year following treatment. in 1992, corn yield response to weed control was inconsistent. fn 1993 and 1994, all plots treated with POST herbicides yielded higher than the weedy check. Corn yield of plots treated with combinations of nicosulfuron or primisulfuron with 2,4-D or dicamba and 560 g/ha dicamba applied alone were 102 to 149% and 124 to 153% higher than the weedy check in 1993 and 1994, respectively. RP Glenn, S (corresponding author), UNIV MARYLAND,DEPT AGRON,COLLEGE PK,MD 20742, USA. CR BANDEEN JD, 1982, HERBICIDE RESISTANCE, P9 Becker R., 1981, Weeds Today, V12, P15 COFFMAN CB, 1991, WEED TECHNOL, V5, P76, DOI 10.1017/S0890037X00033297 FUERST EP, 1986, WEED SCI, V34, P440, DOI 10.1017/S0043174500067151 GLENN S, 1993, WEED TECHNOL, V7, P47 HAAS H, 1982, HERBICIDE RESISTANCE, P57 HART SE, 1993, WEED SCI, V41, P28, DOI 10.1017/S0043174500057532 Menbere H., 1995, P NE WEED SCI SOC, V49, P92 MYERS MG, 1993, WEED TECHNOL, V5, P782 ORFANEDES MS, 1991, WEED TECHNOL, V5, P782, DOI 10.1017/S0890037X00033856 PAROCHETTI JV, 1982, HERBICIDE RESISTANCE, P309 ROBISON LR, 1972, WEED SCI, V20, P156, DOI 10.1017/S0043174500035244 SCHULTZ ME, 1979, WEED SCI, V27, P565, DOI 10.1017/S0043174500044623 TRIPLETT GB, 1972, WEED SCI, V20, P453, DOI 10.1017/S0043174500036122 Triplett Jr G.B., 1985, WEED SCI SOC AM MONO, V2, P26 Williams J. L. Jr., 1978, ASA [American Society of Agronomy] Special Publication, P165 YONCE MH, 1989, WEED SCI, V37, P360, DOI 10.1017/S0043174500072064 1970, UDSA ARS AGR HDB, V366 NR 18 TC 12 Z9 12 U1 0 U2 2 PU WEED SCI SOC AMER PI CHAMPAIGN PA 309 W CLARK ST, CHAMPAIGN, IL 61820 SN 0890-037X J9 WEED TECHNOL JI Weed Technol. PD JUL-SEP PY 1997 VL 11 IS 3 BP 436 EP 443 DI 10.1017/S0890037X0004522X PG 8 WC Agronomy; Plant Sciences SC Agriculture; Plant Sciences GA XY341 UT WOS:A1997XY34100005 DA 2021-10-15 ER PT J AU VENKATASUBBAIAH, P BAUDOIN, ABAM CHILTON, WS AF VENKATASUBBAIAH, P BAUDOIN, ABAM CHILTON, WS TI LEAF-SPOT OF HEMP DOGBANE CAUSED BY STAGONOSPORA-APOCYNI, AND ITS PHYTOTOXINS SO JOURNAL OF PHYTOPATHOLOGY-PHYTOPATHOLOGISCHE ZEITSCHRIFT LA English DT Article ID BOTRYOSPHAERIA-OBTUSA; PATHOGENS AB Stagonospora apocyni causes a leaf spot disease on hemp dogbane (Apocynum cannabinum L.). The fungus produced phytotoxins citrinin, mellein, tyrosol and alpha-acetylorcinol in liquid culture. All toxins caused necrosis when placed on leaves of hemp dogbane, and eight other weed species. All four toxins were non-specific phytotoxins. Citrinin showed antimicrobial properties against some bacteria and fungi. C1 VIRGINIA POLYTECH INST & STATE UNIV,DEPT PLANT PATHOL PHYSIOL & WEED SCI,BLACKSBURG,VA 24061. RP VENKATASUBBAIAH, P (corresponding author), N CAROLINA STATE UNIV,DEPT BOT,RALEIGH,NC 27695, USA. CR AYER WA, 1986, CAN J CHEM, V64, P904, DOI 10.1139/v86-149 CHIEN MM, 1977, LLOYDIA, V40, P301 CLAYDON N, 1985, PHYTOCHEMISTRY, V24, P937, DOI 10.1016/S0031-9422(00)83157-X DAVIS JJ, 1919, T WIS ACAD SCI ARTS, V19, P699 DEVYS M, 1976, PHYTOPATHOL Z, V85, P176 ENDO A, 1976, J ANTIBIOT, V29, P841, DOI 10.7164/antibiotics.29.841 Farr D. F., 1989, Fungi on plants and plant products in the United States. KIMURA Y, 1973, AGR BIOL CHEM TOKYO, V37, P2925, DOI 10.1080/00021369.1973.10861099 NUKINA M, 1977, AGR BIOL CHEM TOKYO, V41, P717, DOI 10.1080/00021369.1977.10862571 PENARODRIGUEZ LM, 1988, J NAT PROD, V51, P821, DOI 10.1021/np50059a001 REISS J, 1977, Z PFLANZENPHYSIOL, V82, P446, DOI 10.1016/S0044-328X(77)80009-3 Saccardo PA, 1884, SYLLOGE FUNGORUM OMN, V3 STILL WC, 1978, J ORG CHEM, V43, P2923, DOI 10.1021/jo00408a041 Turner W. B, 1983, FUNGAL METABOLITES, VII VANARX JA, 1957, TWEEDE REEKS, V51 VENKATASUBBAIAH P, 1987, Annals of the Phytopathological Society of Japan, V53, P335, DOI 10.3186/jjphytopath.53.335 VENKATASUBBAIAH P, 1990, J NAT PROD, V53, P1628, DOI 10.1021/np50072a044 VENKATASUBBAIAH P, 1991, PHYTOPATHOLOGY, V81, P243, DOI 10.1094/Phyto-81-243 1970, AGR HDB USDA, V366 NR 19 TC 12 Z9 13 U1 0 U2 2 PU BLACKWELL WISSENSCHAFTS-VERLAG GMBH PI BERLIN PA KURFURSTENDAMM 57, D-10707 BERLIN, GERMANY SN 0931-1785 J9 J PHYTOPATHOL JI J. Phytopathol.-Phytopathol. Z. PD AUG PY 1992 VL 135 IS 4 BP 309 EP 316 DI 10.1111/j.1439-0434.1992.tb04316.x PG 8 WC Plant Sciences SC Plant Sciences GA JK316 UT WOS:A1992JK31600006 DA 2021-10-15 ER PT J AU Yuan, Y Zhou, JH Zheng, YF Xu, ZC Li, YQ Zhou, S Zhang, CS AF Yuan, Yuan Zhou, Jinhui Zheng, Yanfen Xu, Zongchang Li, Yiqiang Zhou, San Zhang, Chengsheng TI Beneficial effects of polysaccharide-rich extracts from Apocynum venetum leaves on hypoglycemic and gut microbiota in type 2 diabetic mice SO BIOMEDICINE & PHARMACOTHERAPY LA English DT Article DE Polysaccharide; Apocynum venetum; Diabetes; Hypoglycemic; Gut microbiota ID CHAIN FATTY-ACIDS; OXIDATIVE STRESS; DIET; STREPTOZOTOCIN; L.; ASSOCIATION; JAPONICA; LUOBUMA; PROTECT; FIBER AB Diabetes is one of the most concerned metabolic diseases worldwide and threaten public health. In the present work, two polysaccharide-rich extracts from Apocynum venetum leaves were extracted using distilled water and alkaline solution (0.05 M NaOH), and fully characterized. Hypoglycemic and hypolipidemic effects of two polysaccharide-rich extracts on high-fat diet and streptozocin-induced type 2 diabetic mice were investigated. Treatment of alkaline extracted polysaccharide-rich products significantly decreased the levels of fasting blood glucose, serum insulin, glycated serum protein, as well as serum lipids profiles including total cholesterol, triacylglycerols, low-density lipoprotein cholesterol, and nonesterified fatty acid. Meanwhile, the reduced glycogen contents in liver were prominently improved, and the oxidative damage were markedly ameliorated by alkaline extracted polysaccharide products in diabetic mice. Furthermore, both polysaccharide-rich extracts could reverse the gut microbiota dysbiosis in diabetic mice by increasing the abundance of genera Odoribacter, Anaeroplasma, Parasutterella, and Muribaculum; while by decreasing the abundance of genera Enterococcus, Klebsiella, and Aerococcus. This study provides new sights for exploitation of Apocynum venetum extracts as a promising anti-diabetic nutraceutical for the treatment of type 2 diabetes and metabolic syndrome. C1 [Yuan, Yuan; Zhou, Jinhui; Zheng, Yanfen; Xu, Zongchang; Li, Yiqiang; Zhang, Chengsheng] Chinese Acad Agr Sci, Marine Agr Res Ctr, Tobacco Res Inst, Qingdao 266101, Peoples R China. [Zhou, Jinhui; Zhou, San] Qingdao Univ, Sch Pharm, Dept Pharmcognosy, Qingdao 266021, Peoples R China. RP Zhang, CS (corresponding author), Chinese Acad Agr Sci, Marine Agr Res Ctr, Tobacco Res Inst, Qingdao 266101, Peoples R China.; Zhou, S (corresponding author), Qingdao Univ, Sch Pharm, Dept Pharmcognosy, Qingdao 266021, Peoples R China. EM zhousan3@163.com; Zhangchengsheng@caas.cn FU Doctor Foundation of Shandong [ZR2019BC073]; National Science Foundation of ChinaNational Natural Science Foundation of China (NSFC) [31900276]; Agricultural Science and Technology Innovation Program of China [ASTIP-TRIC07] FX This work was supported by the Doctor Foundation of Shandong (ZR2019BC073), by the National Science Foundation of China (31900276), by the Agricultural Science and Technology Innovation Program of China (ASTIP-TRIC07). CR Abdel-Latif A, 2017, PLANT METHODS, V13, DOI 10.1186/s13007-016-0152-4 Aydin O, 2018, CURR DIABETES REP, V18, DOI 10.1007/s11892-018-1020-6 Beller A, 2019, ANN RHEUM DIS, V78, pA45, DOI 10.1136/annrheumdis-2018-EWRR2019.92 Canfora EE, 2015, NAT REV ENDOCRINOL, V11, P577, DOI 10.1038/nrendo.2015.128 Chen GJ, 2018, MOL NUTR FOOD RES, V62, DOI 10.1002/mnfr.201700485 Chen HH, 2019, J AGR FOOD CHEM, V67, P5278, DOI 10.1021/acs.jafc.9b01192 Chen Hong-yan, 2010, Yaoxue Xuebao, V45, P26 Chen Z.Q., 2020, BIOMEDICINE PHARMACO, V127 den Besten G, 2015, DIABETES, V64, P2398, DOI 10.2337/db14-1213 Do MH, 2018, NUTRIENTS, V10, DOI 10.3390/nu10060761 Fu XD, 2019, CRIT REV FOOD SCI, V59, pS130, DOI 10.1080/10408398.2018.1542587 Guo CR, 2014, PHYTOMEDICINE, V21, P807, DOI 10.1016/j.phymed.2014.02.007 Hernandez JB, 2015, NAT COMMUN, V6, DOI [10.1038/ncomms8489, 10.1038/ncomms8216] Irie K, 2009, J NAT MED, V63, P111, DOI 10.1007/s11418-008-0296-2 Irimia JM, 2017, J BIOL CHEM, V292, P10455, DOI 10.1074/jbc.M117.786525 Ju TT, 2019, ISME J, V13, P1520, DOI 10.1038/s41396-019-0364-5 Ke HL, 2012, NAT PROD RES, V26, P1022, DOI 10.1080/14786419.2010.546796 Kim JI, 2018, FOOD SCI BIOTECHNOL, V27, P1467, DOI 10.1007/s10068-018-0390-5 Koh A, 2016, CELL, V165, P1332, DOI 10.1016/j.cell.2016.05.041 Le Chatelier E, 2013, NATURE, V500, P541, DOI 10.1038/nature12506 Li L, 2018, CELL PHYSIOL BIOCHEM, V45, P2021, DOI 10.1159/000487980 Li XT, 2018, BIOMED PHARMACOTHER, V100, P394, DOI 10.1016/j.biopha.2018.01.137 Liu IM, 2012, EVID-BASED COMPL ALT, V2012, DOI 10.1155/2012/140103 Michelsen CF, 2014, POLAR BIOL, V37, P61, DOI 10.1007/s00300-013-1410-9 Morrison DJ, 2016, GUT MICROBES, V7, P189, DOI 10.1080/19490976.2015.1134082 Neyrinck AM, 2012, J NUTR BIOCHEM, V23, P51, DOI 10.1016/j.jnutbio.2010.10.008 Neyrinck AM, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0020944 Oyenihi AB, 2015, BIOMED RES INT, V2015, DOI 10.1155/2015/515042 Pitout JDD, 2015, ANTIMICROB AGENTS CH, V59, P5873, DOI 10.1128/AAC.01019-15 Qiao Y, 2013, APPL MICROBIOL BIOT, V97, P1689, DOI 10.1007/s00253-012-4323-6 Qin JJ, 2012, NATURE, V490, P55, DOI 10.1038/nature11450 Radenkovic M, 2016, J PHARMACOL TOX MET, V78, P13, DOI 10.1016/j.vascn.2015.11.004 Rasmussen M, 2016, CLIN MICROBIOL INFEC, V22, P22, DOI 10.1016/j.cmi.2015.09.026 Ren HL, 2008, N HORT, V7, P87 Rios-Covian D, 2016, FRONT MICROBIOL, V7, DOI 10.3389/fmicb.2016.00185 Robertson RP, 2004, J BIOL CHEM, V279, P42351, DOI 10.1074/jbc.R400019200 Shang QS, 2017, J FUNCT FOODS, V28, P138, DOI 10.1016/j.jff.2016.11.002 Sikalidis AK, 2020, BIOMEDICINES, V8, DOI 10.3390/biomedicines8010008 Su NN, 2018, J FUNCT FOODS, V43, P234, DOI 10.1016/j.jff.2018.02.017 SUN GD, 2016, J DIABETES RES, V2016, DOI DOI 10.1155/2016/5749857 Thevs N, 2012, J APPL BOT FOOD QUAL, V85, P159 Upadhyaya S, 2015, GUT MICROBES, V6, P85, DOI 10.1080/19490976.2015.1024918 Ussar S, 2016, MOL METAB, V5, P795, DOI 10.1016/j.molmet.2016.07.004 Wang DY, 2017, INT J BIOL MACROMOL, V102, P396, DOI 10.1016/j.ijbiomac.2017.04.056 Wen L, 2017, NAT IMMUNOL, V18, P484, DOI 10.1038/ni.3730 World Health Organization (WHO), 2016, GLOBAL REPORT DIABET Xie WY, 2012, J ETHNOPHARMACOL, V141, P1, DOI 10.1016/j.jep.2012.02.003 Xiong QB, 2000, PLANTA MED, V66, P127, DOI 10.1055/s-2000-11135 Xu JL, 2018, FOOD FUNCT, V9, P3330, DOI 10.1039/c8fo00095f Yokozawa T, 2004, FOOD CHEM TOXICOL, V42, P975, DOI 10.1016/j.fct.2004.02.010 Yuan Y, 2018, FOOD RES INT, V113, P288, DOI 10.1016/j.foodres.2018.07.021 Zha XQ, 2012, FOOD CHEM, V134, P244, DOI 10.1016/j.foodchem.2012.02.129 Zhao LP, 2018, SCIENCE, V359, P1151, DOI 10.1126/science.aao5774 Zheng XJ, 2013, METABOLOMICS, V9, P818, DOI 10.1007/s11306-013-0500-6 Zhou JH, 2020, J FOOD MEAS CHARACT, V14, P244, DOI 10.1007/s11694-019-00286-2 NR 55 TC 11 Z9 11 U1 22 U2 43 PU ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER PI ISSY-LES-MOULINEAUX PA 65 RUE CAMILLE DESMOULINS, CS50083, 92442 ISSY-LES-MOULINEAUX, FRANCE SN 0753-3322 EI 1950-6007 J9 BIOMED PHARMACOTHER JI Biomed. Pharmacother. PD JUL PY 2020 VL 127 AR 110182 DI 10.1016/j.biopha.2020.110182 PG 9 WC Medicine, Research & Experimental; Pharmacology & Pharmacy SC Research & Experimental Medicine; Pharmacology & Pharmacy GA MC7WW UT WOS:000543493200064 PM 32361160 OA gold DA 2021-10-15 ER PT J AU Xu, YC Wang, C Liu, HS Zhu, GL Fu, P Wang, LP Zhu, WM AF Xu, Yanchao Wang, Cong Liu, Haishan Zhu, Guoliang Fu, Peng Wang, Liping Zhu, Weiming TI Meroterpenoids and Isocoumarinoids from a Myrothecium Fungus Associated with Apocynum venetum SO MARINE DRUGS LA English DT Article DE endophytic fungus; Myrothecium sp; meroterpenoids; isocoumarinoids; -glucosidase inhibitors; salt-resistant plant; Apocynum venetum ID ALPHA-GLUCOSIDASE INHIBITORS; PLANT EXCOECARIA-AGALLOCHA; NATURAL-PRODUCTS; CYTOTOXIC POLYPHENOLS; PENICILLIUM-EXPANSUM; ANTIFUNGAL COMPOUNDS; MARINE FUNGI; ASPERGILLUS; POLYKETIDES; ANTIBACTERIAL AB Four new meroterpenoids 1-4 and four new isocoumarinoids 5-8, along with five known isocoumarinoids (9-13), were isolated from the fungus Myrothecium sp. OUCMDZ-2784 associated with the salt-resistant medicinal plant, Apocynum venetum (Apocynaceae). Their structures were elucidated by means of spectroscopic analysis, X-ray crystallography, ECD spectra and quantum chemical calculations. Compounds 1-5, 7, 9 and 10 showed weak -glucosidase inhibition with the IC50 values of 0.50, 0.66, 0.058, 0.20, 0.32, 0.036, 0.026 and 0.37 mM, respectively. C1 [Xu, Yanchao; Wang, Liping; Zhu, Weiming] Guizhou Med Univ, State Key Lab Funct & Applicat Med Plants, Guiyang 550014, Guizhou, Peoples R China. [Xu, Yanchao; Wang, Cong; Liu, Haishan; Zhu, Guoliang; Fu, Peng; Wang, Liping; Zhu, Weiming] Ocean Univ China, Sch Med & Pharm, Minist Educ China, Key Lab Marine Drugs, Qingdao 266003, Peoples R China. [Xu, Yanchao; Fu, Peng; Zhu, Weiming] Qingdao Natl Lab Marine Sci & Technol, Lab Marine Drugs & Bioprod, Qingdao 266003, Peoples R China. [Wang, Cong] Guangxi Univ Nationalities, Sch Chem & Chem Engn, Guangxi Key Lab Chem & Engn Forest Prod, Nanning 530006, Peoples R China. RP Wang, LP; Zhu, WM (corresponding author), Guizhou Med Univ, State Key Lab Funct & Applicat Med Plants, Guiyang 550014, Guizhou, Peoples R China.; Wang, LP; Zhu, WM (corresponding author), Ocean Univ China, Sch Med & Pharm, Minist Educ China, Key Lab Marine Drugs, Qingdao 266003, Peoples R China.; Zhu, WM (corresponding author), Qingdao Natl Lab Marine Sci & Technol, Lab Marine Drugs & Bioprod, Qingdao 266003, Peoples R China. EM m18586818694@163.com; wangcong123206@163.com; liuhaishan_229@outlook.com; guoliangzhu2015@hotmail.com; fupeng@ouc.edu.cn; lipingw2006@163.com; weimingzhu@ouc.edu.cn RI Fu, Peng/D-6010-2017 OI Fu, Peng/0000-0002-7768-4004 FU National Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC) [81561148012, U1501221, 81741150, U1606403] Funding Source: Medline; the academician workstation of Guizhou [QKH YSZ-2015-4009] Funding Source: Medline; the 100 Leading Talents of Guizhou Province [for W. Zhu] Funding Source: Medline; the science and technology project of Guizhou [QKHT Z-2014-4007] Funding Source: Medline CR Aly AH, 2011, FUNGAL DIVERS, V50, P3, DOI 10.1007/s13225-011-0116-y Berova N, 2007, CHEM SOC REV, V36, P914, DOI 10.1039/b515476f Bladt TT, 2013, MOLECULES, V18, P11338, DOI 10.3390/molecules180911338 Borges WD, 2009, CURR ORG CHEM, V13, P1137 Bugni TS, 2004, NAT PROD REP, V21, P143, DOI 10.1039/b301926h Chinese Pharmacopeia Committee of Ministry of Public Health of the People's Republic of China, 2000, CHIN PHARM 2000, P170 Fu Y, 2015, MAR DRUGS, V13, P3360, DOI 10.3390/md13063360 Fu Y, 2014, J NAT PROD, V77, P1791, DOI 10.1021/np500142g HSU YH, 1987, AGR BIOL CHEM TOKYO, V51, P3455 Isaka M, 1999, J NAT PROD, V62, P329, DOI 10.1021/np980323x Khan Abid Ali, 2014, Asian Pacific Journal of Tropical Biomedicine, V4, P859 KIMURA Y, 1991, AGR BIOL CHEM TOKYO, V55, P1887, DOI 10.1080/00021369.1991.10870846 Kong FD, 2015, RSC ADV, V5, P68852, DOI 10.1039/c5ra11185d Kong FD, 2014, J NAT PROD, V77, P132, DOI 10.1021/np400802d Kornsakulkarn J, 2009, J NAT PROD, V72, P1341, DOI 10.1021/np900082h Lin ZJ, 2008, PHYTOCHEMISTRY, V69, P1273, DOI 10.1016/j.phytochem.2007.10.030 Lu ZY, 2010, J NAT PROD, V73, P911, DOI 10.1021/np100059m Moghadamtousi SZ, 2015, MAR DRUGS, V13, P4520, DOI 10.3390/md13074520 Nakashima K, 2017, TETRAHEDRON LETT, V58, P2248, DOI 10.1016/j.tetlet.2017.04.076 Nisa H, 2015, MICROB PATHOGENESIS, V82, P50, DOI 10.1016/j.micpath.2015.04.001 Rateb ME, 2011, NAT PROD REP, V28, P290, DOI 10.1039/c0np00061b Rukachaisirikul V, 2012, J NAT PROD, V75, P853, DOI 10.1021/np200885e Shaanxi Provincial and Municipal Collaborative Group for Prevention and Treatment of Coronary Heart Diseases, 1974, SHAANXI MED J, V5, P10 Shim YJ, 2003, J ETHNOPHARMACOL, V85, P283, DOI 10.1016/S0378-8741(02)00370-7 Strobel G, 2004, J NAT PROD, V67, P257, DOI 10.1021/np030397v Sun KL, 2014, MAR DRUGS, V12, P3970, DOI 10.3390/md12073970 Tan RX, 2001, NAT PROD REP, V18, P448, DOI 10.1039/b100918o TANAKA AK, 1974, AGR BIOL CHEM TOKYO, V38, P1311, DOI 10.1080/00021369.1974.10861325 Wang C, 2016, J NAT PROD, V79, P2977, DOI 10.1021/acs.jnatprod.6b00766 Wang JF, 2012, PLANTA MED, V78, P1861, DOI 10.1055/s-0032-1315395 Wang LP, 2018, FRONT CHEM, V6, DOI 10.3389/fchem.2018.00344 Wang Y, 2014, MAR DRUGS, V12, P2079, DOI 10.3390/md12042079 Wang Y, 2011, MAR DRUGS, V9, P1368, DOI 10.3390/md9081368 Wang Y, 2011, MAR DRUGS, V9, P535, DOI 10.3390/md9040535 Xu LJ, 2015, MAR DRUGS, V13, P3479, DOI 10.3390/md13063479 Zhao JL, 2017, J NAT PROD, V80, P1819, DOI 10.1021/acs.jnatprod.7b00014 Zhu GL, 2018, MAR DRUGS, V16, DOI 10.3390/md16020071 Zou XW, 2011, J NAT PROD, V74, P1111, DOI 10.1021/np200050r NR 38 TC 11 Z9 12 U1 3 U2 8 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND SN 1660-3397 J9 MAR DRUGS JI Mar. Drugs PD OCT PY 2018 VL 16 IS 10 AR 363 DI 10.3390/md16100363 PG 13 WC Chemistry, Medicinal; Pharmacology & Pharmacy SC Pharmacology & Pharmacy GA GY7TZ UT WOS:000448819600021 PM 30275406 OA Green Published, Green Submitted, gold DA 2021-10-15 ER PT J AU Kaitera, J Hiltunen, R Hantula, J AF Kaitera, J. Hiltunen, R. Hantula, J. TI Cronartium rust sporulation on hemiparasitic plants SO PLANT PATHOLOGY LA English DT Article DE alternate hosts; forest pathology; pine stem rust; white-pine blister rust ID ALTERNATE HOSTS; BLISTER RUST; FLACCIDUM; RIBICOLA; PINE; CASTILLEJA; SPP. AB Susceptibility of potential alternate host plants to pine stem rusts belonging to Cronartium spp. was artificially tested in Finland during 2012-2013. Forty-three species representing 11 plant families were inoculated in the laboratory; 34 species (11 families) were inoculated in the greenhouse with aeciospores of Cronartium flaccidum or C.ribicola. Twenty-one selected species (10 families) were also exposed to natural inoculum of C.flaccidum in the field in two severely affected Pinus sylvestris stands. After 5-8weeks' incubation, C.flaccidum sporulated on 17 species (nine families) in the laboratory, 17 species (eight families) in the greenhouse and seven species (five families) in the field. Cronartium ribicola sporulated on three species (three families) in the laboratory or greenhouse. All of the hemiparasitic plants that belong to Orobanchaceae were infected by C.flaccidum, and several species supported rust sporulation when exposed to natural inoculum. Susceptible species belonged to genera Veronica, Euphrasia, Castilleja, Pedicularis, Rhinanthus, Saxifraga, Loasa, Ribes, Tropaeolum, Swertia, Physalis, Nicotiana, Hyoscyamus, Paeonia, Apocynum, Impatiens, Vincetoxicum and Myrica. C1 [Kaitera, J.] Univ Oulu, Finnish Forest Res Inst Oulu, FI-90014 Oulu, Finland. [Hiltunen, R.] Univ Oulu, Bot Gardens, FI-90014 Oulu, Finland. [Hantula, J.] Finnish Forest Res Inst Vantaa, FI-01301 Vantaa, Finland. RP Kaitera, J (corresponding author), Univ Oulu, Finnish Forest Res Inst Oulu, POB 413, FI-90014 Oulu, Finland. EM juha.kaitera@metla.fi OI Hantula, Jarkko/0000-0002-1016-0636 CR Barklund, 2010, PHYTOPATHOL MEDITERR, V49, P428 BLADA I, 1990, EUR J FOREST PATHOL, V20, P55 DIAMANDIS S, 1986, EUR J FOREST PATHOL, V16, P247 G?umann E, 1959, BEITR KRYPTOGAMENFL, V12, P85 HAMETAHTI L, 1998, RETKEILYKASVIO Heikinheimo O., 1956, COMMUN I FOREST FENN, V45, P1 HIRATSUKA Y, 1976, PLANT DIS REP, V60, P241 Hylander N., 1953, OPERA BOT, V1, P12 Jalas J., 1980, SUURI KASVIKIRJA Kaitera J, 2006, FOREST PATHOL, V36, P225, DOI 10.1111/j.1439-0329.2006.00450.x Kaitera J, 2005, CAN J FOREST RES, V35, P229, DOI [10.1139/x04-167, 10.1139/X04-167] Kaitera J, 2014, FOREST PATHOL, V44, P387, DOI 10.1111/efp.12114 Kaitera J, 2011, FOREST PATHOL, V41, P237, DOI 10.1111/j.1439-0329.2010.00680.x Kaitera J, 1999, MYCOL RES, V103, P235, DOI 10.1017/S0953756298006947 Kaitera J, 2000, SILVA FENN, V34, P21, DOI 10.14214/sf.641 Kaitera J, 2013, SCAND J FOREST RES, V28, P746, DOI 10.1080/02827581.2013.817600 Kaitera J, 2012, BOTANY, V90, P694, DOI [10.1139/B2012-039, 10.1139/b2012-039] Kaitera J, 2012, CAN J FOREST RES, V42, P1661, DOI [10.1139/X2012-039, 10.1139/x2012-039] Kalela A, 1963, KASVIORGANOLOGIA Kim MS, 2010, FOREST PATHOL, V40, P382, DOI 10.1111/j.1439-0329.2010.00664.x Klebahn H, 1905, Z PFLANZENKRANK, V15, P65 Klebahn H, 1914, Z PFLANZENKRANKH, V24, P1 Klebahn H., 1901, Z PFLANZENKRANKHEITE, V10, P136 Lahde E, 1984, COMMUN I FOREST FENN, V125, P1 LIRO JI, 1908, BIDRAG KANNEDOM FINL, V65, P1 McDonald GI, 2006, FOREST PATHOL, V36, P73, DOI 10.1111/j.1439-0329.2006.00432.x Mulvey RL, 2011, FOREST PATHOL, V41, P453, DOI 10.1111/j.1439-0329.2010.00702.x RAGAZZI A, 1983, PHYTOPATHOL Z, V108, P160 ROLL-HANSEN F, 1973, European Journal of Forest Pathology, V3, P142 STEPHAN BR, 2004, P IUFRO 5 NEEDL PIN, P98 Velmala SM, 2013, MYCORRHIZA, V23, P21, DOI 10.1007/s00572-012-0446-y YOKOTA S, 1976, P 16 IUFRO WORLD C O, P330 Zambino PJ, 2010, FOREST PATHOL, V40, P264, DOI 10.1111/j.1439-0329.2010.00658.x Zhang XY, 2010, FOREST PATHOL, V40, P369, DOI 10.1111/j.1439-0329.2010.00663.x Ziller WG, 1974, PUBLICATION FORESTRY, V1329 NR 35 TC 11 Z9 12 U1 2 U2 24 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0032-0862 EI 1365-3059 J9 PLANT PATHOL JI Plant Pathol. PD JUN PY 2015 VL 64 IS 3 BP 738 EP 747 DI 10.1111/ppa.12291 PG 10 WC Agronomy; Plant Sciences SC Agriculture; Plant Sciences GA CH8GZ UT WOS:000354275700027 OA Bronze DA 2021-10-15 ER PT J AU GLENN, S ANDERSON, NG AF GLENN, S ANDERSON, NG TI HEMP DOGBANE (APOCYNUM-CANNABINUM) AND WILD BLACKBERRY (RUBUS-ALLEGHENIENSIS) CONTROL IN NO-TILLAGE CORN (ZEA-MAYS) SO WEED TECHNOLOGY LA English DT Article DE DICAMBA; NICOSULFURON; TRICLOPYR; 2,4-D; APCCA; RUBAL AB Hemp dogbane and wild blackberry have become significant weed problems in no-tillage com production in Maryland. Nicosulfuron (31 to 62 g ha-1) plus crop oil concentrate (COC) gave 67% or more hemp dogbane and wild blackberry control. There was no difference in hemp dogbane or wild blackberry control between 31 and 94 g ai ha-1 nicosulfuron. Tank mixtures of 2,4-D or dicamba with nicosulfuron gave 72 to 100% hemp dogbane and wild blackberry control. Hemp dogbane control following applications of 560 g ha-1 2,4-D was 97% in 1989 and 63% in 1990. Wild blackberry control with 2,4-D was 40% both years. Dicamba at 280 g ha-1 gave 70 and 55% control of hemp dogbane and 75 and 65% control of wild blackberry in 1989 and 1990, respectively. Triclopyr plus 2,4-D provided 72 to 98% hemp dogbane control and 92 to 98% wild blackberry control. However, triclopyr plus 2,4-D applied at 280 plus 560 g ha-1 injured com, and com yields were reduced compared with weedy controls in 1990. RP GLENN, S (corresponding author), UNIV MARYLAND,DEPT AGRON,COLL PK,MD 20742, USA. NR 0 TC 11 Z9 11 U1 0 U2 1 PU WEED SCI SOC AMER PI CHAMPAIGN PA 309 W CLARK ST, CHAMPAIGN, IL 61820 SN 0890-037X J9 WEED TECHNOL JI Weed Technol. PD JAN-MAR PY 1993 VL 7 IS 1 BP 47 EP 51 PG 5 WC Agronomy; Plant Sciences SC Agriculture; Plant Sciences GA KW883 UT WOS:A1993KW88300008 DA 2021-10-15 ER PT J AU ABE, F NAGAO, T MORI, Y YAMAUCHI, T SAIKI, Y AF ABE, F NAGAO, T MORI, Y YAMAUCHI, T SAIKI, Y TI PREGNANES AND PREGNANE GLYCOSIDES FROM THE ROOTS OF APOCYNUM-VENETUM VAR BASIKURUMON (APOCYNUM-I) SO CHEMICAL & PHARMACEUTICAL BULLETIN LA English DT Article C1 FUKUOKA UNIV, FAC PHARMACEUT SCI, 8-19-1 NANAKUMA, JONAN KU, FUKUOKA 81401, JAPAN. KOBE GAKUIN UNIV, DEPT PHARMACEUT SCI, NISHI KU, KOBE 673, JAPAN. CR ABE F, 1981, CHEM PHARM BULL, V29, P416 ABE F, 1976, PHYTOCHEMISTRY, V15, P1745, DOI 10.1016/S0031-9422(00)97469-7 ABE F, 1986, 106TH ANN M PHARM SO CHARDA MC, 1970, TETRAHEDRON, V26, P2061 HARA S, 1986, CHEM PHARM BULL, V34, P1843 HARA S, 1987, CHEM PHARM BULL, V35, P501 IMAI K, 1957, TAKAMINE KENKYU NENP, V9, P31 SCHILDKN.H, 1967, Z NATURFORSCH PT B, VB 22, P938 YAMAUCHI T, 1985, YAKUGAKU ZASSHI, V105, P695, DOI 10.1248/yakushi1947.105.8_695 YAMAUCHI T, 1974, CHEM PHARM BULL, V22, P1680 YAMAUCHI T, 1979, PHYTOCHEMISTRY, V18, P1240, DOI 10.1016/0031-9422(79)80151-X YAMAUCHI T, 1972, PHYTOCHEMISTRY, V11, P3345, DOI 10.1016/S0031-9422(00)86405-5 YAMAUCHI T, 1982, JUL M KYUSH BRANCH P ZECHMEISTER L, 1966, PROGR CHEM ORGANIC N, V24, P112 NR 14 TC 11 Z9 11 U1 0 U2 7 PU PHARMACEUTICAL SOC JAPAN PI TOKYO PA 2-12-15 SHIBUYA, SHIBUYA-KU, TOKYO, 150-0002, JAPAN SN 0009-2363 J9 CHEM PHARM BULL JI Chem. Pharm. Bull. PD OCT PY 1987 VL 35 IS 10 BP 4087 EP 4092 PG 6 WC Chemistry, Medicinal; Chemistry, Multidisciplinary; Pharmacology & Pharmacy SC Pharmacology & Pharmacy; Chemistry GA K8025 UT WOS:A1987K802500015 DA 2021-10-15 ER PT J AU German-Ponciano, LJ Rosas-Sanchez, GU Rivadeneyra-Dominguez, E Rodriguez-Landa, JF AF Jesus German-Ponciano, Leon Uriel Rosas-Sanchez, Gilberto Rivadeneyra-Dominguez, Eduardo Francisco Rodriguez-Landa, Juan TI Advances in the Preclinical Study of Some Flavonoids as Potential Antidepressant Agents SO SCIENTIFICA LA English DT Review ID DEPRESSION-LIKE BEHAVIOR; FORCED SWIMMING TEST; ST-JOHNS-WORT; CENTRAL-NERVOUS-SYSTEM; NEUROTROPHIC FACTOR BDNF; APOCYNUM-VENETUM LEAVES; TAIL SUSPENSION TEST; OXIDATIVE STRESS; HYPERICUM-PERFORATUM; REDUCES IMMOBILITY AB Flavonoids are phenolic compounds found commonly in plants that protect them against the negative effects of environmental insults. These secondary metabolites have been widely studied in preclinical research because of their biological effects, particularly as antioxidant agents. Diverse flavonoids have been studied to explore their potential therapeutic effects in the treatment of disorders of the central nervous system, including anxiety and depression. The present review discusses advances in the study of some flavonoids as potential antidepressant agents. We describe their behavioral, physiological, and neurochemical effects and the apparent mechanism of action of their preclinical antidepressant-like effects. Natural flavonoids produce antidepressant-like effects in validated behavioral models of depression. The mechanism of action of these effects includes the activation of serotonergic, dopaminergic, noradrenergic, and gamma-aminobutyric acid-ergic neurotransmitter systems and an increase in the production of neural factors, including brain-derived neurotrophic factor and nerve growth factor. Additionally, alterations in the function of tropomyosin receptor kinase B and activity of the enzyme monoamine oxidase A have been reported. In conclusion, preclinical research supports the potential antidepressant effects of some natural flavonoids, which opens new possibilities of evaluating these substances to develop complementary therapeutic alternatives that could ameliorate symptoms of depressive disorders in humans. C1 [Jesus German-Ponciano, Leon; Uriel Rosas-Sanchez, Gilberto] Univ Veracruzana, Inst Neuroetol, Programa Doctorado Neuroetol, Xalapa, Ver, Mexico. [Rivadeneyra-Dominguez, Eduardo; Francisco Rodriguez-Landa, Juan] Univ Veracruzana, Fac Quim Farmaceut Biol, Xalapa, Ver, Mexico. [Francisco Rodriguez-Landa, Juan] Univ Veracruzana, Inst Neuroetol, Lab Neurofarmacol, Xalapa, Ver, Mexico. RP Rodriguez-Landa, JF (corresponding author), Univ Veracruzana, Fac Quim Farmaceut Biol, Xalapa, Ver, Mexico.; Rodriguez-Landa, JF (corresponding author), Univ Veracruzana, Inst Neuroetol, Lab Neurofarmacol, Xalapa, Ver, Mexico. EM juardodriguez@uv.mx RI Rivadeneyra-Dominguez, Eduardo/ABB-8363-2020; Rodriguez-Landa, Juan Francisco/I-8632-2019 OI Rodriguez-Landa, Juan Francisco/0000-0001-5837-103X FU Consejo Nacional de Ciencia y Tecnologia (CONACyT)Consejo Nacional de Ciencia y Tecnologia (CONACyT) [297560, 592165] FX The authors would like to thank Michel Arends for revising and editing the English of this manuscript. Leon Jesus German-Ponciano and Gilberto Uriel Rosas-Sanchez received fellowships from Consejo Nacional de Ciencia y Tecnologia (CONACyT) for postgraduate studies in neuroethology (Reg. nos. 297560 and 592165, resp.). CR Abdelhalim A, 2015, J PHARM PHARM SCI, V18, P448, DOI 10.18433/J3PW38 Abelaira HM, 2013, REV BRAS PSIQUIATR, V35, pS112, DOI 10.1590/1516-4446-2013-1098 An L, 2015, J ETHNOPHARMACOL, V163, P83, DOI 10.1016/j.jep.2015.01.022 Anjaneyulu Muragundla, 2003, Journal of Medicinal Food, V6, P391 Antunes MS, 2016, EUR J PHARMACOL, V789, P411, DOI [10.1016/j.ejphar.2016.07.042, 10.1016/j.ejphar.20] Apaydin EA, 2016, SYST REV, V5, DOI 10.1186/s13643-016-0325-2 Bakhtiari M, 2017, BIOMED PHARMACOTHER, V93, P218, DOI 10.1016/j.biopha.2017.06.010 Basterzi AD, 2009, PROG NEURO-PSYCHOPH, V33, P281, DOI 10.1016/j.pnpbp.2008.11.016 Batra S., 2014, J FUNDAMENTAL PHARM, V2, P1 Berrin JG, 2002, EUR J BIOCHEM, V269, P249, DOI 10.1046/j.0014-2956.2001.02641.x Borges C, 2016, CHEM-BIOL INTERACT, V260, P154, DOI 10.1016/j.cbi.2016.11.005 Borges Filho C, 2016, EUR J PHARMACOL, V791, P284, DOI 10.1016/j.ejphar.2016.09.005 Breuer ME, 2009, EUR J PHARMACOL, V616, P134, DOI 10.1016/j.ejphar.2009.06.029 Butterweck V, 2004, PLANTA MED, V70, P1008, DOI 10.1055/s-2004-832631 Butterweck V, 2001, BIOL PHARM BULL, V24, P848, DOI 10.1248/bpb.24.848 Can OD, 2013, EUR J PHARMACOL, V699, P250, DOI 10.1016/j.ejphar.2012.10.017 Cassani J., J ETHNOPHARMACOLOGY, V171, P295 Castren E, 2017, NEUROBIOL DIS, V97, P119, DOI 10.1016/j.nbd.2016.07.010 de Boer AG, 2007, ANNU REV PHARMACOL, V47, P323, DOI 10.1146/annurev.pharmtox.47.120505.105237 de la Pena JBI, 2014, ARCH PHARM RES, V37, P263, DOI 10.1007/s12272-013-0229-9 Demir EA, 2016, ACTA NEUROPSYCHIATR, V28, P23, DOI 10.1017/neu.2015.45 DETKE MJ, 1995, PSYCHOPHARMACOLOGY, V121, P66, DOI 10.1007/BF02245592 Donato F., BRAIN RES B, V104, P19 Du Bingjian, 2014, BMC Complement Altern Med, V14, P326, DOI 10.1186/1472-6882-14-326 Duman RS, 2012, SCIENCE, V338, P68, DOI 10.1126/science.1222939 Ebadi M., 2001, PHARMACODYNAMIC BASI Ebrahimzadeh MA, 2013, EUR REV MED PHARMACO, V17, P2609 Fan Zi-Zhou, 2012, Yao Xue Xue Bao, V47, P1612 Fernandez SP, 2006, EUR J PHARMACOL, V539, P168, DOI 10.1016/j.ejphar.2006.04.004 Filho CB, 2015, NEUROSCIENCE, V289, P367, DOI 10.1016/j.neuroscience.2014.12.048 Rodriguez-Landa JF, 2009, BEHAV PHARMACOL, V20, P614, DOI 10.1097/FBP.0b013e328331b9f2 Ghosh R, 2015, ASIAN J PSYCHIATR, V18, P37, DOI 10.1016/j.ajp.2015.10.006 Gong MJ, 2016, J PHARMACEUT BIOMED, V123, P63, DOI 10.1016/j.jpba.2016.02.001 Gonzalez-Cortazar M, 2013, MOLECULES, V18, P13260, DOI 10.3390/molecules181113260 Harborne JB, 2000, PHYTOCHEMISTRY, V55, P481, DOI 10.1016/S0031-9422(00)00235-1 Harmer CJ, 2017, LANCET PSYCHIAT, V4, P409, DOI 10.1016/S2215-0366(17)30015-9 Hashimoto K, 2011, EXPERT REV NEUROTHER, V11, P33, DOI [10.1586/ern.10.176, 10.1586/ERN.10.176] Hashimoto K, 2010, PSYCHIAT CLIN NEUROS, V64, P341, DOI 10.1111/j.1440-1819.2010.02113.x Herrera-Ruiz M, 2011, PHYTOMEDICINE, V18, P1255, DOI 10.1016/j.phymed.2011.06.018 Holzmann I, 2015, PHARMACOL BIOCHEM BE, V136, P55, DOI 10.1016/j.pbb.2015.07.003 Ishisaka M, 2011, BIOL PHARM BULL, V34, P1481, DOI 10.1248/bpb.34.1481 Jia G., 2012, PHARM CLIN CHINESE M, V6, P20 Karim N, 2017, PHARMACOL REP, V69, P1014, DOI 10.1016/j.pharep.2017.03.001 Kessler RC, 2012, PSYCHIAT CLIN N AM, V35, P1, DOI 10.1016/j.psc.2011.11.005 Khisti RT, 2000, PHARMACOL BIOCHEM BE, V67, P137, DOI 10.1016/S0091-3057(00)00300-2 Kumar S, 2013, BMC COMPLEM ALTERN M, V13, DOI 10.1186/1472-6882-13-120 Kwatra M, 2016, NEUROCHEM RES, V41, P2352, DOI 10.1007/s11064-016-1949-2 Lee B, 2013, KOREAN J PHYSIOL PHA, V17, P393, DOI 10.4196/kjpp.2013.17.5.393 Li GY, 2017, ONCOTARGET, V8, P69527, DOI 10.18632/oncotarget.17891 Li Y, 2015, BEHAV BRAIN RES, V279, P100, DOI 10.1016/j.bbr.2014.11.016 Lin MZ, 2017, MOLECULES, V22, DOI 10.3390/molecules22040565 Lin SH, 2015, J ETHNOPHARMACOL, V175, P266, DOI 10.1016/j.jep.2015.09.018 Liu B, 2015, NEUROSCIENCE, V294, P193, DOI 10.1016/j.neuroscience.2015.02.053 Liu Y, 2015, MOL NUTR FOOD RES, V59, P1130, DOI 10.1002/mnfr.201400753 Lopez V, 2009, NEUROCHEM RES, V34, P1955, DOI 10.1007/s11064-009-9981-0 Lopez-Rubalcava C, 2016, J ETHNOPHARMACOL, V186, P377, DOI 10.1016/j.jep.2016.03.053 Lozano-Hernandez R, 2010, J MED PLANTS RES, V4, P131 Lv QQ, 2014, BIOL PHARM BULL, V37, P987, DOI 10.1248/bpb.b13-00968 Ma ZG, 2015, INT J MOL SCI, V16, P28377, DOI 10.3390/ijms161226102 Machado DG, 2008, EUR J PHARMACOL, V587, P163, DOI 10.1016/j.ejphar.2008.03.021 Manach C, 2004, AM J CLIN NUTR, V79, P727, DOI 10.1093/ajcn/79.5.727 Mao QQ, 2014, BEHAV BRAIN RES, V261, P140, DOI 10.1016/j.bbr.2013.12.020 Martinez-Florez S, 2002, Nutr Hosp, V17, P271 Matias I, 2016, NEUROCHEM INT, V95, P85, DOI 10.1016/j.neuint.2016.01.009 Mendez-David I, 2015, NEUROSCI LETT, V597, P121, DOI 10.1016/j.neulet.2015.04.036 Meyer E, 2017, BEHAV BRAIN RES, V316, P59, DOI 10.1016/j.bbr.2016.08.048 Middleton E, 2000, PHARMACOL REV, V52, P673 Nabavi SF, 2015, NEUROCHEM INT, V90, P224, DOI 10.1016/j.neuint.2015.09.006 Navarrete F. Ferre, 2011, MED PROGRAMA FORMACI, V10, P5846 Nemeth K, 2003, EUR J NUTR, V42, P29, DOI 10.1007/s00394-003-0397-3 Olivares-Nazario M, 2016, BEHAV PHARMACOL, V27, P22, DOI 10.1097/FBP.0000000000000175 Ortmann CF, 2016, NEUROTOX RES, V29, P469, DOI 10.1007/s12640-016-9596-6 Ostadhadi S, 2016, BIOMED PHARMACOTHER, V82, P713, DOI 10.1016/j.biopha.2016.05.035 Paladini AC, 1999, J PHARM PHARMACOL, V51, P519, DOI 10.1211/0022357991772790 Park Soo-Hyun, 2010, Exp Neurobiol, V19, P30, DOI 10.5607/en.2010.19.1.30 Patil S. P., 2014, J TRADITIONAL CHINES, V1, P28 Paulke A, 2008, PHARMAZIE, V63, P296, DOI 10.1691/ph.2008.7751 Rantamaki T, 2007, NEUROPSYCHOPHARMACOL, V32, P2152, DOI 10.1038/sj.npp.1301345 Ren ZX, 2018, PSYCHOPHARMACOLOGY, V235, P233, DOI 10.1007/s00213-017-4761-z Rinwa P, 2013, NEUROSCIENCE, V255, P86, DOI 10.1016/j.neuroscience.2013.09.044 Rodriguez-Landa J. F., 2015, HYPERICUM BOT SOURCE Rodriguez-Landa JF, 2003, PHYTOMEDICINE, V10, P688, DOI 10.1078/0944-7113-00340 Rodriguez-Landa JF, 2007, J PSYCHOPHARMACOL, V21, P76, DOI 10.1177/0269881106064203 Roohbakhsh A, 2014, LIFE SCI, V113, P1, DOI 10.1016/j.lfs.2014.07.029 Rubio G, 2003, ACTAS ESP PSIQUIATRI, V31, P315 Sarris J, 2009, J ALTERN COMPLEM MED, V15, P827, DOI 10.1089/acm.2009.0066 Sawamoto A, 2017, INT J MOL SCI, V18, DOI 10.3390/ijms18102133 Sawamoto A, 2016, MOLECULES, V21, DOI 10.3390/molecules21040541 Shewale PB, 2012, INDIAN J PHARMACOL, V44, P454, DOI 10.4103/0253-7613.99303 Song JJ, 2015, CHEM-BIOL INTERACT, V242, P211, DOI 10.1016/j.cbi.2015.10.001 Souza LC, 2013, PROG NEURO-PSYCHOPH, V40, P103, DOI 10.1016/j.pnpbp.2012.09.003 Souza LC, 2015, PHARMACOL BIOCHEM BE, V134, P22, DOI 10.1016/j.pbb.2015.04.010 Stassen HH, 1997, EUR PSYCHIAT, V12, P166, DOI 10.1016/S0924-9338(97)89100-6 Su GY, 2014, J ETHNOPHARMACOL, V152, P217, DOI 10.1016/j.jep.2014.01.006 Taiwo AE, 2012, INDIAN J PHARMACOL, V44, P189, DOI 10.4103/0253-7613.93846 Thakare VN, 2017, PHYSIOL BEHAV, V179, P401, DOI 10.1016/j.physbeh.2017.07.010 Vazhayil BK, 2017, INDIAN J PHARMACOL, V49, P34, DOI 10.4103/0253-7613.201028 Walle UK, 1999, BIOCHEM PHARMACOL, V58, P431, DOI 10.1016/S0006-2952(99)00133-1 Wang QZ, 2017, PROG NEURO-PSYCHOPH, V77, P99, DOI 10.1016/j.pnpbp.2017.04.008 Wang WX, 2008, PROG NEURO-PSYCHOPH, V32, P1179, DOI 10.1016/j.pnpbp.2007.12.021 Wang YM, 2017, J NEUROCHEM, V143, P561, DOI 10.1111/jnc.14226 Wei K, 2016, INT J MOL MED, V38, P337, DOI 10.3892/ijmm.2016.2591 Weng LJ, 2016, EUR J PHARMACOL, V774, P50, DOI 10.1016/j.ejphar.2016.01.015 WHO, 2011, GLOB BURD MENT DIS N Willner P, 2013, NEUROSCI BIOBEHAV R, V37, P2331, DOI 10.1016/j.neubiorev.2012.12.007 Xing YL, 2013, NEUROCHEM INT, V63, P570, DOI 10.1016/j.neuint.2013.09.019 Xiong Z, 2011, BIOL PHARM BULL, V34, P253, DOI 10.1248/bpb.34.253 Xu P, 2016, J ETHNOPHARMACOL, V194, P819, DOI 10.1016/j.jep.2016.09.023 Yan SX, 2015, TROP J PHARM RES, V14, P2269, DOI 10.4314/tjpr.v14i12.17 Yan TX, 2016, PHYTOTHER RES, V30, P1493, DOI 10.1002/ptr.5651 Yang C, 2015, INT J NEUROPSYCHOPH, V18, DOI 10.1093/ijnp/pyu121 Yi LT, 2008, LIFE SCI, V82, P741, DOI 10.1016/j.lfs.2008.01.007 Yi LT, 2014, PROG NEURO-PSYCHOPH, V48, P135, DOI 10.1016/j.pnpbp.2013.10.002 Yi LT, 2012, PROG NEURO-PSYCHOPH, V39, P175, DOI 10.1016/j.pnpbp.2012.06.009 Yi LT, 2011, PHYSIOL BEHAV, V102, P1, DOI 10.1016/j.physbeh.2010.10.008 Yi LT, 2010, PROG NEURO-PSYCHOPH, V34, P1223, DOI 10.1016/j.pnpbp.2010.06.024 Yoshino S, 2011, NUTRITION, V27, P847, DOI 10.1016/j.nut.2010.09.002 Zhang LM, 2014, NEUROSCI LETT, V575, P31, DOI 10.1016/j.neulet.2014.04.039 Zhang MW, 2016, NEUROSCI LETT, V635, P33, DOI 10.1016/j.neulet.2016.10.035 Zhen LL, 2012, BEHAV BRAIN RES, V228, P359, DOI 10.1016/j.bbr.2011.12.017 Zheng MZ, 2013, J ETHNOPHARMACOL, V147, P108, DOI 10.1016/j.jep.2013.02.015 Zhou CJ, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0172270 Zhu W., 2008, PHARM BIOL, V44, P503 박형근, 2006, [YAKHAK HOEJI, 약 학 회 지], V50, P429 NR 124 TC 10 Z9 11 U1 1 U2 7 PU HINDAWI LTD PI LONDON PA ADAM HOUSE, 3RD FLR, 1 FITZROY SQ, LONDON, W1T 5HF, ENGLAND SN 2090-908X J9 SCIENTIFICA JI Scientifica PY 2018 VL 2018 AR 2963565 DI 10.1155/2018/2963565 PG 14 WC Biology SC Life Sciences & Biomedicine - Other Topics GA FW0RE UT WOS:000425002100001 PM 29623232 OA Green Published, Green Submitted, gold DA 2021-10-15 ER PT J AU Wu, T Li, XT Li, TT Cai, M Yu, ZH Zhang, JS Zhang, ZN Zhang, W Xiang, J Cai, DF AF Wu, Ting Li, Xiangting Li, Tingting Cai, Min Yu, Zhonghai Zhang, Jingsi Zhang, Zhennian Zhang, Wen Xiang, Jun Cai, Dingfang TI Apocynum venetum Leaf Extract Exerts Antidepressant-Like Effects and Inhibits Hippocampal and Cortical Apoptosis of Rats Exposed to Chronic Unpredictable Mild Stress SO EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE LA English DT Article ID INDUCED LIVER-INJURY; DEPRESSION; HYPEROSIDE; LEAVES; FLAVONOIDS; MODEL AB We investigated the effects of Apocynum venetum leaf extract (AVLE) on depressive behaviors and neuronal apoptosis in a chronic unpredictable mild stress (CUMS) rat model of depression. Rats were randomly divided into six groups: control, chronic unpredictable mild stress, fluoxetine, AVLE30, AVLE60, and AVLE120. Except for the control group, all rats were submitted to chronic unpredictable mild stress paradigms for four weeks to induce depressive behavior. Neuronal apoptosis was assessed by the terminal deoxynucleotidyl transferase-(TDT-) mediated dUTP-biotin nick end-labeling (TUNEL) method. The expression levels of apoptosis-related proteins, such as B-cell lymphoma 2 (Bcl-2), Bcl-2 Associated X Protein (Bax), cysteine-aspartic acid protease-3 and protease-9 (caspase-3 and caspase-9), cytochrome c (cyt-C), brain-derived neurotrophic factor (BDNF), and cAMP-response element binding (CREB) protein, were evaluated by western blot. Treatment with AVLE (60 or 120 mg/kg/day) significantly improved depressive behavior. Increased apoptosis of hippocampus and cortical neurons were observed in CUMS rats, while 120 mg/kg/day of AVLE significantly reversed these changes and achieved the best antidepressant-like effects among the doses tested. Moreover, AVLE (120 mg/kg) significantly increased Bcl-2, BDNF, and CREB protein expression and decreased Bax, cyt-C, and caspase family protein expression. Our results indicate that AVLE has potent antidepressant activity, likely due to its ability to suppress neuronal apoptosis. C1 [Wu, Ting; Li, Xiangting; Cai, Min; Yu, Zhonghai; Zhang, Jingsi; Zhang, Zhennian; Zhang, Wen; Xiang, Jun; Cai, Dingfang] Fudan Univ, Zhongshan Hosp, Dept Integrat Med, Shanghai 200032, Peoples R China. [Li, Tingting] Shanghai Univ Tradit Chinese Med, Shanghai 201203, Peoples R China. RP Cai, DF (corresponding author), Fudan Univ, Zhongshan Hosp, Dept Integrat Med, Shanghai 200032, Peoples R China. EM dingfangcai@163.com FU three-year development plan for Traditional Chinese Medicine in Shanghai, Demonstration Construction of Traditional Chinese Medicine in Shanghai General Hospital [ZY3-CCCX-3-7003] FX This study was funded by the three-year development plan for Traditional Chinese Medicine in Shanghai, Demonstration Construction of Traditional Chinese Medicine in Shanghai General Hospital (ZY3-CCCX-3-7003). CR Autry AE, 2009, BIOL PSYCHIAT, V66, P84, DOI 10.1016/j.biopsych.2009.02.007 Bai M, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0046921 Blendy JA, 2006, BIOL PSYCHIAT, V59, P1144, DOI 10.1016/j.biopsych.2005.11.003 Butterweck V, 2001, BIOL PHARM BULL, V24, P848, DOI 10.1248/bpb.24.848 Cory S, 2002, NAT REV CANCER, V2, P647, DOI 10.1038/nrc883 Duman RS, 2012, SCIENCE, V338, P68, DOI 10.1126/science.1222939 Grundmann O, 2007, J ETHNOPHARMACOL, V110, P406, DOI 10.1016/j.jep.2006.09.035 Grundmann O, 2009, PHYTOMEDICINE, V16, P295, DOI 10.1016/j.phymed.2008.12.020 Hao XL, 2016, MOL MED REP, V14, P399, DOI 10.3892/mmr.2016.5235 Kubera M, 2011, PROG NEURO-PSYCHOPH, V35, P744, DOI 10.1016/j.pnpbp.2010.08.026 Kuo CS, 2011, J ETHNOPHARMACOL, V136, P149, DOI 10.1016/j.jep.2011.04.035 Lau YS, 2015, NUTRIENTS, V7, P5239, DOI 10.3390/nu7075220 Liu XX, 2016, INT J MOL MED, V37, P1083, DOI 10.3892/ijmm.2016.2510 Lucassen Paul J., 2006, CNS & Neurological Disorders-Drug Targets, V5, P531, DOI 10.2174/187152706778559273 Manji H K, 2001, Psychopharmacol Bull, V35, P5 Martinowich K, 2008, NEUROPSYCHOPHARMACOL, V33, P73, DOI 10.1038/sj.npp.1301571 McKernan DP, 2009, PROG NEUROBIOL, V88, P246, DOI 10.1016/j.pneurobio.2009.04.006 Santen G, 2008, J PSYCHIATR RES, V42, P1189, DOI 10.1016/j.jpsychires.2007.11.009 Song RJ, 2015, J CHROMATOGR B, V995, P8, DOI 10.1016/j.jchromb.2015.05.019 Stockmeier CA, 2004, BIOL PSYCHIAT, V56, P640, DOI 10.1016/j.biopsych.2004.08.022 Su GY, 2014, J ETHNOPHARMACOL, V152, P217, DOI 10.1016/j.jep.2014.01.006 Vythilingam M, 2004, BIOL PSYCHIAT, V56, P101, DOI 10.1016/j.biopsych.2004.04.002 Wang WQ, 2015, AM J CHINESE MED, V43, P71, DOI 10.1142/S0192415X15500056 Willner P, 1997, PSYCHOPHARMACOLOGY, V134, P319, DOI 10.1007/s002130050456 Xiang J, 2012, NEUROCHEM RES, V37, P1820, DOI 10.1007/s11064-012-0796-z Xiang J, 2010, CAN J PHYSIOL PHARM, V88, P907, DOI [10.1139/Y10-069, 10.1139/y10-069] Xie WY, 2016, CHEM-BIOL INTERACT, V246, P11, DOI 10.1016/j.cbi.2016.01.004 Xie WY, 2015, AM J CHINESE MED, V43, P457, DOI 10.1142/S0192415X15500299 Zheng MZ, 2013, J ETHNOPHARMACOL, V147, P108, DOI 10.1016/j.jep.2013.02.015 Zheng MZ, 2012, PHYTOMEDICINE, V19, P145, DOI 10.1016/j.phymed.2011.06.029 Zheng MZ, 2011, CELL MOL NEUROBIOL, V31, P421, DOI 10.1007/s10571-010-9635-4 NR 31 TC 10 Z9 10 U1 0 U2 4 PU HINDAWI LTD PI LONDON PA ADAM HOUSE, 3RD FLR, 1 FITZROY SQ, LONDON, W1T 5HF, ENGLAND SN 1741-427X EI 1741-4288 J9 EVID-BASED COMPL ALT JI Evid.-based Complement Altern. Med. PY 2018 VL 2018 AR 5916451 DI 10.1155/2018/5916451 PG 8 WC Integrative & Complementary Medicine SC Integrative & Complementary Medicine GA FU1AF UT WOS:000423580800001 PM 29576796 OA Green Published, Green Submitted, gold DA 2021-10-15 ER PT J AU Huang, SP Ho, TM Yang, CW Chang, YJ Chen, JF Shaw, NS Horng, JC Hsu, SL Liao, MY Wu, LC Ho, JAA AF Huang, Szu-Ping Ho, Tzu-Ming Yang, Chih-Wen Chang, Ya-Ju Chen, Jie-Fu Shaw, Ning-Sing Horng, Jia-Cherng Hsu, Shih-Lan Liao, Ming-Yuan Wu, Li-Chen Ho, Ja-an Annie TI Chemopreventive Potential of Ethanolic Extracts of Luobuma Leaves (Apocynum venetum L.) in Androgen Insensitive Prostate Cancer SO NUTRIENTS LA English DT Article DE composition analysis; Apocynum venetum L; anti-cancer activity; synergistic therapy; lupeol; androgen-insensitive prostate cancer ID URACIL DNA GLYCOSYLASE; BASE EXCISION-REPAIR; GANODERIC ACID DM; BETA-CATENIN; CELL-GROWTH; G2/M ARREST; APOPTOSIS; LUPEOL; STRESS; DAMAGE AB Luobuma (Apocynum venetum L. (AVL)) is a popular beverage in Asia and has been reportedly to be associated with the bioactivities such as cardiotonic, diuretic, antioxidative, and antihypertensive. However, its biofunction as chemoprevention activity is seldom addressed. Herein, we aimed to characterize the anti-androgen-insensitive-prostate-cancer (anti-AIPC) bioactive compounds of Luobuma, and to investigate the associated molecular mechanisms. Activity-guided-fractionation (antioxidative activity and cell survivability) of Luobuma ethanolic extracts was performed to isolate and characterize the major bioactive compounds using Ultra Performance Liquid Chromatography (UPLC), Liquid Chromatography-Mass Spectrometry (LC-MS), and Nuclear Magnetic Resonance (NMR). Plant sterols (lupeol, stigamasterol and -sitosterol) and polyphenolics (isorhamnetin, kaempferol, and quercetin) were identified. Lupeol, a triterpene found in the fraction (F8) eluted by 10% ethyl acetate/90% hexane and accounted for 19.3% (w/w) of F8, inhibited the proliferation of PC3 cells. Both lupeol and F8 induced G2/M arrest, inhibition of -catenin signaling, regulation of apoptotic signal molecules (cytochrome c, Bcl-2, P53, and caspase 3 and 8), and suppression DNA repair enzyme expression (Uracil-DNA glycosylase (UNG)). To our knowledge, our study is the first report that lupeol inhibited the expression of UNG to elicit the cytotoxicity against androgen-insensitive-prostate-cancer cells. Collectively, Luobuma, which contains several antitumor bioactive compounds, holds the potential to be a dietary chemopreventive agent for prostate cancer. C1 [Huang, Szu-Ping; Horng, Jia-Cherng; Ho, Ja-an Annie] Natl Tsing Hua Univ, Dept Chem, Hsinchu 30013, Taiwan. [Ho, Tzu-Ming; Yang, Chih-Wen; Chang, Ya-Ju; Chen, Jie-Fu; Ho, Ja-an Annie] Natl Taiwan Univ, Dept Biochem Sci & Technol, BioAnalyt Chem & Nanobiomed Lab, Taipei 10617, Taiwan. [Yang, Chih-Wen; Chen, Jie-Fu; Shaw, Ning-Sing] Natl Taiwan Univ, Dept Biochem Sci & Technol, Appl & Translat Nutr Lab, Taipei 10617, Taiwan. [Chang, Ya-Ju; Wu, Li-Chen] Natl Chi Nan Univ, Dept Appl Chem, Nantou 54561, Taiwan. [Hsu, Shih-Lan] Taichung Vet Gen Hosp, Dept Med Educ & Res, Taichung 40705, Taiwan. [Liao, Ming-Yuan] Natl Chung Hsin Univ, Dept Chem, Taichung 40227, Taiwan. RP Ho, JAA (corresponding author), Natl Tsing Hua Univ, Dept Chem, Hsinchu 30013, Taiwan.; Ho, JAA (corresponding author), Natl Taiwan Univ, Dept Biochem Sci & Technol, BioAnalyt Chem & Nanobiomed Lab, Taipei 10617, Taiwan.; Wu, LC (corresponding author), Natl Chi Nan Univ, Dept Appl Chem, Nantou 54561, Taiwan.; Liao, MY (corresponding author), Natl Chung Hsin Univ, Dept Chem, Taichung 40227, Taiwan. EM 38903@yungshingroup.com; tzumingho@ntu.edu.tw; r02b22032@ntu.edu.tw; d00b22001@ntu.edu.tw; jeffwizardxd@gmail.com; nsshaw@ntu.edu.tw; jchorng@mx.nthu.edu.tw; hsu2326@gmail.com; mliao@dragon.nchu.edu.tw; lw25@ncnu.edu.tw; jaho@ntu.edu.tw RI Hsiao, Wei-Hung/B-9931-2013; Horng, Jia-Cherng/Q-5935-2019 OI Horng, Jia-Cherng/0000-0002-9936-5338 FU Taiwan MOST; TVGH-NCNU program [103-2113-M-260-002-MY2, 102-2628-M-002-004-MY4, 101-2113-M-002-003-MY3, 105-2113-M-260-004-MY2, TCVGH-NCNU-104-7905, TCVGH-NCNU-106-7903] FX This work was funded by Taiwan MOST and TVGH-NCNU program under grant numbers 103-2113-M-260-002-MY2, 102-2628-M-002-004-MY4, 101-2113-M-002-003-MY3, 105-2113-M-260-004-MY2, TCVGH-NCNU-104-7905 and TCVGH-NCNU-106-7903. I would like to thank Thomas A. Gavin, Professor Emeritus, Cornell University, for help with editing the English in this paper. CR Ali H, 2015, DRUG DES DEV THER, V9, P2793, DOI 10.2147/DDDT.S83514 Behrens J, 1998, SCIENCE, V280, P596, DOI 10.1126/science.280.5363.596 Bozic I, 2013, ELIFE, V2, DOI 10.7554/eLife.00747 Duthie SJ, 1997, MUTAT RES-GEN TOX EN, V390, P141, DOI 10.1016/S0165-1218(97)00010-4 Feldman BJ, 2001, NAT REV CANCER, V1, P34, DOI 10.1038/35094009 HOLUND B, 1980, SCAND J UROL NEPHROL, V14, P29, DOI 10.3109/00365598009181186 Irie K, 2009, J NAT MED, V63, P111, DOI 10.1007/s11418-008-0296-2 Jacobs AL, 2012, CHROMOSOMA, V121, P1, DOI 10.1007/s00412-011-0347-4 Kamata K, 2008, J NAT MED-TOKYO, V62, P160, DOI 10.1007/s11418-007-0202-3 Kim DW, 2000, J ETHNOPHARMACOL, V72, P53, DOI 10.1016/S0378-8741(00)00197-5 Kim EH, 2011, CANCER PREV RES, V4, P425, DOI 10.1158/1940-6207.CAPR-10-0153 Krokan HE, 2002, ONCOGENE, V21, P8935, DOI 10.1038/sj.onc.1205996 Lento W, 2014, GENE DEV, V28, P995, DOI 10.1101/gad.231944.113 Lin YM, 2001, CANCER RES, V61, P6345 Liu CM, 1999, P NATL ACAD SCI USA, V96, P6273, DOI 10.1073/pnas.96.11.6273 Liu J, 2009, BIOORG MED CHEM LETT, V19, P2154, DOI 10.1016/j.bmcl.2009.02.119 Liu M, 2002, J AGR FOOD CHEM, V50, P2926, DOI 10.1021/jf0111209 Liu X, 2014, BMC COMPLEM ALTERN M, V14, DOI 10.1186/1472-6882-14-12 Lu XB, 2004, CELL CYCLE, V3, P1363, DOI 10.4161/cc.3.11.1241 Lu XB, 2004, MOL CELL, V15, P621, DOI 10.1016/j.molcel.2004.08.007 Olmeda D, 2003, MOL BIOL CELL, V14, P2844, DOI 10.1091/mbc.E03-01-0865 Parimi V, 2014, AM J CLIN EXP UROL, V2, P273 Prakash C. V. S., 2012, Research Journal of Pharmaceutical Sciences, V1, P23 Prasad S, 2008, MOL CARCINOGEN, V47, P916, DOI 10.1002/mc.20442 Prasad S, 2008, NUTR CANCER, V60, P120, DOI 10.1080/01635580701613772 Pulukuri SMK, 2009, MOL CANCER RES, V7, P1285, DOI 10.1158/1541-7786.MCR-08-0508 Qian Z N, 1988, Zhong Yao Tong Bao, V13, P44 Saleem M, 2005, CANCER RES, V65, P11203, DOI 10.1158/0008-5472.CAN-05-1965 Saleem M, 2009, BIOCHEM BIOPH RES CO, V388, P576, DOI 10.1016/j.bbrc.2009.08.060 Saleem M, 2009, CARCINOGENESIS, V30, P808, DOI 10.1093/carcin/bgp044 Sarkar S, 2014, ENDOCR-RELAT CANCER, V21, P113, DOI 10.1530/ERC-13-0315 Scholtysek C, 2009, BIOCHEM BIOPH RES CO, V379, P795, DOI 10.1016/j.bbrc.2008.11.114 STONER GD, 1995, J CELL BIOCHEM, P169 von Holtz RL, 1998, NUTR CANCER, V32, P8, DOI 10.1080/01635589809514709 Wu GS, 2012, FITOTERAPIA, V83, P408, DOI 10.1016/j.fitote.2011.12.004 Wu LC, 2006, FOOD CHEM, V95, P319, DOI 10.1016/j.foodchem.2005.01.002 Xie WY, 2012, J ETHNOPHARMACOL, V141, P1, DOI 10.1016/j.jep.2012.02.003 Xu XH, 2014, J BIOL CHEM, V289, P8881, DOI 10.1074/jbc.M113.538835 Yang FQ, 2015, MOL MED REP, V11, P1085, DOI 10.3892/mmr.2014.2813 Ziegler HL, 2002, ANTIMICROB AGENTS CH, V46, P1441, DOI 10.1128/AAC.46.5.1441-1446.2002 NR 40 TC 10 Z9 12 U1 3 U2 20 PU MDPI AG PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND SN 2072-6643 J9 NUTRIENTS JI Nutrients PD SEP PY 2017 VL 9 IS 9 AR 948 DI 10.3390/nu9090948 PG 16 WC Nutrition & Dietetics SC Nutrition & Dietetics GA FI4UM UT WOS:000411973200031 PM 28846663 OA Green Published, gold, Green Submitted DA 2021-10-15 ER PT J AU Jiang, ZH Jiang, XM Li, C Xue, HT Zhang, XY AF Jiang, Zhihui Jiang, Xuemei Li, Cui Xue, Huiting Zhang, Xiaoying TI Development of an IgY Antibody-Based Immunoassay for the Screening of the CYP2E1 Inhibitor/Enhancer from Herbal Medicines SO FRONTIERS IN PHARMACOLOGY LA English DT Article DE cytochrome P4502E1 (CYP2E1); chicken egg yolk antibody (IgY); falconoid; alcohol; APAP ID INDUCED HEPATIC-INJURY; OXIDATIVE STRESS; CYTOCHROME-P450 ENZYMES; EXPRESSION; LIVER; RATS; MICE; INDUCTION; EXTRACT; CYP1A2 AB Cytochrome P450 (CYP) 2E1 is an important enzyme involved in the metabolism of many endogenous and exogenous compounds. It is essential to evaluate the expression of CYP2E1 in the studies of drug-drug interactions and the screening of drugs, natural products, and foodstuffs. The present work is a feasibility study on the development of immunoassays using a specific and sensitive chicken-sourced anti-CYP2E1 IgY antibody. Cloning, expression, and purification of a recombinant CYP2E1 (mice origin) protein were carried out. Anti-CYP2E1 IgY antibodies were generated by immunizing white Leghorn chickens with purified recombinant CYP2E1 protein and were purified by immune affinity chromatography. The IgY titer attained a peak level (>1:128,000) after the fifth booster injection. For evaluation of the expression of CYP2E1 in different herbal treatment samples, the mice were treated by oral gavage for 3 days with alcohol (50% 15 mL/kg), acetaminophen (APAP, 300 mg/kg), Cornus officinalis extract (100 mg/kg), Alhagi-honey extract (100 mg/kg), Apocynum venetum extract (100 mg/kg), hyperoside (50 mg/kg), isoquercetin (50 mg/kg), 4-hydroxyphenylacetic acid (50 mg/kg), 3-hydroxyphenylacetic acid (50 mg/kg), and 3,4-hydroxyphenylacetic acid (50 mg/kg). The expression of CYP2E1 was determined by Western blot analysis, immunohistochemistry. ELISA, and immunomagnetic beads (IMBs) using anti-CYP2E1 IgY in liver tissue. The results showed that C. officinalis extract. Alhagi-honey extract, A. venetum extract, hyperoside, isoquercetin, and their xenobiotics 4-hydroxyphenylacetic acid, 3-hydroxyphenylacetic acid, and 3,4-hydroxyphenylacetic acid significantly decreased CYP2E1 levels. Alcohol and APAP treatments significantly increased CYP2E1 levels as analyzed with Western blot analysis, immunohistochemistry, and ELISA. The IMB method is suitable for large-scale screening, and it is a rapid screening (20 min) that uses a portable magnet and has no professional requirements for the operator, which makes it useful for on-the-spot analysis. Considering these results, the anti CYP2E1 IgY could be applied as a novel research tool in screening for the CYP2E1 inhibitor/enhancer. C1 [Jiang, Zhihui; Jiang, Xuemei; Li, Cui; Zhang, Xiaoying] Northwest A&F Univ, Coll Vet Med, Yangling, Peoples R China. [Jiang, Zhihui; Zhang, Xiaoying] Shaanxi Univ Technol, Coll Biol Sci & Engn, Qinling Bashan Mt Bioresources Comprehens Dev CIC, Chinese German Joint Lab Nat Prod Res, Hanzhong, Peoples R China. [Xue, Huiting] Xinjiang Agr Univ, Coll Vet Med, Urumqi, Peoples R China. RP Zhang, XY (corresponding author), Northwest A&F Univ, Coll Vet Med, Yangling, Peoples R China.; Zhang, XY (corresponding author), Shaanxi Univ Technol, Coll Biol Sci & Engn, Qinling Bashan Mt Bioresources Comprehens Dev CIC, Chinese German Joint Lab Nat Prod Res, Hanzhong, Peoples R China. EM zhang.xy@nwsuaf.edu.cn RI Zhang, Xiaoying/O-2606-2016 OI Zhang, Xiaoying/0000-0002-0055-7322 FU High and Foreign Experts Affairs [GDW20146100228]; Key Construction Program of International Cooperation Base in ST [2015SD0018]; Key cooperation project in Shaanxi Province; Construction Project of Shaanxi Collaborative Innovation Center (Qinling Bashan Mountains Bioresources Comprehensive Development and Collaborative Innovation) [QBXT-Z(Z)-15-1] FX This work was supported by the High and Foreign Experts Affairs (GDW20146100228), the Key Construction Program of International Cooperation Base in S&T (2015SD0018) and Key cooperation project in Shaanxi Province, and the Construction Project of Shaanxi Collaborative Innovation Center (Qinling Bashan Mountains Bioresources Comprehensive Development and Collaborative Innovation, with Sub-topic grant number QBXT-Z(Z)-15-1). CR Ahmad I, 2014, MOL CELL BIOCHEM, V393, P209, DOI 10.1007/s11010-014-2062-y Chen X, 2005, PHARM RES-DORDR, V22, P892, DOI 10.1007/s11095-005-4584-1 Chen YP, 2016, NANOSCALE, V8, P1100, DOI 10.1039/c5nr07044a da Silva WD, 2010, VET IMMUNOL IMMUNOP, V135, P173, DOI 10.1016/j.vetimm.2009.12.011 Demeilliers C, 2002, GASTROENTEROLOGY, V123, P1278, DOI 10.1053/gast.2002.35952 GU L, 1992, PHARMACOGENETICS, V2, P73, DOI 10.1097/00008571-199204000-00004 Hartman JH, 2015, BIOCHEM PHARMACOL, V97, P341, DOI 10.1016/j.bcp.2015.07.026 He JX, 2015, VIRAL IMMUNOL, V28, P489, DOI 10.1089/vim.2015.0030 Jiang ZH, 2016, NAT PROD RES, V30, P469, DOI 10.1080/14786419.2015.1020492 Jiang ZH, 2016, J NAT MED-TOKYO, V70, P45, DOI 10.1007/s11418-015-0935-3 Jin M, 2013, CELL DEATH DIS, V4, DOI 10.1038/cddis.2013.78 Konstandi M, 2013, AM J PHYSIOL-ENDOC M, V304, pE1118, DOI 10.1152/ajpendo.00585.2012 Kovacs-Nolan J, 2004, AVIAN POULT BIOL REV, V15, P25, DOI 10.3184/147020604783637462 LARSSON A, 1993, POULTRY SCI, V72, P1807, DOI 10.3382/ps.0721807 Leclercq GRI, 2001, AM J PHYSIOL-GASTR L, V281, pG1135 Li C, 2016, ANAL CHEM, V88, P4092, DOI 10.1021/acs.analchem.6b00426 Liang DL, 2014, PHARMAZIE, V69, P301, DOI 10.1691/ph.2014.3852 Liu HaiYing, 2009, Journal of Northwest A & F University - Natural Science Edition, V37, P173 Lu KH, 2014, FOOD FUNCT, V5, P1027, DOI 10.1039/c3fo60449g Martinez-Gil N, 2015, INVEST OPHTH VIS SCI, V56, P6855, DOI 10.1167/iovs.14-16291 Nam MK, 2014, MOL MED REP, V10, P1821, DOI 10.3892/mmr.2014.2398 Schade R., 1995, ALTEX, V13, P5 Shaker E, 2010, FOOD CHEM TOXICOL, V48, P2785, DOI 10.1016/j.fct.2010.07.007 Shayakhmetova GM, 2015, TOXICOL LETT, V234, P59, DOI 10.1016/j.toxlet.2015.02.008 Su T, 2013, J ETHNOPHARMACOL, V146, P734, DOI 10.1016/j.jep.2013.01.028 Suzuki K, 2015, BIOSCI BIOTECH BIOCH, V79, P1669, DOI 10.1080/09168451.2015.1039481 VANG O, 1991, CHEM-BIOL INTERACT, V78, P85, DOI 10.1016/0009-2797(91)90105-G Wang Y, 2010, INT J CANCER, V126, P1788, DOI 10.1002/ijc.24689 Wang YH, 2015, J ETHNOPHARMACOL, V166, P66, DOI 10.1016/j.jep.2015.03.002 Wargovich MJ, 2006, J NUTR, V136, p832S, DOI 10.1093/jn/136.3.832S Xie WY, 2015, AM J CHINESE MED, V43, P457, DOI 10.1142/S0192415X15500299 Yang J, 2013, J ETHNOPHARMACOL, V147, P174, DOI 10.1016/j.jep.2013.02.029 Zhou R, 2014, BBA-GEN SUBJECTS, V1840, P209, DOI 10.1016/j.bbagen.2013.09.018 Zhou XL, 2015, J PHARM PHARMACOL, V67, P980, DOI 10.1111/jphp.12381 NR 34 TC 10 Z9 10 U1 0 U2 11 PU FRONTIERS MEDIA SA PI LAUSANNE PA AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND SN 1663-9812 J9 FRONT PHARMACOL JI Front. Pharmacol. PD DEC 22 PY 2016 VL 7 AR 502 DI 10.3389/fphar.2016.00502 PG 11 WC Pharmacology & Pharmacy SC Pharmacology & Pharmacy GA EF4BF UT WOS:000390268700001 PM 28066249 OA gold, Green Published DA 2021-10-15 ER PT J AU Thomson, GE AF Thomson, Graeme E. TI Further consideration of Asian medicinal plants in treating common chronic diseases in the West SO JOURNAL OF MEDICINAL PLANTS RESEARCH LA English DT Article DE Ethnopharmacology; plant; chronic disease AB Ethnopharmacological knowledge is viewed as an increasingly relevant and important source for development of new medicinal products. Historically plants have been the basis of many medicines and are a major resource for human health care. This project critically examined the science-based medical evidence supporting use of traditional Asian medicinal plants for curative, preventive or palliative functions relevant to important chronic ailments in Western countries (eg. cardiovascular disease, cancer, diabetes, arthritis, dementia, asthma). Around 400 medicinal plant species were reviewed through 3,500 scientific references. There were more species associated with anticancer effects than any other chronic disease, suggesting that if Asian medicinal species are to make new impacts on Western health there is a strong chance that this will be as anticancer agents. However, conclusive positive results from randomised, double blind, placebo-controlled experiments with humans were only available for a limited number of crops. Garlic (Allium sativum), turmeric (Curcuma longa), green tea (Camellia sinensis), ginseng (Panax ginseng), Astragalus membranaceus and Ginkgo biloba are important Chinese medicinal plants with strong support from medical efficacy trials. Other species backed by good data include Apocynum venetum, Codonopsis pilosula, Fallopia multiflora, Huperzia serrata, Lycium barbarum, Lycium chinense, Stephania tetrandra and Trichosanthes kirilowii. C1 Dept Primary Ind, Ferntree Gully Dc, Vic 3156, Australia. RP Thomson, GE (corresponding author), Dept Primary Ind, Private Bag 15, Ferntree Gully Dc, Vic 3156, Australia. EM graeme.thomson@dpi.vic.gov.au CR BLUMENTHAL M, 1999, HERBAL GRAM, V46, P52 BLUMENTHAL M, 1999, HERBAL GRAM, V46, P51 BLUMENTHAL M, 1999, HERBAL GRAM, V46, P29 Craker L. E., 2002, Trends in new crops and new uses. Proceedings of the Fifth National Symposium, Atlanta, Georgia, USA, 10-13 November, 2001, P491 Lee H., 2005, ASIAN FUNCTIONAL FOO, P21 [李廷谦 Li Tingqian], 2005, [中国循证医学杂志, Chinese Journal of Evidence-Based Medicine], V5, P431 Liu Ch.-X., 2005, HDB MED PLANTS, P31 O'Hara M, 1998, ARCH FAM MED, V7, P523, DOI 10.1001/archfami.7.6.523 Samy J., 2005, HERBS MALAYSIA, P244 THOMSON G, 2007, RURAL IND RES DEV CO, V6128 NR 10 TC 10 Z9 10 U1 0 U2 19 PU ACADEMIC JOURNALS PI VICTORIA ISLAND PA P O BOX 5170-00200 NAIROBI, VICTORIA ISLAND, LAGOS 73023, NIGERIA SN 1996-0875 J9 J MED PLANTS RES JI J. Med. Plants Res. PD JAN 18 PY 2010 VL 4 IS 2 BP 125 EP 130 PG 6 WC Chemistry, Medicinal SC Pharmacology & Pharmacy GA 566TK UT WOS:000275395900008 DA 2021-10-15 ER PT J AU Karem, J Woods, SA Drummond, F Stubbs, C AF Karem, Joseph Woods, Stephen A. Drummond, Francis Stubbs, Constance TI The relationships between Apocrita wasp populations and flowering plants in Maine's wild lowbush blueberry agroecosystems SO BIOCONTROL SCIENCE AND TECHNOLOGY LA English DT Article DE Hymenoptera; Vaccinium; pest management; floral resources; natural enemies; conservation biocontrol ID HYMENOPTERA-BRACONIDAE; MICROPLITIS-CROCEIPES; BERTHA ARMYWORM; LIFE-HISTORY; LEPIDOPTERA; ICHNEUMONIDAE; PARASITISM; NOCTUIDAE; NECTAR; PESTS AB This was the first study to have surveyed the spatial and temporal structure of Apocrita wasps in lowbush blueberry fields, a unique native agricultural landscape in Maine and eastern Canada. The relative abundances of wasps associated with lowbush blueberry (Vaccinium angustifolium Ait.) were investigated in 33 blueberry fields throughout Washington County, Maine, USA. Native wasps were captured during the springs and summers of 1997 and 1998 in Malaise traps erected along a transect in each field. Vegetation sampling was also conducted along these transects to quantify available floral resources. Data indicate the abundance of the total wasp community was positively associated with the abundance of sheep laurel (Kalmia angustifolia L.). Relationships between trap capture of 13 wasp morphospecies and other flowering weeds were also investigated. Most taxa in 1998 were positively associated with one or more of the following flowering plants: bunchberry (Cornus canadensis L.), bush honeysuckle (Diervilla lonicera P. Mill.), dogbane (Apocynum androsaemifolium L.), sheep laurel, and witherod (Viburnum nudum var. cassinoides L.). Similar results were not evident in 1997 because the method used to sample vegetation was not as extensive as that used in 1998. However, sheep laurel was positively associated with the wasp genera Microplitis spp. and Phanerotoma spp. during both years. C1 [Karem, Joseph; Woods, Stephen A.; Drummond, Francis; Stubbs, Constance] Univ Maine, Sch Biol & Ecol, Orono, ME 04469 USA. RP Karem, J (corresponding author), Univ Maine, Sch Biol & Ecol, Orono, ME 04469 USA. EM Joseph_Karem@umit.maine.edu CR ALLEN DC, 1972, CAN ENTOMOL, V104, P1609, DOI 10.4039/Ent1041609-10 Altieri, 1994, BIODIVERSITY PEST MA ALTIERI MA, 1979, HORTSCIENCE, V14, P12 ALTIERI MA, 1993, HYMENOPTERA BIODIVER, P235 ANDOW D, 1983, AGR ECOSYST ENVIRON, V9, P25, DOI 10.1016/0167-8809(83)90003-8 ARTHUR AP, 1986, CAN ENTOMOL, V118, P487, DOI 10.4039/Ent118487-5 Babendreier D, 2000, B ENTOMOL RES, V90, P291, DOI 10.1017/S0007485300000419 Barbosa, 1998, CONSERVATION BIOL CO BARNARD ES, 1998, N AM WILDLIFE WILDFL Bellows T.S., 1999, HDB BIOL CONTROL PRI Borror D.J., 1989, INTRO STUDY INSECTS Braman SK, 2002, ENVIRON ENTOMOL, V31, P564, DOI 10.1603/0046-225X-31.3.564 BROADLEY RH, 1984, J AUST ENTOMOL SOC, V23, P145 BRONSTEIN JL, 1991, OIKOS, V61, P175, DOI 10.2307/3545335 Buleza VV, 2002, ZOOL ZH, V81, P329 BURGIO G, 2007, ENCY PEST MANAGEMENT, V2, P387 CHIRI AA, 1986, CAN ENTOMOL, V118, P329, DOI 10.4039/Ent118329-4 Cox G.W., 1979, AGR ECOLOGY ANAL WOR DEGOMEZ T, 1988, 229 U MAIN COOP EXT DRUMMOND FA, 2000, MAINE AGR FOREST EXP, V172 DRUMMOND FA, 2000, TRENDS ENTOMOLOGY, V3, P23 DRUMMOND FA, 2002, 629 U MAIN COOP EXT Dufour R., 2000, FARMSCAPING ENHANCE EBERHARDT LL, 1978, J WILDLIFE MANAGE, V42, P1, DOI 10.2307/3800685 EGER JE, 1982, ENVIRON ENTOMOL, V11, P327, DOI 10.1093/ee/11.2.327 GEORGITIS KM, 2001, THESIS U MAINE ORONO GOULET H, 1993, HYMENOPTERA WORLD ID Haines A., 1998, FLORA MAINE MANUAL I HAINES A, 1998, FLORA MAINE Heimpel George E., 2005, P267, DOI 10.1017/CBO9780511542220.010 Hochberg ME, 2000, PARASITOID POPULATION BIOLOGY, P266 HUNT JH, 1991, J KANSAS ENTOMOL SOC, V64, P127 Idris AB, 1995, ENVIRON ENTOMOL, V24, P1726, DOI 10.1093/ee/24.6.1726 Jacas J. A., 2003, Bulletin OILB/SROP, V26, P37 JAROSSU JC, 1999, THESIS U MAINE US Jervis M. A., 1996, INSECT NATURAL ENEMI JOHNSON LM, 1980, CATALOGUE TYPES NEW Jones D, 1996, INSECT BIOCHEM MOLEC, V26, P981, DOI 10.1016/S0965-1748(96)00050-1 KAREM J, 2005, THESIS U MAINE ORONO Karem J, 2006, ENVIRON ENTOMOL, V35, P1083, DOI 10.1603/0046-225X-35.4.1083 Kerdelhue C, 2000, ECOLOGY, V81, P2832, DOI 10.1890/0012-9658(2000)081[2832:CCESOO]2.0.CO;2 Krebs C.J., 1989, ECOLOGICAL METHODOLO Landis DA, 2000, ANNU REV ENTOMOL, V45, P175, DOI 10.1146/annurev.ento.45.1.175 LIEUS K, 1960, CAN ENTOMOL, V92, P369 MALONEY D, 2003, MAINE AGR FOREST EXP, V190 MALONEY D, 2002, THESIS U MAINE ORONO Manly BFJ, 1997, RANDOMIZATION BOOTST Marino PC, 1996, ECOL APPL, V6, P276, DOI 10.2307/2269571 Mccune B, 1999, MULTIVARIATE ANAL EC Michaud JP, 2002, ANN ENTOMOL SOC AM, V95, P531, DOI 10.1603/0013-8746(2002)095[0531:CBCACR]2.0.CO;2 MIZELL RF, 2008, MANY PLANTS HAVE EXT MORRISON ML, 1992, WILDLIFE HABITAT REL Newcomb L., 1977, NEWCOMBS WILDFLOWER Oliver I, 1996, CONSERV BIOL, V10, P99, DOI 10.1046/j.1523-1739.1996.10010099.x Olson D. M., 2005, P137, DOI 10.1017/CBO9780511542220.006 ONeill K.M., 2001, CORNELL S ARTHR BIOL Pedigo LP., 2002, ENTOMOLOGY PEST MANA Pickett CH, 1998, ENHANCING BIOL CONTR PISICA C, 1979, ENTOMOPHAGA, V24, P349, DOI 10.1007/BF02374173 Powell Wilf, 2003, IOBC-WPRS Bulletin, V26, P123 Quezada J. R., 1976, Citrograph, V61, P201 QUEZADA JR, 1976, CITROGRAPH, V61, P236 QUEZADA JR, 1976, CITROGRAPH, V61, P242 RAHOO G M, 1988, Entomologist's Monthly Magazine, V124, P161 ROOT RB, 1967, ECOL MONOGR, V37, P317, DOI 10.2307/1942327 Saaksjarvi IE, 2006, J TROP ECOL, V22, P167, DOI 10.1017/S0266467405002993 *SAS I INC, 1999, SAS SYST WIND VERS 8 Shaw Mark R., 2001, Journal of Hymenoptera Research, V10, P101, DOI 10.1057/palgrave.jt.5740037 Shaw MR, 2001, J INSECT CONSERV, V5, P253, DOI 10.1023/A:1013393229923 Shukla AN, 1997, BIOL AGRIC HORTIC, V14, P71 Simon JL, 1997, RESAMPLING NEW STAT Snyder WE, 2006, ECOL LETT, V9, P789, DOI 10.1111/j.1461-0248.2006.00922.x Stapel JO, 1997, ENVIRON ENTOMOL, V26, P617, DOI 10.1093/ee/26.3.617 Steffan-Dewenter I, 2003, CONSERV BIOL, V17, P1036, DOI 10.1046/j.1523-1739.2003.01575.x Stephens CJ, 2006, AUST J ENTOMOL, V45, P176, DOI 10.1111/j.1440-6055.2006.00519.x STUBBS CS, 1992, MAINE AGR EXPT STATI, V148 Takada Y, 2001, J ECON ENTOMOL, V94, P1340, DOI 10.1603/0022-0493-94.6.1340 Tillman PG, 1995, J ENTOMOL SCI, V30, P390, DOI 10.18474/0749-8004-30.3.390 Tscharntke T, 2005, ECOL LETT, V8, P857, DOI 10.1111/j.1461-0248.2005.00782.x TURNOCK WJ, 1988, CAN ENTOMOL, V120, P401, DOI 10.4039/Ent120401-5 VANEMDEN HF, 1990, CRITICAL ISSUES IN BIOLOGICAL CONTROL, P63 Vieira M. F., 1999, Revista Brasileira de Biologia, V59, P693, DOI 10.1590/S0034-71081999000400018 WAAGE JK, 1985, J APPL ECOL, V22, P825, DOI 10.2307/2403232 Wackers FL, 2004, BIOL CONTROL, V29, P307, DOI 10.1016/j.biocontrol.2003.08.005 Weissmann Michael J., 1999, University of Kansas Museum of Natural History Special Publication, V24, P69 *WILL COLL, WILL COLL COLL ONL Winkler Karin, 2005, Proceedings of the Section Experimental and Applied Entomology of the Netherlands Entomological Society (N.E.V.), V16, P125 Wratten S. D., 1987, INTEGRATED PEST MANA, P89 YARBOROUGH DE, 1999, WILD BLUEBERRIES US YARBOROUGH DE, 1997, ACTA HORTIC, V446, P33 YASTREBOV IO, 1993, ZASHCHITA RASTENII M, V11, P27 NR 91 TC 10 Z9 11 U1 1 U2 13 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND SN 0958-3157 EI 1360-0478 J9 BIOCONTROL SCI TECHN JI Biocontrol Sci. Technol. PY 2010 VL 20 IS 3 BP 257 EP 274 DI 10.1080/09583150903477726 PG 18 WC Biotechnology & Applied Microbiology; Entomology SC Biotechnology & Applied Microbiology; Entomology GA 542FB UT WOS:000273477000003 DA 2021-10-15 ER PT J AU Tang, JS Gao, H Wang, CX Dai, Y Bao, L Ye, WC Yao, XS AF Tang, Jin-shan Gao, Hao Wang, Chuan-xi Dai, Yi Bao, Li Ye, Wen-cai Yao, Xin-sheng TI Antioxidative Phenylpropanoid-Substituted Epicatechin Glycosides from Parabarium huaitingii SO PLANTA MEDICA LA English DT Article DE Parabarium huaitingii; Apocynaceae; phenylpropanoid-substituted epicatechin glycosides; natural polyphenols; antioxidative activities ID APOCYNUM-VENETUM; CINCHONAINS; CATECHINS; TANNINS AB Three new phenylpropanoid-substituted epicatechin glycosides, namely parabarosides A - C (1-3), together with three known compounds, 5-caffeoylquinic acid (4), 5-caffeoylshikimic acid (5), and 3,4-dicaffeoylquinic acid (6), were obtained from the plant Parabarium huaitingii. Their structures were determined and full assignments of H-1- and C-13-NMR spectroscopic data were achieved by analyses of 1D- and 2D-NMR, mass, and CID spectra. The oxygen radical absorbance capacity (ORAC) assay was applied to evaluate their antioxidative capacity in vitro, which revealed that 1-6 showed strong antioxidative properties. C1 [Tang, Jin-shan; Gao, Hao; Wang, Chuan-xi; Dai, Yi; Ye, Wen-cai; Yao, Xin-sheng] Jinan Univ, Inst Tradit Chinese Med & Nat Prod, Guangzhou 510632, Guangdong, Peoples R China. [Tang, Jin-shan; Bao, Li; Yao, Xin-sheng] Shenyang Pharmaceut Univ, Coll Tradit Chinese Med, Shenyang, Peoples R China. RP Yao, XS (corresponding author), Jinan Univ, Inst Tradit Chinese Med & Nat Prod, Guangzhou 510632, Guangdong, Peoples R China. EM yaoxinsheng@vip.tom.com CR CHEN HF, 1993, PHYTOCHEMISTRY, V33, P183, DOI 10.1016/0031-9422(93)85419-R *CHIN VIRT HERB, INF TIPS ONL Davalos A, 2004, J AGR FOOD CHEM, V52, P48, DOI 10.1021/jf0305231 Fan WZ, 1999, CHEM PHARM BULL, V47, P1049, DOI 10.1248/cpb.47.1049 Gao H, 2008, MAGN RESON CHEM, V46, P630, DOI 10.1002/mrc.2222 Han T, 2006, CHEM NAT COMPD+, V42, P567, DOI 10.1007/s10600-006-0215-2 Huang HL, 2007, HELV CHIM ACTA, V90, P1751, DOI 10.1002/hlca.200790184 Huang MinZhu, 2006, Academic Journal of Second Military Medical University, V27, P888 Li Y, 2006, CHINESE CHEM LETT, V17, P207 MARIA PA, 2006, J AGR FOOD CHEM, V54, P10234 NONAKA G, 1982, CHEM PHARM BULL, V30, P4268 Tang WX, 2007, J NAT PROD, V70, P2010, DOI 10.1021/np0703895 Xiong QB, 2000, PLANTA MED, V66, P127, DOI 10.1055/s-2000-11135 NR 13 TC 10 Z9 12 U1 2 U2 21 PU GEORG THIEME VERLAG KG PI STUTTGART PA RUDIGERSTR 14, D-70469 STUTTGART, GERMANY SN 0032-0943 EI 1439-0221 J9 PLANTA MED JI Planta Med. PD DEC PY 2009 VL 75 IS 15 BP 1586 EP 1590 DI 10.1055/s-0029-1185836 PG 5 WC Plant Sciences; Chemistry, Medicinal; Integrative & Complementary Medicine; Pharmacology & Pharmacy SC Plant Sciences; Pharmacology & Pharmacy; Integrative & Complementary Medicine GA 538IS UT WOS:000273178400006 PM 19579182 DA 2021-10-15 ER PT J AU ABE, F YAMAUCHI, T AF ABE, F YAMAUCHI, T TI CARDENOLIDE GLYCOSIDES FROM THE ROOTS OF APOCYNUM CANNABINUM SO CHEMICAL & PHARMACEUTICAL BULLETIN LA English DT Article DE APOCYNUM CANNABINUM; 18,20-EPOXYSTROPHANTHIDIN; CANNOGENIN TRIOSIDE; CARDENOLIDE; NERIDIENONE A; 6,7-DIDEHYDROCORTEXONE ID PREGNANES; NERIUM; LEAVES AB Steroidal constituents from the roots of Apocynum cannabinum L. were investigated. (20S)-, (20R)-18,20-Epoxycymarin and (20S)-18,20-epoxyapocannoside were isolated along with cannogenin, strophanthidin and cannogenol glycosides, including D-cymaroside, D-oleandroside, D-digitoxoside and D-digitaloside, and their glucosyl, cellobiosyl or gentiobiosyl glycosides. Two pregnanes, neridienone A and 6,7-didehydrocortexone, were obtained, accompanied with cardenolides. C1 FUKUOKA UNIV, FAC PHARMACEUT SCI, JONAN KU, FUKUOKA 81401, JAPAN. CR ABE F, 1981, CHEM PHARM BULL, V29, P416 ABE F, 1992, PHYTOCHEMISTRY, V31, P3189, DOI 10.1016/0031-9422(92)83472-B ABE F, 1992, PHYTOCHEMISTRY, V31, P2459, DOI 10.1016/0031-9422(92)83299-E ABE F, 1987, CHEM PHARM BULL, V35, P4087 ABE F, 1988, CHEM PHARM BULL, V36, P3811, DOI 10.1248/cpb.36.3811 ABE F, 1976, PHYTOCHEMISTRY, V15, P1745, DOI 10.1016/S0031-9422(00)97469-7 GOLAB T, 1959, HELV CHIM ACTA, V42, P2418, DOI 10.1002/hlca.19590420713 NAGATA W, 1957, HELV CHIM ACTA, V40, P41, DOI 10.1002/hlca.19570400105 SCHILDKN.H, 1967, Z NATURFORSCH PT B, VB 22, P938 YAMATOVA RS, 1965, KHIM PRIR SOEDIN, P15 NR 10 TC 10 Z9 11 U1 0 U2 8 PU PHARMACEUTICAL SOC JAPAN PI TOKYO PA 2-12-15 SHIBUYA, SHIBUYA-KU, TOKYO, 150-0002, JAPAN SN 0009-2363 J9 CHEM PHARM BULL JI Chem. Pharm. Bull. PD OCT PY 1994 VL 42 IS 10 BP 2028 EP 2031 PG 4 WC Chemistry, Medicinal; Chemistry, Multidisciplinary; Pharmacology & Pharmacy SC Pharmacology & Pharmacy; Chemistry GA PN915 UT WOS:A1994PN91500010 OA Bronze DA 2021-10-15 ER PT J AU RABBI, MF WILSON, KG AF RABBI, MF WILSON, KG TI THE MITOCHONDRIAL COXII INTRON HAS BEEN LOST IN 2 DIFFERENT LINEAGES OF DICOTS AND ALTERED IN OTHERS SO AMERICAN JOURNAL OF BOTANY LA English DT Article ID OXIDASE SUBUNIT-II; NO INTRON; GENE; DNA; SEQUENCE; RNA; GENOME; ORGANIZATION; NUCLEAR; EVOLUTION AB The central part of the mitochondrial coxII gene was amplified from 38 different dicots and two monocots using polymerase chain reaction. In 30 of the 40 plants studied, the amplified coxII gene-fragment contains an intron, ranging from 930 bp in Capsicum (pepper) in Solanaceae to 1,635 bp in Ampelamus albidans (climbing milkweed) in Asclepiadaceae. The composition of this intron varies as revealed by Southern hybridizations using oligonucleotide probes specific to the coxII intron-regions in maize, wheat, and rice. In the Apocynaceae, Catharanthus roseus (Madagascar periwinkle) and Vinca minor (common periwinkle) lack the coxII intron, while other members of the same family (various Mandevilla species, Nerium oleander and Apocynum cannabinum) and members of the closely related Asclepiadaceae (Asclepias incarnata, Ampelamus albidans and Asclepias tuberosa) retain the intron. Analysis of these data suggest a selective loss of the coxII intron from a plant, ancestral to both Catharanthus and Vinca, after the divergence of the Asclepiadaceae and Apocynaceae. The remaining eight plants from the Brassicaceae, Cucurbitaceae, Fabaceae, and Onagraceae lacking the intron fall into a single group or clade using the phylogenetic tree proposed by Chase et al. (Annals of the Missouri Botanical Garden: 80: 528-580, 1993) based on sequence of the chloroplast rbcL gene. C1 MIAMI UNIV, DEPT BOT, OXFORD, OH 45056 USA. CR ANDERSON S, 1981, NATURE, V290, P457, DOI 10.1038/290457a0 ATTARDI G, 1985, INT REV CYTOL, V93, P93, DOI 10.1016/S0074-7696(08)61373-X BONEN L, 1984, EMBO J, V3, P2531, DOI 10.1002/j.1460-2075.1984.tb02168.x CECI LR, 1987, ITAL J BIOCHEM, V36, pA141 CHASE MW, 1993, ANN MO BOT GARD, V80, P528, DOI 10.2307/2399846 COVELLO PS, 1992, EMBO J, V11, P3815, DOI 10.1002/j.1460-2075.1992.tb05473.x DEBENEDETTO C, 1992, PLANT SCI, V81, P75, DOI 10.1016/0168-9452(92)90026-I FOX TD, 1981, CELL, V26, P315, DOI 10.1016/0092-8674(81)90200-2 GRABAU EA, 1987, CURR GENET, V11, P287, DOI 10.1007/BF00355402 GRAY MW, 1989, ANNU REV CELL BIOL, V5, P25, DOI 10.1146/annurev.cb.05.110189.000325 GRIVELL LA, 1983, SCI AM, V248, P78, DOI 10.1038/scientificamerican0383-78 HIESEL R, 1983, EMBO J, V2, P2173, DOI 10.1002/j.1460-2075.1983.tb01719.x JUBIER MF, 1990, 4TH INT WORKSH PLANT KAO TH, 1984, NUCLEIC ACIDS RES, V12, P7305, DOI 10.1093/nar/12.19.7305 LIPPOK B, 1992, MOL GEN GENET, V232, P322, DOI 10.1007/BF00280012 MOON E, 1985, NUCLEIC ACIDS RES, V13, P3195, DOI 10.1093/nar/13.9.3195 NEWTON KJ, 1988, ANNU REV PLANT PHYS, V39, P503, DOI 10.1146/annurev.pp.39.060188.002443 NUGENT JM, 1991, CELL, V66, P473, DOI 10.1016/0092-8674(81)90011-8 Oda K, 1992, PLANT MOL BIOL REP, V10, P105, DOI 10.1007/BF02668342 PALMER JD, 1984, NATURE, V307, P437, DOI 10.1038/307437a0 PERKINELMERCETU, 1989, PROTOCOL DNA AMPLIFI PRUITT KD, 1989, CURR GENET, V16, P281, DOI 10.1007/BF00422115 ROGERS SO, 1988, PLANT MOL BIOL MAN A, V6, P1, DOI DOI 10.1007/978-94-017-5294-7_ RYCHLIK W, 1989, NUCLEIC ACIDS RES, V17, P8543, DOI 10.1093/nar/17.21.8543 Saiki RK, 1989, PCR TECHNOLOGY PRINC, P116 SCHUSTER W, 1988, PLANT SCI, V54, P1, DOI 10.1016/0168-9452(88)90049-0 SCHUSTER W, 1987, EMBO J, V6, P2857, DOI 10.1002/j.1460-2075.1987.tb02587.x SENDA M, 1991, CURR GENET, V19, P175, DOI 10.1007/BF00336484 SOUTHERN EM, 1975, J MOL BIOL, V98, P503, DOI 10.1016/S0022-2836(75)80083-0 STERN DB, 1982, NATURE, V299, P698, DOI 10.1038/299698a0 STERN DB, 1984, P NATL ACAD SCI-BIOL, V81, P1946, DOI 10.1073/pnas.81.7.1946 TURANO FJ, 1987, PLANT PHYSIOL, V84, P1074, DOI 10.1104/pp.84.4.1074 WARD BL, 1981, CELL, V25, P793, DOI 10.1016/0092-8674(81)90187-2 WOLF K, 1988, ADV GENET, V25, P186 1990, PROTOCOLS APPLICATIO 1989, INSTRUCTION MANUAL Z NR 36 TC 10 Z9 10 U1 0 U2 2 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0002-9122 EI 1537-2197 J9 AM J BOT JI Am. J. Bot. PD OCT PY 1993 VL 80 IS 10 BP 1216 EP 1223 DI 10.2307/2445551 PG 8 WC Plant Sciences SC Plant Sciences GA MD092 UT WOS:A1993MD09200015 DA 2021-10-15 ER PT J AU Song, Y Kai, N Jiang, W Zhang, YM Ben, HX Han, GT Ragauskas, AJ AF Song, Yan Kai, Nie Jiang, Wei Zhang, Yuanming Ben, Haoxi Han, Guangting Ragauskas, Arthur J. TI Utilization of deep eutectic solvent as a degumming protocol for Apocynum venetum bast SO CELLULOSE LA English DT Article DE Apocynum venetum; Fiber; Deep eutectic solution; Alkaline; Degumming; Lignin ID STEAM EXPLOSION; CELLULOSE DISSOLUTION; FIBERS; LIGNIN; ACIDS AB Deep eutectic solvent (DES) pretreatment coupled with alkaline degumming on Apocynum venetum bast was studied for developing an eco-friendly and effective degumming method. A 1:2 mixture of choline chloride and urea was used in a microwave-assisted DES pretreatment optimized to 60 min and 110 degrees C. The impact of the deep eutectic solvent pretreatment on the properties of produced semi-degummed and refined dry fibers were assessed by examining the fiber chemical composition, surface microstructure, cellulose crystallinity, degree of polymerization, and fiber thermal properties. The combined DES and alkaline degumming treatment effectively removed the gummy matter including hemicellulose and lignin from the A. venetum bast, providing a smooth and clean fiber surface. This combined DES and alkaline degumming treatment also shows the ability to extract amorphous cellulose, leading to an increase of fiber crystallinity and a decrease of the average cellulose molecular weight. The thermal stability of the fibers was improved significantly after the degumming treatment. The refined dry fibers produced by this combined DES-alkaline treatment exhibited comparable chemical and physical properties (e.g. residual gum content, fiber length, fiber fineness, breaking tenacity) compared with traditionally alkali degumming method. These results revealed that DES is a practical and feasible pretreatment protocol for A. venetum bast degumming. C1 [Song, Yan; Kai, Nie; Jiang, Wei; Han, Guangting] Qingdao Univ, Coll Text, Qingdao 266000, Shandong, Peoples R China. [Jiang, Wei; Zhang, Yuanming; Ben, Haoxi; Han, Guangting] State Key Lab Biopolysaccharide Fiber Forming & E, Qingdao 266071, Shandong, Peoples R China. [Ragauskas, Arthur J.] Univ Tennessee, Dept Chem & Biomol Engn, Knoxville, TN 37996 USA. [Ragauskas, Arthur J.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Han, GT (corresponding author), State Key Lab Biopolysaccharide Fiber Forming & E, Qingdao 266071, Shandong, Peoples R China. EM kychgt@qdu.edu.cn RI Ragauskas, Art/J-7486-2016 OI Ragauskas, Art/0000-0002-3536-554X FU National Key Research and Development Plan [2017YFB0309702]; Natural Science Foundation of the Shandong of China [ZR2019QEM007]; National Science Foundation of ChinaNational Natural Science Foundation of China (NSFC) [51706044]; Natural Science Foundation of the Jiangsu of China [BK20170666]; Recruitment Program for Young Professionals in China FX This work was supported by the National Key Research and Development Plan (2017YFB0309702), the Natural Science Foundation of the Shandong of China (ZR2019QEM007), the National Science Foundation of China (51706044), the Natural Science Foundation of the Jiangsu of China (BK20170666), and the Recruitment Program for Young Professionals in China. CR Abbott AP, 2004, J AM CHEM SOC, V126, P9142, DOI 10.1021/ja048266j Chen L, 2019, CELLULOSE, V26, P1947, DOI 10.1007/s10570-018-2190-8 Chen YL, 2019, CELLULOSE, V26, P205, DOI 10.1007/s10570-018-2130-7 Dong Z, 2014, CELLULOSE, V21, P3851, DOI 10.1007/s10570-014-0401-5 Fan XS, 2010, TEXT RES J, V80, P2046, DOI 10.1177/0040517510373632 French AD, 2014, CELLULOSE, V21, P885, DOI 10.1007/s10570-013-0030-4 Hu SQ, 2008, GREEN CHEM, V10, P1280, DOI 10.1039/b810392e Hutterer C, 2017, ENZYME MICROB TECH, V102, P67, DOI 10.1016/j.enzmictec.2017.03.014 Kallel F, 2016, IND CROP PROD, V87, P287, DOI 10.1016/j.indcrop.2016.04.060 Li MH, 2012, FIBER POLYM, V13, P322, DOI 10.1007/s12221-012-0322-6 Liew SQ, 2018, BIOCATAL AGRIC BIOTE, V13, P1, DOI 10.1016/j.bcab.2017.11.001 Lim WL, 2019, CELLULOSE, V26, P4085, DOI 10.1007/s10570-019-02346-8 Liu J, 2020, J NAT FIBERS, V17, P738, DOI 10.1080/15440478.2018.1532857 Loow YL, 2017, CELLULOSE, V24, P3591, DOI 10.1007/s10570-017-1358-y Lynam JG, 2017, BIORESOURCE TECHNOL, V238, P684, DOI 10.1016/j.biortech.2017.04.079 Parviainen A, 2015, RSC ADV, V5, P69728, DOI 10.1039/c5ra12386k Rabemanolontsoa H, 2016, BIORESOURCE TECHNOL, V199, P83, DOI 10.1016/j.biortech.2015.08.029 Ramesh M, 2016, PROG MATER SCI, V78-79, P1, DOI 10.1016/j.pmatsci.2015.11.001 Satlewal A, 2018, BIOTECHNOL ADV, V36, P2032, DOI 10.1016/j.biotechadv.2018.08.009 Shahbaz K, 2011, THERMOCHIM ACTA, V515, P67, DOI 10.1016/j.tca.2010.12.022 Sharma S, 2011, WORLD J MICROB BIOT, V27, P2697, DOI 10.1007/s11274-011-0743-1 Sirvio JA, 2019, CELLULOSE, V26, P2303, DOI 10.1007/s10570-019-02257-8 Song KH, 2006, TEXT RES J, V76, P751, DOI 10.1177/0040517506070520 Song Y, 2018, CELLULOSE, V25, P4979, DOI 10.1007/s10570-018-1916-y Song Y, 2017, J TEXT I, V108, P1762, DOI 10.1080/00405000.2017.1285200 Vigier KD, 2015, CHEMCATCHEM, V7, P1250, DOI 10.1002/cctc.201500134 Wang LL, 2007, CARBOHYD POLYM, V69, P391, DOI 10.1016/j.carbpol.2006.12.028 Yang FR, 2016, J TEXT I, V107, P1450, DOI 10.1080/00405000.2015.1127550 Yu W, 2019, CELLULOSE, V26, P3069, DOI 10.1007/s10570-019-02290-7 Zhang X, 2016, BIORESOURCES, V11, P6590, DOI 10.15376/biores.11.3.6590-6599 Zhou L, 2012, J APPL POLYM SCI, V125, pE573, DOI 10.1002/app.36392 NR 31 TC 9 Z9 9 U1 7 U2 35 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0969-0239 EI 1572-882X J9 CELLULOSE JI Cellulose PD SEP PY 2019 VL 26 IS 13-14 BP 8047 EP 8057 DI 10.1007/s10570-019-02654-z PG 11 WC Materials Science, Paper & Wood; Materials Science, Textiles; Polymer Science SC Materials Science; Polymer Science GA IU6KO UT WOS:000483695400033 OA Green Submitted DA 2021-10-15 ER PT J AU Kasimu, R Fan, ZZ Wang, XL Hu, JP Wang, P Wang, JH AF Kasimu, Rena Fan, Zhenzhen Wang, Xinling Hu, Junping Wang, Peng Wang, Jinhui TI Anti-platelet aggregation activities of different fractions in leaves of Apocynum venetum L. SO JOURNAL OF ETHNOPHARMACOLOGY LA English DT Article DE Multi-components; Apocynum venetum L; Anti-platelet aggregation ID PLATELET-AGGREGATION; IN-VITRO; EXTRACT; THROMBOSIS; VIVO AB Ethnopharmacological relevance Apocynum venetum: is widely used in Uygur and traditional Chinese medicine. Modern pharmaceutical studies have shown that leaves of A. venetum have effects of liver protection, antidepressant and regulation of blood pressure. However, it is unclear that which components have pharmacological activities. Aim of the study: The aim was to study chemical constituents of A. venetum and its anti-platelet aggregation activity. Materials and methods: Nephelometery was applied to evaluate anti-platelet aggregation activity of multi-components of A. venetum. Systematic separation components were characterized by HPLC analysis method, and in vitro screening active components by anti-platelet aggregation study. Results: Ethyl acetate fraction (L-III) and L-III-4 have better anti-platelet aggregation activity than other fractions. The results indicated that isoquercitrin, hyperoside and other flavonoids have anti-platelet aggregation activity in A. venetum. Conclusion: Our studies provide basis on the endeavors of screening chemicals with that anti-platelet aggregation activity in leaves of A. venetum. (C) 2015 Elsevier Ireland Ltd. All rights reserved. C1 [Kasimu, Rena; Fan, Zhenzhen; Wang, Xinling; Hu, Junping] Xinjiang Med Univ, Coll Pharm, Urumqi 830011, Xinjiang, Peoples R China. [Wang, Peng] Chinese Acad Trop Agr Sci, Trop Crops Genet Resources Inst, Danzhou 571737, Hainan, Peoples R China. [Wang, Jinhui] Shenyang Pharmaceut Univ, Sch Tradit Chinese Med, Shenyang 110016, Liaoning, Peoples R China. RP Kasimu, R (corresponding author), Xinjiang Med Univ, Coll Pharm, 393 Xinyi Rd, Urumqi 830011, Xinjiang, Peoples R China. EM renakasimu@163.com OI Wang, Peng/0000-0001-5960-6339 FU National Key Technology Research and Development ProgramNational Key Technology R&D Program [2012BAI30B02]; Science and Technology Support on Xinjiang Program [201191259] FX This study was supported by the National Key Technology Research and Development Program (2012BAI30B02) and Science and Technology Support on Xinjiang Program (201191259). CR Asad Munazza, 2011, J Ayub Med Coll Abbottabad, V23, P3 Atanasov A. T., 2002, Journal of Herbs, Spices & Medicinal Plants, V10, P63, DOI 10.1300/J044v10n02_07 BENVENISTE J, 1974, NATURE, V249, P581, DOI 10.1038/249581a0 Born G.V., 1967, PHYSL LOND, V191, P43 Gong GH, 2011, PHYTOMEDICINE, V18, P458, DOI 10.1016/j.phymed.2010.08.015 Hou J.J., 2006, CHIN MED HERBS, V37, pS7 HUANG EM, 1980, J LAB CLIN MED, V95, P59 Jin YR, 2004, VASC PHARMACOL, V41, P35, DOI 10.1016/j.vph.2004.04.001 Lau YS, 2012, J ETHNOPHARMACOL, V143, P565, DOI 10.1016/j.jep.2012.07.012 Liu Y.M, 2006, UYGUR MED, P428 Ogawa T, 2000, THROMB RES, V97, P307, DOI 10.1016/S0049-3848(99)00175-9 Picker SM, 2011, TRANSFUS APHER SCI, V44, P305, DOI 10.1016/j.transci.2011.03.006 Wang JP, 2011, PHYTOMEDICINE, V18, P873, DOI 10.1016/j.phymed.2011.01.024 Wang P, 2013, J TRADIT CHIN MED, V33, P531, DOI 10.1016/S0254-6272(13)60160-0 Xiao WL, 2007, ARCH PHARM RES, V30, P799, DOI 10.1007/BF02978827 Xie WY, 2012, J ETHNOPHARMACOL, V141, P1, DOI 10.1016/j.jep.2012.02.003 Yang F., 2006, THESIS CHINESE ACAD, P30 Yu HY, 2011, FOOD CHEM TOXICOL, V49, P3018, DOI 10.1016/j.fct.2011.09.038 Zhu ZX, 2010, THROMB RES, V125, P419, DOI 10.1016/j.thromres.2010.02.011 NR 19 TC 9 Z9 12 U1 1 U2 45 PU ELSEVIER IRELAND LTD PI CLARE PA ELSEVIER HOUSE, BROOKVALE PLAZA, EAST PARK SHANNON, CO, CLARE, 00000, IRELAND SN 0378-8741 J9 J ETHNOPHARMACOL JI J. Ethnopharmacol. PD JUN 20 PY 2015 VL 168 BP 116 EP 121 DI 10.1016/j.jep.2015.03.013 PG 6 WC Plant Sciences; Chemistry, Medicinal; Integrative & Complementary Medicine; Pharmacology & Pharmacy SC Plant Sciences; Pharmacology & Pharmacy; Integrative & Complementary Medicine GA CK9JG UT WOS:000356555800014 PM 25835371 DA 2021-10-15 ER PT J AU Kong, NN Fang, ST Liu, Y Wang, JH Yang, CY Xia, CH AF Kong, Na-Na Fang, Sheng-Tao Liu, Ying Wang, Jian-Hua Yang, Cui-Yun Xia, Chuan-Hai TI Flavonoids from the halophyte Apocynum venetum and their antifouling activities against marine biofilm-derived bacteria SO NATURAL PRODUCT RESEARCH LA English DT Article DE Apocynum venetum; flavonoids; halophyte; antifouling; antimicrobial activity ID ISOFLAVONOIDS; INHIBITORS; PHENOLS; PLANTS AB Eleven flavonoids were isolated from the leaves of the halophyte Apocynum venetum. Among them, the isolation of plumbocatechin A (1), 8-O-methylretusin (2) and kaempferol 3-O-(6-O-acetyl)--d-galactopyranoside (7) was reported for the first time from this plant. Their structures were identified by using spectral methods, including 2D NMR experiments, and confirmed by comparing with the literature data. In addition, the antifouling activities of these compounds against the marine fouling bacteria, Bacillus thuringiensis, Pseudoalteromonas elyakovii and Pseudomonas aeruginosa, have been evaluated in this article. C1 [Kong, Na-Na; Fang, Sheng-Tao; Liu, Ying; Wang, Jian-Hua; Yang, Cui-Yun; Xia, Chuan-Hai] Chinese Acad Sci, Yantai Inst Coastal Zone Res, Key Lab Coastal Biol & Biol Resources Utilizat, Yantai 264003, Peoples R China. [Kong, Na-Na] Univ Chinese Acad Sci, Beijing 100049, Peoples R China. RP Fang, ST (corresponding author), Chinese Acad Sci, Yantai Inst Coastal Zone Res, Key Lab Coastal Biol & Biol Resources Utilizat, Yantai 264003, Peoples R China. EM stfang@yic.ac.cn; chxia@yic.ac.cn FU Ministry of Science and Technology of ChinaMinistry of Science and Technology, China [2011BAC02B04, 2012BAD32B09]; National Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC) [21202198] FX This work was financially supported by the Projects of Natural Key Technology Research and Development Program of the Ministry of Science and Technology of China (Nos 2011BAC02B04 and 2012BAD32B09), and the National Natural Science Foundation of China (No. 21202198). CR Cheng Xiu-li, 2007, Zhong Yao Cai, V30, P1086 [段代祥 DUAN Daixiang], 2007, [安徽农业科学, Journal of Anhui Agricultural Sciences], V35, P4186 Fang ST, 2013, NAT PROD RES, V27, P1965, DOI 10.1080/14786419.2013.800981 [方圣涛 Fang Shengtao], 2013, [中草药, Chinese Traditional and Herbal Drugs], V44, P2035 Feng DQ, 2009, BIOFOULING, V25, P181, DOI 10.1080/08927010802669210 Foo LY, 2000, PHYTOCHEMISTRY, V54, P539, DOI 10.1016/S0031-9422(00)00124-2 Fusetani N, 2004, NAT PROD REP, V21, P94, DOI 10.1039/b302231p Fusetani N, 2011, NAT PROD REP, V28, P400, DOI 10.1039/c0np00034e Imai K, 2011, CHEM LETT, V40, P1417, DOI 10.1246/cl.2011.1417 Konoshima T, 1997, BIOL PHARM BULL, V20, P865, DOI 10.1248/bpb.20.865 Li Li-Hong, 2006, Zhongguo Zhong Yao Za Zhi, V31, P1337 Puebla P, 2010, MOLECULES, V15, P8193, DOI 10.3390/molecules15118193 Qian PY, 2010, BIOFOULING, V26, P223, DOI 10.1080/08927010903470815 The State Pharmacopoeia Commission of P.R. China, 2010, PHARMACOPOEIA PEOPLE, V1 VANDERWESTHUIZEN JH, 1990, TETRAHEDRON, V46, P7849, DOI 10.1016/S0040-4020(01)90082-1 Wu Y, 2012, CHIN J NAT MEDICINES, V10, P40, DOI [10.1016/S1875-5364(12)60009-0, 10.3724/SP.J.1009.2012.00040] Xie WY, 2012, J ETHNOPHARMACOL, V141, P1, DOI 10.1016/j.jep.2012.02.003 Yang RY, 2012, CHEM NAT COMPD+, V48, P674, DOI 10.1007/s10600-012-0345-7 Yoon KD, 2007, J NAT PROD, V70, P2029, DOI 10.1021/np070327e Yue JM, 1998, CHINESE CHEM LETT, V9, P647 [赵军 Zhao Jun], 2012, [天然产物研究与开发, Natural Product R & D], V24, P52 [周世伟 Zhou Shiwei], 2011, [天然产物研究与开发, Natural Product R & D], V23, P186 Zhou XJ, 2009, BIOFOULING, V25, P69, DOI 10.1080/08927010802455941 NR 23 TC 9 Z9 12 U1 1 U2 35 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND SN 1478-6419 EI 1478-6427 J9 NAT PROD RES JI Nat. Prod. Res. PD JUN 18 PY 2014 VL 28 IS 12 BP 928 EP 931 DI 10.1080/14786419.2014.886205 PG 4 WC Chemistry, Applied; Chemistry, Medicinal SC Chemistry; Pharmacology & Pharmacy GA AH0ZE UT WOS:000335848500013 PM 24588258 OA Green Submitted DA 2021-10-15 ER PT J AU Zhao, L Liang, SS Lv, L Zhang, H Guang, GT Chai, YF Zhang, GQ AF Zhao, Liang Liang, Shanshan Lv, Lei Zhang, Hai Guang Guo-Tan Chai, Yifeng Zhang, Guoqing TI Screening and analysis of metabolites in rat urine after oral administration of Apocynum venetum L. extracts using HPLC-TOF-MS SO JOURNAL OF SEPARATION SCIENCE LA English DT Article DE Apocynum venetum L; HPLC-TOF-MS; Identification; Metabolites; Rat urine ID PERFORMANCE LIQUID-CHROMATOGRAPHY; FLIGHT MASS-SPECTROMETRY; COUNTER-CURRENT CHROMATOGRAPHY; DIODE-ARRAY DETECTION; CHEMICAL-CONSTITUENTS; COMPREHENSIVE SEPARATION; QUANTITATIVE-ANALYSIS; PHENOLIC-ACIDS; LEAVES; SCUTELLARIN AB HPLC with diode array detection and ESI-TOF-MS was used for the study of the constituents in Apocynum venetum L. extracts and the metabolites in rat urine after oral administration of A. venetum L. extracts. A formula database of the known constituents in A. venetum L. was established, and 21 constituents were rapidly identified by accurately matching their molecular masses with the formulae of the compounds in the database. Furthermore, 34 metabolites were detected and elucidated in the rat urine. The scientific and plausible biotransformation pathways of the flavonoid components in A. venetum L. were also proposed together with the presentation of clues for potential mechanisms of bioactivity. This specific and sensitive HPLC-ESI-TOF-MS method can be used to identify the chemical components in the extracts of A. venetum L. and their metabolites in rat urine. This method can also be used to reveal the possible metabolic mechanisms of action of the extract components invivo. C1 [Zhao, Liang; Liang, Shanshan; Lv, Lei; Zhang, Hai; Zhang, Guoqing] Eastern Hepatobiliary Surg Hosp, Dept Pharm, Shanghai, Peoples R China. [Liang, Shanshan] Shanghai Inst Pharmaceut Ind, Instrumental Anal & Res Ctr, Shanghai, Peoples R China. [Guang Guo-Tan; Chai, Yifeng] Second Mil Med Univ, Sch Pharm, Shanghai 200438, Peoples R China. RP Zhang, GQ (corresponding author), Second Mil Med Univ, Eastern Hepatobiliary Surg Hosp, Dept Pharm, Shanghai 200438, Peoples R China. EM gqzhang@smmu.edu.cn CR An HJ, 2013, J PHARMACEUT BIOMED, V85, P295, DOI 10.1016/j.jpba.2013.07.005 Bursztyka J, 2008, J AGR FOOD CHEM, V56, P4832, DOI 10.1021/jf0728045 Butterweck V, 2003, PHARMACOL BIOCHEM BE, V75, P557, DOI 10.1016/S0091-3057(03)00118-7 Butterweck V, 2001, BIOL PHARM BULL, V24, P848, DOI 10.1248/bpb.24.848 Butterweck V, 2008, CLIN PHARMACOKINET, V47, P383, DOI 10.2165/00003088-200847060-00003 Cao F, 2006, EUR J PHARM SCI, V29, P385, DOI 10.1016/j.ejps.2006.07.007 Fang LX, 2013, J SEP SCI, V36, P3115, DOI 10.1002/jssc.201300488 Fardet A, 2008, J NUTR, V138, P1282, DOI 10.1093/jn/138.7.1282 Guo JM, 2012, J ETHNOPHARMACOL, V144, P664, DOI 10.1016/j.jep.2012.10.008 Guo JM, 2011, J CHROMATOGR B, V879, P1987, DOI 10.1016/j.jchromb.2011.04.031 Hao XH, 2005, J PHARMACEUT BIOMED, V38, P360, DOI 10.1016/j.jpba.2005.01.004 Hasegawa M, 2007, EXP TOXICOL PATHOL, V59, P115, DOI 10.1016/j.etp.2007.04.001 Huang JM, 2006, J PHARMACEUT BIOMED, V40, P465, DOI 10.1016/j.jpba.2005.07.051 Kamata K, 2008, J NAT MED-TOKYO, V62, P160, DOI 10.1007/s11418-007-0202-3 Kim DW, 2000, J ETHNOPHARMACOL, V72, P53, DOI 10.1016/S0378-8741(00)00197-5 Liu EH, 2009, RAPID COMMUN MASS SP, V23, P119, DOI 10.1002/rcm.3848 Liu QF, 2009, TALANTA, V80, P84, DOI 10.1016/j.talanta.2009.06.031 Liu ZR, 2013, J SEP SCI, V36, P1659, DOI 10.1002/jssc.201201116 Murakami T, 2001, CHEM PHARM BULL, V49, P845, DOI 10.1248/cpb.49.845 Qi LW, 2008, J CHROMATOGR A, V1203, P27, DOI 10.1016/j.chroma.2008.07.019 Qi LW, 2008, RAPID COMMUN MASS SP, V22, P2493, DOI 10.1002/rcm.3638 van Velzen EJJ, 2009, J PROTEOME RES, V8, P3317, DOI 10.1021/pr801071p Wang HY, 2013, J SEP SCI, V36, P3874, DOI 10.1002/jssc.201300794 Want EJ, 2006, METABOLOMICS, V2, P145, DOI 10.1007/s11306-006-0028-0 Wei YJ, 2007, BIOMED CHROMATOGR, V21, P797, DOI 10.1002/bmc.775 Wishart DS, 2008, TRENDS FOOD SCI TECH, V19, P482, DOI 10.1016/j.tifs.2008.03.003 Wu CS, 2008, RAPID COMMUN MASS SP, V22, P2813, DOI 10.1002/rcm.3664 Xie WY, 2012, J ETHNOPHARMACOL, V141, P1, DOI 10.1016/j.jep.2012.02.003 Xiong F, 2006, J CHROMATOGR B, V835, P114, DOI 10.1016/j.jchromb.2006.02.041 Yulan S, 2006, J CHROMATOGR B, V830, P1, DOI 10.1016/j.jchromb.2005.10.016 Zhang YC, 2010, J CHROMATOGR B, V878, P3149, DOI 10.1016/j.jchromb.2010.09.027 Zhang YC, 2010, J SEP SCI, V33, P2743, DOI 10.1002/jssc.201000308 Zhong DF, 2003, J CHROMATOGR B, V796, P439, DOI 10.1016/j.jchromb.2003.08.002 NR 33 TC 9 Z9 11 U1 1 U2 36 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1615-9306 EI 1615-9314 J9 J SEP SCI JI J. Sep. Sci. PD MAR PY 2014 VL 37 IS 5 BP 515 EP 526 DI 10.1002/jssc.201301036 PG 12 WC Chemistry, Analytical SC Chemistry GA AC0KL UT WOS:000332183100008 PM 24376178 DA 2021-10-15 ER PT J AU Schmidt, CA Murillo, R Heinzmann, B Laufer, S Wray, V Merfort, I AF Schmidt, Cleber A. Murillo, Renato Heinzmann, Berta Laufer, Stefan Wray, Victor Merfort, Irmgard TI Structural and Conformational Analysis of Proanthocyanidins from Parapiptadenia rigida and Their Wound-Healing Properties SO JOURNAL OF NATURAL PRODUCTS LA English DT Article ID OLIGOMERIC PROANTHOCYANIDINS; ABSOLUTE-CONFIGURATION; TANNINS; NMR; FLAVAN-3-OLS; PRODELPHINIDINS; PROCYANIDINS; ELUCIDATION; COMPONENTS; LUOBUMA AB Structure elucidation and conformation analysis of four proanthocyanidins isolated from the bark of Parapiptadenia rigida were performed by two-dimensional NMR spectroscopy, HRESIMS, CD, and molecular mechanics (MM-F) force field calculations. The known prodelphinidin, epigallocatechin(4 beta -> 8)-epigallocatechin-3-O-gallate (1) was accompanied by the new epigallocatechin-(4 beta -> 8)-4'-O-methylgallocatechin (2), epicatediln-(4 beta -> 8)-4'-O-methylgallocatechin (3), and (4 alpha -> 8)-bis-4'-O-methylgallocatechin (4). Compound 4 was previously published but the earlier structure must presumably be revised to 4'-O-methylgallocatechin-(4 alpha -> 8)-4'-O-methylepigallocatechin. Conformational studies showed the compact rotamer with B and E rings in quasi-equatorial orientations as the preferred conformation for compounds 1-3, whereas 4 consists of two stable rotamers, each with a quasi-equatorial orientation of ring B and E, respectively. The isolated compounds were studied for their wound-healing effects in a scratch assay and showed promising results. C1 [Schmidt, Cleber A.; Merfort, Irmgard] Univ Freiburg, Dept Pharmaceut Biol & Biotechnol, D-79104 Freiburg, Germany. [Murillo, Renato] Univ Costa Rica, Escuela Quim, San Jose 2060, Costa Rica. [Murillo, Renato] Univ Costa Rica, CIPRONA, San Jose 2060, Costa Rica. [Heinzmann, Berta] Univ Fed Santa Maria, Dept Pharmaceut Ind, BR-97015900 Santa Maria, RS, Brazil. [Laufer, Stefan] Univ Tubingen, Inst Pharm, D-72076 Tubingen, Germany. [Wray, Victor] Helmholtz Ctr Infect Res, Dept Biol Struct, D-38124 Braunschweig, Germany. RP Merfort, I (corresponding author), Univ Freiburg, Dept Pharmaceut Biol & Biotechnol, D-79104 Freiburg, Germany. EM irmgard.merfort@pharmazie.uni-freiburg.de RI Murillo, Renato/B-5021-2013 OI Laufer, Stefan/0000-0001-6952-1486 FU Baden-Wurttemberg (Zukunftsoffensive IV) FX The authors wish to thank the government of Baden-Wurttemberg (Zukunftsoffensive IV) for financial support. The authors are grateful to Professor Dr. Solon J. Longhi, Department of Forest Science, for the localization and identification of the plant and to Mrs. M. da Costa Soliz for the preparation of the plant extract, both from Federal University of Santa Maria, Brazil, to M. Wagner and Dr. P. Bisel for measuring the optical rotation, the CD, and the IR spectra and to V. Brecht for recording the NMR spectra, Department of Pharmaceutical and Medicinal Chemistry, to Dr. Biniossek for fruitful discussions, Department of Molecular Medicine, and to Dr. J. Worth and C. Warth, Institute of Organic Chemistry, all university of Freiburg, Dr. M. Nimtz, Helmholtz Centre for Infection Research, Braunschweig, and Dr. E. Schroder and Dr. K. Strupat, Thermo Fisher Scientific, Bremen, for the MS and HRMS data. CR Appleton I, 2003, IDRUGS, V6, P1067 Aron PM, 2008, MOL NUTR FOOD RES, V52, P79, DOI 10.1002/mnfr.200700137 Avancini C, 2008, LAT AM J PHARM, V27, P894 AYDIN R, 1990, MAGN RESON CHEM, V28, P448, DOI 10.1002/mrc.1260280513 BALAS L, 1995, MAGN RESON CHEM, V33, P85, DOI 10.1002/mrc.1260330202 BOTHA JJ, 1981, J CHEM SOC PERK T 1, P1235, DOI 10.1039/p19810001235 DANNE A, 1993, PHYTOCHEMISTRY, V34, P1129, DOI 10.1016/S0031-9422(00)90729-5 DANNE A, 1994, PHYTOCHEMISTRY, V37, P533, DOI 10.1016/0031-9422(94)85094-1 Davis AL, 1996, MAGN RESON CHEM, V34, P887, DOI 10.1002/(SICI)1097-458X(199611)34:11<887::AID-OMR995>3.0.CO;2-U de la Iglesia R, 2010, BIOFACTORS, V36, P159, DOI 10.1002/biof.79 de Mello JCP, 1999, PHYTOCHEMISTRY, V51, P1105, DOI 10.1016/S0031-9422(98)00715-8 de Souza GC, 2004, J ETHNOPHARMACOL, V90, P135, DOI 10.1016/j.jep.2003.09.039 deMello JP, 1996, PHYTOCHEMISTRY, V41, P807, DOI 10.1016/0031-9422(95)00686-9 Ding YQ, 2010, J NAT PROD, V73, P435, DOI 10.1021/np900645c Ferreira D, 1996, NAT PROD REP, V13, P411, DOI 10.1039/np9961300411 Ferreira D, 2002, NAT PROD REP, V19, P517, DOI 10.1039/b008741f FERREIRA D, 1992, TETRAHEDRON, V48, P1743, DOI 10.1016/S0040-4020(01)88506-9 Ferreira D, 2010, COMPREHENSIVE NATURAL PRODUCTS II: CHEMISTRY AND BIOLOGY, VOL 6: CARBOHYDRATES, NUCLEOSIDES & NUCLEIC ACIDS, P605 FLETCHER AC, 1977, J CHEM SOC PERK T 1, P1628, DOI 10.1039/p19770001628 Foo LY, 1997, PHYTOCHEMISTRY, V45, P1689, DOI 10.1016/S0031-9422(97)00198-2 Fronza M, 2009, J ETHNOPHARMACOL, V126, P463, DOI 10.1016/j.jep.2009.09.014 HASHIMOTO F, 1989, CHEM PHARM BULL, V37, P3255 HASLAM E, 1977, PHYTOCHEMISTRY, V16, P1625, DOI 10.1016/0031-9422(71)85060-4 Hatano T, 1997, J CHEM SOC PERK T 2, P1035, DOI 10.1039/a605592c Hemingway RW, 1996, MAGN RESON CHEM, V34, P424, DOI 10.1002/(SICI)1097-458X(199606)34:6<424::AID-OMR902>3.0.CO;2-9 HEMINGWAY RW, 1989, CHEM SIGNIFICANCE CO KARPLUS M, 1963, J AM CHEM SOC, V85, P2870, DOI 10.1021/ja00901a059 Khanna S, 2001, FREE RADICAL BIO MED, V31, P38, DOI 10.1016/S0891-5849(01)00544-5 Khanna S, 2002, FREE RADICAL BIO MED, V33, P1089, DOI 10.1016/S0891-5849(02)00999-1 Lakenbrink C, 1999, J AGR FOOD CHEM, V47, P4621, DOI 10.1021/jf9813081 LEE MW, 1992, PHYTOCHEMISTRY, V31, P2117, DOI 10.1016/0031-9422(92)80375-O Mackenzie GG, 2009, BIOCHEM PHARMACOL, V78, P1252, DOI 10.1016/j.bcp.2009.06.111 Mackenzie GG, 2004, FASEB J, V18, P167, DOI 10.1096/fj.03-0402fje Malik A, 1997, KHIM PRIR SOEDIN+, P232 MOSMANN T, 1983, J IMMUNOL METHODS, V65, P55, DOI 10.1016/0022-1759(83)90303-4 NONAKA G, 1992, CHEM PHARM BULL, V40, P2671, DOI 10.1248/cpb.40.2671 NONAKA GI, 1983, PHYTOCHEMISTRY, V22, P237, DOI 10.1016/S0031-9422(00)80097-7 PORTER LJ, 1986, J CHEM RES-S, P86 SAIJO R, 1989, PHYTOCHEMISTRY, V28, P2443, DOI 10.1016/S0031-9422(00)98001-4 Schmidt C, 2009, J ETHNOPHARMACOL, V122, P523, DOI 10.1016/j.jep.2009.01.022 Schmidt CA, 2010, J NAT PROD, V73, P2035, DOI 10.1021/np100523s Selinummi J, 2005, BIOTECHNIQUES, V39, P859, DOI 10.2144/000112018 Sen CK, 2002, ANN NY ACAD SCI, V957, P239, DOI 10.1111/j.1749-6632.2002.tb02920.x SHEN CC, 1993, PHYTOCHEMISTRY, V34, P843, DOI 10.1016/0031-9422(93)85370-7 Shoji T, 2003, J AGR FOOD CHEM, V51, P3806, DOI 10.1021/jf0300184 Slade D, 2005, PHYTOCHEMISTRY, V66, P2177, DOI 10.1016/j.phytochem.2005.02.002 Souza G. C., 2004, Revista Brasileira de Plantas Medicinais, V6, P83 STEYNBERG JP, 1995, MAGN RESON CHEM, V33, P611, DOI 10.1002/mrc.1260330802 SUN DW, 1988, PHYTOCHEMISTRY, V27, P579, DOI 10.1016/0031-9422(88)83145-5 SUN DW, 1987, PHYTOCHEMISTRY, V26, P1825, DOI 10.1016/S0031-9422(00)82297-9 TANAKA T, 1992, CHEM PHARM BULL, V40, P2092, DOI 10.1248/cpb.40.2092 Tarascou I, 2006, MAGN RESON CHEM, V44, P868, DOI 10.1002/mrc.1867 Tourino S, 2008, CHEM RES TOXICOL, V21, P696, DOI 10.1021/tx700425n Yokozawa T, 2004, FOOD CHEM TOXICOL, V42, P975, DOI 10.1016/j.fct.2004.02.010 Yokozawa T, 2002, BIOL PHARM BULL, V25, P748, DOI 10.1248/bpb.25.748 Zhang YJ, 2000, J NAT PROD, V63, P1507, DOI 10.1021/np000135i Zhang YJ, 2004, BIOL PHARM BULL, V27, P251, DOI 10.1248/bpb.27.251 NR 57 TC 9 Z9 10 U1 0 U2 13 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0163-3864 EI 1520-6025 J9 J NAT PROD JI J. Nat. Prod. PD JUN PY 2011 VL 74 IS 6 BP 1427 EP 1436 DI 10.1021/np200158g PG 10 WC Plant Sciences; Chemistry, Medicinal; Pharmacology & Pharmacy SC Plant Sciences; Pharmacology & Pharmacy GA 781HF UT WOS:000291920600012 PM 21553897 DA 2021-10-15 ER PT J AU Niesenbaum, RA Cahill, JF Ingersoll, CM AF Niesenbaum, Richard A. Cahill, James F., Jr. Ingersoll, Christine M. TI Light, wind, and touch influence leaf chemistry and rates of herbivory in Apocynum cannabinum (Apocynaceae) SO INTERNATIONAL JOURNAL OF PLANT SCIENCES LA English DT Article DE Apocynum cannabinum; herbivory; thigmomorphogenesis; visitation effects; competition ID PLANT-GROWTH; SPATIAL HETEROGENEITY; DOMINATES VARIATION; INSECT HERBIVORY; VISITATION BIAS; OLD-FIELD; ASSOCIATIONAL RESISTANCE; MECHANICAL PERTURBATION; UNCERTAINTY PRINCIPLE; COMPETITION AB Simply visiting and manipulating plants in a way consistent with measurement in typical ecological studies influences the amount of leaf herbivory experienced by some plant species. We examined the mechanistic basis for why Apocynum cannabinum is particularly responsive to such visitation and manipulation. In a field experiment, we manipulated both visitation and shading by neighboring plants and measured the resultant changes in plant chemistry, growth, and herbivory. In a greenhouse experiment, we manipulated touch and wind exposure while holding light constant, allowing us to directly test whether the handling causes changes in the plant that might also occur in response to wind exposure. Visitation and neighbor tie back both increased herbivory, shoot biomass, and cardenolide concentration. These changes appear to be mediated by changes in light environment with each treatment. Leaf N and C were also highly responsive to visitation, neighbor tie back, and touch. The strong and similar responses to visitation and neighbor tie back suggest that in this species, visitation acts by reducing aboveground competition through trampling of neighbors; that growth, plant chemistry, and herbivory are extremely sensitive to visitation effects associated with basic ecological measurement; and that competition between plants for light can influence plant-insect interactions. Of even greater importance is the identification that some species are extremely sensitive to even minor changes to their local environment. Such sensitivity may have significant implications for growth in natural communities. C1 Muhlenberg Coll, Dept Biol, Allentown, PA 18104 USA. Univ Alberta, Dept Biol Sci, Edmonton, AB T6G 2E9, Canada. Muhlenberg Coll, Dept Chem, Allentown, PA 18104 USA. RP Niesenbaum, RA (corresponding author), Muhlenberg Coll, Dept Biol, Allentown, PA 18104 USA. EM niesenba@muhlenebrg.edu RI Niesenbaum, Richard A./AAH-2756-2019; Cahill, James F/B-6147-2015 OI Cahill, James F/0000-0002-4110-1516 CR Agrawal AA, 2004, ECOLOGY, V85, P2118, DOI 10.1890/03-4084 Agrawal AA, 2003, J ECOL, V91, P1049, DOI 10.1046/j.1365-2745.2003.00831.x AIDE TM, 1990, ECOLOGY, V71, P1412, DOI 10.2307/1938278 Aphalo PJ, 1999, J EXP BOT, V50, P1629, DOI 10.1093/jexbot/50.340.1629 Bazzaz FA, 1996, PLANTS CHANGING ENV Bradley KL, 2003, ECOLOGY, V84, P2214, DOI 10.1890/02-3082 Cahill JF, 2002, OIKOS, V99, P101, DOI 10.1034/j.1600-0706.2002.990111.x Cahill JF, 1999, ECOLOGY, V80, P466, DOI 10.1890/0012-9658(1999)080[0466:FEOIBA]2.0.CO;2 Cahill JF, 2004, ECOLOGY, V85, P2901, DOI 10.1890/03-3169 Cahill JF, 2002, AM J BOT, V89, P1401, DOI 10.3732/ajb.89.9.1401 Cahill JF, 2001, ECOLOGY, V82, P307, DOI 10.1890/0012-9658(2001)082[0307:THUPVP]2.0.CO;2 Cipollini D, 2004, ECOLOGY, V85, P28, DOI 10.1890/02-0615 Cipollini DF, 2002, PLANT ECOL, V162, P227, DOI 10.1023/A:1020377627529 Cipollini DF, 1998, AM J BOT, V85, P1586, DOI 10.2307/2446485 Cipollini DF, 1997, OECOLOGIA, V111, P84, DOI 10.1007/s004420050211 COHEN JA, 1983, J CHEM ECOL, V9, P521, DOI 10.1007/BF00990224 COLEY PD, 1988, OECOLOGIA, V74, P531, DOI 10.1007/BF00380050 COLEY PD, 1983, ECOL MONOGR, V53, P209, DOI 10.2307/1942495 Crone EE, 1999, J CHEM ECOL, V25, P635, DOI 10.1023/A:1020966206840 DOBLER S, 1994, J CHEM ECOL, V20, P555, DOI 10.1007/BF02059597 Dobler S, 1998, CHEMOECOLOGY, V8, P111, DOI 10.1007/s000490050015 DOUGHERTY MM, 1996, ABSTR PAP AM CHEM S, V211, DOI UNSP 273-CHED DUDT JF, 1994, ECOLOGY, V75, P86, DOI 10.2307/1939385 Dussourd DE, 2000, CHEMOECOLOGY, V10, P11, DOI 10.1007/PL00001810 Eisenbeiss M, 1999, PLANT PHYSIOL BIOCH, V37, P13, DOI 10.1016/S0981-9428(99)80062-X Emden H. F. van, 1990, Entomologist, V109, P184 Fritz RS, 1992, PLANT RESISTANCE HER GLENDINNING JI, 1992, J CHEM ECOL, V18, P1559, DOI 10.1007/BF00993229 GOLDBERG DE, 1987, ECOLOGY, V68, P1211, DOI 10.2307/1939205 Haag JJ, 2004, J ECOL, V92, P156, DOI 10.1111/j.1365-2745.2004.00847.x Hamback PA, 2000, ECOLOGY, V81, P1784, DOI 10.1890/0012-9658(2000)081[1784:ARIDTP]2.0.CO;2 HERRERA CM, 1995, ECOLOGY, V76, P1516, DOI 10.2307/1938153 Hik DS, 2003, AM J BOT, V90, P270, DOI 10.3732/ajb.90.2.270 Jaffe MJ, 2002, AM J BOT, V89, P375, DOI 10.3732/ajb.89.3.375 Klaring HP, 1999, SCI HORTIC-AMSTERDAM, V81, P369, DOI 10.1016/S0304-4238(99)00022-9 Knight A. P., 2002, GUIDE PLANT POISONIN LINDROTH RL, 1993, NEW PHYTOL, V124, P647, DOI 10.1111/j.1469-8137.1993.tb03854.x LOUDA SM, 1984, ECOLOGY, V65, P1379, DOI 10.2307/1939118 Louda SM, 2004, ECOLOGY, V85, P2906, DOI 10.1890/04-0650 LOUDA SM, 1995, ECOLOGY, V76, P229, DOI 10.2307/1940645 Murren CJ, 2005, AM J BOT, V92, P810, DOI 10.3732/ajb.92.5.810 Niesenbaum RA, 1996, ECOLOGY, V77, P2324, DOI 10.2307/2265734 Niklas K. J., 1992, PLANT BIOMECHANICS E PATTERSON MR, 1992, J EXP BOT, V43, P933, DOI 10.1093/jxb/43.7.933 Pruyn ML, 2000, TREE PHYSIOL, V20, P535 READER RJ, 1992, ECOLOGY, V73, P373, DOI 10.2307/1938748 Ryser P, 2000, AM J BOT, V87, P402, DOI 10.2307/2656636 *SAS I, 2001, SAS SYST EIND SAS I SCHMITT J, 1993, TRENDS ECOL EVOL, V8, P47, DOI 10.1016/0169-5347(93)90157-K Schnitzer SA, 2002, ECOL LETT, V5, P531, DOI 10.1046/j.1461-0248.2002.00357.x SEGARRACARMONA A, 1990, ENVIRON ENTOMOL, V19, P640, DOI 10.1093/ee/19.3.640 Smith VC, 2003, J EXP BOT, V54, P845, DOI 10.1093/jxb/erg068 *SPSS, 2004, SPSS WIND STAMP NE, 1994, ECOL ENTOMOL, V19, P199, DOI 10.1111/j.1365-2311.1994.tb00410.x Stiling P, 2003, ECOL ENTOMOL, V28, P587, DOI 10.1046/j.1365-2311.2003.00546.x Strauss SY, 1997, ECOLOGY, V78, P1640, DOI 10.1890/0012-9658(1997)078[1640:FCLHPA]2.0.CO;2 White JA, 2000, ECOLOGY, V81, P1795, DOI 10.1890/0012-9658(2000)081[1795:ASOCTA]2.0.CO;2 WIEGREBE H, 1993, J CHROMATOGR, V630, P402, DOI 10.1016/0021-9673(93)80478-Q Wolfinger, 1996, SAS SYSTEM MIXED MOD Yang YL, 1996, ECOSCIENCE, V3, P81, DOI 10.1080/11956860.1996.11682319 NR 60 TC 9 Z9 9 U1 0 U2 23 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 1058-5893 J9 INT J PLANT SCI JI Int. J. Plant Sci. PD SEP PY 2006 VL 167 IS 5 BP 969 EP 978 DI 10.1086/506329 PG 10 WC Plant Sciences SC Plant Sciences GA 093II UT WOS:000241161600006 DA 2021-10-15 ER PT J AU Webster, TM Cardina, J AF Webster, TM Cardina, J TI Apocynum cannabinum seed germination and vegetative shoot emergence SO WEED SCIENCE LA English DT Article DE Apocynum cannabinum L., hemp dogbane; Glycine max (L.) Merr., soybean; APCCA; growing degree days; moisture stress; seed germination; vegetative shoot emergence ID TILLAGE; POPULATIONS; TEMPERATURE; VELVETLEAF; MODEL; WEEDS; CORN AB Apocynum cannabinum is a native creeping perennial distributed throughout the U.S., with increasing importance in reduced tillage systems throughout the Midwest. Apocynum cannabinum has been shown to be a difficult species to control in field crops. Effective weed management is often a function of the timing of control practice. Knowledge of weed emergence patterns may be useful in predicting the optimum rime of weed management. The objectives of these studies were to describe how temperature and moisture affect A. cannabinum seed germination and to describe the relationship between growing degree units (GDU) and A. cannabinum vegetative shoot emergence. At constant temperatures, seed germination was described as a sigmoidal function of temperature (r(2) = 0.83), with maximum germination (32%) from 26 to 34 C. Under alternating temperatures, seed germination increased in a linear relationship between mean temperatures of 15 and 34 C (r(2) = 0.85). Maximum seed germination (88%) occurred at a mean temperature of 34 C under alternating temperatures. The relationship between seed germination and osmotic potential between -1.0 and 0 MPa was described by a gompertz function (r(2) = 0.98). Germination at -1.0 MPa was 4% and increased in a near linear manner to the nontreated control (0 MPa), which had 80% germination. Vegetative shoot emergence in 1997 and 1998 had a sigmoidal relationship to GDU using a base temperature of 6 C (r(2) = 0.96). However, initial shoot appearance was not consistent over years, with first emergence recorded on May 21, 1997 (132 GDU), and May 5, 1998 (73 GDU). Approximately 50% of the shoots emerged before Tune 7, 1997 (282 GDU), and May 21, 1998 (285 GDU); therefore, optimal weed management programs will need to be initiated following this GDU accumulation. Nomenclature: Apocynum cannabinum L., hemp dogbane; Glycine max (L.) Merr., soybean. C1 Ohio State Univ, Ohio Agr Res & Dev Ctr, Dept Hort & Crop Sci, Wooster, OH 44691 USA. RP Webster, TM (corresponding author), USDA ARS, Nematodes Weeds & Crops Res Unit, Coastal Plain Expt Stn, Tifton, GA 31793 USA. RI Webster, Theodore/A-4468-2009 OI Webster, Theodore/0000-0002-8259-2059 CR BAI ZJ, 1995, NUMER LINEAR ALGEBR, V2, P219, DOI 10.1002/nla.1680020304 BEWICK TA, 1988, J AM SOC HORTIC SCI, V113, P839 BUHLER DD, 1995, CROP SCI, V35, P1247, DOI 10.2135/cropsci1995.0011183X003500050001x BURNSIDE OC, 1981, WEED SCI, V29, P577, DOI 10.1017/S0043174500063761 CARDINA J, 1989, WEED TECHNOL, V3, P402 Doll J. D., 1997, WEED SCI SOC AM ABST, V37, P90 EVETTS LL, 1972, WEED SCI, V20, P371, DOI 10.1017/S004317450003589X EVETTS LL, 1972, N CENT WEED CONTR C, V29, P58 FORCELLA F, 1993, AGRON J, V85, P929, DOI 10.2134/agronj1993.00021962008500040026x Gerhards R, 1997, WEED SCI, V45, P108, DOI 10.1017/S0043174500092559 HARVEY SJ, 1993, WEED SCI, V41, P309, DOI 10.1017/S0043174500076220 Holt JS, 1996, WEED SCI, V44, P523, DOI 10.1017/S0043174500094285 HORAK MJ, 1994, WEED SCI, V42, P358, DOI 10.1017/S0043174500076621 LOUX MM, 1991, WEED TECHNOL, V5, P460, DOI 10.1017/S0890037X00028438 MACDONALD GE, 1992, WEED SCI, V40, P424, DOI 10.1017/S0043174500051857 MICHEL BE, 1973, PLANT PHYSIOL, V51, P914, DOI 10.1104/pp.51.5.914 Oriade C., 1999, Journal of Crop Production, V2, P189, DOI 10.1300/J144v02n01_10 Ransom CV, 1998, WEED SCI, V46, P71, DOI 10.1017/S0043174500090196 RANSOM CV, 1997, WEED SCI SOC AM ABST, V37, P7 REDDY KN, 1992, WEED SCI, V40, P195, DOI 10.1017/S0043174500057210 SATORRE EH, 1985, WEED RES, V25, P103, DOI 10.1111/j.1365-3180.1985.tb00624.x SCHULTZ ME, 1979, WEED SCI, V27, P565, DOI 10.1017/S0043174500044623 SPITTERS CJT, 1989, SIMULATION SYSTEMS M, P182 TRIPLETT GB, 1972, WEED SCI, V20, P453, DOI 10.1017/S0043174500036122 Webster TM, 1998, WEED SCI, V46, P76, DOI 10.1017/S0043174500090202 Wilen C.A., 1996, WEED SCI, V44, P821 NR 26 TC 9 Z9 9 U1 0 U2 8 PU WEED SCI SOC AMER PI LAWRENCE PA 810 EAST 10TH ST, LAWRENCE, KS 66044-8897 USA SN 0043-1745 J9 WEED SCI JI Weed Sci. PD SEP-OCT PY 1999 VL 47 IS 5 BP 524 EP 528 DI 10.1017/S0043174500092213 PG 5 WC Agronomy; Plant Sciences SC Agriculture; Plant Sciences GA 263KV UT WOS:000084124600009 DA 2021-10-15 ER PT J AU Vangessel, MJ AF Vangessel, MJ TI Control of perennial weed species as seedlings with soil-applied herbicides SO WEED TECHNOLOGY LA English DT Article DE atrazine, 6-chloro-N-ethyl-N '-(1-methylethyl)1,3,5-triazine-2,4-diamine; cloransulam, 3-chloro-2-[ [(5-ethoxy-7-fluoro [1,2,4]triazolo[1,5-c]pyrimidin-2yl)sulfonyl]amino]benzoic acid; chlorimuron, 2-[[[[(4-chloro-6-methoxy-2-pyrimidinyl) amino]carbonyl] amino] sulfonyl]benzoic acid; clomazone, 2-[(2-chlorophenyl)methyl]-4,4-dimethyl-3-isoxazolidinone; flumetsulam, N-(2,6-difluorophenyl)-5-methyl[1,2,4]triazolo[1,5-alpha]pyrimidine-2-su lfonamide; imazaquin, 2-[4,5-dihydro-4-methyl-4-(1-methylethyl)-5-oxo-1H-imidazol-2-yl]-3-quin olinecarboxylic acid; linuron; N '-(3,4-dichlorophenyl)-N-methoxy-N-methylurea; metolachlor, 2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)acetamide ; metribuzin, 4-amino-6-(1,1-dimethylethyl)-3-(methylthio)-1,2,4-triazin-5(4H)-one; pendimethalin, N-(1-ethylpropyl)-3,4-dimethyl-2,6-dinitrobenzenamine; sulfentrazone, N-[2,4-dichloro-5-[4-(diffuoromethyl)-4,5 1H-1,2,4-triazol-1-yl]phenyl]methanesulfonamide; bermudagrass, Cynodon dactylon (L.) Pers. #(3) CYNDA; Canada thistle, Cirsium arvense (L.) Scop. # CIRAR; common milkweed, Asclepias syriaca L. # ASCSY; common pokeweed, Phytolacca americana L. # PHYAM; hemp dogbane; Apocynum cannabinum L. #; APCCA; horsenettle, Solanum carolinense L. # SOLCA; johnsongrass, Sorghum halepense (L.) Pers; # SORHA; corn, Zea mays L.; soybean, Glycine max (L.) Merr.; Preemergence herbicides ID SUGARCANE SACCHARUM; BIOLOGY; HYBRIDS AB Herbicides from several chemical families were evaluated in the greenhouse for preemergence control of perennial weed species emerging from seeds. Weed species were bermudagrass, johnsongrass, Canada thistle, common milkweed, common pokeweed, hemp dogbane, and horsenettle. Atrazine, cloransulam, chlorimuron, clomazone, flumetsulam, imazaquin, linuron, metolachlor, metribuzin, pendimethalin, and sulfentrazone were used representing common preemergence herbicide families used in the mid-Atlantic region for corn and soybean in a sandy loam soil. Hemp dogbane and common pokeweed were controlled (greater than 85%) by eight of the II herbicides in this study, indicating they may be the two most susceptible species in the trial. Metolachlor and pendimethalin provided control of only bermudagrass, and linuron controlled only Canada thistle. Cloransulam controlled all species except bermudagrass. Clomazone provided greater than 80% control of all species except horsenettle. Metribuzin alone or in combination with chlorimuron provided the broadest spectrum and highest level of control. Metribuzin provided greater than 85% control of all species except johnsongrass. Soil-applied herbicides can limit the establishment of perennial species from seeds. C1 Univ Delaware, Res & Educ Ctr, Georgetown, DE 19947 USA. RP Vangessel, MJ (corresponding author), Univ Delaware, Res & Educ Ctr, Georgetown, DE 19947 USA. EM mjv@udel.edu CR Bhowmik Prasanta C., 1994, Reviews of Weed Science, V6, P227 DONALD W W, 1990, Reviews of Weed Science, V5, P193 Donald William W., 1994, Reviews of Weed Science, V6, P77 FISHEL FM, 1994, WEED TECHNOL, V8, P46 FISHEL FM, 1993, WEED SCI, V41, P641, DOI 10.1017/S0043174500076451 MCWHORTER C G, 1989, Reviews of Weed Science, V4, P85 MILLHOLLON RW, 1993, WEED SCI, V41, P621, DOI 10.1017/S0043174500076426 MITICH LW, 1994, WEED TECHNOL, V8, P887, DOI 10.1017/S0890037X0002889X RICHARD EP, 1993, WEED TECHNOL, V7, P578, DOI 10.1017/S0890037X00037374 ROBISON LR, 1972, WEED SCI, V20, P156, DOI 10.1017/S0043174500035244 WESTBERG DE, 1989, WEED TECHNOL, V3, P678, DOI 10.1017/S0890037X00033030 NR 11 TC 9 Z9 9 U1 1 U2 10 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0890-037X EI 1550-2740 J9 WEED TECHNOL JI Weed Technol. PD APR-JUN PY 1999 VL 13 IS 2 BP 425 EP 428 DI 10.1017/S0890037X0004197X PG 4 WC Agronomy; Plant Sciences SC Agriculture; Plant Sciences GA 226PV UT WOS:000082029100037 DA 2021-10-15 ER PT J AU Johnson, SA Bruederle, LP Tomback, DF AF Johnson, SA Bruederle, LP Tomback, DF TI A mating system conundrum: Hybridization in Apocynum (Apocynaceae) SO AMERICAN JOURNAL OF BOTANY LA English DT Article DE allozymes; Apocynaceae; Apocynum; hybridization; pollination; population genetics ID STARCH-GEL ELECTROPHORESIS; ASCLEPIADACEAE; POPULATIONS; EVOLUTION; BUFFERS AB Based upon an intermediate morphology, Apocynum x-floribundum Greene has long been considered a hybrid involving A. androsaemifolium and A. cannabinum. The floral morphology in this genus, however, appears to prohibit bath import and export of pollen, and observations of numerous insect visitors reveal that pollen is not routinely carried from flower to flower Furthermore, reproductive success as measured by fruit set is very low in most populations. Hybridization was thus called into question, with allozyme evidence used to test the hypothesis of a hybrid origin for A. x-floribundum. Six diagnostic loci, as well as two loci exhibiting highly disparate allele frequencies, were resolved for each parent. All examined populations of A. x-floribundum were heterozygous at these loci, thus supporting the hypothesis of hybridization. Evidence from additional loci indicated that all populations tend to be strongly clonal. Observed heterozygosity was very low in the parental species, suggesting a history of inbreeding or a severe bottleneck. There was no support for earlier assumptions that some intermediates are derived from backcrosses or "secondary hybrids." Statistical analyses of plant height, leaf shape, petal length, sepal length, follicle length, seed length, and seed number per follicle supported these conclusions. The persistence and vegetative spread of hybrid clones may contribute to the illusion that hybridization is common. C1 Univ Colorado, Dept Biol, Denver, CO 80217 USA. RP Bruederle, LP (corresponding author), Univ Colorado, Dept Biol, Campus Box 171,POB 173364, Denver, CO 80217 USA. CR ABBOTT RJ, 1992, TRENDS ECOL EVOL, V7, P401, DOI 10.1016/0169-5347(92)90020-C ANDERSON E., 1936, Ann. Mo. Bot. Gdn., V23, P159, DOI 10.2307/2394192 ARNOLD ML, 1992, ANNU REV ECOL SYST, V23, P237, DOI 10.1146/annurev.es.23.110192.001321 Barkley, 1986, FLORA GREAT PLAINS Broyles SB, 1996, AM J BOT, V83, P1580, DOI 10.2307/2445834 CHELIAK WM, 1984, X42 PI PET NAT FOR I CLAYTON JW, 1972, J FISH RES BOARD CAN, V29, P1169, DOI 10.1139/f72-172 COOK RE, 1983, AM SCI, V71, P244 CRONQUIST A, 1981, INTEGRATED SYSTEM CL Harrington HD, 1954, MANUAL PLANTS COLORA NAKAMURA RR, 1989, ECOLOGY, V70, P71, DOI 10.2307/1938413 Orton T.J., 1983, ISOZYMES PLANT GENET, P469, DOI DOI 10.1016/B978-0-444-42226-2.50031-1 PLEASANTS JM, 1989, AM J BOT, V76, P1136, DOI 10.2307/2444826 RIESEBERG LH, 1995, AM J BOT, V82, P944, DOI 10.2307/2445981 Robertson C, 1928, FLOWERS INSECTS LIST ROSATTI TJ, 1989, J ARNOLD ARBORETUM, V70, P307, DOI 10.5962/bhl.part.19789 Rydberg P. A., 1932, FLORA PRAIRIES PLAIN SCOTT JA, 1986, BUTTERFLIES N AM SOLTIS DE, 1983, AM FERN J, V73, P9, DOI 10.2307/1546611 Weber W. A., 1990, COLORADO FLORA E SLO WERTH C R, 1985, Virginia Journal of Science, V36, P53 Wilson EO., 1971, INSECT SOC WILSON WT, 1958, B COLORADO STATE U E, V503 WOODSON RE, 1930, ANN MO BOT GARD, V17, P1, DOI DOI 10.2307/2394074 WYATT R, 1992, SYST BOT, V17, P640, DOI 10.2307/2419732 Wylie, 1956, CHROMOSOME ATLAS FLO NR 26 TC 9 Z9 11 U1 1 U2 7 PU BOTANICAL SOC AMER INC PI COLUMBUS PA OHIO STATE UNIV-DEPT BOTANY 1735 NEIL AVE, COLUMBUS, OH 43210 USA SN 0002-9122 J9 AM J BOT JI Am. J. Bot. PD SEP PY 1998 VL 85 IS 9 BP 1316 EP 1323 DI 10.2307/2446641 PG 8 WC Plant Sciences SC Plant Sciences GA 122GQ UT WOS:000076063900014 PM 21685017 OA Bronze DA 2021-10-15 ER PT J AU Ransom, CV Kells, JJ Wax, LM Orfanedes, MS AF Ransom, CV Kells, JJ Wax, LM Orfanedes, MS TI Morphological variation among hemp dogbane (Apocynum cannabinum) populations SO WEED SCIENCE LA English DT Article DE morphology; variation; population; weed ecology; diversity; biotype; ecotype ID CONVOLVULUS-ARVENSIS BIOTYPES; WEED; TILLAGE; GROWTH AB Experiments were conducted to examine morphological variation among hemp dog-bane populations. Rootstocks collected from 16 sires throughout Michigan and Illinois were used to establish nurseries in East Lansing, MI, and Champaign, IL. Growth, stem characteristics, and leaf characteristics were measured for each ecotype at both nurseries. Differences among ecotypes were observed for all measurements except emergence date and growing degree days to emergence. The number of shoots per plot produced by the ecotypes ranged from 5 to 54 and shoot height ranged from 69 to 126 cm. Ecotypes spread laterally at different rates, with the most aggressive covering 19 rimes more ground area than the least aggressive. Total shoot dry weight accumulation varied greatly among ecotypes. Some ecotypes could be identified from others by their unique leaf shape. Shoot number, shoot height, and ground area covered were greater for plants grown in Michigan than in Illinois. Differences in growth and morphological characteristics among ecotypes were not correlated with the geographical region where they were collected. Differences in measurements between the two nurseries illustrate the role of environment and genetics in the growth and morphology of this plant species. C1 Michigan State Univ, Dept Crop & Soil Sci, E Lansing, MI 48824 USA. Univ Illinois, Dept Agron, USDA ARS, Urbana, IL 61801 USA. RP Kells, JJ (corresponding author), Michigan State Univ, Dept Crop & Soil Sci, E Lansing, MI 48824 USA. RI Ransom, Corey/E-5927-2011 CR ALCANTARA EN, 1989, WEED SCI, V37, P107, DOI 10.1017/S0043174500055934 ANDERSON E., 1936, Ann. Mo. Bot. Gdn., V23, P159, DOI 10.2307/2394192 BALBACH HE, 1965, THESIS U ILLINOIS UR, P1 BASKERVILLE GL, 1969, ECOLOGY, V50, P514, DOI 10.2307/1933912 Burnside OC, 1996, WEED SCI, V44, P74, DOI 10.1017/S0043174500093589 COSTA J, 1976, WEED SCI, V24, P54, DOI 10.1017/S0043174500065413 DEGENNARO FP, 1984, WEED SCI, V32, P472, DOI 10.1017/S0043174500059361 DEGENNARO FP, 1984, WEED SCI, V32, P525, DOI 10.1017/S0043174500059464 GLENN S, 1993, WEED TECHNOL, V7, P47 HARVEY SJ, 1988, WEED SCI, V36, P726, DOI 10.1017/S0043174500075731 HODGSON JESSE M., 1964, WEEDS, V12, P167, DOI 10.2307/4040720 HOLT JS, 1994, WEED SCI, V42, P378, DOI 10.1017/S0043174500076657 HUME L, 1982, CAN J BOT, V60, P1928, DOI 10.1139/b82-241 Klingaman TE, 1996, WEED SCI, V44, P540, DOI 10.1017/S0043174500094303 LOUX MM, 1991, WEED TECHNOL, V5, P460, DOI 10.1017/S0890037X00028438 MCWHORTER CG, 1976, WEED SCI, V24, P270, DOI 10.1017/S0043174500065942 ROBISON LR, 1972, WEED SCI, V20, P156, DOI 10.1017/S0043174500035244 SCHULTZ ME, 1979, AGRON J, V71, P723, DOI 10.2134/agronj1979.00021962007100050007x SCHULTZ ME, 1979, WEED SCI, V27, P565, DOI 10.1017/S0043174500044623 TRIPLETT GB, 1972, WEED SCI, V20, P453, DOI 10.1017/S0043174500036122 Triplett Jr G.B., 1985, WEED SCI SOC AM MONO, V2, P26 WESTRA PH, 1981, WEED SCI, V29, P44, DOI 10.1017/S0043174500025819 WILKINSON RE, 1980, WEED SCI, V29, P110 WOODSON RE, 1930, ANN MO BOT GARD, V17, P1, DOI DOI 10.2307/2394074 NR 24 TC 9 Z9 9 U1 0 U2 5 PU WEED SCI SOC AMER PI LAWRENCE PA 810 EAST 10TH ST, LAWRENCE, KS 66044-8897 USA SN 0043-1745 J9 WEED SCI JI Weed Sci. PD JAN-FEB PY 1998 VL 46 IS 1 BP 71 EP 75 DI 10.1017/S0043174500090196 PG 5 WC Agronomy; Plant Sciences SC Agriculture; Plant Sciences GA ZA047 UT WOS:000072323200012 DA 2021-10-15 ER PT J AU ABE, F MORI, Y YAMAUCHI, T SAIKI, Y AF ABE, F MORI, Y YAMAUCHI, T SAIKI, Y TI STUDIES ON APOCYNUM .2. STROPHANTHIDIN GLYCOSIDES FROM THE ROOTS OF APOCYNUM-VENETUM VAR BASIKURUMON SO CHEMICAL & PHARMACEUTICAL BULLETIN LA English DT Article C1 FUKUOKA UNIV, FAC PHARMACEUT SCI, 8-19-1 NANAKUMA, JONAN KU, FUKUOKA 81401, JAPAN. KOBE GAKUIN UNIV, DEPT PHARMACEUT SCI, NISHI KU, KOBE 673, JAPAN. CR ABE F, 1981, CHEM PHARM BULL, V29, P416 ABE F, 1988, CHEM PHARM BULL, V36, P621 ABE F, 1987, CHEM PHARM BULL, V35, P4087 ABE F, 1976, PHYTOCHEMISTRY, V15, P1745, DOI 10.1016/S0031-9422(00)97469-7 ABE F, 1979, CHEM PHARM BULL, V27, P1604 IMAI K, 1957, TAKAMINE KENKYU NENP, V9, P31 REICHSTE.P, 1967, HELV CHIM ACTA, V50, P2114, DOI 10.1002/hlca.19670500750 YAMAUCHI T, 1987, CHEM PHARM BULL, V35, P4993 YAMAUCHI T, 1987, CHEM PHARM BULL, V35, P4813 YAMAUCHI T, 1974, CHEM PHARM BULL, V22, P1680 YAMAUCHI T, 1979, PHYTOCHEMISTRY, V18, P1240, DOI 10.1016/0031-9422(79)80151-X NR 11 TC 9 Z9 10 U1 0 U2 3 PU PHARMACEUTICAL SOC JAPAN PI TOKYO PA 2-12-15 SHIBUYA, SHIBUYA-KU, TOKYO, 150-0002, JAPAN SN 0009-2363 J9 CHEM PHARM BULL JI Chem. Pharm. Bull. PD OCT PY 1988 VL 36 IS 10 BP 3811 EP 3815 PG 5 WC Chemistry, Medicinal; Chemistry, Multidisciplinary; Pharmacology & Pharmacy SC Pharmacology & Pharmacy; Chemistry GA Q9570 UT WOS:A1988Q957000009 OA Bronze DA 2021-10-15 ER PT J AU Gao, G Chen, P Chen, JK Chen, KM Wang, XF Abubakar, AS Liu, N Yu, CM Zhu, AG AF Gao, Gang Chen, Ping Chen, Jikang Chen, Kunmei Wang, Xiaofei Abubakar, Aminu Shehu Liu, Ning Yu, Chunming Zhu, Aiguo TI Genomic Survey, Transcriptome, and Metabolome Analysis of Apocynum venetum and Apocynum hendersonii to Reveal Major Flavonoid Biosynthesis Pathways SO METABOLITES LA English DT Article DE Apocynum venetum; Apocynum hendersonii; genomic survey; flavonoids; metabolites profiles; gene expression ID EXPRESSION ANALYSIS; ANTHOCYANIN; GENES; IDENTIFICATION; L.; APOCYNACEAE; LUOBUMA; SYSTEM; LEAF AB Apocynum plants, especially A. venetum and A. hendersonii, are rich in flavonoids. In the present study, a whole genome survey of the two species was initially carried out to optimize the flavonoid biosynthesis-correlated gene mining. Then, the metabolome and transcriptome analyses were combined to elucidate the flavonoid biosynthesis pathways. Both species have small genome sizes of 232.80 Mb (A. venetum) and 233.74 Mb (A. hendersonii) and showed similar metabolite profiles with flavonols being the main differentiated flavonoids between the two specie. Positive correlation of gene expression levels (flavonone-3 hydroxylase, anthocyanidin reductase, and flavonoid 3-O-glucosyltransferase) and total flavonoid content were observed. The contents of quercitrin, hyperoside, and total anthocyanin in A. venetum were found to be much higher than in A. hendersonii, and such was thought to be the reason for the morphological difference in color of A. venetum and A. hendersonii. This study provides valuable genomic and metabolome information for understanding of A. venetum and A. hendersonii, and lays a foundation for elucidating Apocynum genus plant flavonoid biosynthesis. C1 [Gao, Gang; Chen, Ping; Chen, Jikang; Chen, Kunmei; Wang, Xiaofei; Abubakar, Aminu Shehu; Liu, Ning; Yu, Chunming; Zhu, Aiguo] Chinese Acad Agr Sci, Inst Bast Fiber Crops, Changsha 410205, Peoples R China. RP Yu, CM; Zhu, AG (corresponding author), Chinese Acad Agr Sci, Inst Bast Fiber Crops, Changsha 410205, Peoples R China. EM gaogang@caas.cn; Chenping02@caas.cn; chenjikang@caas.cn; Chenkunmei@caas.cn; xiaofei1008@126.com; aashehu.agr@buk.edu.ng; liu7ning2628@163.com; yuchunming@caas.cn; zhuaiguo@caas.cn OI Gao, Gang/0000-0003-4259-9683 FU Agricultural Science and Technology Innovation Project of the Chinese Academy of Agricultural Sciences [CAAS-ASTIP-2019]; China Agricultural Research System [CARS-16]; Central Public-Interest Scientific Institution Basal Research Fund [Y2019XK15-03] FX This work was supported by the Agricultural Science and Technology Innovation Project of the Chinese Academy of Agricultural Sciences (CAAS-ASTIP-2019), the China Agricultural Research System (CARS-16), and the Central Public-Interest Scientific Institution Basal Research Fund (Y2019XK15-03). CR Valles NB, 2012, J CHROMATOGR A, V1264, P110, DOI 10.1016/j.chroma.2012.09.063 Bendokas V, 2020, CRIT REV FOOD SCI, V60, P3352, DOI 10.1080/10408398.2019.1687421 Bogs J, 2006, PLANT PHYSIOL, V140, P279, DOI 10.1104/pp.105.073262 Boss PK, 1996, PLANT PHYSIOL, V111, P1059, DOI 10.1104/pp.111.4.1059 Castellarin SD, 2007, PLANT CELL ENVIRON, V30, P1381, DOI 10.1111/j.1365-3040.2007.01716.x Inacio MRC, 2013, FOOD CHEM, V136, P1160, DOI 10.1016/j.foodchem.2012.09.046 Chan CO, 2015, ANTIOXIDANTS, V4, P359, DOI 10.3390/antiox4020359 Dong TT, 2019, FOOD CHEM, V271, P18, DOI 10.1016/j.foodchem.2018.07.120 Espley RV, 2007, PLANT J, V49, P414, DOI 10.1111/j.1365-313X.2006.02964.x Garcia S, 2014, NUCLEIC ACIDS RES, V42, pD1159, DOI 10.1093/nar/gkt1195 Grabherr MG, 2011, NAT BIOTECHNOL, V29, P644, DOI 10.1038/nbt.1883 Grundmann O, 2009, PHYTOMEDICINE, V16, P295, DOI 10.1016/j.phymed.2008.12.020 Haug K, 2013, NUCLEIC ACIDS RES, V41, pD781, DOI 10.1093/nar/gks1004 Huang XW, 2014, FOOD CHEM, V164, P536, DOI 10.1016/j.foodchem.2014.05.072 Hur M, 2013, NAT PROD REP, V30, P1569, DOI 10.1039/C3NP20111B Jiao WB, 2013, PLANT J, V75, P954, DOI 10.1111/tpj.12254 Kanehisa M, 2000, NUCLEIC ACIDS RES, V28, P27, DOI 10.1093/nar/28.1.27 Kasimu R, 2015, J ETHNOPHARMACOL, V168, P116, DOI 10.1016/j.jep.2015.03.013 Lau YS, 2012, J ETHNOPHARMACOL, V143, P565, DOI 10.1016/j.jep.2012.07.012 Leitch I.J., 2013, PHYS STRUCTURE BEHAV, V2, P307, DOI [DOI 10.1007/978-3-7091-1160-4_, DOI 10.1007/978-3-7091-1160-4_19] Liu B, 2012, ARXIV201220131308, V2013, P1308 Lu CM, 2010, BIOL PHARM BULL, V33, P522, DOI 10.1248/bpb.33.522 Patil G, 2009, CHEM ENG PROCESS, V48, P364, DOI 10.1016/j.cep.2008.05.006 Pertea G, 2003, BIOINFORMATICS, V19, P651, DOI 10.1093/bioinformatics/btg034 Reem NT, 2018, PLANT MOL BIOL, V96, P509, DOI 10.1007/s11103-018-0714-0 Sagaradze VA, 2017, PHARM CHEM J+, V51, P277, DOI 10.1007/s11094-017-1597-0 Schaefer HM, 2004, TRENDS ECOL EVOL, V19, P577, DOI 10.1016/j.tree.2004.08.003 Schmittgen TD, 2008, NAT PROTOC, V3, P1101, DOI 10.1038/nprot.2008.73 Su MY, 2018, PLANT SCI, V276, P189, DOI 10.1016/j.plantsci.2018.08.021 Thevs N, 2012, J APPL BOT FOOD QUAL, V85, P159 Tsantili E, 2010, POSTHARVEST BIOL TEC, V57, P27, DOI 10.1016/j.postharvbio.2010.02.002 Wang LK, 2010, BIOINFORMATICS, V26, P136, DOI 10.1093/bioinformatics/btp612 Wang N, 2018, HORTIC RES-ENGLAND, V5, DOI 10.1038/s41438-018-0084-4 Wang YiCheng, 2017, Acta Horticulturae Sinica, V44, P633 White BL, 2011, J AGR FOOD CHEM, V59, P4692, DOI 10.1021/jf200149a Wu T, 2018, EVID-BASED COMPL ALT, V2018, DOI 10.1155/2018/5916451 Xie C, 2011, NUCLEIC ACIDS RES, V39, pW316, DOI 10.1093/nar/gkr483 Xie WY, 2012, J ETHNOPHARMACOL, V141, P1, DOI 10.1016/j.jep.2012.02.003 Yan SX, 2015, TROP J PHARM RES, V14, P2269, DOI 10.4314/tjpr.v14i12.17 Yang JY, 2012, SCIENCE, V337, P1336, DOI 10.1126/science.1223702 Ye J, 2018, NUCLEIC ACIDS RES, V46, pW71, DOI 10.1093/nar/gky400 Yokozawa T, 2002, BIOL PHARM BULL, V25, P748, DOI 10.1248/bpb.25.748 Zhang Wenliang, 2007, P CSEE, V27, P3 Zhao L, 2014, J SEP SCI, V37, P515, DOI 10.1002/jssc.201301036 NR 44 TC 8 Z9 8 U1 7 U2 19 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND EI 2218-1989 J9 METABOLITES JI Metabolites PD DEC PY 2019 VL 9 IS 12 AR 296 DI 10.3390/metabo9120296 PG 15 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA KB7ND UT WOS:000506676300015 PM 31817331 OA gold, Green Published DA 2021-10-15 ER PT J AU Wang, ZQ Wang, DF Wang, MR Li, W Sui, Q AF Wang, Zongqian Wang, Dengfeng Wang, Mingrong Li, Wei Sui, Qing TI Metaplexis japonica seed hair fiber: a member of natural hollow fibers and its characterization SO TEXTILE RESEARCH JOURNAL LA English DT Article DE Metaplexis japonica seed hair fiber; hollowness; morphology; surface characteristic; composition ID APOCYNUM-VENETUM FIBERS; ASCLEPIADACEAE PLANTS; KAPOK FIBER; STEROIDAL GLYCOSIDES; BY-PRODUCTS; CELLULOSE I; COMPONENTS; CONSTITUENTS; BIOFIBERS AB Metaplexis japonica seed hair fibers (Mj-fiber), harvested from the seed pods of Metaplexis japonica (Apocynaceae: Asclepiadoideae) originating in China, Japan and Korea, have features ensuring its potential application in the textile and other industrial fields. In spite of the extensive study on the medicinal properties of Metaplexis japonica, research literature about Mj-fiber is quite limited. We obtained Mj-fibers by artificial peeling and seed removing; then the fiber morphology, chemical composition, structures, fiber surface absorption characteristics, and tensile and thermal properties were studied in detail. From the results, Mj-fiber has a hollow structure with a thin fiber wall and large lumen, in which the hollowness is over 92%. Uniquely, Mj-fiber is a natural profiled fiber with a cross-section of a "cross flower" morphology. At the same time, the density of it is very low, accounting for only one-fifth of the cotton fibers, and the fiber length distribution is relatively concentrated. The main component is cellulose, with a content of 53.9 +/- 3.20% and structure of cellulose I. In particular, Mj-fiber has excellent hydrophobic and oil affinity surface characteristics. Moreover, the fibers bulkiness and warmth retention performance are comparable to that of duck down. Therefore, the results provide an experimental basis for the application of Mj-fibers in the textile and other industrial fields. C1 [Wang, Zongqian; Wang, Dengfeng; Wang, Mingrong; Li, Wei; Sui, Qing] Anhui Polytechn Univ, Sch Text & Garment, 8 Beijing Middle Rd, Wuhu 241000, Anhui, Peoples R China. RP Wang, ZQ (corresponding author), Anhui Polytechn Univ, Sch Text & Garment, 8 Beijing Middle Rd, Wuhu 241000, Anhui, Peoples R China. EM wzqkeyan@126.com CR Chaiarrekij S, 2012, BIORESOURCES, V7, P475 Chen HL, 2010, CLOTH TEXT RES J, V28, P255, DOI 10.1177/0887302X10375845 Duan CT, 2013, CELLULOSE, V20, P849, DOI 10.1007/s10570-013-9875-9 FINK HP, 1985, J APPL POLYM SCI, V30, P3779, DOI 10.1002/app.1985.070300918 Gagge AP, 1941, SCIENCE, V94, P428, DOI 10.1126/science.94.2445.428 Lomeli-Ramirez MG, 2018, BIORESOURCES, V13, P1637, DOI 10.15376/biores.13.1.1637-1660 Han GT, 2008, CARBOHYD POLYM, V72, P652, DOI 10.1016/j.carbpol.2007.10.002 Hori K, 2000, J WOOD SCI, V46, P401, DOI 10.1007/BF00776404 Huda S, 2007, J BIOBASED MATER BIO, V1, P177, DOI 10.1166/jbmb.2007.022 Jamarkattel-Pandit N, 2013, JHAS, V3, P51 Jia C, 2018, ADV MATER, V30, DOI 10.1002/adma.201801347 Jia L., 2011, J LIAONING MED UNIV, V32, p[401, 412] Karthik T, 2013, FIBER POLYM, V14, P465, DOI 10.1007/s12221-013-0465-0 Krifa M, 2006, TEXT RES J, V76, P426, DOI 10.1177/0040517506062616 Li ZL, 2014, FIBER POLYM, V15, P2105, DOI 10.1007/s12221-014-2105-8 Manjula P, 2017, BIORESOUR BIOPROCESS, V4, DOI 10.1186/s40643-017-0144-x MITSUHAS.H, 1966, CHEM PHARM BULL, V14, P717 MITSUHASHI H, 1965, CHEM PHARM BULL, V13, P1332 MITSUHASHI H, 1962, CHEM PHARM BULL, V10, P811 MITSUHASHI H, 1965, CHEM PHARM BULL, V13, P274 MITSUHASHI H, 1963, Chem Pharm Bull (Tokyo), V11, P1333 Nishiyama Y, 2008, BIOMACROMOLECULES, V9, P3133, DOI 10.1021/bm800726v NOMURA T, 1972, CHEM PHARM BULL, V20, P1344 Oh SY, 2005, CARBOHYD RES, V340, P2376, DOI 10.1016/j.carres.2005.08.007 Reddy N, 2005, TRENDS BIOTECHNOL, V23, P22, DOI 10.1016/j.tibtech.2004.11.002 Reddy N, 2006, J AGR FOOD CHEM, V54, P8077, DOI 10.1021/jf0617723 Sain M, 2006, IND CROP PROD, V23, P1, DOI 10.1016/j.indcrop.2005.01.006 Schuster, 2011, LENZINGER BERICHTE, V89, P118, DOI [DOI 10.1163/156856198X00740, 10.1163/156856198X00740] Shi MW, 2010, TEXT RES J, V80, P159, DOI 10.1177/0040517508095594 Wang BQ., 2014, ADV MAT RES, V955-959 Wang DC, 2015, INT J FOOD SCI TECH, V50, P449, DOI 10.1111/ijfs.12645 Wang LL, 2007, CARBOHYD POLYM, V69, P391, DOI 10.1016/j.carbpol.2006.12.028 Wang M, 2008, INT J HEAT MASS TRAN, V51, P1325, DOI 10.1016/j.ijheatmasstransfer.2007.11.031 Warashina T, 1998, PHYTOCHEMISTRY, V49, P2103, DOI 10.1016/S0031-9422(98)00405-1 Warashina T, 1998, CHEM PHARM BULL, V46, P1752 Wilkes KE, 1991, INSULATION MAT TESTI Yadav MP, 2017, FOOD HYDROCOLLOID, V63, P545, DOI 10.1016/j.foodhyd.2016.09.022 Yao HL, 2017, MOLECULES, V22, DOI 10.3390/molecules22040646 Yu HQ, 2010, J TEXT I, V101, P452, DOI 10.1080/00405000802472564 Yue YY, 2013, BIORESOURCES, V8, P6460 Zheng Y, 2015, J ENVIRON SCI, V27, P21, DOI 10.1016/j.jes.2014.09.026 Zhou L, 2012, J APPL POLYM SCI, V125, pE573, DOI 10.1002/app.36392 NR 42 TC 8 Z9 11 U1 3 U2 33 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0040-5175 EI 1746-7748 J9 TEXT RES J JI Text. Res. J. PD NOV PY 2019 VL 89 IS 21-22 BP 4363 EP 4372 DI 10.1177/0040517519834600 PG 10 WC Materials Science, Textiles SC Materials Science GA IX9KD UT WOS:000486006200003 DA 2021-10-15 ER PT J AU Gao, P Duan, TY Christensen, MJ Nan, ZB Liu, QT Meng, FJ Huang, JF AF Gao, Peng Duan, Ting-Yu Christensen, Michael J. Nan, Zhi-Biao Liu, Qi-Tang Meng, Fan-Jie Huang, Jing-Feng TI The occurrence of rust disease, and biochemical and physiological responses on Apocynum venetum plants grown at four soil water contents, following inoculation with Melampsora apocyni SO EUROPEAN JOURNAL OF PLANT PATHOLOGY LA English DT Article DE Apocynum venetum; Water stress; Disease index; Enzyme activity; Photosythesis physiology ID POWDERY MILDEW; STRESS; PHOTOSYNTHESIS; DROUGHT; RESISTANCE; LEAVES; PHOTOINHIBITION; PATHOGEN; OXIDASE; DEFICIT AB We studied the development of rust disease, and biochemical and physiological responses, on Apocynum venetum plants inoculation with Melampsora apocyni that were growing in a greenhouse at four relative soil water contents. The soil conditions were 25% (severe drought), 50% (mild drought), 75% (optimal) and 100% (waterlogging) relative soil water content. Plants exposed to drought and waterlogging stress had a lower number of open stomata before inoculation, corresponding with the disease index on the 10th day after inoculation being lower than that of the optimal soil water condition. Inoculated plants exposed to severe and mild drought stress had a gradually enhanced resistance to the rust disease from the 10th day after inoculation, corresponding with the enhanced activity of polyphenol oxidase and phenylalanine ammonialyase. For the inoculated plants exposed to severe drought stress, hydrogen peroxide always remained at the highest level for any treatment, and they had a rapidly enhanced activity of peroxidase, two factors that were associated with suppression of disease development. A. venetum plants exposed to double stress of waterlogging and disease had a high activity of peroxidase that not only removed reactive oxygen to prevent or reduce cell injury but also enhanced resistance to the rust disease. In addition, a rapidly enhanced activity of phenylalanine ammonialyase in the waterlogging condition from the 25th day after inoculation was also associated with an enhanced resistance to the rust disease. Drought and waterlogging stress had a negative effect on the leaf photosystem, and in particular, there was a significant decrease in the net photosynthetic rate with an increase in the duration and degree of drought stress, and this lead to a statistically significant decrease in the weight of aboveground tissue compared with that of plants under optimal soil water condition (P < 0.05). Inoculating with M. apocyni had a slight effect on photosynthesis of plants during early disease development, but the physiological function of diseased leaves under the drought stress was damaged more seriously than that of non-inoculated plants in later disease development, leading to a large reduction in the net photosynthetic rate. However, this reduction did not cause a statistically significant (P > 0.05) decrease in the weight of aboveground tissue compared with that of non-inoculated plants under drought stress. C1 [Gao, Peng; Duan, Ting-Yu; Christensen, Michael J.; Nan, Zhi-Biao] Lanzhou Univ, State Key Lab Grassland Agroecosyst, Lanzhou 730020, Gansu, Peoples R China. [Gao, Peng; Duan, Ting-Yu; Christensen, Michael J.; Nan, Zhi-Biao] Lanzhou Univ, Coll Pastoral Agr Sci & Technol, Lanzhou 730020, Gansu, Peoples R China. [Liu, Qi-Tang; Meng, Fan-Jie; Huang, Jing-Feng] Altay Gaubau Tea Co Ltd, Altay 836500, Peoples R China. RP Nan, ZB (corresponding author), Lanzhou Univ, State Key Lab Grassland Agroecosyst, Lanzhou 730020, Gansu, Peoples R China.; Nan, ZB (corresponding author), Lanzhou Univ, Coll Pastoral Agr Sci & Technol, Lanzhou 730020, Gansu, Peoples R China. EM zhibiao@lzu.edu.cn RI a, a·cŽ‰/AAC-8403-2021 FU Integrated Disease Control Techniques of Apocynum venetum of The Science and Technology Department of Xinjiang Uygur Autonomous Region, China [201191135]; Integrated Disease and Harmful Insect Control Techniques of Apocynum venetum of The Science and Technology Department of Xinjiang Uygur Autonomous Region, China [2016E02015]; Apocynum venetum Large-scale Cultivation Technology Research and Industrialization of The Science and Technology Department of Xinjiang Uygur Autonomous Region, China [2016A03006] FX This research was financially supported by the Integrated Disease Control Techniques of Apocynum venetum (201191135), Integrated Disease and Harmful Insect Control Techniques of Apocynum venetum (2016E02015), Apocynum venetum Large-scale Cultivation Technology Research and Industrialization (2016A03006) of The Science and Technology Department of Xinjiang Uygur Autonomous Region, China. CR Assis JS, 2001, POSTHARVEST BIOL TEC, V23, P33, DOI 10.1016/S0925-5214(01)00100-4 Asthir B, 2010, BIOL PLANTARUM, V54, P329, DOI 10.1007/s10535-010-0057-4 BOYER JS, 1982, SCIENCE, V218, P443, DOI 10.1126/science.218.4571.443 BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3 BRESTIC M, 1995, PLANTA, V196, P450, DOI 10.1007/BF00203643 Carvalho LC, 2002, PLANT SCI, V162, P33, DOI 10.1016/S0168-9452(01)00524-6 [陈鹏 Chen Peng], 2011, [西北农业学报, Acat Agriculturae Boreali-Occidentalis Sinica], V20, P56 Choi HK, 2013, MOL PLANT MICROBE IN, V26, P643, DOI 10.1094/MPMI-09-12-0217-R Cochard H, 2002, PLANT PHYSIOL, V128, P282, DOI 10.1104/pp.010400 COFFEY MD, 1984, CAN J BOT, V62, P134, DOI 10.1139/b84-022 Dat J, 2000, CELL MOL LIFE SCI, V57, P779, DOI 10.1007/s000180050041 Enright S, 2011, CHEMOECOLOGY, V21, P89, DOI 10.1007/s00049-011-0072-8 Fan Z. H., 1989, ACTA PHYTOPATHOLOGIC, V2, P95 FERGUSON IB, 1983, PLANT PHYSIOL, V71, P182, DOI 10.1104/pp.71.1.182 Fujita M, 2006, CURR OPIN PLANT BIOL, V9, P436, DOI 10.1016/j.pbi.2006.05.014 Gao P., 2014, METHOD UREDOSPORE PR Gao Peng, 2017, Journal of Plant Protection, V44, P129 Gao Peng, 2015, Acta Botanica Boreali-Occidentalia Sinica, V35, P2069 Garson G. D., 2012, TESTING STAT ASSUMPT Itagaki K, 2014, EUR J PLANT PATHOL, V138, P113, DOI 10.1007/s10658-013-0309-1 Lafitte R, 2002, FIELD CROP RES, V76, P165, DOI 10.1016/S0378-4290(02)00037-0 Lamb C, 1997, ANNU REV PLANT PHYS, V48, P251, DOI 10.1146/annurev.arplant.48.1.251 [李倩 Li Qian], 2013, [植物病理学报, Acta Phytopathologica Sinica], V43, P267 LIVNE A, 1964, PLANT PHYSIOL, V39, P614, DOI 10.1104/pp.39.4.614 Malone S. R., 1993, AM J BOT, V49, P443 McElrone AJ, 2005, GLOBAL CHANGE BIOL, V11, P1828, DOI 10.1111/j.1365-2486.2005.001015.x Mellersh DG, 2002, PLANT J, V29, P257, DOI 10.1046/j.0960-7412.2001.01215.x Melo GA, 2006, PHYTOCHEMISTRY, V67, P277, DOI 10.1016/j.phytochem.2005.11.003 Miranda M, 2007, MOL PLANT MICROBE IN, V20, P816, DOI 10.1094/MPMI-20-7-0816 MORAN JF, 1994, PLANTA, V194, P346, DOI 10.1007/BF00197534 Mur LAJ, 2013, PLANT PATHOL, V62, P72, DOI 10.1111/ppa.12174 OGREN E, 1985, PLANTA, V166, P380, DOI 10.1007/BF00401176 Ping XiaoYan, 2014, Acta Prataculturae Sinica, V23, P49 Qin GZ, 2005, PHYTOPATHOLOGY, V95, P69, DOI 10.1094/PHYTO-95-0069 Shang HongSheng, 2004, Acta Phytopathologica Sinica, V34, P122 Shibuya T, 2015, SCI HORTIC-AMSTERDAM, V192, P197, DOI 10.1016/j.scienta.2015.06.010 Song RJ, 2015, J CHROMATOGR B, V995, P8, DOI 10.1016/j.jchromb.2015.05.019 Thevs N, 2012, J APPL BOT FOOD QUAL, V85, P159 Torres MA, 2005, CURR OPIN PLANT BIOL, V8, P397, DOI 10.1016/j.pbi.2005.05.014 VONCAEMMERER S, 1981, PLANTA, V153, P376, DOI 10.1007/BF00384257 Walters D, 2005, PHYTOPATHOLOGY, V95, P1368, DOI 10.1094/PHYTO-95-1368 Wang Dong-qing, 2012, Xibei Zhiwu Xuebao, V32, P1198 [王东清 Wang Dongqing], 2012, [干旱区资源与环境, Journal of Arid Land Resources and Environment], V26, P177 Wang L., 2014, NO HORTICULTURE, V23, P136 WILLIAMS GM, 1981, PLANT PHYSIOL, V68, P527, DOI 10.1104/pp.68.3.527 Xu ZZ, 2006, PLANTA, V224, P1080, DOI 10.1007/s00425-006-0281-5 ZHANG ZG, 1995, PLANT J, V8, P139, DOI 10.1046/j.1365-313X.1995.08010139.x Zhao DL, 2011, PLANT DIS, V95, P640, DOI 10.1094/PDIS-10-10-0762 NR 48 TC 8 Z9 8 U1 2 U2 50 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0929-1873 EI 1573-8469 J9 EUR J PLANT PATHOL JI Eur. J. Plant Pathol. PD MAR PY 2018 VL 150 IS 3 BP 549 EP 563 DI 10.1007/s10658-017-1299-1 PG 15 WC Agronomy; Plant Sciences; Horticulture SC Agriculture; Plant Sciences GA FT7RX UT WOS:000423351600001 DA 2021-10-15 ER PT J AU Chen, J Wan, SB Liu, HH Fan, SL Zhang, YJ Wang, W Xia, MX Yuan, R Deng, FN Shen, FF AF Chen, Jie Wan, Sibao Liu, Huaihua Fan, Shuli Zhang, Yujuan Wang, Wei Xia, Minxuan Yuan, Rui Deng, Fenni Shen, Fafu TI Overexpression of an Apocynum venetum DEAD-Box Helicase Gene (AvDH1) in Cotton Confers Salinity Tolerance and Increases Yield in a Saline Field SO FRONTIERS IN PLANT SCIENCE LA English DT Article DE DEAD-box helicase; AvDH1; cotton; salinity; yield; field trial ID STRESS TOLERANCE; SALT TOLERANCE; RNA HELICASE; ANTIOXIDANT MACHINERY; ABIOTIC STRESS; PROTEIN FAMILY; DNA HELICASES; RICE; ARABIDOPSIS; RESPONSES AB Soil salinity is a major environmental stress limiting plant growth and productivity. We have reported previously the isolation of an Apocynum yenetum DEAD-box helicase 1 (AvDH1) that is expressed in response to salt exposure. Here, we report that the overexpression of AvDH1 driven by a constitutive cauliflower mosaic virus 35S promoter in cotton plants confers salinity tolerance. Southern and Northern blotting analyses showed that the AvDH1 gene was integrated into the cotton genome and expressed. In this study, the growth of transgenic cotton expressing AvDH1 was evaluated under saline conditions in a growth chamber and in a saline field trial. Transgenic cotton overexpressing AvDH1 was much more resistant to salt than the wild-type plants when grown in a growth chamber. The lower membrane ion leakage, along with increased activity of superoxide dismutase, in AvDH1 transgenic lines suggested that these characteristics may prevent membrane damage, which increases plant survival rates. In a saline field, the transgenic cotton lines expressing AvDH1 showed increased boll numbers, boll weights and seed cotton yields compared with wild-type plants, especially at high soil salinity levels. This study indicates that transgenic cotton expressing AvDH1 is a promising option for increasing crop productivity in saline fields. C1 [Chen, Jie; Liu, Huaihua; Wang, Wei; Xia, Minxuan; Yuan, Rui; Deng, Fenni; Shen, Fafu] Shandong Agr Univ, Coll Agron, State Key Lab Crop Biology, Tai An, Shandong, Peoples R China. [Wan, Sibao] Shanghai Univ, Coll Life Sci, Shanghai, Peoples R China. [Fan, Shuli] Chinese Acad Agr Sci, Cotton Res Inst, Anyang, Peoples R China. [Zhang, Yujuan] Shandong Acad Agr Sci, Cotton Res Inst, Jinan, Peoples R China. RP Shen, FF (corresponding author), Shandong Agr Univ, Coll Agron, State Key Lab Crop Biology, Tai An, Shandong, Peoples R China. EM ffshen@sdau.edu.cn FU China Major Projects for Teansgenic Breeding [2011/A08005-004, 2011ZX08005-002]; China Key Development Project for Basic Research (973) [2010CB12606] FX This research was mainly supported by the China Major Projects for Teansgenic Breeding (Grant No 2011/A08005-004 and 2011ZX08005-002) and the China Key Development Project for Basic Research (973; Grant No 2010CB12606). CR Ai L, 2008, J AGRON CROP SCI, V194, P360, DOI 10.1111/j.1439-037X.2008.00325.x Amin M, 2012, MOL BREEDING, V30, P345, DOI 10.1007/s11032-011-9625-3 Apel K, 2004, ANNU REV PLANT BIOL, V55, P373, DOI 10.1146/annurev.arplant.55.031903.141701 Ashraf M, 2004, PLANT SCI, V166, P3, DOI 10.1016/j.plantsci.2003.10.024 Ashraf M, 2002, CRIT REV PLANT SCI, V21, P1, DOI 10.1016/S0735-2689(02)80036-3 Ashraf M, 2000, FIELD CROP RES, V66, P115, DOI 10.1016/S0378-4290(00)00064-2 Augustine SM, 2015, MOL BIOTECHNOL, V57, P475, DOI 10.1007/s12033-015-9841-x Banu MSA, 2015, PLANT MOL BIOL REP, V33, P221, DOI 10.1007/s11105-014-0748-7 BATES LS, 1973, PLANT SOIL, V39, P205, DOI 10.1007/BF00018060 Ben Hassine A, 2008, J EXP BOT, V59, P1315, DOI 10.1093/jxb/ern040 BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3 Chen J, 2014, INT J MOL SCI, V15, P4635, DOI 10.3390/ijms15034635 Flowers TJ, 2004, J EXP BOT, V55, P307, DOI 10.1093/jxb/erh003 GIANNOPOLITIS CN, 1977, PLANT PHYSIOL, V59, P309, DOI 10.1104/pp.59.2.309 Gill S. S., 2012, Improving crop resistance to abiotic stress, volume 1 & volume 2, P49 Gill SS, 2013, PLANT MOL BIOL, V82, P1, DOI 10.1007/s11103-013-0031-6 Gill SS, 2010, PLANT PHYSIOL BIOCH, V48, P909, DOI 10.1016/j.plaphy.2010.08.016 Gong ZZ, 2005, PLANT CELL, V17, P256, DOI 10.1105/tpc.104.027557 Gong ZZ, 2002, P NATL ACAD SCI USA, V99, P11507, DOI 10.1073/pnas.172399299 Hasegawa PM, 2000, ANNU REV PLANT PHYS, V51, P463, DOI 10.1146/annurev.arplant.51.1.463 HOFGEN R, 1988, NUCLEIC ACIDS RES, V16, P9877, DOI 10.1093/nar/16.20.9877 Kant P, 2007, PLANT PHYSIOL, V145, P814, DOI 10.1104/pp.107.099895 Lamb C, 1997, ANNU REV PLANT PHYS, V48, P251, DOI 10.1146/annurev.arplant.48.1.251 Liu HH, 2008, J EXP BOT, V59, P633, DOI 10.1093/jxb/erm355 Luking A, 1998, CRIT REV BIOCHEM MOL, V33, P259, DOI 10.1080/10409239891204233 Luo Y, 2009, J PLANT PHYSIOL, V166, P385, DOI 10.1016/j.jplph.2008.06.018 Mittler R, 2004, TRENDS PLANT SCI, V9, P490, DOI 10.1016/j.tplants.2004.08.009 Morant-Manceau A, 2004, J PLANT PHYSIOL, V161, P25, DOI 10.1078/0176-1617-00963 Munns R, 2005, NEW PHYTOL, V167, P645, DOI 10.1111/j.1469-8137.2005.01487.x Munns R, 2002, PLANT CELL ENVIRON, V25, P239, DOI 10.1046/j.0016-8025.2001.00808.x Munns R, 2008, ANNU REV PLANT BIOL, V59, P651, DOI 10.1146/annurev.arplant.59.032607.092911 Nath M, 2015, PLANT SIGNAL BEHAV, V10, DOI 10.4161/15592324.2014.992289 Owttrim GW, 2006, NUCLEIC ACIDS RES, V34, P3220, DOI 10.1093/nar/gkl408 Owttrim GW, 2013, RNA BIOL, V10, P96, DOI 10.4161/rna.22638 Pasapula V, 2011, PLANT BIOTECHNOL J, V9, P88, DOI 10.1111/j.1467-7652.2010.00535.x PAUSE A, 1993, MOL CELL BIOL, V13, P6789, DOI 10.1128/MCB.13.11.6789 Quan RD, 2004, PLANT SCI, V166, P141, DOI 10.1016/j.plantsci.2003.08.018 RICHARDS L. A., 1954, Diagnosis and Improvement of Saline and Alkali Soils. Sahoo RK, 2012, PLANT SIGNAL BEHAV, V7, P1042, DOI 10.4161/psb.20915 Sanan-Mishra N, 2005, P NATL ACAD SCI USA, V102, P509, DOI 10.1073/pnas.0406485102 Satpal Turan, 2012, Australian Journal of Crop Science, V6, P1337 SCHMID SR, 1992, MOL MICROBIOL, V6, P283, DOI 10.1111/j.1365-2958.1992.tb01470.x STOREY R, 1995, AUST J PLANT PHYSIOL, V22, P101, DOI 10.1071/PP9950101 Tuteja N, 1996, NAT GENET, V13, P11, DOI 10.1038/ng0596-11 Tuteja N, 2004, EUR J BIOCHEM, V271, P1849, DOI 10.1111/j.1432-1033.2004.04094.x Tuteja N, 2015, PLANT MOL BIOL REP, V33, P1192, DOI 10.1007/s11105-014-0827-9 Tuteja N, 2013, PLANT J, V76, P115, DOI 10.1111/tpj.12277 Vashisht AA, 2006, J PHOTOCH PHOTOBIO B, V84, P150, DOI 10.1016/j.jphotobiol.2006.02.010 Waditee R, 2007, J BIOL CHEM, V282, P34185, DOI 10.1074/jbc.M704939200 Zhang HJ, 2009, MOL BREEDING, V23, P289, DOI 10.1007/s11032-008-9233-z NR 50 TC 8 Z9 10 U1 0 U2 29 PU FRONTIERS MEDIA SA PI LAUSANNE PA AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND SN 1664-462X J9 FRONT PLANT SCI JI Front. Plant Sci. PD JAN 8 PY 2016 VL 6 AR 1227 DI 10.3389/fpls.2015.01227 PG 11 WC Plant Sciences SC Plant Sciences GA DA3XS UT WOS:000367735200001 PM 26779246 OA gold, Green Published DA 2021-10-15 ER PT J AU Yan, SX Lang, JL Song, YY Wu, YZ Lv, MH Zhao, X Liu, YH Xu, CY AF Yan, Shao-Xiao Lang, Jun-Lian Song, Yan-Ying Wu, Yu-Ze Lv, Meng-Han Zhao, Xia Liu, Yan-Hong Xu, Chun-Yan TI Studies on Anti-Depressant Activity of Four Flavonoids Isolated from Apocynum venetum Linn (Apocynaceae) Leaf in Mice SO TROPICAL JOURNAL OF PHARMACEUTICAL RESEARCH LA English DT Article DE Kaempferol; Quercetin; Forced swimming test; Tail suspension test; Locomotor activity test; Neurotransmitters ID TAIL SUSPENSION TEST; ANTIDEPRESSANT; LEAVES AB Purpose: To investigate the anti-depressant activity of kaempferol, quercetin, kaempferol-3-O-beta-Dglucose and quercetin-3-O-beta-D-glucose isolated from Apocynum venetum Linn. (Apocynaceae) leaf and their mechanisms of action. Methods: The four flavonoids were isolated from Apocynum venetum leaf by chromatography. Mice were divided into vehicle, fluoxetine, kaempferol, quercetin, kaempferol-3-O-beta-D-glucose and quercetin-3-O-beta-D-glucose groups (n = 10). Forced swimming (FST), tail suspension (TST) and locomotor activity (LAT) tests were used to evaluate the effects of the four flavonoids (0.35 mM/kg) on immobility time, monoamine neurotransmitters, viz, norepinephrine (NE), dopamine (DA) and 5-hydroxytryptamine (5-HT), as well as on the metabolite (5-HIAA) in mice brain and central nervous system (CNS) with the aid of video camera, HPLC-ECD and activity-monitoring system. Results: The four flavonoids significantly (p < 0.05) reduced mice immobility time (72.58 - 90.24; 52.58 - 70.24 s), 5-HIAA levels (940.8 - 1244.7; 880.8 - 1164.1 ng/g) and 5-HIAA/5-HT ratio (1.77 - 4.76; 1.83 - 4.16), but increased NE, DA and 5-HT levels (238.7 - 405.7, 308.4 - 528.1, 261.4 - 531.9; 243.9 - 423.6, 296.7 - 534.9, 279.8 - 481.4 ng/g) in FST and TST, compared with control group (146.18, 126.18 s; 1363.4, 1240.9 ng/g; 7.43, 6.16; 138.4, 235.4, 183.4 and 143.7, 218.6, 201.4 ng/g). The effects of the four flavonoids on the above indices were significant (p < 0.05) and positively related to their polarity. They had no CNS-stimulating effects in LAT. Conclusion: The anti-depressant activities of the four flavonoids are positively related to their polarity, and the mechanisms may be due to increased NE, DA and 5-HT and reduced 5-HT metabolism. C1 [Yan, Shao-Xiao; Lang, Jun-Lian; Song, Yan-Ying; Wu, Yu-Ze; Lv, Meng-Han; Zhao, Xia; Liu, Yan-Hong; Xu, Chun-Yan] Peking Univ, Beijing Huilongguan Hosp, Dept Integrated Tradit & Western Med, Beijing 100096, Peoples R China. RP Yan, SX (corresponding author), Peking Univ, Beijing Huilongguan Hosp, Dept Integrated Tradit & Western Med, Beijing 100096, Peoples R China. EM bjhlghyan@126.com FU Beijing Traditional Chinese Medicine Science and Technology Development Fund [JJ2013-08]; Beijing Institute of Integrated Chinese and Western Medicine [Psychiatry 2013] FX This study was supported by Beijing Traditional Chinese Medicine Science and Technology Development Fund (no. JJ2013-08) and Project of Beijing Institute of Integrated Chinese and Western Medicine (no. Psychiatry 2013). CR Anjaneyulu Muragundla, 2003, Journal of Medicinal Food, V6, P391 Butterweck V, 2001, BIOL PHARM BULL, V24, P848, DOI 10.1248/bpb.24.848 Cao YH, 2003, ANAL BIOANAL CHEM, V376, P691, DOI 10.1007/s00216-003-1961-7 Cheng Xiu-li, 2007, Zhong Yao Cai, V30, P1086 COMMISSIONG JW, 1985, BIOCHEM PHARMACOL, V34, P1127, DOI 10.1016/0006-2952(85)90484-8 Delgado PL, 2000, J CLIN PSYCHIAT, V61, P7 Grundmann O, 2007, J ETHNOPHARMACOL, V110, P406, DOI 10.1016/j.jep.2006.09.035 Hadizadeh, 2007, PHARM ONLINE, V2, P367 Kageyama A, 2012, FOOD SCI TECHNOL RES, V18, P473, DOI 10.3136/fstr.18.473 Kim DW, 2000, J ETHNOPHARMACOL, V72, P53, DOI 10.1016/S0378-8741(00)00197-5 Li Li-Hong, 2006, Zhongguo Zhong Yao Za Zhi, V31, P1337 Murray CJL, 1996, GLOBAL BURDEN DIS CO, P21 National Research Council of The National Academies, 2010, GUIDE CARE USE LAB A Peng Gui-hua, 2001, Hunan Yike Daxue Xuebao, V26, P485 Poirier MF, 1999, BRIT J PSYCHIAT, V175, P12, DOI 10.1192/bjp.175.1.12 PORSOLT RD, 1977, ARCH INT PHARMACOD T, V229, P327 SCHWARTING RKW, 1992, PHARMACOL BIOCHEM BE, V41, P675, DOI 10.1016/0091-3057(92)90211-W Shirai Mutsuko, 2005, J Med Invest, V52 Suppl, P249, DOI 10.2152/jmi.52.249 STERU L, 1985, PSYCHOPHARMACOLOGY, V85, P367, DOI 10.1007/BF00428203 Wang WX, 2008, PROG NEURO-PSYCHOPH, V32, P1179, DOI 10.1016/j.pnpbp.2007.12.021 WONG DT, 1995, LIFE SCI, V57, P411, DOI 10.1016/0024-3205(95)00209-O Yi LT, 2010, PROG NEURO-PSYCHOPH, V34, P1223, DOI 10.1016/j.pnpbp.2010.06.024 Zhang WM, 2006, CHINESE WILD PLANT R, V25, P15 Zheng MZ, 2013, J ETHNOPHARMACOL, V147, P108, DOI 10.1016/j.jep.2013.02.015 [郑梅竹 Zheng Meizhu], 2012, [中草药, Chinese Traditional and Herbal Drugs], V43, P2468 [郑梅竹 Zheng Meizhu], 2012, [广东农业科学, Guangdong Agricultural Sciences], V39, P169 [郑梅竹 Zheng Meizhu], 2011, [时珍国医国药, Lishizhen Medicine and Materia Medica Research], V22, P2319 Zheng MeiZhu, 2011, Genomics and Applied Biology, V30, P184 Zheng MZ, 2012, LIAONING J TRAD CHIN, V39, P935 Zhou BH, 2007, CHINA PHARMACIST, V10, P1173 NR 30 TC 8 Z9 8 U1 0 U2 14 PU PHARMACOTHERAPY GROUP PI BENIN CITY PA UNIV BENIN, FACULTY PHARMACY, BENIN CITY, 00000, NIGERIA SN 1596-5996 J9 TROP J PHARM RES JI Trop. J. Pharm. Res. PD DEC PY 2015 VL 14 IS 12 BP 2269 EP 2277 DI 10.4314/tjpr.v14i12.17 PG 9 WC Pharmacology & Pharmacy SC Pharmacology & Pharmacy GA DC6AV UT WOS:000369302900017 OA Green Published, gold DA 2021-10-15 ER PT J AU Chen, M Zhao, XY Zuo, XA AF Chen, Min Zhao, Xue-yong Zuo, Xiao-an TI Comparative reproductive biology of Apocynum venetum L. in wild and managed populations in the arid region of NW China SO PLANT SYSTEMATICS AND EVOLUTION LA English DT Article DE Reproductive; Pollination; Pollen; Pollinator; Fruit set; Breeding system ID EFFECTIVE POLLINATION PERIOD; POLLEN-LIMITATION; SEED SET; RESOURCE-ALLOCATION; PLANT REPRODUCTION; FLOWERING PLANTS; OVULE RATIOS; IN-SITU; QUALITY; SYSTEMS AB Apocynum venetum L. (dogbane) is one of the ecologically important species in the arid region of Northwest China. To select plants with higher flowering rate and fruit production, we investigated the following characteristics of A. venetum in wild and managed populations: flowering dynamics, pollen viability, pollen limitation, floral visitors and breeding system. We found that the species showed four reproductive characteristics. First, the flower production period and flowering peak were different between the wild and managed populations, longer in the managed. Second, A. venetum was pollen-limited, and pollen limitation was more intense in the wild population than in the managed. Third, in the wild, Apis mellifera L. was found to be frequent pollinator, Ophion luteus L. being the most frequent and effective visitor in the managed. Finally, the pollen ovule rate was 36.2. Self-pollination was dominant and played an important role to assure production in the breeding system. Differences in flower production influenced by artificial selection and pollinator type explain different fruit production in managed and wild populations, further, proper management could promote re-vegetation or restoration of degraded A. venetum in this region. C1 [Chen, Min; Zhao, Xue-yong; Zuo, Xiao-an] Chinese Acad Sci, Cold & Arid Reg Environm & Engn Res Inst, Lanzhou 730000, Peoples R China. [Chen, Min] Univ Chinese Acad Sci, Beijing 100049, Peoples R China. RP Chen, M (corresponding author), Chinese Acad Sci, Cold & Arid Reg Environm & Engn Res Inst, Lanzhou 730000, Peoples R China. EM chenmin1360@126.com OI Zuo, Xiaoan/0000-0002-1063-1100 FU National Science and Technology Support Program [2011BAC07B02]; National Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC) [41071185] FX This research was funded by the National Science and Technology Support Program (2011BAC07B02) and National Natural Science Foundation of China (41071185). We thank Naiman Desertification Research Station and Urat Desert-grassland Research Station for all the help and support during this study. CR AIDE TM, 1986, EVOLUTION, V40, P434, DOI 10.1111/j.1558-5646.1986.tb00486.x Aizen MA, 2002, J VEG SCI, V13, P885, DOI 10.1111/j.1654-1103.2002.tb02118.x Aizen MA, 2007, ECOLOGY, V88, P271, DOI 10.1890/06-1017 Arias-Coyotl E, 2006, AM J BOT, V93, P1675, DOI 10.3732/ajb.93.11.1675 Ashman TL, 2004, P ROY SOC B-BIOL SCI, V271, P553, DOI 10.1098/rspb.2003.2642 Ashman TL, 2004, ECOLOGY, V85, P2408, DOI 10.1890/03-8024 BAKER HG, 1955, EVOLUTION, V9, P347, DOI 10.1111/j.1558-5646.1955.tb01544.x BEATTIE AJ, 1971, PAN-PAC ENTOMOL, V47, P82 BIERZYCHUDEK P, 1981, AM NAT, V117, P838, DOI 10.1086/283773 BURD M, 1994, BOT REV, V60, P83, DOI 10.1007/BF02856594 Butterweck V, 2003, PHARMACOL BIOCHEM BE, V75, P557, DOI 10.1016/S0091-3057(03)00118-7 Butterweck V, 2001, BIOL PHARM BULL, V24, P848, DOI 10.1248/bpb.24.848 BYERS DL, 1995, AM J BOT, V82, P1000, DOI 10.2307/2446229 CAIN ML, 1995, CAN J BOT, V73, P505, DOI 10.1139/b95-051 Cao YH, 2001, MIKROCHIM ACTA, V137, P57, DOI 10.1007/s006040170028 Casas A, 2007, ANN BOT-LONDON, V100, P1101, DOI 10.1093/aob/mcm126 CASPER BB, 1993, CURR SCI INDIA, V65, P210 Caswell H., 1985, P187 [陈敏 Chen Min], 2012, [植物学报, Chinese Bulletin of Botany], V47, P264 Corbet SA, 2003, APIDOLOGIE, V34, P1, DOI 10.1051/apido:2002049 CRUDEN RW, 1981, EVOLUTION, V35, P964, DOI 10.1111/j.1558-5646.1981.tb04962.x CRUDEN RW, 1977, EVOLUTION, V31, P32, DOI 10.1111/j.1558-5646.1977.tb00979.x Dafni A, 1992, POLLINATION ECOLOGY, P1 Fernandez JD, 2012, OECOLOGIA, V170, P421, DOI 10.1007/s00442-012-2312-1 Fernando O, 2010, J ARID ENVIRON, V74, P897 GALEN C, 1988, AM J BOT, V75, P900, DOI 10.2307/2444010 Garcia-Camacho R, 2009, ARCT ANTARCT ALP RES, V41, P103, DOI [10.1657/1523-0430-41.1.103, 10.1657/1938-4246(08-028)[GARCIA-CAMACHO]2.0.CO;2] Gomez JM, 2010, J ECOL, V98, P1243, DOI 10.1111/j.1365-2745.2010.01691.x HARDER LD, 1995, NATURE, V373, P512, DOI 10.1038/373512a0 Harder LD, 2005, P R SOC B, V272, P651 Hill LM, 2008, ACTA OECOL, V33, P314, DOI 10.1016/j.actao.2008.01.009 Honsho C, 2007, SCI HORTIC-AMSTERDAM, V111, P193, DOI 10.1016/j.scienta.2006.10.016 JAY SC, 1986, ANNU REV ENTOMOL, V31, P49, DOI 10.1146/annurev.en.31.010186.000405 Jiang Y, 1997, FLORA REIPUBLICAE PO, P157 JOHNSTON MO, 1991, ECOLOGY, V72, P1500, DOI 10.2307/1941123 Kim DW, 2000, J ETHNOPHARMACOL, V72, P53, DOI 10.1016/S0378-8741(00)00197-5 Knight TM, 2006, AM J BOT, V93, P271, DOI 10.3732/ajb.93.2.271 KUDO G, 1993, AM J BOT, V80, P1300, DOI 10.2307/2445714 Larson BMH, 2000, BIOL J LINN SOC, V69, P503, DOI 10.1111/j.1095-8312.2000.tb01221.x LORD EM, 1979, BOT GAZ, V140, P266, DOI 10.1086/337084 Lu JH, 2007, J SHIHEZI U, V3, P300 Lu Xian-Wen, 2008, Acta Botanica Yunnanica, V30, P315, DOI 10.3724/SP.J.1143.2008.07191 Michalski SG, 2009, NEW PHYTOL, V183, P470, DOI 10.1111/j.1469-8137.2009.02861.x REDMOND AM, 1989, OECOLOGIA, V79, P260, DOI 10.1007/BF00388486 Ren HL, 2008, N HORT, V7, P87 Saikkonen K, 1998, ECOLOGY, V79, P1620, DOI 10.1890/0012-9658(1998)079[1620:IEOPAH]2.0.CO;2 Sanzol J, 2001, SCI HORTIC-AMSTERDAM, V90, P1, DOI 10.1016/S0304-4238(00)00252-1 Sinu PA, 2007, CURR SCI INDIA, V93, P548 SPIRA TP, 1992, AM J BOT, V79, P428, DOI 10.2307/2445155 Tamura S, 2000, PLANT ECOL, V147, P185, DOI 10.1023/A:1009870521175 Thompson FL, 2004, J EVOLUTION BIOL, V17, P581, DOI 10.1111/j.1420-9101.2004.00701.x Vogler DW, 2001, EVOLUTION, V55, P202, DOI 10.1111/j.0014-3820.2001.tb01285.x Waddington K.D., 1983, P213 Wang LL, 2007, CARBOHYD POLYM, V69, P391, DOI 10.1016/j.carbpol.2006.12.028 Wang YQ, 2004, ANN BOT-LONDON, V94, P583, DOI 10.1093/aob/mch177 Wesselingh RA, 2007, NEW PHYTOL, V174, P26, DOI 10.1111/j.1469-8137.2007.01997.x ZAPATA TR, 1978, BIOTROPICA, V10, P221, DOI 10.2307/2387907 NR 57 TC 8 Z9 9 U1 3 U2 41 PU SPRINGER WIEN PI WIEN PA SACHSENPLATZ 4-6, PO BOX 89, A-1201 WIEN, AUSTRIA SN 0378-2697 EI 2199-6881 J9 PLANT SYST EVOL JI Plant Syst. Evol. PD JUN PY 2015 VL 301 IS 6 BP 1735 EP 1745 DI 10.1007/s00606-014-1192-8 PG 11 WC Plant Sciences; Evolutionary Biology SC Plant Sciences; Evolutionary Biology GA CH7VE UT WOS:000354243900014 DA 2021-10-15 ER PT J AU Rong, YP Li, HX Johnson, DA AF Rong, Yuping Li, Hongxiang Johnson, Douglas A. TI Germination response of Apocynum venetum seeds to temperature and water potential SO JOURNAL OF APPLIED BOTANY AND FOOD QUALITY LA English DT Article ID HYDROTHERMAL TIME MODEL; THERMAL TIME; DORMANCY; THERMOINHIBITION; PRODUCTIVITY; EXPLAINS; CHINA; RATES; SOIL AB Apocynum venetum (commonly known as luobuma or rafuma) is a shrub that is native to Eurasia. It is economically important for sand fixation, forage production, honey production, and for the production of medicine, fiber and fuel. Rapid and uniform seed germination is critical for successful crop establishment and vegetation restoration. The purpose of this study was to determine the germination responses of A. venetum seeds to temperature and water availability using hydrotime, thermal time and hydrothermal model analysis. Seed germination was relatively high for A. venetum from 25 degrees C to 30 degrees C. The base (T-b), optimum (T-o) and ceiling temperatures (T-c(50)) of A. venetum seed germination were 16.6, 27.0 and 45.9 degrees C, respectively. Values of base water potential (Psi(b)(g)) shifted to zero with increasing temperature, which was reflected in the greater effect of low Psi on germination for temperatures above 30 degrees C. Hydrotime analysis suggested that T-b may not be independent of Psi, and Psi(b)(g) may change as a function of temperature at temperatures below 30 degrees C. The interaction effects of Psi and temperature reduced the ability of the hydrothermal time model to predict germination performance across temperature and Psi conditions. C1 [Rong, Yuping] China Agr Univ, Grassland Inst Anim Sci & Technol Coll, Beijing 100193, Peoples R China. [Li, Hongxiang] DLF Beijing Off, Beijing, Peoples R China. [Johnson, Douglas A.] Utah State Univ, USDA ARS, Forage & Range Res Lab, Logan, UT 84322 USA. RP Rong, YP (corresponding author), China Agr Univ, Dept Grassland Sci, 2 Yuanmingyuan West Rd, Beijing 100193, Peoples R China. EM rongyuping@cau.edu.cn FU National Forage Production System Project in China [CARS-35] FX This work was funded by National Forage Production System Project (CARS-35) in China. CR Alvarado V, 2002, PLANT CELL ENVIRON, V25, P1061, DOI 10.1046/j.1365-3040.2002.00894.x ANGUS JF, 1981, FIELD CROP RES, V3, P365 [Anonymous], 2001, SILK TECHNOLOGY APPL Batlla D, 2009, WEED RES, V49, P428, DOI 10.1111/j.1365-3180.2009.00706.x Benech-Arnold RL, 2000, FIELD CROP RES, V67, P105, DOI 10.1016/S0378-4290(00)00087-3 Bewley J.D., 2013, SEEDS PHYSL DEV GERM Bradford K.J., 1995, SEED DEV GERMINATION, P351 BRADFORD KJ, 1990, PLANT PHYSIOL, V94, P840, DOI 10.1104/pp.94.2.840 DAHAL P, 1990, J EXP BOT, V41, P1441, DOI 10.1093/jxb/41.11.1441 Dahal P, 1994, SEED SCI RES, V4, P71, DOI 10.1017/S096025850000204X ELLIS RH, 1988, J EXP BOT, V39, P935, DOI 10.1093/jxb/39.7.935 Finch-Savage WE, 2006, NEW PHYTOL, V171, P501, DOI 10.1111/j.1469-8137.2006.01787.x FISCHER RA, 1978, ANNU REV PLANT PHYS, V29, P277, DOI 10.1146/annurev.pp.29.060178.001425 GARCIAHUIDOBRO J, 1982, J EXP BOT, V33, P288, DOI 10.1093/jxb/33.2.288 GRIME JP, 1981, J ECOL, V69, P1017, DOI 10.2307/2259651 GUMMERSON RJ, 1986, J EXP BOT, V37, P729, DOI 10.1093/jxb/37.6.729 Hills PN, 2003, S AFR J BOT, V69, P455, DOI 10.1016/S0254-6299(15)30281-7 Hu R. L., 2002, ACTA BOT BOREALI-OCC, V22, P70 Hu R. L., 2002, ACTA BOT BOREALI-OCC, V22, P6 Larsen SU, 2004, SEED SCI RES, V14, P35, DOI 10.1079/SSR2003153 Liu K, 2011, AM J BOT, V98, P12, DOI 10.3732/ajb.1000043 Liu P., 2010, NO HORTICULTURE, V3, P92 Ma M, 2003, J AGR FOOD CHEM, V51, P2390, DOI 10.1021/jf021055i Meyer SE, 2000, SEED SCI RES, V10, P213, DOI 10.1017/S0960258500000246 MICHEL BE, 1973, PLANT PHYSIOL, V51, P914, DOI 10.1104/pp.51.5.914 Probert R. J., 2000, Seeds: the ecology of regeneration in plant communities, P261, DOI 10.1079/9780851994321.0261 Rowse HR, 2003, NEW PHYTOL, V158, P101, DOI 10.1046/j.1469-8137.2003.00707.x Schutz W, 1999, PLANT ECOL, V144, P215, DOI 10.1023/A:1009892004730 Tang X. Q., 2008, QINGHAI AGR, V17, P48 Thevs N, 2007, J APPL BOT FOOD QUAL, V81, P62 Thevs N, 2012, J APPL BOT FOOD QUAL, V85, P159 Trudgill DL, 2005, ANN APPL BIOL, V146, P1, DOI 10.1111/j.1744-7348.2005.04088.x Trudgill DL, 2000, NEW PHYTOL, V145, P107, DOI 10.1046/j.1469-8137.2000.00554.x Watt MS, 2011, PLANT CELL ENVIRON, V34, P870, DOI 10.1111/j.1365-3040.2011.02292.x Wesche K, 2006, SEED SCI RES, V16, P123, DOI 10.1079/SSR2006239 Westermann J, 2008, J INTEGR PLANT BIOL, V50, P536, DOI 10.1111/j.1744-7909.2007.00626.x Windauer LB, 2012, ANN BOT-LONDON, V109, P265, DOI 10.1093/aob/mcr242 [张秀玲 Zhang Xiuling], 2007, [南开大学学报. 自然科学版, Acta Scientiarum Naturalium Universitatis Nankaiensis], V40, P13 NR 38 TC 8 Z9 9 U1 0 U2 31 PU DRUCKEREI LIDDY HALM PI GOTTINGEN PA BACKHAUSSTRASSE 9B, 37081 GOTTINGEN, GERMANY SN 1439-040X J9 J APPL BOT FOOD QUAL JI J. Appl. Bot. Food Qual. PY 2015 VL 88 BP 202 EP 208 DI 10.5073/JABFQ.2015.088.029 PG 7 WC Plant Sciences SC Plant Sciences GA CS2LA UT WOS:000361900900008 DA 2021-10-15 ER PT J AU Wu, L Boyd, NS AF Wu, Lin Boyd, Nathan S. TI Management of Spreading Dogbane (Apocynum androsaemifolium) in Wild Blueberry Fields SO WEED TECHNOLOGY LA English DT Article DE Herbicide; horticulture; perennial weeds; POST herbicides; weed control ID CORN ZEA-MAYS; HEMP DOGBANE; WEED SURVEY; CANNABINUM; HERBICIDES; 2,4-D AB Spreading dogbane is a troublesome weed of wild blueberry fields. Field studies were conducted in 2008 and 2009 to evaluate efficacy of different herbicides and application techniques on spreading dogbane as well as blueberry tolerance. Results indicated that summer-broadcast nicosulfuron at 25 g ai ha(-1) with 0.5% v/v blend of surfactant with petroleum hydrocarbons suppressed (> 60%) spreading dogbanc at three of four sites. Spot sprays with dicamba at 1 kg ae ha(-1) effectively controlled (> 80%) spreading dogbane with minimal (19 to 23%) blueberry damage at three of four sites. Glyphosate spot sprays at 5 g ae L-1 water provided more effective and longer control than hand pulling. Wiping with glyphosate at 154 g ae L-1 water or wiping triclopyr at 29 g ac L-1 water onto the shoots is also an effective control method for localized patches of spreading dogbane. Although low to moderate crop damage may accompany these techniques, it may still be tolerable for growers to apply these options to limit long-term yield loss caused by spreading dogbane. C1 [Wu, Lin; Boyd, Nathan S.] Nova Scotia Agr Coll, Dept Environm Sci, Truro, NS B2N 4V9, Canada. RP Boyd, NS (corresponding author), Nova Scotia Agr Coll, Dept Environm Sci, Truro, NS B2N 4V9, Canada. EM nboyd@nsac.ca FU Wild Blueberry Producers Association of Nova Scotia; Nova Scotia Technology Development program FX The authors thank Scott White for his technical assistance as well as any summer students who worked on this project. This project was made possible by the support of the Wild Blueberry Producers Association of Nova Scotia and the Nova Scotia Technology Development 2000 program. CR [Anonymous], 2010, FRUIT VEGETABLE PROD, V78 Curran W. S., 1997, P NE WEED SCI SOC, V51, P113 DiTommaso A, 2009, CAN J PLANT SCI, V89, P977, DOI 10.4141/CJPS08103 DOBBELS AF, 1993, WEED TECHNOL, V7, P844, DOI 10.1017/S0890037X00037866 DOLL J, 1994, HEMP DOGBANE BIOL MA Doll J. D., 1997, WEED SCI SOC AM ABST, V37, P90 Glenn S, 1997, WEED TECHNOL, V11, P436, DOI 10.1017/S0890037X0004522X GLENN S, 1993, WEED TECHNOL, V7, P47 Jensen K. I. N., 2004, Small Fruits Review, V3, P229, DOI 10.1300/J301v03n03_02 Jensen K.I.N., 2003, LOWBUSH BLUEBERRY PR Kennedy KJ, 2010, WEED SCI, V58, P317, DOI 10.1614/WS-D-09-00081.1 KINSMAN G, 1993, HIST LOWBUSH BLUEBER Lapointe L, 2001, CAN J PLANT SCI, V81, P471, DOI 10.4141/P00-096 MacDougall JI, 1988, LAND RESOURCE RES CT Makki F., 2010, CANADIAN HORTICULTUR MCCULLY KV, 1991, WEED SCI, V39, P180, DOI 10.1017/S0043174500071447 NALEWAJA JD, 1991, WEED TECHNOL, V5, P92, DOI 10.1017/S0890037X00033327 Nowland J. L., 1973, 17 CAN DEP AGR ORFANEDES MS, 1991, WEED TECHNOL, V5, P782, DOI 10.1017/S0890037X00033856 Ransom Corey V., 1998, Weed Technology, V12, P631 Sampson D.L., 1990, WEEDS E CANADIAN BLU SAS Institute, 1999, SAS US GUID STAT VER, V2 SCHULTZ ME, 1980, WEED SCI, V28, P13, DOI 10.1017/S0043174500027685 SCHULTZ ME, 1979, AGRON J, V71, P723, DOI 10.2134/agronj1979.00021962007100050007x Schuster CL, 2007, WEED SCI, V55, P429, DOI 10.1614/WS-06-217.1 Sibley J. D., 1987, LOWBUSH BLUEBERRY PR Vander Kloet S. P., 1978, RHODORA, V80, P538 WEBB KT, 1991, 19 RES BRANCH AGR CA Webster TM, 1999, WEED SCI, V47, P524, DOI 10.1017/S0043174500092213 Williams BJ, 1996, WEED TECHNOL, V10, P488 YARBOROUGH D E, 1989, Acta Horticulturae (Wageningen), P344 Yarborough DE, 1997, ACTA HORTIC, P293, DOI 10.17660/ActaHortic.1997.446.44 NR 32 TC 8 Z9 8 U1 0 U2 19 PU WEED SCI SOC AMER PI LAWRENCE PA 810 EAST 10TH ST, LAWRENCE, KS 66044-8897 USA SN 0890-037X J9 WEED TECHNOL JI Weed Technol. PD OCT-DEC PY 2012 VL 26 IS 4 BP 777 EP 782 DI 10.1614/WT-D-11-00113.1 PG 6 WC Agronomy; Plant Sciences SC Agriculture; Plant Sciences GA 051GL UT WOS:000312114100027 DA 2021-10-15 ER PT J AU Xie, YF Li, GL You, JM Bai, XW Wang, CY Zhang, L Zhao, FH Wu, XY Ji, ZY Sun, ZW AF Xie, Yinfeng Li, Guoliang You, Jinmao Bai, Xinwei Wang, Chengyan Zhang, Lin Zhao, Fuhua Wu, Xiaoyun Ji, Zhongyin Sun, Zhiwei TI A Novel Labeling Reagent of 2-(12-Benzo[b]acridin-5-(12H)-yl)-acetohydrazide for Determination of Saturated and Unsaturated Fatty Acids in Traditional Chinese Herbs by HPLC-APCI-MS SO CHROMATOGRAPHIA LA English DT Article DE HPLC; Pre-column derivatization; 2-(12-Benzo[b]acridin-5(12H)-yl)-acetohydrazide (BAAH); Fatty acids; Traditional Chinese herbs ID PERFORMANCE LIQUID-CHROMATOGRAPHY; Y79 RETINOBLASTOMA CELLS; CARBOXYLIC-ACIDS; RHODIOLA-CRENULATA; APOCYNUM-VENETUM; CAPILLARY-ELECTROPHORESIS; DERIVATIZATION REAGENT; RAT PLASMA; TRIFLUOROMETHANESULFONATE; CHAIN AB A new fluorescence labeling reagent 2-(12-benzo[b]acridin-5(12H)-yl)-acetohydrazide (BAAH) has been designed for fatty acids labeling. Eleven fatty acids containing seven saturated and four unsaturated fatty acids were used to evaluate the analytical potential of this reagent. The labeling reaction of BAAH with fatty acids was completed at 85 A degrees C for 60 min using 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide hydrochloride (EDC center dot HCl) as the condensing agent. Separation of the derivatized fatty acids was carried out on a reversed-phase Thermo Hypersil Gold C18 column (4.6 mm x 250 mm, 5 mu m) in combination with a gradient elution with a good baseline resolution. The fluorescence excitation and emission wavelengths were set at lambda(ex) 280 and lambda(em) 510 nm, respectively. The identification was carried out by the online APCI-MS in positive-ion detection mode. Linear correlation coefficients for all fatty acid derivatives were of > 0.9994. Detection limits, at a signal-to-noise ratio of 3:1, were 3.89-12.5 nmol L-1 for the labeled fatty acids. The developed method was successfully applied to the accurate determination of fatty acids in five traditional Chinese herbs with satisfactory results. C1 [Xie, Yinfeng; You, Jinmao; Bai, Xinwei; Wang, Chengyan; Zhang, Lin; Zhao, Fuhua; Wu, Xiaoyun; Ji, Zhongyin] Qufu Normal Univ, Coll Chem Sci, Key Lab Life Organ Anal, Qufu 273165, Shandong, Peoples R China. [Li, Guoliang; You, Jinmao; Sun, Zhiwei] Chinese Acad Sci, NW Plateau Inst Biol, Xining 810001, Qinghai, Peoples R China. [Li, Guoliang; Sun, Zhiwei] Chinese Acad Sci, Grad Univ, Beijing 100049, Peoples R China. RP You, JM (corresponding author), Qufu Normal Univ, Coll Chem Sci, Key Lab Life Organ Anal, Qufu 273165, Shandong, Peoples R China. EM jmyou6304@163.com FU Chinese Academy of SciencesChinese Academy of Sciences [328] FX This work was supported by 100 Talents Programme of The Chinese Academy of Sciences (No. 328). CR AKASAKA K, 1993, ANALYST, V118, P765, DOI 10.1039/an9931800765 Bai XW, 2010, CHROMATOGRAPHIA, V71, P1125, DOI 10.1365/s10337-010-1552-7 BRONDZ I, 1991, J GEN MICROBIOL, V137, P1445, DOI 10.1099/00221287-137-6-1445 Butterweck V, 2003, PHARMACOL BIOCHEM BE, V75, P557, DOI 10.1016/S0091-3057(03)00118-7 Butterweck V, 2001, BIOL PHARM BULL, V24, P848, DOI 10.1248/bpb.24.848 Cao YH, 2001, MIKROCHIM ACTA, V137, P57, DOI 10.1007/s006040170028 Chen XM, 2003, CARBOHYD RES, V338, P1235, DOI 10.1016/S0008-6215(03)00073-9 CHRISTIE WW, 1987, HPLC LIPIDS Du XL, 2007, J CHROMATOGR A, V1169, P77, DOI 10.1016/j.chroma.2007.08.038 DUNGES W, 1977, ANAL CHEM, V49, P442 Ha ES, 2004, BIOL PHARM BULL, V27, P1348, DOI 10.1248/bpb.27.1348 Han X, 2002, J CHROMATOGR A, V971, P237, DOI 10.1016/S0021-9673(02)01041-5 Hao GP, 2009, AFR J BIOTECHNOL, V8, P2027 HYMAN BT, 1982, J NEUROCHEM, V38, P650, DOI 10.1111/j.1471-4159.1982.tb08680.x IKEDA M, 1984, J CHROMATOGR, V305, P261, DOI 10.1016/S0378-4347(00)83341-1 INGALLS ST, 1984, J CHROMATOGR, V299, P365, DOI 10.1016/S0021-9673(01)97852-5 IWATA T, 1992, ANAL SCI, V8, P889, DOI 10.2116/analsci.8.889 IWATA T, 1994, ANALYST, V119, P1747, DOI 10.1039/an9941901747 Kibler M, 1999, J CHROMATOGR A, V836, P325, DOI 10.1016/S0021-9673(99)00012-6 LEE YM, 1989, ANAL SCI, V5, P681, DOI 10.2116/analsci.5.681 Lei YD, 2006, GENET MOL BIOL, V29, P339, DOI 10.1590/S1415-47572006000200023 Liu J, 2010, CHINESE CHEM LETT, V21, P70, DOI 10.1016/j.cclet.2009.08.006 Liu YT, 2010, PARASITOL RES, V106, P1233, DOI 10.1007/s00436-010-1799-9 Lu CY, 2000, CHROMATOGRAPHIA, V51, P315, DOI 10.1007/BF02490609 MIWA H, 1985, J CHROMATOGR, V321, P165, DOI 10.1016/S0021-9673(01)90433-9 MIWA H, 1987, J CHROMATOGR-BIOMED, V416, P237, DOI 10.1016/0378-4347(87)80507-8 MUKWAYA GM, 1989, J CLIN MICROBIOL, V27, P2640, DOI 10.1128/JCM.27.12.2640-2646.1989 NIMURA N, 1988, ANAL CHEM, V60, P2067, DOI 10.1021/ac00170a017 POLING JS, 1995, MOL PHARMACOL, V47, P381 SHIRLEY DA, 1960, J ORG CHEM, V25, P2238, DOI 10.1021/jo01082a616 Spector AA, 1999, LIPIDS, V34, pS1, DOI 10.1007/BF02562220 Toyo'oka T, 2002, ANAL CHIM ACTA, V465, P111, DOI 10.1016/S0003-2670(02)00398-7 TOYOOKA T, 1991, ANALYST, V116, P609, DOI 10.1039/an9911600609 TSUCHIYA H, 1982, J CHROMATOGR, V234, P121, DOI 10.1016/S0021-9673(00)81786-0 Tsukamoto Y, 2005, BIOMED CHROMATOGR, V19, P802, DOI 10.1002/bmc.523 YAMAUCHI Y, 1986, J CHROMATOGR, V357, P199, DOI 10.1016/S0021-9673(01)95821-2 YANAGISAWA I, 1985, J CHROMATOGR, V345, P229, DOI 10.1016/0378-4347(85)80160-2 YASAKA Y, 1990, J CHROMATOGR, V508, P133, DOI 10.1016/S0021-9673(00)91246-9 YOREK MA, 1984, J NEUROCHEM, V42, P254, DOI 10.1111/j.1471-4159.1984.tb09726.x YOREK MA, 1983, J NEUROCHEM, V40, P70, DOI 10.1111/j.1471-4159.1983.tb12654.x YOSHIDA T, 1988, ANAL BIOCHEM, V173, P70, DOI 10.1016/0003-2697(88)90161-3 You JM, 2010, ANAL BIOANAL CHEM, V396, P2657, DOI 10.1007/s00216-010-3467-4 Zhang J, 2008, CHROMATOGRAPHIA, V67, P695, DOI 10.1365/s10337-008-0585-7 Zhao XN, 2006, CHIN J CHROMATOGR, V24, P456 Zhou R, 2005, J ASIAN NAT PROD RES, V7, P245, DOI 10.1080/10286020410001721159 Zhou R, 2005, J INTEGR PLANT BIOL, V47, P368, DOI 10.1111/j.1744-7909.2005.00048.x NR 46 TC 8 Z9 9 U1 0 U2 44 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 0009-5893 EI 1612-1112 J9 CHROMATOGRAPHIA JI Chromatographia PD JUN PY 2012 VL 75 IS 11-12 BP 571 EP 583 DI 10.1007/s10337-012-2226-4 PG 13 WC Biochemical Research Methods; Chemistry, Analytical SC Biochemistry & Molecular Biology; Chemistry GA 949DV UT WOS:000304557300002 DA 2021-10-15 ER PT J AU Shi, JY Li, GL Wang, HL Zheng, J Suo, YR You, JM Liu, YJ AF Shi, Junyou Li, Guoliang Wang, Honglun Zheng, Jie Suo, Yourui You, Jinmao Liu, Yongjun TI One-step Separation of Three Flavonoids from Poacynum hendersonii by High-speed Counter-current Chromatography SO PHYTOCHEMICAL ANALYSIS LA English DT Article DE high-speed counter-current chromatography; Poacynum hendersonii; isoquercitrin; quercetin-3-O-sophoroside; quercetin-3-O-(6 ''-O-malonyl)-beta-D-glucoside ID APOCYNUM-VENETUM LEAVES; AQUEOUS EXTRACTS; NELUMBO-NUCIFERA; PURIFICATION; CONSTITUENTS; L. AB Introduction - Owing to them having the same traditional name, the leaves of Apoacynum venetum and Poacynum hendersonii are used indiscriminately in some areas of China. Although a series of studies have been conducted on Apoacynum venetum, there are only a few studies on Poacynum hendersonii. Objective - To develop an efficient method for the preparative isolation and purification of flavonoids from the leaves of Poacynum hendersonii by high-speed counter-current chromatography (HSCCC). Methodology - Powdered Poacynum hendersonii lead was extracted three times with 75% ethanol at 60 degrees C for 3 h. The distribution constant (K-D) was measured to select an optimal two-phase solvent system for HSCCC separation. The purities of the target compounds were tested using HPLC and their structures were identified by H-1-NMR and C-13-NMR. Results - Using a two-phase solvent system composed of n-butanol-petroleum ether-0.5% acetic acid (5:3:5, v/v), three main flavonoids, i.e. isoquercitrin, quercetin-3-O-sophoroside and quercetin-3-O-(6 ''-O-malonyl)-beta-D-glucoside, were separated from 240 mg crude sample in a one-step separation by using HSCCC method. After further purification with a Sepdex-LH20 column, 5.7 mg isoquercitrin (LC purity 98.72%), 4.9 mg quercetin-3-O-sophoroside (LC purity 99.06%) and 7.4 mg quercetin-3-O-(6 ''-O-malonyl)-beta-D-glucoside (LC purity 99.31%) were obtained, respectively. Conclusion - The optimised high-speed counter-current chromatography method is fast, simple and efficient for the preparative separation of flavonoids from the leave of Poacynum hendersonii. Copyright (C) 2011 John Wiley & Sons, Ltd. C1 [Shi, Junyou; Li, Guoliang; Wang, Honglun; Zheng, Jie; Suo, Yourui; You, Jinmao; Liu, Yongjun] Chinese Acad Sci, NW Inst Plateau Biol, Xining 810001, Peoples R China. [Shi, Junyou; Li, Guoliang; Zheng, Jie] Chinese Acad Sci, Grad Sch, Beijing 100049, Peoples R China. RP Liu, YJ (corresponding author), Chinese Acad Sci, NW Inst Plateau Biol, Xining 810001, Peoples R China. EM yongjunliu_1@sdu.edu.cn CR Butterweck V, 2003, PHARMACOL BIOCHEM BE, V75, P557, DOI 10.1016/S0091-3057(03)00118-7 Deng SG, 2009, J CHROMATOGR B, V877, P2487, DOI 10.1016/j.jchromb.2009.06.026 Friesen JB, 2005, J LIQ CHROMATOGR R T, V28, P2777, DOI 10.1080/10826070500225234 Grundmann O, 2007, J ETHNOPHARMACOL, V110, P406, DOI 10.1016/j.jep.2006.09.035 GU ZL, 1989, CHIN TRAD PATENT MED, V11, P28 Guo XF, 2010, PHYTOCHEM ANALYSIS, V21, P268, DOI 10.1002/pca.1196 ITO Y, 1970, SCIENCE, V167, P281, DOI 10.1126/science.167.3916.281 Ito Y, 2005, J CHROMATOGR A, V1065, P145, DOI 10.1016/j.chroma.2004.12.044 ITO Y, 1991, J CHROMATOGR, V538, P3, DOI 10.1016/S0021-9673(01)91617-6 Kamata K, 2008, J NAT MED-TOKYO, V62, P160, DOI 10.1007/s11418-007-0202-3 Kim DW, 2000, J ETHNOPHARMACOL, V72, P53, DOI 10.1016/S0378-8741(00)00197-5 Kim DW, 1998, PHYTOTHER RES, V12, P46, DOI 10.1002/(SICI)1099-1573(19980201)12:1<46::AID-PTR169>3.0.CO;2-I Oka H, 2002, J CHROMATOGR A, V946, P157, DOI 10.1016/S0021-9673(01)01548-5 PAN ZN, 2005, PHARMACOPOEIA PEOP 1, P147 QIAN ZN, 1990, CHIN TRAD PATENT MED, V12, P28 Sandei N., 1994, NAT MED, V48, P322 [石秋梅 SHI Qiu-mei], 2009, [食品科学, Food Science], V30, P263 Shirai Mutsuko, 2005, J Med Invest, V52 Suppl, P249, DOI 10.2152/jmi.52.249 Tagawa C, 2004, YAKUGAKU ZASSHI, V124, P851, DOI 10.1248/yakushi.124.851 Yang Y, 2010, PHYTOCHEM ANALYSIS, V21, P205, DOI 10.1002/pca.1169 Yang Y, 2009, CHROMATOGRAPHIA, V69, P963, DOI 10.1365/s10337-009-0986-2 Yokozawa T, 2004, FOOD CHEM TOXICOL, V42, P975, DOI 10.1016/j.fct.2004.02.010 [张云峰 ZHANG Yunfeng], 2006, [天然产物研究与开发, Natural Product R & D], V18, P954 Zhang ZJ, 2004, LIFE SCI, V75, P1659, DOI 10.1016/j.lfs.2004.04.014 魏锦萍, 2008, [中草药, Chinese Traditional and Herbal Drugs], V39, P1304 NR 25 TC 8 Z9 9 U1 0 U2 28 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0958-0344 EI 1099-1565 J9 PHYTOCHEM ANALYSIS JI Phytochem. Anal. PD SEP-OCT PY 2011 VL 22 IS 5 BP 450 EP 454 DI 10.1002/pca.1301 PG 5 WC Biochemical Research Methods; Plant Sciences; Chemistry, Analytical SC Biochemistry & Molecular Biology; Plant Sciences; Chemistry GA 814JA UT WOS:000294443500009 PM 21465596 DA 2021-10-15 ER PT J AU Davis, DD AF Davis, Donald D. TI Ozone-induced symptoms on vegetation within the Moosehorn National Wildlife Refuge in Maine SO NORTHEASTERN NATURALIST LA English DT Article ID I WILDERNESS AREAS; TREE; EXPOSURES; POLLUTION; DROUGHT AB During 1998-2000 and 2002-2004, field surveys were conducted within the Moosehorn National Wildlife Refuge, located in northeastern Maine, to determine if ozone-induced symptoms occurred on refuge vegetation. Foliar symptoms were observed on ozone-sensitive bioindicators during each survey year, but the incidence (percentage) of plants exhibiting symptoms was generally low and varied among species and years. Refuge plants that exhibited symptoms included Froxinus spp. (ash), Populus spp. (aspen), Corylus cornuta (beaked hazelnut), Prunus serotina (black cherry), Prunus pensylvanica (pin cherry), Apocynum androsaemifolium (spreading dogbane), and a viburnum tentatively identified as Viburnum nudum var. cassinoides (withe-rod). Data from the nearest US EPA ozone-monitoring site, located 113 km southwest of the refuge in Acadia National Park, ME, revealed that ambient SUM60 ozone levels during survey years ranged from approximately 17,900 ppb-hrs in 2000 to more than 40,000 ppb-hrs in 1998. Therefore, the threshold level of SUM60 ozone capable of inducing symptoms on sensitive vegetation within this refuge and Class-I Wilderness area is less than 18,000 ppb-hrs, and may be as low as 10,000 ppb-hrs. The results of these surveys can be used by the US Fish and Wildlife Service when making air-quality management decisions, including those related to the review of Prevention of Significant Deterioration permits, and might serve as input into formulating more stringent National Ambient Air Quality Standards for ozone. C1 Penn State Univ, Penn State Inst Environm, Dept Plant Pathol, Ecol Fac,Buckhout Lab, University Pk, PA 16802 USA. RP Davis, DD (corresponding author), Penn State Univ, Penn State Inst Environm, Dept Plant Pathol, Ecol Fac,Buckhout Lab, University Pk, PA 16802 USA. EM ddd2@psu.edu CR ANDERSON RL, 1989, 89136 USDA FOR SERV Bergweiler CJ, 1999, ENVIRON POLLUT, V105, P333, DOI 10.1016/S0269-7491(99)00044-5 CLEVELAND WS, 1976, SCIENCE, V191, P179, DOI 10.1126/science.1246603 COMRIE AC, 1994, ATMOS ENVIRON, V28, P1601, DOI 10.1016/1352-2310(94)90306-9 Coulston JW, 2003, ENVIRON MONIT ASSESS, V83, P113, DOI 10.1023/A:1022578506736 DAVIS DD, 1981, PLANT DIS, V65, P904, DOI 10.1094/PD-65-904 DAVIS DD, 1992, WATER AIR SOIL POLL, V62, P269, DOI 10.1007/BF00480261 Davis DD, 2006, ENVIRON POLLUT, V143, P555, DOI 10.1016/j.envpol.2005.10.051 ECKERT R, 1999, NPSBSORNRNRTR0012 Hildebrand E, 1996, CAN J FOREST RES, V26, P658, DOI 10.1139/x26-076 KOHUT R, 2000, HPSBSORNRNRTR0013 LEFOHN AS, 1995, ATMOS ENVIRON, V29, P601, DOI 10.1016/1352-2310(94)00280-X Manning WJ, 2003, ENVIRON POLLUT, V126, P375, DOI 10.1016/S0269-7491(03)00240-9 Manning WJ, 1996, ENVIRON POLLUT, V91, P399, DOI 10.1016/0269-7491(95)00075-5 *MIN INC, 2003, QUAL PLAZ Orendovici T, 2003, ENVIRON POLLUT, V125, P31, DOI 10.1016/S0269-7491(03)00089-7 Palmer W. C., 1965, 45 US DEP COMM Richards B.L., 1958, AGRON J, V50, P559, DOI DOI 10.2134/AGRONJ1958.00021962005000090019X SHOWMAN RE, 1991, J AIR WASTE MANAGE, V41, P63, DOI 10.1080/10473289.1991.10466826 Skelly John M., 2000, Northeastern Naturalist, V7, P221, DOI 10.1656/1092-6194(2000)007[0221:TOAIIT]2.0.CO;2 *US C, 1977, CLEAN AIR ACT AM AUG *US DOI, 2003, NPSNRARDNRR200301 *US EPA, 1996, EPA600P93004AF, V1 Yuska DE, 2003, ENVIRON POLLUT, V125, P71, DOI 10.1016/S0269-7491(03)00096-4 Zierl B, 2001, J HYDROL, V242, P115, DOI 10.1016/S0022-1694(00)00387-5 NR 25 TC 8 Z9 8 U1 0 U2 7 PU HUMBOLDT FIELD RESEARCH INST PI STEUBEN PA PO BOX 9, STEUBEN, ME 04680-0009 USA SN 1092-6194 EI 1938-5307 J9 NORTHEAST NAT JI Northeast. Nat PY 2007 VL 14 IS 3 BP 403 EP 414 DI 10.1656/1092-6194(2007)14[403:OSOVWT]2.0.CO;2 PG 12 WC Biodiversity Conservation; Ecology SC Biodiversity & Conservation; Environmental Sciences & Ecology GA 216VN UT WOS:000249907200007 DA 2021-10-15 ER PT J AU Davis, DD AF Davis, Donald D. TI Injury to plants within the Seney National Wildlife Refuge in northern Michigan SO NORTHEASTERN NATURALIST LA English DT Article ID I WILDERNESS AREAS; OZONE EXPOSURES; TREE; VEGETATION AB Annual field surveys were conducted from 1999-2004 within the Seney National Wildlife Refuge in northern Michigan to determine if ambient ozone levels at this remote location were great enough to injure refuge vegetation. Ozone injury was observed on sensitive bioindicator plants during each survey year; however, the incidence (percentage) of plants exhibiting symptoms was low and varied among species and years. Ozone-induced symptoms occurred on Sambucus canadensis (American elder), Prunus serotina (black cherry), Asclepias syriaca (common milk-weed), and Apocynum androsaemifolium (spreading dogbane). The most sensitive species was spreading dogbane. In addition, ozone injury was observed on a viburnum species, tentatively identified as Viburnum nudum var. cassinoides (withe-rod). Ambient ozone has been monitored since 2002 at an EPA monitoring site within the refuge. Cumulative SUM60 ozone levels (ppb-hrs) by the end of August for each survey year were greatest in 2003, followed by 2002, and least in 2004. The annual incidence of ozone injury for the 3 years was not directly related to level of ambient ozone, but was likely confounded by environmental factors such as drought. Based on the 2004 survey, the threshold level of SUM60 ozone needed to induce visible symptoms on sensitive vegetation in this remote refuge is close to 5000 ppb-hrs. C1 Penn State Univ, Penn State Inst Environm, Dept Plant Pathol, Buckhout Lab, University Pk, PA 16802 USA. RP Davis, DD (corresponding author), Penn State Univ, Penn State Inst Environm, Dept Plant Pathol, Buckhout Lab, University Pk, PA 16802 USA. EM ddd2@psu.edu CR ANDERSON U, 1989, AUDITING-J PRACT TH, V8, P1 Bennett JP, 2006, ENVIRON POLLUT, V142, P354, DOI 10.1016/j.envpol.2005.09.024 Bergweiler CJ, 1999, ENVIRON POLLUT, V105, P333, DOI 10.1016/S0269-7491(99)00044-5 COMRIE AC, 1994, ATMOS ENVIRON, V28, P1601, DOI 10.1016/1352-2310(94)90306-9 Coulston JW, 2003, ENVIRON MONIT ASSESS, V83, P113, DOI 10.1023/A:1022578506736 DAVIS DD, 1981, PLANT DIS, V65, P904, DOI 10.1094/PD-65-904 DAVIS DD, 1992, WATER AIR SOIL POLL, V62, P269, DOI 10.1007/BF00480261 Davis DD, 2007, NORTHEAST NAT, V14, P403, DOI 10.1656/1092-6194(2007)14[403:OSOVWT]2.0.CO;2 Davis DD, 2006, ENVIRON POLLUT, V143, P555, DOI 10.1016/j.envpol.2005.10.051 ECKERT R, 1999, NPSBSORNRNRTR0012 Hildebrand E, 1996, CAN J FOREST RES, V26, P658, DOI 10.1139/x26-076 KOHUT R, 2000, NPSBSORNRNRTR0013 LEFOHN AS, 1995, ATMOS ENVIRON, V29, P601, DOI 10.1016/1352-2310(94)00280-X Manning WJ, 1996, ENVIRON POLLUT, V91, P399, DOI 10.1016/0269-7491(95)00075-5 *MIN INC, 2003, QUAL PLAZ Orendovici T, 2003, ENVIRON POLLUT, V125, P31, DOI 10.1016/S0269-7491(03)00089-7 Palmer W. C., 1965, 45 US DEP COMM Richards B.L., 1958, AGRON J, V50, P559, DOI DOI 10.2134/AGRONJ1958.00021962005000090019X SHOWMAN RE, 1991, J AIR WASTE MANAGE, V41, P63, DOI 10.1080/10473289.1991.10466826 Skelly John M., 2000, Northeastern Naturalist, V7, P221, DOI 10.1656/1092-6194(2000)007[0221:TOAIIT]2.0.CO;2 *US C, 1977, CLEAN AIR ACT AM AUG *US DOI, 2003, NPSNRARDNRR200301 *US EPA, 1996, EPA600P93004AF, V1 Yuska DE, 2003, ENVIRON POLLUT, V125, P71, DOI 10.1016/S0269-7491(03)00096-4 NR 24 TC 8 Z9 8 U1 0 U2 5 PU HUMBOLDT FIELD RESEARCH INST PI STEUBEN PA PO BOX 9, STEUBEN, ME 04680-0009 USA SN 1092-6194 EI 1938-5307 J9 NORTHEAST NAT JI Northeast. Nat PY 2007 VL 14 IS 3 BP 415 EP 424 DI 10.1656/1092-6194(2007)14[415:OITPWT]2.0.CO;2 PG 10 WC Biodiversity Conservation; Ecology SC Biodiversity & Conservation; Environmental Sciences & Ecology GA 216VN UT WOS:000249907200008 DA 2021-10-15 ER PT J AU Grant, JB Bogdanowicz, SM AF Grant, JB Bogdanowicz, SM TI Isolation and characterization of microsatellite markers from the panic moth, Saucrobotys futilalis L. (Lepidoptera : Pyralidae : Pyraustinae) SO MOLECULAR ECOLOGY NOTES LA English DT Article DE Apocynum cannabinum; aposematic; caterpillar; kin selection; social AB The panic moth is a widely distributed North American pyralid moth with gregarious, nest-building larvae. Primers for 12 polymorphic microsatellite loci were developed to assay relatedness in nest groups and population structure in the eastern half of the moth's range. Primers were tested on 42 individuals (one from each of 42 nests) collected in the states of New York, Virginia and Georgia. All loci were polymorphic and exhibited varying degrees of allelic variation (4-24 alleles). These primers will enable further research into the social structure of these gregarious caterpillars. C1 Cornell Univ, Dept Neurobiol & Behav, Ithaca, NY 14853 USA. Cornell Univ, Dept Ecol & Evolut Biol, Ithaca, NY 14853 USA. RP Grant, JB (corresponding author), Colorado State Univ, Nat Resource Ecol Lab, Ft Collins, CO 80523 USA. EM jbgrant@nrel.colostate.edu CR COSTA JT, 1998, EVOLUTION SOCIAL BEH, P407 DUSSOURD DE, 1991, ECOLOGY, V72, P1383, DOI 10.2307/1941110 Forbes W. T. M., 1923, LEPIDOPTERA NEW YORK GRANT JB, 2005, THESIS CORNELL U ITH Hamilton MB, 1999, BIOTECHNIQUES, V27, P500, DOI 10.2144/99273st03 LINTNER JA, 1896, REPORT STATE ENTOMOL, P138 Marshall TC, 1998, MOL ECOL, V7, P639, DOI 10.1046/j.1365-294x.1998.00374.x RAYMOND M, 1995, J HERED, V86, P248, DOI 10.1093/oxfordjournals.jhered.a111573 NR 8 TC 8 Z9 8 U1 0 U2 3 PU BLACKWELL PUBLISHING PI OXFORD PA 9600 GARSINGTON RD, OXFORD OX4 2DQ, OXON, ENGLAND SN 1471-8278 J9 MOL ECOL NOTES JI Mol. Ecol. Notes PD JUN PY 2006 VL 6 IS 2 BP 353 EP 355 DI 10.1111/j.1471-8286.2005.01229.x PG 3 WC Biochemistry & Molecular Biology; Ecology; Evolutionary Biology SC Biochemistry & Molecular Biology; Environmental Sciences & Ecology; Evolutionary Biology GA 043XJ UT WOS:000237635900018 OA Bronze DA 2021-10-15 ER PT J AU Becker, RL Fawcett, RS AF Becker, RL Fawcett, RS TI Seasonal carbohydrate fluctuations in hemp dogbane (Apocynum cannabinum) crown roots SO WEED SCIENCE LA English DT Article DE bud dormancy; day length; fructosan; lateral roots; laticifer; light response; lipids; perennial weeds; starch; APCCA ID THISTLE CIRSIUM-ARVENSE; GROWTH; TRANSLOCATION; TEMPERATURE; RESERVES AB Field research was conducted to characterize hemp dogbane crown root carbohydrates, to quantify crown root lipids, and to determine seasonal fluctuation of each. The effect of day length on the release of hemp dogbane crown bud dormancy was studied in growth chambers. Total nonstructural carbohydrate (TNC) levels fluctuated with seasonal lows occurring during bud to mid-flowering and seasonal highs in fall predormancy periods. Starch was the primary storage carbohydrate, comprising up to 39.6% of crown root dry weight at the highest seasonal level. Ethanol soluble reducing sugar levels were negatively correlated with seasonal starch levels, and appeared to be maltose and glucose accumulated before conversion to sucrose for translocation. Most lipids were in ethanol soluble fractions and were inversely correlated with seasonal TNC patterns. The maximum level of total lipids in crown roots was 6%. Lipids appeared to be by-products of metabolism in nonarticulated lacticifers and not a significant carbon energy source. An 18-h day length resulted in a 10-fold increase in intact, 2-yr-old crown root dormancy release compared with 10- or 14-h day lengths in growth chamber studies. Seasonal carbohydrate fluctuations in hemp dogbane suggest the most effective control with mowing or tillage would occur when applied at mid- to Full flower before root carbohydrates begin to recover. The most effective translocation of phloem mobile herbicides to crown roots would occur after mid- to late flower through leaf senescence when carbohydrates are being stored in the roots. C1 Univ Minnesota, Dept Agron & Plant Genet, St Paul, MN 55108 USA. Univ Minnesota, Dept Hort Sci, St Paul, MN 55108 USA. Fawcett Consulting, Huxley, IA 50124 USA. RP Becker, RL (corresponding author), Univ Minnesota, Dept Agron & Plant Genet, St Paul, MN 55108 USA. EM becke003@tc.umn.edu CR ARNY AC, 1932, MINN AGR EXP STN TEC, V84, P4 BACON JSD, 1951, BIOCHEM J, V48, P114, DOI 10.1042/bj0480114 BARNES D, 1972, P N CENT WEED CONTR, V27, P54 Barr CG, 1940, J AGRIC RES, V60, P0391 Becker R., 1981, Weeds Today, V12, P15 BIESBOER DD, 1978, PLANTA, V143, P5, DOI 10.1007/BF00389045 BONNER J, 1947, BOT REV, V13, P543, DOI 10.1007/BF02861372 BONNETT HT, 1972, PLANTA, V106, P325, DOI 10.1007/BF00384769 BOUHACHE M, 1993, WEED RES, V33, P291, DOI 10.1111/j.1365-3180.1993.tb01944.x CHETRAM RS, 1974, WEED SCI, V22, P269, DOI 10.1017/S0043174500037048 DAVIS F. S., 1966, WEEDS, V14, P62, DOI 10.2307/4041126 DAVIS JS, 1967, ANAL BIOCHEM, V19, P72, DOI 10.1016/0003-2697(67)90135-2 DEFATIMA M, 1976, Z PFLANZENPHYSIOL, V80, P336 DUBOIS M, 1956, ANAL CHEM, V28, P350, DOI 10.1021/ac60111a017 DUKE SO, 1977, WEED SCI, V25, P229, DOI 10.1017/S004317450003335X Gerhardt F, 1929, J AGRIC RES, V39, P0837 HATTORI S, 1951, ARCH BIOCHEM BIOPHYS, V34, P121, DOI 10.1016/S0003-9861(51)80017-1 HIRST EL, 1957, P CHEM SOC LONDON, P193 Hodge J. E., 1962, METHODS CARBOHYDRATE, VI, P380 HOUGH L, 1962, METHODS CARBOHYDRATE, V1, P21 HUNTER JH, 1985, BOT GAZ, V146, P483, DOI 10.1086/337552 ILNICKI RD, 1962, AGR EXP STN B, V368, P42 JANSEN LL, 1971, WEED SCI, V19, P210, DOI 10.1017/S0043174500048736 JOHNSON B. G., 1962, WEEDS, V10, P53, DOI 10.2307/4040560 KOUKKARI WL, 1966, PHYSIOL PLANTARUM, V19, P1073, DOI 10.1111/j.1399-3054.1966.tb07098.x LEAKEY RRB, 1978, ANN BOT-LONDON, V42, P205, DOI 10.1093/oxfordjournals.aob.a085441 LYM RG, 1991, J RANGE MANAGE, V44, P254, DOI 10.2307/4002953 MCALLISTER RS, 1985, WEED SCI, V33, P148, DOI 10.1017/S004317450008200X MCALLISTER RS, 1985, WEED SCI, V33, P44, DOI 10.1017/S0043174500083909 METCALFE CR, 1967, ECON BOT, V21, P115, DOI 10.1007/BF02897859 Minshall W.H., 1957, RUBBER RESIN CONTENT MONSON WARREN G., 1964, WEEDS, V12, P238, DOI 10.2307/4040739 OTZEN D, 1970, ACTA BOT NEERL, V19, P495, DOI 10.1111/j.1438-8677.1970.tb00675.x PAKEMAN RJ, 1994, ANN APPL BIOL, V124, P479, DOI 10.1111/j.1744-7348.1994.tb04153.x PALMER J. H., 1958, New Phytologist, V57, P145, DOI 10.1111/j.1469-8137.1958.tb05301.x PATTERSON DT, 1980, WEED SCI, V28, P505, DOI 10.1017/S0043174500061117 ROBISON LR, 1972, WEED SCI, V20, P156, DOI 10.1017/S0043174500035244 ROETH FW, 1977, N CENT WEED CONTROL, V34, P20 SCHULTZ ME, 1979, AGRON J, V71, P723, DOI 10.2134/agronj1979.00021962007100050007x SCHULTZ ME, 1979, WEED SCI, V27, P565, DOI 10.1017/S0043174500044623 SMITH D, 1971, J SCI FOOD AGR, V22, P445, DOI 10.1002/jsfa.2740220904 SMITH H, 1990, PLANT CELL ENVIRON, V13, P695, DOI 10.1111/j.1365-3040.1990.tb01084.x TREVELYAN WE, 1950, NATURE, V166, P444, DOI 10.1038/166444b0 WELTON FA, 1929, OHIO AGR EXP STN B, V441, P1 WILLIAMS ED, 1970, WEED RES, V10, P360, DOI 10.1111/j.1365-3180.1970.tb00964.x WILLS GD, 1975, WEED SCI, V23, P93, DOI 10.1017/S0043174500052577 NR 46 TC 8 Z9 8 U1 0 U2 4 PU WEED SCI SOC AMER PI LAWRENCE PA 810 EAST 10TH ST, LAWRENCE, KS 66044-8897 USA SN 0043-1745 J9 WEED SCI JI Weed Sci. PD MAY-JUN PY 1998 VL 46 IS 3 BP 358 EP 365 DI 10.1017/S0043174500089542 PG 8 WC Agronomy; Plant Sciences SC Agriculture; Plant Sciences GA ZX297 UT WOS:000074501300014 DA 2021-10-15 ER PT J AU ORFANEDES, MS WAX, LM AF ORFANEDES, MS WAX, LM TI DIFFERENTIAL RESPONSE OF HEMP DOGBANE (APOCYNUM-CANNABINUM) TO CLOPYRALID, DOWCO-433, AND 2,4-D SO WEED TECHNOLOGY LA English DT Article DE APPLICATION TIMING; PERENNIAL WEED CONTROL; 2,4-D; APCCA AB Field studies were conducted to compare the short- and long-term control of hemp dogbane by POST applications of Dowco 433, clopyralid, and 2,4-D amine. Dowco 433 at 140 g ae ha-1 controlled 81 to 93% of weeds at 8 wk after treatment. Good control (79 to 89%) was also achieved with 560 g ae ha-1 2,4-D amine at 8 wk after treatment- Twelve months after treatment, control of hemp dogbane averaged 65 to 75% where Dowco 433 was applied at rates of 140 g ha-1 or higher. Similar results were obtained with 2,4-D amine at 560 g ha-1. Control with clopyralid was minimal. Weed height and dry weight were reduced with all treatments except clopyralid. The effect of early versus late application was also evaluated in two studies. In certain situations, control 8 wk after treatment was greater when application was made during the early reproductive growth stage as opposed to the vegetative growth stage. RP ORFANEDES, MS (corresponding author), UNIV ILLINOIS,DEPT AGRON,URBANA,IL 61801, USA. NR 0 TC 8 Z9 8 U1 0 U2 2 PU WEED SCI SOC AMER PI CHAMPAIGN PA 309 W CLARK ST, CHAMPAIGN, IL 61820 SN 0890-037X J9 WEED TECHNOL JI Weed Technol. PD OCT-DEC PY 1991 VL 5 IS 4 BP 782 EP 788 DI 10.1017/S0890037X00033856 PG 7 WC Agronomy; Plant Sciences SC Agriculture; Plant Sciences GA HF524 UT WOS:A1991HF52400014 DA 2021-10-15 ER PT J AU Li, CH Liu, SY Song, Y Nie, K Ben, HX Zhang, YM Han, GT Jiang, W AF Li, Chuanhe Liu, Shaoyang Song, Yan Nie, Kai Ben, Haoxi Zhang, Yuanming Han, Guangting Jiang, Wei TI A facile and eco-friendly method to extract Apocynum venetum fibers using microwave-assisted ultrasonic degumming SO INDUSTRIAL CROPS AND PRODUCTS LA English DT Article DE Apocynum venetum; Microwave; Ultrasonic; Chemical degumming ID STEAM EXPLOSION; KENAF BAST; NANOFIBERS; CELLULOSE AB Apocynum venetum (AV) is a promising textile resource but lacks efficient degumming method. This study proposed a novel degumming process which coupled microwave pretreatment with ultrasonic degumming on AV bast. The traditional chemical degumming was also carried out for comparison. The raw AV bast and produced fibers were characterized with wet chemistry analyses, SEM, FTIR and GPC. Compared with traditionally degummed product, the AV fibers prepared by microwave-assisted ultrasonic degumming showed a better breaking tenacity (7.67 cN/dtex, comparing to 6.90 cN/dtex with the traditional method) and superior average length (32.5 mm, comparing to 23.0 mm). Moreover, compared with the traditional degumming method, the processing time of the new method was reduced to 31.2 %, and the chemical usage was reduced to 44.8 %. The new degumming method could efficiently produce higher quality AV fibers with less pollution. C1 [Li, Chuanhe; Song, Yan; Nie, Kai; Ben, Haoxi; Han, Guangting; Jiang, Wei] Qingdao Univ, Coll Text, Shandong 266000, Peoples R China. [Li, Chuanhe; Song, Yan; Nie, Kai; Zhang, Yuanming; Han, Guangting; Jiang, Wei] Qingdao Univ, State Key Lab Biofibers & Ecotext, Qingdao 266071, Shandong, Peoples R China. [Liu, Shaoyang] Troy Univ, Dept Chem & Phys, Troy, AL 36082 USA. [Liu, Shaoyang] Troy Univ, Ctr Mat & Mfg Sci, Troy, AL 36082 USA. RP Han, GT; Jiang, W (corresponding author), Qingdao Univ, State Key Lab Biofibers & Ecotext, Qingdao 266071, Shandong, Peoples R China. EM kychgt@qdu.edu.cn; weijiangqd@qdu.edu.cn RI Liu, Shaoyang/C-3417-2012 OI Liu, Shaoyang/0000-0002-3863-0812 FU National Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC) [51903131]; Natural Science Foundation of Shandong ProvinceNatural Science Foundation of Shandong Province [ZR2019QEM007]; Special Foundation of "Taishan Scholar" Construction Program FX This work was supported by National Natural Science Foundation of China (51903131), Natural Science Foundation of Shandong Province (ZR2019QEM007), Special Foundation of "Taishan Scholar" Construction Program. CR Alemdar A, 2008, COMPOS SCI TECHNOL, V68, P557, DOI 10.1016/j.compscitech.2007.05.044 Dawei S., 2018, RES APPL PHYS METHOD Fan XS, 2010, TEXT RES J, V80, P2046, DOI 10.1177/0040517510373632 Jaskowski M.C., 1986, DEGUMMING DECORTICAT Jiang W, 2018, IND CROP PROD, V120, P131, DOI 10.1016/j.indcrop.2018.04.045 Jiang W, 2017, BIORESOURCES, V12, P9427, DOI 10.15376/biores.12.4.9427-9436 Jiang W, 2017, J WOOD CHEM TECHNOL, V37, P359, DOI 10.1080/02773813.2017.1303514 Liew SQ, 2018, BIOCATAL AGRIC BIOTE, V13, P1, DOI 10.1016/j.bcab.2017.11.001 Lim W.-L., 2019, CELLULOSE Liu J, 2020, J NAT FIBERS, V17, P738, DOI 10.1080/15440478.2018.1532857 Ma Huan, 2014, Nongye Jixie Xuebao = Transactions of the Chinese Society for Agricultural Machinery, V45, P180 More NS, 2018, ULTRASON SONOCHEM, V42, P805, DOI 10.1016/j.ultsonch.2017.12.031 OOSHIMA H, 1984, BIOTECHNOL LETT, V6, P289, DOI 10.1007/BF00129056 Song Y., 2017, J NAT FIBERS, V14, P1 Song Y, 2019, CELLULOSE, V26, P8047, DOI 10.1007/s10570-019-02654-z Song Y, 2018, CELLULOSE, V25, P4979, DOI 10.1007/s10570-018-1916-y Wang C, 2018, INT J CIRC THEOR APP, V46, P2477, DOI 10.1002/cta.2547 Wang LL, 2007, CARBOHYD POLYM, V69, P391, DOI 10.1016/j.carbpol.2006.12.028 Wang WC, 2019, COLOR TECHNOL, V135, P195, DOI 10.1111/cote.12392 Xiao-Chun B.I., 2009, STUDY ENZYME PRETREA Xie JL, 2016, CARBOHYD POLYM, V151, P725, DOI 10.1016/j.carbpol.2016.06.011 Xie JL, 2016, ACS SUSTAIN CHEM ENG, V4, P3477, DOI 10.1021/acssuschemeng.6b00497 Xie JL, 2016, J APPL POLYM SCI, V133, DOI 10.1002/app.43394 Yang FR, 2016, J TEXT I, V107, P1450, DOI 10.1080/00405000.2015.1127550 Zhang X, 2016, BIORESOURCES, V11, P6590, DOI 10.15376/biores.11.3.6590-6599 Zheng LJ, 2010, J TEXT I, V101, P1075, DOI 10.1080/00405000903230945 NR 26 TC 7 Z9 7 U1 8 U2 48 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0926-6690 EI 1872-633X J9 IND CROP PROD JI Ind. Crop. Prod. PD SEP 1 PY 2020 VL 151 AR 112443 DI 10.1016/j.indcrop.2020.112443 PG 7 WC Agricultural Engineering; Agronomy SC Agriculture GA LR4YV UT WOS:000535703300012 DA 2021-10-15 ER PT J AU Xu, Z Zhou, J Ren, T Du, H Liu, H Li, Y Zhang, C AF Xu, Z. Zhou, J. Ren, T. Du, H. Liu, H. Li, Y. Zhang, C. TI Salt stress decreases seedling growth and development but increases quercetin and kaempferol content inApocynum venetum SO PLANT BIOLOGY LA English DT Article DE Apocynum venetumL; salt stress; total flavonoids; flavonols; gene expression ID APOCYNUM-VENETUM; GENE-EXPRESSION; FLAVONOID BIOSYNTHESIS; ANTIOXIDANT ACTIVITY; AQUEOUS EXTRACTS; ULTRAVIOLET-B; L.; GERMINATION; SALINITY; LEAVES AB Apocynum venetumL. is a traditional Chinese medicinal herb with great potential to treat angiocardiopathy. Its major medicinal constituents are flavonoids. However, the natural habitats ofA. venetumare typically affected by salt stress, which can modify both biomass and accumulation of medicinal compounds. In this study, the effects of salt stress on growth and development ofA. venetum, accumulation of flavonoids and expression patterns of genes involved in flavonoid biosynthesis were evaluated. In general, the growth and development of seedlings (seedling height, root length, leaf length, leaf width and seed germination) were inhibited by salt stress. Unlike typical halophytes, there was no optimal NaCl concentration range that promoted growth and development, but seedlings had an elevated DW/FW ratio under salt stress (induced by irrigation with 50, 100, 200 or 400 mmNaCl). Furthermore, quercetin and kaempferol were significantly accumulated inA. venetumseedlings under salt stress, resulting in a balanced content and reduced FW. Moreover, the expression ofAvCHS,AvCHIandAvF3GTwas inhibited by salt stress; however,AvF3'H,AvF3HandAvFLS, which are involved in the flavonol synthesis pathway, were up-regulated under salt stress, consistent with a decrease in total flavonoids and an increase of flavonols (quercetin and kaempferol). In summary, cultivation ofA. venetumin saline soils appeared to be feasible and improved the medicinal quality ofA. venetum(quercetin and kaempferol accumulation under salt stress), thus this species can effectively utilize saline soil resources. C1 [Xu, Z.; Zhou, J.; Ren, T.; Li, Y.; Zhang, C.] Chinese Acad Agr Sci, Marine Agr Res Ctr, Tobacco Res Inst, Qingdao, Peoples R China. [Zhou, J.] Qingdao Univ, Med Coll, Pharm Dept, Qingdao, Peoples R China. [Du, H.; Liu, H.] Qingdao Agr Univ, Coll Agron, Qingdao, Peoples R China. RP Li, Y; Zhang, C (corresponding author), Chinese Acad Agr Sci, Tobacco Res Inst, 11 Ke Yuan Jing 4th Rd, Qingdao 266101, Shandong, Peoples R China. EM liyiqiang@caas.cn; zhangchengsheng@caas.cn FU Science Foundation for Young Scholars of the Tobacco Research Institute of the Chinese Academy of Agricultural Sciences [2020A02]; National Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC) [31900276]; Doctora Foundation of Shandong [ZR2019BC073]; Agricultural Science and Technology Innovation Program [ASTIP-TRIC07] FX Author contributions: methodology, ZX and CZ; data curation, JZ, TR and HD; writing original draft, TR, YL and HL; reviewing and editing, ZX and CZ; funding acquisition, ZX and YL. This work was supported by the Science Foundation for Young Scholars of the Tobacco Research Institute of the Chinese Academy of Agricultural Sciences (2020A02), the National Natural Science Foundation of China (31900276), the Doctora Foundation of Shandong (ZR2019BC073), and the Agricultural Science and Technology Innovation Program (ASTIP-TRIC07). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript. CR Abramoff M.D, 2004, BIOPHOTONICS INT, V11, P36, DOI DOI 10.1117/1.3589100 Agati G, 2012, PLANT SCI, V196, P67, DOI 10.1016/j.plantsci.2012.07.014 Agati G, 2011, J PLANT PHYSIOL, V168, P204, DOI 10.1016/j.jplph.2010.07.016 Ashraf M, 2006, J ARID ENVIRON, V64, P209, DOI 10.1016/j.jaridenv.2005.04.015 Ferreyra MLF, 2012, FRONT PLANT SCI, V3, DOI 10.3389/fpls.2012.00222 Flowers TJ, 2008, NEW PHYTOL, V179, P945, DOI 10.1111/j.1469-8137.2008.02531.x Grundmann O, 2007, J ETHNOPHARMACOL, V110, P406, DOI 10.1016/j.jep.2006.09.035 Grundmann O, 2009, PHYTOMEDICINE, V16, P295, DOI 10.1016/j.phymed.2008.12.020 Hao XL, 2016, MOL MED REP, V14, P399, DOI 10.3892/mmr.2016.5235 Karray-Bouraoui N, 2011, ACTA PHYSIOL PLANT, V33, P1435, DOI 10.1007/s11738-010-0679-3 Kim D. W., 1998, Journal of Traditional Medicines, V15, P40 Kim DW, 2000, J ETHNOPHARMACOL, V72, P53, DOI 10.1016/S0378-8741(00)00197-5 Kim DW, 1998, PHYTOTHER RES, V12, P46, DOI 10.1002/(SICI)1099-1573(19980201)12:1<46::AID-PTR169>3.0.CO;2-I Kwan CY, 2005, CLIN EXP PHARMACOL P, V32, P789, DOI 10.1111/j.1440-1681.2005.04255.x Li JG, 2014, J GEOGR SCI, V24, P943, DOI 10.1007/s11442-014-1130-2 Li X, 2013, J PLANT PHYSIOL, V170, P1630, DOI 10.1016/j.jplph.2013.06.010 Livak KJ, 2001, METHODS, V25, P402, DOI 10.1006/meth.2001.1262 Lu CM, 2010, BIOL PHARM BULL, V33, P522, DOI 10.1248/bpb.33.522 Lv L., 2016, PHARMAZIE, V72, P41 Ma M, 2003, J AGR FOOD CHEM, V51, P2390, DOI 10.1021/jf021055i Martinez-Luscher J, 2014, PLANT CELL PHYSIOL, V55, P1925, DOI 10.1093/pcp/pcu121 Memon S. A., 2010, Electronic Journal of Environmental, Agricultural and Food Chemistry, V9, P248 Munns R, 2008, ANNU REV PLANT BIOL, V59, P651, DOI 10.1146/annurev.arplant.59.032607.092911 Pandey A, 2015, PLANT CELL REP, V34, P1515, DOI 10.1007/s00299-015-1803-z Pujol JA, 2001, WETLANDS, V21, P256, DOI 10.1672/0277-5212(2001)021[0256:SGGAOA]2.0.CO;2 Ranal Marli A., 2006, Braz. J. Bot., V29, P1, DOI 10.1590/S0100-84042006000100002 Shao YH, 2015, ACTA PHYSIOL PLANT, V37, DOI 10.1007/s11738-015-1787-x Shi Q.M., 2014, N HORTIC, V12, P128 Singh B, 2017, ELECTROPHORESIS, V38, P820, DOI 10.1002/elps.201600334 Song J, 2005, ANN BOT-LONDON, V96, P399, DOI 10.1093/aob/mci196 Song J, 2016, PLANT SPEC BIOL, V31, P19, DOI 10.1111/1442-1984.12071 Sultana B, 2009, MOLECULES, V14, P2167, DOI 10.3390/molecules14062167 Taffouo V. D., 2010, International Journal of Botany, V6, P53 Talei D, 2013, BIOMED RES INT, V2013, DOI 10.1155/2013/319047 Tong LingKun, 2018, Journal of Chinese Pharmaceutical Sciences, V27, P251 [王佳丽 WANG Jiali], 2011, [地理学报, Acta Geographica Sinica], V66, P673 Wang M, 2018, GENES-BASEL, V9, DOI 10.3390/genes9060273 Wang WQ, 2015, AM J CHINESE MED, V43, P71, DOI 10.1142/S0192415X15500056 Winkel-Shirley B, 2001, PLANT PHYSIOL, V126, P485, DOI 10.1104/pp.126.2.485 Xiang J, 2012, NEUROCHEM RES, V37, P1820, DOI 10.1007/s11064-012-0796-z Xie WY, 2012, J ETHNOPHARMACOL, V141, P1, DOI 10.1016/j.jep.2012.02.003 Xu ZC, 2018, J AM SOC HORTIC SCI, V143, P508, DOI [10.21273/jashs04554-18, 10.21273/JASHS04554-18] [徐宗昌 Xu Zongchang], 2018, [植物学报, Chinese Bulletin of Botany], V53, P382 Xu ZC, 2017, PLANT SCI, V258, P156, DOI 10.1016/j.plantsci.2017.01.005 Yokozawa Takako, 1997, Natural Medicines, V51, P325 Zhang B, 2015, FOOD CHEM, V172, P862, DOI 10.1016/j.foodchem.2014.09.144 Zhang H, 2017, BIOL PLANTARUM, V61, P246, DOI 10.1007/s10535-017-0725-8 Zheng MZ, 2012, PHYTOMEDICINE, V19, P145, DOI 10.1016/j.phymed.2011.06.029 NR 48 TC 7 Z9 7 U1 2 U2 18 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1435-8603 EI 1438-8677 J9 PLANT BIOLOGY JI Plant Biol. PD SEP PY 2020 VL 22 IS 5 BP 813 EP 821 DI 10.1111/plb.13128 EA JUN 2020 PG 9 WC Plant Sciences SC Plant Sciences GA PI0KD UT WOS:000552430600001 PM 32378758 DA 2021-10-15 ER PT J AU Tanveer, M Hasanuzzaman, M Wang, L AF Tanveer, Mohsin Hasanuzzaman, Mirza Wang, Lei TI Lithium in Environment and Potential Targets to Reduce Lithium Toxicity in Plants SO JOURNAL OF PLANT GROWTH REGULATION LA English DT Article DE Bio-element; Lithium; Environmental toxicity; Plant; Human; Symplast pathway ID NONSELECTIVE CATION CHANNELS; LIPID-PEROXIDATION; SUBCELLULAR-DISTRIBUTION; POTASSIUM-TRANSPORT; SALINITY TOLERANCE; OXIDATIVE DAMAGE; APOCYNUM-VENETUM; DRINKING-WATER; CHEMICAL FORMS; METAL UPTAKE AB Industrialization and inevitable mining have resulted in the release of some metals in environment, which have different uses on the one hand and also showed environmental toxicity. Lithium (Li) is one of them; however, its excess use in different fields or inappropriate disposal methods resulted in high Li accumulation in soil and groundwater. This subsequently is affecting our environment and more potentially our arable crop production system. In humans, Li has been extensively studied and causes numerous detrimental effects at different organ levels. Moreover, increases in Li in groundwater and food items, cases for mental disorders have been reported in different regions of the world. In plants, only a few studies have been reported about toxic effects of lithium in plants. Moreover, plant products (fruits, grains or other plant parts) could be a major source of Li toxicity in our food chain. Therefore, it is more imperative to understand how plants can be developed more tolerant to Li toxicity. In this short mini-review article, we primarily highlighted and speculated Li uptake, translocation and Li storage mechanism in plants. This article provides considerable information for breeders or environmentalist in identifying and developing Li hyperaccumulators plants and environment management. C1 [Tanveer, Mohsin] Univ Tasmania, Sch Land & Food, Hobart, Tas 7005, Australia. [Hasanuzzaman, Mirza] Sher E Bangla Agr Univ, Fac Agr, Dept Agron, Dhaka 1207, Bangladesh. [Wang, Lei] Chinese Acad Sci, Xinjiang Inst Ecol & Geog, State Key Lab Desert & Oasis Ecol, Urumqi, Xinjiang, Peoples R China. RP Tanveer, M (corresponding author), Univ Tasmania, Sch Land & Food, Hobart, Tas 7005, Australia. EM Mohsin.tanveer@utas.edu.au; mhzsauag@yahoo.com RI Tanveer, Mohsin/I-2577-2019; Hasanuzzaman, Mirza/A-1665-2010 OI Tanveer, Mohsin/0000-0003-4560-6439; Hasanuzzaman, Mirza/0000-0002-0461-8743 FU State Key Laboratory of Desert and Oasis Ecology [Y971031] FX This work was supported by State Key Laboratory of Desert and Oasis Ecology (Y971031) and grant was given to Lei Wang. CR Agarie S, 2007, J EXP BOT, V58, P1957, DOI 10.1093/jxb/erm057 Alderman CP, 1996, ANN PHARMACOTHER, V30, P1411, DOI 10.1177/106002809603001210 Ammari TG, 2011, ENVIRON GEOCHEM HLTH, V33, P427, DOI 10.1007/s10653-010-9343-5 Amtmann A, 2001, PLANT PHYSIOL, V126, P1061, DOI 10.1104/pp.126.3.1061 Anderson ER, 2011, 3 LITH SUPPL MARK C Anjum SA, 2017, PEDOSPHERE, V27, P262, DOI 10.1016/S1002-0160(17)60315-1 Anjum SA, 2017, WATER AIR SOIL POLL, V228, DOI 10.1007/s11270-016-3187-2 Anjum SA, 2016, ENVIRON SCI POLLUT R, V23, P11864, DOI 10.1007/s11356-016-6382-1 Anjum SA, 2016, CLEAN-SOIL AIR WATER, V44, P1075, DOI [10.1002/clen.201500532, 10.1002/clen.201400905] Antonkiewicz J, 2017, ARCH ENVIRON PROT, V43, P94, DOI 10.1515/aep-2017-0036 Antosiewicz DM, 2004, ENVIRON POLLUT, V129, P237, DOI 10.1016/j.envpol.2003.10.025 Apse MP, 2007, FEBS LETT, V581, P2247, DOI 10.1016/j.febslet.2007.04.014 Aral H, 2008, ECOTOX ENVIRON SAFE, V70, P349, DOI 10.1016/j.ecoenv.2008.02.026 Ashraf U, 2017, PLANT PHYSIOL BIOCH, V115, P461, DOI 10.1016/j.plaphy.2017.04.019 Barkla BJ, 2002, FUNCT PLANT BIOL, V29, P1017, DOI 10.1071/FP02045 BARTOLO ME, 1992, PLANT PHYSIOL, V99, P1716, DOI 10.1104/pp.99.4.1716 BERRIDGE MJ, 1993, NATURE, V361, P315, DOI 10.1038/361315a0 Bihler H, 2002, BBA-BIOMEMBRANES, V1558, P109, DOI 10.1016/S0005-2736(01)00414-X Birch NJ, 2012, LITHIUM CELL PHARM B Bonino CA, 2011, ACS APPL MATER INTER, V3, P2534, DOI 10.1021/am2004015 Byrt CS, 2007, PLANT PHYSIOL, V143, P1918, DOI 10.1104/pp.106.093476 Chan L., 1997, EOS T AM GEOPHYS UNI, V78, pF802 Clemens S, 2002, TRENDS PLANT SCI, V7, P309, DOI 10.1016/S1360-1385(02)02295-1 Dawson EB, 1991, LITHIUM BIOL MED, P171 Demidchik V, 2002, ANNU REV PLANT BIOL, V53, P67, DOI 10.1146/annurev.arplant.53.091901.161540 Demidchik V, 2007, NEW PHYTOL, V175, P387, DOI 10.1111/j.1469-8137.2007.02128.x Devi S. R., 1999, HEAVY METAL STRESS P, P99 Dlugaszek M., 2012, PROBL HIG EPIDEMIOL, V93, P867 Dolara P, 2014, INT J FOOD SCI NUTR, V65, P911, DOI 10.3109/09637486.2014.937801 DUBEY RS, 2005, HDB PHOTOSYNTHESIS, P859 Efrati S, 2005, NEPHROL DIAL TRANSPL, V20, P65, DOI 10.1093/ndt/gfh573 Flowers TJ, 2008, NEW PHYTOL, V179, P945, DOI 10.1111/j.1469-8137.2008.02531.x Gierth M, 2005, PLANT PHYSIOL, V137, P1105, DOI 10.1104/pp.104.057216 Goldstein MR, 2016, MED HYPOTHESES, V89, P40, DOI 10.1016/j.mehy.2016.02.002 Grandjean EM, 2009, CNS DRUGS, V23, P397, DOI 10.2165/00023210-200923050-00004 Gries GE, 1998, PLANTA, V204, P390, DOI 10.1007/s004250050271 Habashi F., 1997, HDB EXTRACTIVE METAL Harpaz-Saad S, 2007, PLANT CELL, V19, P1007, DOI 10.1105/tpc.107.050633 Hasanuzzaman M, 2019, PLANTS METAL METALLO Hasanuzzaman M, 2013, PHYTOTECHNOLOGIES: REMEDIATION OF ENVIRONMENTAL CONTAMINANTS, P7 Hawrylak-Nowak B, 2012, BIOL TRACE ELEM RES, V149, P425, DOI 10.1007/s12011-012-9435-4 He B, 2002, ACTA BOT SIN, V44, P1365 Hossain AKMZ, 2006, J PLANT PHYSIOL, V163, P39, DOI 10.1016/j.jplph.2005.02.008 Ishida T, 2008, ANNU REV PLANT BIOL, V59, P365, DOI 10.1146/annurev.arplant.59.032607.092949 JATHAR V S, 1980, Journal of Postgraduate Medicine (Bombay), V26, P39 Jiang L, 2018, ENVIRON SCI POLLUT R, V25, P5040, DOI 10.1007/s11356-018-1196-y Jiang L, 2014, FLORA, V209, P285, DOI 10.1016/j.flora.2014.03.007 Jou Y, 2007, FUNCT PLANT BIOL, V34, P353, DOI 10.1071/FP06269 Kabata-Pendias A, 2007, TRACE ELEMENTS SOIL, P87 Kalinowska M, 2013, BIOL TRACE ELEM RES, V152, P251, DOI 10.1007/s12011-013-9606-y Kato T, 1996, PROG NEURO-PSYCHOPH, V20, P87, DOI 10.1016/0278-5846(95)00294-4 KENT N. L., 1941, NEW PHYTOL, V40, P291, DOI 10.1111/j.1469-8137.1941.tb07051.x Kielczykowska Malgorzata, 2004, Ann Univ Mariae Curie Sklodowska Med, V59, P140 Kjolholt J., 2003, ELEMENTS 2 RANK LITH Kousa A, 2013, GEOLOGIAN TUTKIMUSKE, V53, P2 Kramer U, 2000, PLANT PHYSIOL, V122, P1343, DOI 10.1104/pp.122.4.1343 Kumar S.S., 2017, PLANT MICROBE INTERA, V2, P367, DOI [10.1007/978-981-10-6593-4_15, DOI 10.1007/978-981-10-6593-4_15] Lambert J., 1983, Lithium. 4. Spurenelementsymposium, P32 Lenntech, 2007, LITH WAT REACT MECH LEONARD A, 1995, MUTAT RES-REV GENET, V339, P131, DOI 10.1016/0165-1110(95)90007-1 Li X, 2009, PLANT SCI, V177, P68, DOI 10.1016/j.plantsci.2009.03.013 Liaugaudaite V, 2017, J TRACE ELEM MED BIO, V43, P197, DOI 10.1016/j.jtemb.2017.03.009 Lin CC, 2005, PLANT SCI, V168, P855, DOI 10.1016/j.plantsci.2004.10.023 Liptakova L, 2013, J PLANT PHYSIOL, V170, P646, DOI 10.1016/j.jplph.2012.12.007 Makus D.J., 2006, SUBTROP PLANT SCI, V58, P35 Mason B, 1974, PRINCIPLES GEOCHEMIS Merian E., 1991, METALS THEIR COMPOUN Moore S, 2007, IND MINER, P58 Mulkey Timothy J, 2005, Gravit Space Biol Bull, V18, P119 Naranjo MA, 2003, PLANTA, V217, P417, DOI 10.1007/s00425-003-1017-4 Nciri R, 2012, J PHYSIOL BIOCHEM, V68, P11, DOI 10.1007/s13105-011-0113-3 Oktem F, 2005, MOL CELL BIOCHEM, V277, P109, DOI 10.1007/s11010-005-5426-5 Pompili M, 2015, WORLD J BIOL PSYCHIA, V16, P567, DOI 10.3109/15622975.2015.1062551 Qiao LT, 2018, PLANT PHYSIOL BIOCH, V132, P341, DOI 10.1016/j.plaphy.2018.09.022 Sapse AM, 1995, LITHIUM CHEM THEORET Schrauzer GN, 2002, J AM COLL NUTR, V21, P14, DOI 10.1080/07315724.2002.10719188 Scott A. D., 1987, Advances in Soil Science, V6, P101 Scrosati B, 2010, J POWER SOURCES, V195, P2419, DOI 10.1016/j.jpowsour.2009.11.048 Shabala S, 2003, ANN BOT-LONDON, V92, P627, DOI 10.1093/aob/mcg191 Shabala S, 2008, PHYSIOL PLANTARUM, V133, P651, DOI 10.1111/j.1399-3054.2007.01008.x Shabala S, 2011, ADV BOT RES, V57, P151, DOI 10.1016/B978-0-12-387692-8.00005-9 Shah AN, 2016, REV ENVIRON SCI BIO, V15, P549, DOI 10.1007/s11157-016-9412-z Shahzad B, 2018, PLANT PHYSIOL BIOCH, V132, P641, DOI 10.1016/j.plaphy.2018.10.014 Shahzad B, 2017, ENVIRON SCI POLLUT R, V24, P103, DOI 10.1007/s11356-016-7898-0 Shahzad B, 2016, PLANT PHYSIOL BIOCH, V107, P104, DOI 10.1016/j.plaphy.2016.05.034 Shi HT, 2014, J INTEGR PLANT BIOL, V56, P114, DOI 10.1111/jipb.12128 Shkolnik M.Y., 1984, TRACE ELEMENTS PLANT, P463 Tandon A, 1998, J APPL TOXICOL, V18, P187, DOI 10.1002/(SICI)1099-1263(199805/06)18:3<187::AID-JAT495>3.0.CO;2-Y Tanveer M, 2018, SALINITY RESPONSES T, P213, DOI DOI 10.1007/978-3-319-75671-4_8 Tanveer M, 2017, ENVIRON SCI POLLUT R, V24, P16531, DOI 10.1007/s11356-017-9337-2 Thomson W. W., 1988, Solute transport in plant cells and tissues., P498 Timmer RT, 1999, J AM SOC NEPHROL, V10, P666 Ting-Qiang L. I., 2006, PEDOSPHERE, V16, P616 Tolgyesi G., 1983, Lithium. 4. Spurenelementsymposium, P39 Uraguchi S, 2011, P NATL ACAD SCI USA, V108, P20959, DOI 10.1073/pnas.1116531109 Vine JD, 1980, EARTH IS ALL LITHIUM VLASYUK P A, 1975, Fiziologiya i Biokhimiya Kul'turnykh Rastenii, V7, P115 VLASYUK P A, 1975, Fiziologiya i Biokhimiya Kul'turnykh Rastenii, V7, P563 VLASYUK PA, 1975, DOPOV AKAD NAUK B, P742 WALLACE A, 1979, COMMUN SOIL SCI PLAN, V10, P473, DOI 10.1080/00103627909366909 Wang YC, 2015, ADV MECH ENG, V7, DOI 10.1177/1687814015586111 Wang YX, 2004, PLANT PHYSIOL, V136, P3762, DOI 10.1104/pp.104.045005 Waters S, 2013, INT J MOL SCI, V14, P7660, DOI 10.3390/ijms14047660 Weeks ME, 1956, DISCOVERY, P578 Weis JS, 2004, ENVIRON INT, V30, P685, DOI 10.1016/j.envint.2003.11.002 Weng BS, 2012, MAR POLLUT BULL, V64, P2453, DOI 10.1016/j.marpolbul.2012.07.047 Yalamanchali R, 2012, THESIS Yang JL, 2011, PLANT PHYSIOL, V155, P1885, DOI 10.1104/pp.111.172221 Zeller S, 2000, BIOL PLANTARUM, V43, P523, DOI 10.1023/A:1002806522138 NR 109 TC 7 Z9 7 U1 7 U2 21 PU SPRINGER PI NEW YORK PA ONE NEW YORK PLAZA, SUITE 4600, NEW YORK, NY, UNITED STATES SN 0721-7595 EI 1435-8107 J9 J PLANT GROWTH REGUL JI J. Plant Growth Regul. PD DEC PY 2019 VL 38 IS 4 BP 1574 EP 1586 DI 10.1007/s00344-019-09957-2 PG 13 WC Plant Sciences SC Plant Sciences GA JM6IW UT WOS:000496316900033 DA 2021-10-15 ER PT J AU Liu, XX Tang, L Ge, R Li, JK Kang, Y Zhu, MX Li, QS Hao, XL AF Liu, Xiao-Xia Tang, Li Ge, Rui Li, Jian-Kuan Kang, Ya Zhu, Mei-Xia Li, Qing-Shan Hao, Xu-Liang TI iTRAQ-based quantitative proteomic analysis of the anti-apoptotic effect of hyperin, which is mediated by Mcl-1 and Bid, in H2O2-injured EA.hy926 cells SO INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE LA English DT Article DE hyperin; EA.hy926 cells; iTRAQ; Bid; myeloid cell leukemia-1; anti-apoptotic ID CYTOCHROME-C RELEASE; MITOCHONDRIA; ACTIVATION; PROTEIN; MIGRATION; RECEPTOR; PATHWAY; CANCER; ENDOTHELIUM; DYSFUNCTION AB Endothelial injury has been implicated in the pathogenesis of many cardiovascular diseases, including thrombotic disorders. Hyperin (quercetin-3-O-galactoside), a flavonoid compound and major bioactive component of the medicinal herb Apocynum venetum L., is commonly used to prevent endothelium dysfunction. However, its mode of action remains unclear. To the best of our knowledge, we have for the first time investigated the protective effect hyperin exerts against H2O2-induced injury in human endothelium-derived EA.hy926 cells using isobaric tags for relative and absolute quantitation (iTRAQ)-based quantitative proteomic analysis. The results showed that H2O2 exposure induced alterations in the expression of 250 proteins in the cells. We noted that the expression of 52 proteins associated with processes such as cell apoptosis, cell cycle and cytoskeleton organization, was restored by hyperin treatment. Of the proteins differentially regulated following H2O2 stress, the anti-apoptotic protein, myeloid cell leukemia-1 (Mcl-1), and the pro-apoptotic protein, BH3-interacting domain death agonist (Bid), exhibited marked changes in expression. Hyperin increased Mcl-1 expression and decreased that of Bid in a dose-dependent manner. In addition, flow cytometric analysis and western blot analysis of the apoptosis-related proteins, truncated BID (tBid), cleaved caspase-3, cleaved caspase-9, Fas, FasL and caspase-8, demonstrated that the rate of apoptosis and the pro-apoptotic protein levels were decreased by hyperin pre-treatment. In the present study we demonstrate that hyperin effectively prevents H2O2-induced cell injury by regulating the Mcl-1- and Bid-mediated anti-apoptotic mechanism, suggesting that hyperin is a potential candidate for use in the treatment of thrombotic diseases. C1 [Liu, Xiao-Xia; Kang, Ya; Zhu, Mei-Xia; Hao, Xu-Liang] Shanxi Inst Tradit Chinese Med, 46 Bingzhou Rd West, Taiyuan 030012, Shanxi, Peoples R China. [Tang, Li; Ge, Rui; Li, Jian-Kuan; Li, Qing-Shan] Shanxi Med Univ, Sch Pharmaceut Sci, 56 Xinjian South Rd, Taiyuan 030001, Shanxi, Peoples R China. RP Hao, XL (corresponding author), Shanxi Inst Tradit Chinese Med, 46 Bingzhou Rd West, Taiyuan 030012, Shanxi, Peoples R China.; Li, QS (corresponding author), Shanxi Med Univ, Sch Pharmaceut Sci, 56 Xinjian South Rd, Taiyuan 030001, Shanxi, Peoples R China. EM sxlqs2012@163.com; hxliang-01@163.com RI Jiankuan, Li/J-7237-2019 OI Jiankuan, Li/0000-0001-5615-9588 FU National Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC) [81274132, 81172938] FX This study was financially supported by the National Natural Science Foundation of China (grant nos. 81274132 and 81172938). We are grateful to Editage for providing editorial assistance. CR Aggarwal Kunal, 2006, Briefings in Functional Genomics & Proteomics, V5, P112, DOI 10.1093/bfgp/ell018 Aird WC, 2015, HAMOSTASEOLOGIE, V35, P11, DOI 10.5482/HAMO-14-11-0075 Bernatoniene J, 2009, PHYTOTHER RES, V23, P1701, DOI 10.1002/ptr.2815 Chatterjee M, 2014, CIRC RES, V115, P939, DOI 10.1161/CIRCRESAHA.115.305171 Choy JC, 2001, J MOL CELL CARDIOL, V33, P1673, DOI 10.1006/jmcc.2001.1419 Chun KH, 2003, CANCER RES, V63, P3826 Gogvadze V, 2006, BBA-BIOENERGETICS, V1757, P639, DOI 10.1016/j.bbabio.2006.03.016 Hao XL, 2009, THESIS SHANXI MED U Inagaki M, 2008, J BIOL CHEM, V283, P33080, DOI 10.1074/jbc.M807574200 Li HL, 1998, CELL, V94, P491, DOI 10.1016/S0092-8674(00)81590-1 Li ZL, 2012, J ETHNOPHARMACOL, V139, P388, DOI 10.1016/j.jep.2011.11.020 Lim D, 2012, ENVIRON TOXICOL CHEM, V31, P585, DOI 10.1002/etc.1706 Luo X, 1998, CELL, V94, P481, DOI 10.1016/S0092-8674(00)81589-5 Middleton E, 2000, PHARMACOL REV, V52, P673 Morioka S, 2012, BLOOD, V120, P3846, DOI 10.1182/blood-2012-03-416198 Muller WE, 1998, PHARMACOPSYCHIATRY, V31, P16, DOI 10.1055/s-2007-979341 Ross PL, 2004, MOL CELL PROTEOMICS, V3, P1154, DOI 10.1074/mcp.M400129-MCP200 Schumacher E, 2011, PHYTOTHER RES, V25, P744, DOI 10.1002/ptr.3481 Shimazu T, 2007, GENE DEV, V21, P929, DOI 10.1101/gad.1522007 Stojanovic I, 2012, GROWTH FACTORS, V30, P385, DOI 10.3109/08977194.2012.734506 Sun PH, 2013, INT J ONCOL, V43, P1560, DOI 10.3892/ijo.2013.2082 Tang QF, 2014, TUMOR BIOL, V35, P2451, DOI 10.1007/s13277-013-1325-7 Triggle CR, 2012, CAN J PHYSIOL PHARM, V90, P713, DOI [10.1139/Y2012-073, 10.1139/y2012-073] Versari D, 2009, DIABETES CARE, V32, pS314, DOI 10.2337/dc09-S330 Wang WQ, 1996, ACTA PHARM SINIC, V17, P341 YANG T, 1995, J CELL BIOL, V128, P1173, DOI 10.1083/jcb.128.6.1173 Yin XM, 2000, CELL RES, V10, P161, DOI 10.1038/sj.cr.7290045 NR 27 TC 7 Z9 9 U1 3 U2 15 PU SPANDIDOS PUBL LTD PI ATHENS PA POB 18179, ATHENS, 116 10, GREECE SN 1107-3756 EI 1791-244X J9 INT J MOL MED JI Int. J. Mol. Med. PD APR PY 2016 VL 37 IS 4 BP 1083 EP 1090 DI 10.3892/ijmm.2016.2510 PG 8 WC Medicine, Research & Experimental SC Research & Experimental Medicine GA DI4TS UT WOS:000373492900024 PM 26935776 OA Bronze DA 2021-10-15 ER PT J AU Wright, GD Frey, JK AF Wright, Greg D. Frey, Jennifer K. TI Habitat Selection by the Endangered New Mexico Meadow Jumping Mouse on an Irrigated Floodplain SO JOURNAL OF FISH AND WILDLIFE MANAGEMENT LA English DT Article DE endangered species; irrigation; multiple-scale habitat selection; New Mexico meadow jumping mouse; Rio Grande; wildlife refuge; Zapus hudsonius luteus ID ZAPUS-HUDSONIUS-LUTEUS; RESOURCE SELECTION; AVAILABILITY DATA; UNITED-STATES; MICE; CONSERVATION; LANDSCAPE; DECLINE; NESTS AB The New Mexico meadow jumping mouse Zapus hudsonius luteus is endemic to the American Southwest. It has undergone severe declines in distribution over the past century and it has been listed as endangered under the Endangered Species Act. The goal of this study was to determine current status and habitat selection by the New Mexico meadow jumping mouse at three spatial scales (landscape, macrohabitat, microhabitat) on a managed high-order floodplain. We hypothesized that the New Mexico meadow jumping mouse is a habitat specialist that might rely on specific habitat components at multiple spatial scales. The study occurred at Bosque del Apache National Wildlife Refuge, New Mexico. In comparison with the status of the species 2 decades ago, the New Mexico meadow jumping mouse was rare, with only 29 individuals captured. Trapping results and radiotelemetry of 20 individuals revealed that the current population existed along 2.7 km of a single irrigation canal. At the landscape scale, the distribution of the New Mexico meadow jumping mouse was determined by selection of canals, water, foxtail barley Hordeum jubatum herbaceous temporarily flooded association, and narrowleaf willow Salix exigua mesic graminoids shrubland association. At the macrohabitat scale, jumping mice selected canals and Hordeum jubatum herbaceous temporarily flooded association. At the microhabitat scale, jumping mice selected areas that were near water and contained moist soils, dense herbaceous canopy cover, dogbane Apocynum cannabinum, foxtail barley, and common threesquare Schoenoplectus pungens; jumping mice avoided habitats represented by eight plant species, including mule-fat Baccharis salicifolia, kochia Bassia scoparia, and saltcedar Tamarix ramosissima. Jumping mice only occurred where there is an overlap of the required habitats at all three scales and this may be a key limiting factor for the New Mexico meadow jumping mice at Bosque del Apache National Wildlife Refuge. Habitats used by jumping mice during maternal nesting and hibernation contained more woody plants and woody debris than at other times of their life cycle. Information gained from this study can help land managers protect and create habitat conditions required by the New Mexico meadow jumping mouse. C1 [Wright, Greg D.; Frey, Jennifer K.] New Mexico State Univ, Dept Fish Wildlife & Conservat Ecol, Las Cruces, NM 88003 USA. RP Frey, JK (corresponding author), New Mexico State Univ, Dept Fish Wildlife & Conservat Ecol, POB 30003,MSC 4901, Las Cruces, NM 88003 USA. EM jfrey@nmsu.edu RI Frey, Jennifer K./F-8945-2011 OI Frey, Jennifer K./0000-0002-0122-2567 FU U.S. Fish and Wildlife Service New Mexico Ecological Services Field Office; New Mexico Department of Game and Fish Share with Wildlife Program FX We thank the U.S. Fish and Wildlife Service New Mexico Ecological Services Field Office and the New Mexico Department of Game and Fish Share with Wildlife Program for funding. We thank John Vradenburg, Colin Lee, Ashley Inslee and other staff of Bosque del Apache NWR for logistical support; we thank Eric Hein and Jim Stuart for encouragement; and we thank Kenneth Boykin, Karen Mabry, and Robert Steiner for valuable input into study design, analyses, and an earlier draft of the manuscript. We thank Darren James for assistance with statistical analyses. We thank Angelina Wright and Caitlyn Casey for assistance in the field. We thank the editors and three anonymous reviewers for suggestions that improved this paper. This study was in partial fulfillment of a Master's of Science degree for G.D. Wright at New Mexico State University. CR Avila-Flores R, 2010, J WILDLIFE MANAGE, V74, P945, DOI 10.2193/2008-503 Bain MR, 2002, SOUTHWEST NAT, V47, P630, DOI 10.2307/3672674 BEYER H.L, 2004, HAWTHS ANAL TOOLS AR Bias MA, 1999, SW NATURALIST, V44, P448 Bingham RL, 2004, J WILDLIFE MANAGE, V68, P206, DOI 10.2193/0022-541X(2004)068[0206:COTIER]2.0.CO;2 BYERS CR, 1984, J WILDLIFE MANAGE, V48, P1050, DOI 10.2307/3801467 CRANFORD JA, 1983, CAN J ZOOL, V61, P232, DOI 10.1139/z83-029 DOUGLASS RJ, 1989, J MAMMAL, V70, P648, DOI 10.2307/1381443 Frey JK, 2012, WEST N AM NATURALIST, V72, P257, DOI 10.3398/064.072.0216 Frey JK, 2009, SOUTHWEST NAT, V54, P31, DOI 10.1894/MLK-07.1 Frey JK, 2012, MULTIPLE SCALE HABIT Frey JK, 2012, SURVEY MEADOW JUMPIN HAFNER DJ, 1981, J MAMMAL, V62, P501, DOI 10.2307/1380398 HOWE WH, 1991, SOUTHWEST NAT, V36, P218, DOI 10.2307/3671924 Hubbard J. P., 1977, IMPORTANCE PRESERVAT, P14 JOHNSON DH, 1980, ECOLOGY, V61, P65, DOI 10.2307/1937156 Johnson R. R., 1977, IMPORTANCE PRESERVAT, P68 Keating KA, 2004, J WILDLIFE MANAGE, V68, P774, DOI 10.2193/0022-541X(2004)068[0774:UAIOLR]2.0.CO;2 KNOPF FL, 1988, WILSON BULL, V100, P272 KRUEPER DJ, 1993, USDA ROCKY, V229, P321 Lesmeister DB, 2007, J WILDLIFE MANAGE, V73, P18 Liu XH, 2005, J WILDLIFE MANAGE, V69, P1623, DOI 10.2193/0022-541X(2005)69[1623:GPHSIF]2.0.CO;2 Malaney JL, 2012, DIVERS DISTRIB, V18, P689, DOI 10.1111/j.1472-4642.2011.00866.x Manly B. F. J., 1993, RESOURCE SELECTION A McClean SA, 1998, J WILDLIFE MANAGE, V62, P793, DOI 10.2307/3802356 Mills LS, 2007, CONSERVATION WILDLIF MORRISON JL, 1992, SOUTHWEST NAT, V37, P308, DOI 10.2307/3671875 MORRISON JL, 1990, P S MAN WILDL SW AR, P136 Morrison JL, 1988, DISTRIBUTION LIFE HI Najera SR, 1994, THESIS NEW MEXICO ST NEU CW, 1974, J WILDLIFE MANAGE, V38, P541, DOI 10.2307/3800887 Ohmart R.D., 1982, P433 Polvi LE, 2013, BIOSCIENCE, V63, P439, DOI 10.1525/bio.2013.63.6.6 QUIMBY DC, 1951, ECOL MONOGR, V21, P61, DOI 10.2307/1948646 Roberge JM, 2004, CONSERV BIOL, V18, P76, DOI 10.1111/j.1523-1739.2004.00450.x Ruggles AK, 2003, HIBERNACULA LOCATION Ryon TR, 2001, SOUTHWEST NAT, V46, P376, DOI 10.2307/3672437 SCHORR RA, 2001, MEADOW JUMPING MICE Schorr RA, 2009, J MAMMAL, V90, P17, DOI 10.1644/07-MAMM-A-392.1 Simberloff D, 1998, BIOL CONSERV, V83, P247, DOI 10.1016/S0006-3207(97)00081-5 Thomas DL, 2006, J WILDLIFE MANAGE, V70, P324, DOI 10.2193/0022-541X(2006)70[324:SDATFC]2.0.CO;2 Thompson FR, 2000, STRATEGIES BIRD CONS, P48 Trainor AM, 2007, J WILDLIFE MANAGE, V71, P469, DOI 10.2193/2005-555 US Fish & Wildlife Service, 2014, FED REGISTER, V79, P33119 USDA, 2014, THE PLANTS DAT [USFWS HAPET] U.S. Fish and Wildlife Service Habitat and Population Evaluation Team, 2006, VEG COMM BOSQ AP NAT [USFWS] U. S. Fish and Wildlife Service Listing Review Team, 2014, SPEC STAT ASS REP NE Van Dyke, 2008, CONSERVATION BIOL FD WHITAKER JO, 1963, ECOL MONOGR, V33, P215, DOI 10.2307/1942627 White G., 1990, ANAL WILDLIFE RADIO Wright GD., 2012, THESIS NEW MEXICO ST Wright GD, 2014, WEST N AM NATURALIST, V74, P231, DOI 10.3398/064.074.0210 Zwank PJ, 1997, SOUTHWEST NAT, V42, P318 NR 53 TC 7 Z9 8 U1 1 U2 21 PU U S FISH & WILDLIFE SERVICE PI SHEPHERDSTOWN PA NATL CONSERVATION TRAINING CENTER, CONSERVATION LIBRARY, 698 CONSERVATION WAY, SHEPHERDSTOWN, WV 25443 USA SN 1944-687X J9 J FISH WILDL MANAG JI J. Fish Wildl. Manag. PD JUN PY 2015 VL 6 IS 1 BP 112 EP 129 DI 10.3996/062014-JFWM-044 PG 18 WC Biodiversity Conservation; Ecology SC Biodiversity & Conservation; Environmental Sciences & Ecology GA CL0JD UT WOS:000356627400010 DA 2021-10-15 ER PT J AU Fan, LS Wang, SD Qin, P AF Fan, Li-shan Wang, Shu-dong Qin, Pei TI Preparation, Composition, Structure and Properties of the Kosteletzkya virginica Bast Fiber SO FIBERS AND POLYMERS LA English DT Article DE Kosteletzkya virginica; Bast fibers; Morphological structure; Microstructure; Mechanical properties ID APOCYNUM-VENETUM FIBERS; SALINITY TOLERANCE; CELLULOSE; GROWTH; ION AB In this paper, the bast of the Kosteletzkya virginica are degummed and separated into fine fibers, the chemical composition, morphology, microstructure and mechanical properties of the Kosteletzkya virginica bast fibers are characterized by means of SEM, ART-FTIR, DSC-TGA, XRD and Instron tensile tester. The results show that the surface of the Kosteletzkya virginica bast fibers is smooth, and there are many visible grooves along the vertical section. Typical cellulose I in the Kasteletzkya virginica bast fibers is confirmed by FTIR and XRD analysis. The crystallinity of the Kosteletzkya virginica bast fibers is higher than that of the cotton fibers and lower than that of the castor-oil plant bast fibers. The beginning and maximum decomposition temperature of the Kosteletzkya virginica bast fibers are 252 and 347 degrees C respectively, which indicate that the Kosteletzkya virginica bast fibers have an appropriate thermal stability. The Kosteletzkya virginica bast fibers have a better mechanical properties and excellent hygroscopicity. All the results show that the Kosteletzkya virginica bast fiber is one of an ideal candidate for the new textile material. C1 [Fan, Li-shan; Qin, Pei] Nanjing Univ, Sch Life Sci, Halophyte Res Lab, Nanjing 210093, Peoples R China. [Fan, Li-shan; Wang, Shu-dong] Yancheng Text Vocat Technol Coll, Dept Text Engn, Yancheng 224005, Peoples R China. RP Fan, LS (corresponding author), Nanjing Univ, Sch Life Sci, Halophyte Res Lab, Nanjing 210093, Peoples R China. EM fanlishan2005@126.com OI Wang, Shu-Dong/0000-0001-6541-9142 FU 11.5 National Key Technology R & D Program of ChinaNational Key Technology R&D Program [2006BAD09A04, 2006BAD09A08]; 2010 Key Technology R & D Program of Jiangsu Province [BC2010469] FX We thank the fund support of 11.5 National Key Technology R & D Program of China (2006BAD09A04 and 2006BAD09A08) and 2010 Key Technology R & D Program of Jiangsu Province (BC2010469) for this research, and we are indebted to the Testing Center of Soochow University for experimental support. CR BLITS KC, 1990, PLANT CELL ENVIRON, V13, P419, DOI 10.1111/j.1365-3040.1990.tb01318.x BLITS KC, 1990, PLANT CELL ENVIRON, V13, P409, DOI 10.1111/j.1365-3040.1990.tb01317.x Carrillo A, 2004, EUR POLYM J, V40, P2229, DOI 10.1016/j.eurpolmj.2004.05.003 Chen J, 2009, CELLULOSE, V16, P1133, DOI 10.1007/s10570-009-9343-8 COOK DA, 1989, PLANT CELL TISS ORG, V17, P111, DOI 10.1007/BF00046856 Hu XP, 1996, J POLYM SCI POL PHYS, V34, P1451, DOI 10.1002/(SICI)1099-0488(199606)34:8<1451::AID-POLB8>3.0.CO;2-V Kessler RW, 1996, CHEMTECH, V26, P34 Khan GMA, 2009, FIBER POLYM, V10, P65, DOI 10.1007/s12221-009-0065-1 Le Troedec M, 2008, COMPOS PART A-APPL S, V39, P514, DOI 10.1016/j.compositesa.2007.12.001 Li MH, 2010, FIBER POLYM, V11, P48, DOI 10.1007/s12221-010-0048-2 Nam S, 2006, FIBER POLYM, V7, P372, DOI 10.1007/BF02875769 Ouajai S, 2005, POLYM DEGRAD STABIL, V89, P327, DOI 10.1016/j.polymdegradstab.2005.01.016 Reddy N, 2005, POLYMER, V46, P5494, DOI 10.1016/j.polymer.2005.04.073 Ruan CJ, 2009, PLANT SYST EVOL, V277, P207, DOI 10.1007/s00606-008-0127-7 Ruan ChengJiang, 2004, Acta Agronomica Sinica, V30, P901 Ruan CJ, 2004, S AFR J BOT, V70, P640, DOI 10.1016/S0254-6299(15)30204-0 Wang B, 2007, APPL COMPOS MATER, V14, P89, DOI 10.1007/s10443-006-9032-9 Wang HM, 2004, FIBER POLYM, V5, P171, DOI 10.1007/BF02902995 Wang LL, 2007, CARBOHYD POLYM, V69, P391, DOI 10.1016/j.carbpol.2006.12.028 Wang WM, 2009, FIBER POLYM, V10, P776, DOI 10.1007/s12221-009-0776-3 Watzl A., 2003, INT TEXTILE B, V5, P42 NR 21 TC 7 Z9 8 U1 1 U2 19 PU KOREAN FIBER SOC PI SEOUL PA KOREA SCIENCE TECHNOLOGY CTR #501 635-4 YEOGSAM-DONG, KANGNAM-GU, SEOUL 135-703, SOUTH KOREA SN 1229-9197 EI 1875-0052 J9 FIBER POLYM JI Fiber. Polym. PD OCT PY 2011 VL 12 IS 7 BP 911 EP 918 DI 10.1007/s12221-011-0911-9 PG 8 WC Materials Science, Textiles; Polymer Science SC Materials Science; Polymer Science GA 837DD UT WOS:000296170400010 DA 2021-10-15 ER PT J AU Kuo, CS Kwan, CY Gong, CL Tsai, MF Nishibe, S Tatsuzaki, J Leung, YM AF Kuo, Chang-Shin Kwan, Chiu-Yin Gong, Chi-Li Tsai, Min-Fan Nishibe, S. Tatsuzaki, J. Leung, Yuk-Man TI Apocynum venetum leaf aqueous extract inhibits voltage-gated sodium channels of mouse neuroblastoma N2A cells SO JOURNAL OF ETHNOPHARMACOLOGY LA English DT Article DE Apocynum venetum; Voltage-gated Na+ channel; Block; N2A cells; Oxidative stress ID K+ CHANNELS; IN-VITRO; RATS; L.; ANTIDEPRESSANTS; ANXIETY; LEAVES AB Ethnopharmacological relevance: Apocynum venetum Linn. (Apocynaceae family), also called Luobuma, is a shrub which grows widely in the Xinjiang Autonomous Region of China. Its leaves are used in herbal tea for the treatment of hypertension, anxiety and depression. Animal studies have also shown that Apocynum venetum leaf extract (AVLE) also exerts anti-depressant and anti-anxiety activities. The effects of AVLE on neuronal tissues in vitro are not fully understood. Materials and methods: Using the whole-cell voltage-clamp method, we studied the effects of AVLE on ion channels in cultured mouse neuroblastoma N2A cells. Results: AVLE inhibited voltage-gated inward Na+ current in a reversible and concentration-dependent manner (half-inhibitory concentration was 18 mu g/ml and maximum inhibition at 100 mu g/ml). AVLE specifically promoted steady-state inactivation of Na+ channels but did not affect voltage-dependence of activation. The inhibitory effect was not use-dependent and was not affected by 300 mu M L-NAME, suggesting that NO was not involved in the action of AVLE in neuronal cells. AVLE also had a mild inhibitory effect on voltage-gated K+ channels, but did not affect ATP-sensitive K+ channels. Conclusions: Since voltage-gated Na+ and K+ channels are associated with neuronal excitability and therefore affect neurotransmission, the modulation of neuronal ion channels by AVLE may exert neuropharmacological effects. In particular, the inhibition of voltage-gated Na+ currents by AVLE may in part account for the psychopharmacological effects of this herbal remedy. (C) 2011 Elsevier Ireland Ltd. All rights reserved. C1 [Kuo, Chang-Shin; Leung, Yuk-Man] China Med Univ, Grad Inst Neural & Cognit Sci, Taichung 40402, Taiwan. [Kwan, Chiu-Yin] China Med Univ, Grad Inst Basic Med Sci, Taichung 40402, Taiwan. [Gong, Chi-Li; Tsai, Min-Fan] China Med Univ, Dept Physiol, Taichung 40402, Taiwan. [Nishibe, S.] Hlth Sci Univ Hokkaido, Tobetsu, Hokkaido, Japan. [Tatsuzaki, J.] Tokiwa Phytochem Co Ltd, Tokyo, Japan. RP Leung, YM (corresponding author), China Med Univ, Grad Inst Neural & Cognit Sci, Taichung 40402, Taiwan. EM ymleung@mail.cmu.edu.tw FU Taiwan National Science Council for research funds [CMU97-340, CMU99-S-16, NSC 97-2320-B-039-029-MY3] FX We thank China Medical University, Taiwan, for research facilities, Tokiwa Co. Ltd. Japan for general supply of the herbal extract, and the Taiwan National Science Council for research funds to YML (CMU97-340; CMU99-S-16; NSC 97-2320-B-039-029-MY3). CR Aguilar-Bryan L, 1999, ENDOCR REV, V20, P101, DOI 10.1210/er.20.2.101 Bourin M, 2009, CURR DRUG TARGETS, V10, P1052, DOI 10.2174/138945009789735138 Butterweck V, 2003, PHARMACOL BIOCHEM BE, V75, P557, DOI 10.1016/S0091-3057(03)00118-7 Butterweck V, 2001, BIOL PHARM BULL, V24, P848, DOI 10.1248/bpb.24.848 Cao YH, 2003, ANAL BIOANAL CHEM, V376, P691, DOI 10.1007/s00216-003-1961-7 Chou CH, 2009, J NAT PROD, V72, P830, DOI 10.1021/np800729q Cox RH, 2001, HYPERTENSION, V37, P1315, DOI 10.1161/01.HYP.37.5.1315 Dick IE, 2007, J PAIN, V8, P315, DOI 10.1016/j.jpain.2006.10.001 Galecki P, 2010, NEUROSCI LETT, V486, P184, DOI 10.1016/j.neulet.2010.09.048 Grundmann O, 2007, J ETHNOPHARMACOL, V110, P406, DOI 10.1016/j.jep.2006.09.035 Grundmann O, 2009, PHYTOMEDICINE, V16, P295, DOI 10.1016/j.phymed.2008.12.020 Hille B., 2001, ION CHANNELS EXCITAB, P131 Irie K, 2009, J NAT MED, V63, P111, DOI 10.1007/s11418-008-0296-2 Kim DW, 2000, J ETHNOPHARMACOL, V72, P53, DOI 10.1016/S0378-8741(00)00197-5 Kulkarni SK, 2007, EUR J PHARMACOL, V569, P77, DOI 10.1016/j.ejphar.2007.05.002 Kwan CY, 2005, CLIN EXP PHARMACOL P, V32, P789, DOI 10.1111/j.1440-1681.2005.04255.x Leung YM, 2011, J CELL PHYSIOL, V226, P1090, DOI 10.1002/jcp.22430 Leung YM, 2010, LIFE SCI, V86, P775, DOI 10.1016/j.lfs.2010.04.004 Leung YM, 2010, NEUROPHARMACOLOGY, V58, P1147, DOI 10.1016/j.neuropharm.2010.02.007 Leung YM, 2010, PLANTA MED, V76, P34, DOI 10.1055/s-0029-1185941 Mirza NB, 2005, PSYCHOPHARMACOLOGY, V180, P159, DOI 10.1007/s00213-005-2146-1 Shirai Mutsuko, 2005, J Med Invest, V52 Suppl, P249, DOI 10.2152/jmi.52.249 Steinert JR, 2010, NEUROSCIENTIST, V16, P435, DOI 10.1177/1073858410366481 Tagawa C, 2004, YAKUGAKU ZASSHI, V124, P851, DOI 10.1248/yakushi.124.851 Thorneloe KS, 2001, CIRC RES, V89, P1030, DOI 10.1161/hh2301.100817 Xiang J, 2010, CAN J PHYSIOL PHARM, V88, P907, DOI [10.1139/Y10-069, 10.1139/y10-069] Yu SP, 2003, PROG NEUROBIOL, V70, P363, DOI 10.1016/S0301-0082(03)00090-X Zheng MZ, 2011, CELL MOL NEUROBIOL, V31, P421, DOI 10.1007/s10571-010-9635-4 NR 28 TC 7 Z9 11 U1 1 U2 16 PU ELSEVIER IRELAND LTD PI CLARE PA ELSEVIER HOUSE, BROOKVALE PLAZA, EAST PARK SHANNON, CO, CLARE, 00000, IRELAND SN 0378-8741 J9 J ETHNOPHARMACOL JI J. Ethnopharmacol. PD JUN 14 PY 2011 VL 136 IS 1 BP 149 EP 155 DI 10.1016/j.jep.2011.04.035 PG 7 WC Plant Sciences; Chemistry, Medicinal; Integrative & Complementary Medicine; Pharmacology & Pharmacy SC Plant Sciences; Pharmacology & Pharmacy; Integrative & Complementary Medicine GA 792CF UT WOS:000292717400018 PM 21530630 DA 2021-10-15 ER PT J AU Bundy, CS McPherson, JE AF Bundy, CS McPherson, JE TI Life history and laboratory rearing of Corimelaena obscura (Heteroptera: Thyreocoridae) with descriptions of immature stages SO ANNALS OF THE ENTOMOLOGICAL SOCIETY OF AMERICA LA English DT Article DE Corimelaena obscura; life history; laboratory rearing; descriptions; nymphs AB The life history of Corimelaena obscura McPherson & Sailer was investigated in southern Illinois during May-October 1994 and 1995, and the immature stages were described. The bug was reared from egg to adult under controlled laboratory conditions. Adults of this univoltine species overwintered, emerged in mid-May, and began feeding on flowering Chaerophyllum tainturiera Hook. During late May, they began moving to flowering Sanlcula canadensis L. and Cryptotaenia canadensis (L.), where riley fed and reproduced; adults also fed on Apocynum cannabinum L. and Torilis japonica (Houttuyn) in June, but did not reproduce. Eggs were laid singly on the fruits of S. canadensis in June and July. Seasonal occurrences of adults and nymphs are discussed. Adults were last observed in October. This species was reared on S. canadensis under a photoperiod of 16:8 (L:D) h and at 26 +/- 0.5 degrees C, The incubation period averaged 8.69 d. The 5 nymphal stadia averaged 6.54, 4.79, 4.96, 6.11, and 10.66 d, respectively. The instars can be distinguished by differences in several anatomical features including, among others, body size and punctation; and from C. lateralis lateralis (F.) by body length. RP Bundy, CS (corresponding author), SO ILLINOIS UNIV,DEPT ZOOL,CARBONDALE,IL 62901, USA. CR BIEHLER JA, 1982, ANN ENTOMOL SOC AM, V75, P465, DOI 10.1093/aesa/75.4.465 Froeschner R.C., 1988, P698 LUNG KY, 1982, ANN ENTOMOL SOC AM, V75, P177, DOI 10.1093/aesa/75.2.177 MCPHERSO.JE, 1971, ANN ENTOMOL SOC AM, V64, P313 MCPHERSON J E, 1978, Journal of the Kansas Entomological Society, V51, P516 McPherson J. E., 1982, PENTATOMOIDEA HEMIPT MCPHERSON JE, 1972, ANN ENTOMOL SOC AM, V65, P906, DOI 10.1093/aesa/65.4.906 NR 7 TC 7 Z9 7 U1 0 U2 1 PU ENTOMOL SOC AMER PI LANHAM PA 9301 ANNAPOLIS RD, LANHAM, MD 20706 SN 0013-8746 J9 ANN ENTOMOL SOC AM JI Ann. Entomol. Soc. Am. PD JAN PY 1997 VL 90 IS 1 BP 20 EP 27 DI 10.1093/aesa/90.1.20 PG 8 WC Entomology SC Entomology GA WE434 UT WOS:A1997WE43400002 DA 2021-10-15 ER PT J AU Du, SY Huang, HF Li, XQ Zhai, LX Zhu, QC Zheng, K Song, X Xu, CS Li, CY Li, Y He, ZD Xiao, HT AF Du, Shi-yun Huang, Hai-feng Li, Xian-qian Zhai, Lixiang Zhu, Qin-chang Zheng, Kai Song, Xun Xu, Chen-shu Li, Chen-yang Li, Ying He, Zhen-dan Xiao, Hai-tao TI Anti-inflammatory properties of uvaol on DSS-induced colitis and LPS-stimulated macrophages SO CHINESE MEDICINE LA English DT Article DE Uvaol; Apocynum venetum L; Anti-inflammatory; Macrophage; Colonic inflammation ID INFLAMMATION; INJURY; COLON; CELLS; IBD AB Background Apocynum venetum leaves are used as a kind of phytomedicine and the main ingredient in some traditional Chinese medicine products for the relief of colitis. To understand the bioactive constituents of A. venetum L., we did a phytochemistry study and investigated anti-Inflammatory effects of compounds and explored the underlying mechanisms. Methods We isolated compounds from ethanol extract of A. venetum L. leaf and detected the most effective compound by NO inhibition assay. We investigated anti-Inflammatory effects on dextran sulfate sodium (DSS)-induced colitis mice and lipopolysaccharide (LPS)-stimulated RAW264.7 cells. The disease activity index was determined by scores of body weight loss, diarrhea and rectal bleeding; histological damage was analyzed by H&E staining; macrophages change in the colon were analyzed by immunohistochemistry (IHC); myeloperoxidase activity was measured by myeloperoxidase assay kits; levels of proinflammatory cytokines were determined by qPCR and ELISA; protein production such as COX-2, iNOS, STAT3 and ERK1/2 were determined by western blotting. Results We isolated uvaol from ethanol extract of A. venetum L. leaf and found uvaol has excellent potential of inhibiting NO production. We further found uvaol could attenuate disease activity index (DAI), colon shortening, colon injury, and colonic myeloperoxidase activity in DSS-induced colitis mice. Moreover, uvaol significantly reduces mRNA expression and production of pro-inflammatory cytokines (TNF-alpha, IL-6, IL-1 beta, and MCP-1) and infiltration of macrophages in colonic tissues of colitis mice. Studies on LPS challenged murine macrophage RAW246.7 cells also revealed that uvaol reduces mRNA expression and production of pro-inflammatory cytokines and mediators. Mechanically, uvaol inhibits the pro-inflammatory ERK/STAT3 axis in both inflamed colonic tissues and macrophages. Conclusions A. venetum leaf contains uvaol and uvaol has potent anti-inflammatory effects on DSS-induced experimental colitis and LPS-stimulated RAW264.7 macrophage cells. These results suggest uvaol is a prospective anti-inflammatory agent for colonic inflammation. C1 [Du, Shi-yun; Huang, Hai-feng; Li, Xian-qian; Zhu, Qin-chang; Zheng, Kai; Song, Xun; Xu, Chen-shu; Li, Chen-yang; Li, Ying; He, Zhen-dan; Xiao, Hai-tao] Shenzhen Univ, Innovat Platform Nat Small Mol Drugs,Engn Lab She, Shenzhen Nat Small Mol Innovat Drugs,Shenzhen Key, Sch Pharmaceut Sci,Hlth Sci Ctr,Guangdong Key Lab, Shenzhen 518060, Peoples R China. [Huang, Hai-feng; Xiao, Hai-tao] Guizhou Med Univ, Dept Educ, Key Lab Pharmacol & Druggabil Nat Med, Guiyang 550025, Guizhou, Peoples R China. [Li, Xian-qian; Zhai, Lixiang] Hong Kong Baptist Univ, Sch Chinese Med, Kowloon, Hong Kong, Peoples R China. RP He, ZD; Xiao, HT (corresponding author), Shenzhen Univ, Innovat Platform Nat Small Mol Drugs,Engn Lab She, Shenzhen Nat Small Mol Innovat Drugs,Shenzhen Key, Sch Pharmaceut Sci,Hlth Sci Ctr,Guangdong Key Lab, Shenzhen 518060, Peoples R China.; Xiao, HT (corresponding author), Guizhou Med Univ, Dept Educ, Key Lab Pharmacol & Druggabil Nat Med, Guiyang 550025, Guizhou, Peoples R China. EM hezhendan@szu.edu.cn; xhaitao@szu.edu.cn RI Li, Ying/AAC-1331-2021; Zheng, Kai/AAT-8994-2021 OI Zheng, Kai/0000-0001-9275-1239 FU National Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC) [81560676, 81973293, 31670360, U1702286]; National Key R&D Program of China [2017YFA053900]; Science and Technology Program of Guangdong Province in China [2017B030301016]; SZU medical young scientists program [71201-000001]; Scientific Research for New Teachers of Shenzhen University [860-000002110144]; Shenzhen Science and Technology Innovation Committee [JCYJ20170413170320959, ZDSYS201506031617582, Shenfagai(2013)180] FX This research was supported by the National Natural Science Foundation of China (No. 81560676, 81973293, 31670360 and U1702286), National Key R&D Program of China (No. 2017YFA053900), Science and Technology Program of Guangdong Province in China (No. 2017B030301016), SZU medical young scientists program (No. 71201-000001), the launching fund of the Scientific Research for New Teachers of Shenzhen University (No. 860-000002110144), and the Shenzhen Science and Technology Innovation Committee Grant (No. JCYJ20170413170320959, ZDSYS201506031617582 and Shenfagai(2013)180). CR Agra LC, 2016, EUR J PHARMACOL, V780, P232, DOI 10.1016/j.ejphar.2016.03.056 Botelho RM, 2019, BBA-GEN SUBJECTS, V1863, P1417, DOI 10.1016/j.bbagen.2019.06.012 Cui YN, 2019, PLANT PHYSIOL BIOCH, V135, P489, DOI 10.1016/j.plaphy.2018.11.011 ESSAADY D, 1994, MEDIAT INFLAMM, V3, P181, DOI 10.1155/S0962935194000244 Ghia JE, 2008, AM J PHYSIOL-GASTR L, V294, pG770, DOI 10.1152/ajpgi.00453.2007 Hammer T, 2016, J CROHNS COLITIS, V10, P934, DOI 10.1093/ecco-jcc/jjw050 Jiang L, 2018, ENVIRON SCI POLLUT R, V25, P5040, DOI 10.1007/s11356-018-1196-y Jing M, 2019, OXID MED CELL LONGEV, V2019, DOI 10.1155/2019/6138723 Junkins RD, 2013, J IMMUNOL, V190, P5178, DOI 10.4049/jimmunol.1203196 Kamada N, 2008, J CLIN INVEST, V118, P2269, DOI [10.1172/JC134610, 10.1172/JCI34610] Kaplan GG, 2015, NAT REV GASTRO HEPAT, V12, P720, DOI 10.1038/nrgastro.2015.150 Kasembeli MM, 2018, INT J MOL SCI, V19, DOI 10.3390/ijms19082299 Kim N, 2019, BIOCHEM PHARMACOL, V170, DOI 10.1016/j.bcp.2019.113646 Kwon SH, 2018, IMMUNE NETW, V18, DOI 10.4110/in.2018.18.e30 Li Lu-Jun, 2013, Zhongguo Zhong Yao Za Zhi, V38, P354 Li XT, 2018, BIOMED PHARMACOTHER, V100, P394, DOI 10.1016/j.biopha.2018.01.137 Liang ZT, 2019, BIOCHEM BIOPH RES CO, V518, P259, DOI 10.1016/j.bbrc.2019.08.044 Lovato P, 2003, J BIOL CHEM, V278, P16777, DOI 10.1074/jbc.M207999200 Marquez-Martin A, 2006, CYTOKINE, V36, P211, DOI 10.1016/j.cyto.2006.12.007 Mochizuki M, 2010, PHYTOTHER RES, V24, pS120, DOI 10.1002/ptr.2862 Mu HX, 2016, J NAT PROD, V79, P1056, DOI 10.1021/acs.jnatprod.5b01071 Na YR, 2019, NAT REV GASTRO HEPAT, V16, P531, DOI 10.1038/s41575-019-0172-4 Peng J, 2019, FRONT PHARMACOL, V10, DOI 10.3389/fphar.2019.00351 Qian MY, 2020, ONCOGENE, V39, P428, DOI 10.1038/s41388-019-0996-y Tan BX, 2017, NAT PROD RES, V31, P2836, DOI 10.1080/14786419.2017.1300796 Wang L, 2015, China patent, Patent No. [CN201510441456.6. 2015 2015-07-25, 201510441456] Wu C, 2015, INVENTORA TRADITIONA, Patent No. 2015-04-24 Xiao HT, 2019, OXID MED CELL LONGEV, V2019, DOI 10.1155/2019/9480945 Xiao HT, 2018, CURR MED CHEM, V25, P5191, DOI 10.2174/0929867324666171009100900 Xiao HT, 2013, J NAT PROD, V76, P2120, DOI 10.1021/np4006772 XIAO HT, 2015, CHIN MED-UK, V10, P26, DOI DOI 10.1186/s13020-015-0058-5 Xie WY, 2016, CHEM-BIOL INTERACT, V246, P11, DOI 10.1016/j.cbi.2016.01.004 Xie WY, 2012, J ETHNOPHARMACOL, V141, P1, DOI 10.1016/j.jep.2012.02.003 Yoshino T, 2010, INFLAMM BOWEL DIS, V16, P2022, DOI 10.1002/ibd.21318 Zigmond E, 2012, IMMUNITY, V37, P1076, DOI 10.1016/j.immuni.2012.08.026 NR 35 TC 6 Z9 7 U1 8 U2 13 PU BMC PI LONDON PA CAMPUS, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1749-8546 J9 CHIN MED-UK JI Chin. Med. PD MAY 7 PY 2020 VL 15 IS 1 AR 43 DI 10.1186/s13020-020-00322-0 PG 13 WC Integrative & Complementary Medicine; Pharmacology & Pharmacy SC Integrative & Complementary Medicine; Pharmacology & Pharmacy GA LO9IL UT WOS:000533937800001 PM 32411289 OA gold, Green Published DA 2021-10-15 ER PT J AU Wang, YL Berhow, MA Black, M Jeffery, EH AF Wang, Yanling Berhow, Mark A. Black, Molly Jeffery, Elizabeth H. TI A comparison of the absorption and metabolism of the major quercetin in brassica, quercetin-3-O-sophoroside, to that of quercetin aglycone, in rats SO FOOD CHEMISTRY LA English DT Article DE Quercetin sophoroside; Flavonol absorption; Metabolism; Microbial catabolism ID INTESTINAL-ABSORPTION; FLAVONOL GLYCOSIDES; BIOAVAILABILITY; RUTIN AB Although flavonoid sophorosides are common glycosides in brassica vegetables, red raspberries and other food plants, there is a lack of studies of absorption and metabolism of any sophoroside. The aim of this study was to characterize the absorption, phase II metabolism and microbial catabolism of quercetin-3-O-sophoroside, compared to that of quercetin aglycone. Quercetin-3-O-sophoroside was purified from Apocynum venetum and characterized by MS2, H-1 and C-13 NMR. Using an in situ rat gut model, we found intact, methylated, sulfated and both methylated and sulfated quercetin sophoroside in the plasma following jejunal introduction of the sophoroside; we found derivatives of benzoic acid, phenylacetic acid, and phenyl propionic acid in the cecal contents following cecal introduction. This novel finding, that quercetin sophoroside was absorbed intact, without deglycosylation, points to a possible role for the terminal sugar and/or the type of linkage among glycosidic moieties in the mechanism of absorption of flavonoid glycosides. C1 [Wang, Yanling; Black, Molly; Jeffery, Elizabeth H.] Univ Illinois, Dept Food Sci & Human Nutr, 905 S Goodwin Ave, Urbana, IL 61801 USA. [Berhow, Mark A.] ARS, USDA, Peoria, IL USA. RP Jeffery, EH (corresponding author), Univ Illinois, Dept Food Sci & Human Nutr, 905 S Goodwin Ave, Urbana, IL 61801 USA. EM ywang436@illinois.edu; mark.berhow@ars.usda.gov; mblack1@illinois.edu; ejeffery@illinois.edu OI Jeffery, Elizabeth/0000-0002-8827-9469 FU USDA-NIFAUnited States Department of Agriculture (USDA) [2016-67017-24430] FX This research was funded by USDA-NIFA (Grant no. 2016-67017-24430). We thank Drs. Paul Kroon and Paul Needs (Quadram Institute, Norwich, UK) for kindly providing the isorhamnetin-3-glucuronide standard. We also thank Metabolomics Center, Roy J. Carver Biotechnology Center, at University of Illinois at Urbana-Champaign for the analysis of microbial catabolites. CR Andlauer W, 2001, BIOCHEM PHARMACOL, V62, P369, DOI 10.1016/S0006-2952(01)00638-4 Angelino D, 2013, FOOD FUNCT, V4, P1339, DOI 10.1039/c3fo60047e Aura AM, 2002, J AGR FOOD CHEM, V50, P1725, DOI 10.1021/jf0108056 Blaschek W, 2017, PLANTA MED, V83, P985, DOI 10.1055/s-0043-106050 Crozier A, 2010, MOL ASPECTS MED, V31, P446, DOI 10.1016/j.mam.2010.09.007 Day AJ, 2003, BIOCHEM PHARMACOL, V65, P1199, DOI 10.1016/S0006-2952(03)00039-X Gauer JS, 2018, BIOCHEM PHARMACOL, V152, P11, DOI 10.1016/j.bcp.2018.03.011 Goto T, 2012, MOL NUTR FOOD RES, V56, P435, DOI 10.1002/mnfr.201100458 Jaganath IB, 2006, FREE RADICAL RES, V40, P1035, DOI 10.1080/10715760600771400 Jeffery EH, 2009, PHYTOCHEM REV, V8, P283, DOI 10.1007/s11101-008-9106-4 Kris-Etherton PM, 2002, AM J MED, V113, P71, DOI 10.1016/S0002-9343(01)00995-0 Lai RH, 2010, FOOD FUNCT, V1, P161, DOI 10.1039/c0fo00110d Li HJ, 2017, J CHROMATOGR B, V1048, P56, DOI 10.1016/j.jchromb.2017.01.041 Liu XJ, 2017, NUTRIENTS, V9, DOI 10.3390/nu9030262 Mauri PL, 1999, RAPID COMMUN MASS SP, V13, P924, DOI 10.1002/(SICI)1097-0231(19990530)13:10<924::AID-RCM588>3.3.CO;2-7 Mullen W, 2002, J AGR FOOD CHEM, V50, P5191, DOI 10.1021/jf020140n Mullen W, 2008, J AGR FOOD CHEM, V56, P12127, DOI 10.1021/jf802754s Mullen W, 2006, BRIT J NUTR, V96, P107, DOI 10.1079/BJN20061809 Murota K, 2003, ARCH BIOCHEM BIOPHYS, V417, P12, DOI 10.1016/S0003-9861(03)00284-4 Murota K, 2018, BIOSCI BIOTECH BIOCH, V82, P600, DOI 10.1080/09168451.2018.1444467 Murota K, 2010, ARCH BIOCHEM BIOPHYS, V501, P91, DOI 10.1016/j.abb.2010.06.036 Nemeth K, 2003, EUR J NUTR, V42, P29, DOI 10.1007/s00394-003-0397-3 Olthof MR, 2003, J NUTR, V133, P1806, DOI 10.1093/jn/133.6.1806 Price KR, 1998, J SCI FOOD AGR, V77, P468, DOI [10.1002/(SICI)1097-0010(199808)77:4<468::AID-JSFA66>3.3.CO;2-2, 10.1002/(SICI)1097-0010(199808)77:4<468::AID-JSFA66>3.0.CO;2-B] Serra A, 2012, FOOD CHEM, V130, P383, DOI 10.1016/j.foodchem.2011.07.055 Shi JY, 2011, PHYTOCHEM ANALYSIS, V22, P450, DOI 10.1002/pca.1301 Shinoki A, 2013, FOOD CHEM, V136, P293, DOI 10.1016/j.foodchem.2012.08.028 Stevens JF, 2016, PHYTOCHEM REV, V15, P425, DOI 10.1007/s11101-016-9459-z Terao J, 2017, BIOCHEM PHARMACOL, V139, P15, DOI 10.1016/j.bcp.2017.03.021 Wang YL, 2018, NUTRIENTS, V10, DOI 10.3390/nu10060748 Williamson G, 2018, COMPR REV FOOD SCI F, V17, P1054, DOI 10.1111/1541-4337.12351 Zhang Y, 2008, EUR FOOD RES TECHNOL, V226, P395, DOI 10.1007/s00217-006-0550-3 NR 32 TC 6 Z9 6 U1 7 U2 36 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0308-8146 EI 1873-7072 J9 FOOD CHEM JI Food Chem. PD MAY 1 PY 2020 VL 311 AR 125880 DI 10.1016/j.foodchem.2019.125880 PG 8 WC Chemistry, Applied; Food Science & Technology; Nutrition & Dietetics SC Chemistry; Food Science & Technology; Nutrition & Dietetics GA KB0PE UT WOS:000506201100013 PM 31771913 OA Bronze DA 2021-10-15 ER PT J AU Guo, H Kuang, ZP Zhang, J Zhao, X Pu, P Yan, JF AF Guo, Huan Kuang, Zhiping Zhang, Jing Zhao, Xin Pu, Ping Yan, Junfeng TI The preventive effect of Apocynum venetum polyphenols on D-galactose-induced oxidative stress in mice SO EXPERIMENTAL AND THERAPEUTIC MEDICINE LA English DT Article DE Apocynum venetum; polyphenol; D-galactose; oxidation; Cu/Zn-superoxide dismutase expression ID NITRIC-OXIDE; VITAMIN-C; ANTIOXIDANT; DAMAGE; EXTRACT; L.; GLUTATHIONE; ACTIVATION; INHIBITION; EXPRESSION AB Apocynum venetum is a traditional medicine that is rich in polyphenols. Apocynum venetum polyphenol extract (AVP) contains the active substances neochlorogenic acid, chlorogenic acid, rutin, isoquercitrin, astragaloside and rosmarinic acid. In the present study, the preventive effect of AVP against D-galactose-induced oxidative stress was studied in a mouse model. The sera, skin, livers and spleens of mice were examined using hematoxylin and eosin staining, reverse transcription-quantitative PCR and western blot analysis. The biochemical results showed that AVP improved the thymus, brain, heart, liver, spleen and kidney indices in a mouse model of oxidative stress. AVP was also able to reverse the reduction in levels of superoxide dismutase (SOD), glutathione peroxidase and glutathione, and increased the levels of nitric oxide and malondialdehyde identified in the serum, liver, spleen and brain of mice exposed to oxidative stress. Pathological observations confirmed that AVP could inhibit oxidative damage to the skin, liver and spleen of mice caused by D-galactose. Further molecular biological experiments also demonstrated that AVP increased the expression of neuronal nitric oxide synthase, endothelial nitric oxide synthase, Cu/Zn-SOD, Mn-SOD, catalase, heme oxygenase-1, nuclear factor-erythroid 2-related factor 2, gamma-glutamylcysteine synthetase and NAD(P)H quinone dehydrogenase 1 and reduced the expression of inducible nitric oxide synthase in the liver and spleen of treated mice compared to controls. Notably, the preventive effect of AVP against D-galactose-induced oxidative damage in mice was better than that of the confirmed antioxidant vitamin C. In conclusion, AVP exhibited an antioxidant effect and the AVP-rich Apocynum venetum may be considered a plant resource with potential antioxidative benefits. C1 [Guo, Huan; Kuang, Zhiping; Pu, Ping] Chongqing Tradit Chinese Med Hosp, Dept Orthopaed Surg 1, Panxi 7 Branch Rd 6, Chongqing 400021, Peoples R China. [Zhang, Jing] Chongqing Chem Ind Vocat Coll, Environm & Qual Inspect Coll, Chongqing 401228, Peoples R China. [Zhao, Xin] Chongqing Univ Educ, Chongqing Collaborat Innovat Ctr Funct Food, Chongqing 400067, Peoples R China. [Yan, Junfeng] Chongqing Tradit Chinese Med Hosp, Dept Internal Med Neurol, Panxi 7 Branch Rd 6, Chongqing 400021, Peoples R China. RP Pu, P (corresponding author), Chongqing Tradit Chinese Med Hosp, Dept Orthopaed Surg 1, Panxi 7 Branch Rd 6, Chongqing 400021, Peoples R China.; Yan, JF (corresponding author), Chongqing Tradit Chinese Med Hosp, Dept Internal Med Neurol, Panxi 7 Branch Rd 6, Chongqing 400021, Peoples R China. EM 18983723386@163.com; yjfmail2002@sina.com FU Chongqing scientific research institute performance incentive guidance project [cstc2018jxjlX0003] FX This research was funded by Chongqing scientific research institute performance incentive guidance project (cstc2018jxjlX0003), China. CR Bai JW, 2013, INT J FOOD SCI TECH, V48, P1135, DOI 10.1111/j.1365-2621.2012.03193.x Berndt C, 2017, ANTIOXID REDOX SIGN, V27, P1235, DOI 10.1089/ars.2017.7132 Bonthius DJ, 2015, NEUROTOXICOLOGY, V46, P60, DOI 10.1016/j.neuro.2014.11.009 Buford TW, 2016, AGEING RES REV, V26, P96, DOI 10.1016/j.arr.2016.01.007 Carluccio MA, 2003, ARTERIOSCL THROM VAS, V23, P622, DOI 10.1161/01.ATV.0000062884.69432.A0 Chard S, 2017, J GERONTOL B-PSYCHOL, V72, P319, DOI 10.1093/geronb/gbw119 Delwing-Dal Magro D, 2016, BIOMED PHARMACOTHER, V83, P1422, DOI 10.1016/j.biopha.2016.08.057 Fukai T, 2000, J CLIN INVEST, V105, P1631, DOI 10.1172/JCI9551 Grundmann O, 2007, J ETHNOPHARMACOL, V110, P406, DOI 10.1016/j.jep.2006.09.035 Hohensinner PJ, 2018, OBES SURG, V28, P2804, DOI 10.1007/s11695-018-3247-3 Hong C, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-10443-6 Hosen MB, 2015, INT J REPROD BIOMED, V13, P525 Hou N, 2017, ANTI-CANCER DRUG, V28, P59, DOI 10.1097/CAD.0000000000000430 Iwayama K, 2017, BMC PHARMACOL TOXICO, V18, DOI 10.1186/s40360-017-0119-8 Jiang XP, 2017, ENVIRON TOXICOL, V32, P1908, DOI 10.1002/tox.22413 Khan SS, 2017, AGING CELL, V16, P624, DOI 10.1111/acel.12601 Kim DW, 2000, PHYTOTHER RES, V14, P501, DOI 10.1002/1099-1573(200011)14:7<501::AID-PTR655>3.0.CO;2-B Kim MS, 2011, ARCH PHARM RES, V34, P2101, DOI 10.1007/s12272-011-1213-x Kitada M, 2016, AGING-US, V8, P2290, DOI 10.18632/aging.101068 Kosenko EA, 2017, FREE RADICAL BIO MED, V113, P109, DOI 10.1016/j.freeradbiomed.2017.09.023 Lee MH, 2001, J NEUROCHEM, V78, P32, DOI 10.1046/j.1471-4159.2001.00416.x Li GJ, 2018, APPL SCI-BASEL, V8, DOI 10.3390/app8050752 Li HaoYang, 2013, Chinese Journal of Animal Nutrition, V25, P2529 Li L, 2016, NEURAL REGEN RES, V11, P807, DOI 10.4103/1673-5374.182709 [李琪 Li Qi], 2017, [中国临床药理学与治疗学, Chinese Journal of Clinical Pharmacology and Therapeutics], V22, P1099 [李玉英 Li Yuying], 2014, [食品科学, Food Science], V35, P193 [刘可越 LIU Ke-yue], 2009, [复旦学报. 自然科学版, Journal of Fudan University. Natural Sciences], V48, P125 Livak KJ, 2001, METHODS, V25, P402, DOI 10.1006/meth.2001.1262 Lukitasari M, 2018, J EVID-BASED INTEGR, V23, DOI 10.1177/2515690X18789628 Manini TM, 2010, AGEING RES REV, V9, P1, DOI 10.1016/j.arr.2009.08.002 Pan YN, 2018, NUTRIENTS, V10, DOI 10.3390/nu10091280 PAWLAK W, 1998, J GRAVIT PHYSL, V5, P163 Qian Y, 2018, MOLECULES, V23, DOI 10.3390/molecules23113026 Ramful D, 2011, FOOD RES INT, V44, P2088, DOI 10.1016/j.foodres.2011.03.056 Rao KS, 2009, INDIAN J BIOCHEM BIO, V46, P9 Selvaratnam JS, 2016, BIOL REPROD, V95, DOI 10.1095/biolreprod.116.141671 Sharma S, 2016, HUM EXP TOXICOL, V35, P1264, DOI 10.1177/0960327115627689 Shen ShengRong, 2000, Journal of Tea Science, V20, P19 Sue YM, 2009, NEPHROL DIAL TRANSPL, V24, P769, DOI 10.1093/ndt/gfn545 TAN X, 2014, MOD CHIN MED, V16, P666 Tang T, 2013, AFR J TRADIT COMPLEM, V10, P12, DOI 10.4314/ajtcam.v10i4.3 Tepe B, 2007, FOOD CHEM, V100, P985, DOI 10.1016/j.foodchem.2005.10.062 Tessari P, 2015, J NEPHROL, V28, P257, DOI 10.1007/s40620-014-0136-2 Vazquez-Medina JP, 2011, J EXP BIOL, V214, P1294, DOI 10.1242/jeb.054320 [王淑霞 WANG Shuxia], 2011, [食品科学, Food Science], V32, P196 Wells SM, 2007, AM J RESP CELL MOL, V36, P520, DOI 10.1165/rcmb.2006-0302SM Wittayarat M, 2012, CRYOLETTERS, V33, P318 Xie WY, 2012, J ETHNOPHARMACOL, V141, P1, DOI 10.1016/j.jep.2012.02.003 Xiong QB, 2000, PLANTA MED, V66, P127, DOI 10.1055/s-2000-11135 Yamagata K, 2018, MOL CELL BIOCHEM, V441, P9, DOI 10.1007/s11010-017-3171-1 [伊利夏提·肖开提 Yilixiati·Xiaokaiti], 2012, [中国药学杂志, Chinese Pharmaceutical Journal], V47, P585 ZHAN P, 2010, CHIN ARCH TRADIT CHI, V28, P1710 Zhang Li-Wen, 2017, Zhongguo Zhong Yao Za Zhi, V42, P4218, DOI 10.19540/j.cnki.cjcmm.20170901.008 NR 53 TC 6 Z9 6 U1 2 U2 10 PU SPANDIDOS PUBL LTD PI ATHENS PA POB 18179, ATHENS, 116 10, GREECE SN 1792-0981 EI 1792-1015 J9 EXP THER MED JI Exp. Ther. Med. PD JAN PY 2020 VL 19 IS 1 BP 557 EP 568 DI 10.3892/etm.2019.8261 PG 12 WC Medicine, Research & Experimental SC Research & Experimental Medicine GA KE2FG UT WOS:000508373500069 PM 31897099 OA gold, Green Published DA 2021-10-15 ER PT J AU Li, C Huang, GB Tan, F Zhou, XR Mu, JF Zhao, X AF Li, Chong Huang, Guangbin Tan, Fang Zhou, Xianrong Mu, Jianfei Zhao, Xin TI In Vitro Analysis of Antioxidant, Anticancer, and Bioactive Components of Apocynum venetum Tea Extracts SO JOURNAL OF FOOD QUALITY LA English DT Article ID HEPATOCELLULAR-CARCINOMA; LIPID-PEROXIDATION; LIVER-CANCER; DNA-DAMAGE; ACID; L.; ACTIVATION; GREEN; P53; CONSUMPTION AB The dry leaf of Apocynum venetum tea extracts (AVTEs) belonging to the Apocynaceae family is a traditional Chinese medicine. The aim of this study is to identify the bioactive components of AVTE and analyse its antioxidant and anticancer activity in vitro. Method. Flavones and polyphenols in AVTE were determined by high-performance liquid chromatography (HPLC) assay. The scavenging capacity of tea extracts to 1,1-diphenyl-2-picrylhydrazyl (DPPH); 2,2 '-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid) diammonium salt (ABTS); hydroxyl (OH); and superoxide anion-free radicals were investigated by spectrophotometry. We also detailed the cytotoxicity assay of AVTE (50, 100, and 200 mu g/mL) to human embryonic kidney 293T cells, the protective effect of AVTE on 293T cells induced by hydrogen peroxide (0.3 mmol/L), and the anticancer effect against the human hepatoma HepG2 cells via 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay. We investigated the antioxidative effects of AVTE in human embryonic kidney 293T cells and the anticancer mechanism in HepG2 human hepatoma cells via quantitative real-time reverse transcription-polymerase chain reaction (RT-qPCR) assay. Results. HPLC analysis showed that AVTEs contain neochlorogenic acid, chlorogenic acid, rutin, isoquercetin, isochlorogenic acid B, astragalin, isochlorogenic acid C, rosmarinic acid, quercetin, and trans-cinnamic acid. These extracts have high antioxidant activity and dose-dependent relation through free radical scavenging experiments. The cell viability of 293T cells treated with hydrogen peroxide (0.3 mmol/L) was significantly lower than that of normal cells, and the cell viability of oxidatively stressed 293T cells after AVTE (50, 100, and 200 mu g/mL) treatment was significantly improved (P<0.05). Moreover, cytotoxicity experiments showed that the survival rate of 293T cells was over 90%, but the proliferation of HepG2 cells was significantly inhibited in a dose-dependent manner by AVTE. Furthermore, cytoprotective effects in 293T cells were induced via upregulation of glutathione peroxidase (GSH-Px), GSH, superoxide dismutase (SOD), and catalase (CAT) antioxidant-related factors, as well as apoptosis in HepG2 cells was induced via upregulation of caspase-3, caspase-9, p21, and p53 apoptosis-associated factors, as assessed via mRNA expression levels after treatment with AVTE, which were consistent with the results of antioxidant gene detections. As a conclusion, AVTE appears to be an effectively functional drink, due to its rich functional components and antioxidant and anticancer activities. C1 [Li, Chong; Zhou, Xianrong; Mu, Jianfei; Zhao, Xin] Chongqing Univ Educ, Chongqing Collaborat Innovat Ctr Funct Food, Chongqing 400067, Peoples R China. [Li, Chong; Zhou, Xianrong; Mu, Jianfei; Zhao, Xin] Chongqing Univ Educ, Chongqing Engn Res Ctr Funct Food, Chongqing 400067, Peoples R China. [Li, Chong; Zhou, Xianrong; Mu, Jianfei; Zhao, Xin] Chongqing Univ Educ, Chongqing Engn Lab Res & Dev Funct Food, Chongqing 400067, Peoples R China. [Huang, Guangbin] Chongqing Univ, Affiliated Cent Hosp, Emergency Med Ctr Chongqing, Dept Trauma Surg, Chongqing 400030, Peoples R China. [Tan, Fang] Our Lady Fatima Univ, Dept Publ Hlth, Valenzuela 838, Philippines. RP Zhao, X (corresponding author), Chongqing Univ Educ, Chongqing Collaborat Innovat Ctr Funct Food, Chongqing 400067, Peoples R China.; Zhao, X (corresponding author), Chongqing Univ Educ, Chongqing Engn Res Ctr Funct Food, Chongqing 400067, Peoples R China.; Zhao, X (corresponding author), Chongqing Univ Educ, Chongqing Engn Lab Res & Dev Funct Food, Chongqing 400067, Peoples R China. EM zhaoxin@cque.edu.cn FU Program for Innovation Team Building at Institutions of Higher Education in Chongqing [CXTDX201601040]; Scientific Research Foundation for Returned Overseas Chinese ScholarsScientific Research Foundation for the Returned Overseas Chinese Scholars [Jiaowaisiliu (2014)1685]; State Education Ministry [Jiaowaisiliu (2014)1685]; Research Project of Chongqing University of Education, China [KY201921C] FX This research was funded by the Program for Innovation Team Building at Institutions of Higher Education in Chongqing (CXTDX201601040), the Scientific Research Foundation for Returned Overseas Chinese Scholars, and the State Education Ministry (Jiaowaisiliu (2014)1685) and the Research Project of Chongqing University of Education (KY201921C), China. CR Abdel-Rahman O, 2013, J EGYPT NATL CANCER, V25, P165, DOI 10.1016/j.jnci.2013.08.002 Agorastos T, 2000, EUR J CANCER PREV, V9, P113, DOI 10.1097/00008469-200004000-00007 Amoah SKS, 2016, PLANTA MED, V82, P388, DOI 10.1055/s-0035-1568274 An HJ, 2013, J PHARMACEUT BIOMED, V85, P295, DOI 10.1016/j.jpba.2013.07.005 BOLWELL GP, 1988, PHYTOCHEMISTRY, V27, P2109, DOI 10.1016/0031-9422(88)80106-7 BOWLER C, 1992, ANNU REV PLANT PHYS, V43, P83, DOI 10.1146/annurev.pp.43.060192.000503 Budihardjo I, 1999, ANNU REV CELL DEV BI, V15, P269, DOI 10.1146/annurev.cellbio.15.1.269 Cai YZ, 2004, LIFE SCI, V74, P2157, DOI 10.1016/j.lfs.2003.09.047 Corbiere C, 2004, CELL RES, V14, P188, DOI 10.1038/sj.cr.7290219 Danielisova V, 2006, CELL MOL NEUROBIOL, V26, P1181, DOI 10.1007/s10571-006-9034-z Federici AB, 2008, J THROMB HAEMOST, V6, P1726, DOI 10.1111/j.1538-7836.2008.03146.x Fu J, 2018, CANCER LETT, V412, P283, DOI 10.1016/j.canlet.2017.10.008 Ganeshpurkar A, 2017, SAUDI PHARM J, V25, P149, DOI 10.1016/j.jsps.2016.04.025 Gonthier MP, 2003, J NUTR, V133, P1853, DOI 10.1093/jn/133.6.1853 GRAHAM HN, 1992, PREV MED, V21, P334, DOI 10.1016/0091-7435(92)90041-F Grundmann O, 2007, J ETHNOPHARMACOL, V110, P406, DOI 10.1016/j.jep.2006.09.035 Hunter AM, 2007, APOPTOSIS, V12, P1543, DOI 10.1007/s10495-007-0087-3 Kim M, 2015, NEUROCHEM RES, V40, P1792, DOI 10.1007/s11064-015-1659-1 Kotani M, 2000, J ALLERGY CLIN IMMUN, V106, P159, DOI 10.1067/mai.2000.107194 Kraszewski A, 2007, PURE APPL CHEM, V79, P2217, DOI 10.1351/pac200779122217 Li C, 2019, APPL SCI-BASEL, V9, DOI 10.3390/app9071325 Liang TG, 2010, INT J MOL SCI, V11, P4452, DOI 10.3390/ijms11114452 Liu X, 2019, BASIC CLIN PHARMACOL, V124, P144, DOI 10.1111/bcpt.13122 LOWE SW, 1993, CELL, V74, P957, DOI 10.1016/0092-8674(93)90719-7 MARKLUND S, 1974, EUR J BIOCHEM, V47, P469 Marnett LJ, 1999, MUTAT RES-FUND MOL M, V424, P83, DOI 10.1016/S0027-5107(99)00010-X Nabekura T, 2010, TOXINS, V2, P1207, DOI 10.3390/toxins2061207 Ni CX, 2017, NUTR CANCER, V69, P211, DOI 10.1080/01635581.2017.1263754 Porter AG, 1999, CELL DEATH DIFFER, V6, P99, DOI 10.1038/sj.cdd.4400476 Poulianiti KP, 2016, OXID MED CELL LONGEV, V2016, DOI 10.1155/2016/8598253 Roginsky V, 2005, FOOD CHEM, V92, P235, DOI 10.1016/j.foodchem.2004.08.004 Saramaki A, 2006, NUCLEIC ACIDS RES, V34, P543, DOI 10.1093/nar/gkj460 Seow TK, 2001, PROTEOMICS, V1, P1249 Suo HY, 2016, CYTA-J FOOD, V14, P169, DOI 10.1080/19476337.2015.1076521 Ui A, 2009, CANCER CAUSE CONTROL, V20, P1939, DOI 10.1007/s10552-009-9388-x Wei HC, 1999, FREE RADICAL BIO MED, V26, P1427, DOI 10.1016/S0891-5849(99)00005-2 WILKE BC, 1992, CLIN CHIM ACTA, V207, P137, DOI 10.1016/0009-8981(92)90157-L WILLEKENS H, 1994, P NATL ACAD SCI USA, V91, P10450, DOI 10.1073/pnas.91.22.10450 Wu P, 2017, FOOD FUNCT, V8, P3707, DOI 10.1039/c7fo00778g Xie WY, 2012, J ETHNOPHARMACOL, V141, P1, DOI 10.1016/j.jep.2012.02.003 Xiong QB, 2000, PLANTA MED, V66, P127, DOI 10.1055/s-2000-11135 Yang CS, 2002, ANNU REV PHARMACOL, V42, P25, DOI 10.1146/annurev.pharmtox.42.082101.154309 Yeoh G, 2011, INT J BIOCHEM CELL B, V43, P172, DOI 10.1016/j.biocel.2010.09.004 Yu JK, 2018, ANTICANCER RES, V38, P2127, DOI 10.21873/anticanres.12453 Zelko IN, 2002, FREE RADICAL BIO MED, V33, P337, DOI 10.1016/S0891-5849(02)00905-X Zhang H, 2018, J INTEGR AGR, V17, P256, DOI 10.1016/S2095-3119(17)61664-2 Zhang YC, 2010, J CHROMATOGR B, V878, P3149, DOI 10.1016/j.jchromb.2010.09.027 Zhao X, 2014, J FUNCT FOODS, V7, P590, DOI 10.1016/j.jff.2013.12.026 Zhao X, 2013, J ENVIRON PATHOL TOX, V32, P9, DOI 10.1615/JEnvironPatholToxicolOncol.2013006370 NR 49 TC 6 Z9 7 U1 4 U2 16 PU WILEY-HINDAWI PI LONDON PA ADAM HOUSE, 3RD FL, 1 FITZROY SQ, LONDON, WIT 5HE, ENGLAND SN 0146-9428 EI 1745-4557 J9 J FOOD QUALITY JI J. Food Qual. PD NOV 16 PY 2019 VL 2019 AR 2465341 DI 10.1155/2019/2465341 PG 13 WC Food Science & Technology SC Food Science & Technology GA JP9WU UT WOS:000498608000001 OA gold DA 2021-10-15 ER PT J AU Qiao, LT Tanveer, M Wang, L Tian, CY AF Qiao, Litao Tanveer, Mohsin Wang, Lei Tian, Changyan TI Subcellular distribution and chemical forms of lithium in Li-accumulator Apocynurn venetum SO PLANT PHYSIOLOGY AND BIOCHEMISTRY LA English DT Article DE Apocynum venetum; Chemical form; Lithium; Subcellular distribution; Vacuolar compartmentalization ID PHYSIOLOGICAL-RESPONSES; MECHANISMS; CADMIUM; PLANTS; TOLERANCE; TOXICITY; LEAVES; NA+; CD AB Apocynum venetian is a promising species to remediate an emerging environmental contaminant lithium (Li). However, no research has been conducted so far relating Li tolerance mechanism. In order to improve the understanding of Li transportation and detoxification, subcellular accumulation and distribution of different chemical forms of Li was studied in Apocynwn venetwn. Subcellular Li compartmentalization analysis showed that majority of Li was located in vacuole (45.52-72.65%) and cell wall (14.84-29.02%) under Li treatment. Furthermore, water soluble and ethonal extracted Li (inorganic Li) are the main chemical forms of Li taken up by A. venetum. With the increase of Li concentration in the medium, Li content in all subcellular fractions and proportion of F-ethanol form with high mobility increased. The greatest amount of Li was found in soluble fraction in leaves at 25 mg L-1 Li treatment, followed by soluble fraction in leaves at 2.5 mg L-1 . These results suggest that Li compartmentation in leaf vacuoles is important in Li detoxification and Li accumulation of A. venetian. C1 [Qiao, Litao; Wang, Lei; Tian, Changyan] Chinese Acad Sci, Xinjiang Inst Ecol & Geog, State Key Lab Desert & Oasis Ecol, Urumqi 830011, Peoples R China. [Qiao, Litao] Univ Chinese Acad Sci, Beijing 10049, Peoples R China. [Tanveer, Mohsin] Univ Tasmania, Sch Land & Food, Hobart, Tas, Australia. RP Wang, L; Tian, CY (corresponding author), Chinese Acad Sci, Xinjiang Inst Ecol & Geog, 818 South Beijing Rd, Urumqi 830011, Xinjiang, Peoples R China. EM egiwang@ms.xjb.ac.cn; tianchy@ms.xjb.ac.cn RI Tanveer, Mohsin/I-2577-2019; WANG, Lei/AAC-5710-2021 OI Tanveer, Mohsin/0000-0003-4560-6439; WANG, Lei/0000-0002-8253-7295 FU National Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC) [41471200] FX This study was supported by the National Natural Science Foundation of China (Grant No. 41471200). CR Allender WJ, 1997, J PLANT NUTR, V20, P81, DOI 10.1080/01904169709365235 An R, 2007, PLANT J, V49, P718, DOI 10.1111/j.1365-313X.2006.02990.x Aral H, 2008, ECOTOX ENVIRON SAFE, V70, P349, DOI 10.1016/j.ecoenv.2008.02.026 Franzaring J, 2016, ENVIRON POLLUT, V216, P858, DOI 10.1016/j.envpol.2016.06.059 Fu Q, 2016, J ENVIRON RADIOACTIV, V154, P52, DOI 10.1016/j.jenvrad.2016.01.016 Fu XP, 2011, J HAZARD MATER, V186, P103, DOI 10.1016/j.jhazmat.2010.10.122 HAGEMEYER J, 1988, PHYSIOL PLANTARUM, V73, P541, DOI 10.1111/j.1399-3054.1988.tb05438.x Hall JL, 2002, J EXP BOT, V53, P1, DOI 10.1093/jexbot/53.366.1 Hao HP, 2018, PLANT PHYSIOL BIOCH, V129, P71, DOI 10.1016/j.plaphy.2018.05.022 Jabeen Z, 2014, ACTA PHYSIOL PLANT, V36, P2397, DOI 10.1007/s11738-014-1613-x JACKMAN R. H., 1965, NEW ZEAL J AGR RES, V8, P763 Jiang L, 2014, FLORA, V209, P285, DOI 10.1016/j.flora.2014.03.007 Kalinowska M, 2013, BIOL TRACE ELEM RES, V152, P251, DOI 10.1007/s12011-013-9606-y Li DQ, 2017, PLANT PHYSIOL BIOCH, V119, P265, DOI 10.1016/j.plaphy.2017.09.002 Li X, 2009, PLANT SCI, V177, P68, DOI 10.1016/j.plantsci.2009.03.013 Liu TT, 2014, BIOL TRACE ELEM RES, V160, P418, DOI 10.1007/s12011-014-0043-3 Manousaki E, 2008, ENVIRON RES, V106, P326, DOI 10.1016/j.envres.2007.04.004 Manousaki E, 2011, INT J PHYTOREMEDIAT, V13, P959, DOI 10.1080/15226514.2010.532241 Robinson BH, 2018, CHEMOSPHERE, V197, P1, DOI 10.1016/j.chemosphere.2018.01.012 Shahzad B, 2017, ENVIRON SCI POLLUT R, V24, P103, DOI 10.1007/s11356-016-7898-0 Shahzad B, 2016, PLANT PHYSIOL BIOCH, V107, P104, DOI 10.1016/j.plaphy.2016.05.034 Tong YP, 2004, TRENDS PLANT SCI, V9, P7, DOI 10.1016/j.tplants.2003.11.009 Volkmar KM, 1998, CAN J PLANT SCI, V78, P19, DOI 10.4141/P97-020 Wang X, 2008, ENVIRON EXP BOT, V62, P389, DOI 10.1016/j.envexpbot.2007.10.014 Wang Y., 2015, FRONT PLANT SCI, V6, P1 Weng BS, 2012, MAR POLLUT BULL, V64, P2453, DOI 10.1016/j.marpolbul.2012.07.047 Xie WY, 2012, J ETHNOPHARMACOL, V141, P1, DOI 10.1016/j.jep.2012.02.003 Xu SJ, 2018, PLANT PHYSIOL BIOCH, V123, P75, DOI 10.1016/j.plaphy.2017.11.023 Zeng LH, 2017, ECOTOX ENVIRON SAFE, V139, P228, DOI 10.1016/j.ecoenv.2017.01.023 Zhang W, 2014, ENVIRON TOXICOL PHAR, V37, P348, DOI 10.1016/j.etap.2013.12.006 NR 30 TC 6 Z9 6 U1 4 U2 34 PU ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER PI ISSY-LES-MOULINEAUX PA 65 RUE CAMILLE DESMOULINS, CS50083, 92442 ISSY-LES-MOULINEAUX, FRANCE SN 0981-9428 EI 1873-2690 J9 PLANT PHYSIOL BIOCH JI Plant Physiol. Biochem. PD NOV PY 2018 VL 132 BP 341 EP 344 DI 10.1016/j.plaphy.2018.09.022 PG 4 WC Plant Sciences SC Plant Sciences GA HA6GG UT WOS:000450377400035 PM 30248520 DA 2021-10-15 ER PT J AU Ribeiro, DA Damasceno, SS Boligon, AA de Menezes, IRA Souza, MMD da Costa, JGM AF Ribeiro, Daiany Alves Damasceno, Sarah Soares Boligon, Aline Augusti Alencar de Menezes, Irwin Rose de Almeida Souza, Marta Maria Martins da Costa, Jose Galberto TI Chemical profile and antimicrobial activity of Secondatia floribunda A. DC (Apocynaceae) SO ASIAN PACIFIC JOURNAL OF TROPICAL BIOMEDICINE LA English DT Article ID PHENOLIC-COMPOUNDS; MEDICINAL-PLANTS; ANTIBIOTIC-ACTIVITY; BIOLOGICAL-ACTIVITY; MODIFYING ACTIVITY; TRICHILIA-CATIGUA; APOCYNUM-VENETUM; ESSENTIAL OIL; L. LEAVES; ANTIBACTERIAL AB Objective: To establish the chemical profile, and to evaluate the antibacterial and modulatory activity of the ethanolic extracts of the stalk's inner bark and heartwood of Secondatia floribunda. Methods: Quantification of total phenols and flavonoids was determined by the Folin-Ciocalteu method and aluminum chloride, respectively. Phenolic compounds were identified and quantified by HPLC-DAD (High Performance Liquid Chromatography-Diodearray Detector) and the Infrared Spectroscopy was performed using the measure by Attenuated Total Reflectance with Fourier Transform (ATR-FTIR). Antibacterial assays for determination of the Minimum Inhibitory Concentration (MIC) and modification of aminoglycosides were performed by microdilution. Results: Infrared spectra showed similar characteristics, having among its main absorption bands hydroxyl group (OH). The antibacterial activity showed clinically significant results for the strains of Staphylococcus aureus and Escherichia coli. In modulation assay, synergic and antagonistic effect for both extracts was observed. Heartwood extract in combination with antibiotics showed a significant MIC reduction at 19.8% (P < 0.000 1)-79.3% (P < 0.01). Conclusions: This study is the first report of chemical and biological information of Secondatia floribunda suggesting that it is clinically relevant source of a new antibacterial therapy, especially due to the presence of significant levels of phenolic compounds. C1 [Ribeiro, Daiany Alves; Alencar de Menezes, Irwin Rose; de Almeida Souza, Marta Maria; Martins da Costa, Jose Galberto] Univ Reg Cariri, Programa Posgrad Etnobiol & Conservacao Nat, Crato, CE, Brazil. [Ribeiro, Daiany Alves; Damasceno, Sarah Soares; Martins da Costa, Jose Galberto] Univ Reg Cariri, Dept Quim Biol, Lab Pesquisas Prod Nat, Crato, CE, Brazil. [Boligon, Aline Augusti] Univ Fed Santa Maria, Lab Fitoquim, Santa Maria, RS, Brazil. [de Almeida Souza, Marta Maria] Univ Reg Cariri, Dept Ciencias Biol, Lab Ecol Vegetal, Crato, CE, Brazil. [Alencar de Menezes, Irwin Rose] Univ Reg Cariri, Lab Farmacol & Quim Mol, Dept Quim Biol, Crato, CE, Brazil. RP Ribeiro, DA (corresponding author), Univ Reg Cariri, Dept Quim Biol, Ave Cel Antonio Luiz,1161, BR-63105000 Crato, CE, Brazil. EM daiany_ars@hotmail.com RI de Menezes, Irwin Rose Alencar/A-6777-2012 OI de Menezes, Irwin Rose Alencar/0000-0003-1065-9581 CR Alberto MR, 2002, J FOOD PROTECT, V65, P148 An HJ, 2013, J PHARMACEUT BIOMED, V85, P295, DOI 10.1016/j.jpba.2013.07.005 Ao CW, 2011, LWT-FOOD SCI TECHNOL, V44, P1681, DOI 10.1016/j.lwt.2011.02.001 Balasundram N, 2006, FOOD CHEM, V99, P191, DOI 10.1016/j.foodchem.2005.07.042 Boligon AA, 2015, J APPL BIOMED, V13, P7, DOI 10.1016/j.jab.2014.01.004 Boligon AA, 2013, ACTA PHYSIOL PLANT, V35, P2229, DOI 10.1007/s11738-013-1259-0 Bruneton J., 1999, Pharmacognosy, phytochemistry, medicinal plants. Camargo MS, 2008, REV ELETRONICA FARM, V5, P71 CLSI, 2013, M100S23 CLSI Coutinho HDM, 2008, CHEMOTHERAPY, V54, P328, DOI 10.1159/000151267 Cushnie TPT, 2011, INT J ANTIMICROB AG, V38, P99, DOI 10.1016/j.ijantimicag.2011.02.014 Cushnie TPT, 2005, INT J ANTIMICROB AG, V26, P343, DOI 10.1016/j.ijantimicag.2005.09.002 D'Archivio Massimo, 2007, Ann Ist Super Sanita, V43, P348 Daglia M, 2012, CURR OPIN BIOTECH, V23, P174, DOI 10.1016/j.copbio.2011.08.007 de Assis CM, 2009, REV BRAS FARMACOGN, V19, P626, DOI 10.1590/S0102-695X2009000400021 De Bruyne T, 1999, BIOCHEM SYST ECOL, V27, P445, DOI 10.1016/S0305-1978(98)00101-X de Oliveira DM, 2011, QUIM NOVA, V34, P1051, DOI 10.1590/S0100-40422011000600023 Araujo TAD, 2015, IND CROP PROD, V76, P550, DOI 10.1016/j.indcrop.2015.07.008 Souza RKD, 2014, J ETHNOPHARMACOL, V157, P99, DOI 10.1016/j.jep.2014.09.001 Fattouch S, 2007, J AGR FOOD CHEM, V55, P963, DOI 10.1021/jf062614e Fernandes A, 2009, J AGR FOOD CHEM, V57, P11154, DOI 10.1021/jf902093m Fernandes C. N., 2014, African Journal of Pharmacy and Pharmacology, V8, P16 Matias EFF, 2015, EUR J INTEGR MED, V7, P251, DOI 10.1016/j.eujim.2015.03.007 Figueiredo L.S., 2009, Rev. bras. plantas med., V11, P154, DOI 10.1590/S1516-05722009000200007 Figueredo FG, 2014, PHARM BIOL, V52, P560, DOI 10.3109/13880209.2013.853810 Fiuza SM, 2004, BIOORGAN MED CHEM, V12, P3581, DOI 10.1016/j.bmc.2004.04.026 Gobbo-Neto L, 2007, QUIM NOVA, V30, P374, DOI 10.1590/S0100-40422007000200026 Hong YP, 2008, SCI HORTIC-AMSTERDAM, V118, P288, DOI 10.1016/j.scienta.2008.06.018 Houghton PJ, 2007, J ETHNOPHARMACOL, V110, P391, DOI 10.1016/j.jep.2007.01.032 Jaleel CA, 2009, ACTA PHYSIOL PLANT, V31, P427, DOI 10.1007/s11738-009-0275-6 Junior FEB, 2011, J MED PLANTS RES, V5, P4400 Konate K, 2011, ANN CLIN MICROB ANTI, V11, P1 Kong DX, 2009, DRUG DISCOV TODAY, V14, P115, DOI 10.1016/j.drudis.2008.07.002 Kosalec Ivan, 2004, Acta Pharmaceutica (Zagreb), V54, P65 Kotra LP, 2000, ANTIMICROB AGENTS CH, V44, P3249, DOI 10.1128/AAC.44.12.3249-3256.2000 Lago JHG, 2007, J ESSENT OIL RES, V19, P338, DOI 10.1080/10412905.2007.9699298 Lee Eung-Ryoung, 2007, Recent Pat Biotechnol, V1, P139, DOI 10.2174/187220807780809445 Lima VN, 2016, MICROB PATHOGENESIS, V99, P56, DOI 10.1016/j.micpath.2016.08.004 Macedo DG, 2015, B LATINOAM CARIBE PL, V14, P491 Matias EFF, 2016, MICROB PATHOGENESIS, V95, P111, DOI 10.1016/j.micpath.2016.03.009 Matos F. J. A., 1997, INTRO EXPT PHYTOCHEM Monteiro Júlio M., 2006, Rev. bras. farmacogn., V16, P338, DOI 10.1590/S0102-695X2006000300010 Monteiro JM, 2005, QUIM NOVA, V28, P892, DOI 10.1590/S0100-40422005000500029 NONAKA G, 1982, CHEM PHARM BULL, V30, P4277 OKUDA T, 1993, PHYTOCHEMISTRY, V32, P507, DOI 10.1016/S0031-9422(00)95129-X Oliveira I, 2007, FOOD CHEM, V105, P1018, DOI 10.1016/j.foodchem.2007.04.059 Pallant CA, 2012, J ETHNOPHARMACOL, V140, P398, DOI 10.1016/j.jep.2012.01.036 Pallant CA, 2008, HUM EXP TOXICOL, V27, P859, DOI 10.1177/0960327108099526 Parveen M, 2010, CHINESE CHEM LETT, V21, P593, DOI 10.1016/j.cclet.2009.11.022 Pizzolatti MG, 2002, Z NATURFORSCH C, V57, P483 Rauha JP, 2000, INT J FOOD MICROBIOL, V56, P3, DOI 10.1016/S0168-1605(00)00218-X Resende FO, 2011, J BRAZIL CHEM SOC, V22, P2087, DOI 10.1590/S0103-50532011001100010 Rezende WP, 2013, REV BRAS FARMACOGN, V23, P433, DOI [10.1590/S0102-695X2013000300006, 10.1590/S0102-695X2013005000035] Ribeiro DA, 2014, J ETHNOPHARMACOL, V155, P1522, DOI 10.1016/j.jep.2014.07.042 Rios JL, 2005, J ETHNOPHARMACOL, V100, P80, DOI 10.1016/j.jep.2005.04.025 Vaquero MJR, 2007, FOOD CONTROL, V18, P93, DOI 10.1016/j.foodcont.2005.08.010 Salvat A, 2001, LETT APPL MICROBIOL, V32, P293, DOI 10.1046/j.1472-765X.2001.00923.x Saraiva ME, 2015, J ETHNOPHARMACOL, V171, P141, DOI 10.1016/j.jep.2015.05.034 SCALBERT A, 1991, PHYTOCHEMISTRY, V30, P3875, DOI 10.1016/0031-9422(91)83426-L Schulz H, 2007, VIB SPECTROSC, V43, P13, DOI 10.1016/j.vibspec.2006.06.001 Shakil S, 2008, J BIOMED SCI, V15, P5, DOI 10.1007/s11373-007-9194-y Singleton VL, 1999, METHOD ENZYMOL, V299, P152 Sousa EO, 2015, IND CROP PROD, V70, P7, DOI 10.1016/j.indcrop.2015.03.010 Souza VC, 2005, SYSTEMATIC BOT Suffredini Ivana Barbosa, 2002, Rev. Bras. Cienc. Farm., V38, P89, DOI 10.1590/S1516-93322002000100009 Sun-Waterhouse D, 2011, INT J FOOD SCI TECH, V46, P1575, DOI 10.1111/j.1365-2621.2011.02655.x Tanaka JCA, 2006, BRAZ J MED BIOL RES, V39, P387, DOI 10.1590/S0100-879X2006000300009 Tang WX, 2007, J NAT PROD, V70, P2010, DOI 10.1021/np0703895 Tapiero H, 2002, BIOMED PHARMACOTHER, V56, P200, DOI 10.1016/S0753-3322(02)00178-6 Tripoli E, 2005, NUTR RES REV, V18, P98, DOI 10.1079/NRR200495 Veras HNH, 2011, CURR TOP NUTRACEUT R, V9, P25 Verdi LG, 2005, QUIM NOVA, V28, P85, DOI 10.1590/S0100-40422005000100017 Wu DL, 2008, INT J ANTIMICROB AG, V32, P421, DOI 10.1016/j.ijantimicag.2008.06.010 Xiong QB, 2000, PLANTA MED, V66, P127, DOI 10.1055/s-2000-11135 NR 74 TC 6 Z9 6 U1 1 U2 4 PU WOLTERS KLUWER MEDKNOW PUBLICATIONS PI MUMBAI PA WOLTERS KLUWER INDIA PVT LTD , A-202, 2ND FLR, QUBE, C T S NO 1498A-2 VILLAGE MAROL, ANDHERI EAST, MUMBAI, 400059, INDIA SN 2221-1691 EI 2588-9222 J9 ASIAN PAC J TROP BIO JI Asian Pac. Trop. Biomed. PD AUG PY 2017 VL 7 IS 8 BP 739 EP 749 DI 10.1016/j.apjtb.2017.07.009 PG 11 WC Tropical Medicine SC Tropical Medicine GA FF1DU UT WOS:000408640800014 OA gold DA 2021-10-15 ER PT J AU Yang, FR Ma, YC Qian, YF Lv, LH Zheng, LJ Zhao, YP AF Yang, Fengrui Ma, Yingchong Qian, Yongfang Lv, Lihua Zheng, Laijiu Zhao, Yuping TI A novel ionic liquid degumming process for Apocynum venetum SO JOURNAL OF THE TEXTILE INSTITUTE LA English DT Article DE Apocynum venetum fiber; degumming; ionic liquid; tensile property ID 1-H-3-METHYLIMIDAZOLIUM CHLORIDE; BAST FIBER; DISSOLUTION; CELLULOSE; RAMIE; LIGNIN; CATALYST; WOOD AB A novel degumming process for Apocynum venetum was presented using ionic liquid (IL)-water mixture in the paper. Optimum performance for the degumming of Apocynum venetum fiber was obtained in 80% (m/m) 1-butyl-3-methylimidazolium acetate ([BMIM][Ac]) at a temperature of 130 degrees C for 6h, and the solution was maintained at the liquor ratio 1:20. The Apocynum venetum fibers before and after degumming were characterized by Scanning electron micrographs, Fourier transform infrared spectroscopy, and X-ray diffraction. The result showed that the Apocynum venetum fibers degummed with IL were longer than traditional chemical method, and the breaking strength of fiber with IL degumming process was significantly improved in comparison with traditional chemical method. Therefore, the IL-water degumming for Apocynum venetum fibers could dissolve the gum of fibers, and improve the spinnability of Apocynum venetum distinctly. C1 [Yang, Fengrui; Qian, Yongfang; Lv, Lihua; Zheng, Laijiu; Zhao, Yuping] Dalian Polytech Univ, Sch Text & Mat Engn, Dalian, Peoples R China. [Ma, Yingchong] Dalian Polytech Univ, Sch Light Ind & Chem Engn, Dalian, Peoples R China. RP Zhao, YP (corresponding author), Dalian Polytech Univ, Sch Text & Mat Engn, Dalian, Peoples R China. EM 1160915044@qq.com FU National Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC) [21276034] FX This work was supported by the National Natural Science Foundation of China [grant number 21276034]. CR Beltran R, 2002, FIBER POLYM, V3, P129, DOI 10.1007/BF02912656 Bhattacharya SD, 2002, COLOR TECHNOL, V118, P295 Bhattacharya SD, 2001, COLOR TECHNOL, V117, P342, DOI 10.1111/j.1478-4408.2001.tb00087.x Cox BJ, 2012, BIORESOURCE TECHNOL, V118, P584, DOI 10.1016/j.biortech.2012.05.012 Cox BJ, 2011, POLYM DEGRAD STABIL, V96, P426, DOI 10.1016/j.polymdegradstab.2011.01.011 Dou H, 2015, J TEXT I, V106, P311, DOI 10.1080/00405000.2014.919065 Fan LS, 2011, ADV MATER RES-SWITZ, V236-238, P346, DOI 10.4028/www.scientific.net/AMR.236-238.346 Fan XS, 2010, TEXT RES J, V80, P2046, DOI 10.1177/0040517510373632 French AD, 2014, CELLULOSE, V21, P885, DOI 10.1007/s10570-013-0030-4 Jia SY, 2010, CHEMSUSCHEM, V3, P1078, DOI 10.1002/cssc.201000112 Kilpelainen I, 2007, J AGR FOOD CHEM, V55, P9142, DOI 10.1021/jf071692e SNYDER RG, 1967, J CHEM PHYS, V47, P1316, DOI 10.1063/1.1712087 Sun RC, 1996, J APPL POLYM SCI, V62, P1473 Wang YT, 2014, BIORESOURCE TECHNOL, V170, P499, DOI 10.1016/j.biortech.2014.08.020 Xing S. Y., 2001, BEIJING TEXTILE J, V3, P56 Zhang CD, 2006, BIOMACROMOLECULES, V7, P139, DOI 10.1021/bm050465n Zhang C, 2014, CELLULOSE, V21, P1227, DOI 10.1007/s10570-014-0167-9 Zhang Q, 2013, J TEXT I, V104, P78, DOI 10.1080/00405000.2012.693273 Zhang Y. M., 2006, J DONGHUA U, V23, P84 Zhao DS, 2012, CARBOHYD POLYM, V87, P1490, DOI 10.1016/j.carbpol.2011.09.045 Zhu SD, 2006, GREEN CHEM, V8, P325, DOI 10.1039/b601395c NR 21 TC 6 Z9 6 U1 3 U2 30 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND SN 0040-5000 EI 1754-2340 J9 J TEXT I JI J. Text. Inst. PY 2016 VL 107 IS 11 BP 1450 EP 1455 DI 10.1080/00405000.2015.1127550 PG 6 WC Materials Science, Textiles SC Materials Science GA DV5HO UT WOS:000382958100012 DA 2021-10-15 ER PT J AU Lau, YS Ling, WC Murugan, D Kwan, CY Mustafa, MR AF Lau, Yeh Siang Ling, Wei Chih Murugan, Dharmani Kwan, Chiu Yin Mustafa, Mohd Rais TI Endothelium-Dependent Relaxation Effect of Apocynum venetum Leaf Extract via Src/PI3K/Akt Signalling Pathway SO NUTRIENTS LA English DT Article DE Apocynum venetum; nitric oxide; endothelium; vasorelaxation; antihypertensive medicinal herb ID PORCINE CORONARY-ARTERIES; NITRIC-OXIDE; WINE POLYPHENOLS; HYPERTENSIVE-RATS; ANGIOTENSIN-II; ACTIVATION; ENOS; LEAVES; JUICE AB Botanical herbs are consumed globally not only as an essential diet but also as medicines or as functional/recreational food supplements. The extract of the Apocynum venetum leaves (AVLE), also known as Luobuma, exerts its antihypertensive effect via dilating the blood vessels in an endothelium- and concentration-dependent manner with optimal effect seen at as low as 10 mu g/mL. A commercial Luoboma antihypertensive tea is available commercially in the western province of China. The present study seeks to investigate the underlying cellular mechanisms of the nitric oxide (NO)-releasing property of AVLE in rat aortas and human umbilical vein endothelial cells (HUVECs). Endothelium-dependent relaxation induced by AVLE was assessed in organ chambers in the presence or absence of polyethyleneglycol catalase (PP2, 20 mu M; inhibitor of Src kinase), wortmannin (30 nM) and LY294002 (20 mu M; PI3 (phosphatidylinositol3)-Kinase inhibitor), N-G-nitro-l-arginine (L-NAME, 100 mu M; endothelial NO synthase inhibitor (eNOS)) and ODQ (1 mu M; soluble guanylyl cyclase inhibitor). Total nitrite and nitrate (NOx) level and protein expression of p-Akt and p-eNOS were measured. AVLE-induced endothelium-dependent relaxation was reduced by PP2, wortmannin and LY294002 and abolished by L-NAME and ODQ. AVLE significantly increased total NOx level in rat aortas and in HUVECs compared to control. It also instigated phosphorylation of Akt and eNOS in cultured HUVECs in a concentration-dependent manner and this was markedly suppressed by PP2, wortmannin and LY294002. AVLE also inhibited superoxide generated from both NADPH oxidase and xanthine/xanthine oxidase system. Taken together, AVLE causes endothelium-dependent NO mediated relaxations of rat aortas through Src/PI3K/Akt dependent NO signalling pathway and possesses superoxide scavenging activity. C1 [Lau, Yeh Siang; Ling, Wei Chih; Murugan, Dharmani; Mustafa, Mohd Rais] Univ Malaya, Dept Pharmacol, Fac Med, Kuala Lumpur 50603, Malaysia. [Kwan, Chiu Yin] China Med Univ & Hosp, Grad Inst Basic Med Sci, Taichung 40402, Taiwan. [Kwan, Chiu Yin] China Med Univ & Hosp, Vasc Biol Grp, Taichung 40402, Taiwan. RP Mustafa, MR (corresponding author), Univ Malaya, Dept Pharmacol, Fac Med, Kuala Lumpur 50603, Malaysia. EM lauyehsiang@um.edu.my; tze_chih89@yahoo.com; dharmani79@um.edu.my; kwancy@mail.cmu.edu.tw; rais@um.edu.my RI Ling, Wei Chih/AAG-2426-2019; MURUGAN, DHARMANI DEVI/B-8436-2010; Mustafa, Mohamed R/B-1647-2009; Lau, Yeh Siang/D-2136-2016 OI Mustafa, Mohamed R/0000-0002-7864-5189; Lau, Yeh Siang/0000-0002-1770-3058; LING, WEI CHIH/0000-0001-8464-6420 FU MOHE High Impact Research Grant [H-20001-00-E000055] FX This study was funded by the MOHE High Impact Research Grant H-20001-00-E000055. We thank Tokiwa Phytochemical Company (Tokyo, Japan) for their generous contribution of AVLE for this study. CR Achike FI, 2003, CLIN EXP PHARMACOL P, V30, P605, DOI 10.1046/j.1440-1681.2003.03885.x Anselm E, 2007, CARDIOVASC RES, V73, P404, DOI 10.1016/j.cardiores.2006.08.004 Butterweck V, 2001, BIOL PHARM BULL, V24, P848, DOI 10.1248/bpb.24.848 Cao YH, 2003, ANAL BIOANAL CHEM, V376, P691, DOI 10.1007/s00216-003-1961-7 Chen Long, 2005, Zhongguo Zhong Yao Za Zhi, V30, P1340 Chen ZP, 1999, FEBS LETT, V443, P285, DOI 10.1016/S0014-5793(98)01705-0 Dell'Agli M, 2004, CARDIOVASC RES, V63, P593, DOI 10.1016/j.cardiores.2004.03.019 Diebolt M, 2001, HYPERTENSION, V38, P159, DOI 10.1161/01.HYP.38.2.159 Edirisinghe I, 2008, CLIN SCI, V114, P331, DOI 10.1042/CS20070264 Ediristnghe I, 2008, J AGR FOOD CHEM, V56, P9383, DOI 10.1021/jf801864t Fang J, 2009, J CONTROL RELEASE, V135, P211, DOI 10.1016/j.jconrel.2009.01.006 Feil R, 2003, CIRC RES, V93, P907, DOI 10.1161/01.RES.0000100390.68771.CC Madeira SVF, 2009, J VASC RES, V46, P406, DOI 10.1159/000194271 Intengan HD, 2001, HYPERTENSION, V38, P581, DOI 10.1161/hy09t1.096249 Irie K, 2009, J NAT MED, V63, P111, DOI 10.1007/s11418-008-0296-2 Khan F, 2014, FREE RADICAL BIO MED, V72, P232, DOI 10.1016/j.freeradbiomed.2014.04.006 Kim DW, 2000, J ETHNOPHARMACOL, V72, P53, DOI 10.1016/S0378-8741(00)00197-5 Kwan Chiu-Yin, 1995, Clinical and Experimental Pharmacology and Physiology, V22, pS297, DOI 10.1111/j.1440-1681.1995.tb02925.x Kwan CY, 2005, CLIN EXP PHARMACOL P, V32, P789, DOI 10.1111/j.1440-1681.2005.04255.x Lau YS, 2012, J ETHNOPHARMACOL, V143, P565, DOI 10.1016/j.jep.2012.07.012 Lau YS, 2013, BRIT J PHARMACOL, V170, P1190, DOI 10.1111/bph.12350 Lundberg JO, 2005, ARTERIOSCL THROM VAS, V25, P915, DOI 10.1161/01.ATV.0000161048.72004.c2 Mitchell JA, 2008, EXP PHYSIOL, V93, P141, DOI 10.1113/expphysiol.2007.038588 Mizutani K, 1999, J NUTR SCI VITAMINOL, V45, P95, DOI 10.3177/jnsv.45.95 Ndiaye M, 2004, BRIT J PHARMACOL, V142, P1131, DOI 10.1038/sj.bjp.0705774 Oparil S, 2003, ANN INTERN MED, V139, P761, DOI 10.7326/0003-4819-139-9-200311040-00011 RUBANYI GM, 1986, AM J PHYSIOL, V250, pH822, DOI 10.1152/ajpheart.1986.250.5.H822 Schini-Kerth VB, 2010, PFLUG ARCH EUR J PHY, V459, P853, DOI 10.1007/s00424-010-0806-4 Sessa WC, 2004, J CELL SCI, V117, P2427, DOI 10.1242/jcs.01165 Stuehr DJ, 2004, J NUTR, V134, p2748S, DOI 10.1093/jn/134.10.2748S SUTTER MC, 1993, CARDIOVASC RES, V27, P1891, DOI 10.1093/cvr/27.11.1891 Vallance P, 2001, HEART, V85, P342, DOI 10.1136/heart.85.3.342 Xiong QB, 2000, PLANTA MED, V66, P127, DOI 10.1055/s-2000-11135 Xiong XJ, 2013, HYPERTENS RES, V36, P570, DOI 10.1038/hr.2013.18 Yokozawa T, 2002, BIOL PHARM BULL, V25, P748, DOI 10.1248/bpb.25.748 NR 35 TC 6 Z9 8 U1 1 U2 24 PU MDPI AG PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND SN 2072-6643 J9 NUTRIENTS JI Nutrients PD JUL PY 2015 VL 7 IS 7 BP 5239 EP 5253 DI 10.3390/nu7075220 PG 15 WC Nutrition & Dietetics SC Nutrition & Dietetics GA CO7OQ UT WOS:000359349800009 PM 26133970 OA Green Published, gold, Green Submitted DA 2021-10-15 ER PT J AU Chan, CO Lau, CC Ng, YF Xu, LJ Chen, SB Chan, SW Mok, DKW AF Chan, Chi-On Lau, Ching-Ching Ng, Yam-Fung Xu, Li-Jia Chen, Si-Bao Chan, Shun-Wan Mok, Daniel Kam-Wah TI Discrimination between Leave of Apocynum venetum and Its Adulterant, A. pictum Based on Antioxidant Assay and Chemical Profiles Combined with Multivariate Statistical Analysis SO ANTIOXIDANTS LA English DT Article DE Apocynum venetum L; Apocynum pictum Schrenk; HPLC fingerprints; free radical scavenging capacity ID AQUEOUS EXTRACTS; LUOBUMA; RATS; L.; CHROMATOGRAPHY; COMPONENTS; CAPACITY AB An integrated approach including chemical and biological assessments was developed to investigate the differences between Apocynum venetum L. (AV) and its adulterant, Apocynum pictum Schrenk (AP). Ten flavonoids were tentatively identified by ultra-visible and mass spectra data. The chemical component, hyperoside, was identified as a critical parameter for discrimination of two species from the results of principal component analysis (PCA) and quantitative analysis. The anti-oxidative power of the herbal extracts were determined using 2,2-diphenyl-1-(2,4,6-trinitrophenyl) hydrazyl (DPPH) assay and H2O2-induced cell damage on LO2 cells. The results of the biological assays suggested that the chemical differences between AV and AP do lead to difference in activity and AV is demonstrated to have higher anti-oxidant activity. C1 [Chan, Chi-On; Chen, Si-Bao; Chan, Shun-Wan; Mok, Daniel Kam-Wah] Hong Kong Polytech Univ, Dept Appl Biol & Chem Technol, State Key Lab Chinese Med & Mol Pharmacol, Shenzhen 518057, Peoples R China. [Chan, Chi-On; Lau, Ching-Ching; Ng, Yam-Fung; Chen, Si-Bao; Chan, Shun-Wan; Mok, Daniel Kam-Wah] Hong Kong Polytech Univ, Dept Appl Biol & Chem Technol, Hong Kong, Hong Kong, Peoples R China. [Xu, Li-Jia; Chen, Si-Bao] Chinese Acad Med Sci, Inst Med Plant Dev, Beijing 100193, Peoples R China. [Xu, Li-Jia; Chen, Si-Bao] Peking Union Med Coll, Beijing 100193, Peoples R China. RP Chen, SB (corresponding author), Hong Kong Polytech Univ, Dept Appl Biol & Chem Technol, State Key Lab Chinese Med & Mol Pharmacol, Shenzhen 518057, Peoples R China. EM on.chan@polyu.edu.hk; christy.lau@connect.polyu.hk; yam-fung@hotmail.com; xulijia@hotmail.com; sibao.chen@polyu.edu.hk; sw.chan@polyu.edu.hk; daniel.mok@polyu.edu.hk RI Mok, Daniel Kam-Wah/K-5826-2013; Chan, Shun-Wan/K-9363-2013 OI Mok, Daniel Kam-Wah/0000-0002-6677-2949; Chan, Shun-Wan/0000-0001-8238-798X; Chen, Sibao/0000-0003-1539-9192; Chan, Chi on/0000-0002-5166-4814 FU National Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC) [81303203] FX This work was supported by the National Natural Science Foundation of China (No. 81303203), and was part of the work of the Hong Kong Chinese Material Medica Standard Project. CR An HJ, 2013, J PHARMACEUT BIOMED, V85, P295, DOI 10.1016/j.jpba.2013.07.005 [Anonymous], 2010, PHARM PEOPL REP CHIN, V1, P196 Butterweck V, 2003, PHARMACOL BIOCHEM BE, V75, P557, DOI 10.1016/S0091-3057(03)00118-7 Chan E, 2010, AM J CHINESE MED, V38, P815, DOI 10.1142/S0192415X10008263 Chan SW, 2008, PHARM BIOL, V46, P587, DOI 10.1080/13880200802179667 Coletta A, 2014, FOOD CHEM, V152, P467, DOI 10.1016/j.foodchem.2013.11.142 Editorial Committee of the Flora of China of Chinese Academy of Science, 1977, FLOR CHIN, P157 Grundmann O, 2007, J ETHNOPHARMACOL, V110, P406, DOI 10.1016/j.jep.2006.09.035 [韩利文 HAN Liwen], 2008, [中草药, Chinese Traditional and Herbal Drugs], V39, P591 Kagawa Tamami, 2004, Natural Medicines, V58, P109 Kim DW, 2000, J ETHNOPHARMACOL, V72, P53, DOI 10.1016/S0378-8741(00)00197-5 Kim DW, 1998, PHYTOTHER RES, V12, P46, DOI 10.1002/(SICI)1099-1573(19980201)12:1<46::AID-PTR169>3.0.CO;2-I Li BY, 2004, J SEP SCI, V27, P581, DOI 10.1002/jssc.200301660 [刘训红 LIU Xun-hong], 2010, [中国药学杂志, Chinese Pharmaceutical Journal], V45, P464 Sandei N., 1994, NAT MED, V48, P322 Xie WY, 2012, J ETHNOPHARMACOL, V141, P1, DOI 10.1016/j.jep.2012.02.003 Ye LH, 2011, J RARE EARTH, V29, P178, DOI 10.1016/S1002-0721(10)60427-9 Yi T, 2010, J ETHNOPHARMACOL, V128, P405, DOI 10.1016/j.jep.2010.01.037 Yokozawa T, 2004, FOOD CHEM TOXICOL, V42, P975, DOI 10.1016/j.fct.2004.02.010 Yokozawa T, 2002, BIOL PHARM BULL, V25, P748, DOI 10.1248/bpb.25.748 Zhang YC, 2010, J CHROMATOGR B, V878, P3149, DOI 10.1016/j.jchromb.2010.09.027 王东清, 2011, [江苏农业科学, Jiangsu Agricultural Sciences], V39, P310 NR 22 TC 6 Z9 7 U1 0 U2 7 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND SN 2076-3921 J9 ANTIOXIDANTS JI Antioxidants PD JUN PY 2015 VL 4 IS 2 BP 359 EP 372 DI 10.3390/antiox4020359 PG 14 WC Biochemistry & Molecular Biology; Chemistry, Medicinal; Food Science & Technology SC Biochemistry & Molecular Biology; Pharmacology & Pharmacy; Food Science & Technology GA CS4VA UT WOS:000362072900005 PM 26783710 OA Green Published, gold, Green Submitted DA 2021-10-15 ER PT J AU Li, MH Han, GT Chen, H Yu, JY Zhang, YM AF Li, Minghua Han, Guangting Chen, Hao Yu, Jianyong Zhang, Yuanming TI Chemical Compounds and Antimicrobial Activity of Volatile Oils from Bast and Fibers of Apocynum venetum SO FIBERS AND POLYMERS LA English DT Article DE Apocynum venetum bast; Apocynum venetum fiber; Antimicrobial activities; Gas chromatography-mass spectrometry; Volatile oil ID ANTIBACTERIAL ACTIVITY; GC-MS; FATTY-ACIDS; EXTRACTS; COMPONENTS AB Sixty-one and forty-four compounds were identified from the volatile oils of the bast and fibers of Apocynum venetum by means of gas chromatography-mass spectrometry (GC-MS), respectively. The fatty acids, esters, ketones, aldehydes, alkanes, phenols, and miscellaneous compounds were found as the major components in both samples. Furthermore, both of volatile oils exhibited antibacterial properties against Staphylococcus aureus, Staphyloccus epidermidis, and Escherichia coli, whereas they showed weak inhibitory effects on Bacillus lentus and Candida albicans. These results confirmed the claim that A. venetum fibers have antibacterial properties and provide theoretical foundation to make better use of A. venetum fibers. C1 [Li, Minghua; Han, Guangting; Zhang, Yuanming] Qingdao Univ, Growing Base State Key Lab, Lab New Fiber Mat & Modern Text, Qingdao 266071, Peoples R China. [Li, Minghua] Donghua Univ, Coll Text, Shanghai 201620, Peoples R China. [Chen, Hao] SOA, Inst Oceanog 1, Key Lab Marine Biol Act Subst, Qingdao 266061, Peoples R China. [Yu, Jianyong] Donghua Univ, Res Inst, Shanghai 200051, Peoples R China. RP Han, GT (corresponding author), Qingdao Univ, Growing Base State Key Lab, Lab New Fiber Mat & Modern Text, Qingdao 266071, Peoples R China. EM kychgt@qdu.edu.cn RI Chen, Hao/AAU-5365-2020 FU National Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC) [50573035]; Provincial Key Sci-Tech Special Project of Shandong Province [2006GG1103088]; Provincial Key Sci-Tech Special Project of China [2006GG1103088]; National Basic Research Program (973 Program)National Basic Research Program of China [2009CB626606] FX This work was supported by the National Natural Science Foundation of China (Project No.: 50573035) and Provincial Key Sci-Tech Special Projects of Shandong Province, China (Project No.: 2006GG1103088). The National Basic Research Program (973 Program) (Project No.: 2009CB626606). CR Aligiannis N, 2001, J AGR FOOD CHEM, V49, P4168, DOI 10.1021/jf001494m Bajpai VK, 2008, INT J FOOD MICROBIOL, V125, P117, DOI 10.1016/j.ijfoodmicro.2008.03.011 Bendimerad N, 2005, J AGR FOOD CHEM, V53, P2947, DOI 10.1021/jf047937u Bisignano G, 2001, FEMS MICROBIOL LETT, V201, P117, DOI 10.1111/j.1574-6968.2001.tb10742.x Buttery RG, 1999, J AGR FOOD CHEM, V47, P4353, DOI 10.1021/jf990140w Chen M., 2005, J ANSHAN NORMAL U, V7, P61 Daferera DJ, 2000, J AGR FOOD CHEM, V48, P2576, DOI 10.1021/jf990835x [范维刚 Fan Weigang], 2005, [质谱学报, Journal of Chinese Mass Spectrometry Society], V26, P93 GALBRAITH H, 1971, J APPL BACTERIOL, V34, P803, DOI 10.1111/j.1365-2672.1971.tb01019.x Grundmann O, 2007, J ETHNOPHARMACOL, V110, P406, DOI 10.1016/j.jep.2006.09.035 Han GT, 2004, QUALITY TEXTILES FOR QUALITY LIFE, VOLS 1-4, P24 Han GT, 2004, QUALITY TEXTILES FOR QUALITY LIFE, VOLS 1-4, P20 Han GT, 2008, CARBOHYD POLYM, V72, P652, DOI 10.1016/j.carbpol.2007.10.002 Hu F., 2010, GUANGXI TEXTILES SIC, V39, P9 Javidnia K, 2006, FLAVOUR FRAG J, V21, P516, DOI 10.1002/ffj.1660 KAJIWARA T, 1988, J FOOD SCI, V53, P960, DOI 10.1111/j.1365-2621.1988.tb08995.x Kanakis CD, 2004, J AGR FOOD CHEM, V52, P4515, DOI 10.1021/jf049808j Kim DW, 2000, J ETHNOPHARMACOL, V72, P53, DOI 10.1016/S0378-8741(00)00197-5 Li MH, 2010, FIBER POLYM, V11, P48, DOI 10.1007/s12221-010-0048-2 [吕建荣 LV Jianrong], 2007, [西北林学院学报, Journal of Northwest Forestry College], V22, P149 Lv R., 2006, ACTA ACAD MED QINGDA, V42, P71 Ma L., 2009, PROGR TEXTILE SCI TE, V5, P50 MOUJIR L, 1990, BIOCHEM SYST ECOL, V18, P25, DOI 10.1016/0305-1978(90)90028-E NCCLS, 1997, PERF STAND ANT DISK Ouattara B, 1997, INT J FOOD MICROBIOL, V37, P155, DOI 10.1016/S0168-1605(97)00070-6 Roy RN, 2006, MICROBIOL RES, V161, P121, DOI 10.1016/j.micres.2005.06.007 Sadeghpour O., 2004, IRAN J PHARM RES, V3, P65 Shum KC, 2007, J SEP SCI, V30, P3233, DOI 10.1002/jssc.200700232 Soni B, 2010, EUR J MED CHEM, V45, P2938, DOI 10.1016/j.ejmech.2010.03.019 Tabanca N, 2001, J AGR FOOD CHEM, V49, P4300, DOI 10.1021/jf0105034 Vardar-Unlu G, 2003, J AGR FOOD CHEM, V51, P63, DOI 10.1021/jf025753e Wang LL, 2007, CARBOHYD POLYM, V69, P391, DOI 10.1016/j.carbpol.2006.12.028 Wei Q, 2010, J ANAL APPL PYROL, V87, P24, DOI 10.1016/j.jaap.2009.09.006 Writing group of the National Herbal Compendium, 1986, CHIN HERB MED ASS 1, P522 [吴红玲 Wu Hongling], 2004, [兰州理工大学学报, Journal of Gansu University of Technology], V30, P76 [薛卫巍 XUE Weiwei], 2009, [纺织学报, Journal of Textile Research], V30, P80 Yang Y., 2005, CHINA TEXT LEADER, V5, P74 Yayli N, 2005, PHYTOCHEMISTRY, V66, P1741, DOI 10.1016/j.phytochem.2005.04.006 Yu LF, 2009, J SEP SCI, V32, P3457, DOI 10.1002/jssc.200900267 Zhang WM, 2006, CHINESE WILD PLANT R, V25, P15 Zhao CX, 2006, CHEMOMETR INTELL LAB, V82, P218, DOI 10.1016/j.chemolab.2005.08.008 [赵小亮 ZHAO Xiaoliang], 2007, [西北农业学报, Acat Agriculturae Boreali-Occidentalis Sinica], V16, P289 NR 42 TC 6 Z9 9 U1 1 U2 41 PU KOREAN FIBER SOC PI SEOUL PA KOREA SCIENCE TECHNOLOGY CTR #501 635-4 YEOGSAM-DONG, KANGNAM-GU, SEOUL 135-703, SOUTH KOREA SN 1229-9197 EI 1875-0052 J9 FIBER POLYM JI Fiber. Polym. PD MAR PY 2012 VL 13 IS 3 BP 322 EP 328 DI 10.1007/s12221-012-0322-6 PG 7 WC Materials Science, Textiles; Polymer Science SC Materials Science; Polymer Science GA 917RF UT WOS:000302195600008 DA 2021-10-15 ER PT J AU Boyd, NS Hughes, A AF Boyd, N. S. Hughes, A. TI Germination and Emergence Characteristics of Spreading Dogbane (Apocynum androsaemifolium) SO WEED SCIENCE LA English DT Article DE Osmotic potential; seed; pH; temperature; seedbank ID WEED SURVEY AB Spreading dogbane is an important weed of wild blueberry fields that decreases yields and hinders harvest operations. A range of experiments was conducted to evaluate the impact of abiotic factors on dogbane seed germination. Freshly harvested seeds were largely nondormant with viability ranging between 67 and 84%. Prolonged exposure to light neither promoted nor inhibited germination. Germination rates and total seed germination varied with temperature and osmotic potential. Significantly fewer seeds germinated at 5 C compared with 10, 15, and 20 C. There was a significant quadratic relationship between dogbane germination and osmotic potential, with significant numbers of seeds germinating at levels as low as -0.5 MPa. Emergence rates declined exponentially with depth in the soil and as many as 9% of seeds germinated but were unable to reach the soil surface. Results indicate that substantial seed germination in blueberry fields is possible and primary dispersal without wind occurs over a very short distance. C1 [Boyd, N. S.; Hughes, A.] Nova Scotia Agr Coll, Dept Environm Sci, Truro, NS B2N 5E3, Canada. RP Boyd, NS (corresponding author), Nova Scotia Agr Coll, Dept Environm Sci, Truro, NS B2N 5E3, Canada. EM nboyd@nsac.ca FU Canadian Foundation for InnovationCanada Foundation for Innovation; Nova Scotia Technology Development Program; Wild Blueberry Growers Association of Nova Scotia FX Funding for this research was provided by the Canadian Foundation for Innovation, the Nova Scotia Technology Development Program 2000, and the Wild Blueberry Growers Association of Nova Scotia. The authors gratefully acknowledge Win Lu for his contribution to this research. CR Bergweiler CJ, 1999, ENVIRON POLLUT, V105, P333, DOI 10.1016/S0269-7491(99)00044-5 Boyd NS, 2003, WEED SCI, V51, P725, DOI 10.1614/P2002-111 DiTommaso A, 2009, CAN J PLANT SCI, V89, P977, DOI 10.4141/CJPS08103 HORAK MJ, 1991, WEED SCI, V39, P390, DOI 10.1017/S0043174500073112 Jensen K. I. N., 2004, Small Fruits Review, V3, P229, DOI 10.1300/J301v03n03_02 Lapointe L, 2001, CAN J PLANT SCI, V81, P471, DOI 10.4141/P00-096 Letchamo W, 1996, J HORTIC SCI, V71, P373, DOI 10.1080/14620316.1996.11515416 MCCULLY KV, 1991, WEED SCI, V39, P180, DOI 10.1017/S0043174500071447 MICHEL BE, 1983, PLANT PHYSIOL, V72, P66, DOI 10.1104/pp.72.1.66 NADEAU LB, 1991, CAN J PLANT SCI, V71, P771, DOI 10.4141/cjps91-111 REDDY KN, 1992, WEED SCI, V40, P195, DOI 10.1017/S0043174500057210 ROBISON LR, 1972, WEED SCI, V20, P156, DOI 10.1017/S0043174500035244 Webster TM, 2000, WEED SCI, V48, P716, DOI 10.1614/0043-1745(2000)048[0716:ACIINT]2.0.CO;2 Wu L., 2010, THESIS NOVA SCOTIA A YARBOROUGH D E, 1989, Acta Horticulturae (Wageningen), P344 YARBOROUGH DE, 1997, ACTA HORTIC, V446, P293 NR 16 TC 6 Z9 7 U1 0 U2 7 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0043-1745 EI 1550-2759 J9 WEED SCI JI Weed Sci. PD OCT-DEC PY 2011 VL 59 IS 4 BP 533 EP 537 DI 10.1614/WS-D-11-00022.1 PG 5 WC Agronomy; Plant Sciences SC Agriculture; Plant Sciences GA 835HE UT WOS:000296026400014 DA 2021-10-15 ER PT J AU Ruan, X Wang, Q Pan, CD Chen, YN Jiang, H AF Ruan, Xiao Wang, Qiang Pan, Cun-De Chen, Ya-Ning Jiang, Hao TI Physiological acclimation strategies of riparian plants to environment change in the delta of the Tarim River, China SO ENVIRONMENTAL GEOLOGY LA English DT Article DE Soluble sugars; Free proline; Endogenous abscisic acid; Cytokinins; Groundwater table; Water and saline stress ID ABSCISIC-ACID; OSMOTIC ADJUSTMENT; LOWER REACHES; WATER-LOSS; XYLEM SAP; ROOT; CYTOKININS; RESPONSES; DROUGHT; SIGNALS AB The occurrence and development of riparian forests, which were mainly dominated by mesophytes species related closely with surface water. Since there was no water discharged to the lower reaches of Tarim River in the past three decade years, the riparian forests degrade severely. The groundwater table, the saline content of the groundwater, as well as the content of free proline, soluble sugars, plant endogenous hormones (abscisic acid (ABA), and cytokinins (CTK)) of the leaves and relative rates of sap flow of the Populus euphratica Oliv. (arbor species), Tamarix ramosissima Ldb. (bush species), and Apocynum venetum L. (herb species) were monitored and analyzed at the lower reaches of the Tarim River in the study area where five positions on a transect were fixed at 100 m intervals along a sampling direction from riverbank to the sand dunes before and after water release. The physiological responses and acclimation strategies of three species to variations in water and salinity stress were discussed. It was found that A. venetum population recovered to groundwater table ranging from -1.73 to -3.56 m, and when exposed to saline content of the groundwater ranging from 36.59 to 93.48 m mol/L; P. euphratica appeared to be more sensitive to the elevation of groundwater table than the A. venetum and T. ramosissima at groundwater table ranging from -5.08 to -5.80 m, and when exposed to saline content of the groundwater ranging from 42.17 to 49.55 m mol/L. T. ramosissima tended to be the best candidate species for reclamation in this hyper-arid area because it responded to groundwater table ranging from -1.73 to -7.05 m, and when exposed to saline content of the groundwater ranging from 36.59 to 93.48 m mol/L. These results explained the distribution patterns of desert vegetation in the lower reaches of the Tarim River. Understanding the relationships among ecological factors variables, physiological response and acclimation strategies of plant individuals could provide guidance to sustainable management, reclamation and development of this and similar regions. C1 [Ruan, Xiao; Wang, Qiang; Jiang, Hao] Zhejiang Univ, Ningbo Inst Technol, Ningbo 315100, Zhejiang, Peoples R China. [Pan, Cun-De] Xinjiang Agr Univ, Coll Forest, Urumqi 830052, Peoples R China. [Chen, Ya-Ning] Chinese Acad Sci, Xinjiang Inst Ecol & Geog, Urumqi 830011, Peoples R China. RP Wang, Q (corresponding author), Zhejiang Univ, Ningbo Inst Technol, Ningbo 315100, Zhejiang, Peoples R China. EM wangqiangsky@263.net RI chen, yaning/D-4047-2013; Chen, Yaning/A-2338-2019; chen, yaning/AAN-8170-2020 FU NSFC (National Science Foundation of China)National Natural Science Foundation of China (NSFC) [30470330, 30770334, 90502004]; STSPC ( Science and Technology Support Plan of China) [2006BAC01A03-2] FX The authors are grateful to NSFC (National Science Foundation of China; Project no. 30470330, 30770334, 90502004) and STSPC ( Science and Technology Support Plan of China in eleven-fifth; Project no. 2006BAC01A03-2) for the financial support of the work. CR Aguilar ML, 2000, J EXP BOT, V51, P1861, DOI 10.1093/jexbot/51.352.1861 Ameglio T, 1999, PLANT SOIL, V207, P155, DOI 10.1023/A:1026415302759 BANO A, 1993, AUST J PLANT PHYSIOL, V20, P109, DOI 10.1071/PP9930109 BASNAYAKE J, 1993, FIELD CROP RES, V35, P51, DOI 10.1016/0378-4290(93)90136-B BLACKMAN PG, 1985, J EXP BOT, V36, P39, DOI 10.1093/jxb/36.1.39 BLACKMAN PG, 1985, ACTA HORTIC, V171, P255 Chen YN, 2003, CHINESE SCI BULL, V48, P1995, DOI 10.1360/02wd0569 CHEN YN, 2004, J CHIN ACAD SCI, V3, P191 Cushman JC, 2001, AM ZOOL, V41, P758, DOI 10.1668/0003-1569(2001)041[0758:OIPIFA]2.0.CO;2 DAVIES WJ, 1994, PLANT PHYSIOL, V104, P309, DOI 10.1104/pp.104.2.309 DAVIES WJ, 1991, ANNU REV PLANT PHYS, V42, P55, DOI 10.1146/annurev.pp.42.060191.000415 ELHAAK MA, 1993, PAKISTAN J BOT, V25, P41 FUSSEDER A, 1992, NEW PHYTOL, V122, P45, DOI 10.1111/j.1469-8137.1992.tb00051.x GRANIER A, 1985, ANN SCI FOREST, V42, P193, DOI 10.1051/forest:19850204 GUERRIER G, 1989, J PLANT PHYSIOL, V135, P330, DOI 10.1016/S0176-1617(89)80128-2 Hsiao T. C., 1990, Agronomy, P243 HUBICK KT, 1986, PLANT GROWTH REGUL, V4, P139, DOI 10.1007/BF00025195 INCOLL LD, 1987, MONOGRAPH BRIT PLANT, V14, P85 ITAI C, 1965, PHYSIOL PLANTARUM, V18, P941, DOI 10.1111/j.1399-3054.1965.tb06991.x Jarvis AJ, 1997, PLANT CELL ENVIRON, V20, P521, DOI 10.1046/j.1365-3040.1997.d01-90.x JEWER PC, 1980, PLANTA, V150, P218, DOI 10.1007/BF00390829 [刘加珍 Liu Jiazhen], 2004, [生态学报, Acta Ecologica Sinica], V24, P379 Marschner H., 1995, MINERAL NUTR PLANTS, V2nd ed. MASIA A, 1994, J EXP BOT, V45, P69, DOI 10.1093/jxb/45.1.69 Mattioni C, 1997, PHYSIOL PLANTARUM, V101, P787, DOI 10.1111/j.1399-3054.1997.tb01064.x PAN XL, 2001, ACTA BOT BOREAL OCCI, V21, P247 Patakas A, 1999, SCI HORTIC-AMSTERDAM, V80, P299, DOI 10.1016/S0304-4238(98)00244-1 PILLAY I, 1990, J PLANT GROWTH REGUL, V9, P213, DOI 10.1007/BF02041965 Ragab R, 2002, BIOSYST ENG, V81, P3, DOI 10.1006/bioe.2001.0013 Rekika D, 1998, PHOTOSYNTHETICA, V35, P129, DOI 10.1023/A:1006890319282 Sanchez FJ, 2004, FIELD CROP RES, V86, P81, DOI 10.1016/S0378-4290(03)00121-7 Serraj R, 2002, PLANT CELL ENVIRON, V25, P333, DOI 10.1046/j.1365-3040.2002.00754.x TARDIEU F, 1992, PLANT PHYSIOL, V98, P540, DOI 10.1104/pp.98.2.540 Thomas FM, 2000, J APPL BOT-ANGEW BOT, V74, P212 Tongway David J., 1994, Pacific Conservation Biology, V1, P201 TROLL W, 1955, J BIOL CHEM, V215, P655 VONK CR, 1986, PLANT GROWTH REGUL, V4, P65, DOI 10.1007/BF00025350 Wang Q, 2007, ENVIRON GEOL, V53, P349, DOI 10.1007/s00254-007-0650-9 Yang Qiang, 2002, IEEE COMPUT INTELL B, V1, P10 Zhang JX, 1999, J EXP BOT, V50, P291, DOI 10.1093/jexbot/50.332.291 Zhang YM, 2005, J ARID ENVIRON, V63, P772, DOI 10.1016/j.jaridenv.2005.03.023 NR 41 TC 6 Z9 7 U1 0 U2 24 PU SPRINGER PI NEW YORK PA ONE NEW YORK PLAZA, SUITE 4600, NEW YORK, NY, UNITED STATES SN 0943-0105 J9 ENVIRON GEOL JI Environ. Geol. PD JUN PY 2009 VL 57 IS 8 BP 1761 EP 1773 DI 10.1007/s00254-008-1461-3 PG 13 WC Environmental Sciences; Geosciences, Multidisciplinary; Water Resources SC Environmental Sciences & Ecology; Geology; Water Resources GA 450AG UT WOS:000266372600007 DA 2021-10-15 ER PT J AU Kline, LJ Davis, DD Skelly, JM Decoteau, DR AF Kline, Lee J. Davis, Donald D. Skelly, John M. Decoteau, Dennis R. TI Variation in Ozone Sensitivity Within Indian Hemp and Common Milkweed Selections from the Midwest SO NORTHEASTERN NATURALIST LA English DT Article ID NATIONAL WILDLIFE REFUGE; POPULUS-TREMULOIDES; NATURAL-SELECTION; AMBIENT OZONE; VEGETATION; TOLERANCE; SYMPTOMS; PLANTS AB Sixteen selections of Apocynum cannabinum (Indian Hemp) and nine of Asclepias syriaca (Common Milkweed) from midwestern USA were exposed to 40 or 80 ppb ozone under controlled conditions within greenhouse continuously stirred tank reactor (CSTR) chambers to evaluate their relative ozone sensitivity. The incidence and severity of ozone-induced symptoms on both species were directly related to ozone concentration and duration of exposure. The most common foliar symptom was classic, dark, adaxial stipple, similar to symptoms ascribed to ambient ozone in the field. Indian Hemp was more sensitive to ozone than Common Milkweed. Both species exhibited considerable intraspecific variation in ozone sensitivity. Variability in the data was too great to assign definitive ozone-sensitivity ratings within geographic regions from which seed was selected. However, two locations were identified as possible collection sites for ozone-sensitive selections of both species: Wabaunsee County, KS and Plattsmouth, NE for Indian Hemp; and Cloud County, KS and Swan Creek Lake Wildlife Area, NE for Common Milkweed. Plants derived from seed from these locations may serve as ozone-sensitive bioindicators. C1 [Davis, Donald D.] Penn State Univ, Dept Plant Pathol, University Pk, PA 16802 USA. Penn State Univ, Penn State Inst Energy & Environm, University Pk, PA 16802 USA. RP Davis, DD (corresponding author), Penn State Univ, Dept Plant Pathol, University Pk, PA 16802 USA. EM ddd2@psu.edu FU USDA Forest ServiceUnited States Department of Agriculture (USDA)United States Forest Service; University of Massachusetts; Pennsylvania Department of Environmental Protection, Bureau of Air Quality FX The authors acknowledge receipt of financial support and plant material from the USDA Forest Service, as well as financial support from the University of Massachusetts and the Pennsylvania Department of Environmental Protection, Bureau of Air Quality. The authors gratefully acknowledge technical assistance from J. Ferdinand, T. Orednovici-Best, and J. Savage. CR Bennett JP, 2006, ENVIRON POLLUT, V142, P354, DOI 10.1016/j.envpol.2005.09.024 BERRANG P, 1989, CAN J FOREST RES, V19, P519, DOI 10.1139/x89-080 BERRANG P, 1991, CAN J FOREST RES, V21, P1091, DOI 10.1139/x91-150 COMRIE AC, 1994, ANN ASSOC AM GEOGR, V84, P635, DOI 10.1111/j.1467-8306.1994.tb01880.x Coulston JW, 2003, ENVIRON MONIT ASSESS, V83, P113, DOI 10.1023/A:1022578506736 Davis DD, 2007, NORTHEAST NAT, V14, P403, DOI 10.1656/1092-6194(2007)14[403:OSOVWT]2.0.CO;2 Davis DD, 2007, NORTHEAST NAT, V14, P415, DOI 10.1656/1092-6194(2007)14[415:OITPWT]2.0.CO;2 Davis DD, 2006, ENVIRON POLLUT, V143, P555, DOI 10.1016/j.envpol.2005.10.051 HECK WW, 1975, USDA ARS PUB Kline LJ, 2008, NORTHEAST NAT, V15, P57, DOI 10.1656/1092-6194(2008)15[57:OSOPSE]2.0.CO;2 Manning WJ, 1996, ENVIRON POLLUT, V91, P399, DOI 10.1016/0269-7491(95)00075-5 Minitab Inc, 2003, MINITAB STAT SOFTW R Orendovici T, 2003, ENVIRON POLLUT, V125, P31, DOI 10.1016/S0269-7491(03)00089-7 Orendovici T., 2007, ENVIRON POLLUT, V151, P79 Richards B.L., 1958, AGRON J, V50, P559, DOI DOI 10.2134/AGRONJ1958.00021962005000090019X SIMINI M, 1992, CAN J FOREST RES, V22, P1789, DOI 10.1139/x92-234 Skelly J. M., 1987, DIAGNOSING INJURY E Skelly John M., 2000, Northeastern Naturalist, V7, P221, DOI 10.1656/1092-6194(2000)007[0221:TOAIIT]2.0.CO;2 STEINER KC, 1979, CAN J FOREST RES, V9, P106, DOI 10.1139/x79-017 *US DOI, 2003, OZ SENS PLANT SPEC N *US EPA, 1996, EPA600P93004AF, V1 NR 21 TC 6 Z9 6 U1 0 U2 11 PU HUMBOLDT FIELD RESEARCH INST PI STEUBEN PA PO BOX 9, STEUBEN, ME 04680-0009 USA SN 1092-6194 EI 1938-5307 J9 NORTHEAST NAT JI Northeast. Nat PY 2009 VL 16 IS 2 BP 307 EP 313 DI 10.1656/045.016.0210 PG 7 WC Biodiversity Conservation; Ecology SC Biodiversity & Conservation; Environmental Sciences & Ecology GA 468AK UT WOS:000267785300010 DA 2021-10-15 ER PT J AU Webster, TM Cardina, J Woods, SJ AF Webster, TM Cardina, J Woods, SJ TI Apocynum cannabinum interference in no-till Glycine max SO WEED SCIENCE LA English DT Article DE Apocynum cannabinum L. APCCA, hemp dogbane; Glycine max (L.) Merr., soybean; competition; perennial weed; yield loss; APCCA ID YIELD LOSS; WEED; COMPETITION; CORN AB Field studies were conducted in three site-years to measure no-till Glycine max yield loss in relation to Apocynum cannabinum vegetative shoot density. Apocynum cannabinum densities of 28 to 40 shoots m(-2) reduced predicted G. max yield 58 to 75% and 62 to 94% with the rectangular hyperbolic and linear regression models, respectively. Differences between locations were attributed to rainfall and temperatures, with delayed G. max canopy closure and higher yield loss where soil moisture remained high and temperatures were relatively cool. Application of these predictive G. max yield loss equations to field populations of A. cannabinum showed that between 19 and 36% and 20 and 29% G. max yield loss could be expected from within A. cannabinum patches for the rectangular hyperbolic and linear regression models, respectively. The rectangular hyperbolic regression model appeared to describe the relation between G. max yield loss and A. cannabinum density accurately; however, the model appeared to be dominated by the initial linear phase. This may indicate a lack of high levels of intraspecific competition among A. cannabinum shoots. The results of this study indicate that there is a strong linear relation between G. max yield loss and A. cannabinum shoot density. We conclude that the biological basis for the use of the rectangular hyperbolic model for creeping perennial weeds is questionable. C1 Ohio State Univ, Ohio Agr Res & Dev Ctr, Dept Hort & Crop Sci, Wooster, OH 44691 USA. Ohio State Univ, Agr Tech Inst, Wooster, OH 44691 USA. RP Webster, TM (corresponding author), USDA ARS, Coastal Plain Expt Stn, Crop Protect & Management Res Unit, Tifton, GA 31794 USA. RI Webster, Theodore/A-4468-2009 OI Webster, Theodore/0000-0002-8259-2059 CR Buchanan G.A., 1974, S WEED SCI SOC RES R, V27, P215 BUHLER DD, 1995, CROP SCI, V35, P1247, DOI 10.2135/cropsci1995.0011183X003500050001x COUSENS R, 1985, ANN APPL BIOL, V107, P239, DOI 10.1111/j.1744-7348.1985.tb01567.x Doll J. D., 1997, WEED SCI SOC AM ABST, V37, P90 DOLL JD, 1995, N CENT WEED SCI SOC, V50, P79 DONALD WW, 1992, WEED SCI, V40, P590, DOI 10.1017/S0043174500058173 DOUST LL, 1989, FUNCT ECOL, V3, P379 DOWLER CC, 1997, P SO WEED SCI SOC, V50, P227 Frazier JC, 1944, BOT GAZ, V105, P463, DOI 10.1086/335256 Gerhards R, 1997, WEED SCI, V45, P108, DOI 10.1017/S0043174500092559 HENN RL, 1998, WILDFLOWERS OHIO, P38 LOUX MM, 1991, WEED TECHNOL, V5, P460, DOI 10.1017/S0890037X00028438 LOVETTDOUST L, 1981, J ECOL, V69, P743, DOI DOI 10.2307/2259633 MCINTYRE G I, 1990, Reviews of Weed Science, V5, P27 PATTERSON MG, 1980, WEED SCI, V28, P327 SCHULTZ ME, 1979, WEED SCI, V27, P565, DOI 10.1017/S0043174500044623 TRIPLETT GB, 1972, WEED SCI, V20, P453, DOI 10.1017/S0043174500036122 VOSS EG, 1996, CRANBOOK I SCI B, V61 Webster TM, 1997, WEED TECHNOL, V11, P782, DOI 10.1017/S0890037X00043438 Webster TM, 1997, WEED TECHNOL, V11, P308, DOI 10.1017/S0890037X00043001 Webster TM, 1999, WEED SCI, V47, P524, DOI 10.1017/S0043174500092213 Yenish JP, 1997, WEED SCI, V45, P127, DOI 10.1017/S0043174500092572 NR 22 TC 6 Z9 7 U1 0 U2 1 PU WEED SCI SOC AMER PI LAWRENCE PA 810 EAST 10TH ST, LAWRENCE, KS 66044-8897 USA SN 0043-1745 J9 WEED SCI JI Weed Sci. PD NOV-DEC PY 2000 VL 48 IS 6 BP 716 EP 719 DI 10.1614/0043-1745(2000)048[0716:ACIINT]2.0.CO;2 PG 4 WC Agronomy; Plant Sciences SC Agriculture; Plant Sciences GA 388LT UT WOS:000166182800012 DA 2021-10-15 ER PT J AU Kalnay, PA Glenn, S AF Kalnay, PA Glenn, S TI Translocation of nicosulfuron and dicamba in hemp dogbane (Apocynum cannabinum) SO WEED TECHNOLOGY LA English DT Article DE absorption; interaction; tank mixture; APCCA ID CORN ZEA-MAYS; JOHNSONGRASS SORGHUM-HALEPENSE; GLYPHOSATE; DPX-V9360 AB Absorption and translocation of nicosulfuron and dicamba applied alone and combined was studied in 25-cm-high hemp dogbane originating from lateral roots that had overwintered. Absorption of C-14-nicosulfuron by hemp dogbane was not affected by applications of 70 g ai/ha unlabeled dicamba, Upward translocation of C-14-nicosulfuron in hemp dogbane was 86% greater 6 d after treatment (DAT) when dicamba was tank mixed with nicosulfuron, compared to nicosulfuron applied alone. Combinations of nicosulfuron plus dicamba increased translocation of nicosulfuron to hemp dogbane crown and roots 237 and 130%, 1 and 6 DAT, respectively, compared to nicosulfuron applied alone. Absorption of C-14-dicamba by hemp dogbane was not affected by the addition of 31 g ai/ha nicosulfuron. Upward translocation of dicamba in hemp dogbane was 42% greater 6 DAT for nicosulfuron plus dicamba compared to dicamba applied alone. Increased hemp dogbane control with nicosulfuron plus dicamba compared to either herbicide applied alone can be explained by enhanced translocation of both herbicides. C1 Univ Maryland, Nat Resource Sci & Landscape Architecture Dept, College Pk, MD 20742 USA. RP Kalnay, PA (corresponding author), Univ Maryland, Nat Resource Sci & Landscape Architecture Dept, College Pk, MD 20742 USA. CR BECKER R, 1981, WEEDS TODAY WIN, P15 Becker RL, 1998, WEED SCI, V46, P358, DOI 10.1017/S0043174500089542 CAMACHO RF, 1991, WEED SCI, V39, P354, DOI 10.1017/S0043174500073057 DOBBELS AF, 1993, WEED TECHNOL, V7, P844, DOI 10.1017/S0890037X00037866 Glenn S, 1997, WEED TECHNOL, V11, P436, DOI 10.1017/S0890037X0004522X GLENN S, 1993, WEED TECHNOL, V7, P47 GREEN JD, 1995, CROP RESIDUE MANAGEM, P54 OBRIGAWITCH TT, 1990, WEED SCI, V38, P45, DOI 10.1017/S0043174500056095 ORFANEDES MS, 1991, WEED TECHNOL, V5, P782, DOI 10.1017/S0890037X00033856 Ransom Corey V., 1998, Weed Technology, V12, P631 ROBISON LR, 1972, WEED SCI, V20, P156, DOI 10.1017/S0043174500035244 SAS, 1988, SAS STAT US GUID REL SCHULTZ ME, 1979, AGRON J, V71, P723, DOI 10.2134/agronj1979.00021962007100050007x SCHULTZ ME, 1979, WEED SCI, V27, P565, DOI 10.1017/S0043174500044623 Triplett Jr G.B., 1985, WEED SCI SOC AM MONO, V2, P26 WILSON HP, 1991, WEED SCI SOC AM ABST, V31, P41 WYRILL JB, 1977, WEED SCI, V25, P275, DOI 10.1017/S0043174500033464 1994, ACCENT HERBICIDE SPE NR 18 TC 6 Z9 6 U1 1 U2 4 PU WEED SCI SOC AMER PI LAWRENCE PA 810 EAST 10TH ST, LAWRENCE, KS 66044-8897 USA SN 0890-037X J9 WEED TECHNOL JI Weed Technol. PD JUL-SEP PY 2000 VL 14 IS 3 BP 476 EP 479 DI 10.1614/0890-037X(2000)014[0476:TONADI]2.0.CO;2 PG 4 WC Agronomy; Plant Sciences SC Agriculture; Plant Sciences GA 397JY UT WOS:000166693600004 DA 2021-10-15 ER PT J AU Jiang, L Wang, L Tanveer, M Tian, CY AF Jiang, Li Wang, Lei Tanveer, Mohsin Tian, Changyan TI Lithium biofortification of medicinal tea Apocynum venetum SO SCIENTIFIC REPORTS LA English DT Article ID PLANTS; L.; DEFICIENCY; TOXICITY; LUOBUMA; HUMANS; WATER AB Lithium (Li) could be much safer and successful approach to supply Li via Li-fortified food products. This study is highlighting the potential scope of Li supply via Li- biofortification of Luobuma tea (made from Apocynum venetum leaves), which is a very popular beverage in Asia with several medical properties. We explored the possibility of A. venetum as Li-enriched tea and investigated plant growth, Li accumulation, total flavonoids (TFs), rutin and hyperoside concentrations, and the antioxidant capacity of A. venetum. With the increase of additional Li, Li concentration in roots, stems and leaves increased gradually. Compared with the control treatment, 10-15 mg kg(-1) Li addition stimulated the growth of A. venetum and 25 mg kg(-1) Li addition significantly increased the Li concentration in leaves by 80 mg kg(-1) . Li application did not decrease TFs, rutin, hyperoside and antioxidant capacity of this medicinal herb. A daily consumption of 10 g Li-biofortified A. venetum leaves (cultivated with 25 mg kg(-1) LiCl) can give 592 mu g Li intake and would constitute 59% of the provisional recommended dietary daily intake of Li. Our results showed that Li-biofortified A. venetum leaves can be used as Li-fortified tea to enhance Li supply and to improve human health when it was used as daily drink. C1 [Jiang, Li; Wang, Lei; Tian, Changyan] Chinese Acad Sci, Xinjiang Inst Ecol & Geog, State Key Lab Desert & Oasis Ecol, Urumqi 830011, Peoples R China. [Jiang, Li] Chinese Acad Sci, Xinjiang Inst Ecol & Geog, Key Lab Biogeog & Bioresource Arid Land, Urumqi 830011, Peoples R China. [Tanveer, Mohsin] Univ Tasmania, Sch Land & Food, Hobart, Tas, Australia. RP Wang, L (corresponding author), Chinese Acad Sci, Xinjiang Inst Ecol & Geog, State Key Lab Desert & Oasis Ecol, Urumqi 830011, Peoples R China. EM egiwang@ms.xjb.ac.cn OI WANG, Lei/0000-0002-8253-7295 CR Aral H, 2008, ECOTOX ENVIRON SAFE, V70, P349, DOI 10.1016/j.ecoenv.2008.02.026 Chan CO, 2015, ANTIOXIDANTS, V4, P359, DOI 10.3390/antiox4020359 Chang CC, 2002, J FOOD DRUG ANAL, V10, P178 Cipriani A, 2013, BMJ-BRIT MED J, V346, DOI 10.1136/bmj.f3646 de Assuncao LS, 2012, FOOD CHEM, V134, P1123, DOI 10.1016/j.foodchem.2012.03.044 Dudonne S, 2009, J AGR FOOD CHEM, V57, P1768, DOI 10.1021/jf803011r Giotakos O, 2015, BIOL TRACE ELEM RES, V164, P165, DOI 10.1007/s12011-014-0210-6 Hawrylak-Nowak B, 2012, BIOL TRACE ELEM RES, V149, P425, DOI 10.1007/s12011-012-9435-4 Jiang L, 2015, OXID COMMUN, V38, P347 Jiang L, 2014, FLORA, V209, P285, DOI 10.1016/j.flora.2014.03.007 KLEMFUSS H, 1995, BIOL TRACE ELEM RES, V48, P131, DOI 10.1007/BF02789187 Liang TG, 2010, INT J MOL SCI, V11, P4452, DOI 10.3390/ijms11114452 MAGALHAES JR, 1990, PESQUI AGROPECU BRAS, V25, P1781 Maria D, 2015, EUR FOOD RES TECHNOL, V241, P289, DOI 10.1007/s00217-015-2456-4 MCSTAY NG, 1980, SCI TOTAL ENVIRON, V16, P185, DOI 10.1016/0048-9697(80)90023-6 Robinson BH, 2018, CHEMOSPHERE, V197, P1, DOI 10.1016/j.chemosphere.2018.01.012 Rong YP, 2015, J APPL BOT FOOD QUAL, V88, P202, DOI 10.5073/JABFQ.2015.088.029 Rzymski P., 2017, J FOOD SCI TECH MYS, V54, P1 Schafer U, 2012, TRACE ELEM ELECTROLY, V29, P91, DOI 10.5414/TEX01222 Schrauzer GN, 2002, J AM COLL NUTR, V21, P14, DOI 10.1080/07315724.2002.10719188 Shahzad B, 2017, ENVIRON SCI POLLUT R, V24, P103, DOI 10.1007/s11356-016-7898-0 Shahzad B, 2016, PLANT PHYSIOL BIOCH, V107, P104, DOI 10.1016/j.plaphy.2016.05.034 Shi M, 2016, MOLECULES, V21, DOI 10.3390/molecules21101345 [石秋梅 Shi Qiumei], 2014, [中草药, Chinese Traditional and Herbal Drugs], V45, P1326 Szklarska D, 2019, BIOL TRACE ELEM RES, V189, P18, DOI 10.1007/s12011-018-1455-2 Terao T, 2015, WORLD J PSYCHIATR, V5, P1, DOI 10.5498/wjp.v5.i1.1 Thevs N, 2012, J APPL BOT FOOD QUAL, V85, P159 Wang L, 2014, FOOD SCI BIOTECHNOL, V23, P323, DOI 10.1007/s10068-014-0045-0 Xie WY, 2012, J ETHNOPHARMACOL, V141, P1, DOI 10.1016/j.jep.2012.02.003 Zhang W, 2018, J PHYSIOL BIOCHEM, V74, P301, DOI 10.1007/s13105-018-0618-0 NR 30 TC 5 Z9 5 U1 1 U2 10 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD JUN 3 PY 2019 VL 9 AR 8182 DI 10.1038/s41598-019-44623-3 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA IA9YE UT WOS:000469912700023 PM 31160644 OA Green Published, gold DA 2021-10-15 ER PT J AU Rouzi, A Halik, U Thevs, N Welp, M Aishan, T AF Rouzi, Aihemaitijiang Halik, Umut Thevs, Niels Welp, Martin Aishan, Tayierjiang TI Water Efficient Alternative Crops for Sustainable Agriculture along the Tarim Basin: A Comparison of the Economic Potentials of Apocynum pictum, Chinese Red Date and Cotton in Xinjiang, China SO SUSTAINABILITY LA English DT Article DE Tarim River; cotton; A. pictum; Chinese red date; cost-revenue analysis ID PROPERTY-RIGHTS; RIVER; FUTURE; CONSUMPTION; VEGETATION; RESOURCES; DYNAMICS AB This study explores a paradigm of sustainable land use in the oases along the Tarim River of northwest China, where a fragile, semi-arid riparian ecosystem is being damaged by excessive land and water use for agriculture, especially for the growing of cotton. The reliance of agriculture on water-demanding cash crops in this region poses a grave threat to survival of the natural Tugai vegetation in the area and to the long-term sustainability of the region. We explored the hypothesis that the species Apocynum pictum (A. pictum), known as Lop-Kendir by locals, and the Chinese red date (Zyzyphus jujube) may act as sustainable crop substitutes for the region, thereby replacing the widely distributed cash crop of cotton that has high water demands. Therefore, we investigated current utilization and cost-revenue structure of these two alternative plants and compared the results to cotton. Three natural resource management types of A. pictum were both identified in the wild and cultivation, with cost-revenue analysis carried out for each. The results show that all three types of institutional arrangements of natural resources, which are namely open access, ranching and farming, were present in our study and at various levels for A. pictum.A. pictum farming costs 16,250.25 yuan/ha, generates 49,014.45 yuan/ha of revenue from raw materials and brings a profit of 32,764.2 yuan/ha, which is the highest of all three cash crops compared. The Chinese government encourages Chinese red date plantations with a Grain for green campaign in the Tarim Basin with this plant being more profitable than cotton, which could serve to diversify the region's agriculture. We conclude that A. pictum offers opportunities for the restoration of vegetation in riparian ecosystems on salinized sites under the arid conditions of the Tarim Basin. Furthermore, it can serve as a viable land-use alternative to cotton for cash crop agriculture, as it may generate a certain income in the form of tea and fibers as well as fodder for livestock. C1 [Rouzi, Aihemaitijiang] Xinjiang Univ, Ecol Postdoc Res Stn, Urumqi 830046, Peoples R China. [Rouzi, Aihemaitijiang; Halik, Umut] Xinjiang Univ, Minist Educ, Key Lab Oasis Ecol, Urumqi 830046, Peoples R China. [Halik, Umut] Xinjiang Univ, Coll Resources & Environm Sci, Urumqi 830046, Peoples R China. [Thevs, Niels] World Agroforestry Ctr, 138 Toktogol St, Bishkek 720001, Kyrgyzstan. [Thevs, Niels] Univ Cent Asia, 138 Toktogol St, Bishkek 720001, Kyrgyzstan. [Welp, Martin] Univ Appl Sci, Eberswalde Univ Sustainable Dev, Fac Forest & Environm, Alfred Moeller Str 1, D-16225 Eberswalde, Germany. [Aishan, Tayierjiang] Xinjiang Univ, Inst Arid Ecol & Environm, Urumqi 830046, Peoples R China. RP Halik, U (corresponding author), Xinjiang Univ, Minist Educ, Key Lab Oasis Ecol, Urumqi 830046, Peoples R China.; Halik, U (corresponding author), Xinjiang Univ, Coll Resources & Environm Sci, Urumqi 830046, Peoples R China. EM ahmadjan_1983@yahoo.com; halik@xju.edu.cn; N.Thevs@cgiar.org; martin.welp@hnee.de; tayirjan@xju.edu.cn RI Halik, Umut/H-5150-2019 OI Halik, Umut/0000-0003-0533-8759; Aishan, Tayierjiang/0000-0002-0213-0680 FU National Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC) [U1703102, 31700386]; EcoCAR project of the Volkswagen Foundation [88497]; SuMaRiO project of the German Federal Ministry of Education and Research [01LL0918D]; Thousand Youth Talents Plan of China: Xinjiang Projects FX This work is supported by National Natural Science Foundation of China (Grant No. U1703102, 31700386), EcoCAR project of the Volkswagen Foundation (Grant No. 88497), SuMaRiO project of the German Federal Ministry of Education and Research (Grant No. 01LL0918D), and Thousand Youth Talents Plan of China: Xinjiang Projects. We thank Maierdang Keyimu, Zulpiya Mamat for assistance during the fieldwork. We also want to thank the anonymous reviewers for their valuable and constructive comments and suggestions. CR Adams G., 2015, EC OUTLOOK US COTTON Aishan T., 2013, ENVIRON EARTH SCI, V73, P533 Barbier E. B., 2007, NATURAL RESOURCES EC Bekes F., 1996, RIGHTS NATURE ECOLOG, P127 Berljand S, 1950, AGROTECHNOLOGY KENDI Chapagain AK, 2006, ECOL ECON, V60, P186, DOI 10.1016/j.ecolecon.2005.11.027 Cyffka Bernd, 2013, [Geography, Environment, Sustainability, Geography, Environment, Sustainability], V6, P77 Dean R., 2010, PACIFIC RIM LAW POLI, V19, P121 Fan Z, 2000, RES WATER RESOURCES Feike T, 2017, AGR WATER MANAGE, V187, P1, DOI 10.1016/j.agwat.2017.03.012 Feike T, 2015, ENVIRON EARTH SCI, V73, P517, DOI 10.1007/s12665-014-3108-x Gries D, 2003, PLANT CELL ENVIRON, V26, P725, DOI 10.1046/j.1365-3040.2003.01009.x Guo Y, 2016, J HYDROL, V540, P257, DOI 10.1016/j.jhydrol.2016.06.033 Hao XM, 2008, WATER RESOUR MANAG, V22, P1159, DOI 10.1007/s11269-007-9218-4 HARDIN G, 1968, SCIENCE, V162, P1243, DOI 10.1126/science.162.3859.1243 He R.Y., 1997, CHINAS FIBRE CROPS, V19, P21 Hilmi M., 2006, EC CONCEPTS MARKET O Ho Peter, 2005, I TRANSITION LAND OW Hoppe T., 1992, CHINESISCHE AGRARPOL Hou P, 2007, J ENVIRON MANAGE, V83, P371, DOI 10.1016/j.jenvman.2005.12.026 ICTSD, 2013, COTT TRENDS GLOB PRO Jin X., 2012, P INT C ENV AGR FOOD, P11 Kung JKS, 1997, CHINA J, V38, P33, DOI 10.2307/2950334 Ling Q, 2017, AGR ECOSYST ENVIRON, V247, P343, DOI 10.1016/j.agee.2017.06.031 Liu SY, 1998, WORLD DEV, V26, P1789, DOI 10.1016/S0305-750X(98)00088-6 Ma YX, 1999, CHIN J MOD DEV TRADI, V9, P335 MacDonald S., 2015, REPORT EC RES SERVIC Mafios E, 2017, ENVIRON SCI TECHNOL, V51, P2593, DOI 10.1021/acs.est.6b05426 Mamitimin Y, 2015, WATER-SUI, V7, P5617, DOI 10.3390/w7105617 Micklin P, 2016, ENVIRON EARTH SCI, V75, DOI 10.1007/s12665-016-5614-5 Mitchell D, 2017, FOOD SECUR, V9, P697, DOI 10.1007/s12571-017-0690-2 Mullan K, 2011, WORLD DEV, V39, P123, DOI 10.1016/j.worlddev.2010.08.009 National Bureau of Statistics of China, 2013, CHIN STAT YB Ostrom E., 1996, RIGHTS NATURE ECOLOG, P127 Ouyang J.Q., 2008, EC TRIB, V73, P40 Palmer M.A., 2016, FDN RESTORATION ECOL Ritchie J., 2003, QUALITATIVE RES PRAC Rouzi A., 2016, THESIS SCHLAGER E, 1992, LAND ECON, V68, P249, DOI 10.2307/3146375 Shangguan D, 2009, PROG NAT SCI-MATER, V19, P727, DOI 10.1016/j.pnsc.2008.11.002 Shi Y., 2005, XINJIANG AGR SCI, V6, P14 Tang D.S., 2010, MANAGEMENT WATER RIG Tao H, 2011, J HYDROL, V400, P1, DOI 10.1016/j.jhydrol.2011.01.016 Thevs N, 2012, J APPL BOT FOOD QUAL, V85, P159 Thevs N., 2011, J CURR CHIN AFF, V40, P113 Thevs N, 2013, GEOOKO CHINA, V34, P50 Thevs N, 2008, PHYTOCOENOLOGIA, V38, P65, DOI 10.1127/0340-269X/2008/0038-0065 Thevs N, 2008, FORESTRY, V81, P45, DOI 10.1093/forestry/cpm043 Thevs N, 2015, J ARID ENVIRON, V112, P87, DOI 10.1016/j.jaridenv.2014.05.028 Tisdel C., 2003, WORKING PAPERS U QUE, P1 Tisdell CA, 2005, ECONOMICS OF ENVIRONMENTAL CONSERVATION, SECOND EDITION, P1 UN Water, 2012, 4 UN UNESCO Wang LL, 2007, CARBOHYD POLYM, V69, P391, DOI 10.1016/j.carbpol.2006.12.028 Xinjiang UAR Development and Reform Committee, 2013, XINJ AGR COST REV MA XJSYB, 2012, XINJ STAT YB 2012 Yao SR, 2013, HORTSCIENCE, V48, P672, DOI 10.21273/HORTSCI.48.6.672 Zhang C., 2001, COTTON DISASTER DISA [张磊 Zhang Lei], 2003, [新疆农业科学, Xinjiang agricultural sciences], V40, P172 Zhang S., 2002, PLANT J NW CHINA, V22, P1 Zhang W. M., 2006, CHIN WILD PLANT RESO, V25, P33 Zhao RF, 2013, ENVIRON EARTH SCI, V68, P591, DOI 10.1007/s12665-012-1763-3 Zhao X., 2009, 157 U QUEENSL BRISB Zhu YH, 2016, ECOL ENG, V94, P629, DOI 10.1016/j.ecoleng.2016.06.107 NR 63 TC 5 Z9 5 U1 0 U2 9 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND EI 2071-1050 J9 SUSTAINABILITY-BASEL JI Sustainability PD JAN PY 2018 VL 10 IS 1 AR 35 DI 10.3390/su10010035 PG 17 WC Green & Sustainable Science & Technology; Environmental Sciences; Environmental Studies SC Science & Technology - Other Topics; Environmental Sciences & Ecology GA FW1TN UT WOS:000425082600034 OA Green Submitted, gold DA 2021-10-15 ER PT J AU Liu, XM Li, CY Fang, KJ Shu, DW AF Liu, Xiu-Ming Li, Cai-Yan Fang, Kuan-Jun Shu, Da-Wu TI A novel approach for Apocynum venetum/cotton blended fabrics modification by cationic polymer nanoparticles SO CHINESE CHEMICAL LETTERS LA English DT Article DE A. venetum/cotton blended fabrics; Cationic copolymer nanoparticles; Modification; Acid dye; Morphology ID THERMAL-PROPERTIES; DELIVERY-SYSTEM; FIBER SURFACES; ADSORPTION; LATEX; DEPOSITION; PARTICLES; SILICA AB Apocynum venetum/cotton blended fabrics have been subjected to treat with cationic polymer nanoparticles followed by dyeing with Acid Red B, and then studied for their dyeing performance and morphology. The investigation on the effect of modification factors on the blended fabrics indicated that the 0.5 g/L nanoparticles concentration, 60 min treating time, 60 degrees C treating temperature and pH 6-8 are the optimum modification process to improve the dyeability of acid dye. In addition, the SEM images show that nanoparticles can be adsorbed on the surface of modified A. venetum or cotton fibers, and the two different fibers could have the same adsorption ability to Acid Red B. (C) 2016 Chinese Chemical Society and Institute of Materia Medica, Chinese Academy of Medical Sciences. Published by Elsevier B.V. All rights reserved. C1 [Liu, Xiu-Ming; Li, Cai-Yan; Fang, Kuan-Jun; Shu, Da-Wu] Tianjin Polytech Univ, Sch Text, Tianjin 300387, Peoples R China. RP Fang, KJ (corresponding author), Tianjin Polytech Univ, Sch Text, Tianjin 300387, Peoples R China. EM kuanjunfang@gmail.com FU National Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC) [51173086]; National Key Technology RD ProgramNational Key Technology R&D Program [2014BAC13B02, 2014BAE01B01]; Industrialization Projects of Major Independent Innovation Achievements of Shandong Province [2012ZHZX1A0914]; Application Basis and Cutting-edge Technology Research Project of Tianjin [14JCZDJC37200] FX This work is supported by National Natural Science Foundation of China (No. 51173086), National Key Technology R&D Program, (Nos. 2014BAC13B02 and 2014BAE01B01), Industrialization Projects of Major Independent Innovation Achievements of Shandong Province (No. 2012ZHZX1A0914), and Application Basis and Cutting-edge Technology Research Project of Tianjin (No. 14JCZDJC37200). CR Darbha GK, 2012, LANGMUIR, V28, P6606, DOI 10.1021/la3003146 El-Shekeil YA, 2014, MATER DESIGN, V58, P130, DOI 10.1016/j.matdes.2014.01.047 El-Shekeil YA, 2012, MATER DESIGN, V40, P299, DOI 10.1016/j.matdes.2012.04.003 Frone AN, 2013, CARBOHYD POLYM, V91, P377, DOI 10.1016/j.carbpol.2012.08.054 [韩冬梅 Han Dongmei], 2015, [功能高分子学报, Journal of Functional Polymer], V28, P220 Heidari H, 2012, J CHROMATOGR A, V1245, P1, DOI 10.1016/j.chroma.2012.04.046 Kamata K, 2008, J NAT MED-TOKYO, V62, P160, DOI 10.1007/s11418-007-0202-3 Kleimann J, 2006, J COLLOID INTERF SCI, V303, P460, DOI 10.1016/j.jcis.2006.08.006 Kong XZ, 2009, POLYMER, V50, P4220, DOI 10.1016/j.polymer.2009.06.041 Liu DM, 2014, COLLOID SURFACE A, V452, P82, DOI 10.1016/j.colsurfa.2014.03.079 Liu W, 2013, CHEM ENG RES DES, V91, P2748, DOI 10.1016/j.cherd.2013.05.003 Liu XM, 2015, CHINESE CHEM LETT, V26, P1174, DOI 10.1016/j.cclet.2015.05.006 Liu XM, 2015, FIBER POLYM, V16, P1237, DOI 10.1007/s12221-015-1237-9 Mahjoub R, 2014, CONSTR BUILD MATER, V55, P103, DOI 10.1016/j.conbuildmat.2014.01.036 Ott G, 2002, J CONTROL RELEASE, V79, P1, DOI 10.1016/S0168-3659(01)00545-4 Patrizi ML, 2009, POLYMER, V50, P467, DOI 10.1016/j.polymer.2008.11.023 Sarier N, 2012, THERMOCHIM ACTA, V540, P7, DOI 10.1016/j.tca.2012.04.013 Teixeira H, 1999, PHARMACEUT RES, V16, P30, DOI 10.1023/A:1018806425667 NR 18 TC 5 Z9 5 U1 2 U2 28 PU ELSEVIER SCIENCE INC PI NEW YORK PA STE 800, 230 PARK AVE, NEW YORK, NY 10169 USA SN 1001-8417 EI 1878-5964 J9 CHINESE CHEM LETT JI Chin. Chem. Lett. PD MAY PY 2017 VL 28 IS 5 BP 955 EP 959 DI 10.1016/j.cclet.2016.12.007 PG 5 WC Chemistry, Multidisciplinary SC Chemistry GA EW4AO UT WOS:000402444600006 DA 2021-10-15 ER PT J AU Wang, YY Guo, DF AF Wang, Yan-yun Guo, Du-fa TI Response of Soil Fungi Community Structure to Salt Vegetation Succession in the Yellow River Delta SO CURRENT MICROBIOLOGY LA English DT Article ID ARBUSCULAR MYCORRHIZAL FUNGI; MICROBIAL COMMUNITY; AEROBIC GRANULATION; DYNAMICS; PLANTS AB High-throughput sequencing technology was used to reveal the composition and distribution of fungal community structure in the Yellow River Delta under bare land and four kinds of halophyte vegetation (saline seepweed, Angiospermae, Imperata and Apocynum venetum [A. venetum]). The results showed that the soil quality continuously improved with the succession of salt vegetation types. The soil fungi richness of mild-salt communities (Imperata and A. venetum) was relatively higher, with Shannon index values of 5.21 and 5.84, respectively. The soil fungi richness of severe-salt-tolerant communities (saline seepweed, Angiospermae) was relatively lower, with Shannon index values of 4.64 and 4.66, respectively. The UniFrac metric values ranged from 0.48 to 0.67 when the vegetation was in different succession stages. A total of 60,174 valid sequences were obtained for the five vegetation types, and they were classified into Ascomycota, Basidiomycota, Chytridiomycota, Glomeromycota and Mucoromycotina. Ascomycota had the greatest advantage among plant communities of Imperata and A. venetum, as indicated by relative abundances of 2.69 and 69.97 %, respectively. Basidiomycota had the greatest advantage among mild-salt communities of saline seepweed and Angiospermae, with relative abundances of 9.43 and 6.64 %, respectively. Soil physical and chemical properties were correlated with the distribution of the fungi, and Mucor was significantly correlated with soil moisture (r = 0.985; P < 0.01). Soil quality, salt vegetation and soil fungi were influenced by each other. C1 [Wang, Yan-yun; Guo, Du-fa] Shandong Normal Univ, Coll Geog & Environm, 88 Wenhua Donglu, Jinan 250014, Shandong, Peoples R China. RP Guo, DF (corresponding author), Shandong Normal Univ, Coll Geog & Environm, 88 Wenhua Donglu, Jinan 250014, Shandong, Peoples R China. EM guodufa@163.com FU Natural Science Foundation of Shandong ProvinceNatural Science Foundation of Shandong Province [ZR2012DM013]; Promotional research fund for excellent young and middle-aged scientisits of Shandong Province [BS2014HZ019]; Project of Shandong Province Higher Educational Science and Technology Program [J15LE07] FX This work was supported by the Natural Science Foundation of Shandong Province under Grant (No. ZR2012DM013), Promotional research fund for excellent young and middle-aged scientisits of Shandong Province (No. BS2014HZ019) and A Project of Shandong Province Higher Educational Science and Technology Program (No. J15LE07). CR An DY, 2016, INT J REMOTE SENS, V37, P455, DOI 10.1080/01431161.2015.1129562 Babu AG, 2011, CURR MICROBIOL, V63, P273, DOI 10.1007/s00284-011-9974-5 Chen WF, 2010, ACTA AGRESTIA SIN, V6, P859 Dodd JC, 2000, PLANT SOIL, V226, P131, DOI 10.1023/A:1026574828169 Filion M, 1999, NEW PHYTOL, V141, P525, DOI 10.1046/j.1469-8137.1999.00366.x Gao YC, 2015, APPL SOIL ECOL, V86, P165, DOI 10.1016/j.apsoil.2014.10.011 Guan Bo, 2011, Huanjing Kexue, V32, P2422 [何苑皞 He Yuanhao], 2014, [生态学报, Acta Ecologica Sinica], V34, P2725 Kettler TA, 2001, SOIL SCI SOC AM J, V65, P849, DOI 10.2136/sssaj2001.653849x Kevin PS, 1999, ANNU REV PHYTOPATHOL, V37, P473 Kong Q, 2016, BIORESOURCE TECHNOL, V210, P94, DOI 10.1016/j.biortech.2016.02.051 Kong Q, 2015, INT BIODETER BIODEGR, V102, P375, DOI 10.1016/j.ibiod.2015.04.020 Kong Q, 2014, J HAZARD MATER, V279, P511, DOI 10.1016/j.jhazmat.2014.07.036 O'Donnell AG, 2001, PLANT SOIL, V232, P135, DOI 10.1023/A:1010394221729 Schloss PD, 2009, APPL ENVIRON MICROB, V75, P7537, DOI 10.1128/AEM.01541-09 Timonen S, 1996, FEMS MICROBIOL ECOL, V19, P171 Wang FY, 2001, BIODIVERS SCI, V4, P389 Wang HY, 2010, ANN M CHIN SOC FUNG, P731 Wang ZB, 2016, DESALIN WATER TREAT, V57, P23516, DOI 10.1080/19443994.2015.1137232 Wright SF, 1998, PLANT SOIL, V198, P97, DOI 10.1023/A:1004347701584 Yao H, 2000, MICROB ECOL, V40, P223 NR 21 TC 5 Z9 7 U1 1 U2 43 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0343-8651 EI 1432-0991 J9 CURR MICROBIOL JI Curr. Microbiol. PD OCT PY 2016 VL 73 IS 4 BP 595 EP 601 DI 10.1007/s00284-016-1099-4 PG 7 WC Microbiology SC Microbiology GA DY5ZJ UT WOS:000385184100019 PM 27449214 DA 2021-10-15 ER PT J AU Gibson, DM Vaughan, RH Biazzo, J Milbrath, LR AF Gibson, Donna M. Vaughan, Richard H. Biazzo, Jeromy Milbrath, Lindsey R. TI Exploring the Feasibility of Sclerotium rolfsii VrNY as a Potential Bioherbicide for Control of Swallowworts (Vincetoxicum spp.) SO INVASIVE PLANT SCIENCE AND MANAGEMENT LA English DT Article DE Biological control; dog-strangling vine; host specificity; invasive weeds; mycoherbicide ID BIOLOGICAL-CONTROL AGENT; OXALIC-ACID PRODUCTION; CYNANCHUM-ROSSICUM; MYCELIAL BIOMASS; WORT; PHYTOTOXICITY; PASTURE; BLIGHT; NIGRUM; FUNGI AB Pale swallowwort (PSW) and black swallowwort (BSW) are two viney milkweeds native to Europe that have increasingly become problematic and noxious weeds in eastern North America. An indigenous fungal isolate, Sclerotium rolfsii VrNY, was discovered causing significant mortality in a dense stand of PSW in a park in upstate New York. Although this fungus is a known pathogen with a broad host range, we evaluated the host potential of S. rolfsii VrNY on a limited range of related and nonrelated U.S. species as a critical first step to assess its suitability as a mycoherbicide for PSW and BSW. In addition, PSW and BSW produce the specific stereoisomer (-)-antofine, a compound with antimicrobial and phytotoxic activity that could inhibit the pathogen. Tests revealed this compound had no effect on S. rolfsii VrNY. This isolate caused significant mortality on all broadleaf plants tested (Asclepias syriaca, Asclepias curassavica, Apocynum cannabinum, Monarda fistulosa, Rudbeckia hirta, PSW, BSW) with the exception of Glycine max, and had no effect on the monocots Schizachyrium scoparium and Zea mays. Although these laboratory studies indicate that most broadleaf vegetation may be susceptible to the pathogen, S. rolfsii might have potential as a mycoherbicide in natural eco-niche environments where invasive PSW and BSW have already become the predominant vegetation. Further laboratory testing of S. rolfsii and limited field testing at the initial discovery site are needed in order to prevent premature rejection of this isolate as a potential management tool against these highly invasive weeds. C1 [Gibson, Donna M.; Vaughan, Richard H.; Biazzo, Jeromy; Milbrath, Lindsey R.] ARS, USDA, Robert W Holley Ctr Agr & Hlth, Ithaca, NY 14853 USA. RP Gibson, DM (corresponding author), ARS, USDA, Robert W Holley Ctr Agr & Hlth, Ithaca, NY 14853 USA. EM Donna.Gibson@ars.usda.gov FU Monroe County Parks Department, NY FX We gratefully acknowledge the support of the Monroe County Parks Department, NY, which have allowed us access to the discovery site for pursuing this research. Mention of a trademark, proprietary product, or vendor does not constitute a guarantee or warranty of the product by the U.S. Department of Agriculture and does not imply its approval to the exclusion of other products or vendors that may also be suitable. CR Averill KM, 2011, INVAS PLANT SCI MANA, V4, P198, DOI 10.1614/IPSM-D-10-00034.1 Averill KM, 2008, INVAS PLANT SCI MANA, V1, P196, DOI 10.1614/IPSM-07-036.1 Barton J, 2012, BIOCONTROL, V57, P289, DOI 10.1007/s10526-011-9401-7 Berner D, 2011, PLANT DIS, V95, P1586, DOI 10.1094/PDIS-04-11-0318 Bongard CL, 2013, PLANT ECOL EVOL, V146, P45, DOI 10.5091/plecevo.2013.739 Bourdot G. W., 2011, New Zealand Plant Protection, V64, P81 Bourdot GW, 2006, BIOCONTROL SCI TECHN, V16, P345, DOI 10.1080/09583150500531966 Bourdot GW, 2000, BIOCONTROL SCI TECHN, V10, P411, DOI 10.1080/09583150050115007 Briere SC, 2000, BIOCONTROL SCI TECHN, V10, P281, DOI 10.1080/09583150050044556 Cain N. P., 2011, P 65 ANN M NE WEED S, P38 Chalak M, 2011, WEED BIOL MANAG, V11, P137, DOI 10.1111/j.1445-6664.2011.00412.x DiTommaso A, 2005, CAN J PLANT SCI, V85, P243, DOI 10.4141/P03-056 DiTommaso A, 2013, INVAS PLANT SCI MANA, V6, P381, DOI 10.1614/IPSM-D-12-00078.1 Douglass CH, 2011, INVAS PLANT SCI MANA, V4, P133, DOI 10.1614/IPSM-D-10-00021.1 Douglass CH, 2008, THESIS Edmunds BA, 2003, PLANT HLTH PROGR, DOI [10.1094/PHP-2003-1201-01-RS, DOI 10.1094/PHP-2003-1201-01-RS] Endress ME, 2007, ANN MO BOT GARD, V94, P259, DOI 10.3417/0026-6493(2007)94[259:AIATEA]2.0.CO;2 Gibson DM, 2012, PLANT DIS, V96, P456, DOI 10.1094/PDIS-08-11-0692 Gibson DM, 2011, J CHEM ECOL, V37, P871, DOI 10.1007/s10886-011-9994-4 Hallett SG, 2005, WEED SCI, V53, P404, DOI 10.1614/WS-04-157R2 Hazlehurst AF, 2012, ENVIRON ENTOMOL, V41, P841, DOI 10.1603/EN12093 JENKINS SF, 1986, PLANT DIS, V70, P614, DOI 10.1094/PD-70-614 Lawlor FM, 2002, WEED SCI, V50, P179, DOI 10.1614/0043-1745(2002)050[0179:ROSWTH]2.0.CO;2 Magidow LC, 2013, INVAS PLANT SCI MANA, V6, P281, DOI 10.1614/IPSM-D-12-00073.1 Markgraf F, 1972, FLORA EUROPAEA, V3, P71 McKague CI, 2005, CAN FIELD NAT, V119, P525, DOI 10.22621/cfn.v119i4.182 MEHAN VK, 1994, INT J PEST MANAGE, V40, P313, DOI 10.1080/09670879409371906 Mervosh T. L., 2009, P 63 ANN M NE WEED S, P76 Mogg C, 2008, BIOCHEM SYST ECOL, V36, P383, DOI 10.1016/j.bse.2008.01.001 Mullen J., 2001, PLANT HLTH INSTR, DOI [10.1094/PHI-I-2001-0104-01, DOI 10.1094/PHI-I-2001-0104-01] OBEE D. J., 1937, TRANS KANSAS ACAD SCI, V40, P89, DOI 10.2307/3625393 PUNJA ZK, 1985, ANNU REV PHYTOPATHOL, V23, P97, DOI 10.1146/annurev.py.23.090185.000525 Punja ZK, 1988, GENETICS PLANT PATHO, P523 Remesal E, 2012, PLANT PATHOL, V61, P739, DOI 10.1111/j.1365-3059.2011.02552.x Sands DC, 2001, NATO SCI SER I LIFE, V339, P3 Schnick PJ, 2002, WEED SCI, V50, P173, DOI 10.1614/0043-1745(2002)050[0173:DASMTC]2.0.CO;2 Shaheen IY, 2010, BIOCONTROL SCI TECHN, V20, P57, DOI 10.1080/09583150903419520 Sheeley SE, 1996, B TORREY BOT CLUB, V123, P148, DOI 10.2307/2996072 Smith LL, 2008, INVAS PLANT SCI MANA, V1, P142, DOI 10.1614/IPSM-07-010.1 Sokal R. R, 1995, BIOMETRY Tang W, 2013, BIOCONTROL SCI TECHN, V23, P1123, DOI 10.1080/09583157.2013.820255 Tang W, 2011, BIOCONTROL SCI TECHN, V21, P917, DOI 10.1080/09583157.2011.596274 Tang W, 2011, CROP PROT, V30, P1315, DOI 10.1016/j.cropro.2011.04.002 Weed AS, 2011, J APPL ENTOMOL, V135, P700, DOI 10.1111/j.1439-0418.2010.01594.x Weed AS, 2011, ENVIRON ENTOMOL, V40, P1427, DOI 10.1603/EN11106 Weed AS, 2010, BIOL CONTROL, V53, P214, DOI 10.1016/j.biocontrol.2009.12.004 NR 46 TC 5 Z9 5 U1 1 U2 39 PU CAMBRIDGE UNIV PRESS PI CAMBRIDGE PA EDINBURGH BLDG, SHAFTESBURY RD, CB2 8RU CAMBRIDGE, ENGLAND SN 1939-7291 EI 1939-747X J9 INVAS PLANT SCI MANA JI Invasive Plant Sci. Manag. PD APR-JUN PY 2014 VL 7 IS 2 BP 320 EP 327 DI 10.1614/IPSM-D-13-00086.1 PG 8 WC Plant Sciences SC Plant Sciences GA AK5PT UT WOS:000338479000013 DA 2021-10-15 ER PT J AU Wang, L Jiang, L Zhao, ZY Tian, CY AF Wang, Lei Jiang, Li Zhao, Zhen-Yong Tian, Chang-Yan TI Lithium content of some teas and their infusions consumed in China SO FOOD SCIENCE AND BIOTECHNOLOGY LA English DT Article DE infusion; lithium; luobuma; tea ID CAMELLIA-SINENSIS; ALUMINUM; LEAVES AB Interest into the benefits of lithium (Li) has raised the issue that there are few data available on amounts of Li contained in different types of teas. Li concentrations of 30 teas and their infusions consumed in China were determined by inductively coupled plasma mass spectroscopy (ICP-MS). The highest Li content was found in Luobuma (Apocynum venetum) tea (> 11 ppm). Li contents of other types of teas ranged from 0.02 to 0.6 ppm. According to our data and calculations, a daily consumption of 10 g Luobuma tea can give > 85 mu g Li intake. This is more than 85% of the minimum human adult Li requirement. However, other types of teas (10 g/day) can only provide < 3% of the minimum Li requirement. C1 [Wang, Lei; Jiang, Li; Zhao, Zhen-Yong; Tian, Chang-Yan] Chinese Acad Sci, Xinjiang Inst Ecol & Geog, State Key Lab Desert & Oasis Ecol, Urumqi 830011, Xinjiang, Peoples R China. RP Tian, CY (corresponding author), Chinese Acad Sci, Xinjiang Inst Ecol & Geog, State Key Lab Desert & Oasis Ecol, Urumqi 830011, Xinjiang, Peoples R China. EM halophyte@gmail.com OI tian, zhang yan/0000-0002-8994-386X FU CAS Action-plan for West Development [KZCX2-XB3-07]; West Light Foundation of the Chinese Academy of SciencesChinese Academy of Sciences [XBBS201101] FX This research was supported by CAS Action-plan for West Development (KZCX2-XB3-07) and the West Light Foundation of the Chinese Academy of Sciences (XBBS201101). CR Aral H, 2008, ECOTOX ENVIRON SAFE, V70, P349, DOI 10.1016/j.ecoenv.2008.02.026 Chacko Sabu M, 2010, Chin Med, V5, P13, DOI 10.1186/1749-8546-5-13 DAWSON EB, 1972, DIS NERV SYST, V33, P546 Malheiro R, 2012, FOOD RES INT, V48, P148, DOI 10.1016/j.foodres.2012.03.005 McKenzie JS, 2010, FOOD CHEM, V123, P859, DOI 10.1016/j.foodchem.2010.05.007 Mehra A, 2007, FOOD CHEM, V100, P1456, DOI 10.1016/j.foodchem.2005.11.038 Mondal TK, 2004, PLANT CELL TISS ORG, V76, P195, DOI 10.1023/B:TICU.0000009254.87882.71 Ohgami H, 2009, BRIT J PSYCHIAT, V194, P464, DOI 10.1192/bjp.bp.108.055798 Ozcan MM, 2008, FOOD CHEM, V106, P1120, DOI 10.1016/j.foodchem.2007.07.042 Schrauzer GN, 2002, J AM COLL NUTR, V21, P14, DOI 10.1080/07315724.2002.10719188 Street R, 2007, FOOD CHEM, V104, P1662, DOI 10.1016/j.foodchem.2007.03.019 Vetter J, 2005, FOOD CHEM, V90, P31, DOI 10.1016/j.foodchem.2004.03.019 Wu CY, 2012, FOOD CHEM, V132, P144, DOI 10.1016/j.foodchem.2011.10.045 Yemane M, 2008, FOOD CHEM, V107, P1236, DOI 10.1016/j.foodchem.2007.09.058 Zhu YB, 2012, TRAC-TREND ANAL CHEM, V34, P152, DOI 10.1016/j.trac.2011.10.012 赖家平, 1999, [广东微量元素科学, Guangdong Trace Elements Science], V6, P64 NR 16 TC 5 Z9 8 U1 0 U2 14 PU KOREAN SOCIETY FOOD SCIENCE & TECHNOLOGY-KOSFOST PI SEOUL PA #605, KOREA SCI TECHNOL CENT, 635-4 YEOKSAM-DONG, KANGNAM-GU, SEOUL, 135-703, SOUTH KOREA SN 1226-7708 EI 2092-6456 J9 FOOD SCI BIOTECHNOL JI Food Sci. Biotechnol. PD FEB PY 2014 VL 23 IS 1 BP 323 EP 325 DI 10.1007/s10068-014-0045-0 PG 3 WC Food Science & Technology SC Food Science & Technology GA AB7VL UT WOS:000331998900045 DA 2021-10-15 ER PT J AU Wu, L Boyd, NS Cutler, GC Olson, AR AF Wu, Lin Boyd, Nathan S. Cutler, G. Christopher Olson, A. Randall TI Spreading Dogbane (Apocynum androsaemifolium) Development in Wild Blueberry Fields SO WEED SCIENCE LA English DT Article DE Degree days; plant growth models; nonlinear regression; weed management ID THERMAL TIME; WEED SURVEY; EMERGENCE; MODEL; PREDICTION AB Spreading dogbane is a common perennial weed in wild blueberry fields. It is highly competitive and spreads rapidly once established. Herbicides can provide effective control of spreading dogbane, but application timing is important. The emergence pattern, ramet height, and flowering time of spreading dogbane were observed in 2008 and 2009, and thermal-based emergence, growth, and development models were developed and used to estimate optimum herbicide application timing. Spreading dogbane emergence and height were described with a three-parameter, sigmoid, nonlinear regression model, whereas flowering was described with a four-parameter, Weibull, nonlinear regression model. Spreading dogbane ramets initiated emergence soon after the biofix date of April 1. Peak emergence tended to occur at 420 growing degree days (GDD). Spreading dogbane reached its peak height by about 558 GDD. The maximum number of flowers per plant was reached at approximately 750 GDD. This study suggested that POST herbicides should be applied between 486 and 535 GDD to maximize efficacy. This time frame occurs after peak emergence and during early floral bud development. C1 [Wu, Lin; Boyd, Nathan S.; Cutler, G. Christopher; Olson, A. Randall] Nova Scotia Agr Coll, Dept Environm Sci, Truro, NS B2N 4V9, Canada. RP Boyd, NS (corresponding author), Nova Scotia Agr Coll, Dept Environm Sci, Truro, NS B2N 4V9, Canada. EM nsboyd@ufl.edu OI Cutler, Chris/0000-0002-4666-9987 FU Wild Blueberry Producers Association of Nova Scotia; Nova Scotia Department of Agriculture Technology Development program FX The authors would like to thank Scott White for his technical assistance, as well as the many summer students that worked on this project. This project was made possible by the support of the Wild Blueberry Producers Association of Nova Scotia and the Nova Scotia Department of Agriculture Technology Development 2000 program. CR Bashtanova UB, 2009, WEED SCI, V57, P584, DOI 10.1614/WS-09-069.1 Bergweiler CJ, 1999, ENVIRON POLLUT, V105, P333, DOI 10.1016/S0269-7491(99)00044-5 Bullied WJ, 2003, WEED SCI, V51, P886, DOI 10.1614/P2002-117 Cardina J, 2007, WEED SCI, V55, P455, DOI 10.1614/WS-07-005.1 Doll J. D., 1997, WEED SCI SOC AM ABST, V37, P90 Donald WW, 2000, WEED SCI, V48, P333, DOI 10.1614/0043-1745(2000)048[0333:ADDMOC]2.0.CO;2 Forcella F, 2000, FIELD CROP RES, V67, P123, DOI 10.1016/S0378-4290(00)00088-5 Ghersa CM, 1995, WEED RES, V35, P461, DOI 10.1111/j.1365-3180.1995.tb01643.x Hacault KM, 2006, WEED SCI, V54, P172, DOI 10.1614/WS-05-083R.1 Izquierdo J, 2009, WEED SCI, V57, P660, DOI 10.1614/WS-09-043.1 Lapointe L, 2001, CAN J PLANT SCI, V81, P471, DOI 10.4141/P00-096 Lawson AN, 2006, WEED SCI, V54, P873, DOI 10.1614/WS-05-169.I.1 Leblanc ML, 2003, WEED SCI, V51, P718, DOI 10.1614/P2002-108 Martinson K, 2007, WEED SCI, V55, P584, DOI 10.1614/WS-07-059.1 MCCULLY KV, 1991, WEED SCI, V39, P180, DOI 10.1017/S0043174500071447 Myers MW, 2004, WEED SCI, V52, P913, DOI 10.1614/WS-04-025R Nowland JL, 1973, 17 WW FRIES SONS LTD RANSOM JK, 1983, WEED SCI, V31, P766, DOI 10.1017/S0043174500070697 Rosales-Robles E, 2003, WEED SCI, V51, P356, DOI 10.1614/0043-1745(2003)051[0356:AMTPTI]2.0.CO;2 ROSS MA, 1999, APPL WEED SCI Sampson D.L., 1990, WEEDS E CANADIAN BLU SATORRE EH, 1985, WEED RES, V25, P103, DOI 10.1111/j.1365-3180.1985.tb00624.x Shirtliffe SJ, 2000, WEED SCI, V48, P555, DOI 10.1614/0043-1745(2000)048[0555:AFDASS]2.0.CO;2 WEBB KT, 1991, 19 RES BRANCH AGR CA Webster TM, 1999, WEED SCI, V47, P524, DOI 10.1017/S0043174500092213 Webster TM, 2000, WEED SCI, V48, P728, DOI 10.1614/0043-1745(2000)048[0728:SATEPO]2.0.CO;2 WOODSON RE, 1930, ANN MO BOT GARD, V17, P1, DOI DOI 10.2307/2394074 Wu L., 2010, THESIS NOVA SCOTIA A YARBOROUGH D E, 1989, Acta Horticulturae (Wageningen), P344 Yarborough DE, 1997, ACTA HORTIC, P293, DOI 10.17660/ActaHortic.1997.446.44 NR 30 TC 5 Z9 5 U1 0 U2 17 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0043-1745 EI 1550-2759 J9 WEED SCI JI Weed Sci. PD JUL-SEP PY 2013 VL 61 IS 3 BP 422 EP 427 DI 10.1614/WS-D-12-00156.1 PG 6 WC Agronomy; Plant Sciences SC Agriculture; Plant Sciences GA 176QX UT WOS:000321320300012 DA 2021-10-15 ER PT J AU Zhang, YC Liu, CM Qi, YJ Zhang, ZK AF Zhang, Yuchi Liu, Chunming Qi, Yanjuan Zhang, Zhengkun TI Comparison of the constituents of Apocynum venetum and acidified Apocynum venetum by liquid chromatography-UV diode array detection-electrospray ionisation mass spectrometry SO MEDICINAL CHEMISTRY RESEARCH LA English DT Article DE Apocynum venetum; Acidificied Apocynum venetum ID HYPERICUM-PERFORATUM; PERFORMANCE; IDENTIFICATION; LEAVES; HYPERFORIN AB A liquid chromatography-electrospray ionization mass spectrometry (LC-ESI-MS) method was developed for the analysis and identification of constituents in plant extracts from the leaves of Apocynum venetum (AV) and acidified A. venetum (AAV). The content of the compounds in AV or its acidified product was found to be variable qualitatively and highly quantitatively. Seventeen major compounds were separated and identified from AV and AAV (Table 1). The identification of the constituents (compounds 1, 3, 5-7, 9-17) in the AV and AAV extracts was based on matching their LC retention time, UV spectrum and the detection of the molecular ions and the fragment ions of the compounds obtained from MS/MS experiments with those of authentic standards and data reported in the literature. The main difference between AV and AAV is that the extract of AV contains high level of quercetin-3-O-beta-d-glucosyl-beta-d-glucopyranosides, quercetin-3-O-glucuronide, quercetin-3-O-rutinoside, quercetin-3-O-glucoside, acetylated quercetin-3-O-galactoside, biapigenin and adhyperforin, while that of AAV had high contents of quercetin-3-O-galactoside, kaempferol-3-O-galactoside, amentoflavone and adhyperforin, which are the main constituents to differentiate AV and AAV. C1 [Zhang, Yuchi; Liu, Chunming; Qi, Yanjuan] Changchun Normal Univ, Cent Lab, Changchun 130032, Peoples R China. [Zhang, Zhengkun] Jilin Acad Agr Sci, Inst Plant Protect, Gongzhuling 136100, Peoples R China. RP Liu, CM (corresponding author), Changchun Normal Univ, Cent Lab, 677 Changji N Rd, Changchun 130032, Peoples R China. EM chunmingliu2000@yahoo.com.cn FU National Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC) [30970299]; Major Project of Jilin Provincial Science and Technology Department [20090936] FX This work was supported by the National Natural Science Foundation of China (No. 30970299) and Major Project of Jilin Provincial Science and Technology Department (No. 20090936). CR Butterweck V, 2001, BIOL PHARM BULL, V24, P848, DOI 10.1248/bpb.24.848 Colovic M, 2008, J CHROMATOGR B, V863, P74, DOI 10.1016/j.jchromb.2008.01.014 Cuyckens F, 2004, J MASS SPECTROM, V39, P1, DOI 10.1002/jms.622 Cuyckens F, 2001, J MASS SPECTROM, V36, P1203, DOI 10.1002/jms.224 de Rosso VV, 2008, J FOOD COMPOS ANAL, V21, P291, DOI 10.1016/j.jfca.2008.01.001 Fabre N, 2001, J AM SOC MASS SPECTR, V12, P707, DOI 10.1016/S1044-0305(01)00226-4 Grundmann O, 2007, J ETHNOPHARMACOL, V110, P406, DOI 10.1016/j.jep.2006.09.035 Hvattum E, 2004, J MASS SPECTROM, V39, P1570, DOI 10.1002/jms.756 Karioti A, 2010, J PHARMACEUT BIOMED, V53, P15, DOI 10.1016/j.jpba.2010.03.002 Keller JH, 2003, ANAL CHEM, V75, P6084, DOI 10.1021/ac034520z Kim DW, 2000, J ETHNOPHARMACOL, V72, P53, DOI 10.1016/S0378-8741(00)00197-5 Lhuillier A, 2007, J CHROMATOGR A, V1160, P13, DOI 10.1016/j.chroma.2007.03.038 Li Li-Hong, 2006, Zhongguo Zhong Yao Za Zhi, V31, P1337 Ma YL, 1997, RAPID COMMUN MASS SP, V11, P1357 Mauri P, 2000, RAPID COMMUN MASS SP, V14, P95, DOI 10.1002/(SICI)1097-0231(20000130)14:2<95::AID-RCM843>3.0.CO;2-6 Parejo I, 2004, J AGR FOOD CHEM, V52, P1890, DOI 10.1021/jf030717g Pellati F, 2005, J CHROMATOGR A, V1088, P205, DOI 10.1016/j.chroma.2004.12.075 Pirker R, 2002, J CHROMATOGR B, V777, P147, DOI 10.1016/S1570-0232(02)00080-6 Tatsis EC, 2007, PHYTOCHEMISTRY, V68, P383, DOI 10.1016/j.phytochem.2006.11.026 Tolonen A, 2003, PHYTOCHEM ANALYSIS, V14, P306, DOI 10.1002/pca.720 Veronika B, 2003, PHARM BIO BEHAV, V75, P557 Xu L, 2009, J CHROMATOGR B, V877, P502, DOI 10.1016/j.jchromb.2008.12.065 Yokozawa T, 2004, FOOD CHEM TOXICOL, V42, P975, DOI 10.1016/j.fct.2004.02.010 Zhang YC, 2010, J CHROMATOGR B, V878, P3149, DOI 10.1016/j.jchromb.2010.09.027 NR 24 TC 5 Z9 6 U1 0 U2 29 PU SPRINGER BIRKHAUSER PI NEW YORK PA 233 SPRING STREET, 6TH FLOOR, NEW YORK, NY 10013 USA SN 1054-2523 EI 1554-8120 J9 MED CHEM RES JI Med. Chem. Res. PD AUG PY 2012 VL 21 IS 8 BP 1684 EP 1691 DI 10.1007/s00044-011-9668-3 PG 8 WC Chemistry, Medicinal SC Pharmacology & Pharmacy GA 962QK UT WOS:000305559900017 DA 2021-10-15 ER PT J AU Eshbakova, KA Bahang Aisa, HA AF Eshbakova, K. A. Bahang Aisa, H. A. TI CONSTITUENTS OF Apocynum venetum SO CHEMISTRY OF NATURAL COMPOUNDS LA English DT Article C1 [Eshbakova, K. A.] Acad Sci Uzbek, S Yu Yunusov Inst Chem Plant Subst, Tashkent, Uzbekistan. [Bahang; Aisa, H. A.] Acad Sci, Xinjiang Tech Inst Phys & Chem, Urumqi 830011, Peoples R China. RP Eshbakova, KA (corresponding author), Acad Sci Uzbek, S Yu Yunusov Inst Chem Plant Subst, Tashkent, Uzbekistan. EM e_komila@yahoo.com; haji@ms.hjb.ac.cn CR Butterweck V, 2003, PHARMACOL BIOCHEM BE, V75, P557, DOI 10.1016/S0091-3057(03)00118-7 Chen G., 2009, KHIM PRIR SOEDIN, P607 ESHBAKOVA KA, 2009, KHIM PRIR SOEDIN, P774 ISIK E, 2007, KHIM PRIR SOEDIN, P506 KURKIN VA, 2007, KHIM PRIR SOEDIN, P512 *USSR, 1952, IZD AKAD NAUK SSSR, V18 XIN XL, 2008, KHIM PRIR SOEDIN, P294 NR 7 TC 5 Z9 5 U1 1 U2 14 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0009-3130 J9 CHEM NAT COMPD+ JI Chem. Nat. Compd. PD JAN PY 2011 VL 46 IS 6 BP 974 EP 975 DI 10.1007/s10600-011-9801-z PG 2 WC Chemistry, Medicinal; Chemistry, Organic SC Pharmacology & Pharmacy; Chemistry GA 735ST UT WOS:000288438500038 DA 2021-10-15 ER PT J AU Lu, CM Zhang, WM Peng, XM Gu, GP Chen, MM Tang, ZZ AF Lu, Changmei Zhang, Weiming Peng, Xuemei Gu, Gongping Chen, Minmin Tang, Zezi TI Development of Randomly Amplified Polymorphic DNA-Sequence Characterized Amplified Region Marker for Identification of Apocynum venetum LINN. from A-pictum SCHRENK SO BIOLOGICAL & PHARMACEUTICAL BULLETIN LA English DT Article DE Apocynum venetum; Apocynum pictum; identification; sequence characterized amplified region; randomly amplified polymorphic DNA; bulked segregate analysis ID SCAR MARKER; AQUEOUS EXTRACTS; LEAVES; CONSTITUENTS; RESISTANCE; RATS; L. AB Apocynum venetum is an important Chinese crude drug, and its sibling species A. pictum SCHRENK is a confusable herb which is similar to it. The purpose of this study is to develop DNA molecular markers to distinguish A. venetum front A. pictum through lite combinative technologies of bulked segregate analysis (BSA) and randomly amplified polymorphic DNA (RAPD). Two putative markers B08-407 and B03-1368 specific for A. venetum were identified and sequenced. Based on the sequence information, two pairs of printers were designed and synthesized for sequence characterized amplified region (SCAR) markers. But only one printer pair, B03-1368, produced a clear SCAR hand in all samples of A. venetum and not in A. pictum. This SCAR marker was found useful for rapid identification of A. venetum front A. pictum. C1 [Lu, Changmei; Zhang, Weiming; Peng, Xuemei; Gu, Gongping; Chen, Minmin; Tang, Zezi] Nanjing Normal Univ, Jiangsu Key Lab Biodivers & Biotechnol, Coll Life Sci, Nanjing 210046, Peoples R China. [Zhang, Weiming; Gu, Gongping] Nanjing Inst Comprehens Utilizat Wildplants, Nanjing 210042, Peoples R China. RP Lu, CM (corresponding author), Nanjing Normal Univ, Jiangsu Key Lab Biodivers & Biotechnol, Coll Life Sci, Nanjing 210046, Peoples R China. FU Chinese "Tenth Five-Year" National Science and Technology Research Fund [2004 BA502B10]; High-tech Research Projects of Jiangsu Province [BG2006318] FX Thanks for the financial assistance of Chinese "Tenth Five-Year" National Science and Technology Research Fund (2004 BA502B10) and High-tech Research Projects of Jiangsu Province (BG2006318) CR Chen X.M., 1991, GUIHAIA, V11, P146 *CHIN PHARM COMM, 2005, CHIN PHARM, P147 Choi YE, 2008, BIOL PHARM BULL, V31, P135, DOI 10.1248/bpb.31.135 Dnyaneshwar W, 2006, BIOL PHARM BULL, V29, P2313, DOI 10.1248/bpb.29.2313 Dwivedi KK, 2007, PLANT SCI, V172, P788, DOI 10.1016/j.plantsci.2006.12.006 Grundmann O, 2007, J ETHNOPHARMACOL, V110, P406, DOI 10.1016/j.jep.2006.09.035 HAN IW, 2006, CHINESE J MODERN APP, V23, P392 Jiang Y., 1977, FLORA CHINA, V63, P157 Kamata K, 2008, J NAT MED-TOKYO, V62, P160, DOI 10.1007/s11418-007-0202-3 Kim DW, 2000, J ETHNOPHARMACOL, V72, P53, DOI 10.1016/S0378-8741(00)00197-5 Kim DW, 1998, PHYTOTHER RES, V12, P46, DOI 10.1002/(SICI)1099-1573(19980201)12:1<46::AID-PTR169>3.0.CO;2-I Liu SX, 2001, CROP SCI, V41, P1268, DOI 10.2135/cropsci2001.4141268x LV HJ, 2008, J GUANGXI TRADITIONA, V11, P44 MICHELMORE RW, 1991, P NATL ACAD SCI USA, V88, P9828, DOI 10.1073/pnas.88.21.9828 NISHIBE S, 1994, NAT MED, V148, P322 PENG XM, 2007, B BOT RES, V27, P2 Valentini A, 1996, ELECTROPHORESIS, V17, P1553, DOI 10.1002/elps.1150171009 Wei J M, 1988, J Tradit Chin Med, V8, P34 Xiong QB, 2000, PLANTA MED, V66, P127, DOI 10.1055/s-2000-11135 Zhang WM, 2006, CHINESE WILD PLANT R, V25, P15 NR 20 TC 5 Z9 10 U1 0 U2 9 PU PHARMACEUTICAL SOC JAPAN PI TOKYO PA 2-12-15 SHIBUYA, SHIBUYA-KU, TOKYO, 150-0002, JAPAN SN 0918-6158 J9 BIOL PHARM BULL JI Biol. Pharm. Bull. PD MAR PY 2010 VL 33 IS 3 BP 522 EP 526 DI 10.1248/bpb.33.522 PG 5 WC Pharmacology & Pharmacy SC Pharmacology & Pharmacy GA 562DQ UT WOS:000275029900033 PM 20190420 OA Bronze DA 2021-10-15 ER PT J AU Kobayashi, M Saitoh, H Seo, S Butterweck, V Nishibe, S AF Kobayashi, M Saitoh, H Seo, S Butterweck, V Nishibe, S TI Apocynum venetum extract does not induce CYP3A and P-glycoprotein in rats SO BIOLOGICAL & PHARMACEUTICAL BULLETIN LA English DT Article DE Apocynum venetum; St John's wort; CYP3A; P-glycoprotein; rat ID ST-JOHNS-WORT; FORCED SWIMMING TEST; HYPERICUM-PERFORATUM; NIFEDIPINE; METHYLPREDNISOLONE; INHIBITION; FLAVONOIDS; LEAVES AB We investigated the effect of Apocynum venetum L. extract (AV) on the activity of cytochrome P450 (CYP) 3A and P-glycoprotein (P-gp). The plasma concentration of nifedipine (NF), which is a substrate for CYP3A, did not change after oral administration with AV (3.3 mg/kg). Also, AV (3.3 and 33 mg/kg) did not affect the intestinal absorption of NF. In the rats treated with multiple administrations (15mg/kg/d) of St. John's wort extract (SJW) for 2 weeks, the plasma concentration of NF after oral administration was significantly decreased. On the other hand, there was no significant differences in the pharmacokinetic parameters of NF between AV-treated (3.3 mg/kg/d) and none-treated rats. Furthermore, the intestinal absorption of methylprednisolone, which is a substrate for P-gp, was not affected by AV treatment for 2 weeks. These results suggest that, unlike SJW, the recommended dose of AV (3.3 mg/kg/d) would not influence hepatic CYP3A and intestinal P-gp in rats. C1 Hlth Sci Univ Hokkaido, Fac Pharmaceut Sci, Dept Pharmaceut, Tobetsu, Hokkaido 0610293, Japan. Tokiwa Phytochem Co, Chiba 2850801, Japan. Univ Florida, Coll Pharm, Dept Pharmaceut, Gainesville, FL 32610 USA. Hlth Sci Univ Hokkaido, Fac Pharmaceut Sci, Dept Pharmacognosy, Ishikari, Hokkaido 0610293, Japan. RP Saitoh, H (corresponding author), Hlth Sci Univ Hokkaido, Fac Pharmaceut Sci, Dept Pharmaceut, Tobetsu, Hokkaido 0610293, Japan. EM saitoh@hoku-iryo-u.ac.jp CR Butterweck V, 2000, PLANTA MED, V66, P3, DOI 10.1055/s-2000-11119 Butterweck V, 2001, BIOL PHARM BULL, V24, P848, DOI 10.1248/bpb.24.848 CHEN M, 1991, CHIN J CHIN MAT MED, V16, P609 Denke A, 2000, ARZNEIMITTEL-FORSCH, V50, P415 Durr D, 2000, CLIN PHARMACOL THER, V68, P598, DOI 10.1067/mcp.2000.112240 Fan WZ, 1999, CHEM PHARM BULL, V47, P1049, DOI 10.1248/cpb.47.1049 GOERG KJ, 1992, GASTROENTEROLOGY, V103, P781, DOI 10.1016/0016-5085(92)90006-K Holtbecker N, 1996, DRUG METAB DISPOS, V24, P1121 Johne A, 1999, CLIN PHARMACOL THER, V66, P338, DOI 10.1053/cp.1999.v66.a101944 Linde K, 1996, BRIT MED J, V313, P253, DOI 10.1136/bmj.313.7052.253 MA YX, 1989, CHIN J MOD DEV TRAD, V9, P335 MIYAZAKI K, 1984, J CHROMATOGR, V310, P219, DOI 10.1016/0378-4347(84)80086-9 Mohri K, 2000, DRUG METAB DISPOS, V28, P482 Oka A, 2002, BIOL PHARM BULL, V25, P393, DOI 10.1248/bpb.25.393 Piscitelli SC, 2000, LANCET, V355, P547, DOI 10.1016/S0140-6736(99)05712-8 QIAN Z, 1988, Bulletin of Chinese Materia Medica, V13, P44 Ruschitzka F, 2000, LANCET, V355, P548, DOI 10.1016/S0140-6736(99)05467-7 Saitoh H, 1998, J PHARM SCI, V87, P73, DOI 10.1021/js970163u NR 18 TC 5 Z9 5 U1 1 U2 6 PU PHARMACEUTICAL SOC JAPAN PI TOKYO PA 2-12-15 SHIBUYA, SHIBUYA-KU, TOKYO, 150-0002, JAPAN SN 0918-6158 J9 BIOL PHARM BULL JI Biol. Pharm. Bull. PD OCT PY 2004 VL 27 IS 10 BP 1649 EP 1652 DI 10.1248/bpb.27.1649 PG 4 WC Pharmacology & Pharmacy SC Pharmacology & Pharmacy GA 862WN UT WOS:000224522100031 PM 15467212 OA Bronze DA 2021-10-15 ER PT J AU CARBYN, SE CATLING, PM AF CARBYN, SE CATLING, PM TI VASCULAR FLORA OF SAND BARRENS IN THE MIDDLE OTTAWA VALLEY SO CANADIAN FIELD-NATURALIST LA English DT Article DE SAND BARRENS; VASCULAR FLORA; RARE PLANTS; OTTAWA RIVER; ONTARIO; CANADA AB In order to provide information relevant to the protection of native vegetation of dry sandy openings in the middle Ottawa valley, species lists were produced for seven sites and descriptions based on quadrats were obtained for four of these. The dominant species in terms of cover at four sites were Carer lucorum, Comptonia pregrina, Danthonia spicata, Prunus susquehanae and Vaccinium angustifolium. Other frequent and prominent species present at most or all of the seven sites included Apocynum androsaemifolium, Arctosraphylos uva-ursi, Aster ciliolatus, Carex foenea, Carer rugosperma, Carer tonsa, Fragaria virginiana, Oryzopsis asperifolia, Oryropsis pungens, Panicum columbianum, Panicum depauperatum, Panicum linearifolium. Panicum implicatum, Pinus banksiana, Pinus strobus, Poa pratensis, Polygonella articulata, Populus tremuloides, Prunus virginiana, Prunus pensylvanica, Pteridium aquilinum, Solidago hispida, and Viola adunca. There was variation between sites in both species composition and cover as well as overall richness; the number of native species ranging from 34 to 63. Twelve regionally rare and four provincially rare species were recorded in the seven sites. Differences in dominance and composition of sand barren vegetation in eastern Canada are discussed and both east-west and north-south trends of variation are noted. The sand barrens are apparently long persisting, distinctive natural habitats dominated by native species, and they have been under-emphasized in planning for representative habitat protection. NR 0 TC 5 Z9 5 U1 0 U2 0 PU OTTAWA FIELD-NATURALISTS CLUB PI OTTAWA PA BOX 3264 POSTAL STATION C, OTTAWA ON K1Y 4J5, CANADA SN 0008-3550 J9 CAN FIELD NAT JI Can. Field-Nat. PD APR-JUN PY 1995 VL 109 IS 2 BP 242 EP 250 PG 9 WC Biodiversity Conservation; Ecology SC Biodiversity & Conservation; Environmental Sciences & Ecology GA TB348 UT WOS:A1995TB34800012 DA 2021-10-15 ER PT J AU Zhang, Y Ma, XY Zhang, T Qin, M Sun, B Li, Q Hu, DW Ren, LQ AF Zhang, Yang Ma, Xiao-Yan Zhang, Tong Qin, Meng Sun, Bo Li, Qi Hu, Dian-Wen Ren, Li-Qun TI Protective Effects of Apocynum venetum Against Pirarubicin-Induced Cardiotoxicity SO AMERICAN JOURNAL OF CHINESE MEDICINE LA English DT Article DE Apocynum venetum L; Pirarubicin; Cardiotoxicity; Anti-oxidant; Anti-Apoptosis ID MITOCHONDRIAL PERMEABILITY TRANSITION; LEAF EXTRACT; L. EXTRACTS; INJURY; LEAVES; OXYGEN; RATS; DEXRAZOXANE; ACTIVATION; LUOBUMA AB Pirarubicin (THP) is an anthracycline antibiotic, frequently used for the treatment of various human cancers. Unfortunately, the clinical effectiveness of THP is limited by its dose-related cardiotoxicity. Apocynum leaf extract is an extract of the dried leaves of Apocynum venetum L. (a member of the Apocynaceae family, AVLE) that has many positive effects on the cardiovascular system and is widely consumed as tea in China. In this study we established a cardiactoxicity rat model, which showed that pretreatment with AVLE attenuated THP-induced myocardial histopathological injury, electrocardiogram abnormalities, and cardiac dysfunction. AVLE also significantly reduced serum levels of malondialdehyde (MDA), brain natriuretic peptide (BNP), creatine kinase (CK-MB), cardiac troponin (CTnT), and lactate dehydrogenase (LDH); and increased serum superoxide dismutase (SOD) levels. Treatment with AVLE or dexrazoxane (DZR) resulted in an increase Cytochrome C (cytc) in the mitochondria and reduced Cytc and cleaved-caspase-3 levels (p < 0.05) in cytoplasm. We also found that AVLE significantly reduced voltage-dependent anion channel 1 (VDAC1), adenosine nucleotide transporter 1 (ANT1), and cyclophilin D (CYPD) mRNA expression (p < 0.05). Furthermore, AVLE appeared to exert therapeutic effects in a dose-dependent manner. Our study suggests the anti-oxidant and anti-apoptotic properties of AVLE may be responsible for the observed cardioprotective effects. C1 [Zhang, Yang; Zhang, Tong; Qin, Meng; Sun, Bo; Li, Qi; Ren, Li-Qun] Jilin Univ, Sch Pharm, Dept Expt Pharmacol & Toxicol, 1266 Fujin Rd, Changchun 130021, Jilin, Peoples R China. [Hu, Dian-Wen] Jilin Univ, Coll Chem, Key Lab Surface & Interface Chem Jilin Prov, Changchun 130021, Jilin, Peoples R China. [Ma, Xiao-Yan] Changchun Univ Chinese Med, Affiliated Hosp, Dept Cardiol, Changchun 130021, Jilin, Peoples R China. RP Ren, LQ (corresponding author), Jilin Univ, Sch Pharm, Dept Expt Pharmacol & Toxicol, 1266 Fujin Rd, Changchun 130021, Jilin, Peoples R China. EM renlq630210@163.com FU National Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC) [81773934]; Han Hui Pharmaceuticals Co., Ltd [HPIIR17050201] FX This work was supported by the National Natural Science Foundation of China (No. 81773934) and Han Hui Pharmaceuticals Co., Ltd (No. HPIIR17050201). CR Adam-Vizi V, 2006, TRENDS PHARMACOL SCI, V27, P639, DOI 10.1016/j.tips.2006.10.005 Alvarez S, 2003, BIOCHEM BIOPH RES CO, V305, P771, DOI 10.1016/S0006-291X(03)00818-0 An HJ, 2013, J PHARMACEUT BIOMED, V85, P295, DOI 10.1016/j.jpba.2013.07.005 Apostolova N, 2015, ANTIOXID REDOX SIGN, V22, P686, DOI 10.1089/ars.2014.5952 Baines CP, 2005, NATURE, V434, P658, DOI 10.1038/nature03434 Butterweck V, 2001, BIOL PHARM BULL, V24, P848, DOI 10.1248/bpb.24.848 Cao YH, 2003, ANAL BIOANAL CHEM, V376, P691, DOI 10.1007/s00216-003-1961-7 Cappetta D, 2017, OXID MED CELL LONGEV, V2017, DOI 10.1155/2017/1521020 Chang CC, 2002, J FOOD DRUG ANAL, V10, P178 Chen Long, 2005, Zhongguo Zhong Yao Za Zhi, V30, P1340 Cong WJ, 2012, TALANTA, V89, P91, DOI 10.1016/j.talanta.2011.11.071 Cvetkokic RS, 2005, DRUGS, V65, P1005, DOI 10.2165/00003495-200565070-00008 Das S, 2012, J MOL CELL CARDIOL, V52, P448, DOI 10.1016/j.yjmcc.2011.09.007 Dhingra K, 1995, CLIN CANCER RES, V1, P691 Gianni L, 2008, J CLIN ONCOL, V26, P3777, DOI 10.1200/JCO.2007.14.9401 Halestrap AP, 2006, BIOCHEM SOC T, V34, P232, DOI 10.1042/BST0340232 Hamirani Y, 2016, MED ONCOL, V33, DOI 10.1007/s12032-016-0797-x Han Y, 2015, J APPL TOXICOL, V35, P241, DOI 10.1002/jat.3007 Irie K, 2009, J NAT MED, V63, P111, DOI 10.1007/s11418-008-0296-2 Jones Robin L, 2008, Expert Rev Cardiovasc Ther, V6, P1311, DOI 10.1586/14779072.6.10.1311 Kamata K, 2008, J NAT MED-TOKYO, V62, P160, DOI 10.1007/s11418-007-0202-3 Khan F, 2014, FREE RADICAL BIO MED, V72, P232, DOI 10.1016/j.freeradbiomed.2014.04.006 Kim DW, 2000, J ETHNOPHARMACOL, V72, P53, DOI 10.1016/S0378-8741(00)00197-5 Koh E, 2002, PEDIATR RES, V51, P256, DOI 10.1203/00006450-200202000-00021 Kroemer G, 2000, NAT MED, V6, P513, DOI 10.1038/74994 Kwan CY, 2005, CLIN EXP PHARMACOL P, V32, P789, DOI 10.1111/j.1440-1681.2005.04255.x Lau YS, 2015, NUTRIENTS, V7, P5239, DOI 10.3390/nu7075220 Lin Y, 2012, CHROMATOGRAPHIA, V75, P655, DOI 10.1007/s10337-012-2239-z Lu L, 2017, PHARMAZIE, V72, P41, DOI 10.1691/ph.2017.6703 Montaigne D, 2011, MITOCHONDRION, V11, P22, DOI 10.1016/j.mito.2010.06.001 Ndiaye M, 2004, BRIT J PHARMACOL, V142, P1131, DOI 10.1038/sj.bjp.0705774 Niitsu N, 1998, Nihon Ronen Igakkai Zasshi, V35, P358 Qi Z, 2018, MOLECULES, V23, DOI 10.3390/molecules23113038 Saito T, 1986, Gan To Kagaku Ryoho, V13, P1060 Shaikh F, 2016, JNCI-J NATL CANCER I, V108, DOI 10.1093/jnci/djv357 Silber JH, 2004, NAT CLIN PRACT ONCOL, V1, P16, DOI 10.1038/ncponc0023 Sun QR, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0098866 Valcovici M, 2016, ARCH MED SCI, V12, P428, DOI 10.5114/aoms.2016.59270 Veronese P, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0196763 Wang LL, 2017, FOOD CHEM, V234, P323, DOI 10.1016/j.foodchem.2017.04.185 Wang WQ, 2015, AM J CHINESE MED, V43, P71, DOI 10.1142/S0192415X15500056 Wang YD, 2018, J ASIAN NAT PROD RES, V20, P361, DOI 10.1080/10286020.2017.1394292 Wu VV, 2015, J PEDIATR ONCOL NURS, V32, P178, DOI 10.1177/1043454214554008 Xiang J, 2010, CAN J PHYSIOL PHARM, V88, P907, DOI [10.1139/Y10-069, 10.1139/y10-069] Xie WY, 2015, AM J CHINESE MED, V43, P457, DOI 10.1142/S0192415X15500299 Xie WY, 2012, J ETHNOPHARMACOL, V141, P1, DOI 10.1016/j.jep.2012.02.003 Xiong QB, 2000, PLANTA MED, V66, P127, DOI 10.1055/s-2000-11135 Yokozawa T, 2002, BIOL PHARM BULL, V25, P748, DOI 10.1248/bpb.25.748 Zhao H, 2010, J CHEMOTHERAPY, V22, P119, DOI 10.1179/joc.2010.22.2.119 Zhao L, 2014, J SEP SCI, V37, P515, DOI 10.1002/jssc.201301036 Zorov DB, 2014, PHYSIOL REV, V94, P909, DOI 10.1152/physrev.00026.2013 NR 51 TC 4 Z9 4 U1 3 U2 23 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0192-415X EI 1793-6853 J9 AM J CHINESE MED JI Am. J. Chin. Med. PY 2019 VL 47 IS 5 BP 1075 EP 1097 DI 10.1142/S0192415X19500551 PG 23 WC Integrative & Complementary Medicine; Medicine, General & Internal SC Integrative & Complementary Medicine; General & Internal Medicine GA IS1FP UT WOS:000481898600007 PM 31311298 DA 2021-10-15 ER PT J AU Duan, SW Cheng, LF Feng, XY Zheng, K Peng, YD Liu, ZC AF Duan, Shengwen Cheng, Lifeng Feng, Xiangyuan Zheng, Ke Peng, Yuande Liu, Zhengchu TI Bio-degumming technology of Apocynum venetum bast by Pectobacterium sp DCE-01 SO TEXTILE RESEARCH JOURNAL LA English DT Article DE Pectobacterium sp; Apocynum venetum; bio-degumming; fiber ID FIBERS; L.; LUOBUMA; LEAVES AB Apocynum venetum fiber is known as the king of wild fibers. The traditional chemical degumming method for A. venetum limits the development of the industry due to serious pollution and fiber damage. By machine rolling preprocessing, bacteria culture, soaking fermentation, inactivation, water scrubbing, and drying under fermentation conditions of bath ratio 1:15, inoculum size 2%, temperature 33?, and fermentation time 16h, A. venetum fiber could be extracted from A. venetum bast. Strain Pectobacterium sp. DCE-01 simultaneously secreted pectinase, mannanase, and xylanase, which can decompose the main components of A. venetum non-cellulose. The catalytic activities of pectase, mannanase, xylanase, and cellulase at 16h were 12.47, 7.56, 6.02, and 2.82 U/ml respectively. Compared with chemical degumming, bio-degumming exhibited 22.56% higher residual gum content, 18.14% higher breaking strength, and 44.33% lower chemical oxygen demand. C1 [Duan, Shengwen; Cheng, Lifeng; Feng, Xiangyuan; Zheng, Ke; Peng, Yuande; Liu, Zhengchu] Chinese Acad Agr Sci, Inst Bast Fiber Crops, Changsha 410205, Hunan, Peoples R China. RP Peng, YD; Liu, ZC (corresponding author), Chinese Acad Agr Sci, Inst Bast Fiber Crops, Changsha 410205, Hunan, Peoples R China. EM ibfclzc@189.cn; pengyuande@caas.cn CR [Anonymous], GB58891986 Basu S, 2009, J IND MICROBIOL BIOT, V36, P239, DOI 10.1007/s10295-008-0490-y Butterweck V, 2001, BIOL PHARM BULL, V24, P848, DOI 10.1248/bpb.24.848 Editorial Committee of the Flora of China of Chinese Academy of Science, 1977, FLOR CHIN, P157 Fang JJ, 2015, J CHROMATOGR A, V1414, P122, DOI 10.1016/j.chroma.2015.08.038 Grundmann O, 2007, J ETHNOPHARMACOL, V110, P406, DOI 10.1016/j.jep.2006.09.035 Guo G, 2012, J BASIC MICROB, V52, P419, DOI 10.1002/jobm.201100262 Han GT, 2008, CARBOHYD POLYM, V72, P652, DOI 10.1016/j.carbpol.2007.10.002 Han M, 2013, ANAL INSTRUM, V3, P66 He S.Y., 1992, FLORA BEIJING, P759 Jahn A, 2002, SPECTROCHIM ACTA A, V58, P2271, DOI 10.1016/S1386-1425(01)00697-7 Kim DW, 2000, J ETHNOPHARMACOL, V72, P53, DOI 10.1016/S0378-8741(00)00197-5 KOZLOWSKI R, 1997, TEXTILE ASIA, V28, P55 Li FS, 2013, J DALIAN POLYTECH U, V22, P243 Li MH, 2010, FIBER POLYM, V11, P48, DOI 10.1007/s12221-010-0048-2 Liu WW, 2011, XINJIANG U, V5, P25 Liu ZC, 2004, STUDY TECHNIQUES BIO, P311 Liu ZC, 2012, PRETREATMENT MACHINE Lu H, 1993, CHINESE BAST FIBER C Mwaikambo LY, 2002, J APPL POLYM SCI, V84, P2222, DOI 10.1002/app.10460 Shan XH, 2012, SHANGHAI TEXT SCI TE, V40, P30 Shao K., 2003, TEXTILE PROCESSING C Tagawa C, 2004, YAKUGAKU ZASSHI, V124, P851, DOI 10.1248/yakushi.124.851 Do VH, 2016, ANAL BIOCHEM, V492, P21, DOI 10.1016/j.ab.2015.09.008 Wang GL, 2003, CHINA FIBER INSPECTI, V12, P27 Wang LL, 2007, CARBOHYD POLYM, V69, P391, DOI 10.1016/j.carbpol.2006.12.028 Wang XS., 2009, GENE CLONING EXPRESS Wu HL, 2004, J LANZHOU U TECHNOL, V5, P76 Xie WY, 2012, J ETHNOPHARMACOL, V141, P1, DOI 10.1016/j.jep.2012.02.003 Xu XF, 2010, SHANGHAI TEXT SCI TE, V38, P26 [薛卫巍 XUE Weiwei], 2009, [纺织学报, Journal of Textile Research], V30, P80 [曾莹 ZENG Ying], 2007, [纺织学报, Journal of Textile Research], V28, P73 Zhang SJ, 2013, CARBOHYD POLYM, V97, P794, DOI 10.1016/j.carbpol.2013.05.041 Zheng LJ, 2010, J TEXT I, V101, P1075, DOI 10.1080/00405000903230945 Zheng LJ, 2011, J TEXT I, V102, P675, DOI 10.1080/00405000.2010.514726 Zou QZ, 1988, J TEXT RES, V9, P15 NR 36 TC 4 Z9 4 U1 4 U2 43 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0040-5175 EI 1746-7748 J9 TEXT RES J JI Text. Res. J. PD JUN PY 2018 VL 88 IS 12 BP 1377 EP 1383 DI 10.1177/0040517517700198 PG 7 WC Materials Science, Textiles SC Materials Science GA GH5DI UT WOS:000433436000005 DA 2021-10-15 ER PT J AU Liu, XM Li, CY Fang, KJ Shu, DW Guo, ZJ AF Liu, Xiuming Li, Caiyan Fang, Kuanjun Shu, Dawu Guo, Zijing TI Coloration of Apocynum venetum/cotton blends with an acid dye through combined pretreatment using cationic nanoparticles SO COLORATION TECHNOLOGY LA English DT Article ID CONDUCTOMETRIC TITRATION; FIBER SURFACES; COTTON; ADSORPTION; PLASMA; JUTE; FABRICS AB Cationic copolymer nanoparticles were used to modify Apocynum venetum/cotton blended fabrics. The modified blends were then dyed using CI Acid Red 14. In order to enhance the colour performance, the effects of combined pretreatment using nanoparticles and sodium hydroxide (NaOH) or carboxymethylcellulose (CMC) or plasma were investigated. The results show that combined pretreatment with NaOH and nanoparticles improved the dyeing effect. The optimum concentrations of NaOH and nanoparticles were 100 and 2 g l(-1) respectively. In addition, using CMC to pretreat the fabrics could also improve the acid dyeing performance. However, the combination of plasma pretreatment and cationic nanoparticle modification produced the best colour performance for acid-dyed A. venetum/cotton blends. The dye exhaustion rate is highest (up to 95%) with plasma pretreatment. Scanning electron microscopy revealed that combined treatment with plasma and nanoparticles resulted in a far greater number of nanoparticles being deposited on the fibre surface. X-ray photoelectron spectroscopy indicated that the pretreatments with different procedures significantly changed the chemical components of the fibre surfaces. The aromatic rings of acid dye molecules covered the fibre surfaces after plasma and nanoparticle pretreatment and acid dyeing. C1 [Liu, Xiuming; Li, Caiyan; Fang, Kuanjun; Shu, Dawu; Guo, Zijing] Tianjin Polytech Univ, Sch Text, 399 Binshui Xi Rd, Tianjin 300387, Peoples R China. RP Fang, KJ (corresponding author), Tianjin Polytech Univ, Sch Text, 399 Binshui Xi Rd, Tianjin 300387, Peoples R China. EM 13808980221@163.com FU National Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC) [51173086]; National Key Technology RD ProgrammeNational Key Technology R&D Program [2014BAC13B02, 2014BAE01B01]; Industrialisation Projects of Major Independent Innovation Achievements of Shandong Province [2012ZHZX1A0914]; Application Basis and Cutting-edge Technology Research Project of Tianjin [14JCZDJC37200] FX This work was supported by the National Natural Science Foundation of China (grant number 51173086), the National Key Technology R&D Programme (grant numbers 2014BAC13B02 and 2014BAE01B01), the Industrialisation Projects of Major Independent Innovation Achievements of Shandong Province (grant number 2012ZHZX1A0914), and the Application Basis and Cutting-edge Technology Research Project of Tianjin (grant number 14JCZDJC37200). CR [Anonymous], 1997, 39201997 GB T STAND Burkinshaw SM, 2013, DYES PIGMENTS, V99, P548, DOI 10.1016/j.dyepig.2013.06.006 Cai Y, 2000, DYES PIGMENTS, V45, P161, DOI 10.1016/S0143-7208(00)00019-X Canal C, 2007, MACROMOL MATER ENG, V292, P817, DOI 10.1002/mame.200700023 Chen M, 2015, PLANT SYST EVOL, V301, P1735, DOI 10.1007/s00606-014-1192-8 Deo HT, 1999, J SOC DYERS COLOUR, V115, P224 Gilli E, 2009, CELLULOSE, V16, P825, DOI 10.1007/s10570-009-9289-x Goswami P, 2009, CELLULOSE, V16, P481, DOI 10.1007/s10570-009-9279-z [韩冬梅 Han Dongmei], 2015, [功能高分子学报, Journal of Functional Polymer], V28, P220 Heidari H, 2012, J CHROMATOGR A, V1245, P1, DOI 10.1016/j.chroma.2012.04.046 Kamata K, 2008, J NAT MED-TOKYO, V62, P160, DOI 10.1007/s11418-007-0202-3 Li MH, 2010, FIBER POLYM, V11, P48, DOI 10.1007/s12221-010-0048-2 Liu DM, 2014, COLLOID SURFACE A, V452, P82, DOI 10.1016/j.colsurfa.2014.03.079 Liu W, 2013, CHEM ENG RES DES, V91, P2748, DOI 10.1016/j.cherd.2013.05.003 Liu XM, 2015, CHINESE CHEM LETT, V26, P1174, DOI 10.1016/j.cclet.2015.05.006 Liu XM, 2015, FIBER POLYM, V16, P1237, DOI 10.1007/s12221-015-1237-9 Naebe M, 2015, TEXT RES J, V85, P1122, DOI 10.1177/0040517514527372 Patino A, 2011, CELLULOSE, V18, P1073, DOI 10.1007/s10570-011-9554-7 Patrizi ML, 2009, POLYMER, V50, P467, DOI 10.1016/j.polymer.2008.11.023 Rouette H-K., 2001, ENCY TEXTILE FINISHI Samanta A.K., 2007, INDIAN J FIBRE TEXTI, V32, P466 Samanta AK, 2011, INDIAN J FIBRE TEXT, V36, P63 Sarier N, 2012, THERMOCHIM ACTA, V540, P7, DOI 10.1016/j.tca.2012.04.013 Sarrazin P, 2009, COLLOID SURFACE A, V349, P83, DOI 10.1016/j.colsurfa.2009.07.056 Shahidi S, 2014, CELLULOSE, V21, P757, DOI 10.1007/s10570-013-0127-9 SHORE J, 1998, BLENDS DYEING Yao M., 2009, TEXTILE MAT Yolacan G, 2009, FIBER POLYM, V10, P625, DOI 10.1007/s12221-010-0625-4 NR 28 TC 4 Z9 4 U1 0 U2 27 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1472-3581 EI 1478-4408 J9 COLOR TECHNOL JI Color. Technol. PD AUG PY 2017 VL 133 IS 4 BP 293 EP 299 DI 10.1111/cote.12281 PG 7 WC Chemistry, Applied; Engineering, Chemical; Materials Science, Textiles SC Chemistry; Engineering; Materials Science GA FA8OH UT WOS:000405704800003 DA 2021-10-15 ER PT J AU deJonge, RB Bourchier, RS Smith, SM AF deJonge, R. B. Bourchier, R. S. Smith, S. M. TI Initial Response by a Native Beetle, Chrysochus auratus (Coleoptera: Chrysomelidae), to a Novel Introduced Host-Plant, Vincetoxicum rossicum (Gentianales: Apocynaceae) SO ENVIRONMENTAL ENTOMOLOGY LA English DT Article DE Vincetoxicum rossicum; Chrysochus auratus; oviposition sink; biological control; novel association ID PHYTOPHAGOUS INSECTS; MONARCH BUTTERFLIES; BIOLOGICAL-CONTROL; EXOTIC PLANTS; NEW-YORK; EVOLUTION; OVIPOSITION; PERFORMANCE; HERBIVORES; SPP. AB Native insects can form novel associations with introduced invasive plants and use them as a food source. The recent introduction into eastern North America of a nonnative European vine, Vincetoxicum rossicum (Kleopow) Barbar., allows us to examine the initial response of a native chrysomelid beetle, Chrysochus auratus F., that feeds on native plants in the same family as V. rossicum (Apocynaceae). We tested C. auratus on V. rossicum and closely related or co-occurring native plants (Apocynum spp., Asclepias spp., and Solidago canadensis L.) using all life stages of the beetle in lab, garden, and field experiments. Experiments measured feeding (presence or absence and amount), survival, oviposition, and whether previous exposure to V. rossicum in the lab or field affected adult beetle feeding. Beetles fed significantly less on V. rossicum than on native Apocynum hosts. Adult beetles engaged in exploratory feeding on leaves of V. rossicum and survived up to 10 d. Females oviposited on V. rossicum, eggs hatched, and larvae fed initially on the roots; however, no larvae survived beyond second instar. Beetles collected from Apocynum cannabinum L. field sites intermixed with V. rossicum were less likely to feed on this novel nonnative host than those collected from colonies further from and less likely to be exposed to V. rossicum (>5km). Our experimental work indicates that V. rossicum may act as an oviposition sink for C. auratus and that this native beetle has not adapted to survive on this recently introduced novel host plant. C1 [deJonge, R. B.; Smith, S. M.] Univ Toronto, Fac Forestry, 33 Willcocks St, Toronto, ON M5S 3B3, Canada. [Bourchier, R. S.] Agr & AgriFood Canada, Lethbridge Res Ctr, 5403-1st Ave S, Lethbridge, AB T1J 4B1, Canada. RP deJonge, RB (corresponding author), Univ Toronto, Fac Forestry, 33 Willcocks St, Toronto, ON M5S 3B3, Canada. EM rhodadejonge@gmail.com; Robert.Bourchier@AGR.GC.CA; s.smith.a@utoronto.ca FU Invasive Species Centre; Agriculture and Agri-Food CanadaAgriculture & Agri Food Canada; Faculty of Forestry; Ontario Ministry of Natural Resources and Forestry; Ontario Graduate ScholarshipOntario Graduate Scholarship FX Technical assistance by J. de Zoete, F. Oukhouia, T. Ung, and I. Kennedy and editing and guidance by M.L. Seehausen, P. Kotanen, and M. Cadotte is appreciated. Thanks also to the City of Toronto, Koffler Scientific Reserve, Royal Botanical Gardens, and Loewith and Harrop families for use of their properties. This research was funded by the Invasive Species Centre, Agriculture and Agri-Food Canada, Faculty of Forestry, Ontario Ministry of Natural Resources and Forestry, and an Ontario Graduate Scholarship to R. deJonge. CR Agosta SJ, 2006, OIKOS, V114, P556, DOI 10.1111/j.2006.0030-1299.15025.x Agrawal AA, 2003, ECOL LETT, V6, P712, DOI 10.1046/j.1461-0248.2003.00498.x Arnett R.H., 1968, BEETLES US MANUAL ID Bates D., 2016, LME4 LINEAR MIXED EF Battin J, 2004, CONSERV BIOL, V18, P1482, DOI 10.1111/j.1523-1739.2004.00417.x Bertheau C, 2010, ECOL LETT, V13, P506, DOI 10.1111/j.1461-0248.2010.01445.x BLANEY WM, 1985, ENTOMOL EXP APPL, V38, P35, DOI 10.1007/BF00163350 Cappuccino N, 2006, BIOL LETTERS, V2, P189, DOI 10.1098/rsbl.2005.0433 Carroll SP, 2007, GENETICA, V129, P193, DOI 10.1007/s10709-006-9014-8 Casagrande RA, 2007, ENVIRON ENTOMOL, V36, P631, DOI 10.1603/0046-225X(2007)36[631:MBOOSV]2.0.CO;2 Dalosto MM, 2015, BIOL INVASIONS, V17, P3503, DOI 10.1007/s10530-015-0974-4 Delbac L, 2010, CROP PROT, V29, P623, DOI 10.1016/j.cropro.2010.01.009 DETHIER VG, 1982, ENTOMOL EXP APPL, V31, P49, DOI 10.1111/j.1570-7458.1982.tb03118.x DiTommaso A, 2003, ENTOMOL EXP APPL, V108, P205, DOI 10.1046/j.1570-7458.2003.00089.x Dobler S, 1999, MOL ECOL, V8, P1297, DOI 10.1046/j.1365-294X.1999.00693.x Douglass CH, 2011, INVAS PLANT SCI MANA, V4, P133, DOI 10.1614/IPSM-D-10-00021.1 EDDMapS, 2016, EARL DET DISTR MAPP Ernst CM, 2005, BIOL INVASIONS, V7, P417, DOI 10.1007/s10530-004-4062-4 Fox J, 2016, car: Companion to Applied Regression. R package version 2.1.6 Freckleton RP, 2002, AM NAT, V160, P712, DOI 10.1086/343873 FUTUYMA DJ, 1996, PHILOS T R SOC B, V351, P1361 Gotelli NJ., 2004, PRIMER ECOLOGICAL ST Haribal M, 1998, J CHEM ECOL, V24, P891, DOI 10.1023/A:1022377618562 Harvey JA, 2010, BIOL INVASIONS, V12, P3045, DOI 10.1007/s10530-010-9696-9 HATCH MELVILLE H., 1953, UNIV WASHINGTON PUBL BIOL, V16, P1 JAENIKE J, 1990, ANNU REV ECOL SYST, V21, P243, DOI 10.1146/annurev.ecolsys.21.1.243 JANZEN DH, 1985, OIKOS, V45, P308, DOI 10.2307/3565565 Keane RM, 2002, TRENDS ECOL EVOL, V17, P164, DOI 10.1016/S0169-5347(02)02499-0 KRAMER CY, 1956, BIOMETRICS, V12, P307, DOI 10.2307/3001469 Lankau RA, 2004, ECOL ENTOMOL, V29, P66, DOI 10.1111/j.0307-6946.2004.00575.x Lawlor F. M, 2000, THESIS Mattila H. R., 2003, COMP HOST PREFERENCE, P193 McDonald J.H., 2014, HDB BIOL STAT, V3rd ed. Milbrath LR, 2012, ENVIRON ENTOMOL, V41, P665, DOI 10.1603/EN11239 Milbrath LR, 2010, ENVIRON ENTOMOL, V39, P68, DOI 10.1603/EN09116 Mogg C, 2008, BIOCHEM SYST ECOL, V36, P383, DOI 10.1016/j.bse.2008.01.001 Norbury G, 2013, ECOL APPL, V23, P1707, DOI 10.1890/12-1958.1 Orsucci M, 2016, J EVOLUTION BIOL, V29, P114, DOI 10.1111/jeb.12766 PAPAJ DR, 1989, ANNU REV ENTOMOL, V34, P315, DOI 10.1146/annurev.en.34.010189.001531 Pearse IS, 2013, OIKOS, V122, P1554, DOI 10.1111/j.1600-0706.2013.00527.x Pfammatter JA, 2015, ENVIRON ENTOMOL, V44, P1161, DOI 10.1093/ee/nvv091 PRINGLE J S, 1973, Canadian Field-Naturalist, V87, P27 Richardson David M., 2000, Diversity and Distributions, V6, P93, DOI 10.1046/j.1472-4642.2000.00083.x Santana AFK, 2011, NEOTROP ENTOMOL, V40, P631, DOI 10.1590/S1519-566X2011000600001 Schlaepfer MA, 2005, ECOL LETT, V8, P241, DOI 10.1111/j.1461-0248.2005.00730.x Sheeley SE, 1996, B TORREY BOT CLUB, V123, P148, DOI 10.2307/2996072 Sheldon SP, 2003, AQUAT BOT, V76, P259, DOI 10.1016/S0304-3770(03)00055-X Simberloff Daniel, 1999, Biological Invasions, V1, P21, DOI 10.1023/A:1010086329619 Simberloff D, 2011, BIOL INVASIONS, V13, P1255, DOI 10.1007/s10530-011-9956-3 Sunny A, 2015, ARTHROPOD-PLANT INTE, V9, P323, DOI 10.1007/s11829-015-9384-x Team RC, 2019, R LANG ENV STAT COMP Tewksbury L, 2002, BIOL CONTROL INVASIV, P209 Tukey J.W., 1953, PROBLEM MULTIPLE COM Uesugi A, 2008, ENTOMOL EXP APPL, V128, P398, DOI 10.1111/j.1570-7458.2008.00724.x Vitousek PM, 1997, ECOL APPL, V7, P737, DOI 10.2307/2269431 Weed AS, 2011, BIOL CONTROL, V56, P50, DOI 10.1016/j.biocontrol.2010.09.009 Weiss H.B., 1921, CAN ENTOMOL, V53, P147 Weston LA, 2005, PLANT SOIL, V277, P53, DOI 10.1007/s11104-005-3102-x Wiens JJ, 2005, ANNU REV ECOL EVOL S, V36, P519, DOI 10.1146/annurev.ecolsys.36.102803.095431 Williams Charles E., 1992, Banisteria, V1, P8 NR 60 TC 4 Z9 4 U1 1 U2 21 PU OXFORD UNIV PRESS INC PI CARY PA JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA SN 0046-225X EI 1938-2936 J9 ENVIRON ENTOMOL JI Environ. Entomol. PD JUN PY 2017 VL 46 IS 3 BP 617 EP 625 DI 10.1093/ee/nvx072 PG 9 WC Entomology SC Entomology GA EX2TN UT WOS:000403079800026 PM 28398528 DA 2021-10-15 ER PT J AU Lu, L Zhang, D Sun, B Hu, YW Yan, M Liu, K Li, XJ Ren, LQ AF Lu, Li Zhang, Dan Sun, Bo Hu, Yanwu Yan, Mengtong Liu, Kai Li, Xiangjun Ren, Liqun TI Apocynum leaf extract inhibits the progress of atherosclerosis in rats via the AMPK/mTOR pathway SO PHARMAZIE LA English DT Article ID VENETUM LEAVES; CONSTITUENTS; SEPARATION; INJURY; AMPK; CELL AB Apocynum leaf extract is an extract of the dried leaves of Apocynum venetum (a member of the Apocynaceae family) that has many effects on the cardiovascular system. The aim of the present study was to evaluate the protective effects of apocynum leaf extract on the atherosclerosis in rats induced by high-fat diet combined with vitamin D3 intraperitoneal injection. The atherosclerosis in rats were induced with a high-fat diet and an intraperitoneal injection of VD3 once daily for three contiguous days at a total injection dose of 70 U/kg. At the end of the 18th week, serum total cholesterol (TC) and triglyceride (TG) contents were measured. Hydroxyproline content in the aorta were measured by the alkali hydrolysis method. The hematoxylin-eosin (HE) and immunohistochemical staining were applied to evaluate the morphological changes and the collagen I and alpha-smooth muscle actin expression. The protein expression and the mRNA level of AMPK and mTOR were detected by western blot analysis and reverse transcript PCR. After treatment with apocynum leaf extract, the serum total cholesterol and triglyceride concentration of the atherosclerotic rats were significantly decreased, both the Collagen I expression and the hydroxyproline content in the aorta were significantly reduced, and the alpha-SMA, a smooth muscle-specific marker, expression were also lower than the untreated atherosclerotic rats. Western blot analyses showed that the apocynum can marked increase the rho-AMPK but decrease the mTOR protein expression. The apocynum leaf extract also exhibited higher AMPK and lower mTOR mRNA expression of the aorta in the atherosclerotic rats. We believe that the apocynum leaf extract can effectively reduce blood lipid levels in rats with atherosclerosis, delay atherosclerotic progression by inhibiting excessive collagen synthesis and inhibiting smooth muscle cell over-proliferation. The underlying mechanism may be related to the AMPK/mTOR signaling pathway activity. Our results contribute towards validation of the traditional use of apocynum leaf extract in the treatment of atherosclerosis. C1 [Lu, Li; Sun, Bo; Yan, Mengtong; Liu, Kai; Li, Xiangjun; Ren, Liqun] Jilin Univ, Sch Pharmaceut Sci, Dept Expt Pharmacol & Toxicol, 1266 Fujin Rd, Changchun 130021, Jilin Province, Peoples R China. [Zhang, Dan] Jilin Univ, Bethune Hosp 1, Dept Cardiovasc, Changchun, Peoples R China. [Hu, Yanwu] Tonghua Normal Univ, Sch Pharmaceut & Food Sci, Tonghua, Peoples R China. RP Li, XJ (corresponding author), Jilin Univ, Sch Pharmaceut Sci, Dept Expt Pharmacol & Toxicol, 1266 Fujin Rd, Changchun 130021, Jilin Province, Peoples R China. EM lxj@jlu.edu.cn RI hu, yanwu/AAH-2391-2020 FU Jilin Provincial Science and Technology Department [20150204015YY] FX We would like to express my heartfelt gratitude to Dr. Yu Xiaoyan and Dr. Shi Van, Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Science, Jilin University, who gave us to lots of useful advice on morphological examination. This work was supported by the Jilin Provincial Science and Technology Department (no. 20150204015YY, 2015). CR Almofti MR, 2006, CLIN EXP PHARMACOL P, V33, P305, DOI 10.1111/j.1440-1681.2006.04366.x Chistiakov DA, 2015, ACTA PHYSIOL, V214, P33, DOI 10.1111/apha.12466 Kamata K, 2008, J NAT MED-TOKYO, V62, P160, DOI 10.1007/s11418-007-0202-3 Kim DW, 2000, J ETHNOPHARMACOL, V72, P53, DOI 10.1016/S0378-8741(00)00197-5 Ma Y X, 1989, Zhong Xi Yi Jie He Za Zhi, V9, P335 Maiese K, 2015, WORLD J DIABETES, V6, P217, DOI 10.4239/wjd.v6.i2.217 Maiolino G, 2013, MEDIAT INFLAMM, V2013, DOI 10.1155/2013/714653 Motoshima H, 2006, J PHYSIOL-LONDON, V574, P63, DOI 10.1113/jphysiol.2006.108324 Pang JJ, 2010, PEPTIDES, V31, P630, DOI 10.1016/j.peptides.2009.11.007 Qiu JH, 2014, J R SOC INTERFACE, V11, DOI 10.1098/rsif.2013.0852 Ramji DP, 2015, CYTOKINE GROWTH F R, V26, P673, DOI 10.1016/j.cytogfr.2015.04.003 Silver FH, 2001, CRIT REV BIOMED ENG, V29, P279, DOI 10.1615/CritRevBiomedEng.v29.i3.10 Song RJ, 2015, J CHROMATOGR B, V995, P8, DOI 10.1016/j.jchromb.2015.05.019 Steinberg GR, 2014, IMMUNOL CELL BIOL, V92, P340, DOI 10.1038/icb.2014.11 Tukaj S, 2012, ACTA BIOCHIM POL, V59, P395 Wang WQ, 2015, AM J CHINESE MED, V43, P71, DOI 10.1142/S0192415X15500056 Xie WY, 2015, AM J CHINESE MED, V43, P457, DOI 10.1142/S0192415X15500299 Xie WY, 2012, J ETHNOPHARMACOL, V141, P1, DOI 10.1016/j.jep.2012.02.003 Xu QA, 2010, J CELL MOL MED, V14, P2604, DOI 10.1111/j.1582-4934.2010.01179.x Yamatsu A, 2015, J NUTR SCI VITAMINOL, V61, P182, DOI 10.3177/jnsv.61.182 Zhang YC, 2010, J SEP SCI, V33, P2743, DOI 10.1002/jssc.201000308 NR 21 TC 4 Z9 6 U1 3 U2 24 PU GOVI-VERLAG PHARMAZEUTISCHER VERLAG GMBH PI ESCHBORN PA PHARMAZEUTISCCARL MANNICH STR 26, D-65760 ESCHBORN, GERMANY SN 0031-7144 J9 PHARMAZIE JI Pharmazie PD JAN PY 2017 VL 72 IS 1 BP 41 EP 48 DI 10.1691/ph.2017.6703 PG 8 WC Chemistry, Medicinal; Chemistry, Multidisciplinary; Pharmacology & Pharmacy SC Pharmacology & Pharmacy; Chemistry GA EI5UK UT WOS:000392560100008 PM 29441896 DA 2021-10-15 ER PT J AU Gao, SH Yu, CW AF Gao, Shi-Hui Yu, Chong-Wen TI INFLUENCE OF PRE-TREATMENT ON ENZYMATIC DEGUMMING OF APOCYNUM VENETUM BAST FIBERS IN SUPERCRITICAL CARBON DIOXIDE SO THERMAL SCIENCE LA English DT Article DE apocynum venetum; supercritical carbon dioxide; pretreatment; degumming; swelling ID EXTRACTION AB Pre-treatment of apocynum venetum bast fibers in supercritical carbon dioxide can improve the efficiency of enzymatic degumming of apocynum venetum bast fiber. This paper studies experimentally effect of pressure and degumming time on degradation rate, the results can be used for optimal design of degumming. C1 [Gao, Shi-Hui; Yu, Chong-Wen] Donghua Univ, Coll Text, Shanghai, Peoples R China. [Gao, Shi-Hui] Liaoning Vocat Coll Light Ind, Dalian, Peoples R China. RP Yu, CW (corresponding author), Donghua Univ, Coll Text, Shanghai, Peoples R China. EM yucw@dhu.edu.cn FU National Natural Science Foundation of Liaoning Province, China [L2014599] FX The financial support from National Natural Science Foundation of Liaoning Province, China (L2014599) for this work is greatly acknowledged. CR Heidaryan E, 2011, J SUPERCRIT FLUID, V56, P144, DOI 10.1016/j.supflu.2010.12.006 Li ZL, 2014, FIBER POLYM, V15, P2105, DOI 10.1007/s12221-014-2105-8 Meyer F, 2012, CHEM ENG PROCESS, V56, P37, DOI 10.1016/j.cep.2012.02.003 Parikh DV, 2002, TEXT RES J, V72, P618, DOI 10.1177/004051750207200709 Riera E, 2004, ULTRASON SONOCHEM, V11, P241, DOI 10.1016/j.ultsonch.2004,01.019 Seabra IJ, 2012, J SUPERCRIT FLUID, V64, P9, DOI 10.1016/j.supflu.2012.01.005 Stamenic M, 2010, J SUPERCRIT FLUID, V52, P125, DOI 10.1016/j.supflu.2009.12.004 Stastova J, 1996, CHEM ENG SCI, V51, P4347 Vidovic S, 2014, J SUPERCRIT FLUID, V95, P468, DOI 10.1016/j.supflu.2014.10.019 [杨喜爱 YANG Xiai], 2009, [纺织学报, Journal of Textile Research], V30, P82 Yu HQ, 2010, J TEXT I, V101, P452, DOI 10.1080/00405000802472564 NR 11 TC 4 Z9 6 U1 1 U2 19 PU VINCA INST NUCLEAR SCI PI BELGRADE PA MIHAJLA PETROVICA-ALASA 12-14 VINCA, 11037 BELGRADE. POB 522, BELGRADE, 11001, SERBIA SN 0354-9836 EI 2334-7163 J9 THERM SCI JI Therm. Sci. PY 2015 VL 19 IS 4 BP 1305 EP 1309 DI 10.2298/TSCI1504305G PG 5 WC Thermodynamics SC Thermodynamics GA CW4SL UT WOS:000364982300033 OA gold, Green Submitted DA 2021-10-15 ER PT J AU Jiang, L Wang, L Zhao, ZY Tian, CY AF Jiang, Li Wang, Lei Zhao, Zhen-Yong Tian, Chang-Yan TI FOLIAR-SPRAYING EXOGENOUS GLYCINEBETAINE IMPROVES PHOTOSYNTHESIS AND LEAF GROWTH IN LUOBUMA TEA (Apocynum venetum) SEEDLINGS UNDER SALT STRESS SO OXIDATION COMMUNICATIONS LA English DT Article DE chlorophyll fluorescence; gas exchange; glycinebetaine; Luobuma; photosynthetic pigments; salt stress ID NACL STRESS; L.; SALINITY; PLANTS; PIGMENTS; PROLINE; DROUGHT; PEA AB Though Apocynum venetum is commonly considered to be tolerant to moderate salt stress, high soil salinity seems to be a major limitation of growth of A. venetum seedlings. In order to evaluate the ameliorative effect of foliar-spraying exogenous glycinebetaine (GB) on growth and photosynthetic activity, we measured growth parameters, photosynthetic pigments, gas exchange and chlorophyll fluorescence in A. venetum seedlings under different salinity levels. Results indicated that most tested parameters were significantly influenced by exogenous GB and salinity Meanwhile, the responses of A. venetum seedlings to GB varied with salinity levels. Exogenous GB did not affect photosynthetic the growth, pigments, and photosynthesis of A. venetum seedlings under the non-saline condition. However, GB positively influenced pigment contents, stomatall conductance and Photo system II efficiency under salt stress, causing an increase in the net photosynthetic rate and thus increasing leaf fresh weight. These results suggest that the detrimental effects of salt stress on A. venetum seedlings can be alleviated by foliar-spraying exogenous GB via modulating photosynthetic responses. C1 [Jiang, Li; Wang, Lei; Zhao, Zhen-Yong; Tian, Chang-Yan] Chinese Acad Sci, Xinjiang Inst Ecol & Geog, State Key Lab Desert & Oasis Ecol, Urumqi 830011, Xinjiang, Peoples R China. [Jiang, Li] Chinese Acad Sci, Xinjiang Inst Ecol & Geog, Turpan Eremophytes Bot Garden, Urumqi 830011, Xinjiang, Peoples R China. RP Wang, L (corresponding author), Chinese Acad Sci, Xinjiang Inst Ecol & Geog, State Key Lab Desert & Oasis Ecol, Urumqi 830011, Xinjiang, Peoples R China. EM egiwang@ms.xjb.ac.cn FU West Light Foundation of the Chinese Academy of SciencesChinese Academy of Sciences [XBBS201101]; State Key Laboratory of Desert and Oasis Ecology [Y371162] FX This study was supported by the West Light Foundation of the Chinese Academy of Sciences (XBBS201101) and the State Key Laboratory of Desert and Oasis Ecology (Y371162). CR Abbas W, 2010, SCI HORTIC-AMSTERDAM, V125, P188, DOI 10.1016/j.scienta.2010.04.008 Aghaleh M, 2009, BIOL PLANTARUM, V53, P243, DOI 10.1007/s10535-009-0046-7 [Anonymous], 1977, FLORA CHINA, V53, P480 Arafa AA, 2009, AUST J CROP SCI, V3, P294 Ashraf M., 2008, BIOSALINE AGR HIGH S BALL MC, 1984, PLANT PHYSIOL, V74, P1, DOI 10.1104/pp.74.1.1 Cha-um S, 2006, J AGRON CROP SCI, V192, P25, DOI 10.1111/j.1439-037X.2006.00186.x Chaneva G, 2014, OXID COMMUN, V37, P1090 Chen THH, 2011, PLANT CELL ENVIRON, V34, P1, DOI 10.1111/j.1365-3040.2010.02232.x Demiral T, 2006, ENVIRON EXP BOT, V56, P72, DOI 10.1016/j.envexpbot.2005.01.005 Editorial Committee of Chinese Pharmacopoeia, 2010, CHINESE PHARMACOPOEI Eisa S., 2012, Australian Journal of Crop Science, V6, P357 Gomez JM, 2004, J EXP BOT, V55, P119, DOI 10.1093/jxb/erh013 Grundmann O, 2007, J ETHNOPHARMACOL, V110, P406, DOI 10.1016/j.jep.2006.09.035 Kao WY, 2006, ENVIRON EXP BOT, V56, P120, DOI 10.1016/j.envexpbot.2005.01.009 Kolev KG, 2014, OXID COMMUN, V37, P1036 Li H., 2006, SHANDONG FANGZHI JIN, V134, P80 LICHTENTHALER HK, 1987, METHOD ENZYMOL, V148, P350 LIN CC, 1995, BIOL PLANTARUM, V37, P305, DOI 10.1007/BF02913231 Lv R., 2006, ACTA ACAD MED QINGDA, V42, P71 Mahajan S, 2005, ARCH BIOCHEM BIOPHYS, V444, P139, DOI 10.1016/j.abb.2005.10.018 Makela P, 2000, BIOL PLANTARUM, V43, P471, DOI 10.1023/A:1026712426180 Nawaz K, 2010, J AGRON CROP SCI, V196, P28, DOI 10.1111/j.1439-037X.2009.00385.x [宁建凤 Ning Jianfeng], 2010, [植物学报, Chinese Bulletin of Botany], V45, P689 Rahman S, 2002, PLANT PROD SCI, V5, P33, DOI 10.1626/pps.5.33 Xie WY, 2012, J ETHNOPHARMACOL, V141, P1, DOI 10.1016/j.jep.2012.02.003 Xiong QB, 2000, PLANTA MED, V66, P127, DOI 10.1055/s-2000-11135 Yang XH, 2005, PHYSIOL PLANTARUM, V124, P343, DOI 10.1111/j.1399-3054.2005.00518.x Yang XH, 2006, PHYSIOL PLANTARUM, V127, P593, DOI 10.1111/j.1399-3054.2006.00687.x NR 29 TC 4 Z9 4 U1 0 U2 13 PU SCIBULCOM LTD PI SOFIA PA PO BOX 249, 1113 SOFIA, BULGARIA SN 0209-4541 J9 OXID COMMUN JI Oxid. Commun. PY 2015 VL 38 IS 1A SI SI BP 347 EP 356 PG 10 WC Chemistry, Multidisciplinary SC Chemistry GA CN1NU UT WOS:000358187500005 DA 2021-10-15 ER PT J AU Begmatov, NB Yili, A Eshbakova, KA Aisa, HA AF Begmatov, N. B. Yili, A. Eshbakova, K. A. Aisa, H. A. TI CHEMICAL CONSTITUENTS OF Apocynum lancifolium FLOWERS SO CHEMISTRY OF NATURAL COMPOUNDS LA English DT Article C1 [Begmatov, N. B.; Yili, A.; Eshbakova, K. A.; Aisa, H. A.] Cent Asian Drug Discovery & Dev Ctr CAS, Xinjiang Tech Inst Phys & Chem, Urumqi 830011, Peoples R China. [Begmatov, N. B.] Chinese Acad Sci, Grad Univ, Beijing 100049, Peoples R China. [Eshbakova, K. A.] Acad Sci Uzbek, S Yu Yunusov Inst Chem Plant Subst, Tashkent, Uzbekistan. RP Begmatov, NB (corresponding author), Cent Asian Drug Discovery & Dev Ctr CAS, Xinjiang Tech Inst Phys & Chem, Urumqi 830011, Peoples R China. EM e_komila@yahoo.com; haji@ms.xjb.ac.cn FU Program for International Collaboration and Exchange of the National Foundation for Natural Sciences of China [31110103908]; Foundation for International Scientific and Technical Collaboration of Xinjiang-Uygur A. R. [20126023] FX The work was supported by the Program for International Collaboration and Exchange of the National Foundation for Natural Sciences of China (No. 31110103908) and the Foundation for International Scientific and Technical Collaboration of Xinjiang-Uygur A. R. (No. 20126023). CR ABYSHEV A Z, 1982, Chemistry of Natural Compounds (English Translation of Khimiya Prirodnykh Soedinenii), V18, P270, DOI 10.1007/BF00580449 [Anonymous], 1952, FLORA USSR, V18 [Anonymous], 2000, CHINESE PHARMACOPEIA, V1, P170 Butterweck V, 2003, PHARMACOL BIOCHEM BE, V75, P557, DOI 10.1016/S0091-3057(03)00118-7 Butterweck V, 2001, BIOL PHARM BULL, V24, P848, DOI 10.1248/bpb.24.848 Eshbakova K. A., 2011, Medicinal Plants - International Journal of Phytomedicines and Related Industries, V3, P161 Grou, 1978, COMPLICATION LUOBUMA, P57 Kurkin B. A., 2012, KHIM RASTIT SYRYA, P85 Moohammadnor M, 2010, CHEM NAT COMPD+, V46, P799, DOI 10.1007/s10600-010-9747-6 Murzagaliev U. M., 1973, CHEM NAT COMPD, V9, P404 Sultan A, 2008, CHEM NAT COMPD+, V44, P366, DOI 10.1007/s10600-008-9065-4 Yunuskhodzhaeva NA, 2010, CHEM NAT COMPD+, V46, P803, DOI 10.1007/s10600-010-9749-4 NR 12 TC 4 Z9 4 U1 2 U2 15 PU SPRINGER PI NEW YORK PA ONE NEW YORK PLAZA, SUITE 4600, NEW YORK, NY, UNITED STATES SN 0009-3130 EI 1573-8388 J9 CHEM NAT COMPD+ JI Chem. Nat. Compd. PD JUL PY 2014 VL 50 IS 3 BP 541 EP 542 DI 10.1007/s10600-014-1009-6 PG 2 WC Chemistry, Medicinal; Chemistry, Organic SC Pharmacology & Pharmacy; Chemistry GA AM5ZC UT WOS:000339938700041 DA 2021-10-15 ER PT J AU Hassan, HM Jiang, ZH Asmussen, C McDonald, E Qin, WS AF Hassan, Haider M. Jiang, Zi-Hua Asmussen, Christina McDonald, Emma Qin, Wensheng TI Antibacterial activity of northern Ontario medicinal plant extracts SO CANADIAN JOURNAL OF PLANT SCIENCE LA English DT Article DE Antibacterial; phytochemicals; northern Ontario; medicinal plants; Gram positive; Gram negative ID ANTIMICROBIAL ACTIVITY; NATURAL-PRODUCTS; DRUG DISCOVERY; PEOPLES AB In the present study, the antibacterial activity (in vitro) of the leaf and/or flower crude extracts of Anaphalis margaritacea (L.) Benth & Hook.f., Grindelia squarrosa (Pursh) Dunal, Apocynum androsaemifolium L., Arctostaphylos uva-ursi (L.) Spreng, Cornus canadensis L. and Xanthium strumarium L. medicinal plants was analyzed through the hole-plate diffusion, minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) assays against Escherichia coli, Aeromonas caviae, Paenibacillus alvei, Micrococcus luteus, Mycobacterium avium subsp. avium and Bacillus cereus bacteria. In addition, the time-kill dynamic processes of these extracts against A. caviae, B. cereus, P. alvei, and M. luteus bacteria were also tested. The leaf and flower extracts of Anap. margaritacea and G. squarrosa possess significant antibacterial activity against all the bacteria tested, with inhibition of A. caviae, P. alvei and M. luteus within 1-12 h of incubation at MBC. Particularly, at higher concentrations of the Anap. margaritacea flower crude extract (2-3 x MBC), inhibition of A. caviae, B. cereus, P. alvei, and M. luteus bacteria is achieved between 0.5 and 4 h of incubation. In addition, these extracts exhibit high inhibition diameters (majority >18 mm) and low MIC and/or MBCs (majority <= 1.25 mg mL(-1)). In contrast, the leaf extracts of Arct. uva-ursi, X. strumarium, Apoc. androsaemifolium and C. canadensis plants demonstrate moderate to low activity. These results indicate that extracts from Anap. margaritacea and G. squarrosa could be a source of novel antimicrobial scaffolds, compounds or pharmacophores with implications in the pharmaceutical industry and medicine. C1 [Hassan, Haider M.; Asmussen, Christina; McDonald, Emma; Qin, Wensheng] Lakehead Univ, Dept Biol, Thunder Bay, ON P7B 5E1, Canada. [Jiang, Zi-Hua] Lakehead Univ, Dept Chem, Thunder Bay, ON P7B 5E1, Canada. RP Qin, WS (corresponding author), Lakehead Univ, Dept Biol, 955 Oliver Rd, Thunder Bay, ON P7B 5E1, Canada. EM wqin@lakeheadu.ca RI Ibrahim, Essam H./G-1960-2018 OI Ibrahim, Essam H./0000-0003-0130-2257 FU NSERC-CRDNatural Sciences and Engineering Research Council of Canada (NSERC); Ontario Research Chair FX The authors sincerely thank the Aboriginal communities and elders in Thunder Bay, Ontario, for the aid provided. The authors also sincerely appreciate the assistance provided by Erika North in the collection and identification of medicinal plants. The authors also appreciate the utilities provided by Lakehead University herbarium. This work was supported by NSERC-CRD and Ontario Research Chair funding to Wensheng Qin. CR Ahmad I, 1998, J ETHNOPHARMACOL, V62, P183, DOI 10.1016/S0378-8741(98)00055-5 Ahmed AA, 2004, PHYTOCHEMISTRY, V65, P2539, DOI 10.1016/j.phytochem.2004.08.002 Ako-Nai AK, 2003, AFR J CLIN EXP MICRO, V4, P41 Anjoo K., 2010, INT J GREEN PHARM, V4, P129 Borchardt JR, 2008, J MED PLANTS RES, V2, P81 Butler MS, 2008, NAT PROD REP, V25, P475, DOI 10.1039/b514294f Daud A, 2005, J ETHNOPHARMACOL, V99, P193, DOI 10.1016/j.jep.2005.01.043 DUINKER PN, 1991, FOREST CHRON, V67, P131, DOI 10.5558/tfc67131-2 Harvey AL, 2008, DRUG DISCOV TODAY, V13, P894, DOI 10.1016/j.drudis.2008.07.004 Hassan HM, 2012, CAN J PLANT SCI, V92, P815, DOI [10.4141/CJPS2012-006, 10.4141/cjps2012-006] Hoffmann J. J., 1993, PHARM BIOL, V31, P101 Imazato S, 1999, BIOMATERIALS, V20, P899, DOI 10.1016/S0142-9612(98)00247-6 Jacobs J., 2010, P S DAK ACAD SCI, V89, P85 Jahodar L, 1985, Cesk Farm, V34, P174 Jawad A. L. M., 1988, Fitoterapia, V59, P220 Jones NP, 2000, J ETHNOPHARMACOL, V73, P191, DOI 10.1016/S0378-8741(00)00306-8 Karaman I, 2003, J ETHNOPHARMACOL, V85, P231, DOI 10.1016/S0378-8741(03)00006-0 Khattab A. M, 1998, ALEX J PHARM SCI, V12, P99 Kim HS, 1997, KOREAN J APPL MICROB, V25, P183 Kruszewska Hanna, 2004, Acta Pol Pharm, V61 Suppl, P18 Kudi AC, 1999, J ETHNOPHARMACOL, V67, P225, DOI 10.1016/S0378-8741(98)00214-1 Lam KS, 2007, TRENDS MICROBIOL, V15, P279, DOI 10.1016/j.tim.2007.04.001 MCCHESNEY JD, 1985, ECON BOT, V39, P74, DOI 10.1007/BF02861178 MCCUTCHEON AR, 1992, J ETHNOPHARMACOL, V37, P213, DOI 10.1016/0378-8741(92)90036-Q MEHTA P, 1983, FOLIA MICROBIOL, V28, P467, DOI 10.1007/BF02879684 Moore CW, 1909, J CHEM SOC, V95, P734, DOI 10.1039/ct9099500734 Murzagaliev U. M., 1977, CHEM NAT COMPD, V13, P485 Newman DJ, 2003, J NAT PROD, V66, P1022, DOI 10.1021/np030096l Nimri LF, 1999, PHARM BIOL, V37, P196, DOI 10.1076/phbi.37.3.196.6308 Nowak S, 2012, ACTA POL PHARM, V69, P693 Olano I, 1996, J ETHNOPHARMACOL, V53, P111, DOI 10.1016/0378-8741(96)01428-6 Palombo EA, 2001, J ETHNOPHARMACOL, V77, P151, DOI 10.1016/S0378-8741(01)00290-2 Sarker SD, 2007, METHODS, V42, P321, DOI 10.1016/j.ymeth.2007.01.006 Sato Y, 1997, J PHARM PHARMACOL, V49, P1042, DOI 10.1111/j.2042-7158.1997.tb06038.x Stermitz FR, 1998, BIOCHEM SYST ECOL, V26, P845, DOI 10.1016/S0305-1978(98)00050-7 Sucher NJ, 2013, EXPERT OPIN DRUG DIS, V8, P21, DOI 10.1517/17460441.2013.739602 Taylor PW, 2013, INT J ANTIMICROB AG, V42, P195, DOI 10.1016/j.ijantimicag.2013.05.004 Viljoen AM, 2005, J ETHNOPHARMACOL, V96, P271, DOI 10.1016/j.jep.2004.09.017 VLIETINCK AJ, 1995, J ETHNOPHARMACOL, V46, P31, DOI 10.1016/0378-8741(95)01226-4 Vucic D., 2013, KRAGUJEV J SCI, V35, P107 Wikler ML, 2006, METHODS DILUTION ANT Wu QX, 2006, NAT PROD REP, V23, P699, DOI 10.1039/b606168k Yamatova R. S., 1965, CHEM NAT COMPD, V1, P11 NR 43 TC 4 Z9 4 U1 0 U2 19 PU AGRICULTURAL INST CANADA PI OTTAWA PA 280 ALBERT ST, SUITE 900, OTTAWA, ONTARIO K1P 5G8, CANADA SN 0008-4220 EI 1918-1833 J9 CAN J PLANT SCI JI Can. J. Plant Sci. PD MAR PY 2014 VL 94 IS 2 BP 417 EP 424 DI 10.4141/CJPS2013-258 PG 8 WC Agronomy; Plant Sciences SC Agriculture; Plant Sciences GA AH4SY UT WOS:000336119600022 OA Bronze DA 2021-10-15 ER PT J AU Song, CH Zhang, CQ Li, GL Zhang, XL Chen, G You, JM AF Song, Cuihua Zhang, Caiqing Li, Guoliang Zhang, Xiaolong Chen, Guang You, Jinmao TI Highly selective and sensitive determination of free and total amino acids in Apocynum venetum L. (Luobuma tea) by a developed HPLC-FLD method coupled with pre-column fluorescent labelling SO INTERNATIONAL JOURNAL OF FOOD SCIENCES AND NUTRITION LA English DT Article DE amino acids analysis; HPLC-FLD analysis; pre-column derivatization; Apocynum venetum L. ID LIQUID-CHROMATOGRAPHY; DERIVATIZATION AB Amino acids (AA) are important chemical constituents of tea leaves remarkably influencing the quality of tea. In this study, free AA and total AA in Apocynum venetum L. (Luobuma tea) were estimated by HPLC equipped with fluorescent detector using 2-[2-(7H-dibenzo[a,g]carbazol-7-yl)-ethoxy] ethyl chloroformate (DBCEEC) as a fluorescent labelling reagent. Different parameters for derivatization and separation were optimized. AA were rapidly derivatized within 3 min at room temperature with DBCEEC. In conjunction with a gradient elution, a baseline resolution of 20 analytes was achieved on a reversed-phase Hypersil BDS C18 column. LC separation for the derivatized AA showed good reproducibility. Twenty AA were detected and showed significant linear responses with correlation coefficients (>0.9992). This developed method offered the low detection limit of 2.88-23.4 fmol. C1 [Song, Cuihua; Li, Guoliang; You, Jinmao] Qufu Normal Univ, Key Lab Life Organ Anal Shandong Prov, Qufu, Peoples R China. [Zhang, Caiqing] Shandong Prov Qianfoshan Hosp, Jinan 250021, Peoples R China. [Li, Guoliang; Chen, Guang; You, Jinmao] Chinese Acad Sci, NW Plateau Inst Biol, Xining 810001, Peoples R China. [Zhang, Xiaolong; Chen, Guang] Chinese Acad Sci, Chengdu Inst Biol, Chengdu 610041, Peoples R China. [Zhang, Xiaolong] Chinese Acad Sci, Grad Sch, Beijing 100039, Peoples R China. RP You, JM (corresponding author), Qufu Normal Univ, Key Lab Life Organ Anal Shandong Prov, Qufu, Peoples R China. EM 61254368@163.com FU Chinese Academy of SciencesChinese Academy of Sciences [328]; Ministry of Education, Humanities and Social Sciences [09YJA880073] FX This work was s supported by 100 Talents Programme of Chinese Academy of Sciences (No. 328) and Ministry of Education, Humanities and Social Sciences project (09YJA880073). The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper. CR Ayaz FA, 2011, INT J FOOD SCI NUTR, V62, P328, DOI 10.3109/09637486.2010.533160 Belitz H.D., 1997, QUIMICA ALIMENTOS BRUCKNER H, 1994, J CHROMATOGR A, V666, P259, DOI 10.1016/0021-9673(94)80388-9 Cao YH, 2001, MIKROCHIM ACTA, V137, P57, DOI 10.1007/s006040170028 Chen L, 2009, J FOOD COMPOS ANAL, V22, P137, DOI 10.1016/j.jfca.2008.08.007 Ding YS, 2002, J CHROMATOGR A, V982, P237, DOI 10.1016/S0021-9673(02)01650-3 Gatti R, 2004, J PHARMACEUT BIOMED, V35, P339, DOI 10.1016/S0731-7085(03)00584-3 Grundmann O, 2009, PHYTOMEDICINE, V16, P295, DOI 10.1016/j.phymed.2008.12.020 Hermanussen M, 2010, EUR J CLIN NUTR, V64, P88, DOI 10.1038/ejcn.2009.116 Kim D. W., 1998, Journal of Traditional Medicines, V15, P40 Lin YP, 2007, J AGR FOOD CHEM, V55, P2103, DOI 10.1021/jf062996o Liu HJ, 1998, J CHROMATOGR A, V828, P383, DOI 10.1016/S0021-9673(98)00836-X Lozanov V, 2007, J CHROMATOGR B, V860, P92, DOI 10.1016/j.jchromb.2007.10.020 Munro NJ, 2000, ANAL CHEM, V72, P2765, DOI 10.1021/ac9914871 Naval MV, 2006, J CHROMATOGR A, V1121, P242, DOI 10.1016/j.chroma.2006.04.051 Obata H, 1997, MOL BRAIN RES, V49, P29, DOI 10.1016/S0169-328X(97)00118-6 Prata C, 2001, ELECTROPHORESIS, V22, P4129, DOI 10.1002/1522-2683(200111)22:19<4129::AID-ELPS4129>3.0.CO;2-I Ruan JY, 1998, J SCI FOOD AGR, V76, P389, DOI 10.1002/(SICI)1097-0010(199803)76:3<389::AID-JSFA963>3.0.CO;2-X Schwarz EL, 2005, CLIN CHIM ACTA, V354, P83, DOI 10.1016/j.cccn.2004.11.016 Shi TY, 2009, ANAL CHIM ACTA, V654, P154, DOI 10.1016/j.aca.2009.09.027 Xiao Y, 2007, TALANTA, V71, P2048, DOI 10.1016/j.talanta.2006.09.014 Yokogoshi H, 2009, INT J FOOD SCI NUTR, V99999, P1 Yokozawa T, 2004, FOOD CHEM TOXICOL, V42, P975, DOI 10.1016/j.fct.2004.02.010 Yokozawa T, 1998, BIOCHEM PHARMACOL, V56, P213, DOI 10.1016/S0006-2952(98)00128-2 Yoshitake M, 2006, ANAL CHEM, V78, P920, DOI 10.1021/ac051414j You JM, 2010, ANAL CHIM ACTA, V658, P98, DOI 10.1016/j.aca.2009.10.061 You JM, 2003, ANAL BIOCHEM, V313, P17, DOI 10.1016/S0003-2697(02)00398-6 NR 27 TC 4 Z9 5 U1 0 U2 28 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND SN 0963-7486 EI 1465-3478 J9 INT J FOOD SCI NUTR JI Int. J. Food Sci. Nutr. PD MAR PY 2012 VL 63 IS 2 BP 170 EP 177 DI 10.3109/09637486.2011.610780 PG 8 WC Food Science & Technology; Nutrition & Dietetics SC Food Science & Technology; Nutrition & Dietetics GA 884YU UT WOS:000299745600006 PM 21875374 DA 2021-10-15 ER PT J AU Zhou, CL Gao, GH Zhou, XM Dong, Y Chen, XH Bi, KS AF Zhou, Chunling Gao, Guanghui Zhou, Xiaomian Dong, Yu Chen, Xiaohui Bi, Kaishun TI Simultaneous determination of five active components in traditional Chinese medicine Apocynum venetum L. by RP-HPLC-DAD SO JOURNAL OF MEDICINAL PLANTS RESEARCH LA English DT Article DE HPLC; Apocynum venetum L.; chlorogenic acid; hyperoside; isoquercitrin; quercitroside; quercetin ID AQUEOUS EXTRACTS; LEAVES; LUOBUMA; CONSTITUENTS; RATS AB A simple, rapid and specific liquid chromatographic-diode array detector (DAD) method was developed and fully validated for simultaneous quantification of five major active ingredients (markers) from Apocynum venetum L. Samples were ultrasonically extracted with 70% ethanol. Then the foreign materials were removed in solid phase extraction column. The chromatographic separation was performed on a Zorbax SB-C-18 column (250mmx4.6mm i.d., 5 mu m) with a gradient of acetonitrile and water containing 0.1% glacial acetic acid, at a flow rate of 1.0 ml/min, detected at 360 nm. Five regression equations showed good linear relationships (r(2) > 0.999) between the peak areas of each marker and concentrations. The assay was reproducible with overall intra-and inter-day variation of less than 6.0%. The recoveries, measured at three concentration levels, varied from 97.8% to 102.5%. This assay was successfully applied to the determination of the 5 bioactive compounds in 10 samples. The results indicated that the developed assay method was rapid, accurate, reliable and could be readily utilized as a quality control method for A. Venetum L. C1 [Zhou, Chunling; Gao, Guanghui; Zhou, Xiaomian; Chen, Xiaohui; Bi, Kaishun] Shenyang Pharmaceut Univ, Sch Pharm, Dept Pharmaceut Anal, Shenyang 110016, Liaoning Prov, Peoples R China. [Zhou, Chunling; Dong, Yu] Liaoning Prov Inst Control Food & Drug, Shenyang 110023, Liaoning Prov, Peoples R China. RP Bi, KS (corresponding author), Shenyang Pharmaceut Univ, Sch Pharm, Dept Pharmaceut Anal, Shenyang 110016, Liaoning Prov, Peoples R China. EM bikaishun@yahoo.com CR Butterweck V, 2001, BIOL PHARM BULL, V24, P848, DOI 10.1248/bpb.24.848 Cao YH, 2001, MIKROCHIM ACTA, V137, P57, DOI 10.1007/s006040170028 Fan WZ, 1999, CHEM PHARM BULL, V47, P1049, DOI 10.1248/cpb.47.1049 *HLTH MIN PEOPL RE, 2005, PHARM PEOPL REP CHIN, V1, P147 HUANG XL, 1998, LISHIZHEN MED MATERI, V9, P539 Inal ME, 2001, CLIN CHIM ACTA, V305, P75, DOI 10.1016/S0009-8981(00)00422-8 Kim DW, 2000, J ETHNOPHARMACOL, V72, P53, DOI 10.1016/S0378-8741(00)00197-5 Kim DW, 1998, PHYTOTHER RES, V12, P46, DOI 10.1002/(SICI)1099-1573(19980201)12:1<46::AID-PTR169>3.0.CO;2-I LIU HQ, 2004, CHIN TRAD PAT MED, V26, P3 MA C, 2004, J PHARM SCI, V19, P198 Murakami T, 2001, CHEM PHARM BULL, V49, P845, DOI 10.1248/cpb.49.845 Tagawa C, 2004, YAKUGAKU ZASSHI, V124, P851, DOI 10.1248/yakushi.124.851 Wei ChunYan, 2008, Journal of Jilin Agricultural University, V30, P813 Xiong QB, 2000, PLANTA MED, V66, P127, DOI 10.1055/s-2000-11135 Yokozawa T, 2002, BIOL PHARM BULL, V25, P748, DOI 10.1248/bpb.25.748 Yu YY, 2006, J TONGJI U MED EDN, V27, P40 Zuo F, 1999, J JIANGXI COL TRADIT, V11, P104 NR 17 TC 4 Z9 5 U1 0 U2 8 PU ACADEMIC JOURNALS PI VICTORIA ISLAND PA P O BOX 5170-00200 NAIROBI, VICTORIA ISLAND, LAGOS 73023, NIGERIA SN 1996-0875 J9 J MED PLANTS RES JI J. Med. Plants Res. PD MAR 4 PY 2011 VL 5 IS 5 BP 735 EP 742 PG 8 WC Chemistry, Medicinal SC Pharmacology & Pharmacy GA 791TR UT WOS:000292689300011 DA 2021-10-15 ER PT J AU Shi, JY Li, GL Zhang, R Zheng, J Suo, YR You, JM Liu, YJ AF Shi, Junyou Li, Guoliang Zhang, Rui Zheng, Jie Suo, Yourui You, Jinmao Liu, Yong-jun TI A VALIDATED HPLC-DAD-MS METHOD FOR IDENTIFYING AND DETERMINING THE BIOACTIVE COMPONENTS OF TWO KINDS OF LUOBUMA SO JOURNAL OF LIQUID CHROMATOGRAPHY & RELATED TECHNOLOGIES LA English DT Article DE Apoacynum venetum L; flavonoids; liquid chromatography-mass spectrometry; Poacynum hendersonii ID PERFORMANCE LIQUID-CHROMATOGRAPHY; TANDEM MASS-SPECTROMETRY; APOCYNUM-VENETUM LEAVES; AQUEOUS EXTRACTS; QUERCETIN; FLAVONOIDS; RATS; POLYPHENOLS; CONSTITUENTS; TEAS AB A rapid and effective HPLC-DAD-MS method for quantitatively identifying the flavonoids of Apoacynum venetum L and Poacynum hendersonii has been developed. With this method, all the main components were well separated. In Apoacynum venetum L, the main components are chlorogenic acid, hyperoside, isoquercitrin, and 6''-O-malonylhyperoside, while those of Poacynum hendersonii are quercetin3-O-sophoroside, isoquercitrin and 6''-O-malonylhyperoside. The experimental results showed that the developed approach is accurate, reproducible, and applicable for quantifying the bioactive components of Apoacynum venetum L and Poacynum hendersonii. C1 [Shi, Junyou; Li, Guoliang; Zhang, Rui; Zheng, Jie; Suo, Yourui; You, Jinmao; Liu, Yong-jun] Chinese Acad Sci, NW Inst Plateau Biol, Xining 810001, Peoples R China. [Shi, Junyou; Li, Guoliang; Zhang, Rui; Zheng, Jie] Chinese Acad Sci, Grad Sch, Beijing, Peoples R China. RP Liu, YJ (corresponding author), Chinese Acad Sci, NW Inst Plateau Biol, Xining 810001, Peoples R China. EM yongjunliu_1@sdu.edu.cn CR Butterweck V, 2003, PHARMACOL BIOCHEM BE, V75, P557, DOI 10.1016/S0091-3057(03)00118-7 da Costa CT, 2000, J CHROMATOGR A, V881, P403, DOI 10.1016/S0021-9673(00)00328-9 DESCHNER EE, 1991, CARCINOGENESIS, V12, P1193, DOI 10.1093/carcin/12.7.1193 DONG ZJ, 1978, COMPREHENSIVE UTILIZ Ferry DR, 1996, CLIN CANCER RES, V2, P659 Grundmann O, 2007, J ETHNOPHARMACOL, V110, P406, DOI 10.1016/j.jep.2006.09.035 GU ZL, 1989, CHIN TRAD PATENT MED, V11, P28 HU BH, 1988, J INTEGR PLANT BIOL, V30, P565 Inbaraj BS, 2010, J PHARMACEUT BIOMED, V51, P549, DOI 10.1016/j.jpba.2009.09.006 Kagawa Tamami, 2004, Natural Medicines, V58, P109 Kim DW, 2000, J ETHNOPHARMACOL, V72, P53, DOI 10.1016/S0378-8741(00)00197-5 Kim DW, 1998, PHYTOTHER RES, V12, P46, DOI 10.1002/(SICI)1099-1573(19980201)12:1<46::AID-PTR169>3.0.CO;2-I Li T, 2008, CHEM PHARM BULL, V56, P807, DOI 10.1248/cpb.56.807 LIU Y, 1996, FLORA CHINA ILLUSTRA, V30 Ma M, 2003, J AGR FOOD CHEM, V51, P2390, DOI 10.1021/jf021055i March RE, 2004, INT J MASS SPECTROM, V232, P171, DOI 10.1016/j.ijms.2004.01.001 Merken HM, 2000, J AGR FOOD CHEM, V48, P577, DOI 10.1021/jf990872o Molnar-Perl I, 2005, J CHROMATOGR A, V1073, P201, DOI 10.1016/j.chroma.2004.10.068 Parejo I, 2004, J AGR FOOD CHEM, V52, P3679, DOI 10.1021/jf030813h Pereira MA, 1996, CARCINOGENESIS, V17, P1305, DOI 10.1093/carcin/17.6.1305 Pietta PG, 2000, J NAT PROD, V63, P1035, DOI 10.1021/np9904509 Prasain JK, 2003, J AGR FOOD CHEM, V51, P4213, DOI 10.1021/jf030174a QIAN ZN, 1990, CHIN TRAD PATENT MED, V12, P28 QIAN ZN, 1991, CHIN TRAD PATENT MED, V13, P27 Romani A, 2006, J AGR FOOD CHEM, V54, P1342, DOI 10.1021/jf052629x Sakakibara H, 2003, J AGR FOOD CHEM, V51, P571, DOI 10.1021/jf020926l Sandei N., 1994, NAT MED, V48, P322 [石秋梅 SHI Qiu-mei], 2009, [食品科学, Food Science], V30, P263 Shirai Mutsuko, 2005, J Med Invest, V52 Suppl, P249, DOI 10.2152/jmi.52.249 Soleas GJ, 2002, CLIN BIOCHEM, V35, P119, DOI 10.1016/S0009-9120(02)00275-8 Soleas GJ, 2001, J CHROMATOGR B, V757, P161, DOI 10.1016/S0378-4347(01)00142-6 Sosa S, 2005, PHYTOMEDICINE, V12, P271, DOI 10.1016/j.phymed.2004.02.007 Stevens JF, 1996, PHYTOCHEMISTRY, V41, P503, DOI 10.1016/0031-9422(95)00573-0 Weisskopf L, 2006, NEW PHYTOL, V171, P657, DOI 10.1111/j.1469-8137.2006.01776.x WILLNER P, 1984, PSYCHOPHARMACOLOGY, V83, P1, DOI 10.1007/BF00427414 Xiong QB, 2000, PLANTA MED, V66, P127, DOI 10.1055/s-2000-11135 Yokozawa T, 2004, FOOD CHEM TOXICOL, V42, P975, DOI 10.1016/j.fct.2004.02.010 Yokozawa T, 2002, BIOL PHARM BULL, V25, P748, DOI 10.1248/bpb.25.748 [张云峰 ZHANG Yunfeng], 2006, [天然产物研究与开发, Natural Product R & D], V18, P954 魏锦萍, 2008, [中草药, Chinese Traditional and Herbal Drugs], V39, P1304 NR 40 TC 4 Z9 6 U1 0 U2 15 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 325 CHESTNUT ST, SUITE 800, PHILADELPHIA, PA 19106 USA SN 1082-6076 J9 J LIQ CHROMATOGR R T JI J. Liq. Chromatogr. Relat. Technol. PY 2011 VL 34 IS 7 BP 537 EP 547 AR PII 935389792 DI 10.1080/10826076.2011.546173 PG 11 WC Biochemical Research Methods; Chemistry, Analytical SC Biochemistry & Molecular Biology; Chemistry GA 742QH UT WOS:000288959000005 DA 2021-10-15 ER PT J AU Zheng, LJ Du, B Xue, WW AF Zheng, Laijiu Du, Bing Xue, Weiwei TI Screening and identification of Acinetobacter junii for Apocynum vernetum L. fiber enzymatic retting SO JOURNAL OF THE TEXTILE INSTITUTE LA English DT Article DE Apocynum vernetum L; fiber; pectinase; enzymatic retting; Acinetobacter junii; DNA sequence analysis ID PECTINASE; HEMP AB There are many kinds of ketones with antisepsis functions in the Apocynum vernetum L. fiber (ALF), but its enzymatic retting is difficult. In order to select the appropriate ALF enzymatic retting strain, wastewater from ALF retting was analyzed to screen a strain with high pectinase activity. Of the analyzed strains, the maximum pectinase activity measured was of the #2 strain: 103.2 IU/ml at a zymogenic time of 12 hrs at 37 degrees C. The retting experiments verified that this strain was well suited for ALF; the residual gum rate of ALF was 15.26% and its fiber physicochemical properties were similar to those fibers which were chemically retted. The strain was determined to be a new retting strain, Acinetobacter junii, according to a 16S rDNA sequence analysis in combination with morphology, and biophysical and biochemical tests using fermentation, catalase, methyl red and gelatin liquefaction. As a new pectinase-producing strain, Acinetobacter junii could be utilized in industrial enzymatic retting productions after further process optimization and can replace the conventional chemical retting process due to its improved fiber quality and reduced environmental pollution. C1 [Zheng, Laijiu; Du, Bing; Xue, Weiwei] Dalian Polytech Univ, Key Lab Text Engn, Dalian 16034, Peoples R China. RP Zheng, LJ (corresponding author), Dalian Polytech Univ, Key Lab Text Engn, Dalian 16034, Peoples R China. EM fztrxw@dlpu.edu.cn CR Akin DE, 2007, IND CROP PROD, V25, P136, DOI 10.1016/j.indcrop.2006.08.003 Basu G, 2009, IND CROP PROD, V29, P281, DOI 10.1016/j.indcrop.2008.05.008 DONG B, 2002, SHANDONG AGR SCI, V6, P11 HONG X, 2006, TEXT RES J, V27, P102 Kashyap DR, 2000, WORLD J MICROB BIOT, V16, P277, DOI 10.1023/A:1008902107929 LAIJIU Z, 2007, J DONGHUA U, V24, P404 LIU Z, 2002, CHINAS FIBER CROPS, V24, P25 Mellon JE, 2004, MYCOPATHOLOGIA, V157, P333, DOI 10.1023/B:MYCO.0000024181.36900.15 Schofield JE, 2005, J ARCHAEOL SCI, V32, P715, DOI 10.1016/j.jas.2004.12.004 Yu HQ, 2007, ENZYME MICROB TECH, V40, P1806, DOI 10.1016/j.enzmictec.2007.02.018 Zhang LL, 2008, PROCESS BIOCHEM, V43, P1195, DOI 10.1016/j.procbio.2008.06.019 Zhao ShengMin, 2009, Science & Technology Review, P37 NR 12 TC 4 Z9 4 U1 0 U2 5 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 0040-5000 J9 J TEXT I JI J. Text. Inst. PY 2011 VL 102 IS 8 BP 675 EP 680 AR PII 933522372 DI 10.1080/00405000.2010.514726 PG 6 WC Materials Science, Textiles SC Materials Science GA 768VF UT WOS:000290965800003 DA 2021-10-15 ER PT J AU DiTommaso, A Clements, DR Darbyshire, SJ Dauer, JT AF DiTommaso, Antonio Clements, David R. Darbyshire, Stephen J. Dauer, Joseph T. TI The Biology of Canadian Weeds. 143. Apocynum cannabinum L. SO CANADIAN JOURNAL OF PLANT SCIENCE LA English DT Review DE Hemp dogbane; APCCA; Apocynum cannabinum; Apocynaceae; weed biology ID SOIL-APPLIED HERBICIDES; CORN ZEA-MAYS; HEMP DOGBANE; COMMON MILKWEED; TISSUE-CULTURE; APOCYNACEAE; TRANSLOCATION; POPULATIONS; GLYPHOSATE; GERMINATION AB DiTommaso, A., Clements, D. R., Darbyshire, S. J. and Dauer, J. T. 2009. The Biology of Canadian Weeds. 143. Apocynum cannabinum L. Can. J. Plant Sci. 89: 977-992. Hemp dogbane, Apocynum cannabinum (Apocynaceae), is a perennial herb with white to greenish flowers in terminal clusters that produces pencil-like pods 12-20 cm long. A highly variable plant, A. cannabinum may be distinguished from spreading dogbane (Apocynum androsaemifolium) by its shorter corolla (2-6 nun compared with 5-10 mm), erect greenish-white petals (compared with recurved or spreading pinkish petals), seeds more than 3 mm long (compared with seeds less than 3 mm), and more erect leaves (compared with spreading or drooping leaves), although frequent hybridization between the two species obscures the identity of some individuals. Hemp dogbane is native to the United States and southern Canada, but most abundant in the upper Mississippi River Valley and east to the Atlantic coast. It has been increasing in other areas, and becoming more of a problem where conservation tillage is adopted. It infests crops such as corn (Zea mays), soybeans (Glycine max), wheat (Triticum aestivum), sorghum (Sorghum bicolor) and forages, and may cause livestock poisoning due to cardiac glycosides within its milky sap (but livestock generally avoid it). Potential medicinal uses of these compounds have been investigated, and the roots are a source of fibre. Control of A. cannabinum with various herbicides is difficult due to a thick cuticle, and one solution may be to target susceptible stages, such as seedlings or early spring growth. Cultivation may also control A. cannabinum, but care must be taken not to promote the proliferation of the plant through regrowth from fragmented roots and rhizomes. Rotation with alfalfa also reduces populations of A. cannabinum. C1 [DiTommaso, Antonio] Cornell Univ, Dept Crop & Soil Sci, Ithaca, NY 14853 USA. [Clements, David R.] Trinity Western Univ, Dept Biol, Langley, BC V2Y 1Y1, Canada. [Darbyshire, Stephen J.] Agr & Agri Food Canada, Eastern Cereal & Oilseed Res Ctr, Ottawa, ON K1A 0C6, Canada. [Dauer, Joseph T.] Oregon State Univ, Dept Crop & Soil Sci, Corvallis, OR 97331 USA. RP DiTommaso, A (corresponding author), Cornell Univ, Dept Crop & Soil Sci, Ithaca, NY 14853 USA. EM ad97@cornell.edu OI DiTommaso, Antonio/0000-0001-8215-2777 CR ANDERSON E., 1936, Ann. Mo. Bot. Gdn., V23, P159, DOI 10.2307/2394192 BABCOCK PA, 1962, LLOYD, V25, P209 BALBACH HE, 1965, THESIS U ILLINOIS UR BARNES D, 1972, P N CENT WEED CONTR, V27, P54 Becker R., 1981, Weeds Today, V12, P15 Becker RL, 1998, WEED SCI, V46, P358, DOI 10.1017/S0043174500089542 BECKER RL, 1980, P N CENTR WEED CONT, V35, P9 BECKER RL, 1980, N CENTR WEED CONT C, V37, P54 BOIVIN BERNARD, 1966, NATUR CAN, V93, P107 BRADLEY KW, 2001, VIRGINIA COOPERATIVE BRESLAVETZ L., 1934, Zeitschrift fur Zuchtung, VA 19, P229 BRUNT AA, 1996, ONWORDS PLANT VIRUSE BUHLER DD, 1994, WEED SCI, V42, P205, DOI 10.1017/S0043174500080280 BURGER A, 1960, MED CHEM, P627 BURNSIDE OC, 1981, WEED SCI, V29, P577, DOI 10.1017/S0043174500063761 Cahill JF, 2002, AM J BOT, V89, P1401, DOI 10.3732/ajb.89.9.1401 Cahill JF, 2001, ECOLOGY, V82, P307, DOI 10.1890/0012-9658(2001)082[0307:THUPVP]2.0.CO;2 CODY WJ, 1996, FLORA YUKON TERRITOR COFFMAN CB, 1998, P NE WEED SCI SOC, V42, P62 CONNERS L, 1967, PUBL CAN DEP AGR, V1251 Crockett LJ, 1977, WILDLY SUCCESSFUL PL Cronquist A., 1981, INTEGRATED SYSTEM CL Curran W. S., 1997, P NE WEED SCI SOC, V51, P113 CURRAN WS, 1998, P N CENTRAL WEED SCI, V53, P75 Dalby R, 2004, AM BEE J, V144, P46 Darbyshire S. J, 2003, INVENTORY CANADIAN A DARBYSHIRE SJ, 2000, AGR AGR FOOD CANADA Delaney KJ, 2006, PLANT CELL ENVIRON, V29, P1245, DOI 10.1111/j.1365-3040.2006.01504.x DOLL J, 1994, HEMP DOGBANE BIOL MA Doll J. D., 1997, WEED SCI SOC AM ABST, V37, P90 DOLL JD, 1995, P N CENTRAL WEED SCI, V50, P79 EVETTS LL, 1972, WEED SCI, V20, P371, DOI 10.1017/S004317450003589X EVETTS LL, 1971, P N CENTR WEED CONT, V26, P62 EVETTS LL, 1973, NEBRASKA FARM RANCH, V19, P19 EVETTS LL, 1972, N CENTR WEED CONT C, V29, P62 FARR DF, 2004, FUNG DAT SYST BOT MY FAWCETT RS, 1978, N CENTR WEED CONT C, V35, P51 Felter H.W., 1922, ECLECTIC MAT MED PHA Fernald M. L. F., 1950, GRAYS MANUAL BOT FOSTER KE, 1983, BIOMASS, V3, P269, DOI 10.1016/0144-4565(83)90018-5 Frazier JC, 1944, BOT GAZ, V105, P463, DOI 10.1086/335256 Frazier John C., 1945, BOT GAZ, V106, P332, DOI 10.1086/335303 FURRER JD, 1983, HEMP DOGBANE NEBGUID FYLES F, 1920, DEP AGR B, V39 GENKINA GL, 1974, CHEM NAT COMPD, V8, P316 Gerhards R., 1996, Precision agriculture. Proceedings of the 3rd International Conference, Minneapolis, Minnesota, USA, 23-26 June 1996., P495 Gerhards R, 1997, WEED SCI, V45, P108, DOI 10.1017/S0043174500092559 Gleason H.A., 1991, MANUAL VASCULAR PLAN, Vsecond Glenn S, 1997, WEED TECHNOL, V11, P436, DOI 10.1017/S0890037X0004522X GLENN S, 1993, WEED TECHNOL, V7, P47 Grant JB, 2007, J ANIM ECOL, V76, P439, DOI 10.1111/j.1365-2656.2007.01216.x HAFEMANN MK, 1986, OHIO J SCI, V86, P4 HARTMAN RL, 1986, FLORA GREAT PLAINS, P610 HILL AF, 1952, EC BOT HITCHCOCK AS, 1898, AGRIC EXP STN B, V8, P1 HOLMES PM, 1990, S AFR J ECOL, V1, P8 JEFFERY LS, 1969, COOP EXT SERV PUBL E Johnson SA, 1998, AM J BOT, V85, P1316, DOI 10.2307/2446641 Kalnay PA, 2000, WEED TECHNOL, V14, P476, DOI 10.1614/0890-037X(2000)014[0476:TONADI]2.0.CO;2 KARTESZ JT, 1999, SYNTHESIS N AM FLORA KUPCHAN SM, 1964, J MED CHEM, V7, P803, DOI 10.1021/jm00336a029 LEE PK, 1972, LLOYD, V35, P150 Lipow SR, 1999, PLANT SYST EVOL, V219, P99, DOI 10.1007/BF01090302 LORENZI HJ, 1987, WEEDS US THEIR CONTR LOUX MM, 1991, WEED TECHNOL, V5, P460, DOI 10.1017/S0890037X00028438 Love A, 1982, TAXON, V31, P344 Merriam C.H, 1955, STUDIES CALIFORNIA I MILLSPAUGH CF, 1887, AM MED PLANTS ILLUST Moerman D.E., 1998, NATIVE AM ETHNOBOTAN MUENSCHER WC, 1951, POISONOUS PLANTS US *NAT HIST MUS, 2008, HOSTS PLANT DAT WORL, P171 Niesenbaum RA, 2006, INT J PLANT SCI, V167, P969, DOI 10.1086/506329 ORFANEDES MS, 1993, WEED SCI, V41, P1 ORFANEDES MS, 1991, WEED TECHNOL, V5, P782, DOI 10.1017/S0890037X00033856 Pellett F. C., 1976, AM HONEY PLANTS RADKOWITSCH A, 1999, FLOR RUNDR, V32, P111 Ransom Corey V., 1998, Weed Technology, V12, P631 Ransom CV, 1998, WEED SCI, V46, P71, DOI 10.1017/S0043174500090196 Ransom CV, 1998, WEED SCI, V46, P408, DOI 10.1017/S0043174500090810 RICHARD EP, 1979, WEED SCI, V27, P426, DOI 10.1017/S0043174500044325 RICKERL DH, 1994, J ENVIRON QUAL, V23, P913, DOI 10.2134/jeq1994.00472425002300050010x Riley J.G., 1989, ECON POLIT-OXFORD, V1, P17, DOI DOI 10.1111/J.1468-0343.1989.TB00003.X ROBISON LR, 1972, WEED SCI, V20, P156, DOI 10.1017/S0043174500035244 ROETH FW, 1977, N CENT WEED CONTROL, V34, P20 SCHAFFNER JH, 1910, OHIO NAT, V10, P184 SCHULTZ ME, 1980, WEED SCI, V28, P13, DOI 10.1017/S0043174500027685 SCHULTZ ME, 1979, AGRON J, V71, P723, DOI 10.2134/agronj1979.00021962007100050007x SCHULTZ ME, 1979, WEED SCI, V27, P565, DOI 10.1017/S0043174500044623 SCHULTZ ME, 1937, CYTOLOGIA, P407 SCHULTZ ME, 1978, N CENTR WEED CONT C, V35, P40 TASHMUKHAMEDOVA F, 1968, MED ZH UZBEKISTANAN, V1, P17 THOMPSON L, 1972, N CENTR WEED CONT C, V29, P45 TRIPLETT GB, 1972, WEED SCI, V20, P453, DOI 10.1017/S0043174500036122 Triplett Jr G.B., 1985, WEED SCI SOC AM MONO, V2, P26 Turner N. J., 1980, 21 BRIT COL PROV MUS *USDA NRCS, 2004, PLANTS DAT VERS 3 5 VANDERLAAN FM, 1985, GENETICA, V68, P3, DOI 10.1007/BF02424563 Vangessel MJ, 1999, WEED TECHNOL, V13, P425, DOI 10.1017/S0890037X0004197X VENKATASUBBAIAH P, 1992, J PHYTOPATHOL, V135, P309, DOI 10.1111/j.1439-0434.1992.tb04316.x Voss E.G., 1996, CRANBROOK I SCI B, V61 Webster TM, 1999, WEED SCI, V47, P524, DOI 10.1017/S0043174500092213 Webster TM, 2000, WEED SCI, V48, P716, DOI 10.1614/0043-1745(2000)048[0716:ACIINT]2.0.CO;2 Webster TM, 2000, WEED SCI, V48, P728, DOI 10.1614/0043-1745(2000)048[0728:SATEPO]2.0.CO;2 Welch C, 1997, P N CENT WEED SCI SO, V52, P33 WOODSON RE, 1930, ANN MO BOT GARD, V17, P1, DOI DOI 10.2307/2394074 WYRILL JB, 1976, WEED SCI, V24, P557, DOI 10.1017/S0043174500062949 WYRILL JB, 1977, WEED SCI, V25, P275, DOI 10.1017/S0043174500033464 WYRILL JB, 1976, N CENT WEED CONTROL, V33, P27 ZAITSEVA VN, 1950, ZH PRIKL KHIM, V23, P1299 1970, AGR RES SERV AGR HDB, V366 NR 110 TC 4 Z9 4 U1 0 U2 31 PU CANADIAN SCIENCE PUBLISHING, NRC RESEARCH PRESS PI OTTAWA PA 65 AURIGA DR, SUITE 203, OTTAWA, ON K2E 7W6, CANADA SN 0008-4220 EI 1918-1833 J9 CAN J PLANT SCI JI Can. J. Plant Sci. PD SEP PY 2009 VL 89 IS 5 BP 977 EP 992 DI 10.4141/CJPS08103 PG 16 WC Agronomy; Plant Sciences SC Agriculture; Plant Sciences GA 502UH UT WOS:000270485200019 OA Bronze DA 2021-10-15 ER PT J AU Ransom, CV Douches, DS Kells, JJ AF Ransom, CV Douches, DS Kells, JJ TI Isozyme and RAPD variation among and within hemp dogbane (Apocynum cannabinum) populations SO WEED SCIENCE LA English DT Article DE hemp dogbane, Apocynum cannabinum L. APPCA; prairie dogbane, Apocynum sibericum Jacq. APCVE; spreading dogbane, Apocynum androsaemifolium L. APCAN; genetic variation; polymorphism; isozyme analysis; RAPD analysis; APPCA; APCVE; APCAN ID NUTSEDGE CYPERUS-ESCULENTUS; GENETIC DIVERSITY; WEEDY ADAPTATION; VARIABILITY; ALLOZYME; SYSTEMS; SETARIA AB Clonal individuals from IG hemp dogbane populations with phenotypic variation were analyzed using isozyme and randomly amplified polymorphic DNA (RATD) analysis. Plants originated From populations in Michigan and Illinois. Three known Apocynum species, spreading dogbane, hemp dogbane, and prairie dogbane, were evaluated. Genetic distance among populations was more pronounced with isozyme analysis compared to RAPD analysis. The combined isozyme and RAPD analysis data separated spreading dogbane from all other plants analyzed. Genetic variation was present among the 16 hemp dogbane populations, but was less than expected based on the phenotypic variation present among the collections. The short genetic distance between the 16 hemp dogbane collections and the three Apocynum species suggests that variation among populations of hemp dogbane may be from outcrossing with other closely related Apocynum species. Isozyme and RAPD analyses were also conducted on plants from two populations in Michigan to determine the level of genetic variation among plants within the same population. Genetic analysis revealed that one population was entirely clonal, while the other population was a mixture of clonal and segregating plants. C1 Michigan State Univ, Dept Crop & Soil Sci, E Lansing, MI 48824 USA. RP Ransom, CV (corresponding author), Michigan State Univ, Dept Crop & Soil Sci, E Lansing, MI 48824 USA. EM kells@pilot.msu.edu RI Ransom, Corey/E-5927-2011 CR ANDERSON E., 1936, Ann. Mo. Bot. Gdn., V23, P159, DOI 10.2307/2394192 BALBACH HE, 1965, THESIS U ILLINOIS UR Dellaporta SL, 1983, PLANT MOL BIOL REP, V1, P19, DOI DOI 10.1007/BF02712670 HORAK MJ, 1986, WEED SCI, V34, P538, DOI 10.1017/S0043174500067394 HORAK MJ, 1987, WEED SCI, V35, P506, DOI 10.1017/S004317450006046X HOU YL, 1995, WEED SCI, V43, P156, DOI 10.1017/S0043174500080978 KARIHALOO JL, 1995, THEOR APPL GENET, V90, P767, DOI 10.1007/BF00222010 Li Q. B., 1994, Plant Molecular Biology Reporter, V12, P215, DOI 10.1007/BF02668744 Moodie M, 1997, WEED SCI, V45, P102, DOI 10.1017/S0043174500092547 MOUEMAR AA, 1983, WEED RES, V23, P141, DOI 10.1111/j.1365-3180.1983.tb00532.x NEI M, 1972, AM NAT, V106, P283, DOI 10.1086/282771 NISSEN SJ, 1995, WEED SCI, V43, P504, DOI 10.1017/S0043174500081546 Orton T.J., 1983, ISOZYMES PLANT GENET, P469, DOI DOI 10.1016/B978-0-444-42226-2.50031-1 Ransom CV, 1998, WEED SCI, V46, P71, DOI 10.1017/S0043174500090196 ROBISON LR, 1972, WEED SCI, V20, P156, DOI 10.1017/S0043174500035244 ROHLF FJ, 1992, NTSYS PC NUMRICAL TA SCHULTZ ME, 1979, WEED SCI, V27, P565, DOI 10.1017/S0043174500044623 SHORE JS, 1993, HEREDITY, V70, P101, DOI 10.1038/hdy.1993.15 STPIERRE MD, 1990, CAN J BOT, V68, P2449, DOI 10.1139/b90-311 Strefeler MS, 1996, AM J BOT, V83, P265, DOI 10.2307/2446161 THEBAUD C, 1995, AM J BOT, V82, P360, DOI 10.2307/2445581 VOSS EG, 1996, CRANBROOK I SCI B, V61, P84 WANG RL, 1995, AM J BOT, V82, P1031, DOI 10.2307/2446233 WANG RL, 1995, AM J BOT, V82, P308, DOI 10.2307/2445576 WARWICK SI, 1990, PLANT SYST EVOL, V169, P41, DOI 10.1007/BF00935983 Wendel JF, 1989, ISOZYMES PLANT BIOL, P4 WHITKUS R, 1992, SYST BOT, V17, P16, DOI 10.2307/2419060 WOODSON RE, 1930, ANN MO BOT GARD, V17, P1, DOI DOI 10.2307/2394074 1991, WEED SCI, V39, P480 1970, AGR HDB USDA, V336, P284 NR 30 TC 4 Z9 4 U1 0 U2 1 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0043-1745 EI 1550-2759 J9 WEED SCI JI Weed Sci. PD JUL-AUG PY 1998 VL 46 IS 4 BP 408 EP 413 DI 10.1017/S0043174500090810 PG 6 WC Agronomy; Plant Sciences SC Agriculture; Plant Sciences GA 117XR UT WOS:000075808400005 DA 2021-10-15 ER PT J AU SCHULTZ, ME BURNSIDE, OC AF SCHULTZ, ME BURNSIDE, OC TI EFFECT OF LANOLIN OR LANOLIN + STARCH RINGS ON ABSORPTION AND TRANSLOCATION OF 2,4-D OR GLYPHOSATE IN HEMP DOGBANE (APOCYNUM-CANNABINUM) SO WEED SCIENCE LA English DT Article RP SCHULTZ, ME (corresponding author), UNIV NEBRASKA,DEPT AGRON,LINCOLN,NE 68583, USA. CR CRAFTS ALDEN S., 1956, HILGARDIA, V26, P287 Hull H M, 1970, Residue Rev, V31, P1 HULL HM, 1975, BOT REV, V41, P421, DOI 10.1007/BF02860832 KERN AD, 1975, WEED SCI, V23, P277, DOI 10.1017/S0043174500053029 NALEWAJA JD, 1977, WEED SCI, V25, P309, DOI 10.1017/S0043174500033531 RICHARDSON RG, 1977, WEED RES, V17, P259, DOI 10.1111/j.1365-3180.1977.tb00477.x SMITH LW, 1966, J AGRIC FOOD CHEM, V66, P117 SPRANKLE P, 1975, WEED SCI, V23, P235, DOI 10.1017/S0043174500052930 WYRILL JB, 1976, WEED SCI, V24, P557, DOI 10.1017/S0043174500062949 YAMAGUCHI S., 1958, HILGARDIA, V28, P161 ZANDSTRA BH, 1977, WEED SCI, V25, P268, DOI 10.1017/S0043174500033452 NR 11 TC 4 Z9 4 U1 0 U2 2 PU WEED SCI SOC AMER PI CHAMPAIGN PA 309 W CLARK ST, CHAMPAIGN, IL 61820 SN 0043-1745 J9 WEED SCI JI Weed Sci. PY 1980 VL 28 IS 2 BP 149 EP 151 DI 10.1017/S0043174500055004 PG 3 WC Agronomy; Plant Sciences SC Agriculture; Plant Sciences GA JN636 UT WOS:A1980JN63600005 DA 2021-10-15 ER PT J AU Yang, FR Ma, YC Zheng, HD Zheng, LJ Zhao, YP AF Yang, Fengrui Ma, Yingchong Zheng, Huanda Zheng, Laijiu Zhao, Yuping TI An Eco-friendly Degumming of Apocynum Venetum with Ionic Liquid Pretreatment SO JOURNAL OF NATURAL FIBERS LA English DT Article DE Apocynum venetum; fiber; pretreatment; degumming; ionic liquid; physicochemical property ID FLAX ROVE; LIGNIN; DISSOLUTION; CHLORIDE; RAMIE AB A novel pretreatment process for degumming of apocynum venetum is developed firstly using 1-butyl-3-methylimidazolium acetate-water mixtures. The effect of the four independent parameters on the residue of gum of apocynum venetum fibers was investigated. The results showed that the effect of 1-butyl-3-methylimidazolium acetate concentration on the residue of gum is the most significant, followed by time, temperature, and liquor ratio. The optimal solution of ionic liquid pretreatment for the degumming of apocynum venetum fiber is obtained with a concentration of ionic liquid 80%, liquor ratio 1:20, temperature 90 degrees C, and time 4 h. The residual gum contents for the chemical degummed apocynum venetum fibers were 3.90% with ionic liquid pretreatment. Moreover, the physicochemical properties of the degummed apocynum venetum fibers were also characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and Scanning electron spectroscopy (SEM). C1 [Yang, Fengrui; Ma, Yingchong; Zheng, Huanda; Zheng, Laijiu; Zhao, Yuping] Dalian Polytech Univ, Sch Text & Mat Engn, 1 Qinggongyuan, Dalian 116034, Liaoning, Peoples R China. RP Zhao, YP (corresponding author), Dalian Polytech Univ, Sch Text & Mat Engn, 1 Qinggongyuan, Dalian 116034, Liaoning, Peoples R China. EM zhaoyp@dlpu.edu.cn CR Cox BJ, 2013, BIORESOURCE TECHNOL, V134, P59, DOI 10.1016/j.biortech.2013.01.081 Cox BJ, 2012, BIORESOURCE TECHNOL, V118, P584, DOI 10.1016/j.biortech.2012.05.012 Cox BJ, 2011, POLYM DEGRAD STABIL, V96, P426, DOI 10.1016/j.polymdegradstab.2011.01.011 Ding RY, 2014, J TEXT I, V105, P20, DOI 10.1080/00405000.2013.807019 Dong ZE, 2015, THERM SCI, V19, P939, DOI 10.2298/TSCI130329005Z Gong JX, 2019, J NAT FIBERS, V16, P1, DOI 10.1080/15440478.2017.1379043 Jia SY, 2010, CHEMSUSCHEM, V3, P1078, DOI 10.1002/cssc.201000112 Kilpelainen I, 2007, J AGR FOOD CHEM, V55, P9142, DOI 10.1021/jf071692e Mohanty A. K., 2005, NATURAL FIBERS BIOPL Sadov F.I., 1978, CHEM TECHNOLOGY FIBR Socha AM, 2014, P NATL ACAD SCI USA, V111, pE3587, DOI 10.1073/pnas.1405685111 Wang LL, 2007, CARBOHYD POLYM, V69, P391, DOI 10.1016/j.carbpol.2006.12.028 Wang YT, 2014, BIORESOURCE TECHNOL, V170, P499, DOI 10.1016/j.biortech.2014.08.020 Weerachanchai P, 2013, ACS SUSTAIN CHEM ENG, V1, P894, DOI 10.1021/sc300147f Weerachanchai P, 2012, BIORESOURCE TECHNOL, V111, P453, DOI 10.1016/j.biortech.2012.02.023 Yang Y. H., 2012, J JIANGSU NORMAL U, V30, P56 Yuan JG, 2013, FIBER POLYM, V14, P1254, DOI 10.1007/s12221-013-1254-5 Zafeiropoulos NE, 2002, COMPOS PART A-APPL S, V33, P1083, DOI 10.1016/S1359-835X(02)00082-9 Zhang J, 2018, J NAT FIBERS, V15, P1, DOI 10.1080/15440478.2017.1302385 Zhang J, 2017, J ENG FIBER FABR, V12, P44 Zhang J, 2018, TEXT RES J, V88, P155, DOI 10.1177/0040517516676068 Zhang Y. M., 2006, J DONGHUA U, V23, P84 Zhu SD, 2006, GREEN CHEM, V8, P325, DOI 10.1039/b601395c Zhuang LH, 2014, FIBER POLYM, V15, P226, DOI 10.1007/s12221-014-0226-8 NR 24 TC 3 Z9 3 U1 7 U2 25 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA SN 1544-0478 EI 1544-046X J9 J NAT FIBERS JI J. Nat. Fibers PD OCT 2 PY 2020 VL 17 IS 10 BP 1401 EP 1409 DI 10.1080/15440478.2019.1570418 PG 9 WC Materials Science, Textiles SC Materials Science GA NH8RB UT WOS:000564929600002 DA 2021-10-15 ER PT J AU Zeng, S Zhao, X Xu, LS Yang, DH Chen, LZ Xu, MH AF Zeng, Shi Zhao, Xin Xu, Lun-Shan Yang, Donghong Chen, Lizhao Xu, Min-Hui TI Apoptosis induction effect of Apocynum venetum polyphenol on human U87 glioma cells via NF-kappa B pathway SO FUTURE ONCOLOGY LA English DT Article DE Apocynum venetum; apoptosis; NF-kappa B; polyphenol; U87 cells ID GASTRIC-CANCER; BAMBOO SALT; EXPRESSION; INHIBITION; L.; ACTIVATION; MEDIATORS; PROTEINS; ADJUVANT AB Aim: Apocynum venetum polyphenol (AVP) was used in in vitro glioma cells culture to prove the growth inhibitory effect of AVP on human U87 glioma cells via NF-kappa B pathway. Materials & methods: The MTT assay, DAPI morphology, quantitative PCR and western blot experiments were used for determination in vitro. Results & conclusion: AVP can also induce U87 cancer cells apoptosis illustrated by DAPI morphology. AVP could enhance the mRNA and protein expression of I kappa B-alpha, TNF-alpha, TRAIL, caspase-3 and caspase-9 in U87 cancer cells and reduce those of NF-kappa Bp65, cIAP-1, cIAP-2, TGF-beta 2, CyclinD1, VEGF and IL-8. After ammonium pyrrolidine dithiocarbamate (PDTC) treatment, the NF-kappa Bp65 expression was reduced in U87 cells, and AVP could raise these effects. The results of HPLC indicate that AVP mainly contains six constituents. The growth inhibitory effects of AVP on U87 glioma cells are predominantly from these natural active constituents. C1 [Zeng, Shi; Xu, Lun-Shan; Yang, Donghong; Chen, Lizhao; Xu, Min-Hui] Army Med Univ, Daping Hosp, Dept Neurosurg, Chongqing 400042, Peoples R China. [Zhao, Xin] Chongqing Univ Educ, Chongqing Collaborat Innovat Ctr Funct Food, Chongqing 400067, Peoples R China. RP Xu, LS; Xu, MH (corresponding author), Army Med Univ, Daping Hosp, Dept Neurosurg, Chongqing 400042, Peoples R China. EM xuliu559@163.com; minhuixu66@aliyun.com CR Biswas DK, 2004, P NATL ACAD SCI USA, V101, P10137, DOI 10.1073/pnas.0403621101 BOURS V, 1994, BIOCHEM PHARMACOL, V47, P145, DOI 10.1016/0006-2952(94)90448-0 Burke SP, 2010, J BIOL CHEM, V285, P30061, DOI 10.1074/jbc.M110.125955 Chen X, 2007, ACTA PHYS-CHIM SIN, V23, P1201, DOI 10.3866/PKU.WHXB20070812 Ghosh S, 1998, ANNU REV IMMUNOL, V16, P225, DOI 10.1146/annurev.immunol.16.1.225 Grundmann O, 2007, J ETHNOPHARMACOL, V110, P406, DOI 10.1016/j.jep.2006.09.035 Hong JM, 2016, CHIN AGR SCI B, V32, P176 Hou N, 2017, ANTI-CANCER DRUG, V28, P59, DOI 10.1097/CAD.0000000000000430 Ismail H, 2004, PROSTATE, V58, P308, DOI 10.1002/pros.10335 Jin HS, 2009, CANCER RES, V69, P1782, DOI 10.1158/0008-5472.CAN-08-2256 Khalid E, 2016, TUMOR BIOL, V37, P14513, DOI 10.1007/s13277-016-5364-8 Kim DW, 2000, PHYTOTHER RES, V14, P501, DOI 10.1002/1099-1573(200011)14:7<501::AID-PTR655>3.0.CO;2-B Kim MS, 2011, ARCH PHARM RES, V34, P2101, DOI 10.1007/s12272-011-1213-x Kumar P, 2015, ANTI-CANCER AGENT ME, V15, P647, DOI 10.2174/1871520615666150101125918 [李琪 Li Qi], 2017, [中国临床药理学与治疗学, Chinese Journal of Clinical Pharmacology and Therapeutics], V22, P1099 Liu H, 2017, PRACT PHARM CLIN REM, V20, P221 Lu T, 2004, P NATL ACAD SCI USA, V101, P7112, DOI 10.1073/pnas.0402048101 Lukitasari M, 2018, J EVID-BASED INTEGR, V23, DOI 10.1177/2515690X18789628 Luo JL, 2004, CANCER CELL, V6, P297, DOI 10.1016/j.ccr.2004.08.012 Morales JC, 2007, MOL IMMUNOL, V44, P2587, DOI 10.1016/j.molimm.2006.12.015 Ouyang L, 2012, CELL PROLIFERAT, V45, P487, DOI 10.1111/j.1365-2184.2012.00845.x Pan YN, 2018, NUTRIENTS, V10, DOI 10.3390/nu10091280 Perkins ND, 2000, TRENDS BIOCHEM SCI, V25, P434, DOI 10.1016/S0968-0004(00)01617-0 Pikarsky E, 2004, NATURE, V431, P461, DOI 10.1038/nature02924 Riedlinger T, 2018, BIOMEDICINES, V6, DOI 10.3390/biomedicines6010036 Schulze-Osthoff K, 1998, EUR J BIOCHEM, V254, P439, DOI 10.1046/j.1432-1327.1998.2540439.x Shibata A, 2002, BREAST CANCER RES TR, V73, P237, DOI 10.1023/A:1015872531675 TAN X, 2014, MOD CHIN MED, V16, P666 Tepe B, 2007, FOOD CHEM, V100, P985, DOI 10.1016/j.foodchem.2005.10.062 Viennois Emilie, 2013, Transl Gastrointest Cancer, V2, P21 Wind JJ, 2012, NEUROSURG CLIN N AM, V23, P247, DOI 10.1016/j.nec.2012.01.001 Xie WY, 2012, J ETHNOPHARMACOL, V141, P1, DOI 10.1016/j.jep.2012.02.003 Xiong HQ, 2004, INT J CANCER, V108, P181, DOI 10.1002/ijc.11562 Xiong QB, 2000, PLANTA MED, V66, P127, DOI 10.1055/s-2000-11135 Yamagata K, 2018, MOL CELL BIOCHEM, V441, P9, DOI 10.1007/s11010-017-3171-1 Yang Q, 2013, MOL CANCER RES, V11, P1497, DOI 10.1158/1541-7786.MCR-13-0214 [尤努斯江·吐拉洪 Yunusjan Turahun], 2012, [时珍国医国药, Lishizhen Medicine and Materia Medica Research], V23, P818 ZHAN P, 2010, CHIN ARCH TRADIT CHI, V28, P1710 Zhang HS, 2015, CELL BIOSCI, V5, DOI 10.1186/s13578-015-0056-4 Zhang HM, 2017, WORLD J GASTROENTERO, V23, P2716, DOI 10.3748/wjg.v23.i15.2716 Zhang J, 2019, APPL SCI-BASEL, V9, DOI 10.3390/app9010005 Zhang Li-Wen, 2017, Zhongguo Zhong Yao Za Zhi, V42, P4218, DOI 10.19540/j.cnki.cjcmm.20170901.008 [赵欣 Zhao Xin], 2017, [食品工业科技, Science & Technology of Food Industry], V38, P357 Zhao X, 2013, J ENVIRON PATHOL TOX, V32, P9, DOI 10.1615/JEnvironPatholToxicolOncol.2013006370 Zhao X, 2013, J MED FOOD, V16, P9, DOI 10.1089/jmf.2012.2316 Zhou J, 1999, J Tradit Chin Med, V19, P16 NR 46 TC 3 Z9 4 U1 1 U2 12 PU FUTURE MEDICINE LTD PI LONDON PA UNITEC HOUSE, 3RD FLOOR, 2 ALBERT PLACE, FINCHLEY CENTRAL, LONDON, N3 1QB, ENGLAND SN 1479-6694 EI 1744-8301 J9 FUTURE ONCOL JI Future Oncol. PD NOV PY 2019 VL 15 IS 32 BP 3723 EP 3738 DI 10.2217/fon-2019-0381 PG 16 WC Oncology SC Oncology GA JW3NO UT WOS:000502962200009 PM 31650850 DA 2021-10-15 ER PT J AU Gong, JX Zhang, QY Lou, JF Zhang, T Li, HQ Li, Z Li, QJ Zhang, JF AF Gong, Jixian Zhang, Qiuya Lou, Jiangfei Zhang, Tao Li, Huiqin Li, Zheng Li, Qiujin Zhang, Jianfei TI Investigation of the degradation of bio-recalcitrance in Apocynum venetum fiber biodegumming SO JOURNAL OF NATURAL FIBERS LA English DT Article DE Degumming; bio; recalcitrance; apocynum; bast fiber; Bioprocessing ID WHEAT-STRAW; FLAX FIBERS; BACILLUS; HEMP; POLYGALACTURONASE; PROTEINS; ALKALINE; LIGNIN AB Traditional degumming of bast fibers results in problems such as environmental pollution and inferior fiber quality. For these reasons, biodegumming was considered as a potential process for bast fibers. In biodegumming process, decomposition of noncellulosic components was the pivotal problem. In this manuscript, the bast fiber of Apocynum venetum was processed with combinatorial processing, containing physical, chemical and microbial effect. The structural bio-recalcitrance was analyzed at molecular, supermolecular and morphological level in each stage. The results show that main substance in recalcitrance of Apocynum venetum bast is lignin and hemicellulose. And the protein and wax is also the constituent of bio-recalcitrance. The recalcitrance in the bast tissue can be divided into three layers. The spatial structure and the distribution of the noncellulosic substances also contribute to the recalcitrance. This paper provides directions for pretreatment design to render biomass more amenable to bioprocessing. C1 [Gong, Jixian; Zhang, Qiuya; Lou, Jiangfei; Zhang, Tao; Li, Huiqin; Li, Zheng; Li, Qiujin; Zhang, Jianfei] Tianjin Polytech Univ, Sch Text, Dept Light Chem Engn, Tianjin 300160, Peoples R China. [Gong, Jixian; Zhang, Qiuya; Lou, Jiangfei; Zhang, Tao; Li, Huiqin; Li, Zheng; Li, Qiujin; Zhang, Jianfei] Minist Educ China, Key Lab Adv Text Composites, Tianjin, Peoples R China. RP Gong, JX (corresponding author), Tianjin Polytech Univ, Sch Text, Dept Light Chem Engn, Tianjin 300160, Peoples R China. EM gongjixian@126.com FU National Key Research and Development Project Foundation of China [2016YFC0400503-02]; Xinjiang Autonomous Region Major Significant Project Foundation [2016A03006-3]; Science and Technology Guidance Project of China National Textile and Apparel Council [2017011] FX This research was financially supported by the National Key Research and Development Project Foundation of China (2016YFC0400503-02), the Xinjiang Autonomous Region Major Significant Project Foundation (2016A03006-3) and Science and Technology Guidance Project of China National Textile and Apparel Council (2017011). CR Abraham E, 2013, CARBOHYD POLYM, V92, P1477, DOI 10.1016/j.carbpol.2012.10.056 Bourmaud A, 2010, IND CROP PROD, V32, P662, DOI 10.1016/j.indcrop.2010.08.002 Cao YH, 2001, MIKROCHIM ACTA, V137, P57, DOI 10.1007/s006040170028 CARPITA NC, 1993, PLANT J, V3, P1, DOI 10.1111/j.1365-313X.1993.tb00007.x Chabannes M, 2001, PLANT J, V28, P271, DOI 10.1046/j.1365-313X.2001.01159.x Chen J, 2012, FOOD HYDROCOLLOID, V28, P121, DOI 10.1016/j.foodhyd.2011.12.018 Cosgrove DJ, 2000, PLANT PHYSIOL BIOCH, V38, P109, DOI 10.1016/S0981-9428(00)00164-9 Evans JD, 2002, J BIOTECHNOL, V97, P223, DOI 10.1016/S0168-1656(02)00066-4 Fan P, 2015, BIOCHEM ENG J, V97, P50, DOI 10.1016/j.bej.2014.12.010 Gong JX, 2011, ADV MATER RES-SWITZ, V331, P148, DOI 10.4028/www.scientific.net/AMR.331.148 Irie K, 2009, J NAT MED, V63, P111, DOI 10.1007/s11418-008-0296-2 Jamet E, 2006, TRENDS PLANT SCI, V11, P33, DOI 10.1016/j.tplants.2005.11.006 Johnson K., 2003, PLANT CELL WALL, V8, P111 Kacurakova M, 1998, J SCI FOOD AGR, V77, P38, DOI 10.1002/(SICI)1097-0010(199805)77:1<38::AID-JSFA999>3.0.CO;2-5 Kapoor M, 2001, PROCESS BIOCHEM, V36, P803, DOI 10.1016/S0032-9592(00)00282-X Liu M, 2015, IND CROP PROD, V69, P29, DOI 10.1016/j.indcrop.2015.02.010 Martin N, 2013, IND CROP PROD, V49, P755, DOI 10.1016/j.indcrop.2013.06.012 Pu YQ, 2013, BIOTECHNOL BIOFUELS, V6, DOI 10.1186/1754-6834-6-15 Ringli C, 2001, CELL MOL LIFE SCI, V58, P1430, DOI 10.1007/PL00000786 Ruan PY, 2015, IND CROP PROD, V69, P228, DOI 10.1016/j.indcrop.2015.02.009 Sain M, 2006, IND CROP PROD, V23, P1, DOI 10.1016/j.indcrop.2005.01.006 Sun RC, 2000, POLYMER, V41, P2647, DOI 10.1016/S0032-3861(99)00436-X Thygesen A, 2005, CELLULOSE, V12, P563, DOI 10.1007/s10570-005-9001-8 Yan TT, 2009, J APPL POLYM SCI, V114, P1896, DOI 10.1002/app.29881 Zhang LL, 2008, PROCESS BIOCHEM, V43, P1195, DOI 10.1016/j.procbio.2008.06.019 Zhang Y. M., 2006, J DONGHUA U, V23, P84 Zhao XB, 2008, J CHEM TECHNOL BIOT, V83, P950, DOI 10.1002/jctb.1889 Zhao XB, 2012, BIOFUEL BIOPROD BIOR, V6, P465, DOI 10.1002/bbb.1331 NR 28 TC 3 Z9 3 U1 2 U2 37 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA SN 1544-0478 EI 1544-046X J9 J NAT FIBERS JI J. Nat. Fibers PY 2019 VL 16 IS 1 BP 1 EP 12 DI 10.1080/15440478.2017.1379043 PG 12 WC Materials Science, Textiles SC Materials Science GA HP6NO UT WOS:000461801900001 DA 2021-10-15 ER PT J AU Xu, ZC Wang, M Zhou, JH Liu, H Zhang, CS Li, YQ AF Xu, Zongchang Wang, Meng Zhou, Jinhui Liu, Han Zhang, Chengsheng Li, Yiqiang TI Identification and Validation of Stable Reference Genes for Gene Expression Analysis in Sword-leaf Dogbane Using Quantitative Reverse Transcriptase Polymerase Chain Reaction SO JOURNAL OF THE AMERICAN SOCIETY FOR HORTICULTURAL SCIENCE LA English DT Article DE Apocynum venetum; flavonoid; luobuma; normalization; salt stress ID REAL-TIME PCR; RT-PCR; SYSTEMATIC VALIDATION; HOUSEKEEPING GENES; NORMALIZATION AB Sword-leaf dogbane (Apocynum venetum) is a traditional Chinese herb with increasingly recognized potential to enhance health, but no study of stable reference genes in this herb has been reported. Based on a homologous cloning strategy, we have successfully cloned five candidate reference genes from sword-leaf dogbane: glyceraldehyde-3-phosphate dehydrogenase (AvGAPDH), beta tubulin (AvbTUB), polyubiquitin (AvUBQ), elongation factor 1-alpha (AvEF1 alpha), and actin (A vACTIN). Three distinct algorithms, geNorm, NormFinder, and BestKeeper, were used to estimate the expression stability of candidate reference primer pairs. We found that AvACTIN-2 and AvACTIN-3 presented the highest stability of expression in different tissue samples, and AvGAPDH-2 was most stable under salinity stress. In addition, we illustrated the application of these new reference genes by assaying the expression levels of two hyperoside biosynthesis terminal enzyme genes, flavonoid 3'-hydroxylase (F3'H) and flavonol synthase (FLS), under salinity stress. Our study is the first to report stable expression of internal reference genes in sword-leaf dogbane in multiple experimental sample sets. C1 [Xu, Zongchang; Zhang, Chengsheng; Li, Yiqiang] Chinese Acad Agr Sci, Tobacco Res Inst, Marine Agr Res Ctr, Qingdao 266101, Peoples R China. [Wang, Meng] Chinese Acad Agr Sci, Tobacco Res Inst, Key Lab Tobacco Gene Resources, Qingdao 266101, Peoples R China. [Zhou, Jinhui] Qingdao Univ, Med Coll, Pharm Dept, Qingdao 266021, Peoples R China. [Liu, Han] Qingdao Agr Univ, Coll Agr, Qingdao 266109, Peoples R China. RP Zhang, CS; Li, YQ (corresponding author), Chinese Acad Agr Sci, Tobacco Res Inst, Marine Agr Res Ctr, Qingdao 266101, Peoples R China. EM zhangchengsheng@caas.cn; liyiqiang@caas.cn CR Aithal Madhuri G S, 2015, Brain Tumor Res Treat, V3, P24, DOI 10.14791/btrt.2015.3.1.24 Andersen CL, 2004, CANCER RES, V64, P5245, DOI 10.1158/0008-5472.CAN-04-0496 Artico S, 2010, BMC PLANT BIOL, V10, DOI 10.1186/1471-2229-10-49 Bustin S, 1998, MOL MED TODAY, V4, P389, DOI 10.1016/S1357-4310(98)01324-0 Bustin SA, 2005, CLIN SCI, V109, P365, DOI 10.1042/CS20050086 Dean JD, 2002, PLANT MOL BIOL REP, V20, P347, DOI 10.1007/BF02772122 Gachon C, 2004, J EXP BOT, V55, P1445, DOI 10.1093/jxb/erh181 Garg R, 2010, BIOCHEM BIOPH RES CO, V396, P283, DOI 10.1016/j.bbrc.2010.04.079 Gutierrez L, 2008, PLANT CELL, V20, P1734, DOI 10.1105/tpc.108.059774 Gutierrez L, 2008, PLANT BIOTECHNOL J, V6, P609, DOI 10.1111/j.1467-7652.2008.00346.x Hong SY, 2008, BMC PLANT BIOL, V8, DOI 10.1186/1471-2229-8-112 Hruz T, 2011, BMC GENOMICS, V12, DOI 10.1186/1471-2164-12-156 Huggett J, 2005, GENES IMMUN, V6, P279, DOI 10.1038/sj.gene.6364190 Jain M, 2006, BIOCHEM BIOPH RES CO, V345, P646, DOI 10.1016/j.bbrc.2006.04.140 Kibbe WA, 2007, NUCLEIC ACIDS RES, V35, pW43, DOI 10.1093/nar/gkm234 Kim DW, 2000, J ETHNOPHARMACOL, V72, P53, DOI 10.1016/S0378-8741(00)00197-5 Kong QS, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0090612 Liu MX, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0084408 Lv L., 2016, PHARMAZIE, V72, P41 Maroufi A, 2010, BMC MOL BIOL, V11, DOI 10.1186/1471-2199-11-15 Nolan T, 2006, NAT PROTOC, V1, P1559, DOI 10.1038/nprot.2006.236 Pfaffl MW, 2004, BIOTECHNOL LETT, V26, P509, DOI 10.1023/B:BILE.0000019559.84305.47 Radoni A, 2003, BIOCHEM BIOPH RES CO, V313, P856 Sinha P, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0122847 Sturzenbaum SR, 2001, COMP BIOCHEM PHYS B, V130, P281, DOI 10.1016/S1096-4959(01)00440-7 Vandesompele J, 2002, GENOME BIOL, V3, DOI 10.1186/gb-2002-3-7-research0034 Wang M, 2018, GENES-BASEL, V9, DOI 10.3390/genes9060273 Wang WQ, 2015, AM J CHINESE MED, V43, P71, DOI 10.1142/S0192415X15500056 Wong ML, 2005, BIOTECHNIQUES, V39, P75, DOI 10.2144/05391RV01 Xie WY, 2012, J ETHNOPHARMACOL, V141, P1, DOI 10.1016/j.jep.2012.02.003 [徐宗昌 Xu Zongchang], 2018, [植物学报, Chinese Bulletin of Botany], V53, P382 Yamatsu A, 2015, J NUTR SCI VITAMINOL, V61, P182, DOI 10.3177/jnsv.61.182 Zhang G., 2005, CHINESE WILD PLANT R, V25, P26 NR 33 TC 3 Z9 4 U1 0 U2 5 PU AMER SOC HORTICULTURAL SCIENCE PI ALEXANDRIA PA 113 S WEST ST, STE 200, ALEXANDRIA, VA 22314-2851 USA SN 0003-1062 EI 2327-9788 J9 J AM SOC HORTIC SCI JI J. Am. Soc. Hortic. Sci. PD NOV PY 2018 VL 143 IS 6 BP 508 EP + DI 10.21273/JASHS04554-18 PG 12 WC Horticulture SC Agriculture GA HK2AJ UT WOS:000457709300013 OA gold DA 2021-10-15 ER PT J AU Jiang, L Wang, L Zhang, L Tian, CY AF Jiang, Li Wang, Lei Zhang, Lei Tian, Changyan TI Tolerance and accumulation of lithium in Apocynum pictum Schrenk SO PEERJ LA English DT Article DE Bioconcentration factor; Apocynum pictum; Lithium; Phytoremediation; Germination; Translocation factor ID VENETUM; PLANTS; GERMINATION; RESPONSES; TOXICITY AB Primarily, lithium (Li) resource development and wider application of Li-ion batteries result in Li pollution and concomitantly poses increasing and inevitable problems to environmental health and safety. However, information is rare about the scope of the remediation of Li contaminated soil. Apocynum venetum is already proved to be a Li-accumulator with high Li tolerance and accumulation (Jiang et al., 2014). However, it is not clear whether Apocynum pictum, another species of the same genus with the same uses as A. venetum, is also a Li-accumulator. We investigated germination, growth and physiological responses of A. pictum to different levels of LiCl. Germination was not significantly affected by low Li concentration (0 - 100 mmol L-1). As LiCl increased from 100 to 400 mmol L-1, both germination percentage and index decreased gradually. For germination of A. pictum seeds, the critical value (when germination percentage is 50%) in LiCl solution was 235 mmol L-1, and the limit value (when germination percentage is 0%) was 406 mmol L-1. A. pictum could accumulate > 1,800 mg kg(-1) Li in leaves, and still survived under 400 mg kg(-1) Li supply. The high Li tolerance of A. pictum during germination and growth stage was also reflected by activity of alpha-amylase and contents of soluble sugar, proline and photosynthetic pigments under different Li treatments. The bioconcentration factors (BCF) (except control) and translocation factors (TF) were higher than 1.0. High tolerance and accumulation of Li indicated that A. pictum is Li-accumulator. Therefore, this species could be useful for revegetation and phytoremediation of Li contaminated soil. C1 [Jiang, Li] Chinese Acad Sci, Xinjiang Inst Ecol & Geog, Key Lab Biogeog & Bioresource Arid Land, Urumqi, Xinjiang, Peoples R China. [Jiang, Li] Chinese Acad Sci, Turpan Eremophytes Bot Garden, Urumqi, Xinjiang, Peoples R China. [Wang, Lei; Zhang, Lei; Tian, Changyan] Chinese Acad Sci, Xinjiang Inst Ecol & Geog, State Key Lab Desert & Oasis Ecol, Urumqi, Xinjiang, Peoples R China. RP Wang, L (corresponding author), Chinese Acad Sci, Xinjiang Inst Ecol & Geog, State Key Lab Desert & Oasis Ecol, Urumqi, Xinjiang, Peoples R China. EM egiwang@ms.xjb.ac.cn FU National Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC) [41471200]; CAS "Light of West China'' Program [XBBS201412] FX This work was supported by the National Natural Science Foundation of China (No. 41471200) and the CAS "Light of West China'' Program (No. XBBS201412). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. CR Aral H, 2008, ECOTOX ENVIRON SAFE, V70, P349, DOI 10.1016/j.ecoenv.2008.02.026 Australian Capital Territory Parliamentary Counsel, 2005, ENV PROT REG 2005 BAKER A J M, 1989, Biorecovery, V1, P81 BINGHAM F. T., 1964, California Agriculture, V18, P6 Cluis C., 2004, BIOTEACH J, V2, P60 Di Martino C, 2003, NEW PHYTOL, V158, P455, DOI 10.1046/j.1469-8137.2003.00770.x Duan BL, 2005, PHYSIOL PLANTARUM, V124, P476, DOI 10.1111/j.1399-3054.2005.00535.x Editorial Committee of Chinese Pharmacopoeia, 2010, CHIN PHARM Flora of China Editorial Committee, 1995, FLORA CHINA, V16 Franzaring J, 2016, ENVIRON POLLUT, V216, P858, DOI 10.1016/j.envpol.2016.06.059 Gupta I. C., 1974, Indian Journal of Agricultural Research, V8, P103 Hawrylak-Nowak B, 2012, BIOL TRACE ELEM RES, V149, P425, DOI 10.1007/s12011-012-9435-4 Jiang L, 2018, ENVIRON SCI POLLUT R, V25, P5040, DOI 10.1007/s11356-018-1196-y Jiang L, 2014, FLORA, V209, P285, DOI 10.1016/j.flora.2014.03.007 Kabata-Pendias HA, 2007, TRACE ELEMENTS SOIL, P87 Kalinowska M, 2013, BIOL TRACE ELEM RES, V152, P251, DOI 10.1007/s12011-013-9606-y KHAN MA, 1984, BOT GAZ, V145, P487, DOI 10.1086/337483 Khasraw M, 2012, BMC MED, V10, DOI 10.1186/1741-7015-10-131 Li HS, 2000, EXPT PRINCIPLES TECH Li X, 2009, PLANT SCI, V177, P68, DOI 10.1016/j.plantsci.2009.03.013 Ma M, 2003, J AGR FOOD CHEM, V51, P2390, DOI 10.1021/jf021055i Muralikrishna G, 2005, CARBOHYD POLYM, V60, P163, DOI 10.1016/j.carbpol.2004.12.002 Robinson BH, 2018, CHEMOSPHERE, V197, P1, DOI 10.1016/j.chemosphere.2018.01.012 SALIERI G, 1995, ANAL CHIM ACTA, V300, P287, DOI 10.1016/0003-2670(94)00377-X Schrauzer GN, 2002, J AM COLL NUTR, V21, P14, DOI 10.1080/07315724.2002.10719188 Shahzad B, 2017, ENVIRON SCI POLLUT R, V24, P103, DOI 10.1007/s11356-016-7898-0 Shahzad B, 2016, PLANT PHYSIOL BIOCH, V107, P104, DOI 10.1016/j.plaphy.2016.05.034 Shi Q.M., 2014, N HORTIC, V12, P128 Thevs N, 2012, J APPL BOT FOOD QUAL, V85, P159 Tolgyesi G., 1983, Lithium. 4. Spurenelementsymposium, P39 NR 30 TC 3 Z9 4 U1 2 U2 12 PU PEERJ INC PI LONDON PA 341-345 OLD ST, THIRD FLR, LONDON, EC1V 9LL, ENGLAND SN 2167-8359 J9 PEERJ JI PeerJ PD AUG 29 PY 2018 VL 6 AR e5559 DI 10.7717/peerj.5559 PG 13 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA GS1SV UT WOS:000443313300009 PM 30186702 OA Green Published, gold, Green Submitted DA 2021-10-15 ER PT J AU Livshultz, T Middleton, DJ van der Ham, RWJM Khew, G AF Livshultz, Tatyana Middleton, David J. van der Ham, Raymond W. J. M. Khew, Gillian TI Generic delimitation in Apocyneae (Apocynaceae) SO TAXON LA English DT Article DE Apocynaceae; Asia; lianas; phylogenetics; pollen; taxonomy ID ASIAN APOCYNACEAE; CLADE APOCYNACEAE; APOCYNOIDEAE; CHLOROPLAST; PHYLOGENY; DIVERSITY; REVISION; GENUS; CLASSIFICATION; GENTIANALES AB Apocyneae are a tribe of 24 genera and ca. 113 species that, with the exception of the temperate Apocynum species in North America and Eurasia, are all woody vines endemic to tropical and subtropical Asia and Australasia. Generic concepts have been in flux through most of the history of the taxa now grouped in Apocyneae and have been only partially clarified in previously published molecular phylogenetic studies. Expanded taxon and character sampling permitted a phylogenetic analysis based on gene sequences from four chloroplast and three nuclear loci of 23 of 24 currently recognized genera, and 23 morphological characters scored for all 24 genera. The resulting topology supports the expansion of Micrechites to include the monotypic Vallariopsis, united by the shared presence of unusual polyporate pollen, and Urceola to include Parameria and Aganonerion, united by the shared presence of acarodomatia and pubescent seeds. The required combinations are made. Ixodonerium is placed as sister to Papuechites, supported by the synapomorphic presence of a corolline corona. Monophyly of Epigynum is supported for the first time, based primarily on evidence from the nuclear Leafy intron; no unambiguously optimized morphological synapomorphies are identified. Baharuia, included based on morphology only, is placed as sister to or nested within Urceola s.l., supported by the synapomorphic presence of acarodomatia. The subtribal classification is modified to reflect our current understanding of phylogeny: Baharuia is transferred to Urceolinae, Micrechites and Amalocalyx are transferred to Chonemorphinae, and Streptoechites is treated as subtribe incertae sedis. C1 [Livshultz, Tatyana] Drexel Univ, 1900 Benjamin Franklin Pkwy, Philadelphia, PA 19103 USA. [Livshultz, Tatyana] Acad Nat Sci, 1900 Benjamin Franklin Pkwy, Philadelphia, PA 19103 USA. [Middleton, David J.; Khew, Gillian] Singapore Bot Gardens, Natl Pk Board, 1 Cluny Rd, Singapore 259569, Singapore. [van der Ham, Raymond W. J. M.] Nat Biodivers Ctr, POB 9517, NL-2300 RA Leiden, Netherlands. RP Livshultz, T (corresponding author), Drexel Univ, 1900 Benjamin Franklin Pkwy, Philadelphia, PA 19103 USA.; Livshultz, T (corresponding author), Acad Nat Sci, 1900 Benjamin Franklin Pkwy, Philadelphia, PA 19103 USA. EM tl534@drexel.edu CR Addo-Fordjour P, 2013, AFR J ECOL, V51, P217, DOI 10.1111/aje.12025 Agrawal AA, 2012, NEW PHYTOL, V194, P28, DOI 10.1111/j.1469-8137.2011.04049.x [Anonymous], 2016, SEQ VERS 5 4 5 Appanah S., 1993, Journal of Tropical Forest Science, V6, P116 Baum DA, 1998, SYST BIOL, V47, P181, DOI 10.1080/106351598260879 Burzynski EA, 2015, BIOCHEM SYST ECOL, V59, P331, DOI 10.1016/j.bse.2015.02.006 Cao JX, 2005, CHINESE J CHEM, V23, P905 Chen ZD, 2016, J SYST EVOL, V54, P277, DOI 10.1111/jse.12219 Colegate SM, 2016, PHYTOCHEM ANALYSIS, V27, P257, DOI 10.1002/pca.2624 Diego-Perez N, 2004, FLORA VALLE TEHUACAN, V20, P1 Endress ME, 2014, PHYTOTAXA, V159, P175, DOI 10.11646/phytotaxa.159.3.2 Endress ME, 2000, BOT REV, V66, P1, DOI 10.1007/BF02857781 Endress ME, 1996, OPERA BOT BELG, V7, P59 Forster Paul I., 1992, Australian Systematic Botany, V5, P533, DOI 10.1071/SB9920533 Gao F, 2017, FITOTERAPIA, V118, P107, DOI 10.1016/j.fitote.2017.02.011 Goloboff P. A, 1996, NONA VERS 2 0 Hall TA, 1999, NUCL ACIDS S SERIES, V41, P95, DOI DOI 10.1021/BK-1999-0734.CH008 Hooker J.D., 1896, FLORA BRIT INDIA, V7, DOI [10.5962/bhl.title.678, DOI 10.5962/BHL.TITLE.678] King G. F., 1907, J ASIATIC SOC BENGAL, V74, P387 Larkin MA, 2007, BIOINFORMATICS, V23, P2947, DOI 10.1093/bioinformatics/btm404 Larsen, 1999, FLORA THAILAND, V7, P1 Leeuwenberg A.J.M, 1994, WAGENINGEN AGR U PAP, V94, P45 Liang Y. H, 1982, ZHONGGUO RE DAI YA R, P34 Livshultz T., 2003, THESIS Livshultz T, 2007, ANN MO BOT GARD, V94, P324, DOI 10.3417/0026-6493(2007)94[324:POAATA]2.0.CO;2 Livshultz T, 2010, TAXON, V59, P1016, DOI 10.1002/tax.594003 Lodder S., 2007, FLORA MALESIANA 1, V18, P18 Lu XT, 2009, REV BIOL TROP, V57, P211 Middleton D. J., 2007, FLORA MALESIANA 1, V18 Middleton D. J., 2011, FLORA PENINSULAR M 2, V2 Middleton D. J., 2014, FLORA CAMBODIA LAOS, V33 Middleton David J., 2005, Harvard Papers in Botany, V10, P67, DOI 10.3100/1043-4534(2005)10[67:AROEAA]2.0.CO;2 Middleton DJ, 2012, ADANSONIA, V34, P365, DOI 10.5252/a2012n2a10 Middleton David J., 1994, Novon, V4, P151, DOI 10.2307/3391584 Middleton David J., 1994, Kew Bulletin, V49, P757, DOI 10.2307/4118069 Middleton DJ, 1996, BLUMEA, V41, P69 MIDDLETON DJ, 1994, BLUMEA, V39, P73 Middleton DJ, 2006, TAXON, V55, P502, DOI 10.2307/25065598 Middleton DJ, 1996, BLUMEA, V41, P37 MIDDLETON DJ, 1995, BLUMEA, V40, P443 Miller M.A., 2009, CIPRES PORTALS NILSSON S, 1993, GRANA, P3, DOI 10.1080/00173139309428973 Nilsson S., 1990, J PALYNOL, V91, P83 NIXON KC, 2000, WINCLADA VERSION 1 0 Oxelman B, 1997, PLANT SYST EVOL, V206, P393, DOI 10.1007/BF00987959 Pichon M., 1950, MEM MUS NAT HIST NAT, V1, P145 Ridley H. N, 1923, FLORA MALAY PENINSUL, DOI [10.5962/bhl.title.10921, DOI 10.5962/BHL.TITLE.10921] Rudjiman, 1987, AGR U WAGENINGEN PAP, V86, P1 SASAKI K, 1970, TETRAHEDRON, V26, P2119, DOI 10.1016/S0040-4020(01)92789-9 Solorzano S, 2002, BIODIVERS CONSERV, V11, P197, DOI 10.1023/A:1014568105221 Stamatakis A, 2006, BIOINFORMATICS, V22, P2688, DOI 10.1093/bioinformatics/btl446 Stevens P.F., 2001, ANGIOSPERM PHYLOGENY Straub SCK, 2014, MOL PHYLOGENET EVOL, V80, P169, DOI 10.1016/j.ympev.2014.07.020 TABERLET P, 1991, PLANT MOL BIOL, V17, P1105, DOI 10.1007/BF00037152 Talavera G, 2007, SYST BIOL, V56, P564, DOI 10.1080/10635150701472164 Thermo Fisher Scientific, 2005, VECT NTI ADV VERS 10 Tsiang Y., 1973, ACTA PHYTOTAXONOMICA, V11, P347 Wang F.X., 1995, POLLEN FLORA CHINA [汪琼 Wang Qiong], 2015, [中草药, Chinese Traditional and Herbal Drugs], V46, P1742 Whitmore T. C., 1973, TREE FLORA MALAYA Wong SiuKuin, 2013, Pharmacognosy Communications, V3, P2 Woodson R. E, 1936, PHILIPP J SCI, V60, P205 Xie WY, 2012, J ETHNOPHARMACOL, V141, P1, DOI 10.1016/j.jep.2012.02.003 Yang LL, 2016, J SYST EVOL, V54, P400, DOI 10.1111/jse.12192 NR 64 TC 3 Z9 4 U1 1 U2 12 PU INT ASSOC PLANT TAXONOMY-IAPT PI BRATISLAVA PA C/O INST BOTANY, SLOVAK ACAD SCIENCES DUBRAVSKA CESTA 9, SK-845 23 BRATISLAVA, SLOVAKIA SN 0040-0262 EI 1996-8175 J9 TAXON JI Taxon PD MAY PY 2018 VL 67 IS 2 BP 341 EP 358 DI 10.12705/672.5 PG 18 WC Plant Sciences; Evolutionary Biology SC Plant Sciences; Evolutionary Biology GA GG9SF UT WOS:000433040700005 DA 2021-10-15 ER PT J AU Jiang, L Wang, L Tian, CY AF Jiang, Li Wang, Lei Tian, Chang-Yan TI High lithium tolerance of Apocynum venetum seeds during germination SO ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH LA English DT Article DE Apocynum venetum; Germination index; Germination percentage; Lithium salt; Phytoremediation ID TOXICITY; RESPONSES; ENVIRONMENT; SEEDLINGS; SALINITY AB Identification and use of lithium (Li) accumulator plants is a promising strategy to remediate Li-contaminated soil. Apocynum venetum is reported as a Li accumulator. However, its tolerance to Li salt during germination is still unknown. The primary aim of this study was to investigate the effects of two Li salts on seed germination of A. venetum. At the same concentrations, germination percentages in LiCl solution were higher than that in Li2CO3 solution. At 25 A degrees C, seeds germinated to 4-90% at 0-400 mmol L-1 LiCl and 3-91% at 0-150 mmol L-1 Li2CO3. Low concentration (0-50 mmol L-1) of LiCl did not significantly affect germination percentage. The simulated critical value (when germination percentage is 50%) in LiCl solution is 196 mmol L-1, and 36 mmol L-1 for Li2CO3. Activity of alpha-amylase, contents of MDA, soluble sugar, and proline were dramatically affected by Li salts, especially at medium and late germination stages. When compared with control, alpha-amylase activity of seeds under 25 mmol L-1 LiCl and 10 mmol L-1 Li2CO3 did not show significant difference. Germination percentage and index, radicle length, and physiological parameters indicate A. venetum seeds are highly tolerant to Li salts during germination, especially LiCl. C1 [Jiang, Li] Chinese Acad Sci, Key Lab Biogeog & Bioresource Arid Land, Xinjiang Inst Ecol & Geog, Urumqi 830011, Peoples R China. [Jiang, Li] Chinese Acad Sci, Turpan Eremophytes Bot Garden, Turpan 838008, Peoples R China. [Wang, Lei; Tian, Chang-Yan] Chinese Acad Sci, State Key Lab Desert & Oasis Ecol, Xinjiang Inst Ecol & Geog, 818 South Beijing Rd, Urumqi 830011, Xinjiang, Peoples R China. RP Wang, L (corresponding author), Chinese Acad Sci, State Key Lab Desert & Oasis Ecol, Xinjiang Inst Ecol & Geog, 818 South Beijing Rd, Urumqi 830011, Xinjiang, Peoples R China. EM egiwang@ms.xjb.ac.cn FU West Light Foundation of the CASChinese Academy of Sciences [XBBS201412]; National Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC) [41471200]; China Postdoctoral Science FoundationChina Postdoctoral Science Foundation [2014M562489] FX This study was supported by the West Light Foundation of the CAS (XBBS201412), the National Natural Science Foundation of China (41471200), and the China Postdoctoral Science Foundation (2014M562489). CR Aral H, 2008, ECOTOX ENVIRON SAFE, V70, P349, DOI 10.1016/j.ecoenv.2008.02.026 Di Martino C, 2003, NEW PHYTOL, V158, P455, DOI 10.1046/j.1469-8137.2003.00770.x Duan BL, 2005, PHYSIOL PLANTARUM, V124, P476, DOI 10.1111/j.1399-3054.2005.00535.x Elektorowicz M, 2015, INT J PHYTOREMEDIAT, V17, P521, DOI 10.1080/15226514.2013.876966 Flora of China Editorial Committee, 1995, FLORA CHINA, V16 Guan B, 2009, J ARID ENVIRON, V73, P135, DOI 10.1016/j.jaridenv.2008.08.009 Gupta I. C., 1974, Indian Journal of Agricultural Research, V8, P103 Habashi F, 1997, SPURENELEMENT S, V4, P39 Hawrylak-Nowak B, 2012, BIOL TRACE ELEM RES, V149, P425, DOI 10.1007/s12011-012-9435-4 Jiang L, 2014, FLORA, V209, P285, DOI 10.1016/j.flora.2014.03.007 Kalinowska M, 2013, BIOL TRACE ELEM RES, V152, P251, DOI 10.1007/s12011-013-9606-y KHAN MA, 1984, BOT GAZ, V145, P487, DOI 10.1086/337483 Kszos LA, 2003, ECOTOXICOLOGY, V12, P439, DOI 10.1023/A:1026112507664 Li HS, 2000, EXPT PRINCIPLES TECH Li X, 2009, PLANT SCI, V177, P68, DOI 10.1016/j.plantsci.2009.03.013 Liang TG, 2010, INT J MOL SCI, V11, P4452, DOI 10.3390/ijms11114452 Lin JX, 2016, ECOL ENG, V95, P763, DOI 10.1016/j.ecoleng.2016.07.011 Muralikrishna G, 2005, CARBOHYD POLYM, V60, P163, DOI 10.1016/j.carbpol.2004.12.002 Rong YP, 2015, J APPL BOT FOOD QUAL, V88, P202, DOI 10.5073/JABFQ.2015.088.029 Shahzad B, 2017, ENVIRON SCI POLLUT R, V24, P103, DOI 10.1007/s11356-016-7898-0 Shahzad B, 2016, PLANT PHYSIOL BIOCH, V107, P104, DOI 10.1016/j.plaphy.2016.05.034 Shi Q.M., 2014, N HORTIC, V12, P128 SNEVA FA, 1979, PLANT SOIL, V53, P219, DOI 10.1007/BF02181893 Tolgyesi G., 1983, Lithium. 4. Spurenelementsymposium, P39 Xie WY, 2012, J ETHNOPHARMACOL, V141, P1, DOI 10.1016/j.jep.2012.02.003 Zhang XP, 2009, N HORTIC, V1, P14 Zhang ZX, 2017, WEED RES, V57, P91, DOI 10.1111/wre.12243 NR 27 TC 3 Z9 3 U1 1 U2 32 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 0944-1344 EI 1614-7499 J9 ENVIRON SCI POLLUT R JI Environ. Sci. Pollut. Res. PD FEB PY 2018 VL 25 IS 5 BP 5040 EP 5046 DI 10.1007/s11356-018-1196-y PG 7 WC Environmental Sciences SC Environmental Sciences & Ecology GA FX0XG UT WOS:000425770300093 PM 29344914 DA 2021-10-15 ER PT J AU Wang, L Huang, GQ Sun, Y Li, Y Yao, WJ Jiang, TB AF Wang, Lei Huang, Guo-Qing Sun, Yao Li, Yao Yao, Wen-Jing Jiang, Ting-Bo TI Cloning and expression analysis of eIF-5A gene in Apocynum venetum SO BIOTECHNOLOGY & BIOTECHNOLOGICAL EQUIPMENT LA English DT Article DE Apocynum venetum; eIF-5A; RACE; real-time PCR; prokaryotic expression ID TRANSLATION INITIATION-FACTOR; FACTOR 5A EIF5A; DEOXYHYPUSINE SYNTHASE; PROTEIN; ARABIDOPSIS; GROWTH; SENESCENCE; INTERACT; HYPUSINE; STRESS AB To understand the effects of the eIF-5A gene in response to abiotic stress, the 909bp full-length cDNA of eIF-5A, including a 480bp open reading frame encoding 159 amino-acid (aa) residues, was isolated from the leaf of herbal plant (Apocynum venetum) by rapid-amplification of cDNA ends. The deduced molecular weight of the encoding protein was 17.48kDa with a theoretical pI of 5.61 and predicted no signal peptide. Real-time polymerase chain reaction analysis revealed that AveIF-5A gene expression was induced by cold, salt and drought stress. To determine the biological function of this gene, recombinant plasmids expressing AveIF-5A and AveIF-5A1 (86-156 aa truncated polypeptide) were used to transform Escherichiacoli. The analysis of the growth curves of recombinant E. coli revealed that AveIF-5A and AveIF-5A1 improved the resistance of transformed E. coli to low-temperature, drought and salt stress. These results could provide experimental evidence of the function of the AveIF-5A gene as a valuable gene resource in plant resistance-breeding. C1 [Wang, Lei; Huang, Guo-Qing; Sun, Yao; Li, Yao] Heilongjiang Acad Sci, Inst Adv Technol, Dept Biotechnol, Harbin, Peoples R China. [Wang, Lei] Beijing Forestry Univ, Coll Biol Sci & Technol, Dept Plant Sci, Beijing, Peoples R China. [Yao, Wen-Jing; Jiang, Ting-Bo] Northeast Forestry Univ, Coll Forestry, State Key Lab Tree Genet & Breeding, Harbin, Peoples R China. RP Jiang, TB (corresponding author), Northeast Forestry Univ, Coll Forestry, State Key Lab Tree Genet & Breeding, Harbin, Peoples R China. EM tbjiang@yahoo.com FU State Key Laboratory of Tree Genetics and Breeding Foundation of Northeast Forestry University [K2013102]; National Natural Science FoundationNational Natural Science Foundation of China (NSFC) [31400576]; Heilongjiang Nature Science Foundation [QC2011C115] FX This work was supported by the State Key Laboratory of Tree Genetics and Breeding Foundation of Northeast Forestry University [grant number K2013102]; National Natural Science Foundation [grant number 31400576]; Heilongjiang Nature Science Foundation [grant number QC2011C115]. CR Belda-Palazon B, 2016, FRONT PLANT SCI, V7, DOI 10.3389/fpls.2016.00245 Feng HZ, 2007, PLANT PHYSIOL, V144, P1531, DOI 10.1104/pp.107.098079 Hopkins M, 2007, NEW PHYTOL, V175, P201, DOI 10.1111/j.1469-8137.2007.02118.x Jao DLE, 2002, J CELL BIOCHEM, V86, P590, DOI 10.1002/jcb.10235 KEMPER WM, 1976, J BIOL CHEM, V251, P5551 Lebska M, 2010, J BIOL CHEM, V285, P6217 Lee SB, 2009, BIOCHEM BIOPH RES CO, V383, P497, DOI 10.1016/j.bbrc.2009.04.049 Lee YB, 1999, BIOCHEM J, V340, P273, DOI 10.1042/0264-6021:3400273 Liu Y, 2005, BIOCHEM BIOPH RES CO, V331, P325, DOI 10.1016/j.bbrc.2005.03.165 Liu Z, 2008, J EXP BOT, V59, P939, DOI 10.1093/jxb/ern017 Ma FS, 2010, PLANT CELL ENVIRON, V33, P1682, DOI 10.1111/j.1365-3040.2010.02173.x Ma Y, 2010, PLANT J, V64, P536, DOI 10.1111/j.1365-313X.2010.04347.x MURASHIGE T, 1962, PHYSIOL PLANTARUM, V15, P473, DOI 10.1111/j.1399-3054.1962.tb08052.x Park MH, 2006, J BIOCHEM, V139, P161, DOI 10.1093/jb/mvj034 Seko Y, 2015, SCI REP-UK, V5, DOI 10.1038/srep13737 Shi JL, 2008, CHINA BIOTECHNOL, V28, P18 Valentini SR, 2002, GENETICS, V160, P393 Wang Liuqiang, 2014, Plant Omics, V7, P468 Wang TW, 2001, J BIOL CHEM, V276, P17541, DOI 10.1074/jbc.M008544200 Xu JH, 2010, THESIS Xu XY, 2015, J INTEGR PLANT BIOL, V57, P848, DOI 10.1111/jipb.12329 Yadav NS, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0101926 [杨传平 YANG Chuanping], 2005, [植物生理学通讯, Plant Physiology Communications], V41, P433 Zhang WM, 2006, CHINESE WILD PLANT R, V25, P15 Zhou Jianping, 2007, Chinese Journal of Applied and Environmental Biology, V13, P301 NR 25 TC 3 Z9 3 U1 0 U2 7 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND SN 1310-2818 EI 1314-3530 J9 BIOTECHNOL BIOTEC EQ JI Biotechnol. Biotechnol. Equip. PD AUG PY 2016 VL 30 IS 4 BP 677 EP 684 DI 10.1080/13102818.2016.1172944 PG 8 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA DT3WP UT WOS:000381412200006 OA gold DA 2021-10-15 ER PT J AU Zhao, H Dai, HP AF Zhao, Hua Dai, Huiping TI PHYSIOLOGICAL RESPONSE OF APOCYNUM VENETUM L. SEEDLINGS UNDER OSMOTIC STRESS SO BANGLADESH JOURNAL OF BOTANY LA English DT Article DE Physiological response; Apocynum venetum; Biochemical characteristics ID PANICUM-MILIACEUM L.; OXIDATIVE STRESS; DROUGHT; TOLERANCE; GROWTH; SENESCENCE; PROLINE; LEAVES; CALLUS AB Effects of drought stress were induced by polyethylene glycol (PEG-6000) (10, 20, and 30%) for 2, 4, 6 and 8 days in Apocynum venelum L. seedlings with the potting method. The results showed that PEG significantly increased the activities of glutathione reductase (GR), superoxide dismutase (SOD), ascorbate peroxidase (APX), and the contents of electrolyte leakage rates, MDA, proline and soluble sugar were increased from 30% PEG. Thus, it was indicated that the application of exogenous 30% PEG induced oxidative damage by enhancing antioxidant defense systems. C1 [Zhao, Hua; Dai, Huiping] Shaanxi Univ Technol, Coll Biol Sci & Engn, Hanzhong 723001, Shaanxi, Peoples R China. RP Dai, HP (corresponding author), Shanxi Univ Technol, Shanxi Key Lab Bioresources, Hanzhong 723001, Peoples R China. EM zhaohuahz@126.com; daihp72@aliyun.com FU Natural Science Foundation of Shannxi Province, ChinaNatural Science Foundation of Shanxi Province [15JS019, 2015JM3086]; Foundation of Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution [GBBL2015006] FX This work was financially supported by Natural Science Foundation of Shannxi Province, China (15JS019, 2015JM3086) and Supported by Foundation of Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution(GBBL2015006). CR Al-Khayri JM, 2002, IN VITRO CELL DEV-PL, V38, P79, DOI 10.1079/IVP2001258 Ashraf M, 2007, ENVIRON EXP BOT, V59, P206, DOI 10.1016/j.envexpbot.2005.12.006 Dai HP, 2011, J FOOD AGRIC ENVIRON, V9, P177 Dai HP, 2015, ECOTOX ENVIRON SAFE, V114, P312, DOI 10.1016/j.ecoenv.2014.04.044 Dai HP, 2011, AUST J CROP SCI, V5, P1655 Dai HP, 2012, PAK J BOT, V44, P1943 Dai HuiPing, 2012, Australian Journal of Crop Science, V6, P232 Dai HP, 2011, J FOOD AGRIC ENVIRON, V9, P710 Dinler BS, 2014, PAK J BOT, V46, P417 Irie K, 2009, J NAT MED, V63, P111, DOI 10.1007/s11418-008-0296-2 Jia Gen-liang, 2008, Xibei Zhiwu Xuebao, V28, P2073 Jin YX, 2010, CHEMOSPHERE, V78, P846, DOI 10.1016/j.chemosphere.2009.11.044 Kamata K, 2008, J NAT MED-TOKYO, V62, P160, DOI 10.1007/s11418-007-0202-3 Khanna-Chopra R, 2007, ENVIRON EXP BOT, V60, P276, DOI 10.1016/j.envexpbot.2006.11.004 Li M, 2002, ACTA ECOLOGICA SINIC, V22, P49 Li ZH, 2010, CHEM-BIOL INTERACT, V183, P98, DOI 10.1016/j.cbi.2009.09.009 Mittler R, 2002, TRENDS PLANT SCI, V7, P405, DOI 10.1016/S1360-1385(02)02312-9 Modesto KA, 2010, CHEMOSPHERE, V78, P294, DOI 10.1016/j.chemosphere.2009.10.047 Naz R, 2013, PAK J BOT, V45, P367 Pinheiro HA, 2004, PLANT SCI, V167, P1307, DOI 10.1016/j.plantsci.2004.06.027 Wang K, 2013, PAK J BOT, V45, P375 NR 21 TC 3 Z9 4 U1 2 U2 23 PU BANGLADESH BOTANICAL SOC PI DHAKA PA UNIV DACCA DEPT BOTANY, 2 DHAKA, BANGLADESH SN 0253-5416 EI 2079-9926 J9 BANGL J BOT JI Bangladesh J. Bot. PD DEC PY 2015 VL 44 IS 4 BP 551 EP 556 PG 6 WC Plant Sciences SC Plant Sciences GA DA0MJ UT WOS:000367490900009 DA 2021-10-15 ER PT J AU Rasmann, S AF Rasmann, Sergio TI Fine-tuning of defences and counter-defences in a specialised plant-herbivore system SO ECOLOGICAL ENTOMOLOGY LA English DT Article DE Cardenolide; induction; latex; plant chemical defence; polarity ID TOXIC CARDENOLIDES; CHRYSOCHUS-AURATUS; INDUCED RESPONSES; SIGNAL SIGNATURE; DANAUS-PLEXIPPUS; COMMON MILKWEED; LATEX; EVOLUTION; COLEOPTERA; BEHAVIOR AB 1. The plant-herbivore arms race has been postulated to be a major driver for generating biological and biochemical diversity on Earth. Herbivore feeding is reduced by the production of chemical and physical barriers, but increases plant resistance against subsequent attack. Accordingly, specialisation is predicted to be an outcome of herbivores being able to circumvent plant-induced defences. 2. Using a specialised plant-herbivore system, in which adult chrysomelid beetles (Chrysochus auratus) feed on leaves and larvae feed on roots of dogbane (Apocynum spp.), this study investigated whether root latex and cardenolides are effective against the soil-dwelling larvae, and whether such defences could be circumvented by the herbivore. 3. Across two Apocynum species, C. auratus larvae were not affected by latex production or cardenolide amounts and diversity. By contrast, cardenolide apolarity was detrimental to larval growth. Yet larval feeding decreased average root cardenolide apolarity in A. cannabinum and larvae performed better on those plants. Finally, above-ground induction rendered the plants more toxic by increasing root cardenolide apolarity and maintaining it, even during subsequent larval herbivory. 4. Therefore, the intimate relationship and interaction between Chrysochus and Apocynum are maintained by a delicate balance of herbivore manipulation and plant chemical induction. C1 [Rasmann, Sergio] Univ Calif Irvine, Irvine, CA 92697 USA. RP Rasmann, S (corresponding author), Univ Calif Irvine, Sch Biol Sci, 321 Steinhaus Hall, Irvine, CA 92697 USA. EM srasmann@uci.edu RI Rasmann, Sergio/T-5376-2017 OI Rasmann, Sergio/0000-0002-3120-6226 FU Swiss National Science FoundationSwiss National Science Foundation (SNSF)European Commission [PA0033-121483] FX I am grateful to Anurag Agrawal and the Cornell Chemical Ecology Core Facility group for providing support and infrastructure for the experiments, and to Matthias Erb, Georg Petschenk, Anurag Agrawal, and two anonymous reviewers for comments on previous versions of the manuscript. This work was supported by a postdoctoral fellowship from the Swiss National Science Foundation (PA0033-121483). CR Agrawal AA, 1998, SCIENCE, V279, P1201, DOI 10.1126/science.279.5354.1201 Agrawal AA, 2012, NEW PHYTOL, V194, P28, DOI 10.1111/j.1469-8137.2011.04049.x Agrawal AA, 2009, ANNU REV ECOL EVOL S, V40, P311, DOI 10.1146/annurev.ecolsys.110308.120307 Alborn HT, 1997, SCIENCE, V276, P945, DOI 10.1126/science.276.5314.945 Baldwin I.T., 1997, INDUCED RESPONSES HE Barton KE, 2010, AM NAT, V175, P481, DOI 10.1086/650722 BERENBAUM M, 1981, SCIENCE, V212, P927, DOI 10.1126/science.212.4497.927 Bezemer TM, 2005, TRENDS ECOL EVOL, V20, P617, DOI 10.1016/j.tree.2005.08.006 Bonaventure G, 2012, PLANT BIOLOGY, V14, P872, DOI 10.1111/j.1438-8677.2012.00650.x Bonaventure G, 2011, TRENDS PLANT SCI, V16, P294, DOI 10.1016/j.tplants.2011.01.006 Clark KE, 2011, ECOL ENTOMOL, V36, P117, DOI 10.1111/j.1365-2311.2010.01248.x Dangl JL, 2001, NATURE, V411, P826, DOI 10.1038/35081161 De Moraes CM, 1998, NATURE, V393, P570, DOI 10.1038/31219 De Vos M, 2005, MOL PLANT MICROBE IN, V18, P923, DOI 10.1094/MPMI-18-0923 Dobler S, 1998, CHEMOECOLOGY, V8, P111, DOI 10.1007/s000490050015 Dobler S, 2012, P NATL ACAD SCI USA, V109, P13040, DOI 10.1073/pnas.1202111109 DUFFEY SS, 1980, ANNU REV ENTOMOL, V25, P447, DOI 10.1146/annurev.en.25.010180.002311 DUSSOURD DE, 1987, SCIENCE, V237, P898, DOI 10.1126/science.3616620 DUSSOURD DE, 1991, ECOLOGY, V72, P1383, DOI 10.2307/1941110 EHRLICH PR, 1964, EVOLUTION, V18, P586, DOI 10.2307/2406212 Erb M, 2008, PLANT PHYSIOL, V146, P867, DOI 10.1104/pp.107.112169 Erb M, 2012, J CHEM ECOL, V38, P629, DOI 10.1007/s10886-012-0107-9 Erb M, 2011, J ECOL, V99, P7, DOI 10.1111/j.1365-2745.2010.01757.x Erb M, 2009, PLANT J, V59, P292, DOI 10.1111/j.1365-313X.2009.03868.x Erwin AC, 2013, OIKOS, V122, P1746, DOI 10.1111/j.1600-0706.2013.00434.x Farrell BD, 1998, BIOL J LINN SOC, V63, P553, DOI 10.1006/bijl.1997.0207 Farrell BD, 1998, SCIENCE, V281, P555, DOI 10.1126/science.281.5376.555 Fordyce JA, 2000, J CHEM ECOL, V26, P2857, DOI 10.1023/A:1026450112601 Gassmann AJ, 2009, ANNU REV ENTOMOL, V54, P147, DOI 10.1146/annurev.ento.54.110807.090518 Hiltpold I, 2011, PLANT CELL ENVIRON, V34, P1267, DOI 10.1111/j.1365-3040.2011.02327.x Kaplan I, 2008, ECOLOGY, V89, P392, DOI 10.1890/07-0471.1 Kaplan I, 2008, ECOL LETT, V11, P841, DOI 10.1111/j.1461-0248.2008.01200.x Li XC, 2002, NATURE, V419, P712, DOI 10.1038/nature01003 Malcolm S.B., 1991, P251 Malcolm SB, 1996, ENTOMOL EXP APPL, V80, P193, DOI 10.1007/BF00194755 Manson JS, 2012, FUNCT ECOL, V26, P1100, DOI 10.1111/j.1365-2435.2012.02039.x MATTIACCI L, 1995, P NATL ACAD SCI USA, V92, P2036, DOI 10.1073/pnas.92.6.2036 Oksanen J, 2013, VEGAN COMMUNITY ECOL Peterson MA, 2001, ANN ENTOMOL SOC AM, V94, P1, DOI 10.1603/0013-8746(2001)094[0001:BMAMEF]2.0.CO;2 Pineda A, 2010, TRENDS PLANT SCI, V15, P507, DOI 10.1016/j.tplants.2010.05.007 Pozo MJ, 2007, CURR OPIN PLANT BIOL, V10, P393, DOI 10.1016/j.pbi.2007.05.004 Rasmann S, 2008, PLANT PHYSIOL, V146, P875, DOI 10.1104/pp.107.112045 Rasmann S, 2008, OIKOS, V117, P362, DOI 10.1111/j.2007.0030-1299.16204.x Rasmann S, 2011, AM NAT, V177, P728, DOI 10.1086/659948 Rasmann S, 2011, ECOL LETT, V14, P476, DOI 10.1111/j.1461-0248.2011.01609.x Rasmann S, 2011, J ECOL, V99, P16, DOI 10.1111/j.1365-2745.2010.01713.x Rasmann S, 2009, J CHEM ECOL, V35, P1326, DOI 10.1007/s10886-009-9719-0 Rasmann S, 2009, ECOLOGY, V90, P2393, DOI 10.1890/08-1895.1 STEFFEY J, 1983, AM HORTIC, V62, P10 Van Zandt PA, 2004, OIKOS, V104, P401, DOI 10.1111/j.0030-1299.2004.12964.x WILLIAMS CE, 1991, COLEOPTS BULL, V45, P195 ZALUCKI MP, 1990, ECOL ENTOMOL, V15, P231, DOI 10.1111/j.1365-2311.1990.tb00804.x Zalucki MP, 2001, ECOL ENTOMOL, V26, P212, DOI 10.1046/j.1365-2311.2001.00313.x Zalucki MP, 1999, J CHEM ECOL, V25, P1827, DOI 10.1023/A:1020929732223 Zhen Y, 2012, SCIENCE, V337, P1634, DOI 10.1126/science.1226630 NR 55 TC 3 Z9 3 U1 1 U2 54 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0307-6946 EI 1365-2311 J9 ECOL ENTOMOL JI Ecol. Entomol. PD JUN PY 2014 VL 39 IS 3 BP 382 EP 390 DI 10.1111/een.12113 PG 9 WC Entomology SC Entomology GA AG9PJ UT WOS:000335751300014 DA 2021-10-15 ER PT J AU Crozier, HL Cutler, GC AF Crozier, H. L. Cutler, G. C. TI Susceptibility of Chrysochus auratus, a natural enemy of spreading dogbane, to insecticides used in wild blueberry production SO JOURNAL OF APPLIED ENTOMOLOGY LA English DT Article DE Apocynum androsaemifolium; biological control; dogbane beetle; non-target impacts; Vaccinium angustifolium ID COLORADO POTATO BEETLE; APOCYNUM-ANDROSAEMIFOLIUM; CHRYSOMELIDAE; COLEOPTERA; FIELDS AB Insect pest management in wild blueberry (Vaccinium angustifolium Aiton) usually involves insecticidal sprays, which may have detrimental effects on non-target beneficial insects. Dogbane beetle (Chrysochus auratus Fabricius) (Coleoptera: Chrysomelidae) feeds almost exclusively on spreading dogbane (Apocynum androsaemifolium L.), an increasing weed problem in wild blueberry production. Because C.auratus is an important natural enemy of spreading dogbane, we assessed its susceptibility to several insecticides it may be exposed to during insect pest management. In laboratory bioassays, we found adult dogbane beetles were highly susceptible to field rates of phosmet (Imidan) and acetamiprid (Assail) by direct topical contact and ingestion of treated foliage, whereas no mortality was seen with spirotetramat (Movento) and chlorantraniliprole (Altacor). Topical applications of spinetoram (Delegate) did not cause significant mortality of beetles, but high mortality to beetles was found when they ingested spinetoram-treated foliage. The results suggest that while some insecticides used in blueberry management will be hazardous to C.auratus, options are available that will cause little harm to this natural enemy. C1 [Crozier, H. L.; Cutler, G. C.] Dalhousie Univ, Dept Environm Sci, Fac Agr, Truro, NS B2N 5E3, Canada. RP Cutler, GC (corresponding author), Dalhousie Univ, Dept Environm Sci, Fac Agr, PO 550, Truro, NS B2N 5E3, Canada. EM chris.cutler@dal.ca OI Cutler, Chris/0000-0002-4666-9987 FU Wild Blueberry Producers Association of Nova Scotia; Natural Sciences and Engineering Research Council (NSERC) of CanadaNatural Sciences and Engineering Research Council of Canada (NSERC) FX We thank the Wild Blueberry Producers Association of Nova Scotia and the Natural Sciences and Engineering Research Council (NSERC) of Canada for financial support, and Bragg Lumber Co. for field access. CR AAFC, 2012, STAT OV CAN BLUEB IN [Anonymous], 2008, NEW RULES PESTICIDE Arnett R. H., 2002, AM BEETLES, V2 Biondi A, 2012, PEST MANAG SCI, V68, P1523, DOI 10.1002/ps.3396 BISHOP BA, 1991, AM POTATO J, V68, P53, DOI 10.1007/BF02893341 Boyd NS, 2011, WEED SCI, V59, P533, DOI 10.1614/WS-D-11-00022.1 Delbridge R, 2013, WILD BLUEBERRY MANAG Dobler S, 1999, MOL ECOL, V8, P1297, DOI 10.1046/j.1365-294X.1999.00693.x Elbert A, 2008, PEST MANAG SCI, V64, P1099, DOI 10.1002/ps.1616 EU, 2013, EU PEST DAT FRENCH NM, 1992, PESTIC SCI, V36, P95, DOI 10.1002/ps.2780360203 JMP 9. 0 SAS Institute, 2010, JMP 9 0 MacEachern M, 2012, THESIS DALHOUSIE U T Maus C., 2008, Bayer CropScience Journal, V61, P159 Peterson MA, 2005, BIOL J LINN SOC, V84, P273, DOI 10.1111/j.1095-8312.2004.00429.x Robichaud M-J, 2006, 21004XIE STAT CAN Schnorbach J., 2008, Bayer CropScience Journal, V61, P377 Wu L, 2013, WEED SCI, V61, P422, DOI 10.1614/WS-D-12-00156.1 Wu L, 2012, WEED TECHNOL, V26, P777, DOI 10.1614/WT-D-11-00113.1 NR 19 TC 3 Z9 3 U1 0 U2 31 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0931-2048 EI 1439-0418 J9 J APPL ENTOMOL JI J. Appl. Entomol. PD FEB PY 2014 VL 138 IS 1-2 BP 159 EP 162 DI 10.1111/jen.12089 PG 4 WC Entomology SC Entomology GA 287GN UT WOS:000329530100005 DA 2021-10-15 ER PT J AU Qi, JY Liu, Q Gong, KZ Yu, J Wang, L Guo, LH Zhou, M Wu, JS Zhang, MZ AF Qi, Jianyong Liu, Qin Gong, Kaizheng Yu, Juan Wang, Lei Guo, Liheng Zhou, Miao Wu, Jiashin Zhang, Minzhou TI Apocynum Tablet Protects against Cardiac Hypertrophy via Inhibiting AKT and ERK1/2 Phosphorylation after Pressure Overload SO EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE LA English DT Article ID HEART-FAILURE; IN-VITRO; GATA4; DELETION; ACTIVATION; GROWTH AB Background. Cardiac hypertrophy occurs in many cardiovascular diseases. Apocynum tablet (AT), a traditional Chinese medicine, has been widely used in China to treat patients with hypertension. However, the underlying molecular mechanisms of AT on the hypertension-induced cardiac hypertrophy remain elusive. The current study evaluated the effect and mechanisms of AT on cardiac hypertrophy. Methods. We created a mouse model of cardiac hypertrophy by inducing pressure overload with surgery of transverse aortic constriction (TAC) and then explored the effect of AT on the development of cardiac hypertrophy using 46 mice in 4 study groups (combinations of AT and TAC). In addition, we evaluated the signaling pathway of phosphorylation of ERK1/2, AKT, and protein expression of GATA4 in the cardioprotective effects of AT using Western blot. Results. AT inhibited the phosphorylation of Thr202/Tyr204 sites of ERK1/2, Ser473 site of AKT, and protein expression of GATA4 and significantly inhibited cardiac hypertrophy and cardiac fibrosis at 2 weeks after TAC surgery (P < 0.05). Conclusions. We experimentally demonstrated that AT inhibits cardiac hypertrophy via suppressing phosphorylation of ERK1/2 and AKT. C1 [Qi, Jianyong; Liu, Qin; Wang, Lei; Guo, Liheng; Zhang, Minzhou] Guangzhou Univ Chinese Med, Affiliated Hosp 2, Guangdong Prov Hosp Chinese Med, Intens Care Lab, Guangzhou 510120, Guangdong, Peoples R China. [Gong, Kaizheng] Yangzhou Univ, Dept Cardiol, Clin Med Sch 2, Yangzhou 225001, Peoples R China. [Yu, Juan] Guangzhou Univ Chinese Med, Guangdong Prov Hosp Chinese Med, Anim Lab, Affiliated Hosp 2, Guangzhou 510120, Guangdong, Peoples R China. [Zhou, Miao] Guangzhou Med Univ, Stomatol Hosp, Dept Oral & Maxillary Surg, Guangzhou 510140, Guangdong, Peoples R China. [Wu, Jiashin] Northeast Ohio Med Univ, Dept Pharmaceut Sci, Coll Pharm, Rootstown, OH 44272 USA. RP Zhang, MZ (corresponding author), Guangzhou Univ Chinese Med, Affiliated Hosp 2, Guangdong Prov Hosp Chinese Med, Intens Care Lab, 101 Dade Rd, Guangzhou 510120, Guangdong, Peoples R China. EM minzhouzhang8@163.com OI Wu, Jiashin/0000-0002-8003-6235 FU National Natural Science Foundation of GuangdongNational Natural Science Foundation of Guangdong Province [S20120410008010]; Guangdong Province Medical Research Foundation [A2013235]; National Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC) [81173439, 81202782]; Specialized Research Fund for the Doctoral Program of Higher Education of ChinaSpecialized Research Fund for the Doctoral Program of Higher Education (SRFDP) [20134425110001] FX This study was supported by National Natural Science Foundation of Guangdong S20120410008010 (to Jianyong Qi), Guangdong Province Medical Research Foundation A2013235 (to Jianyong Qi), National Natural Science Foundation of China 81173439 (to Minzhou Zhang), and 81202782 (to Lei Wang), Specialized Research Fund for the Doctoral Program of Higher Education of China 20134425110001 (to Minzhou Zhang). CR Burchfield JS, 2013, CIRCULATION, V128, P388, DOI 10.1161/CIRCULATIONAHA.113.001878 Dionyssiou MG, 2013, J MOL CELL CARDIOL, V54, P35, DOI 10.1016/j.yjmcc.2012.10.013 Go AS, 2014, CIRCULATION, V129, pE28, DOI 10.1161/01.cir.0000441139.02102.80 Hu YX, 2012, P NATL ACAD SCI USA, V109, P19864, DOI 10.1073/pnas.1214996109 Kandalam V, 2011, CIRCULATION, V124, P2094, DOI 10.1161/CIRCULATIONAHA.111.030338 Kehat I, 2011, CIRC RES, V108, P176, DOI 10.1161/CIRCRESAHA.110.231514 Kobayashi S, 2007, J BIOL CHEM, V282, P21945, DOI 10.1074/jbc.M703048200 Kwan CY, 2005, CLIN EXP PHARMACOL P, V32, P789, DOI 10.1111/j.1440-1681.2005.04255.x Li P. P., 2011, CHINESE J GERONTOLOG, V16, P3153 Liang QR, 2001, J BIOL CHEM, V276, P30245, DOI 10.1074/jbc.M102174200 Liu H. Q., 2004, TRADITIONAL CHINESE, V26, P3 Meng RS, 2011, ARCH BIOCHEM BIOPHYS, V511, P1, DOI 10.1016/j.abb.2011.04.010 Molkentin JD, 2000, J BIOL CHEM, V275, P38949, DOI 10.1074/jbc.R000029200 Oka T, 2006, CIRC RES, V98, P837, DOI 10.1161/01.RES.0000215985.18538.c4 Oudit GY, 2009, CARDIOVASC RES, V82, P250, DOI 10.1093/cvr/cvp014 Pillai VB, 2014, CIRC RES, V114, P368, DOI 10.1161/CIRCRESAHA.113.300536 Qi JY, 2010, CLIN EXP PHARMACOL P, V37, P296, DOI 10.1111/j.1440-1681.2009.05282.x Qi JY, 2009, GENE THER MOL BIOL, V13A, P71 Qiu HY, 2011, CIRCULATION, V124, P406, DOI 10.1161/CIRCULATIONAHA.110.013847 Tenhunen O, 2004, J BIOL CHEM, V279, P24852, DOI 10.1074/jbc.M314317200 Ulm S, 2014, J MOL CELL CARDIOL, V72, P104, DOI 10.1016/j.yjmcc.2014.03.002 van Berlo JH, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0084591 van Berlo JH, 2013, J CLIN INVEST, V123, P37, DOI 10.1172/JCI62839 van Berlo JH, 2011, P NATL ACAD SCI USA, V108, P12331, DOI 10.1073/pnas.1104499108 Wang K, 2010, J BIOL CHEM, V285, P11903, DOI 10.1074/jbc.M109.098004 Wang S. H., 2011, ASIA PACIFIC TRADITI, V7, P56 Wu D. H., 2004, CHINESE HERBAL MED, V27, P142 Wu Qi, 2010, Zhong Yao Cai, V33, P1112 Xin M, 2013, NAT REV MOL CELL BIO, V14, P529, DOI 10.1038/nrm3619 Xu Y., 2010, J CARDIOVASCULAR PUL, V10, P1479 Yang Huasheng, 2011, Zhongguo Zhong Yao Za Zhi, V36, P1427 NR 31 TC 3 Z9 3 U1 0 U2 11 PU HINDAWI LTD PI LONDON PA ADAM HOUSE, 3RD FLR, 1 FITZROY SQ, LONDON, W1T 5HF, ENGLAND SN 1741-427X EI 1741-4288 J9 EVID-BASED COMPL ALT JI Evid.-based Complement Altern. Med. PY 2014 VL 2014 AR 769515 DI 10.1155/2014/769515 PG 9 WC Integrative & Complementary Medicine SC Integrative & Complementary Medicine GA AL0YH UT WOS:000338852500001 PM 25093027 OA Green Submitted, Green Published, gold DA 2021-10-15 ER PT J AU Yang, XJ Ma, B Zhang, Q Wu, XJ Gu, GY Li, J Sun, JJ Tang, BW Zhu, JW Qi, HH Ying, HJ AF Yang, Xiaojing Ma, Bo Zhang, Qi Wu, Xiujuan Gu, Guiying Li, Jing Sun, Jingjing Tang, Bowen Zhu, Jianwei Qi, Huanhuan Ying, Hanjie TI Comparative pharmacokinetics with single substances and Semen Cuscutae extract after oral administration and intravenous administration Semen Cuscutae extract and single hyperoside and astragalin to rats SO ANALYTICAL METHODS LA English DT Article ID APOCYNUM-VENETUM LEAVES; MASS-SPECTROMETRY; PLASMA; FLAVONOIDS; GLYCOSIDES; CHROMATOGRAPHY; ISOQUERCITRIN; VALIDATION; SEEDS AB A reliable and sensitive HPLC-MS/MS method was firstly developed for the simultaneous determination of hyperoside and astragalin in rat plasma. The plasma sample was prepared by protein precipitation using 300 mu L acetonitrile containing 0.1% formic acid. Chromatographic separation was achieved on a C8 column using a gradient elution program with acetonitrile and water containing 0.05% formic acid as the mobile phase. The flow rate was 0.2 mL min(-1). The detection was performed in a triple quadrupole tandem mass spectrometer in MRM mode, using negative ionization. The transitions monitored were m/z [M - H] - 463.2 -> 300.7 for hyperoside, m/z [M - H] - 447.2 -> 283.7 for astragalin and m/z [M - H] - 389 -> 226.9 for IS, respectively. The method was linear over the concentration range of 0.5-200 ng mL(-1) for both analytes. The extraction recovery was above 60%. The intra- and inter-day precision (R.S.D.) values were within 11.04% and accuracy (R. E.) was -3.35% to 10.15% at all QC levels. The method was successfully applied to pre-clinical pharmacokinetic and bioavailability studies of hyperoside and astragalin in rats. Additionally, further research was performed by comparing the differences in the pharmacokinetic behavior between the single substances and the Cuscuta extract after oral or intravenous administration. A lower absolute bioavailability (2.211% for hyperoside and 4.044% for astragalin from Cuscuta extract) and significant differences in the pharmacokinetic behaviors between the Cuscuta extract and single substances were observed in the rat. This method would be beneficial for the pre-clinical research and clinical use of Cuscuta extract. C1 [Yang, Xiaojing; Ma, Bo; Zhang, Qi; Wu, Xiujuan; Gu, Guiying; Li, Jing; Sun, Jingjing; Tang, Bowen; Zhu, Jianwei; Qi, Huanhuan] Nanjing Univ Technol, Sch Pharmaceut Sci, Nanjing 210009, Peoples R China. [Ying, Hanjie] Nanjing Univ Technol, Sch Life Sci & Pharmaceut Engn, Nanjing 210009, Peoples R China. RP Zhang, Q (corresponding author), Nanjing Univ Technol, Sch Pharmaceut Sci, Nanjing 210009, Peoples R China. EM nancyzhang03@hotmail.com RI Tang, Bowen/AAS-5097-2021 OI Ying, Hanjie/0000-0002-4061-0001 FU National Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC) [81373478, 81302835]; Jiangsu Province Science Foundation for Youths [BK20130951]; Jiangsu Province Natural Science Fund for Colleges and Universities [13KJB350003]; China Postdoctoral Science Foundation funded projectChina Postdoctoral Science Foundation [2013M5302520]; Program for Changjiang Scholars and Innovative Research Team in UniversityProgram for Changjiang Scholars & Innovative Research Team in University (PCSIRT) [IRT1066] FX This study was supported by a grant from the National Natural Science Foundation of China (grant numbers 81373478; 81302835); the Jiangsu Province Science Foundation for Youths (no. BK20130951); the Jiangsu Province Natural Science Fund for Colleges and Universities (no. 13KJB350003), the China Postdoctoral Science Foundation funded project (2013M5302520), as well as the Program for Changjiang Scholars and Innovative Research Team in University (grant no. IRT1066). CR Ai G, 2012, CHIN HERB MED, V4, P213, DOI 10.3969/j.issn.1674-6384.2012.03.007 Chang Q, 2005, EUR J PHARM BIOPHARM, V59, P549, DOI 10.1016/j.ejpb.2004.10.004 Chang Q, 2005, J CLIN PHARMACOL, V45, P106, DOI 10.1177/0091270004270500 Du XM, 1998, PHYTOCHEMISTRY, V48, P843, DOI 10.1016/S0031-9422(97)00990-4 Han JT, 2004, ARCH PHARM RES, V27, P390, DOI 10.1007/BF02980079 He J, 2013, J PHARMACEUT BIOMED, V84, P189, DOI 10.1016/j.jpba.2013.06.019 He XH, 2010, J ASIAN NAT PROD RES, V12, P934, DOI 10.1080/10286020.2010.506434 Huang B, 2010, FOOD CHEM, V120, P873, DOI 10.1016/j.foodchem.2009.11.020 Joo KM, 2010, J PHARMACEUT BIOMED, V51, P278, DOI 10.1016/j.jpba.2009.08.013 Liu X, 2010, YAKUGAKU ZASSHI, V130, P873, DOI 10.1248/yakushi.130.873 Liu YH, 2013, J CHROMATOGR B, V912, P16, DOI 10.1016/j.jchromb.2012.09.038 Ma B, 2013, J CHROMATOGR B, V917, P84, DOI 10.1016/j.jchromb.2012.12.041 Qin DN, 2000, ASIAN J ANDROL, V2, P99 Soromou LW, 2012, BIOCHEM BIOPH RES CO, V419, P256, DOI 10.1016/j.bbrc.2012.02.005 Trumbeckaite S, 2006, BIOMED PHARMACOTHER, V60, P245, DOI 10.1016/j.biopha.2006.04.003 Wang CH, 2011, J PHARM ANA, V1, P291, DOI 10.1016/j.jpha.2011.09.003 Wei Y, 2011, J CHROMATOGR A, V1218, P6206, DOI 10.1016/j.chroma.2011.01.058 Yang LJ, 2011, J ETHNOPHARMACOL, V135, P553, DOI 10.1016/j.jep.2011.03.056 Zhan W., 2000, ACTA PHARM SIN, V21, P1136 Zhang YC, 2010, J CHROMATOGR B, V878, P3149, DOI 10.1016/j.jchromb.2010.09.027 ZHENG H, 1997, MODERN STUDY TRADITI Zheng MZ, 2012, PHYTOMEDICINE, V19, P145, DOI 10.1016/j.phymed.2011.06.029 Zhou CL, 2011, CHROMATOGRAPHIA, V73, P353, DOI 10.1007/s10337-010-1879-0 NR 23 TC 3 Z9 3 U1 0 U2 7 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1759-9660 EI 1759-9679 J9 ANAL METHODS-UK JI Anal. Methods PY 2014 VL 6 IS 18 BP 7250 EP 7259 DI 10.1039/c4ay00437j PG 10 WC Chemistry, Analytical; Food Science & Technology; Spectroscopy SC Chemistry; Food Science & Technology; Spectroscopy GA AO1NW UT WOS:000341080900021 DA 2021-10-15 ER PT J AU Zhang, YC Liu, CM Zhang, ZK Qi, YJ Wu, GM Li, SN AF Zhang, Yuchi Liu, Chunming Zhang, Zhengkun Qi, Yanjuan Wu, Guimei Li, Sainan TI Fast differentiation of Apocynum venetum with related species by UPLC/MS and UPLC/SPE/NMR SO MEDICINAL CHEMISTRY RESEARCH LA English DT Article DE Apocynum venetum L.; Related species; UPLC/MS; UPLC/SPE/NMR ID TANDEM MASS-SPECTROMETRY; COUNTER-CURRENT CHROMATOGRAPHY; PERFORMANCE LIQUID-CHROMATOGRAPHY; HYPERICUM-PERFORATUM; PREPARATIVE ISOLATION; FLAVONOID PROFILES; HPLC-NMR; IDENTIFICATION; HYPERFORIN; LEAVES AB The newly established hyphenated instrumentation of UPLC/MS and UPLC/SPE/NMR techniques has been applied for a fast comparison of the major chemical components from Chinese medicinal herb Apocynum venetum and related species. The content of the compounds among three species was found to be highly variable qualitatively as well as quantitatively. The identification of the constituents was based on matching their UV spectrum, online UPLC/MS/MS, and UPLC/SPE/NMR data. The system successfully identified 16 compounds in one step via operation for 4 h. Hyperforin was described for the first time in A. venetum, all of which had not previously been reported in Apocynum hendersonii and Apocynum pictum. C1 [Zhang, Yuchi; Liu, Chunming; Qi, Yanjuan; Wu, Guimei; Li, Sainan] Changchun Normal Univ, Cent Lab, Changchun 130032, Peoples R China. [Zhang, Zhengkun] Jilin Acad Agr Sci, Inst Plant Protect, Gongzhuling 136100, Peoples R China. RP Liu, CM (corresponding author), Changchun Normal Univ, Cent Lab, Changchun 130032, Peoples R China. EM chunmingliu2000@yahoo.com.cn FU National Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC) [30970299]; Jilin Provincial Science and Technology Department [20090936] FX This study was supported by the National Natural Science Foundation of China (No. 30970299), and Major Project of Jilin Provincial Science and Technology Department (No. 20090936). CR Adam P, 2002, J MED CHEM, V45, P4786, DOI 10.1021/jm0209782 Butterweck V, 2001, BIOL PHARM BULL, V24, P848, DOI 10.1248/bpb.24.848 Chen L, 2001, J CHROMATOGR A, V907, P343, DOI 10.1016/S0021-9673(00)00960-2 Christophoridou S, 2005, J AGR FOOD CHEM, V53, P4667, DOI 10.1021/jf040466r Colovic M, 2008, J CHROMATOGR B, V863, P74, DOI 10.1016/j.jchromb.2008.01.014 Cuyckens F, 2001, J MASS SPECTROM, V36, P1203, DOI 10.1002/jms.224 De Shan M, 2001, J NAT PROD, V64, P127 Fabre N, 2001, J AM SOC MASS SPECTR, V12, P707, DOI 10.1016/S1044-0305(01)00226-4 [韩利文 HAN Liwen], 2008, [中草药, Chinese Traditional and Herbal Drugs], V39, P591 Hvattum E, 2004, J MASS SPECTROM, V39, P1570, DOI 10.1002/jms.756 Hvattum E, 2003, J MASS SPECTROM, V38, P43, DOI 10.1002/jms.398 Kamata K, 2008, J NAT MED-TOKYO, V62, P160, DOI 10.1007/s11418-007-0202-3 Kim DW, 2000, J ETHNOPHARMACOL, V72, P53, DOI 10.1016/S0378-8741(00)00197-5 Lhuillier A, 2007, J CHROMATOGR A, V1160, P13, DOI 10.1016/j.chroma.2007.03.038 Liu RM, 2004, J CHROMATOGR A, V1052, P217, DOI 10.1016/j.chroma.2004.08.101 Lommen A, 2000, ANAL CHEM, V72, P1793, DOI 10.1021/ac9912303 MARKHAM KR, 1990, PHYTOCHEMISTRY, V29, P501, DOI 10.1016/0031-9422(90)85105-O Murakami T, 2001, CHEM PHARM BULL, V49, P845, DOI 10.1248/cpb.49.845 Parejo I, 2004, J AGR FOOD CHEM, V52, P1890, DOI 10.1021/jf030717g Pellati F, 2005, J CHROMATOGR A, V1088, P205, DOI 10.1016/j.chroma.2004.12.075 Petsalo A, 2006, J CHROMATOGR A, V1112, P224, DOI 10.1016/j.chroma.2005.11.056 Pirker R, 2002, J CHROMATOGR B, V777, P147, DOI 10.1016/S1570-0232(02)00080-6 Veronika B, 2003, PHARM BIO BEHAV, V75, P557 Verotta L, 2000, J NAT PROD, V63, P412, DOI 10.1021/np9903752 Wei Y, 2006, J CHROMATOGR A, V1115, P112, DOI 10.1016/j.chroma.2006.02.081 Wolfender JL, 2003, PHYTOCHEM ANALYSIS, V14, P290, DOI 10.1002/pca.718 [杨娟 YANG Juan], 2006, [中国药学杂志, Chinese Pharmaceutical Journal], V41, P255 NR 27 TC 3 Z9 6 U1 1 U2 28 PU SPRINGER BIRKHAUSER PI NEW YORK PA 233 SPRING STREET, 6TH FLOOR, NEW YORK, NY 10013 USA SN 1054-2523 EI 1554-8120 J9 MED CHEM RES JI Med. Chem. Res. PD JUL PY 2012 VL 21 IS 7 BP 1077 EP 1083 DI 10.1007/s00044-011-9624-2 PG 7 WC Chemistry, Medicinal SC Pharmacology & Pharmacy GA 947WF UT WOS:000304463600015 DA 2021-10-15 ER PT J AU Straub, SCK Boutte, J Fishbein, M Livshultz, T AF Straub, Shannon C. K. Boutte, Julien Fishbein, Mark Livshultz, Tatyana TI Enabling evolutionary studies at multiple scales in Apocynaceae through Hyb-Seq SO APPLICATIONS IN PLANT SCIENCES LA English DT Article DE Apocynaceae; dogbane; genome reduction; Hyb‐ Seq; low‐ copy nuclear genes; milkweed; phylogenomics; targeted sequencing ID SYSTEMATICS; ALIGNMENT; FAMILIES; MODEL; TREE; ASCLEPIADOIDEAE; PHYLOGENOMICS; POSITION; FLOWERS; PLANTS AB Premise Apocynaceae is the 10th largest flowering plant family and a focus for study of plant-insect interactions, especially as mediated by secondary metabolites. However, it has few genomic resources relative to its size. Target capture sequencing is a powerful approach for genome reduction that facilitates studies requiring data from the nuclear genome in non-model taxa, such as Apocynaceae. Methods Transcriptomes were used to design probes for targeted sequencing of putatively single-copy nuclear genes across Apocynaceae. The sequences obtained were used to assess the success of the probe design, the intrageneric and intraspecific variation in the targeted genes, and the utility of the genes for inferring phylogeny. Results From 853 candidate nuclear genes, 835 were consistently recovered in single copy and were variable enough for phylogenomics. The inferred gene trees were useful for coalescent-based species tree analysis, which showed all subfamilies of Apocynaceae as monophyletic, while also resolving relationships among species within the genus Apocynum. Intraspecific comparison of Elytropus chilensis individuals revealed numerous single-nucleotide polymorphisms with potential for use in population-level studies. Discussion Community use of this Hyb-Seq probe set will facilitate and promote progress in the study of Apocynaceae across scales from population genomics to phylogenomics. C1 [Straub, Shannon C. K.; Boutte, Julien] Hobart & William Smith Coll, Dept Biol, 300 Pulteney St, Geneva, NY 14456 USA. [Fishbein, Mark] Oklahoma State Univ, Dept Plant Biol Ecol & Evolut, 301 Phys Sci, Stillwater, OK 74078 USA. [Livshultz, Tatyana] Drexel Univ, Dept Biodivers Earth & Environm Sci, 1900 Benjamin Franklin Pkwy, Philadelphia, PA 19103 USA. [Livshultz, Tatyana] Drexel Univ, Acad Nat Sci, 1900 Benjamin Franklin Pkwy, Philadelphia, PA 19103 USA. RP Straub, SCK (corresponding author), Hobart & William Smith Coll, Dept Biol, 300 Pulteney St, Geneva, NY 14456 USA. EM straub@hws.edu OI Fishbein, Mark/0000-0003-3099-4387 FU National Science FoundationNational Science Foundation (NSF) [DEB 1655223/1655553, 1457473/1457510]; Drexel University Clinical and Translational Research Institute (CTRI) seed grant FX The authors thank A. Simoes (Universidade Estadual de Campinas) and M. Endress (University of Zurich) for tissue of A. orientalis; J. Teisher and D. Chin (Drexel University), and J. Schafer (Oklahoma State University) for computational support; C. Smith (Drexel University), and A. Foote, M. Cullinan, M. Steinfeldt, K. Kostovi, and C. Chung (Hobart and William Smith Colleges) for laboratory help; and A. Devault and J. Enk (Daicel Arbor BioSciences) for probe design assistance. Funding was provided by the National Science Foundation (grant DEB 1655223/1655553 to S.C.K.S. and T.L. and 1457473/1457510 to S.C.K.S. and M.F.), and a Drexel University Clinical and Translational Research Institute (CTRI) seed grant to T.L. CR ALTSCHUL SF, 1990, J MOL BIOL, V215, P403, DOI 10.1006/jmbi.1990.9999 Bagley JC, 2020, MOL PHYLOGENET EVOL, V152, DOI 10.1016/j.ympev.2020.106769 Bolger AM, 2014, BIOINFORMATICS, V30, P2114, DOI 10.1093/bioinformatics/btu170 Boutte J, 2019, MOL PHYLOGENET EVOL, V139, DOI 10.1016/j.ympev.2019.106534 Boutte J, 2016, GENOME BIOL EVOL, V8, P3030, DOI 10.1093/gbe/evw209 Bravo GA, 2019, PEERJ, V7, DOI 10.7717/peerj.6399 Chamala S, 2015, APPL PLANT SCI, V3, DOI 10.3732/apps.1400115 Chau JH, 2018, APPL PLANT SCI, V6, DOI 10.1002/aps3.1032 Couvreur TLP, 2019, FRONT PLANT SCI, V9, DOI 10.3389/fpls.2018.01941 Cragg GM, 2005, J ETHNOPHARMACOL, V100, P72, DOI 10.1016/j.jep.2005.05.011 Crowl AA, 2017, EVOLUTION, V71, P913, DOI 10.1111/evo.13203 de La Harpe M, 2019, MOL ECOL RESOUR, V19, P221, DOI 10.1111/1755-0998.12945 De Smet R, 2013, P NATL ACAD SCI USA, V110, P2898, DOI 10.1073/pnas.1300127110 Hoang DT, 2018, MOL BIOL EVOL, V35, P518, DOI 10.1093/molbev/msx281 Dodsworth S, 2019, TRENDS PLANT SCI, V24, P887, DOI 10.1016/j.tplants.2019.07.011 Edwards SV, 2016, MOL PHYLOGENET EVOL, V94, P447, DOI 10.1016/j.ympev.2015.10.027 Endress ME, 2000, BOT REV, V66, P1, DOI 10.1007/BF02857781 Endress ME., 2018, FLOWERING PLANTS FAM, P207, DOI [10.1007/978-3-319-93605-5_3, DOI 10.1007/978-3-319-93605-5_3] Endress P.K, 1994, DIVERSITY EVOLUTIONA Fishbein M, 2001, ANN MO BOT GARD, V88, P603, DOI 10.2307/3298636 Fishbein M, 2018, AM J BOT, V105, P495, DOI 10.1002/ajb2.1067 Fisher AE, 2016, MOL PHYLOGENET EVOL, V105, P1, DOI 10.1016/j.ympev.2016.08.011 Gongora-Castillo E, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0052506 Herrando-Moraira S, 2019, MOL PHYLOGENET EVOL, V137, P313, DOI 10.1016/j.ympev.2019.05.001 Heyduk K, 2016, BIOL J LINN SOC, V117, P106, DOI 10.1111/bij.12551 Hillis DM, 2003, SYST BIOL, V52, P124, DOI 10.1080/10635150390132911 Jantzen JR, 2020, APPL PLANT SCI, V8, DOI 10.1002/aps3.11345 Johnson MG, 2019, SYST BIOL, V68, P594, DOI 10.1093/sysbio/syy086 Johnson MG, 2016, APPL PLANT SCI, V4, DOI 10.3732/apps.1600016 Jones KE, 2019, APPL PLANT SCI, V7, DOI 10.1002/aps3.11295 Kadlec M, 2017, PEERJ, V5, DOI 10.7717/peerj.3569 Katoh K, 2002, NUCLEIC ACIDS RES, V30, P3059, DOI 10.1093/nar/gkf436 Kwon CW, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0119328 Nguyen LT, 2015, MOL BIOL EVOL, V32, P268, DOI 10.1093/molbev/msu300 Larridon I, 2020, FRONT PLANT SCI, V10, DOI 10.3389/fpls.2019.01655 Lemmon EM, 2013, ANNU REV ECOL EVOL S, V44, P99, DOI 10.1146/annurev-ecolsys-110512-135822 Leveille-Bourret E, 2018, SYST BIOL, V67, P94, DOI 10.1093/sysbio/syx050 Li H, 2009, BIOINFORMATICS, V25, P1754, DOI 10.1093/bioinformatics/btp324 Livshultz T, 2007, ANN MO BOT GARD, V94, P324, DOI 10.3417/0026-6493(2007)94[324:POAATA]2.0.CO;2 Livshultz T, 2018, NEW PHYTOL, V218, P762, DOI 10.1111/nph.15061 Livshultz T, 2010, TAXON, V59, P1016, DOI 10.1002/tax.594003 MALCOLM SB, 1989, EXPERIENTIA, V45, P284, DOI 10.1007/BF01951814 Mandel JR, 2015, J SYST EVOL, V53, P391, DOI 10.1111/jse.12167 Mirarab S, 2015, BIOINFORMATICS, V31, P44, DOI 10.1093/bioinformatics/btv234 Morais EB, 2019, APPL PLANT SCI, V7, DOI 10.1002/aps3.11290 Nabhan AR, 2012, BRIEF BIOINFORM, V13, P122, DOI 10.1093/bib/bbr014 Peng Z, 2017, MOL GENET GENOMICS, V292, P955, DOI 10.1007/s00438-017-1327-z Python Software Foundation, 2016, PYTH LANG REF VERS 2 Simoes AO, 2007, ANN MO BOT GARD, V94, P268, DOI 10.3417/0026-6493(2007)94[268:PASOTR]2.0.CO;2 Simoes AO, 2016, TAXON, V65, P99, DOI 10.12705/651.7 Smith SA, 2015, BMC EVOL BIOL, V15, DOI 10.1186/s12862-015-0423-0 Straub SCK, 2014, MOL PHYLOGENET EVOL, V80, P169, DOI 10.1016/j.ympev.2014.07.020 Straub SCK, 2012, AM J BOT, V99, P349, DOI 10.3732/ajb.1100335 Vatanparast M, 2018, APPL PLANT SCI, V6, DOI 10.1002/aps3.1036 Verhoeven RL, 2003, GRANA, V42, P70, DOI 10.1080/001731310310012549 Villaverde T, 2018, NEW PHYTOL, V220, P636, DOI 10.1111/nph.15312 Walker JF, 2017, AM J BOT, V104, P858, DOI 10.3732/ajb.1700083 Weitemier K, 2019, PEERJ, V7, DOI 10.7717/peerj.7649 Weitemier K, 2014, APPL PLANT SCI, V2, DOI 10.3732/apps.1400042 Xiao M, 2013, J BIOTECHNOL, V166, P122, DOI 10.1016/j.jbiotec.2013.04.004 Yates SA, 2014, BMC PLANT BIOL, V14, DOI 10.1186/1471-2229-14-2 NR 61 TC 2 Z9 2 U1 0 U2 1 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 2168-0450 J9 APPL PLANT SCI JI Appl. Plant Sci. PD NOV PY 2020 VL 8 IS 11 AR e11400 DI 10.1002/aps3.11400 EA NOV 2020 PG 9 WC Plant Sciences SC Plant Sciences GA PB3OA UT WOS:000593071400001 PM 33304663 OA gold, Green Published DA 2021-10-15 ER PT J AU Xu, XX Gong, JX Zhang, T Li, Z Zhang, JF Wang, L Huang, JF AF Xu, Xuanxuan Gong, Jixian Zhang, Tao Li, Zheng Zhang, Jianfei Wang, Li Huang, Jingfeng TI Insights into antibacterial mechanism of Apocynum Venetum L. fiber: Evolution of bioactive natural substances in bast during chemical degumming process SO INDUSTRIAL CROPS AND PRODUCTS LA English DT Article DE Apocynum venetum L.; Bast fiber; Antibacterial mechanism; Polyphenolic compounds; Chemical degumming ID ENHANCED RAMAN-SCATTERING; QUERCETIN OXIDATION; ANTIMICROBIAL ACTIVITY; ANTIOXIDANT ACTIVITY; IDENTIFICATION; FLAVONOIDS; PRODUCTS; EXTRACTS; POLYMERIZATION; NANOFILTRATION AB There is an increasing interest in the study of biomass-derived cellulosic fiber. Apocynum venetum L. (A. venetum) is considered as a promising source for functional fiber. The antibacterial activity of textiles made from A. venetum fibers has been validated by fabrics testing, but the underlying antibacterial mechanism is still obscure. Here, a hypothesis of transformation and deposition was presented to explain the mechanism of antibacterial activity of A. venetum technical fiber. An in vitro experiment was designed and performed to simulate the chemical reaction pathway of antibacterial substances in the bast of A. venetum undergoing chemical degumming process. Chemical compositions and antibacterial properties of polyphenols and A. venetum bast, before and after the process were measured and analyzed. Results showed that water-soluble polyphenols became insoluble after alkaline degumming treatment at high temperature. MALDI-TOF spectrometry analysis also revealed the formation of oligomers from quercetin. Structural consistency between the insoluble product and A. venetum fiber was confirmed by second derivative infrared (SD-IR) and Raman spectroscopy. While, the resulting derivatives had significant antibacterial activity toward the assayed microorganisms in broth dilution tests. This investigation of transformation behavior of polyphenols provided new insights into material basis of A. venetum fiber for antibacterial property. C1 [Xu, Xuanxuan; Gong, Jixian; Zhang, Tao; Li, Zheng; Zhang, Jianfei] Tiangong Univ, Sch Text Sci & Engn, Tianjin 300387, Peoples R China. [Gong, Jixian; Li, Zheng; Zhang, Jianfei] Collaborat Innovat Ctr Ecotext Shandong Prov, 308 Ningxia Rd, Qingdao 266071, Peoples R China. [Wang, Li; Huang, Jingfeng] Altay Gaubau Tea Co Ltd, Natl Highway 207, Altay 836500, Peoples R China. RP Zhang, JF (corresponding author), Tiangong Univ, 399 Bin Shui Xi Rd, Tianjin 300387, Peoples R China. EM zhangjianfei1960@outlook.com FU Xinjiang Autonomous Region Major Significant Project Foundation [2016A03006-3]; Tianjin Natural Science FoundationNatural Science Foundation of Tianjin [18JCYBJC89600]; National Key Research and Development Project Foundation of China [2016YFC0400503-02]; Science and Technology Guidance Project of China National Textile and Apparel Council [2017011] FX This work was supported by the Xinjiang Autonomous Region Major Significant Project Foundation (grant number 2016A03006-3); the Tianjin Natural Science Foundation (grant number 18JCYBJC89600); the National Key Research and Development Project Foundation of China (grant number 2016YFC0400503-02); and Science and Technology Guidance Project of China National Textile and Apparel Council (grant number 2017011). CR Achour S, 2012, J FOOD SCI, V77, pC703, DOI 10.1111/j.1750-3841.2012.02696.x Adiana MA, 2011, J MOL STRUCT, V991, P84, DOI 10.1016/j.molstruc.2011.02.005 Bondzic AM, 2013, NEW J CHEM, V37, P901, DOI 10.1039/c2nj40742f Bruhlmann F, 2000, J BIOTECHNOL, V76, P43, DOI 10.1016/S0168-1656(99)00175-3 Burt S, 2004, INT J FOOD MICROBIOL, V94, P223, DOI 10.1016/j.ijfoodmicro.2004.03.022 Butterweck V, 2001, BIOL PHARM BULL, V24, P848, DOI 10.1248/bpb.24.848 CALDERON P, 1968, J AGR FOOD CHEM, V16, P479, DOI 10.1021/jf60157a017 Cherviakovsky EM, 2006, BIOCHEM BIOPH RES CO, V342, P459, DOI 10.1016/j.bbrc.2006.02.001 CHUNG MY, 1986, J FOOD SCI, V51, P1494, DOI 10.1111/j.1365-2621.1986.tb13843.x Chupin L, 2013, IND CROP PROD, V49, P897, DOI 10.1016/j.indcrop.2013.06.045 Cushnie TPT, 2005, INT J ANTIMICROB AG, V26, P343, DOI 10.1016/j.ijantimicag.2005.09.002 Custodis VBF, 2014, J PHYS CHEM B, V118, P8524, DOI 10.1021/jp5036579 Doughari J. H., 2006, Tropical Journal of Pharmaceutical Research, V5, P597 Duan SW, 2018, TEXT RES J, V88, P1377, DOI 10.1177/0040517517700198 Durak T, 2020, ENVIRON EXP BOT, V169, DOI 10.1016/j.envexpbot.2019.103915 Edziri HL, 2011, IND CROP PROD, V34, P1182, DOI 10.1016/j.indcrop.2011.04.003 Elansary HO, 2016, IND CROP PROD, V92, P50, DOI 10.1016/j.indcrop.2016.07.048 Eshbakova KA, 2011, CHEM NAT COMPD+, V46, P974, DOI 10.1007/s10600-011-9801-z Falcao L, 2013, J CULT HERIT, V14, P499, DOI 10.1016/j.culher.2012.11.003 Fan XS, 2010, TEXT RES J, V80, P2046, DOI 10.1177/0040517510373632 Fuentes J, 2017, J AGR FOOD CHEM, V65, P11002, DOI 10.1021/acs.jafc.7b05214 Gao G, 2019, METABOLITES, V9, DOI 10.3390/metabo9120296 Godstime O. C., 2014, J PHARM CHEM BIOL SC, V2, P77 [巩继贤 Gong Jixian], 2017, [纺织学报, Journal of Textile Research], V38, P83 Grundmann O, 2007, J ETHNOPHARMACOL, V110, P406, DOI 10.1016/j.jep.2006.09.035 Gutzeit HO, 2004, BIOCHEM BIOPH RES CO, V318, P490, DOI 10.1016/j.bbrc.2004.04.078 Guyot S, 1996, PHYTOCHEMISTRY, V42, P1279, DOI 10.1016/0031-9422(96)00127-6 HAGERMAN AE, 1988, J CHEM ECOL, V14, P453, DOI 10.1007/BF01013897 Hamada S, 1996, FEMS MICROBIOL LETT, V143, P35, DOI 10.1111/j.1574-6968.1996.tb08458.x Han G.J., 2013, HUBEI AGR SCI, V52, P6089 Han GT, 2008, CARBOHYD POLYM, V72, P652, DOI 10.1016/j.carbpol.2007.10.002 He JB, 2009, BIOELECTROCHEMISTRY, V75, P110, DOI 10.1016/j.bioelechem.2009.02.006 He MY, 2014, APPL SURF SCI, V305, P515, DOI 10.1016/j.apsusc.2014.03.125 Heneczkowski M, 2001, Acta Pol Pharm, V58, P415 Idowu TO, 2010, PHYTOCHEMISTRY, V71, P2092, DOI 10.1016/j.phytochem.2010.08.018 Irie K, 2009, J NAT MED, V63, P111, DOI 10.1007/s11418-008-0296-2 Jurasekova Z, 2006, J RAMAN SPECTROSC, V37, P1239, DOI 10.1002/jrs.1634 Jurasekova Z, 2009, J MOL STRUCT, V918, P129, DOI 10.1016/j.molstruc.2008.07.025 KANO K, 1994, J CHEM SOC CHEM COMM, P593, DOI 10.1039/c39940000593 Kapoor M, 2001, PROCESS BIOCHEM, V36, P803, DOI 10.1016/S0032-9592(00)00282-X Khlupova ME, 2015, BIOCHEMISTRY-MOSCOW+, V80, P233, DOI 10.1134/S0006297915020108 Kim KH, 2013, PHYTOCHEMISTRY, V92, P113, DOI 10.1016/j.phytochem.2013.05.005 Klancnik A, 2009, J FOOD PROTECT, V72, P1744, DOI 10.4315/0362-028X-72.8.1744 Krishnamachari V, 2004, CHEM RES TOXICOL, V17, P795, DOI 10.1021/tx034242z Kurisawa M, 2003, BIOMACROMOLECULES, V4, P469, DOI 10.1021/bm034012z Lai DQ, 2012, FOOD SCI TECHNOL RES, V18, P7, DOI 10.3136/fstr.18.7 Li MH, 2012, FIBER POLYM, V13, P322, DOI 10.1007/s12221-012-0322-6 Li MH, 2010, FIBER POLYM, V11, P48, DOI 10.1007/s12221-010-0048-2 Ma M, 2003, J AGR FOOD CHEM, V51, P2390, DOI 10.1021/jf021055i Mayer R, 2008, J AGR FOOD CHEM, V56, P6959, DOI 10.1021/jf800832r Mello BCBS, 2010, J FOOD ENG, V96, P533, DOI 10.1016/j.jfoodeng.2009.08.040 Osman A, 2008, PROCESS BIOCHEM, V43, P861, DOI 10.1016/j.procbio.2008.04.003 Pan BJ, 2013, DESALINATION, V317, P127, DOI 10.1016/j.desal.2013.03.004 Ramos FA, 2006, J AGR FOOD CHEM, V54, P3551, DOI 10.1021/jf060251c Rashed K, 2014, IND CROP PROD, V59, P210, DOI 10.1016/j.indcrop.2014.05.021 Ren YF, 2016, DYES PIGMENTS, V134, P334, DOI 10.1016/j.dyepig.2016.07.032 Ricci A, 2015, APPL SPECTROSC REV, V50, P407, DOI 10.1080/05704928.2014.1000461 Ristivojevic P, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0157097 Sanchez-Cortes S, 2001, COLLOID SURFACE A, V176, P177, DOI 10.1016/S0927-7757(00)00630-0 Sanchez-Cortes S, 2000, J COLLOID INTERF SCI, V231, P98, DOI 10.1006/jcis.2000.7101 Schulz H, 2007, VIB SPECTROSC, V43, P13, DOI 10.1016/j.vibspec.2006.06.001 SHARMA HSS, 1987, APPL MICROBIOL BIOT, V26, P358, DOI 10.1007/BF00256669 STRUMEYER DH, 1975, J AGR FOOD CHEM, V23, P909, DOI 10.1021/jf60201a019 Tian F, 2009, FOOD CHEM, V113, P173, DOI 10.1016/j.foodchem.2008.07.062 Wang LL, 2007, CARBOHYD POLYM, V69, P391, DOI 10.1016/j.carbpol.2006.12.028 Wang LJ, 2013, IND CROP PROD, V49, P312, DOI 10.1016/j.indcrop.2013.04.039 Xiang L, 2016, J MOL STRUCT, V1124, P164, DOI 10.1016/j.molstruc.2016.02.058 Xie WY, 2012, J ETHNOPHARMACOL, V141, P1, DOI 10.1016/j.jep.2012.02.003 Xie YX, 2015, CURR MED CHEM, V22, P132 Xiong QB, 2000, PLANTA MED, V66, P127, DOI 10.1055/s-2000-11135 Xu CH, 2013, SPECTROCHIM ACTA A, V114, P421, DOI 10.1016/j.saa.2013.05.024 [叶菊 YE Ju], 2006, [西北林学院学报, Journal of Northwest Forestry College], V21, P114 Zenkevich IG, 2017, J ANAL CHEM+, V72, P1061, DOI 10.1134/S1061934817080147 Zenkevich IG, 2007, MOLECULES, V12, P654, DOI 10.3390/12030654 Zhou AL, 2007, ELECTROCHEM COMMUN, V9, P2246, DOI 10.1016/j.elecom.2007.06.026 Zhou AL, 2008, J AGR FOOD CHEM, V56, P12081, DOI 10.1021/jf802413v Zhou CL, 2011, J MED PLANTS RES, V5, P735 NR 77 TC 2 Z9 2 U1 5 U2 28 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0926-6690 EI 1872-633X J9 IND CROP PROD JI Ind. Crop. Prod. PD SEP 1 PY 2020 VL 151 AR 112419 DI 10.1016/j.indcrop.2020.112419 PG 11 WC Agricultural Engineering; Agronomy SC Agriculture GA LR4YV UT WOS:000535703300007 DA 2021-10-15 ER PT J AU Feng, YL Jiang, C Yang, F Chen, ZX Li, Z AF Feng, Yuelai Jiang, Chang Yang, Feng Chen, Zixian Li, Zheng TI Apocynum venetum leaf extract protects against H2O2-induced oxidative stress by increasing autophagy in PC12 cells SO BIOMEDICAL REPORTS LA English DT Article DE Apocynum venetum leaf extract; PC12; apoptosis; reactive oxygen species; oxidative stress; autophagy ID SPINAL-CORD-INJURY; PATHWAY; OXYGEN; DYSFUNCTION; HYPEROSIDE; APOPTOSIS; LEAVES; DAMAGE; RATS AB The effect of Apocynum venetum leaf extract (AVLE) on the nervous system has been widely studied, but its effect on injured neurons is not fully understood. In the present study, the protective effect of AVLE on injured neurons was determined. H2O2 was used to induce oxidative stress in PC12 cells and cell viability assays were used to determine the optimum concentration range of AVLE and its protective effects against oxidative stress. A live-dead assay was performed to confirm the effects of AVLE on oxidative stress. Subsequently, expression of apoptotic proteins including Bax and cleaved-caspase-3 were evaluated to determine whether AVLE affected apoptosis, and reactive oxygen species (ROS) levels were detected to determine the role of AVLE in H2O2 exposure. Furthermore, expression of autophagic proteins including LC3-II and p62 were detected to evaluate the effects of AVLE on autophagic activity, and cells were treated with 3-methyladenine (3-MA), an autophagic inhibitor, to identify the underlying protective mechanism of AVLE. The results showed that the optimum conditions to induce oxidative stress were treatment with 40 mu M H2O2 for 2 h, and the suitable range of AVLE concentrations was shown to be 1-100 mu g/ml. AVLE improved cell viability in PC12 cells following treatment with H2O2. AVLE reduced the expression of Bax and cleaved-caspase-3, and decreased ROS production. Furthermore, AVLE upregulated LC3-II expression and downregulated p62 expression, whereas treatment with 3-MA increased the levels of ROS and apoptotic proteins. These results suggest that AVLE may protect injured neurons against oxidative stress-induced apoptosis, and this effect may be associated with the reduction of ROS by increasing autophagy. C1 [Feng, Yuelai] Shanghai Pinghe Sch, Dept Int Baccalaureate Diploma Program, Shanghai 200127, Peoples R China. [Jiang, Chang; Chen, Zixian; Li, Zheng] Fudan Univ, Zhongshan Hosp, Dept Orthopaed, 180 Fenglin Rd, Shanghai 200032, Peoples R China. [Yang, Feng] Fudan Univ, Zhongshan Hosp, Integrated Tradit & Western Med, Shanghai 200032, Peoples R China. RP Chen, ZX; Li, Z (corresponding author), Fudan Univ, Zhongshan Hosp, Dept Orthopaed, 180 Fenglin Rd, Shanghai 200032, Peoples R China. EM chen.zixian@zs-hospital.sh.cn; 17111210053@fudan.edu.cn FU National Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC) [81301047] FX The present study was supported by the National Natural Science Foundation of China (grant no. 81301047). CR Butterweck V, 2001, BIOL PHARM BULL, V24, P848, DOI 10.1248/bpb.24.848 Chen ZX, 2019, J CELL PHYSIOL, V234, P23043, DOI 10.1002/jcp.28864 Cho B, 2019, INT J MOL SCI, V20, DOI 10.3390/ijms20205208 Codogno P, 2005, CELL DEATH DIFFER, V12, P1509, DOI 10.1038/sj.cdd.4401751 Guo SY, 2016, MOL MED REP, V13, P2187, DOI 10.3892/mmr.2016.4796 Hao XL, 2016, MOL MED REP, V14, P399, DOI 10.3892/mmr.2016.5235 Hohn A, 2020, OXID MED CELL LONGEV, V2020, DOI 10.1155/2020/5497046 Ichimura Y, 2000, NATURE, V408, P488, DOI 10.1038/35044114 Islam MT, 2017, NEUROL RES, V39, P73, DOI 10.1080/01616412.2016.1251711 Jabbour E, 2014, HAEMATOLOGICA, V99, P7, DOI 10.3324/haematol.2013.087171 Kabeya Y, 2000, EMBO J, V19, P5720, DOI 10.1093/emboj/19.21.5720 Kamata K, 2008, J NAT MED-TOKYO, V62, P160, DOI 10.1007/s11418-007-0202-3 Kobayashi M, 2004, BIOL PHARM BULL, V27, P1649, DOI 10.1248/bpb.27.1649 Li XT, 2018, BIOMED PHARMACOTHER, V100, P394, DOI 10.1016/j.biopha.2018.01.137 Liu ZY, 2005, BIOMED PHARMACOTHER, V59, P481, DOI 10.1016/j.biopha.2005.06.009 Lu L, 2017, PHARMAZIE, V72, P41, DOI 10.1691/ph.2017.6703 Menzies FM, 2017, NEURON, V93, P1015, DOI 10.1016/j.neuron.2017.01.022 Mi YS, 2016, FREE RADICAL BIO MED, V90, P230, DOI 10.1016/j.freeradbiomed.2015.11.022 Portal-Nunez S, 2016, BIOCHEM PHARMACOL, V108, P1, DOI 10.1016/j.bcp.2015.12.012 Radad K, 2015, EXPERT REV NEUROTHER, V15, P195, DOI 10.1586/14737175.2015.1002087 Rashidi Z, 2019, REPROD BIOL, V19, P245, DOI 10.1016/j.repbio.2019.07.002 Ratan RR, 2020, CELL CHEM BIOL, V27, P479, DOI 10.1016/j.chembiol.2020.03.007 Salim Samina, 2017, J Pharmacol Exp Ther, V360, P201 Scholpa NE, 2017, J PHARMACOL EXP THER, V363, P303, DOI 10.1124/jpet.117.244806 Sebori R, 2018, OXID MED CELL LONGEV, V2018, DOI 10.1155/2018/9179270 Sekiguchi A, 2012, J NEUROTRAUM, V29, P946, DOI 10.1089/neu.2011.1919 Sinha K, 2013, ARCH TOXICOL, V87, P1157, DOI 10.1007/s00204-013-1034-4 Slimen IB, 2014, INT J HYPERTHER, V30, P513, DOI 10.3109/02656736.2014.971446 Song RJ, 2015, J CHROMATOGR B, V995, P8, DOI 10.1016/j.jchromb.2015.05.019 Sun H, 2013, ANTI-CANCER AGENT ME, V13, P1048, DOI 10.2174/18715206113139990130 Wang T, 2015, BIOL TRACE ELEM RES, V168, P481, DOI 10.1007/s12011-015-0390-8 Wang WQ, 2015, AM J CHINESE MED, V43, P71, DOI 10.1142/S0192415X15500056 Wu DF, 2013, REDOX BIOL, V1, P552, DOI 10.1016/j.redox.2013.10.008 Xiang J, 2012, NEUROCHEM RES, V37, P1820, DOI 10.1007/s11064-012-0796-z Xiang J, 2010, CAN J PHYSIOL PHARM, V88, P907, DOI [10.1139/Y10-069, 10.1139/y10-069] Xiao HB, 2016, J PHYSIOL BIOCHEM, V72, P303, DOI 10.1007/s13105-016-0479-3 Xie WY, 2012, J ETHNOPHARMACOL, V141, P1, DOI 10.1016/j.jep.2012.02.003 Yuan H, 2009, AM J PHYSIOL-HEART C, V296, pH470, DOI 10.1152/ajpheart.01051.2008 Zhang D, 2017, MOL NEUROBIOL, V54, P3327, DOI 10.1007/s12035-016-9895-1 NR 39 TC 2 Z9 2 U1 3 U2 11 PU SPANDIDOS PUBL LTD PI ATHENS PA POB 18179, ATHENS, 116 10, GREECE SN 2049-9434 EI 2049-9442 J9 BIOMED REP JI Biomed. Rep. PD AUG PY 2020 VL 13 IS 2 AR 6 DI 10.3892/br.2020.1313 PG 9 WC Medicine, Research & Experimental SC Research & Experimental Medicine GA NL1MR UT WOS:000567188500005 PM 32607235 OA gold, Green Published DA 2021-10-15 ER PT J AU Zhou, JH Zou, P Jing, CL Xu, ZC Zhou, S Li, YQ Zhang, CS Yuan, Y AF Zhou, Jinhui Zou, Ping Jing, Changliang Xu, Zongchang Zhou, San Li, Yiqiang Zhang, Chengsheng Yuan, Yuan TI Chemical characterization and bioactivities of polysaccharides from Apocynum venetum leaves extracted by different solvents SO JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION LA English DT Article DE Polysaccharides; Apocynum venetum; Antioxidant activities; Enzyme inhibition activities; Purification ID MICROWAVE-ASSISTED EXTRACTION; SPENT COFFEE GROUNDS; ALPHA-GLUCOSIDASE; ANTIOXIDANT ACTIVITY; ASCOPHYLLUM-NODOSUM; OPTIMIZATION; FUCOIDAN; SEAWEED; LIPASE AB Apocynum venetum has a long history as a Chinese traditional tea. As one of the major components, polysaccharides from Apocynum venetum leaves were extracted with acid (HCl), distilled water and alkaline (NaOH) to study the effect of the extraction solvents on their chemical composition and biological activities in this work. Monosaccharide composition revealed that polysaccharides from acidic and distilled water extraction were pectic polysaccharides, while those from alkaline extraction consisted of pectin and hemicellulose. Chemical analysis and FT-IR spectra indicated the co-extraction of protein and polyphenol contents in alkaline extracted polysaccharides, which exhibited strongest antioxidant and digestive enzyme inhibition activities. The antioxidant capacities were 185.26-286.30 mg TE/g for DPPH radical scavenging, 409.06-502.00 mg TE/g for ABTS radical scavenging, and 152.12-260.70 mg TE/g sample for reducing power assay, respectively. The lowest IC50 for alpha-glucosidase and lipase inhibition activities were 16.75 mu g/mL and 820 mu g/mL, respectively. Further purification of alkaline extracts was carried out and characterized. The results showed that acid hydrolysis could successfully reduce polyphenol and protein contents, and purified polysaccharides showed even higher antioxidant activities and alpha-glucosidase inhibition activity. These results provide a scientific support for functional application and extraction of polysaccharides from Apocynum venetum leaves. C1 [Zhou, Jinhui; Zhou, San] Qingdao Univ, Sch Pharm, Dept Pharmcognosy, Qingdao 266021, Shandong, Peoples R China. [Zhou, Jinhui; Zou, Ping; Jing, Changliang; Xu, Zongchang; Li, Yiqiang; Zhang, Chengsheng; Yuan, Yuan] Chinese Acad Agr Sci, Tobacco Res Inst, Marine Agr Res Ctr, Qingdao 266101, Shandong, Peoples R China. RP Zhou, S (corresponding author), Qingdao Univ, Sch Pharm, Dept Pharmcognosy, Qingdao 266021, Shandong, Peoples R China.; Zhang, CS; Yuan, Y (corresponding author), Chinese Acad Agr Sci, Tobacco Res Inst, Marine Agr Res Ctr, Qingdao 266101, Shandong, Peoples R China. EM zhousan3@163.com; Zhangchengsheng@caas.cn; yulu281@163.com OI Yuan, Yuan/0000-0002-2689-102X FU Doctor Foundation of Shandong [ZR2019BC073]; Fundamental Research Funds for Central Non-profit Scientific Institution [1610232016003]; Agricultural Science and Technology Innovation Program of China [ASTIP-TRIC07] FX This work was supported by the Doctor Foundation of Shandong (ZR2019BC073), by the Fundamental Research Funds for Central Non-profit Scientific Institution (1610232016003), by the Agricultural Science and Technology Innovation Program of China (ASTIP-TRIC07). CR Austin C, 2018, FOOD FUNCT, V9, P502, DOI [10.1039/C7FO01690E, 10.1039/c7fo01690e] Ballesteros LF, 2017, CARBOHYD POLYM, V157, P258, DOI 10.1016/j.carbpol.2016.09.054 Ballesteros LF, 2015, CARBOHYD POLYM, V127, P347, DOI 10.1016/j.carbpol.2015.03.047 Ben Romdhane M, 2017, FOOD CHEM, V216, P355, DOI 10.1016/j.foodchem.2016.08.056 Chen C, 2015, CARBOHYD POLYM, V130, P122, DOI 10.1016/j.carbpol.2015.05.003 Chen JC, 2018, INT J BIOL MACROMOL, V117, P815, DOI 10.1016/j.ijbiomac.2018.05.192 Choi JW, 2016, CARBOHYD POLYM, V146, P187, DOI 10.1016/j.carbpol.2016.03.043 Espinal-Ruiz M., 2014, Bioactive Carbohydrates and Dietary Fibre, V4, P27 Garidel P., 2006, BIOPROCESS INT, V1, P48 Ge JC, 2018, CARBOHYD POLYM, V189, P289, DOI 10.1016/j.carbpol.2018.02.054 Ghribi AM, 2015, INT J BIOL MACROMOL, V75, P276, DOI 10.1016/j.ijbiomac.2015.01.037 Huang SQ, 2010, MOLECULES, V15, P3694, DOI 10.3390/molecules15053694 Jeon C, 2002, WATER RES, V36, P1814, DOI 10.1016/S0043-1354(01)00389-X Kamata K, 2008, J NAT MED-TOKYO, V62, P160, DOI 10.1007/s11418-007-0202-3 Kolsi RB, 2017, CARBOHYD POLYM, V170, P148, DOI 10.1016/j.carbpol.2017.04.083 Kungel PTAN, 2018, INT J BIOL MACROMOL, V114, P1161, DOI 10.1016/j.ijbiomac.2018.04.020 Li YY, 2018, J FOOD SCI TECH MYS, V55, P2758, DOI 10.1007/s13197-018-3199-6 Liu Y, 2018, INT J BIOL MACROMOL, V112, P326, DOI 10.1016/j.ijbiomac.2018.01.132 Mzoughi Z, 2018, CARBOHYD POLYM, V185, P127, DOI 10.1016/j.carbpol.2018.01.022 Peasura N, 2015, INT J BIOL MACROMOL, V81, P912, DOI 10.1016/j.ijbiomac.2015.09.030 Qian JY, 2015, LWT-FOOD SCI TECHNOL, V64, P104, DOI 10.1016/j.lwt.2015.05.034 Saravana PS, 2018, FOOD CHEM, V268, P179, DOI 10.1016/j.foodchem.2018.06.077 Shi L, 2016, INT J BIOL MACROMOL, V92, P37, DOI 10.1016/j.ijbiomac.2016.06.100 Shi MJ, 2017, FOOD CHEM, V215, P76, DOI 10.1016/j.foodchem.2016.07.151 Shi S, 2019, CARBOHYD POLYM, V226, DOI 10.1016/j.carbpol.2019.115283 Singh RD, 2018, BIORESOURCE TECHNOL, V256, P110, DOI 10.1016/j.biortech.2018.02.009 Sporck D, 2017, BIOTECHNOL BIOFUELS, V10, DOI 10.1186/s13068-017-0981-z Wang YQ, 2017, FOOD CHEM, V218, P152, DOI 10.1016/j.foodchem.2016.09.058 Xie WY, 2012, J ETHNOPHARMACOL, V141, P1, DOI 10.1016/j.jep.2012.02.003 Yang HH, 2016, CARBOHYD POLYM, V138, P327, DOI 10.1016/j.carbpol.2015.11.071 Ye ZP, 2016, CARBOHYD POLYM, V147, P354, DOI 10.1016/j.carbpol.2016.03.092 Yuan Y, 2018, FOOD RES INT, V113, P288, DOI 10.1016/j.foodres.2018.07.021 Yuan Y, 2018, CARBOHYD POLYM, V181, P902, DOI 10.1016/j.carbpol.2017.11.061 Yuan Y, 2015, BIORESOURCE TECHNOL, V198, P819, DOI 10.1016/j.biortech.2015.09.090 Yuan Y, 2015, CARBOHYD POLYM, V129, P101, DOI 10.1016/j.carbpol.2015.04.057 Zhang B, 2015, FOOD CHEM, V172, P862, DOI 10.1016/j.foodchem.2014.09.144 Zhang H., 2016, BIOACTIVE CARBOHYDRA, V7, P9, DOI DOI 10.1016/j.bcdf.2016.04.002 Zhang ZL, 2016, CARBOHYD POLYM, V144, P106, DOI 10.1016/j.carbpol.2016.02.030 NR 38 TC 2 Z9 2 U1 3 U2 65 PU SPRINGER PI NEW YORK PA ONE NEW YORK PLAZA, SUITE 4600, NEW YORK, NY, UNITED STATES SN 2193-4126 EI 2193-4134 J9 J FOOD MEAS CHARACT JI J. Food Meas. Charact. PD FEB PY 2020 VL 14 IS 1 SI SI BP 244 EP 253 DI 10.1007/s11694-019-00286-2 EA OCT 2019 PG 10 WC Food Science & Technology SC Food Science & Technology GA KN4PP UT WOS:000490885600001 DA 2021-10-15 ER PT J AU Wang, L Wang, CM Zhang, QL Liu, JH Xia, X AF Wang, Lu Wang, Chenmeizi Zhang, Qingle Liu, Jianhua Xia, Xin TI Comparison of morphological, structural and antibacterial properties of different Apocynum venetum poly (lactic acid)/nanocellulose nanofiber films SO TEXTILE RESEARCH JOURNAL LA English DT Article DE Apocynum venetum; poly (lactic acid); nanocellulose nanofibers; morphology; wettability; water vapor permeability; antibacterial properties ID CELLULOSE NANOCRYSTALS; WATER; NANOPARTICLES; FIBERS; ACID); L. AB As new bio-based sustainable materials, this paper made a comparative study on the phloem and straw of Apocynum venetum. The cellulose nanofibers (CNFs) of Apocynum venetum phloem and straw were prepared by the acid hydrolysis method, and then different parts and proportions of poly (lactic acid) (PLA)/CNF films were prepared via electrospinning, respectively. The results revealed the CNF with longer length and finer diameter network structure can be separated by straw, while the short nanostructure of the rod-like structure can be separated by phloem. It was also shown that the wettability and permeability of PLA improved significantly by adding these two kinds of CNFs, the water contact angle of PLA decreased from 130 degrees to 101 degrees and the permeability was up to 4658 g/(m(2)center dot d). As for antibacterial properties, the antibacterial rate of CNF from straw proved slightly better than that from phloem against E.coli, reaching more than 90%. It proved that the CNF from straw showed excellent performance as phloem, providing a novel material for the preparation of CNFs, which can be naturally antibacterial and environment-friendly. The obtained PLA/CNF films could be potentially applied in antibacterial medical dressings. C1 [Wang, Lu; Wang, Chenmeizi; Zhang, Qingle; Liu, Jianhua; Xia, Xin] Xin Jiang Univ China, Coll Text & Clothing, Tianshan Dist 830046, Urumchi Wulumuq, Peoples R China. [Wang, Lu; Xia, Xin] Donghua Univ, Minist Educ, Key Lab Text Sci & Technol, Shanghai, Peoples R China. RP Xia, X (corresponding author), Xinjiang Univ, 666 Shengli Rd, Tianshan Dist 830046, Urumchi Wulumuq, Peoples R China. EM xjxiaxin@I63.com FU Innovation Research Program for Xinjiang Graduate Students, development and application innovation team of Xinjiang special textile materials [XJGRI2015033] FX The authors disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was supported by The Innovation Research Program for Xinjiang Graduate Students (No. XJGRI2015033), development and application innovation team of Xinjiang special textile materials. CR Azeredo HMC, 2012, J FOOD ENG, V113, P505, DOI 10.1016/j.jfoodeng.2012.08.006 Brinchi L, 2013, CARBOHYD POLYM, V94, P154, DOI 10.1016/j.carbpol.2013.01.033 Chaker A, 2014, CELLULOSE, V21, P4247, DOI 10.1007/s10570-014-0454-5 Chen WS, 2011, CARBOHYD POLYM, V86, P453, DOI 10.1016/j.carbpol.2011.04.061 Chung HY, 2013, GREEN MATER, V1, P137, DOI 10.1680/gmat.12.00009 Delezuk JAM, 2017, NANOSCALE, V9, P2195, DOI 10.1039/c6nr09799e Duan SW, 2017, TEXT RES J, P1 El Miri N, 2015, CARBOHYD POLYM, V129, P156, DOI 10.1016/j.carbpol.2015.04.051 Etzael EP, 2017, CARBOHYD POLYM, V12 Fortunati E, 2012, CARBOHYD POLYM, V87, P1596, DOI 10.1016/j.carbpol.2011.09.066 Grundmann O, 2007, J ETHNOPHARMACOL, V110, P406, DOI 10.1016/j.jep.2006.09.035 Kargarzadeh H, 2018, CELLULOSE, V25, P2151, DOI 10.1007/s10570-018-1723-5 Kouadri I, 2018, IND CROP PROD, V124, P787, DOI 10.1016/j.indcrop.2018.08.051 Liu DY, 2012, J MATER SCI, V47, P3159, DOI 10.1007/s10853-011-6150-z Mariano M, 2014, J POLYM SCI POL PHYS, V52, P791, DOI 10.1002/polb.23490 Negut I, 2018, MOLECULES, V23, DOI 10.3390/molecules23092392 Nosonovsky M, 2006, MICROSYST TECHNOL, V12, P231, DOI 10.1007/s00542-005-0048-0 Novo LP, 2015, ACS SUSTAIN CHEM ENG, V3, P2839, DOI 10.1021/acssuschemeng.5b00762 Perumal G, 2017, MAT SCI ENG C-MATER, V76, P1196, DOI 10.1016/j.msec.2017.03.200 Pirani S, 2013, J APPL POLYM SCI, V130, P3345, DOI 10.1002/app.39576 Shaheen TI, 2018, INT J BIOL MACROMOL, V106, P784, DOI 10.1016/j.ijbiomac.2017.08.070 Souza SF, 2018, CARBOHYD POLYM, V201, P87, DOI 10.1016/j.carbpol.2018.08.056 Tagawa C, 2004, YAKUGAKU ZASSHI, V124, P851, DOI 10.1248/yakushi.124.851 Trache D, 2017, NANOSCALE, V9, P1763, DOI 10.1039/c6nr09494e Trott AT, 2005, WOUNDS LACERATIONS E Wang LL, 2007, CARBOHYD POLYM, V69, P391, DOI 10.1016/j.carbpol.2006.12.028 Wang PW, 2018, MATERIALS, V11, DOI 10.3390/ma11060923 Wikberg H, 2004, CARBOHYD POLYM, V58, P461, DOI 10.1016/j.carbpol.2004.08.008 Xu CJ, 2016, CARBOHYD POLYM, V146, P58, DOI 10.1016/j.carbpol.2016.03.058 Yalcinkaya EE, 2017, CARBOHYD POLYM, V157, P1557, DOI 10.1016/j.carbpol.2016.11.038 Yang XL, 2017, ACS NANO, V11, P5737, DOI 10.1021/acsnano.7b01240 Yin XZ, 2018, COMPOS SCI TECHNOL, V167, P190, DOI 10.1016/j.compscitech.2018.08.003 Yu ZL, 2017, FOOD RES INT, V99, P166, DOI 10.1016/j.foodres.2017.05.009 Zhang K, 2019, J APPL POLYM SCI, V136, DOI 10.1002/app.46899 Zmejkoski D, 2018, INT J BIOL MACROMOL, V118, P494, DOI 10.1016/j.ijbiomac.2018.06.067 NR 35 TC 2 Z9 2 U1 2 U2 43 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0040-5175 EI 1746-7748 J9 TEXT RES J JI Text. Res. J. PD MAR PY 2020 VL 90 IS 5-6 BP 593 EP 605 AR 0040517519873868 DI 10.1177/0040517519873868 EA SEP 2019 PG 13 WC Materials Science, Textiles SC Materials Science GA KN2XX UT WOS:000485374200001 DA 2021-10-15 ER PT J AU Bi, XR Zhang, W Yu, CW Yang, JP AF Bi, Xuerong Zhang, Wei Yu, Chongwen Yang, Jianping TI UV resistance of bast fibers SO CELLULOSE LA English DT Article DE Bast fibers; UV protection; Antiphotoaging; UV-vis spectrophotometer ID OXIDIZED CELLULOSE; GRAPHENE OXIDE; FILMS; PROTECTION; TIO2 AB Ramie, flax, hemp, kenaf and Apocynum venetum (A. venetum) are all natural bast fibers which are composed of different content of cellulose, hemicellulose, lignin and other gum. The inherent functionality of these bast fibers is worth studying. In this study, cotton and polyester (PET) fibers were chosen as the control, UV protection and antiphotoaging ability of these bast fibers were all tested and analyzed. Results showed that hemp, kenaf and A. venetum composite films (CFs), which had high ability of UV absorbance, possessed higher Ultraviolet Protection Factor value of 180.48, 85.35 and 82.97 respectively, much higher than that of ramie, flax CFs and the control samples. PET fibers revealed the strongest antiphotoaging ability of all with a 76% retention of initial strength after photoaging for 48h. The semi-degummed fibers, such as flax, kenaf and hemp fibers had more gum residues and stronger UV absorption of extracted solution, and could reserve 67, 69 and 56% of their initial strength after accelerated photoaging for 48h, respectively. These semi-degummed bast fibers showed better antiphotoaging ability than that of the completed degummed fibers such as ramie and A. venetum. C1 [Bi, Xuerong; Yu, Chongwen] Donghua Univ, Coll Text, Shanghai 201620, Peoples R China. [Zhang, Wei] Shanghai Garment Res Inst Co Ltd, Shanghai, Peoples R China. [Yang, Jianping] Donghua Univ, Coll Informat, Shanghai 201620, Peoples R China. [Yu, Chongwen] Donghua Univ, Minist Educ, Key Lab Text Sci & Technol, Shanghai 201620, Peoples R China. RP Yang, JP (corresponding author), Donghua Univ, Coll Informat, Shanghai 201620, Peoples R China. EM jpyang@dhu.edu.cn FU earmarked fund for China Agriculture Research System for Bast and Leaf Fiber Crops [CARS-16] FX The authors acknowledge the financial support from the earmarked fund for China Agriculture Research System for Bast and Leaf Fiber Crops: CARS-16. CR Araujo AR, 2015, RSC ADV, V5, P96151, DOI 10.1039/c5ra15712a Augugliaro V, 2012, J PHOTOCH PHOTOBIO C, V13, P224, DOI 10.1016/j.jphotochemrev.2012.04.003 Cao JL, 2017, APPL SURF SCI, V405, P380, DOI 10.1016/j.apsusc.2017.02.017 Chen WG, 2015, POLYM DEGRAD STABIL, V121, P187, DOI 10.1016/j.polymdegradstab.2015.09.007 Cui ZH, 2013, J MOL STRUCT, V1054, P94, DOI 10.1016/j.molstruc.2013.09.045 de Gruijl FR, 2001, J PHOTOCH PHOTOBIO B, V63, P19, DOI 10.1016/S1011-1344(01)00199-3 Galanakis CM, 2018, IND CROP PROD, V111, P30, DOI 10.1016/j.indcrop.2017.09.058 Gao J, 1999, CELLULOSE SCI, P183 Han W, 2009, J TIANJIN POLYTECHNI, V28, P69 Hu JG, 2015, CHEMSUSCHEM, V8, P901, DOI 10.1002/cssc.201403335 Huang Y, 2015, J CHEM TECHNOL BIOT, V90, P1677, DOI 10.1002/jctb.4476 Jang YW, 2017, FIBER POLYM, V18, P575, DOI 10.1007/s12221-017-1080-2 Jin JH, 2012, IRAN POLYM J, V21, P739, DOI 10.1007/s13726-012-0078-2 Lee CT, 2004, POLYM DEGRAD STABIL, V83, P435, DOI 10.1016/j.polymdegradstab.2003.09.005 Li ZL, 2017, TEXT RES J, V87, P1828, DOI 10.1177/0040517516659380 Li ZL, 2015, TEXT RES J, V85, P2125, DOI 10.1177/0040517515581589 Liu XH, 2014, IND CROP PROD, V52, P633, DOI 10.1016/j.indcrop.2013.11.036 Martin M, 2018, J MATER SCI-MATER EL, V29, P365, DOI 10.1007/s10854-017-7925-z Matsumura Y, 2004, TOXICOL APPL PHARM, V195, P298, DOI 10.1016/j.taap.2003.08.019 Memon H, 2016, SURF REV LETT, V23, DOI 10.1142/S0218625X16500037 Meng CR, 2017, TEXT RES J, V87, P1155, DOI 10.1177/0040517516648512 Niu QX, 2016, OPTIK, V127, P539, DOI 10.1016/j.ijleo.2015.10.042 Qian YF, 2016, MATERIALS, V9, DOI 10.3390/ma9070504 Saber O, 2012, POLYM BULL, V68, P209, DOI 10.1007/s00289-011-0623-8 Shen C, 2013, PRINCIPLES OPTICS, P260 Su TL, 2015, J ENG FIBER FABR, V10, P29 Tang XN, 2015, SYNTHETIC MET, V202, P82, DOI 10.1016/j.synthmet.2015.01.017 Tian MW, 2016, APPL SURF SCI, V377, P141, DOI 10.1016/j.apsusc.2016.03.183 Wei X, 2015, SHANGHAI TEXT SCI TE, V43 Wu Zhi-hong, 2006, Zhonghua Yan Ke Za Zhi, V42, P1002 Xiao XF, 2015, ACS APPL MATER INTER, V7, P21326, DOI 10.1021/acsami.5b05868 Xu JW, 2013, SPECTRAL ANAL, P243 Yang W, 2015, IND CROP PROD, V77, P833, DOI 10.1016/j.indcrop.2015.09.057 Yin YJ, 2012, COLLOID SURFACE A, V399, P92, DOI 10.1016/j.colsurfa.2012.02.039 Zhang X, 2019, ADV FUNCT MATER, V29, DOI 10.1002/adfm.201806912 Zhou Yongkai, 2005, CHINAS FIBER PRODUCT, V27, P259 Zhou YY, 2016, DYES PIGMENTS, V134, P203, DOI 10.1016/j.dyepig.2016.07.016 NR 37 TC 2 Z9 3 U1 1 U2 44 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0969-0239 EI 1572-882X J9 CELLULOSE JI Cellulose PD JUL PY 2019 VL 26 IS 10 BP 6061 EP 6071 DI 10.1007/s10570-019-02467-0 PG 11 WC Materials Science, Paper & Wood; Materials Science, Textiles; Polymer Science SC Materials Science; Polymer Science GA ID4VG UT WOS:000471673800018 DA 2021-10-15 ER PT J AU Gao, P Duan, TY Nan, ZB Christensen, MJ Liu, QT Meng, FJ Huang, JF AF Gao, Peng Duan, Ting-Yu Nan, Zhi-Biao Christensen, Michael J. Liu, Qi-Tang Meng, Fan-Jie Huang, Jing-Feng TI The influence of irrigation frequency on the occurrence of rust disease (Melampsora apocyni) and determination of the optimum irrigation regime in organic Apocynum venetum production SO AGRICULTURAL WATER MANAGEMENT LA English DT Article DE Disease intensity; Irrigation schedule; Organic crop; Leaf production; Economic values ID MANAGEMENT; SEVERITY; PROGRESS; DENSITY; PLANTS; L. AB In the Altay Prefecture, serious rust disease develops on Apocynum venetum in the organic farming systems that apply water every two to three days using trickle irrigation. A two-year field experiment was conducted to study the influence of extending the irrigation frequency on rust development and the economic viability of A. venetum. The maximum disease index (DImax) and the area under the disease progress curve (AUDPC) with an irrigation interval of three days (T1 treatment, control in this study) reached 48.4% and 718 in 2012 and 54.4% and 1561 in 2013. With irrigation extended out to intervals of seven (T3 treatment), nine (T4 treatment) and eleven days (T5 treatment), the Di(max) were 35.4% to 61.9%, and the AUDPC were 36.4% to 65.6%, lower than that of the T1 treatment. For all irrigation treatments, the AUDPC had a significant positive correlation with the soil water content of the surface (0-20 cm in depth) and the main distributing regions of roots (20.1-40 cm in depth), as well as the density of A. venetian. For the T3 treatment, the economic value of applied irrigation water was the highest and the amount of water applied was 54.8% lower than that of the T1 treatment, and thus it was determined as the optimum irrigation regime. C1 [Gao, Peng; Duan, Ting-Yu; Nan, Zhi-Biao] Lanzhou Univ, Coll Pastoral Agr Sci & Technol, State Key Lab Grassland Agroecosyst, Lanzhou 730010, Gansu, Peoples R China. [Christensen, Michael J.] Grasslands Res Ctr, Palmerston North, New Zealand. [Liu, Qi-Tang; Meng, Fan-Jie; Huang, Jing-Feng] Altay Gaubau Tea Co Ltd, Altay 836500, Peoples R China. RP Nan, ZB (corresponding author), Lanzhou Univ, Coll Pastoral Agr Sci & Technol, State Key Lab Grassland Agroecosyst, Lanzhou 730010, Gansu, Peoples R China. EM gaop12@lzu.edu.cn RI a, a·cŽ‰/AAC-8403-2021 FU Integrated Disease Control Techniques of Apocynum venetum [201191135]; Integrated Disease and Harmful Insect Control Techniques of Apocynum venetum [2016E02015]; Apocynum venewm Large-scale Cultivation Technology Research and Industrialization of The Science and Technology Department of Xinjiang Uygur Autonomous Region, China [2016A03006] FX This research was financially supported by the Integrated Disease Control Techniques of Apocynum venetum [grant numbers 201191135], Integrated Disease and Harmful Insect Control Techniques of Apocynum venetum [grant numbers 2016E02015], Apocynum venewm Large-scale Cultivation Technology Research and Industrialization [grant numbers 2016A03006] of The Science and Technology Department of Xinjiang Uygur Autonomous Region, China. CR Black KC., 2001, PEANUT SCI, V28, P1 Chester K.S., 1946, NATURE PREVENTION CE DAWSON WM, 1994, EUR J FOREST PATHOL, V24, P32 Dixon G. R., 2015, NUTR NAT RESOUR, V10, P1 Elena G., 2014, Journal of Plant Studies, V3, P1 Gao P, 2018, EUR J PLANT PATHOL, V150, P549, DOI 10.1007/s10658-017-1299-1 Gao Peng, 2017, Journal of Plant Protection, V44, P129 Gao Peng, 2015, Acta Botanica Boreali-Occidentalia Sinica, V35, P2069 GOODALL DW, 1952, AUST J SCI RES SER B, V5, P1, DOI 10.1071/BI9520001 [郭志青 Guo Zhiqing], 2010, [西北林学院学报, Journal of Northwest Forestry College], V25, P118 Johnson KB, 2010, PLANT DIS, V94, P581, DOI 10.1094/PDIS-94-5-0581 Kenaley SC, 2014, FUNGAL BIOL-UK, V118, P704, DOI 10.1016/j.funbio.2014.05.001 Lawrence GJ, 2007, MOL PLANT PATHOL, V8, P349, DOI 10.1111/J.1364-3703.2007.00405.X [李良县 LI Liangxian], 2008, [自然资源学报, Journal of Natural Resources], V23, P494 [李倩 Li Qian], 2013, [植物病理学报, Acta Phytopathologica Sinica], V43, P267 [刘勇 Liu Yong], 2016, [生态学报, Acta Ecologica Sinica], V36, P4211 LIVELY CM, 1995, ECOLOGY, V76, P1859, DOI 10.2307/1940718 Luo Y. W., 1983, ACTA PHYTOPHYLACICA, V14, P185 Mitchell CE, 2002, ECOLOGY, V83, P1713, DOI 10.1890/0012-9658(2002)083[1713:EOGPSD]2.0.CO;2 PALTI J, 1983, PLANT DIS, V67, P703, DOI 10.1094/PD-67-703 Pfleeger TG, 1998, PHYTOPATHOLOGY, V88, P708, DOI 10.1094/PHYTO.1998.88.7.708 Ping XiaoYan, 2014, Acta Prataculturae Sinica, V23, P49 ROTEM J, 1969, ANNU REV PHYTOPATHOL, V7, P267, DOI 10.1146/annurev.py.07.090169.001411 Rowlandson T, 2015, PLANT DIS, V99, P310, DOI 10.1094/PDIS-05-14-0529-FE Shatter G., 1977, PHYTOPATHOLOGY, V67, P1051 Sikora EJ, 2014, PLANT DIS, V98, P864, DOI 10.1094/PDIS-02-14-0121-FE Paiva BRTL, 2011, CIENC AGROTEC, V35, P137, DOI 10.1590/S1413-70542011000100017 Thevs N, 2012, J APPL BOT FOOD QUAL, V85, P159 Toome M, 2010, BIOMASS BIOENERG, V34, P1201, DOI 10.1016/j.biombioe.2010.03.012 Toome M, 2010, EUR J PLANT PATHOL, V126, P583, DOI 10.1007/s10658-009-9566-4 van Bruggen AHC, 2016, ANNU REV PHYTOPATHOL, V54, P25, DOI 10.1146/annurev-phyto-080615-100123 Vialle A, 2011, FUNGAL DIVERS, V50, P227, DOI 10.1007/s13225-011-0129-6 Wang Dong-qing, 2012, Xibei Zhiwu Xuebao, V32, P1198 Wang L., 2014, NO HORTICULTURE, V23, P136 WENNSTROM A, 1991, OIKOS, V60, P35, DOI 10.2307/3544989 Williams DW, 1998, CROP SCI, V38, P1613, DOI 10.2135/cropsci1998.0011183X003800060033x Xie WY, 2012, J ETHNOPHARMACOL, V141, P1, DOI 10.1016/j.jep.2012.02.003 Yang HJ, 2011, GLOBAL CHANGE BIOL, V17, P452, DOI 10.1111/j.1365-2486.2010.02253.x Zhang S, 2010, TREE PHYSIOL, V30, P116, DOI 10.1093/treephys/tpp094 Zhang YuPing, 2007, Acta Phytophylacica Sinica, V34, P507 NR 40 TC 2 Z9 2 U1 2 U2 18 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0378-3774 EI 1873-2283 J9 AGR WATER MANAGE JI Agric. Water Manage. PD JUN 30 PY 2018 VL 205 BP 81 EP 89 DI 10.1016/j.agwat.2018.04.026 PG 9 WC Agronomy; Water Resources SC Agriculture; Water Resources GA GJ8FD UT WOS:000435623800009 DA 2021-10-15 ER PT J AU Gao, SH Yu, CW AF Gao, Shi-Hui Yu, Chong-Wen TI EFFECTS OF SUPERCRITICAL CARBON DIOXIDE ON MORPHOLOGY OF APOCYNUM VENETUM FIBERS SO THERMAL SCIENCE LA English DT Article DE apocynum venetum; supercritical carbon dioxide; structure; bubble AB This paper investigated the structures and compositions of apocynum venetum fibers treated with pectinase and mixture of sodium hydroxide and hydrogen peroxide in supercritical carbon dioxide fluid. The apocynum venetum fibers were analyzed by Fourier transform infrared spectrometry, X-ray diffraction, and scanning electron microscopy. Fourier transform infrared analysis indicated that pectinase could remove the pectin and hemicellulose and the mixture of sodium hydroxide and hydrogen peroxide could extract the lignin in supercritical carbon dioxide. Meanwhile, the results of X-ray diffraction showed that cellulose crystallinity index and crystallite sizes of treated fibers increased in comparison with that of untreated fibers. The studies of scanning electron microscopy also revealed a complete removal of non-cellulosic gummy material from surface of treated apocynum venetum fibers. Small gummy on the surface of apocynum venetum fibers would be removed by supercritical carbon dioxide, which can be verified by bubble dynamics. C1 [Gao, Shi-Hui; Yu, Chong-Wen] Donghua Univ, Coll Text, Shanghai, Peoples R China. [Gao, Shi-Hui] Liaoning Vocat Coll Light Ind, Dalian, Peoples R China. RP Yu, CW (corresponding author), Donghua Univ, Coll Text, Shanghai, Peoples R China. EM yucw@dhu.edu.en FU National Natural Science Foundation of Liaoning Province, China [L2014599] FX The financial support from National Natural Science Foundation of Liaoning Province, China (L2014599) for this work is greatly acknowledged. CR Andreeva OA, 2002, RUSS J APPL CHEM+, V75, P1513, DOI 10.1023/A:1022266004482 He JH, 2012, THERM SCI, V16, P327, DOI 10.2298/TSCI111111033H Heidaryan E, 2011, J SUPERCRIT FLUID, V56, P144, DOI 10.1016/j.supflu.2010.12.006 Li ZL, 2014, FIBER POLYM, V15, P2105, DOI 10.1007/s12221-014-2105-8 Seabra IJ, 2012, J SUPERCRIT FLUID, V64, P9, DOI 10.1016/j.supflu.2012.01.005 Sinha E, 2008, J MATER SCI, V43, P2590, DOI 10.1007/s10853-008-2478-4 Yang RR, 2009, POLYMER, V50, P5846, DOI 10.1016/j.polymer.2009.10.021 Yu HQ, 2010, J TEXT I, V101, P452, DOI 10.1080/00405000802472564 NR 8 TC 2 Z9 2 U1 1 U2 16 PU VINCA INST NUCLEAR SCI PI BELGRADE PA MIHAJLA PETROVICA-ALASA 12-14 VINCA, 11037 BELGRADE. POB 522, BELGRADE, 11001, SERBIA SN 0354-9836 EI 2334-7163 J9 THERM SCI JI Therm. Sci. PY 2015 VL 19 IS 4 BP 1279 EP 1282 DI 10.2298/TSCI1504279G PG 4 WC Thermodynamics SC Thermodynamics GA CW4SL UT WOS:000364982300027 OA gold, Green Submitted DA 2021-10-15 ER PT J AU Shi, LJ Yimamu, H Kawuli, A Saideaihemati Zhao, HQ Yili, A Morlock, G Aisa, HA AF Shi, L. -J. Yimamu, H. Kawuli, A. Saideaihemati Zhao, H. Q. Yili, A. Morlock, G. Aisa, H. A. TI HPTLC Study of the Monosaccharide Composition of a Polysaccharide from Apocynum venetum Leaves SO CHEMISTRY OF NATURAL COMPOUNDS LA English DT Article ID CHROMATOGRAPHY C1 [Shi, L. -J.; Kawuli, A.; Saideaihemati; Zhao, H. Q.; Yili, A.; Aisa, H. A.] Chinese Acad Sci, Xinjiang Tech Inst Phys & Chem, Urumqi 830011, Xinjiang, Peoples R China. [Shi, L. -J.; Yimamu, H.] Xinjiang Med Univ, Sch Pharm, Urumqi 830054, Xinjiang, Peoples R China. [Morlock, G.] Univ Giessen, Inst Food Chem, D-35392 Giessen, Hessen, Germany. RP Shi, LJ (corresponding author), Chinese Acad Sci, Xinjiang Tech Inst Phys & Chem, Urumqi 830011, Xinjiang, Peoples R China. EM haji@ms.xjb.ac.cn RI Morlock, Gertrud E./E-6343-2013 OI Morlock, Gertrud E./0000-0001-9406-0351 FU programs Research Center for Development of Drugs of Central Asia (Chinese Academy of Sciences); Development Program for Young Inventive Scientists of Xinjiang-Uyghur Autonomous Region [2013721044] FX The work was sponsored by the programs Research Center for Development of Drugs of Central Asia (Chinese Academy of Sciences) and Development Program for Young Inventive Scientists of Xinjiang-Uyghur Autonomous Region (Grant No. 2013721044). CR Aisa HA, 2006, CHEM NAT COMPD+, V42, P347, DOI 10.1007/s10600-006-0117-3 Butterweck V, 2001, BIOL PHARM BULL, V24, P848, DOI 10.1248/bpb.24.848 Grundmann O, 2007, J ETHNOPHARMACOL, V110, P406, DOI 10.1016/j.jep.2006.09.035 Kagawa T., 2004, J NAT MED, V58, P299 Morlock G, 2008, LC GC EUR, V21, P366 Morlock GE, 2012, JPC-J PLANAR CHROMAT, V25, P244, DOI 10.1556/JPC.25.2012.3.10 Morlock GE, 2011, J LIQ CHROMATOGR R T, V34, P902, DOI 10.1080/10826076.2011.571118 National Pharmacopoeia Committee, 2010, PHARM PEOPL REP CHIN STAUB A. M., 1965, METHOD CARBOHYD CHEM, V5, P5 Xiong QB, 2000, PLANTA MED, V66, P127, DOI 10.1055/s-2000-11135 Yili A, 2014, JPC-J PLANAR CHROMAT, V27, P11, DOI 10.1556/JPC.27.2014.1.2 Yokozawa T, 2002, BIOL PHARM BULL, V25, P748, DOI 10.1248/bpb.25.748 Zhao YX, 2013, MOLECULES, V18, P951, DOI 10.3390/molecules18010951 NR 13 TC 2 Z9 2 U1 0 U2 37 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0009-3130 EI 1573-8388 J9 CHEM NAT COMPD+ JI Chem. Nat. Compd. PD JAN PY 2015 VL 51 IS 1 BP 130 EP 131 DI 10.1007/s10600-015-1218-7 PG 2 WC Chemistry, Medicinal; Chemistry, Organic SC Pharmacology & Pharmacy; Chemistry GA CC3FA UT WOS:000350230200026 DA 2021-10-15 ER PT J AU Liu, QS Yin, XY Sha, BY You, JJ AF Liu, Qingshan Yin, Xiaoying Sha, Biying You, Jingjing TI Porous membrane ultrafiltration-A novel method for enrichment of the active compounds from micro-plasma samples SO SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY LA English DT Article DE Ultrafiltration; Porous membrane ultrafiltration device; Micro-plasma samples; Hyperoside; Isoquercitrin ID SOLID-PHASE EXTRACTION; CHROMATOGRAPHY-MASS-SPECTROMETRY; APOCYNUM-VENETUM; QUANTIFICATION; MS/MS; ISOQUERCITRIN; HYPEROSIDE; SORBENT; POLYMER; URINE AB To enrich the active compounds from plasma samples, a novel and simple method has been developed using a porous membrane envelope based on the ultrafiltration technique combining with high-performance liquid chromatography. The ultrafiltration device is a sealed porous membrane envelope prepared with a polypropylene sheet to effectively separate the active small molecules and large biomolecules, and a sample carrier is held inside the envelope to load plasma samples. The enrichment of hyperoside and isoquercitrin from rat plasma was used as an example. Significant factors of this method, such as membrane types, the desorption solvent, and the desorption time were optimized for the ultrafiltration method. Under the optimal conditions, correlation coefficients of 0.999 and 0.998 were obtained for hyperoside and isoquercitrin, respectively, with a linear range between 0.5 and 100 mu g/mL. The absolute extraction recoveries from 83.2% to 86.8% were achieved. The detection limits of the method for hyperoside and isoquercitrin were 0.22 and 0.20 mu g/mL, respectively. Compared with protein precipitation, solid-phase extraction and commercial ultrafiltration membrane methods, our proposed method demonstrates lower detection limits and lower cost for extraction. Also, it consumes less plasma samples and is found to be applicable to biological samples. (C) 2014 Elsevier B.V. All rights reserved. C1 [Yin, Xiaoying; Sha, Biying; You, Jingjing] Jiangxi Univ Tradit Chinese Med, Coll Pharm, Nanchang 330004, Peoples R China. [Liu, Qingshan] Minzu Univ China, Natl Res Ctr Chinese Minor Med, Beijing 100081, Peoples R China. RP Yin, XY (corresponding author), Jiangxi Univ Tradit Chinese Med, Coll Pharm, Nanchang 330004, Peoples R China. EM ncyxoy@163.com FU National Natural Science Foundation, PR ChinaNational Natural Science Foundation of China (NSFC) [81260690, 81173657]; Education Research Project of Science and Technology Foundation, Jiangxi Province, China [GJJ13618, GJJ10553, GJJ12518]; Science and Technology Support Project, Jiangxi Province China [20111BBG70004-2]; Jiangxi Province the excellent teacher professional development projects FX This work is supported by the National Natural Science Foundation, PR China (Grant Nos. 81260690 and 81173657), the Education Research Project of Science and Technology Foundation, Jiangxi Province, China (Grant Nos. GJJ13618, GJJ10553 and GJJ12518), and Science and Technology Support Project, Jiangxi Province China (Grant No. 20111BBG70004-2), 2012 Jiangxi Province the excellent teacher professional development projects. CR Alnouti Y, 2005, J CHROMATOGR A, V1080, P99, DOI 10.1016/j.chroma.2005.04.056 Carlsson N, 2011, ANAL BIOCHEM, V411, P116, DOI 10.1016/j.ab.2010.12.026 Chang Q, 2005, EUR J PHARM BIOPHARM, V59, P549, DOI 10.1016/j.ejpb.2004.10.004 Gao LN, 2014, J CHROMATOGR B, V944, P136, DOI 10.1016/j.jchromb.2013.10.028 Ge X.X., 2012, J CHROMATOGR B, V126-30, P881 Gorynski K, 2014, J PHARMACEUT BIOMED, V92, P183, DOI 10.1016/j.jpba.2014.01.026 Grundmann O, 2007, J ETHNOPHARMACOL, V110, P406, DOI 10.1016/j.jep.2006.09.035 Ji CJ, 2010, ANAL CHIM ACTA, V670, P84, DOI 10.1016/j.aca.2010.04.051 Kamata K, 2008, J NAT MED-TOKYO, V62, P160, DOI 10.1007/s11418-007-0202-3 Kang XJ, 2007, ANAL CHIM ACTA, V587, P75, DOI 10.1016/j.aca.2007.01.021 Kaul S, 2010, J PHARMACEUT BIOMED, V51, P186, DOI 10.1016/j.jpba.2009.07.026 Lee TP, 2012, TALANTA, V88, P129, DOI 10.1016/j.talanta.2011.10.021 Lindqvist A, 2012, J CHROMATOGR B, V900, P11, DOI 10.1016/j.jchromb.2012.05.014 Mascini M, 2013, ANAL CHIM ACTA, V772, P40, DOI 10.1016/j.aca.2013.02.027 Nirogi R, 2011, J PHARMACEUT BIOMED, V56, P373, DOI 10.1016/j.jpba.2011.05.032 Rodrigues C.A., 2013, J CHROMATOGR A, V1318, P43 Xiong QB, 2000, PLANTA MED, V66, P127, DOI 10.1055/s-2000-11135 Yin Jie, 2007, Nutr Res Pract, V1, P189, DOI 10.4162/nrp.2007.1.3.189 Zhou CL, 2011, CHROMATOGRAPHIA, V73, P353, DOI 10.1007/s10337-010-1879-0 NR 19 TC 2 Z9 2 U1 0 U2 39 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1386-1425 J9 SPECTROCHIM ACTA A JI Spectroc. Acta Pt. A-Molec. Biomolec. Spectr. PD OCT 15 PY 2014 VL 131 BP 22 EP 29 DI 10.1016/j.saa.2014.04.070 PG 8 WC Spectroscopy SC Spectroscopy GA AL0IK UT WOS:000338810400004 PM 24815198 DA 2021-10-15 ER PT J AU Hu, Y Liu, CM Cong, L Zhang, YC Hu, YM Li, SN AF Hu, Yang Liu, Chunming Cong, Lei Zhang, Yuchi Hu, Yunmei Li, Sainan TI APPLICATION OF HIGH-PERFORMANCE COUNTER-CURRENT CHROMATOGRAPHY AND MEDIUM-PRESSURE LIQUID CHROMATOGRAPHY FOR RAPID ISOLATION OF LACTONES FROM LIGUSTICUM CHUANXIONG HORT. SO JOURNAL OF LIQUID CHROMATOGRAPHY & RELATED TECHNOLOGIES LA English DT Article DE high-performance counter-current chromatography; HSCCC; Lactones; Ligusticum chuanxiong; medium-pressure liquid chromatography; MPLC ID APOCYNUM-VENETUM LEAVES; COMPREHENSIVE SEPARATION; CHEMICAL-CONSTITUENTS; PREPARATIVE ISOLATION; MASS-SPECTROMETRY; PURIFICATION AB The root of Ligusticum chuanxiong Hort. is a well-known traditional Chinese medicine for treating headaches, ischemic stroke, anemia, and cerebral vascular disease. High-performance counter-current chromatography was applied to the isolation and purification of four lactones: 75.8mg senkyunolide A, 3.5mg levistolide A, 76.3mg Z-ligustilide, and 0.8mg wallichilide from 600mg of the n-hexane extract of chuanxiong. Medium-pressure liquid chromatography was applied to the isolation and purification of one phthalide and two lactones: 2.9mg chuanxingol, 11.3mg senkyunolide A, and 20.1mg Z-ligustilide from 800mg of 60% ethanol extract of chuanxiong. The system composed of n-hexane-ethyl acetate-methanol-water in a volume ratio of 4:3:4:2 (v/v) was found to be optimum for HPCCC. The solvent system consisted of acetonitrile (A)-0.5% acetic acid (B) was used for MPLC, the binary gradient elution as follows: 0-40min, 13%-100% A; and 40-50min, 100% A. The target components separated by HPCCC and MPLC had higher purity determined by HPLC. The chemical structures of the target components were identified by electrospray ionization mass spectrometry (ESI-MS). C1 [Hu, Yang; Liu, Chunming; Zhang, Yuchi; Hu, Yunmei; Li, Sainan] Changchun Normal Univ, Cent Lab, Changchun, Peoples R China. [Cong, Lei] China Natl Oil & Gas Explorat & Dev Corp, Beijing, Peoples R China. RP Liu, CM (corresponding author), Changchun Normal Univ, Cent Lab, Changchun, Peoples R China. EM chem_lab@sina.cn FU National Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC) [31170326]; Major Project of Jilin Provincial Science and Technology Department [20110928] FX This work was supported by the National Natural Science Foundation of China (No. 31170326) and Major Project of Jilin Provincial Science and Technology Department (No. 20110928). CR Gao M, 2006, J CHROMATOGR B, V838, P139, DOI 10.1016/j.jchromb.2006.04.030 Han QB, 2008, J SEP SCI, V31, P1189, DOI 10.1002/jssc.200700582 KAOUADJI M, 1986, J NAT PROD, V49, P872, DOI 10.1021/np50047a018 Li FW, 2009, SEP PURIF TECHNOL, V64, P304, DOI 10.1016/j.seppur.2008.10.005 Li HB, 2004, J CHROMATOGR A, V1047, P249, DOI 10.1016/j.chroma.2004.07.006 Li SL, 2003, PLANTA MED, V69, P445, DOI 10.1055/s-2003-39709 Lin LZ, 1998, J CHROMATOGR A, V810, P71, DOI 10.1016/S0021-9673(98)00201-5 Lin YL, 2007, J ETHNOPHARMACOL, V109, P428, DOI 10.1016/j.jep.2006.08.012 Liu RM, 2005, J CHROMATOGR A, V1072, P195, DOI 10.1016/j.chroma.2005.03.023 Miao CP, 2010, FITOTERAPIA, V81, P1088, DOI 10.1016/j.fitote.2010.07.001 Or TCT, 2011, NEUROPHARMACOLOGY, V60, P823, DOI 10.1016/j.neuropharm.2010.12.002 Peng C, 2009, PHYTOMEDICINE, V16, P25, DOI 10.1016/j.phymed.2008.10.010 TANG W, 1992, CHINESE DRUGS PLANT, P609 Xu K, 2010, SEP PURIF TECHNOL, V72, P406, DOI 10.1016/j.seppur.2010.02.020 Yang Y, 2010, PHYTOCHEM ANALYSIS, V21, P205, DOI 10.1002/pca.1169 Zhang C, 2007, J PHARMACEUT BIOMED, V44, P464, DOI 10.1016/j.jpba.2007.01.024 Zhang YC, 2011, J CHROMATOGR A, V1218, P2827, DOI 10.1016/j.chroma.2011.03.007 Zhang YC, 2010, J CHROMATOGR B, V878, P3149, DOI 10.1016/j.jchromb.2010.09.027 Zhang YC, 2010, J SEP SCI, V33, P2743, DOI 10.1002/jssc.201000308 Zhu LC, 2009, SEP PURIF TECHNOL, V70, P147, DOI 10.1016/j.seppur.2009.09.009 NR 20 TC 2 Z9 2 U1 0 U2 57 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 520 CHESTNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA SN 1082-6076 EI 1520-572X J9 J LIQ CHROMATOGR R T JI J. Liq. Chromatogr. Relat. Technol. PD MAY 9 PY 2014 VL 37 IS 8 BP 1187 EP 1198 DI 10.1080/10826076.2013.778639 PG 12 WC Biochemical Research Methods; Chemistry, Analytical SC Biochemistry & Molecular Biology; Chemistry GA AA2OB UT WOS:000330932800010 DA 2021-10-15 ER PT J AU Zheng, MZ Liu, CM Fan, YJ Shi, DF AF Zheng, Meizhu Liu, Chunming Fan, Yajun Shi, Dongfang TI Involvement of Serotonergic System in the Antidepressant-Like Effect of Hyperoside from Apocynum venetum Leaver SO LATIN AMERICAN JOURNAL OF PHARMACY LA English DT Article DE Antidepressant-like effect; Apocynum venetum; Hyperoside ID 5-HT1A RECEPTOR; MICE; CONSTITUENTS; MONOAMINES; DISORDERS; EXTRACTS AB The present study investigated the antidepressant-like effect of hyperoside extracted from Apocynum venetum leaves in mice using the tail suspension test (TST) and forced swimming test (FST). Hyperoside administration at 10, 20 and 30 mg/kg (p.o.) for 10 days reduced immobility time in both tests. This effect is dose-dependent without influencing the animals' locomotor activity. Additionally, the monoaminergic mechanisms involved in the antidepressant-like effect of hyperoside in the mouse forced swimming test (FST) were evaluated. The results showed that hyperoside produced an antidepressant-like effect in the FST (10-30 mg/kg, i.g.) and in the TST (10-30 mg/kg, i.g.), without accompanying changes in ambulation distance when assessed in the open-field test. The antidepressant-like effect of hyperoside (20 mg/kg, i.g.) was prevented by the pretreatment of mice with ketanserin (5 mg/kg, s.c., a serotonin 5-HT2A receptor antagonist), cyproheptadine (3 mg/kg, i.g., a serotonin 5-HT2 receptor antagonist). On the other hand, the pretreatment of mice with WAY 100635 (0.1 mg/kg, s.c., a serotonin 5-HT1A receptor antagonist) did not block the antidepressant-like effect of hyperoside in the TST. It may be concluded that the hyperoside produces an antidepressant-like effect in the FST and in the TST that is dependent on its interaction with the serotonergic (5-HT2A and 5-HT2 receptors) systems. Taken together, our results suggested that hyperoside deserves further investigation as a putative alternative therapeutic tool that could help the conventional pharmacotherapy of depression. C1 [Zheng, Meizhu; Liu, Chunming; Shi, Dongfang] Changchun Normal Univ, Cent Lab, Changchun 130032, Jilin, Peoples R China. [Fan, Yajun] Changchun Normal Univ, Coll Life Sci, Changchun 130032, Jilin, Peoples R China. RP Liu, CM (corresponding author), Changchun Normal Univ, Cent Lab, Changchun 130032, Jilin, Peoples R China. EM ccsf777@yahoo.com.cn FU National Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC) [30970299, 31050015]; Natural Science Foundation of Jilin Province of China [20090936]; Natural Science Foundation of Changchun Normal University FX This project was supported by the National Natural Science Foundation of China (30970299 and 31050015), the Natural Science Foundation of Jilin Province of China (20090936), and the Natural Science Foundation of Changchun Normal University. CR Artigas F, 2002, EUR NEUROPSYCHOPHARM, V12, pS166 Brocardo P.S., 2008, NEUROPHARMACOLOGY, V53, P464 Capra JC, 2010, EUR J PHARMACOL, V643, P232, DOI 10.1016/j.ejphar.2010.06.043 Celada P, 2004, J PSYCHIATR NEUROSCI, V29, P252 DETKE MJ, 1995, PSYCHOPHARMACOLOGY, V119, P47, DOI 10.1007/BF02246053 Elhwuegi AS, 2004, PROG NEURO-PSYCHOPH, V28, P435, DOI 10.1016/j.pnpbp.2003.11.018 Gordon JA, 2004, ANNU REV NEUROSCI, V27, P193, DOI 10.1146/annurev.neuro.27.070203.144212 Grimaldi B, 1999, NEUROSCIENCE, V93, P1223, DOI 10.1016/S0306-4522(99)00322-X Gross C, 2000, BIOL PSYCHIAT, V48, P1157, DOI 10.1016/S0006-3223(00)01041-6 Grundmann O, 2009, PHYTOMEDICINE, V16, P295, DOI 10.1016/j.phymed.2008.12.020 Heninger GR, 1996, PHARMACOPSYCHIATRY, V29, P2, DOI 10.1055/s-2007-979535 Hensler JG, 2002, NEUROPSYCHOPHARMACOL, V26, P565, DOI 10.1016/S0893-133X(01)00395-5 Kang SY, 2010, BIOORGAN MED CHEM, V18, P6156, DOI 10.1016/j.bmc.2010.06.037 Kiss JP, 2008, NEUROCHEM INT, V52, P34, DOI 10.1016/j.neuint.2007.04.006 Linde K, 2005, PHYTOMEDICINE, V12, P148, DOI 10.1016/j.phymed.2004.02.004 Machado DG, 2009, PROG NEURO-PSYCHOPH, V33, P642, DOI 10.1016/j.pnpbp.2009.03.004 Malagie I, 2002, EUR J PHARMACOL, V443, P99, DOI 10.1016/S0014-2999(02)01604-7 Mayorga AJ, 2001, J PHARMACOL EXP THER, V298, P1101 Nestler EJ, 2002, NEURON, V34, P13, DOI 10.1016/S0896-6273(02)00653-0 Papakostas GI, 2006, EUR NEUROPSYCHOPHARM, V16, P391, DOI 10.1016/j.euroneuro.2005.12.002 PORSOLT RD, 1977, ARCH INT PHARMACOD T, V229, P327 Racagni G, 2010, INT CLIN PSYCHOPHARM, V25, P117, DOI 10.1097/YIC.0b013e3283311acd Reneric JP, 1998, PSYCHOPHARMACOLOGY, V136, P190, DOI 10.1007/s002130050555 Rosel P, 2000, PSYCHIAT RES-NEUROIM, V99, P173, DOI 10.1016/S0925-4927(00)00076-7 SCHILDKRAUT JJ, 1965, AM J PSYCHIAT, V122, P509, DOI 10.1176/ajp.122.5.509 STERU L, 1985, PSYCHOPHARMACOLOGY, V85, P367, DOI 10.1007/BF00428203 Sugimoto Y, 2010, EUR J PHARMACOL, V634, P62, DOI 10.1016/j.ejphar.2010.02.016 Wong ML, 2001, NAT REV NEUROSCI, V2, P343, DOI 10.1038/35072566 YATES M, 1990, BIOL PSYCHIAT, V27, P489, DOI 10.1016/0006-3223(90)90440-D Yi LT, 2010, PROG NEURO-PSYCHOPH, V34, P1223, DOI 10.1016/j.pnpbp.2010.06.024 Zhang YC, 2010, J CHROMATOGR B, V878, P3149, DOI 10.1016/j.jchromb.2010.09.027 Zhang ZJ, 2004, LIFE SCI, V75, P1659, DOI 10.1016/j.lfs.2004.04.014 Zomkowski ADE, 2004, BRAIN RES, V1023, P253, DOI 10.1016/j.brainres.2004.07.041 NR 33 TC 2 Z9 2 U1 2 U2 9 PU COLEGIO FARMACEUTICOS PROVINCIA DE BUENOS AIRES PI LA PLATA PA DEPT CIENTIFICO, CALLE 5 NO 966, LA PLATA, 00000, ARGENTINA SN 0326-2383 J9 LAT AM J PHARM JI Lat. Am. J. Pharm. PD SEP PY 2012 VL 31 IS 7 BP 984 EP 989 PG 6 WC Pharmacology & Pharmacy SC Pharmacology & Pharmacy GA 045RA UT WOS:000311713300009 DA 2021-10-15 ER PT J AU Yan, SH Zhao, YY Zeng, HS Zhang, YM Lin, RC Sun, WJ AF Yan, Sui-Hong Zhao, Ying-Yong Zeng, Hai-Song Zhang, Yongmin Lin, Rui-Chao Sun, Wen-Ji TI Chemical composition and antioxidant activities of extracts from Apocyni Veneti Folium SO NATURAL PRODUCT RESEARCH LA English DT Article DE Apocyni Veneti Folium; flavonoids; high performance liquid chromatography; chromatographic fingerprints; antioxidants; DPPH ID AQUEOUS EXTRACTS; LEAVES; CONSTITUENTS; COMPONENTS; GLYCOSIDES; LUOBUMA; DENSITY AB An expeditious and effective HPLC-UV method has been developed for the simultaneous determination of seven major flavonoids in Apocyni Veneti Folium (AVF) extract. The chemical profile of seven flavonoids, including quercetin-3-O-b-D-glc(2 -> 1)-b-D-glucoside, rutin, isoquercetin, kaempferol-3-O-b-D-glucoside, quercetin-3-O-(6 ''-O-malonyl)-b-D-glucoside, quercetin and kaempferol was acquired by HPLC-UV. The analysis was performed on a Diamosil C18 analytical column with a gradient solvent system of acetonitrile-0.1% aqueous acetic acid. Full validation of the method was carried out (linearity, reproducibility, repeatability, accuracy and limit of detection). The results indicated that the contents of investigated flavonoids in Apocyni Veneti Folium varied significantly from habitat to habitat, with contents ranging from 0.01 to 5.57 mg g(-1). The antioxidant activity results demonstrate that the seven flavonoids showed great efficiency in scavenging DPPH radicals. The high content of flavonoid components of AVF could be responsible for its high antioxidant activity. This study provides powerful evidence for the relationship between the chemical ingredients of and bioactivity in AVF. C1 [Zhao, Ying-Yong; Zeng, Hai-Song; Sun, Wen-Ji] NW Univ Xian, Biomed Key Lab Shaanxi Prov, Xian 710069, Shaanxi, Peoples R China. [Yan, Sui-Hong] NW Univ Xian, Sch Chem Engn, Xian 710069, Shaanxi, Peoples R China. [Zhang, Yongmin] Univ Paris 06, Inst Parisien Chim Mol, CNRS, UMR 7201, F-75005 Paris, France. [Lin, Rui-Chao] Natl Inst Control Pharmaceut & Biol Prod, Beijing 100050, Peoples R China. RP Sun, WJ (corresponding author), NW Univ Xian, Biomed Key Lab Shaanxi Prov, 229 Taibai N Rd, Xian 710069, Shaanxi, Peoples R China. EM cxbml@nwu.edu.cn RI Zhao, Ying-Yong/I-9326-2014; Zhao, Ying-Yong/I-3590-2019 OI Zhao, Ying-Yong/0000-0002-0239-7342; Zhao, Ying-Yong/0000-0002-0239-7342 FU National Scientific Foundation of ChinaNational Natural Science Foundation of China (NSFC) [81001622]; NWU of China [09YYB03] FX This study was supported in part by grants from the National Scientific Foundation of China (No. 81001622) and NWU Doctorate Dissertation of Excellence Funds of China (No. 09YYB03). CR Butterweck V, 2003, PHARMACOL BIOCHEM BE, V75, P557, DOI 10.1016/S0091-3057(03)00118-7 Butterweck V, 2001, BIOL PHARM BULL, V24, P848, DOI 10.1248/bpb.24.848 Chinese Pharmacopoeia, 2010, PHARM COMM PHARM PEO, V1, P196 Fan WZ, 1999, CHEM PHARM BULL, V47, P1049, DOI 10.1248/cpb.47.1049 Grundmann O, 2007, J ETHNOPHARMACOL, V110, P406, DOI 10.1016/j.jep.2006.09.035 Grundmann O, 2009, PHYTOMEDICINE, V16, P295, DOI 10.1016/j.phymed.2008.12.020 Hirose Y, 2010, FOOD CHEM, V119, P1300, DOI 10.1016/j.foodchem.2009.09.008 Kagawa Tamami, 2004, Natural Medicines, V58, P295 Kamata K, 2008, J NAT MED-TOKYO, V62, P160, DOI 10.1007/s11418-007-0202-3 Kim DW, 2000, PHYTOTHER RES, V14, P501, DOI 10.1002/1099-1573(200011)14:7<501::AID-PTR655>3.0.CO;2-B Kim DW, 2000, J ETHNOPHARMACOL, V72, P53, DOI 10.1016/S0378-8741(00)00197-5 Kim DW, 1998, PHYTOTHER RES, V12, P46, DOI 10.1002/(SICI)1099-1573(19980201)12:1<46::AID-PTR169>3.0.CO;2-I Kwan CY, 2005, CLIN EXP PHARMACOL P, V32, P789, DOI 10.1111/j.1440-1681.2005.04255.x Liang YZ, 2004, J CHROMATOGR B, V812, P53, DOI 10.1016/j.jchromb.2004.08.041 Qian Z N, 1988, Zhong Yao Tong Bao, V13, P44 SAKUSHIMA A, 1978, YAKUGAKU ZASSHI, V98, P1395, DOI 10.1248/yakushi1947.98.10_1395 Xiong QB, 2000, PLANTA MED, V66, P127, DOI 10.1055/s-2000-11135 Yao H, 2009, FOOD CHEM, V115, P380, DOI 10.1016/j.foodchem.2008.11.100 YEN GC, 1994, J AGR FOOD CHEM, V42, P629, DOI 10.1021/jf00039a005 Yesilada E, 2000, J ETHNOPHARMACOL, V73, P471, DOI 10.1016/S0378-8741(00)00327-5 Yokozawa T, 2002, BIOL PHARM BULL, V25, P748, DOI 10.1248/bpb.25.748 Zhang X.Q., 1986, ACTA PHARMACOL SIN, V21, P366 NR 22 TC 2 Z9 3 U1 0 U2 8 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND SN 1478-6419 EI 1478-6427 J9 NAT PROD RES JI Nat. Prod. Res. PY 2012 VL 26 IS 7 BP 600 EP 608 DI 10.1080/14786419.2010.537273 PG 9 WC Chemistry, Applied; Chemistry, Medicinal SC Chemistry; Pharmacology & Pharmacy GA 936FC UT WOS:000303575300002 PM 21834638 DA 2021-10-15 ER PT J AU Zhou, BH Li, XJ Qiu, ZP Liu, G AF Zhou, Benhong Li, Xiaojun Qiu, Zhenpeng Liu, Gang TI Effect of leaves of Apocynum venetum L. on the activity of MAO in mice SO JOURNAL OF MEDICINAL PLANTS RESEARCH LA English DT Article DE Apocynum venetum L.; monoamine oxidase; monoamines ID MONOAMINE-OXIDASE AB The purpose of this study was to evaluate the effect of leaves of Apocynum venetum L. (AV) on the monoamine oxidase (MAO) activity in mice whole brain. After 7 days oral administration, we assayed spectrophotometrically the activity of MAO. The ethanolic extract of leaves of A. venetum (EAV) showed a tendency to inhibit MAO activity in animal brain. However, the aqueous phase of EAV (EAV-4) significantly inhibits the MAO activity. The effect of fluoxetine on activity of MAO was not marked. The aqueous phase of ethanolic extracts of AV significantly inhibited the activity of MAO, which might be the active part of antidepressant effect of AV. C1 [Zhou, Benhong; Liu, Gang] Wuhan Univ, Renmin Hosp, Dept Pharm, Wuhan 430060, Peoples R China. [Li, Xiaojun; Qiu, Zhenpeng] Wuhan Univ, Coll Pharm, Wuhan 430072, Peoples R China. RP Zhou, BH (corresponding author), Wuhan Univ, Renmin Hosp, Dept Pharm, Wuhan 430060, Peoples R China. EM benhongzh@whu.edu.cn CR Charles M., 1977, METHODS ENZYMOLOGY B, V17, P692 CHUN YL, 2008, J BIOSCI BIOENG, V106, P111 Han GT, 2008, CARBOHYD POLYM, V72, P652, DOI 10.1016/j.carbpol.2007.10.002 Knoll J, 1997, VOP MED KHIM, V43, P482 OLIVIER B, 2006, NAT REV NEUROSCI, V7, P137 Sandei N., 1994, NAT MED, V48, P322 TAKAKO Y, 2004, FOOD CHEM TOXICOL, V42, P975 Toshiharu N., 2004, NEUROTOXICOLOGY, V25, P11 Veronika B, 2003, BIOL PHARM BULL, V75, P557 VERONIKA B, 2001, BIOL PHARM BULL, V24, P848 Wouters J, 1998, CURR MED CHEM, V5, P137 Yu ZF, 2002, J ETHNOPHARMACOL, V83, P161, DOI 10.1016/S0378-8741(02)00211-8 NR 12 TC 2 Z9 2 U1 0 U2 13 PU ACADEMIC JOURNALS PI VICTORIA ISLAND PA P O BOX 5170-00200 NAIROBI, VICTORIA ISLAND, LAGOS 73023, NIGERIA SN 1996-0875 J9 J MED PLANTS RES JI J. Med. Plants Res. PD JUN 18 PY 2011 VL 5 IS 12 BP 2584 EP 2586 PG 3 WC Chemistry, Medicinal SC Pharmacology & Pharmacy GA 853XK UT WOS:000297458800023 DA 2021-10-15 ER PT J AU HOLMAN, J AF HOLMAN, J TI 5 NEW SPECIES OF APHIDS OF THE GENUS APHIS (HOMOPTERA, APHIDIDAE) FROM MONGOLIA, RUSSIAN FEDERATION, UZBEKISTAN AND IRAN SO ACTA ENTOMOLOGICA BOHEMOSLOVACA LA English DT Article DE TAXONOMY; APHIS; HEDYSARUM; APOCYNUM; EUPHORBIA; ARTEMISIA AB The apterous and alate viviparous females of Aphis hedysari sp.n. on Hedysarum austrosibiricium from the Transbaykalia, Russian Federation, Aphis apocynicola sp.n. on Apocynum scabrum from Uzbekistan, Aphis dlabolai sp.n. and Aphis propinqua sp.n. on Euphorbia spp. from the mountain regions of Iran, and Aphis (Protaphis) artemisivora sp.n. on Artemisia sp. from Mongolia are described. The systematic position of these new species is discussed. RP HOLMAN, J (corresponding author), CZECHOSLOVAK ACAD SCI,INST ENTOMOL,BRANISOVSKA 31,CS-37005 CESKE BUDEJOVICE,CZECHOSLOVAKIA. NR 0 TC 2 Z9 2 U1 0 U2 0 PU CZECH ACAD SCI, INST ENTOMOLOGY PI CESKE BUDEJOVICE PA BRANISOVSKA 31, CESKE BUDEJOVICE, CZECH REPUBLIC 370 05 SN 0001-5601 J9 ACTA ENTOMOL BOHEMOS PY 1992 VL 89 IS 1 BP 49 EP 62 PG 14 WC Entomology SC Entomology GA HE640 UT WOS:A1992HE64000006 DA 2021-10-15 ER PT J AU Wang, M Ren, TT Huang, RH Li, YQ Zhang, CS Xu, ZC AF Wang, Meng Ren, Tingting Huang, Ruihuan Li, Yiqiang Zhang, Chengsheng Xu, Zongchang TI Overexpression of an Apocynum venetum flavonols synthetase gene confers salinity stress tolerance to transgenic tobacco plants SO PLANT PHYSIOLOGY AND BIOCHEMISTRY LA English DT Article DE Apocynum venetum; Flavonoids; Gene expression; Germination rate; K+/Na+ ratio; Root growth; Salinity AB Soil salinity is a major limiting factor for agricultural production, threatening food security worldwide. A thorough understanding of the mechanisms underlying plant responses is required to effectively counter its deleterious effects on crop productivity. Total flavonoid accumulation reportedly improves salinity tolerance in many crops. Therefore, we isolated the full-length cDNA of a flavonol synthetase (FLS) gene from Apocynum venetum (AvFLS). The gene contained a 1008-bp open reading frame encoding a protein composed of 335 amino acid residues. Multiple sequence alignment showed that the AvFLS protein was highly homologous to FLSs from other plants. AvFLS was expressed in leaves, stems, roots, flowers, and germinated seeds. Expression pattern analysis revealed that AvFLS was significantly induced by salinity stress. AvFLS overexpression in tobacco positively affected the development and growth of transgenic plants under salinity stress: root and seedling growth were inhibited to a lesser extent, while seed germination rate increased. Additionally, the overexpression of AvFLS under salinity stress resulted in an increase in total flavonoid content (1.63 mg g(-1) in wild-type samples and 4.63 mg g(-1) on average in transgenic samples), which accompanied the increase in the activity of antioxidant enzymes and inhibited the production of reactive oxygen species. Further, AvFLS-overexpressing transgenic tobacco plants absorbed more K+ than wild type plants, leading to an increased K+/Na+ ratio, which in turn contributed to the maintenance of Na+/K+ homeostasis. These findings suggest that an AvFLS-induced increase in total flavonoid content enhanced plant salinity tolerance, implying the importance of AvFLS gene responses to salinity stress. C1 [Wang, Meng] Qingdao Agr Univ, Coll Agron, Qingdao 266109, Peoples R China. [Ren, Tingting; Huang, Ruihuan; Li, Yiqiang; Zhang, Chengsheng; Xu, Zongchang] Chinese Acad Agr Sci, Marine Agr Res Ctr, Tobacco Res Inst, Qingdao 266101, Peoples R China. [Huang, Ruihuan] China Tobacco Guangxi Ind Co Ltd, Nanming 530000, Peoples R China. RP Xu, ZC (corresponding author), Chinese Acad Agr Sci, Tobacco Res Inst, 11 Ke Yuan Jing 4th Rd, Qingdao 266101, Shandong, Peoples R China. EM xuzc1110@163.com FU Doctor Foundation of Shandong [ZR2019BC073]; National Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC) [31900276]; Science Foundation for Young Scholars of the Tobacco Research Institute of the Chinese Academy of Agricultural Sciences [2020A02]; Key Projects of Joint NSFC-Shandong fund [U1806206] FX This work was supported by the Doctor Foundation of Shandong (ZR2019BC073), the National Natural Science Foundation of China (31900276), the Science Foundation for Young Scholars of the Tobacco Research Institute of the Chinese Academy of Agricultural Sciences (2020A02), and the Key Projects of Joint NSFC-Shandong fund (U1806206). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. CR Agati G, 2013, PLANT PHYSIOL BIOCH, V72, P35, DOI 10.1016/j.plaphy.2013.03.014 Agati G, 2012, PLANT SCI, V196, P67, DOI 10.1016/j.plantsci.2012.07.014 Agati G, 2011, J PLANT PHYSIOL, V168, P204, DOI 10.1016/j.jplph.2010.07.016 Akita Y, 2018, J PLANT BIOCHEM BIOT, V27, P147, DOI 10.1007/s13562-017-0423-9 Ashraf M, 2004, PLANT SCI, V166, P3, DOI 10.1016/j.plantsci.2003.10.024 Baatour O, 2013, J SCI FOOD AGR, V93, P134, DOI 10.1002/jsfa.5740 BRITSCH L, 1981, Z NATURFORSCH C, V36, P742 Chua CS, 2008, PHYTOCHEMISTRY, V69, P66, DOI 10.1016/j.phytochem.2007.07.006 Colla G, 2013, J SCI FOOD AGR, V93, P1119, DOI 10.1002/jsfa.5861 Das K, 2014, FRONT ENV SCI-SWITZ, V2, DOI 10.3389/fenvs.2014.00053 Deinlein U, 2014, TRENDS PLANT SCI, V19, P371, DOI 10.1016/j.tplants.2014.02.001 Essah PA, 2003, PLANT PHYSIOL, V133, P307, DOI 10.1104/pp.103.022178 Flowers TJ, 2008, NEW PHYTOL, V179, P945, DOI 10.1111/j.1469-8137.2008.02531.x Gill SS, 2010, PLANT PHYSIOL BIOCH, V48, P909, DOI 10.1016/j.plaphy.2010.08.016 [郭晓农 Guo Xiaonong], 2019, [分子植物育种, Molecular Plant Breeding], V17, P4978 Han RM, 2012, MOLECULES, V17, P2140, DOI 10.3390/molecules17022140 HORSCH RB, 1985, SCIENCE, V227, P1229, DOI 10.1126/science.227.4691.1229 Houmani H, 2016, PROTOPLASMA, V253, P885, DOI 10.1007/s00709-015-0850-1 Janicka-Russak M., 2015, PROGR BOT, P77, DOI [10.1007/978-3-319-08807-5_32015, DOI 10.1007/978-3-319-08807-5_32015] Jiang JL, 2019, FRONT PLANT SCI, V10, DOI 10.3389/fpls.2019.00678 Keisham M, 2018, INT J MOL SCI, V19, DOI 10.3390/ijms19030647 Ksouri R, 2007, PLANT PHYSIOL BIOCH, V45, P244, DOI 10.1016/j.plaphy.2007.02.001 Li JP, 2019, INT J MOL SCI, V20, DOI 10.3390/ijms20071735 Li P, 2017, PLANT J, V89, P85, DOI 10.1111/tpj.13324 Libik M, 2005, PLANT CELL REP, V23, P834, DOI 10.1007/s00299-004-0886-8 Lim JH, 2012, FOOD CHEM, V135, P1065, DOI 10.1016/j.foodchem.2012.05.068 Liu SH, 2014, GENE, V543, P145, DOI 10.1016/j.gene.2014.03.026 Martens S, 2010, PHYTOCHEMISTRY, V71, P1040, DOI 10.1016/j.phytochem.2010.04.016 Miller G, 2010, PLANT CELL ENVIRON, V33, P453, DOI 10.1111/j.1365-3040.2009.02041.x Mostofa MG, 2015, SCI REP-UK, V5, DOI 10.1038/srep14078 Munns R, 2008, ANNU REV PLANT BIOL, V59, P651, DOI 10.1146/annurev.arplant.59.032607.092911 Munns R, 2020, NEW PHYTOL, V225, P1072, DOI 10.1111/nph.15864 NAKANO Y, 1981, PLANT CELL PHYSIOL, V22, P867 NICKEL KS, 1969, ANAL BIOCHEM, V27, P292, DOI 10.1016/0003-2697(69)90035-9 PATRA HK, 1978, BIOCHEM PHYSIOL PFL, V172, P385 Qadir M, 2014, NAT RESOUR FORUM, V38, P282, DOI 10.1111/1477-8947.12054 Sanadhya P, 2015, AOB PLANTS, V7, DOI 10.1093/aobpla/plv055 Shahid SA, 2018, GUIDELINE SALINITY A, P43, DOI DOI 10.1007/978-3-319-96190-3_2 Sofo A, 2015, INT J MOL SCI, V16, P13561, DOI 10.3390/ijms160613561 STEWART RRC, 1980, PLANT PHYSIOL, V65, P245, DOI 10.1104/pp.65.2.245 Sultana B, 2009, MOLECULES, V14, P2167, DOI 10.3390/molecules14062167 Tamura K, 2013, MOL BIOL EVOL, V30, P2725, DOI [10.1093/molbev/mst197, 10.1093/oxfordjournals.molbev.a040023] Torun H, 2019, PHYSIOL PLANTARUM, V165, P169, DOI 10.1111/ppl.12798 Turnbull JJ, 2004, J BIOL CHEM, V279, P1206, DOI 10.1074/jbc.M309228200 Tuteja N, 2007, METHOD ENZYMOL, V428, P419, DOI 10.1016/S0076-6879(07)28024-3 Volkov V, 2006, PLANT J, V48, P342, DOI 10.1111/j.1365-313X.2006.02876.x [王佳丽 WANG Jiali], 2011, [地理学报, Acta Geographica Sinica], V66, P673 Waqas MA, 2019, FRONT PLANT SCI, V10, DOI 10.3389/fpls.2019.01336 Watkins JM, 2017, PLANT PHYSIOL, V175, P1807, DOI 10.1104/pp.17.01010 Winkel-Shirley B, 2001, PLANT PHYSIOL, V126, P485, DOI 10.1104/pp.126.2.485 Wu P., 2020, BMC GENOM, V21, P1 Xu Z, 2020, PLANT BIOLOGY, V22, P813, DOI 10.1111/plb.13128 Xu ZC, 2020, GENES-BASEL, V11, DOI 10.3390/genes11040361 Xu ZC, 2018, J AM SOC HORTIC SCI, V143, P508, DOI [10.21273/jashs04554-18, 10.21273/JASHS04554-18] [徐宗昌 Xu Zongchang], 2018, [植物学报, Chinese Bulletin of Botany], V53, P382 Yamaguchi T, 2005, TRENDS PLANT SCI, V10, P615, DOI 10.1016/j.tplants.2005.10.002 Yan FY, 2020, ECOTOX ENVIRON SAFE, V206, DOI 10.1016/j.ecoenv.2020.111358 Yeo A, 1999, SCI HORTIC-AMSTERDAM, V78, P159 Yin R, 2012, J EXP BOT, V63, P2465, DOI 10.1093/jxb/err416 Zhang B, 2015, FOOD CHEM, V172, P862, DOI 10.1016/j.foodchem.2014.09.144 Zhang H, 2012, J PROTEOME RES, V11, P49, DOI 10.1021/pr200861w Zhao Q, 2016, PLANT PHYSIOL, V172, P1973, DOI 10.1104/pp.16.01323 NR 62 TC 1 Z9 1 U1 12 U2 13 PU ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER PI ISSY-LES-MOULINEAUX PA 65 RUE CAMILLE DESMOULINS, CS50083, 92442 ISSY-LES-MOULINEAUX, FRANCE SN 0981-9428 EI 1873-2690 J9 PLANT PHYSIOL BIOCH JI Plant Physiol. Biochem. PD MAY PY 2021 VL 162 BP 667 EP 676 DI 10.1016/j.plaphy.2021.03.034 PG 10 WC Plant Sciences SC Plant Sciences GA RJ9WK UT WOS:000637957700060 PM 33780740 DA 2021-10-15 ER PT J AU Savla, SR Laddha, AP Kulkarni, YA AF Savla, Shreya R. Laddha, Ankit P. Kulkarni, Yogesh A. TI Pharmacology of apocynin: a natural acetophenone SO DRUG METABOLISM REVIEWS LA English DT Review; Early Access DE Apocynin; NADPH oxidase; diabetic cardiomyopathy; diabetic retinopathy; diabetic nephropathy; Parkinson’ s disease; cancer ID NADPH OXIDASE AB Apocynin is a naturally occurring acetophenone, found in the roots of Apocynum cannabinum and Picrorhiza kurroa. Various chemical and pharmaceutical modifications have been carried out to enhance the absorption and duration of action of apocynin, like, formulation of chitosan-based apocynin-loaded solid lipid nanoparticles, chitosan-oligosaccharide based nanoparticles, and biodegradable polyanhydride nanoparticles. Apocynin has been subjected to a wide range of experimental screening and has proved to be useful for amelioration of a variety of disorders, like diabetic complications, neurodegeneration, cardiovascular disorders, lung cancer, hepatocellular cancer, pancreatic cancer, and pheochromocytoma. Apocynin has been primarily reported as an NADPH oxidase (NOX) inhibitor and prevents translocation of its p47(phox) subunit to the plasma membrane, observed in neurodegeneration and hypertension. However, recent studies highlight its off-target effects that it is able to function as a scavenger of non-radical oxidant species, which is relevant for its activity against NOX 4 mediated production of hydrogen peroxide. Additionally, apocynin has shown inhibition of eNOS-dependent superoxide production in diabetic cardiomyopathy, reduction of NLRP3 activation and TGF beta/Smad signaling in diabetic nephropathy, diminished VEGF expression and decreased retinal NF-kappa B activation in diabetic retinopathy, inhibition of P38/MAPK/Caspase3 pathway in pheochromocytoma, inhibition of AKT-GSK3 beta and ERK1/2 pathways in pancreatic cancer, and decreased FAK/PI3K/Akt signaling in hepatocellular cancer. This review aims to discuss the pharmacokinetics and mechanisms of the pharmacological actions of apocynin. C1 [Savla, Shreya R.; Laddha, Ankit P.; Kulkarni, Yogesh A.] SVKMs NMIMS, Shobhaben Pratapbhai Patel Sch Pharm & Technol Ma, Mumbai 400056, Maharashtra, India. RP Kulkarni, YA (corresponding author), SVKMs NMIMS, Shobhaben Pratapbhai Patel Sch Pharm & Technol Ma, Mumbai 400056, Maharashtra, India. EM yogeshkulkarni101@yahoo.com RI Kulkarni, Yogesh A./B-8622-2016; Laddha, Ankit/X-8458-2018 OI Kulkarni, Yogesh A./0000-0002-1686-7907; Laddha, Ankit/0000-0002-6223-9645 CR Abiko T, 2003, DIABETES, V52, P829, DOI 10.2337/diabetes.52.3.829 Akiyama S, 2004, CANCER SCI, V95, P851, DOI 10.1111/j.1349-7006.2004.tb02193.x Altmann C, 2018, INT J MOL SCI, V19, DOI 10.3390/ijms19010110 Aman RM, 2018, EUR J PHARM SCI, V124, P304, DOI 10.1016/j.ejps.2018.09.001 Anter HM, 2019, INT J NANOMED, V14, P4911, DOI 10.2147/IJN.S209987 Anusornvongchai T, 2018, KIDNEY INT, V94, P536, DOI 10.1016/j.kint.2018.03.011 Bai XY, 2018, FREE RADICAL BIO MED, V118, P71, DOI 10.1016/j.freeradbiomed.2018.02.020 Banfi B, 2004, J BIOL CHEM, V279, P46065, DOI 10.1074/jbc.M403046200 Barbieri SS, 2004, FREE RADICAL BIO MED, V37, P156, DOI 10.1016/j.freeradbiomed.2004.04.020 BECKMAN JS, 1990, P NATL ACAD SCI USA, V87, P1620, DOI 10.1073/pnas.87.4.1620 Bedard K, 2007, PHYSIOL REV, V87, P245, DOI 10.1152/physrev.00044.2005 Bhatt LK, 2011, RENAL FAILURE, V33, P72, DOI 10.3109/0886022X.2010.528117 Block K, 2012, NAT REV CANCER, V12, P627, DOI 10.1038/nrc3339 Brader S, 2004, TUMORI J, V90, P2, DOI 10.1177/030089160409000102 Brenza TM, 2018, J BIOMED MATER RES A, V106, P2881, DOI 10.1002/jbm.a.36477 Brenza TM, 2017, NANOMED-NANOTECHNOL, V13, P809, DOI 10.1016/j.nano.2016.10.004 Bronckaers A, 2009, MED RES REV, V29, P903, DOI 10.1002/med.20159 Brown DI, 2009, FREE RADICAL BIO MED, V47, P1239, DOI 10.1016/j.freeradbiomed.2009.07.023 Brown NS, 2000, CANCER RES, V60, P6298 Buvelot H, 2019, METHODS MOL BIOL, V1982, P17, DOI 10.1007/978-1-4939-9424-3_2 Camilleri A, 2014, CNS NEUROSCI THER, V20, P591, DOI 10.1111/cns.12264 Chaffer CL, 2011, SCIENCE, V331, P1559, DOI 10.1126/science.1203543 Chen JC, 2015, J AM SOC NEPHROL, V26, P1115, DOI 10.1681/ASN.2014020192 Chen P, 2007, AM J PHYSIOL-REG I, V293, pR1619, DOI 10.1152/ajpregu.00290.2007 Chen X, 2001, HYPERTENSION, V38, P606, DOI 10.1161/hy09t1.094005 Cheng L, 2018, J NEUROINFLAMM, V15, DOI 10.1186/s12974-018-1289-z Chocry M, 2020, ANTIOXID REDOX SIGN, V33, P332, DOI 10.1089/ars.2019.7915 Choi BY, 2012, BRAIN RES, V1481, P49, DOI 10.1016/j.brainres.2012.08.032 Ciarcia R, 2015, J CELL BIOCHEM, V116, P1848, DOI 10.1002/jcb.25140 CLARK RA, 1990, J CLIN INVEST, V85, P714, DOI 10.1172/JCI114496 Codolo G, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0055375 Costa CA, 2009, AM J HYPERTENS, V22, P1242, DOI 10.1038/ajh.2009.186 DALY JW, 1960, J BIOL CHEM, V235, P1155 Dang DK, 2016, J NEUROINFLAMM, V13, DOI 10.1186/s12974-016-0478-x Dranka BP, 2014, NEUROSCI LETT, V583, P159, DOI 10.1016/j.neulet.2014.09.042 Drouin-Ouellet J, 2012, TRENDS PHARMACOL SCI, V33, P542, DOI 10.1016/j.tips.2012.07.002 Du PC, 2013, KIDNEY INT, V84, P265, DOI 10.1038/ki.2013.113 Du XL, 2000, P NATL ACAD SCI USA, V97, P12222, DOI 10.1073/pnas.97.22.12222 Du YP, 2015, FASEB J, V29, P2194, DOI 10.1096/fj.14-269431 Du Y, 2013, P NATL ACAD SCI USA, V110, P16586, DOI 10.1073/pnas.1314575110 El-Benna J, 2009, EXP MOL MED, V41, P217, DOI 10.3858/emm.2009.41.4.058 Falcao-Pires I, 2011, BASIC RES CARDIOL, V106, P801, DOI 10.1007/s00395-011-0184-x Finnemore H, 1908, J CHEM SOC, V93, P1513, DOI 10.1039/ct9089301513 Fortepiani LA, 2005, AM J PHYSIOL-REG I, V288, pR733, DOI 10.1152/ajpregu.00500.2004 Fuji S, 2017, TOXICOL PATHOL, V45, P544, DOI 10.1177/0192623317710013 Gabele E, 2011, J HEPATOL, V55, P1391, DOI 10.1016/j.jhep.2011.02.035 Geraldes P, 2010, CIRC RES, V106, P1319, DOI 10.1161/CIRCRESAHA.110.217117 Ghosh A, 2016, J NEUROIMMUNE PHARM, V11, P259, DOI 10.1007/s11481-016-9650-4 Ghosh A, 2012, J NEUROINFLAMM, V9, DOI 10.1186/1742-2094-9-241 Gimenes R, 2018, CARDIOVASC DIABETOL, V17, DOI 10.1186/s12933-017-0657-9 Girardin SE, 2003, J BIOL CHEM, V278, P8869, DOI 10.1074/jbc.C200651200 Gorin Y, 2013, FREE RADICAL BIO MED, V61, P130, DOI 10.1016/j.freeradbiomed.2013.03.014 Gulsin GS, 2019, THER ADV ENDOCRINOL, V10, DOI 10.1177/2042018819834869 Gupte RS, 2009, FREE RADICAL BIO MED, V47, P219, DOI 10.1016/j.freeradbiomed.2009.01.028 Gusarova V, 2018, NAT COMMUN, V9, DOI 10.1038/s41467-018-04611-z Gustot A, 2015, BIOCHEM J, V471, P323, DOI 10.1042/BJ20150617 HARAGUCHI M, 1994, NATURE, V368, P198, DOI 10.1038/368198a0 He ZH, 2004, ENDOCRIN METAB CLIN, V33, P215, DOI 10.1016/j.ecl.2003.12.003 Hou LY, 2019, REDOX BIOL, V22, DOI 10.1016/j.redox.2019.101134 Hougee S, 2006, EUR J PHARMACOL, V531, P264, DOI 10.1016/j.ejphar.2005.11.061 Huntimer LM, 2014, TECHNOLOGY, V2, P171, DOI 10.1142/S2339547814500162 International Diabetes Federation, 2020, FACTAND FIG Jantaree P, 2017, J AGR FOOD CHEM, V65, P2299, DOI 10.1021/acs.jafc.6b05697 Ji HY, 2016, DRUG DELIV, V23, P459, DOI 10.3109/10717544.2014.918677 Jiang BH, 2000, P NATL ACAD SCI USA, V97, P1749, DOI 10.1073/pnas.040560897 Jo EK, 2016, CELL MOL IMMUNOL, V13, P148, DOI 10.1038/cmi.2015.95 Johnson DK, 2002, ENDOTHELIUM-J ENDOTH, V9, P191, DOI 10.1080/10623320213638 Kato A, 2015, ONCOTARGET, V6, P42963, DOI 10.18632/oncotarget.5981 Kaul R, 2019, J NAT PROD, V82, P680, DOI 10.1021/acs.jnatprod.9b00105 Khan S, 2014, J CLIN INVEST, V124, P1057, DOI 10.1172/JCI71863 Kim EK, 2007, INT J BIOCHEM CELL B, V39, P1260, DOI 10.1016/j.biocel.2007.04.005 Konior A, 2014, ANTIOXID REDOX SIGN, V20, P2794, DOI 10.1089/ars.2013.5607 Kuwabara A, 2014, J NUTR SCI VITAMINOL, V60, P239, DOI 10.3177/jnsv.60.239 Laddha AP, 2020, EUR J PHARMACOL, V881, DOI 10.1016/j.ejphar.2020.173206 Langley M, 2017, ANTIOXID REDOX SIGN, V27, P1048, DOI 10.1089/ars.2016.6905 Le Master E, 2018, ARTERIOSCL THROM VAS, V38, P64, DOI 10.1161/ATVBAHA.117.309907 Lee KS, 2006, J ALLERGY CLIN IMMUN, V118, P120, DOI 10.1016/j.jaci.2006.03.021 Li LN, 2006, METABOLISM, V55, P1516, DOI 10.1016/j.metabol.2006.06.022 Li X, 2019, ANTIOXID REDOX SIGN, V31, P521, DOI 10.1089/ars.2018.7634 Lirdprapamongkol K, 2009, J AGR FOOD CHEM, V57, P3055, DOI 10.1021/jf803366f Liu FF, 2020, PHARMACOL RES PERSPE, V8, DOI 10.1002/prp2.635 Liu J, 2018, CELL PHYSIOL BIOCHEM, V48, P208, DOI 10.1159/000491720 Luchtefeld R, 2008, J AGR FOOD CHEM, V56, P301, DOI 10.1021/jf072792n MCCORD JM, 1969, J BIOL CHEM, V244, P6056 MCCORD JM, 1988, FREE RADICAL BIO MED, V5, P363, DOI 10.1016/0891-5849(88)90109-8 Meng WH, 2018, ACTA OPHTHALMOL, V96, pE811, DOI 10.1111/aos.13769 Miyamoto K, 1998, INVEST OPHTH VIS SCI, V39, P2190 Miyamoto K, 1999, Semin Ophthalmol, V14, P233, DOI 10.3109/08820539909069542 Mohamed EA, 2012, J PHARM SCI-US, V101, P3787, DOI 10.1002/jps.23265 Montezano AC, 2015, CAN J CARDIOL, V31, P631, DOI 10.1016/j.cjca.2015.02.008 Nakajima Y, 2004, CANCER RES, V64, P1794, DOI 10.1158/0008-5472.CAN-03-2597 National Institute of Environmental Health Sciences, 2020, NEURODEGENER DIS Nishikawa T, 2000, NATURE, V404, P787, DOI 10.1038/35008121 Ohga S, 2007, AM J PHYSIOL-RENAL, V292, pF1141, DOI 10.1152/ajprenal.00288.2005 Okamura T, 2018, PHYTOMEDICINE, V38, P84, DOI 10.1016/j.phymed.2017.05.006 Okuno Y, 2018, DIABETES, V67, P1113, DOI 10.2337/db17-1032 Overman VP., 2006, INT J DENT HYG, V4, P55 Panday A, 2015, CELL MOL IMMUNOL, V12, DOI 10.1038/cmi.2014.89 Paravicini TM, 2008, DIABETES CARE, V31, pS170, DOI 10.2337/dc08-s247 Paul S, 2020, PHYTOMEDICINE, V67, DOI 10.1016/j.phymed.2019.153152 Pechanova O, 2009, PHARMACOL REP, V61, P116, DOI 10.1016/S1734-1140(09)70013-1 Peng JJ, 2019, EUR J PHARMACOL, V853, P381, DOI 10.1016/j.ejphar.2019.04.038 Perassa LA, 2016, VASC PHARMACOL, V87, P38, DOI 10.1016/j.vph.2016.06.005 Perier C, 2012, CSH PERSPECT MED, V2, DOI 10.1101/cshperspect.a009332 Peters EA, 2001, FREE RADICAL BIO MED, V31, P1442, DOI 10.1016/S0891-5849(01)00725-0 Petronio MS, 2013, MOLECULES, V18, P2821, DOI 10.3390/molecules18032821 Platania CBM, 2018, BIOCHEM PHARMACOL, V158, P13, DOI 10.1016/j.bcp.2018.09.016 Potje SR, 2017, FREE RADICAL BIO MED, V106, P148, DOI 10.1016/j.freeradbiomed.2017.02.026 Qiu JC, 2017, ONCOTARGET, V8, P38482, DOI 10.18632/oncotarget.16599 Qiu JC, 2016, INT J CARDIOL, V221, P812, DOI 10.1016/j.ijcard.2016.07.132 Rajagopalan S, 1996, J CLIN INVEST, V97, P1916, DOI 10.1172/JCI118623 Ramasamy R, 2010, CIRC RES, V106, P1449, DOI 10.1161/CIRCRESAHA.109.213447 Ramirez JEV, 2016, J BIOMED NANOTECHNOL, V12, P1303, DOI 10.1166/jbn.2016.2242 Rezabakhsh A, 2019, PHYTOMEDICINE, V56, P183, DOI 10.1016/j.phymed.2018.11.008 Rezabakhsh A, 2018, J CELL BIOCHEM, V119, P8084, DOI 10.1002/jcb.26735 Robson DC, 2003, VET DERMATOL, V14, P1, DOI 10.1046/j.1365-3164.2003.00317.x Roe ND, 2011, DIABETES OBES METAB, V13, P465, DOI 10.1111/j.1463-1326.2011.01369.x Rosa CM, 2016, CARDIOVASC DIABETOL, V15, DOI 10.1186/s12933-016-0442-1 Ross KA, 2015, J CONTROL RELEASE, V219, P548, DOI 10.1016/j.jconrel.2015.08.039 Schnackenberg CG, 1998, HYPERTENSION, V32, P59, DOI 10.1161/01.HYP.32.1.59 Sharma H, 2018, TOXICOL LETT, V299, P47, DOI 10.1016/j.toxlet.2018.09.006 Sharma N, 2016, MOL NEUROBIOL, V53, P3326, DOI 10.1007/s12035-015-9267-2 Sharma N, 2016, BEHAV BRAIN RES, V296, P177, DOI 10.1016/j.bbr.2015.09.012 Sheedfar F, 2013, AGING CELL, V12, P950, DOI 10.1111/acel.12128 Shi LL, 2017, DRUG DEV IND PHARM, V43, P839, DOI 10.1080/03639045.2016.1220571 Shimada K, 2012, IMMUNITY, V36, P401, DOI 10.1016/j.immuni.2012.01.009 SIMONS JM, 1990, FREE RADICAL BIO MED, V8, P251, DOI 10.1016/0891-5849(90)90070-Y Simonyi Agnes, 2012, Front Biosci (Elite Ed), V4, P2183 Smith JD, 2015, CURR OPIN BIOTECH, V34, P217, DOI 10.1016/j.copbio.2015.03.014 Soma D, 2017, BRAZ J PHARM SCI, V53, DOI 10.1590/s2175-97902017000115012 Somers MJ, 2000, CIRCULATION, V101, P1722 Sorbara MT, 2011, CELL RES, V21, P558, DOI 10.1038/cr.2011.20 Stehlik C, 2003, J IMMUNOL, V171, P6154, DOI 10.4049/jimmunol.171.11.6154 Sun Z, 2016, BRIT J ANAESTH, V117, P80, DOI 10.1093/bja/aew064 Sung BY, 2006, EXP GERONTOL, V41, P590, DOI 10.1016/j.exger.2006.04.005 Suryavanshi SV, 2017, FRONT PHARMACOL, V8, DOI 10.3389/fphar.2017.00798 't Hart BA, 2014, BIOMED RES INT, V2014, DOI 10.1155/2014/298020 Tabata S, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-25189-y Tain YL, 2012, FREE RADICAL RES, V46, P68, DOI 10.3109/10715762.2011.639069 Tang ZY, 2004, J CANCER RES CLIN, V130, P187, DOI 10.1007/s00432-003-0511-1 Tawfik A, 2009, INVEST OPHTH VIS SCI, V50, P878, DOI 10.1167/iovs.08-2005 Thomas RL, 2019, DIABETES RES CLIN PR, V157, DOI 10.1016/j.diabres.2019.107840 Trumbull KA, 2012, NEUROBIOL DIS, V45, P137, DOI 10.1016/j.nbd.2011.07.015 Unwin N, 2009, IDF DIABETES ATLAS, V4th Ushio-Fukai M, 2008, CANCER LETT, V266, P37, DOI 10.1016/j.canlet.2008.02.044 Vejrazka M, 2005, BBA-GEN SUBJECTS, V1722, P143, DOI 10.1016/j.bbagen.2004.12.008 Vela-Ramirez JE, 2015, AAPS J, V17, P256, DOI 10.1208/s12248-014-9699-z Venishetty VK, 2012, COLLOID SURFACE B, V95, P1, DOI 10.1016/j.colsurfb.2012.01.001 Vivanco I, 2002, NAT REV CANCER, V2, P489, DOI 10.1038/nrc839 Wang KY, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0070189 Wang LZY, 2019, FRONT IMMUNOL, V9, DOI 10.3389/fimmu.2018.03076 Wang Q, 2008, PHYTOMEDICINE, V15, P496, DOI 10.1016/j.phymed.2007.09.019 Welch WJ, 2003, HYPERTENSION, V41, P692, DOI 10.1161/01.HYP.0000052945.84627.8F World Health Organization, 2021, CARDIOVASC DIS World Health Organization, 2021, HYPERTENSION Wymann MP, 2003, TRENDS PHARMACOL SCI, V24, P366, DOI 10.1016/S0165-6147(03)00163-9 Ximenes VF, 2007, ARCH BIOCHEM BIOPHYS, V457, P134, DOI 10.1016/j.abb.2006.11.010 Xin R, 2018, BIOMED PHARMACOTHER, V106, P1325, DOI 10.1016/j.biopha.2018.07.036 Xu CS, 2015, J TRANSL MED, V13, DOI 10.1186/s12967-015-0454-8 Yang XC, 2017, NAT REV NEPHROL, V13, P769, DOI 10.1038/nrneph.2017.126 Yoshida T, 2017, EXP TOXICOL PATHOL, V69, P9, DOI 10.1016/j.etp.2016.10.003 Younossi ZM, 2008, ALIMENT PHARM THER, V28, P2, DOI 10.1111/j.1365-2036.2008.03710.x Yu LX, 1998, P NATL ACAD SCI USA, V95, P7993, DOI 10.1073/pnas.95.14.7993 Zahiruddin S, 2017, J ETHNOPHARMACOL, V197, P157, DOI 10.1016/j.jep.2016.07.072 Zalba G, 2000, HYPERTENSION, V35, P1055, DOI 10.1161/01.HYP.35.5.1055 Zhang Lingping, 2016, Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi, V32, P59 NR 166 TC 1 Z9 1 U1 2 U2 2 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND SN 0360-2532 EI 1097-9883 J9 DRUG METAB REV JI Drug Metab. Rev. DI 10.1080/03602532.2021.1895203 EA FEB 2021 PG 21 WC Pharmacology & Pharmacy SC Pharmacology & Pharmacy GA QU4XY UT WOS:000627285100001 PM 33689526 DA 2021-10-15 ER PT J AU Yang, JL Zhang, LX Jiang, L Zhan, YG Fan, GZ AF Yang, Jiale Zhang, Lixiang Jiang, Li Zhan, Ya Guang Fan, Gui Zhi TI Quercetin alleviates seed germination and growth inhibition in Apocynum venetum and Apocynum picture under mannitol-induced osmotic stress SO PLANT PHYSIOLOGY AND BIOCHEMISTRY LA English DT Article DE Quercetin; Mannitol-induced osmotic stress; Seed germination; Apocynum venetum; Apocynum pictum ID DROUGHT STRESS; L.; QUANTIFICATION; IDENTIFICATION; TOLERANCE; RESPONSES; DORMANCY AB Quercetin is one of the main flavonoids in the human diet and mainly found in different plant tissues, including seeds, flowers, leaves, stems, and roots. However, its biological function in plant tissues, especially in seeds, is unknown. In this study, the seed germination and subsequent seedling growth of Apocynum pictum and A. venetum under osmotic stress (400 mmol L-1 mannitol) supplemented with 5 mu mol L-1 quercetin were evaluated after 7, 14, and 21 days of germination. Results showed that quercetin improved the germination percentage and seed vigor, as indicated by the higher germination energy, shoot length, root length, dry weight, fresh weight, and chlorophyll content in A. pictum and A. venetum seedlings under the mannitol compared with those under the mannitol alone. Quercetin decreased H2O2 and O-2(-) production and cell membrane damage, and mostly increased the gene expression of superoxide dismutase, peroxidase, catalase, chalcone synthase and flavonol synthase in A. pictum and A. venetum seedlings under the mannitol compared with those under the mannitol alone. In addition, the germination energy of A. pictum was 21.57% higher than that of A. venetum, and the gene expression of key enzymes in quercetin biosynthesis in A. pictum was mostly higher than that in A. venetum after 1 and 7 days of germination. These results indicated that quercetin was an effective anti-osmotic agent that alleviated the adverse effect of mannitol-induced osmotic stress on seed germination and seed vigor, and A. pictum seeds were more osmotic resistant than A. venetum seeds. C1 [Zhan, Ya Guang; Fan, Gui Zhi] Northeast Forestry Univ, Key Lab Saline Alkali Vegetat Ecol Restorat, Ministey Educ, Harbin 150040, Peoples R China. [Yang, Jiale; Zhang, Lixiang] Heilongjiang Univ, Coll Modern Agr & Ecol Environm, Harbin 150000, Peoples R China. [Jiang, Li] Chinese Acad Sci, Xinjiang Inst Ecol & Geog, State Key Lab Desert & Oasis Ecol, Urumqi 830011, Peoples R China. RP Fan, GZ (corresponding author), Northeast Forestry Univ, Key Lab Saline Alkali Vegetat Ecol Restorat, Ministey Educ, Harbin 150040, Peoples R China. EM guizhifan@nefu.edu.cn FU Foundation of State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences [G2018-02-07]; Fundamental Research Funds for the Central UniversitiesFundamental Research Funds for the Central Universities [2572020DY17]; Heilongjiang Touyan Innovation Team Program (Tree Genetics and Breeding Innovation Team) FX This work was supported by the Foundation of State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences (G2018-02-07), the Fundamental Research Funds for the Central Universities (2572020DY17), and the Heilongjiang Touyan Innovation Team Program (Tree Genetics and Breeding Innovation Team). CR ARNON DI, 1949, PLANT PHYSIOL, V24, P1, DOI 10.1104/pp.24.1.1 BAKER CJ, 1994, PLANT CELL TISS ORG, V39, P7, DOI 10.1007/BF00037585 Benayad Z, 2014, J FOOD COMPOS ANAL, V35, P21, DOI 10.1016/j.jfca.2014.04.002 Bewley JD, 1997, PLANT CELL, V9, P1055, DOI 10.1105/tpc.9.7.1055 Biju S., PLANT PHYSL BIOCH, V119, P250 Bule M, 2019, FOOD CHEM TOXICOL, V125, P494, DOI 10.1016/j.fct.2019.01.037 Chen Z, 2019, PLANT SCI, V285, P34, DOI 10.1016/j.plantsci.2019.04.024 Cui YN, 2019, PLANT PHYSIOL BIOCH, V135, P489, DOI 10.1016/j.plaphy.2018.11.011 Eftekhari M, 2012, IND CROP PROD, V38, P160, DOI 10.1016/j.indcrop.2012.01.022 Finch-Savage WE, 2006, NEW PHYTOL, V171, P501, DOI 10.1111/j.1469-8137.2006.01787.x Fu ZY, 2011, PROTEOMICS, V11, P1462, DOI 10.1002/pmic.201000481 Fukao T, 2011, PLANT CELL, V23, P412, DOI 10.1105/tpc.110.080325 Gan RY, 2017, TRENDS FOOD SCI TECH, V59, P1, DOI 10.1016/j.tifs.2016.11.010 Gao G, 2019, METABOLITES, V9, DOI 10.3390/metabo9120296 Gharibi S, 2019, PHYTOCHEMISTRY, V162, P90, DOI 10.1016/j.phytochem.2019.03.004 Ghosh R, 2016, SCI REP-UK, V6, DOI 10.1038/srep33370 Guajardo-Flores D, 2012, FOOD CHEM, V134, P1312, DOI 10.1016/j.foodchem.2012.03.020 Huang YT, 2017, BMC PLANT BIOL, V17, DOI 10.1186/s12870-016-0951-9 Lesjak M, 2018, J FUNCT FOODS, V40, P68, DOI 10.1016/j.jff.2017.10.047 Li W. B, 2011, THESIS Liu Longbo, 2016, Horticultural Plant Journal, V2, P323, DOI 10.1016/j.hpj.2017.02.002 Lotfi N, 2019, SCI HORTIC-AMSTERDAM, V250, P329, DOI 10.1016/j.scienta.2019.02.060 Lu CM, 2010, BIOL PHARM BULL, V33, P522, DOI 10.1248/bpb.33.522 Ma ZH, 2017, CROP J, V5, P459, DOI 10.1016/j.cj.2017.08.007 Mazlan O, 2019, SCI HORTIC-AMSTERDAM, V243, P226, DOI 10.1016/j.scienta.2018.08.022 Medeiros DB, 2020, TRENDS PLANT SCI, V25, P220, DOI 10.1016/j.tplants.2019.12.023 MICHEL BE, 1983, PLANT PHYSIOL, V72, P60, DOI 10.1104/pp.72.1.60 Piri R, 2019, SCI HORTIC-AMSTERDAM, V257, DOI 10.1016/j.scienta.2019.108667 Qiao LT, 2018, PLANT PHYSIOL BIOCH, V132, P341, DOI 10.1016/j.plaphy.2018.09.022 Rasheed S, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-26103-2 Sahay S, 2019, NITRIC OXIDE-BIOL CH, V89, P81, DOI 10.1016/j.niox.2019.05.005 Sanchez-Montesino R, 2019, MOL PLANT, V12, P71, DOI 10.1016/j.molp.2018.10.009 Thevs N, 2012, J APPL BOT FOOD QUAL, V85, P159 WOLD S, 1987, CHEMOMETR INTELL LAB, V2, P37, DOI 10.1016/0169-7439(87)80084-9 Xie WY, 2012, J ETHNOPHARMACOL, V141, P1, DOI 10.1016/j.jep.2012.02.003 Yang J.L., 2019, HEILONGJIANG AGR SCI, V7, P176 Zahir A, 2014, APPL BIOCHEM BIOTECH, V174, P693, DOI 10.1007/s12010-014-1098-5 Zhao J, 2020, PLANT GROWTH REGUL, V90, P249, DOI 10.1007/s10725-019-00567-2 Zhou WG, 2020, PLANT PHYSIOL BIOCH, V148, P228, DOI 10.1016/j.plaphy.2020.01.020 NR 39 TC 1 Z9 2 U1 11 U2 18 PU ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER PI ISSY-LES-MOULINEAUX PA 65 RUE CAMILLE DESMOULINS, CS50083, 92442 ISSY-LES-MOULINEAUX, FRANCE SN 0981-9428 J9 PLANT PHYSIOL BIOCH JI Plant Physiol. Biochem. PD FEB PY 2021 VL 159 BP 268 EP 276 DI 10.1016/j.plaphy.2020.12.025 PG 9 WC Plant Sciences SC Plant Sciences GA PW7II UT WOS:000610843600026 PM 33401201 DA 2021-10-15 ER PT J AU Moragrega, I Rios, JL AF Moragrega, Ines Rios, Jose Luis TI Medicinal Plants in the Treatment of Depression: Evidence from Preclinical Studies SO PLANTA MEDICA LA English DT Review DE medicinal plants; mood disorders; depression; antidepressant-like effect; herbal medicine; pro-inflammatory mediators; preclinical trials ID ANTIDEPRESSANT-LIKE ACTIVITY; FORCED-SWIMMING TEST; TAIL SUSPENSION TEST; CENTRAL-NERVOUS-SYSTEM; CHRONIC MILD STRESS; NEES MEZ LAURACEAE; APOCYNUM-VENETUM LEAVES; GASTRODIA-ELATA BLUME; TAGETES-LUCIDA CAV.; HEMEROCALLIS-CITRINA ATTENUATE AB Medicinal plants and their extracts are natural remedies with enormous potential for treating various diseases, including depression and anxiety. In the case of depression, hundreds of plants have traditionally been used in folk medicine for generations. Different plant extracts and natural products have been analyzed as potential antidepressant agents with validated models to test for antidepressant-like effects in animals, although other complementary studies have also been employed. Most of these studies focus on the possible mediators implicated in these potential effects, with dopamine, serotonin, and noradrenaline being the principal neurotransmitters implicated, both through interference with receptors and with their metabolism by monoamino oxidases, as well as through neuro-endocrine and neuroprotective effects. There are approximately 650 reports of antidepressant-like medicinal plants in PubMed; 155 of them have been compiled in this review, with a relevant group yielding positive results. Saffron and turmeric are the most relevant species studied in both preclinical and clinical studies; St. Johns wort or kava have also been tested extensively. To the best of our knowledge, no review to date has provided a comprehensive understanding of the biomolecular mechanisms of action of these herbs or of whether their potential effects could have real benefits. The purpose of this narrative review is to provide an update regarding medicinal plants from the year 2000 to the present to examine the therapeutic potential of these antidepressant-like plants in order to contribute to the development of new therapeutic methods to alleviate the tremendous burden that depression causes worldwide. C1 [Moragrega, Ines] Univ Valencia, Fac Psicol, Dept Psicobiol, Av Blasco Ibanez 21, Valencia 46010, Spain. [Rios, Jose Luis] Univ Valencia, Fac Farm, Dept Farmacol, Valencia, Spain. RP Moragrega, I (corresponding author), Univ Valencia, Fac Psicol, Dept Psicobiol, Av Blasco Ibanez 21, Valencia 46010, Spain. EM ines.moragrega@uv.es; jose.l.rios@uv.es CR Abbas G, 2013, PHYTOTHER RES, V27, P39, DOI 10.1002/ptr.4674 Abbasi-Maleki S, 2017, IRAN J BASIC MED SCI, V20, P1063, DOI 10.22038/IJBMS.2017.9277 Abdelhalim A, 2015, J PHARM PHARM SCI, V18, P448, DOI 10.18433/J3PW38 Abhinayani G, 2016, ASIAN J BIOMED PHARM, V6, P7 Adebiyi RA, 2006, J ETHNOPHARMACOL, V107, P234, DOI 10.1016/j.jep.2006.03.017 Agrawal A, 2011, NAT PROD RES, V25, P450, DOI 10.1080/14786419.2010.527447 Ai Z, 2014, J MED FOOD, V17, P535, DOI 10.1089/jmf.2013.2950 Akram M, 2020, J PHARM PHARMACOL, V72, P161, DOI 10.1111/jphp.13185 Ali BH, 1998, PHARMACOL BIOCHEM BE, V59, P671, DOI 10.1016/S0091-3057(97)00464-4 Ali BH, 1998, PHARMACOL BIOCHEM BE, V59, P547, DOI 10.1016/S0091-3057(97)00470-X American Psychiatric Association, 2013, DIAGN STAT MAN MENT, V5th, DOI 10.1176/appi.books.9780890425596 AMMON HPT, 1991, PLANTA MED, V57, P1, DOI 10.1055/s-2006-960004 Amro MS, 2018, CLIN TER, V169, pE23, DOI 10.7417/T.2018.2050 Amsterdam JD, 2016, PHYTOMEDICINE, V23, P770, DOI 10.1016/j.phymed.2016.02.009 Antoniuk S, 2019, NEUROSCI BIOBEHAV R, V99, P101, DOI 10.1016/j.neubiorev.2018.12.002 Aragao GF, 2006, PHARMACOL BIOCHEM BE, V85, P827, DOI 10.1016/j.pbb.2006.11.019 Arora V, 2011, PSYCHONEUROENDOCRINO, V36, P1570, DOI 10.1016/j.psyneuen.2011.04.012 Attari Mahshid, 2016, Acta Med Iran, V54, P165 Badhe S. R., 2010, International Journal of Green Pharmacy, V4, P79 Bahramsoltani R, 2018, J ETHNOPHARMACOL, V222, P34, DOI 10.1016/j.jep.2018.04.021 Bakhshaeil S, 2017, J APPL PHARM, V9, P244 Barauna SC, 2006, PHARMACOL BIOCHEM BE, V85, P160, DOI 10.1016/j.pbb.2006.07.030 Bathaie SZ, 2010, CRIT REV FOOD SCI, V50, P761, DOI 10.1080/10408390902773003 Berman RM, 2000, BIOL PSYCHIAT, V47, P351, DOI 10.1016/S0006-3223(99)00230-9 Bernardo J, 2018, J ETHNOPHARMACOL, V211, P247, DOI 10.1016/j.jep.2017.09.039 Bettio LEB, 2011, PHARM BIOL, V49, P1277, DOI 10.3109/13880209.2011.621958 Bhattacharya SK, 2000, PHYTOTHER RES, V14, P174, DOI 10.1002/(SICI)1099-1573(200005)14:3<174::AID-PTR624>3.0.CO;2-O Bhattacharya SK, 2000, PHYTOMEDICINE, V7, P463, DOI 10.1016/S0944-7113(00)80030-6 Bhattamisra SK, 2008, J ETHNOPHARMACOL, V117, P51, DOI 10.1016/j.jep.2008.01.012 Bhutani WK, 2009, PHARMACOL BIOCHEM BE, V92, P39, DOI 10.1016/j.pbb.2008.10.007 Biney RP, 2016, J ETHNOPHARMACOL, V184, P49, DOI 10.1016/j.jep.2016.02.023 Blumenthal M., 1998, COMPLETE GERMAN COMM Bonassoli VT, 2012, J ETHNOPHARMACOL, V143, P179, DOI 10.1016/j.jep.2012.06.021 Bonilla-Jaime H, 2015, J NAT MED-TOKYO, V69, P463, DOI 10.1007/s11418-015-0909-5 Boonlert W, 2017, NUTRIENTS, V9, DOI 10.3390/nu9090931 Braida D, 2009, BRIT J PHARMACOL, V157, P844, DOI 10.1111/j.1476-5381.2009.00230.x Brinkhaus B, 2000, PHYTOMEDICINE, V7, P427, DOI 10.1016/S0944-7113(00)80065-3 Bukhari IA, 2013, EUR REV MED PHARMACO, V17, P1082 Butterweck V, 2003, PHARMACOL BIOCHEM BE, V75, P557, DOI 10.1016/S0091-3057(03)00118-7 Butterweck V, 2003, CNS DRUGS, V17, P539, DOI 10.2165/00023210-200317080-00001 Butterweck V, 2001, BIOL PHARM BULL, V24, P848, DOI 10.1248/bpb.24.848 Bylka W, 2014, PHYTOTHER RES, V28, P1117, DOI 10.1002/ptr.5110 Campos AR, 2005, PHYTOTHER RES, V19, P441, DOI 10.1002/ptr.1471 Campos MM, 2005, PSYCHOPHARMACOLOGY, V182, P45, DOI 10.1007/s00213-005-0052-1 Can A, 2012, JOVE-J VIS EXP, DOI 10.3791/3769 Can A, 2012, JOVE-J VIS EXP, DOI 10.3791/3638 Capra JC, 2010, EUR J PHARMACOL, V643, P232, DOI 10.1016/j.ejphar.2010.06.043 Caputo L, 2018, MOLECULES, V23, DOI 10.3390/molecules23102694 Carbajal D, 2009, PHARMACOL BIOCHEM BE, V92, P465, DOI 10.1016/j.pbb.2009.01.008 Cardenas J, 2017, J ETHNOPHARMACOL, V200, P22, DOI 10.1016/j.jep.2017.02.023 Carpenter JM, 2016, J ETHNOPHARMACOL, V193, P329, DOI 10.1016/j.jep.2016.08.019 Cavanagh HMA, 2002, PHYTOTHER RES, V16, P301, DOI 10.1002/ptr.1103 Centuriao FB, 2014, PHARM BIOL, V52, P105, DOI 10.3109/13880209.2013.816970 Ceremuga TE, 2017, HOLIST NURS PRACT, V31, P193, DOI 10.1097/HNP.0000000000000208 Ceremuga Tomas Eduardo, 2015, AANA J, V83, P91 Chassot JM, 2011, J ETHNOPHARMACOL, V137, P1143, DOI 10.1016/j.jep.2011.07.032 Chatterjee M, 2011, PHARM BIOL, V49, P477, DOI 10.3109/13880209.2010.523832 Chen L, 2017, PHYTOTHER RES, V31, P1341, DOI 10.1002/ptr.5859 Chen PJ, 2008, AM J CHINESE MED, V36, P95, DOI 10.1142/S0192415X08005618 Chen SL, 2014, J PHARMACEUT BIOMED, V89, P122, DOI 10.1016/j.jpba.2013.10.045 Chen Y, 2005, J ETHNOPHARMACOL, V96, P451, DOI 10.1016/j.jep.2004.09.033 Chen Yao, 2005, Zhong Yao Cai, V28, P492 Chen Yao, 2003, Zhong Yao Cai, V26, P870 Chiang HM, 2015, J FOOD DRUG ANAL, V23, P359, DOI 10.1016/j.jfda.2015.04.007 Choi JH, 2020, REJUV RES, V23, P245, DOI 10.1089/rej.2018.2157 Choi JH, 2018, J GINSENG RES, V42, P107, DOI 10.1016/j.jgr.2017.04.012 Colla ARS, 2012, J ETHNOPHARMACOL, V143, P720, DOI 10.1016/j.jep.2012.07.038 Cryan JF, 2005, NEUROSCI BIOBEHAV R, V29, P571, DOI 10.1016/j.neubiorev.2005.03.009 D'Auria M, 2004, FLAVOUR FRAG J, V19, P17, DOI 10.1002/ffj.1266 Dale E, 2015, BIOCHEM PHARMACOL, V95, P81, DOI 10.1016/j.bcp.2015.03.011 Dasari R., 2013, INT J PHARM BIO SCI, V4, pP866 Datusalia AK, 2009, J HEALTH SCI, V55, P641, DOI 10.1248/jhs.55.641 Dauncey EA, 2019, J PHARM PHARMACOL, V71, P4, DOI 10.1111/jphp.12831 de Melo CTV, 2006, BIOL PHARM BULL, V29, P451, DOI 10.1248/bpb.29.451 de Melo NC, 2019, PHARMACEUTICALS-BASE, V12, DOI 10.3390/ph12030106 Dhingra D, 2006, J MED FOOD, V9, P84, DOI 10.1089/jmf.2006.9.84 Dhingra D, 2006, PROG NEURO-PSYCHOPH, V30, P449, DOI 10.1016/j.pnpbp.2005.11.019 Dhingra D, 2008, INDIAN J PHARM SCI, V70, P761, DOI 10.4103/0250-474X.49118 Dhingra D, 2008, INDIAN J EXP BIOL, V46, P212 Dhingra D, 2007, MED SCI MONITOR, V13, pBR155 Dhingra D, 2007, INDIAN J EXP BIOL, V45, P610 Dhingra D, 2012, CNS NEUROSCI THER, V18, P419, DOI 10.1111/j.1755-5949.2011.00256.x Dhingra D, 2012, J PHARMACOL PHARMACO, V3, P60, DOI 10.4103/0976-500X.92521 Di Lorenzo A, 2016, MOL NUTR FOOD RES, V60, P566, DOI 10.1002/mnfr.201500567 Diana G, 2007, PHYTOTHER RES, V21, P215, DOI 10.1002/ptr.2052 Dimpfel W, 2016, J ETHNOPHARMACOL, V177, P140, DOI 10.1016/j.jep.2015.11.036 Dinesh Dhingra, 2006, Natural Product Radiance, V5, P144 Diniz TC, 2019, BIOMED PHARMACOTHER, V111, P1074, DOI 10.1016/j.biopha.2018.12.114 do Rego JC, 2007, EUR J PHARMACOL, V569, P197, DOI 10.1016/j.ejphar.2007.05.008 Dong HY, 2014, MOLECULES, V19, P5634, DOI 10.3390/molecules19055634 Dong XX, 2015, AUST NZ J PSYCHIAT, V49, P334, DOI 10.1177/0004867414567759 Doosti Mohammad-Hossein, 2018, J Tradit Complement Med, V8, P89, DOI 10.1016/j.jtcme.2017.03.003 Du Bingjian, 2014, BMC Complement Altern Med, V14, P326, DOI 10.1186/1472-6882-14-326 Emamghoreishi M, 2009, DARU, V17, P42 European Medicines Agency (EMA) Committee on Herbal Medicinal Products (HMPC), 2017, EMA PUBL Farahani MS, 2015, REV NEUROSCIENCE, V26, P305, DOI 10.1515/revneuro-2014-0058 Felipe FCB, 2007, PHYTOMEDICINE, V14, P605, DOI 10.1016/j.phymed.2006.12.015 Ferlemi AV, 2015, CHEM-BIOL INTERACT, V237, P47, DOI 10.1016/j.cbi.2015.04.013 de Sousa FCF, 2014, FUND CLIN PHARMACOL, V28, P95, DOI 10.1111/j.1472-8206.2012.01069.x Foyet HS, 2012, ADV PHARMACOL SCI, V2012, DOI 10.1155/2012/912041 Freitas AE, 2013, J MED FOOD, V16, P1030, DOI 10.1089/jmf.2012.0276 Freitas AE, 2013, J ETHNOPHARMACOL, V145, P737, DOI 10.1016/j.jep.2012.11.040 Freitas AE, 2010, PROG NEURO-PSYCHOPH, V34, P335, DOI 10.1016/j.pnpbp.2009.12.010 Fusar-Poli L, 2020, CRIT REV FOOD SCI, V60, P2643, DOI 10.1080/10408398.2019.1653260 Gabriela GC, 2012, AM J CHINESE MED, V40, P753, DOI 10.1142/S0192415X12500565 Gaire B, 2014, J TRADIT CHIN MED, V34, P317, DOI 10.1016/S0254-6272(14)60096-0 Galdino PM, 2009, J ETHNOPHARMACOL, V124, P581, DOI 10.1016/j.jep.2009.05.001 Galdino PM, 2015, J ETHNOPHARMACOL, V170, P218, DOI 10.1016/j.jep.2015.05.015 Gao SF, 2011, NEUROSCIENTIST, V17, P124, DOI 10.1177/1073858410361780 Gohil K. J., 2010, International Journal of Green Pharmacy, V4, P1 Goncalves AE, 2012, EUR J PHARMACOL, V674, P307, DOI 10.1016/j.ejphar.2011.11.009 Gonulalan EM, 2018, SAUDI PHARM J, V26, P960, DOI 10.1016/j.jsps.2018.05.005 Gostner JM, 2014, BMC COMPLEM ALTERN M, V14, DOI 10.1186/1472-6882-14-503 Gresta F, 2008, AGRON SUSTAIN DEV, V28, P95, DOI 10.1051/agro:2007030 Gu L, 2012, J ETHNOPHARMACOL, V139, P780, DOI 10.1016/j.jep.2011.11.059 Guadarrama-Cruz G, 2008, J ETHNOPHARMACOL, V120, P277, DOI 10.1016/j.jep.2008.08.013 Guest P C, 2019, PRECLINICAL MODELS T Guo Y, 2018, FRONT PHARMACOL, V9, DOI 10.3389/fphar.2018.01126 Gupta Girdhari Lal, 2007, Indian J Physiol Pharmacol, V51, P345 Gupta GL, 2019, BIOMED PHARMACOTHER, V109, P1698, DOI 10.1016/j.biopha.2018.11.046 Haas JS, 2011, PLANTA MED, V77, P334, DOI 10.1055/s-0030-1250386 Han P, 2013, PHARM BIOL, V51, P589, DOI 10.3109/13880209.2012.751616 Han XH, 2007, ARCH PHARM RES, V30, P13, DOI 10.1007/BF02977772 Harvey AL, 2011, J ETHNOPHARMACOL, V137, P1124, DOI 10.1016/j.jep.2011.07.035 Hattesohl M, 2008, PHYTOMEDICINE, V15, P2, DOI 10.1016/j.phymed.2007.11.027 Heinrich M., 2018, FUNDAMENTALS PHARMAC Hellion-Ibarrola MC, 2008, PHYTOMEDICINE, V15, P478, DOI 10.1016/j.phymed.2007.11.018 Herraiz T, 2018, BIOMED RES INT, V2018, DOI 10.1155/2018/4810394 Hosseinzadeh H, 2007, PHYTOMEDICINE, V14, P256, DOI 10.1016/j.phymed.2006.03.007 Hosseinzadeh H, 2013, PHYTOTHER RES, V27, P475, DOI 10.1002/ptr.4784 Hosseinzadeh H, 2009, PHYTOTHER RES, V23, P768, DOI 10.1002/ptr.2597 Hritcu L, 2015, BEHAV BRAIN FUNCT, V11, DOI 10.1186/s12993-015-0059-7 Hritcu L, 2012, PHYTOMEDICINE, V19, P529, DOI 10.1016/j.phymed.2012.02.002 Hsu LC, 2012, EVID-BASED COMPL ALT, V2012, DOI 10.1155/2012/497302 Hu Y, 2011, J PHARM PHARMACOL, V63, P869, DOI 10.1111/j.2042-7158.2011.01281.x Hu Y, 2010, PHARM BIOL, V48, P794, DOI 10.3109/13880200903280034 Huang LZ, 2011, PHARMAZIE, V66, P83, DOI 10.1691/ph.2011.0744 Huang YJ, 2019, FOOD FUNCT, V10, P8094, DOI [10.1039/c9fo00601j, 10.1039/C9FO00601J] Huang Z, 2011, NEUROSCI LETT, V493, P145, DOI 10.1016/j.neulet.2011.02.030 Idayu NF, 2011, PHYTOMEDICINE, V18, P402, DOI 10.1016/j.phymed.2010.08.011 Ishola IO, 2015, DRUG RES, V65, P205, DOI 10.1055/s-0034-1376963 Ishola I O, 2014, Drug Res (Stuttg), V64, P368, DOI 10.1055/s-0033-1358712 Ishola IO, 2012, PHARMACOL BIOCHEM BE, V103, P322, DOI 10.1016/j.pbb.2012.08.017 Ismail H, 2018, CURR PHARM DESIGN, V24, P2609, DOI 10.2174/1381612824666180727123950 Jager AK, 2013, J ETHNOPHARMACOL, V145, P822, DOI 10.1016/j.jep.2012.12.021 Jain NN, 2003, PHARMACOL BIOCHEM BE, V75, P529, DOI 10.1016/S0091-3057(03)00130-8 Jalali S, 2018, CURR DRUG METAB, V19, P469, DOI 10.2174/1389200219666180305151011 Ji CX, 2012, PHARM BIOL, V50, P1067, DOI 10.3109/13880209.2012.656848 Ji WW, 2014, CHIN J NAT MEDICINES, V12, P753, DOI 10.1016/S1875-5364(14)60115-1 Jiang B, 2012, BRIT J PHARMACOL, V166, P1872, DOI 10.1111/j.1476-5381.2012.01902.x Jimenez-Ferrer E, 2017, BIOMED PHARMACOTHER, V96, P320, DOI 10.1016/j.biopha.2017.10.024 Jin LJ, 2013, PHYTOTHER RES, V27, P1829, DOI 10.1002/ptr.4938 Jin Y, 2019, CELL PROLIFERAT, V52, DOI 10.1111/cpr.12696 Jin ZL, 2012, PHARMACOL BIOCHEM BE, V100, P431, DOI 10.1016/j.pbb.2011.10.001 Alonso-Castro AJ, 2019, J ETHNOPHARMACOL, V239, DOI 10.1016/j.jep.2019.111923 Alonso-Castro AJ, 2018, J ETHNOPHARMACOL, V224, P314, DOI 10.1016/j.jep.2018.06.016 Kamalipour Maryam, 2011, J Tehran Heart Cent, V6, P59 Karim N, 2018, FITOTERAPIA, V128, P148, DOI 10.1016/j.fitote.2018.05.016 Kaur Ginpreet, 2015, J Ayurveda Integr Med, V6, P273, DOI 10.4103/0975-9476.172384 Kawaguchi M, 2018, J VIS EXP, V136, P56428 Khazdair MR, 2015, AVICENNA J PHYTOMEDI, V5, P376 Khulbe A, 2013, INDIAN J PHARMACOL, V45, P386, DOI 10.4103/0253-7613.115026 Khursheed R, 2014, PAK J PHARM SCI, V27, P1419 Kim JH, 2007, PHARMACOL BIOCHEM BE, V87, P41, DOI 10.1016/j.pbb.2007.03.018 Kim WK, 2004, LIFE SCI, V75, P2787, DOI 10.1016/j.lfs.2004.05.024 Kosari-Nasab M, 2013, PHARM BIOL, V51, P581, DOI 10.3109/13880209.2012.749924 Kothari Saroj, 2010, Indian J Physiol Pharmacol, V54, P318 Kraeuter AK, 2019, METHODS MOL BIOL, V1916, P69, DOI 10.1007/978-1-4939-8994-2_4 Kraeuter AK, 2019, METHODS MOL BIOL, V1916, P99, DOI 10.1007/978-1-4939-8994-2_9 Kraeuter AK, 2019, METHODS MOL BIOL, V1916, P75, DOI 10.1007/978-1-4939-8994-2_5 Krstenansky JL, 2017, J ETHNOPHARMACOL, V195, P10, DOI 10.1016/j.jep.2016.12.004 Kukula-Koch W, 2018, MOLECULES, V23, DOI 10.3390/molecules23061301 KULKARNI C, 1988, INDIAN J EXP BIOL, V26, P957 Kulkarni SK, 2010, INDIAN J PHARM SCI, V72, P149, DOI 10.4103/0250-474X.65012 Kulkarni SK, 2009, THESCIENTIFICWORLDJO, V9, P1233, DOI 10.1100/tsw.2009.137 Kulkarni SK, 2008, PSYCHOPHARMACOLOGY, V201, P435, DOI 10.1007/s00213-008-1300-y Kwon S, 2010, PROG NEURO-PSYCHOPH, V34, P265, DOI 10.1016/j.pnpbp.2009.11.015 Lechtenberg M, 2008, PLANTA MED, V74, P764, DOI 10.1055/s-2008-1074535 Lee B, 2012, J MICROBIOL BIOTECHN, V22, P422, DOI 10.4014/jmb.1110.10077 Lee CH, 2019, FRONT IMMUNOL, V10, DOI 10.3389/fimmu.2019.01696 Lee G, 2017, BIOMED RES INT, V2017, DOI 10.1155/2017/6596241 Lee HC, 2014, FOOD FUNCT, V5, P990, DOI 10.1039/c3fo60717h Lee S, 2010, J ETHNOPHARMACOL, V131, P386, DOI 10.1016/j.jep.2010.07.015 Teixeira CPL, 2013, FUND CLIN PHARMACOL, V27, P129, DOI [10.1, 10.1111/j.1472-8206.2011.00973.x] Li CF, 2016, BRAIN RES BULL, V124, P40, DOI 10.1016/j.brainresbull.2016.03.016 Li J, 2013, EUR J PHARMACOL, V707, P112, DOI 10.1016/j.ejphar.2013.03.010 Li Q, 2017, J ETHNOPHARMACOL, V199, P9, DOI 10.1016/j.jep.2017.01.037 Li XT, 2018, BIOMED PHARMACOTHER, V100, P394, DOI 10.1016/j.biopha.2018.01.137 Li YF, 2004, LIFE SCI, V75, P1531, DOI 10.1016/j.lfs.2004.02.029 Li YF, 2003, LIFE SCI, V72, P933, DOI 10.1016/S0024-3205(02)02331-7 Li YF, 2001, ACTA PHARMACOL SIN, V22, P1084 Li YC, 2009, PROG NEURO-PSYCHOPH, V33, P435, DOI 10.1016/j.pnpbp.2009.01.006 Liang BF, 2015, PHARM BIOL, V53, P368, DOI 10.3109/13880209.2014.922586 Lim DW, 2014, MOLECULES, V19, P7981, DOI 10.3390/molecules19067981 Limanaqi F, 2020, ANTIOXIDANTS-BASEL, V9, DOI 10.3390/antiox9030234 Lin SH, 2015, J ETHNOPHARMACOL, V175, P266, DOI 10.1016/j.jep.2015.09.018 Lin TY, 2011, PROG NEURO-PSYCHOPH, V35, P1785, DOI 10.1016/j.pnpbp.2011.06.012 Lin YE, 2018, J ETHNOPHARMACOL, V215, P132, DOI 10.1016/j.jep.2017.12.044 Lin YE, 2016, J ETHNOPHARMACOL, V187, P57, DOI 10.1016/j.jep.2016.04.032 Liu BS, 2017, FRONT CELL NEUROSCI, V11, DOI 10.3389/fncel.2017.00305 Liu J, 2017, MOLECULES, V22, DOI 10.3390/molecules22081331 Liu XL, 2014, J ETHNOPHARMACOL, V153, P484, DOI 10.1016/j.jep.2014.03.001 Liu XG, 2012, FITOTERAPIA, V83, P599, DOI 10.1016/j.fitote.2012.01.004 Liu Y, 2013, PHARMACOL BIOCHEM BE, V104, P27, DOI 10.1016/j.pbb.2012.12.024 Lopez V, 2017, FRONT PHARMACOL, V8, DOI 10.3389/fphar.2017.00280 Lopez V, 2009, NEUROCHEM RES, V34, P1955, DOI 10.1007/s11064-009-9981-0 Lopresti AL, 2017, AUST NZ J PSYCHIAT, V51, P565, DOI 10.1177/0004867417701996 Lopresti AL, 2017, J PSYCHOPHARMACOL, V31, P287, DOI 10.1177/0269881116686883 Lopresti AL, 2012, J PSYCHOPHARMACOL, V26, P1512, DOI 10.1177/0269881112458732 Loria MJ, 2014, J ETHNOPHARMACOL, V155, P731, DOI 10.1016/j.jep.2014.06.007 Lotrich FE, 2015, BRAIN RES, V1617, P113, DOI 10.1016/j.brainres.2014.06.032 Rios JL, 2016, THERAPEUTIC MEDICINAL PLANTS: FROM LAB TO THE MARKET, P77 Luo L, 2015, EUR J PHARMACOL, V762, P357, DOI 10.1016/j.ejphar.2015.05.036 Luscher B, 2011, MOL PSYCHIATR, V16, P383, DOI 10.1038/mp.2010.120 Machado DG, 2012, PHARMACOL BIOCHEM BE, V103, P204, DOI 10.1016/j.pbb.2012.08.016 Machado DG, 2008, EUR J PHARMACOL, V587, P163, DOI 10.1016/j.ejphar.2008.03.021 Machado DG, 2007, PROG NEURO-PSYCHOPH, V31, P421, DOI 10.1016/j.pnpbp.2006.11.004 Machado DG, 2013, FOOD CHEM, V136, P999, DOI 10.1016/j.foodchem.2012.09.028 Machado DG, 2012, J ETHNOPHARMACOL, V143, P158, DOI 10.1016/j.jep.2012.06.017 Machado DG, 2009, PROG NEURO-PSYCHOPH, V33, P642, DOI 10.1016/j.pnpbp.2009.03.004 Maes M, 2011, PROG NEURO-PSYCHOPH, V35, P676, DOI 10.1016/j.pnpbp.2010.05.004 Mahmoudi M, 2009, AFR J BIOTECHNOL, V8, P7170 Malik J, 2011, PHARM BIOL, V49, P1234, DOI 10.3109/13880209.2011.584539 Mallick N, 2016, METAB BRAIN DIS, V31, P329, DOI 10.1007/s11011-015-9754-1 Mao QQ, 2012, PHARM BIOL, V50, P72, DOI 10.3109/13880209.2011.602696 Mao QQ, 2009, J ETHNOPHARMACOL, V124, P316, DOI 10.1016/j.jep.2009.04.019 Mao QQ, 2008, PHYTOTHER RES, V22, P1496, DOI 10.1002/ptr.2519 Martinez DM, 2014, PHARMACOL BIOCHEM BE, V127, P111, DOI 10.1016/j.pbb.2014.10.010 Martinez-Vazquez M, 2012, J ETHNOPHARMACOL, V139, P164, DOI 10.1016/j.jep.2011.10.033 Martins J, 2018, BIOMED PHARMACOTHER, V104, P343, DOI 10.1016/j.biopha.2018.05.044 McNally L, 2008, CNS SPECTRUMS, V13, P501, DOI 10.1017/S1092852900016734 Meena J, 2011, NEUROSCI LETT, V503, P6, DOI 10.1016/j.neulet.2011.07.051 Messaoudi M, 2008, NUTR NEUROSCI, V11, P269, DOI 10.1179/147683008X344165 Mohan M, 2013, NAT PROD RES, V27, P2140, DOI 10.1080/14786419.2013.778853 Moinuddin G, 2012, AVICENNA J PHYTOMEDI, V2, P72 Momin R, 2012, NAT PROD RES, V26, P416, DOI 10.1080/14786419.2010.495072 Monteiro AB, 2020, FOOD CHEM TOXICOL, V136, DOI 10.1016/j.fct.2019.111049 Mora S, 2006, J ETHNOPHARMACOL, V106, P76, DOI 10.1016/j.jep.2005.12.004 Mora S, 2005, PHARMACOL BIOCHEM BE, V82, P373, DOI 10.1016/j.pbb.2005.09.007 Mora S, 2005, J ETHNOPHARMACOL, V97, P191, DOI 10.1016/j.jep.2004.10.028 Morteza-Semnani K, 2007, PHARM BIOL, V45, P464, DOI 10.1080/13880200701389177 Mou Z, 2017, BIOMED PHARMACOTHER, V92, P962, DOI 10.1016/j.biopha.2017.05.119 Mousavi SZ, 2011, AVICENNA J PHYTOMEDI, V1, P57 Moylan S, 2013, MOL PSYCHIATR, V18, P595, DOI 10.1038/mp.2012.33 Muller LG, 2020, BEHAV PHARMACOL, V31, P333, DOI 10.1097/FBP.0000000000000534 Muller LG, 2015, J PHARM PHARMACOL, V67, P1008, DOI 10.1111/jphp.12396 Muller LG, 2012, PROG NEURO-PSYCHOPH, V36, P101, DOI 10.1016/j.pnpbp.2011.08.015 Mukherjeea PK, 2008, J ETHNOPHARMACOL, V120, P291, DOI 10.1016/j.jep.2008.09.009 Muszynska B, 2015, PSYCHIATR POL, V49, P435, DOI 10.12740/PP/29367 Nielsen ND, 2004, J ETHNOPHARMACOL, V94, P159, DOI 10.1016/j.jep.2004.05.013 Pan Y, 2007, PHARMACOL BIOCHEM BE, V87, P130, DOI 10.1016/j.pbb.2007.04.009 Panossian A, 2010, PHYTOMEDICINE, V17, P481, DOI 10.1016/j.phymed.2010.02.002 Parvathi M., 2013, Journal of Natural Remedies, V13, P19, DOI 10.18311/jnr/2013/113 Patro G, 2016, AVICENNA J PHYTOMEDI, V6, P696 Pedersen ME, 2008, J ETHNOPHARMACOL, V119, P542, DOI 10.1016/j.jep.2008.08.030 Pellegrini N, 2006, MOL NUTR FOOD RES, V50, P1030, DOI 10.1002/mnfr.200600067 Peng W, 2015, J ETHNOPHARMACOL, V164, P340, DOI 10.1016/j.jep.2015.02.010 Petit-Demouliere B, 2005, PSYCHOPHARMACOLOGY, V177, P245, DOI 10.1007/s00213-004-2048-7 Piato AL, 2008, J ETHNOPHARMACOL, V118, P300, DOI 10.1016/j.jep.2008.04.018 Piato AL, 2009, PHYTOTHER RES, V23, P519, DOI 10.1002/ptr.2664 Plushner SL, 2000, AM J HEALTH-SYST PH, V57, P328, DOI 10.1093/ajhp/57.4.328 Polyakova M, 2020, SCI REP-UK, V10, DOI 10.1038/s41598-020-71317-y Potdar VH, 2011, IRAN J BASIC MED SCI, V14, P478 Prasanth MI, 2019, NUTRIENTS, V11, DOI 10.3390/nu11020474 Qazi N, 2015, PAK J PHARM SCI, V28, P991 Rahman M R, 2017, MOJ CELL SCI REP, V4, P100 Rahmati B, 2017, PHARM BIOL, V55, P958, DOI 10.1080/13880209.2017.1285320 Rajabian A, 2019, EXPERT OPIN THER PAT, V29, P55, DOI 10.1080/13543776.2019.1556258 Rajput MA, 2017, METAB BRAIN DIS, V32, P743, DOI 10.1007/s11011-017-9963-x Rana Digvijay G, 2014, Ayu, V35, P90, DOI 10.4103/0974-8520.141949 Recio MC, 2016, PLANTA MED, V82, P952, DOI 10.1055/s-0042-107254 Ren LX, 2007, PHARMAZIE, V62, P78, DOI 10.1691/ph.2007.1.6630 Ren LX, 2006, BIOL PHARM BULL, V29, P2304, DOI 10.1248/bpb.29.2304 Rezaee R, 2013, IRAN J BASIC MED SCI, V16, P12 Rieger DK, 2014, J MOL RECOGNIT, V27, P746, DOI 10.1002/jmr.2401 Rieger DK, 2014, PHARMACOL BIOCHEM BE, V122, P53, DOI 10.1016/j.pbb.2014.03.008 Rios JL, 1996, PHYTOTHER RES, V10, P189, DOI 10.1002/(SICI)1099-1573(199605)10:3<189::AID-PTR754>3.0.CO;2-C Rodrigues ALS, 2002, LIFE SCI, V70, P1347, DOI 10.1016/S0024-3205(01)01498-9 Rojas P, 2011, NEUROCHEM INT, V59, P628, DOI 10.1016/j.neuint.2011.05.007 Rush AJ, 2006, AM J PSYCHIAT, V163, P1905, DOI 10.1176/appi.ajp.163.11.1905 Russo A, 2005, PHYTOMEDICINE, V12, P305, DOI 10.1016/j.phymed.2003.12.008 Sah SP, 2011, J ETHNOPHARMACOL, V135, P197, DOI 10.1016/j.jep.2011.02.018 Sairam K, 2002, PHYTOMEDICINE, V9, P207, DOI 10.1078/0944-7113-00116 Sakakibara H, 2008, BIOSCI BIOTECH BIOCH, V72, P94, DOI 10.1271/bbb.70454 Sakakibara H, 2006, BIOL PHARM BULL, V29, P1767, DOI 10.1248/bpb.29.1767 Sales AJ, 2018, PROG NEURO-PSYCHOPH, V86, P255, DOI 10.1016/j.pnpbp.2018.06.002 Sales AJ, 2019, MOL NEUROBIOL, V56, P1070, DOI 10.1007/s12035-018-1143-4 Samad N, 2018, METAB BRAIN DIS, V33, P271, DOI 10.1007/s11011-017-0159-1 Sanchez-Mateo CC, 2002, J ETHNOPHARMACOL, V79, P119, DOI 10.1016/S0378-8741(01)00393-2 Sanchez-Mateo CC, 2005, J ETHNOPHARMACOL, V97, P541, DOI 10.1016/j.jep.2004.12.019 Sanmukhani J, 2011, ACTA POL PHARM, V68, P769 Saraswathi V.S., 2011, INT J PHARM TECHNOL, V3, P1214 Sarris J, 2018, PHYTOTHER RES, V32, P1147, DOI 10.1002/ptr.6055 Sarris J, 2011, EUR NEUROPSYCHOPHARM, V21, P841, DOI 10.1016/j.euroneuro.2011.04.002 Sasaki K, 2013, BEHAV BRAIN RES, V238, P86, DOI 10.1016/j.bbr.2012.10.010 Schmidt M, 2007, WIEN MED WOCHENSCHR, V157, P315, DOI 10.1007/s10354-007-0428-4 da Silva AFS, 2006, PHARMACOL BIOCHEM BE, V85, P148, DOI 10.1016/j.pbb.2006.07.027 Sela VR, 2010, PHYTOMEDICINE, V17, P274, DOI 10.1016/j.phymed.2009.07.002 Senna MD, 2019, FRONT PHARMACOL, V10, DOI 10.3389/fphar.2019.00472 Seol GH, 2010, J ETHNOPHARMACOL, V130, P187, DOI 10.1016/j.jep.2010.04.035 Shah P C, 2006, Indian J Physiol Pharmacol, V50, P409 Shakeri A, 2016, J ETHNOPHARMACOL, V188, P204, DOI 10.1016/j.jep.2016.05.010 Sharma PK, 2016, INDIAN J EXP BIOL, V54, P664 Sharma V. K., 2009, International Journal of Phytomedicine, V1, P12 Shewale PB, 2012, INDIAN J PHARMACOL, V44, P454, DOI 10.4103/0253-7613.99303 Siddiqui MJ, 2018, J PHARM BIOALLIED SC, V10, P173, DOI [10.4103/jpbs.JPBS_83_18, 10.4103/JPBS.JPBS_83_18] Simpson T, 2015, EVID-BASED COMPL ALT, V2015, DOI 10.1155/2015/615384 Singh GK, 2009, PHARMACOL BIOCHEM BE, V91, P283, DOI 10.1016/j.pbb.2008.07.010 Song C, 2005, NEUROSCI BIOBEHAV R, V29, P627, DOI 10.1016/j.neubiorev.2005.03.010 Song JJ, 2015, CHEM-BIOL INTERACT, V242, P211, DOI 10.1016/j.cbi.2015.10.001 Sousa FCF, 2004, PHARMACOL BIOCHEM BE, V78, P27, DOI 10.1016/j.pbb.2004.01.019 Srivastav S, 2017, BIOMED PHARMACOTHER, V92, P856, DOI 10.1016/j.biopha.2017.05.137 Srivastava R, 2010, Pharmacogn Rev, V4, P200, DOI 10.4103/0973-7847.70919 Stafford GI, 2008, J ETHNOPHARMACOL, V119, P513, DOI 10.1016/j.jep.2008.08.010 Stein AC, 2012, BEHAV BRAIN RES, V228, P66, DOI 10.1016/j.bbr.2011.11.031 Stolz ED, 2012, PROG NEURO-PSYCHOPH, V39, P80, DOI 10.1016/j.pnpbp.2012.05.012 Sugimoto Y, 2015, J PHARM PHARMACOL, V67, P1716, DOI 10.1111/jphp.12473 Sugimoto Y, 2010, EUR J PHARMACOL, V634, P62, DOI 10.1016/j.ejphar.2010.02.016 Taiwo AE, 2012, INDIAN J PHARMACOL, V44, P189, DOI 10.4103/0253-7613.93846 Tao HX, 2019, MED RES REV, V39, P1779, DOI 10.1002/med.21564 Teng J, 2017, FOOD FUNCT, V8, P3311, DOI 10.1039/c7fo01045a The Plant List, WORK LIST ALL KNOWN TIRUPATHI H, 2016, INT J BASIC CLIN PHA, V5, P1949 Tomic M, 2005, PHARMACOL BIOCHEM BE, V81, P535, DOI 10.1016/j.pbb.2005.03.019 Umadevi P, 2011, INT J CURR PHARM RES, V3, P108 Valli M, 2015, BIOORG MED CHEM LETT, V25, P2247, DOI 10.1016/j.bmcl.2015.02.050 van Diermen D, 2009, J ETHNOPHARMACOL, V122, P397, DOI 10.1016/j.jep.2009.01.007 Vanaclocha B, 2003, FITOTERAPIA VADEMECU Vasconcelos AS, 2017, FUND CLIN PHARMACOL, V31, P481, DOI 10.1111/fcp.12299 Melo CTV, 2013, FUND CLIN PHARMACOL, V27, P104, DOI 10.1111/j.1472-8206.2011.00968.x VELRAJ M, 2009, DRUG INVESTIG TODAY, V1, P112 Viana A, 2005, NEUROPHARMACOLOGY, V49, P1042, DOI 10.1016/j.neuropharm.2005.06.002 Viana AF, 2008, J PSYCHOPHARMACOL, V22, P681, DOI 10.1177/0269881107082898 Viana AF, 2006, FUND CLIN PHARMACOL, V20, P507, DOI 10.1111/j.1472-8206.2006.00440.x Victoria FN, 2013, NEUROSCI LETT, V544, P105, DOI 10.1016/j.neulet.2013.03.054 Vilela FC, 2010, J MED FOOD, V13, P219, DOI 10.1089/jmf.2008.0303 Visentin APV, 2020, OXID MED CELL LONGEV, V2020, DOI 10.1155/2020/2972968 Wang GL, 2018, BRAIN RES, V1699, P44, DOI 10.1016/j.brainres.2018.05.035 Wang GL, 2017, J ETHNOPHARMACOL, V204, P118, DOI 10.1016/j.jep.2017.04.009 Wang GL, 2019, FRONT PHARMACOL, V10, DOI 10.3389/fphar.2019.01034 Wang JC, 2019, MOLECULES, V24, DOI 10.3390/molecules24061105 Wang QZ, 2021, PROG NEURO-PSYCHOPH, V104, DOI 10.1016/j.pnpbp.2020.110041 Wang R, 2008, EUR J PHARMACOL, V578, P43, DOI 10.1016/j.ejphar.2007.08.045 Wang WD, 2018, J AGR FOOD CHEM, V66, P265, DOI 10.1021/acs.jafc.7b04835 Wang WX, 2008, PROG NEURO-PSYCHOPH, V32, P1179, DOI 10.1016/j.pnpbp.2007.12.021 Weng LJ, 2019, PHYSIOL BEHAV, V204, P33, DOI 10.1016/j.physbeh.2019.02.010 Winterhalter P, 2000, FOOD REV INT, V16, P39, DOI 10.1081/FRI-100100281 Winterhoff H, 2003, MATURITAS, V44, pS51, DOI 10.1016/S0378-5122(02)00348-1 World Health Organization, 2017, WHOMSDMER20172 Wu FF, 2013, J ETHNOPHARMACOL, V148, P861, DOI 10.1016/j.jep.2013.05.026 Wu T, 2018, EVID-BASED COMPL ALT, V2018, DOI 10.1155/2018/5916451 Wurglics M, 2006, CLIN PHARMACOKINET, V45, P449, DOI 10.2165/00003088-200645050-00002 Xia CY, 2017, J ETHNOPHARMACOL, V208, P207, DOI 10.1016/j.jep.2017.06.031 Xie H, 2015, BMC COMPLEM ALTERN M, V15, DOI 10.1186/s12906-015-0747-8 Xie H, 2011, FITOTERAPIA, V82, P1086, DOI 10.1016/j.fitote.2011.07.006 Xie WJ, 2018, MOLECULES, V23, DOI 10.3390/molecules23040940 Xie WY, 2012, J ETHNOPHARMACOL, V141, P1, DOI 10.1016/j.jep.2012.02.003 Xu C, 2004, J ETHNOPHARMACOL, V91, P345, DOI 10.1016/j.jep.2004.01.012 Xu DW, 2017, NEUROSCI LETT, V645, P97, DOI 10.1016/j.neulet.2017.02.071 Xu LZ, 2018, INT J NEUROPSYCHOPH, V21, P499, DOI 10.1093/ijnp/pyy026 Xu LZ, 2017, INT J NEUROPSYCHOPH, V20, DOI 10.1093/ijnp/pyw088 Xu P, 2016, J ETHNOPHARMACOL, V194, P819, DOI 10.1016/j.jep.2016.09.023 Xu Q, 2008, BIOL PHARM BULL, V31, P1109, DOI 10.1248/bpb.31.1109 Xu Y, 2005, PHARMACOL BIOCHEM BE, V82, P200, DOI 10.1016/j.pbb.2005.08.009 Xu Y, 2007, BRAIN RES, V1162, P9, DOI 10.1016/j.brainres.2007.05.071 Yamaura K, 2012, PHARMACOGN RES, V4, P22, DOI 10.4103/0974-8490.91030 Yan B, 2004, PHARMACOL BIOCHEM BE, V78, P319, DOI 10.1016/j.pbb.2004.04.010 Yan HC, 2010, INT J NEUROPSYCHOPH, V13, P623, DOI 10.1017/S1461145709990733 Yan TX, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-07407-1 Yan TX, 2016, PSYCHIAT RES, V243, P135, DOI 10.1016/j.psychres.2016.06.037 Yan TX, 2016, FOOD FUNCT, V7, P2811, DOI 10.1039/c6fo00328a Yang SJ, 2014, PHARMACOL BIOCHEM BE, V124, P451, DOI 10.1016/j.pbb.2014.07.015 Yao CY, 2009, PHYTOMEDICINE, V16, P823, DOI 10.1016/j.phymed.2009.02.008 Ye L, 2012, J ETHNOPHARMACOL, V144, P683, DOI [10.1016/j.jep.2012.10.013, 10.1016/j.jep.2012.10.011] Yi LT, 2008, PROG NEURO-PSYCHOPH, V32, P510, DOI 10.1016/j.pnpbp.2007.10.005 Yi LT, 2012, J ETHNOPHARMACOL, V144, P328, DOI 10.1016/j.jep.2012.09.016 Zanelati TV, 2010, BRIT J PHARMACOL, V159, P122, DOI 10.1111/j.1476-5381.2009.00521.x Zanoli P, 2005, J ETHNOPHARMACOL, V102, P102, DOI 10.1016/j.jep.2005.05.040 Zeni ALB, 2013, J ETHNOPHARMACOL, V148, P914, DOI 10.1016/j.jep.2013.05.042 Zhan HD, 2016, J ETHNOPHARMACOL, V189, P361, DOI 10.1016/j.jep.2016.06.057 Zhang ED, 2012, CELL TRANSPLANT, V21, P2635, DOI 10.3727/096368912X655181 Zhang FH, 2019, J ETHNOPHARMACOL, V241, DOI 10.1016/j.jep.2019.111967 Zhang HL, 2018, BRAIN BEHAV, V8, DOI 10.1002/brb3.1127 Zhang JH, 2018, J ETHNOPHARMACOL, V213, P230, DOI 10.1016/j.jep.2017.10.028 Zhang JJ, 2019, INT J NEUROPSYCHOPH, V22, P585, DOI 10.1093/ijnp/pyz032 Zhang LJ, 2019, NEUROPSYCH DIS TREAT, V15, P3041, DOI 10.2147/NDT.S229296 Zhang RY, 2019, LIFE SCI, V221, P241, DOI 10.1016/j.lfs.2019.02.033 Zhang RY, 2018, NEUROCHEM RES, V43, P2111, DOI 10.1007/s11064-018-2635-3 Zhang YJ, 2012, PHYTOMEDICINE, V19, P1101, DOI 10.1016/j.phymed.2012.05.015 Zhang ZQ, 2002, PHARMACOL BIOCHEM BE, V72, P39, DOI 10.1016/S0091-3057(01)00730-4 Zhao G, 2009, EUR NEUROPSYCHOPHARM, V19, P749, DOI 10.1016/j.euroneuro.2009.06.009 Zhao LH, 2020, CLIN EXP PHARMACOL P, V47, P531, DOI 10.1111/1440-1681.13228 Zheng MZ, 2013, J ETHNOPHARMACOL, V147, P108, DOI 10.1016/j.jep.2013.02.015 Zheng MZ, 2012, PHYTOMEDICINE, V19, P145, DOI 10.1016/j.phymed.2011.06.029 Zhou D, 2010, PHARMACOL BIOCHEM BE, V94, P488, DOI 10.1016/j.pbb.2009.11.003 Zhou Y, 2018, BIOMED PHARMACOTHER, V99, P986, DOI 10.1016/j.biopha.2018.01.133 Zhu WL, 2012, PHARMACOL RES, V65, P74, DOI 10.1016/j.phrs.2011.09.007 Zirak N, 2019, J CELL PHYSIOL, V234, P8496, DOI 10.1002/jcp.27781 Zunszain Patricia A, 2013, Curr Top Behav Neurosci, V14, P135, DOI 10.1007/7854_2012_211 NR 399 TC 1 Z9 1 U1 11 U2 21 PU GEORG THIEME VERLAG KG PI STUTTGART PA RUDIGERSTR 14, D-70469 STUTTGART, GERMANY SN 0032-0943 EI 1439-0221 J9 PLANTA MED JI Planta Med. PD AUG PY 2021 VL 87 IS 09 BP 656 EP 685 DI 10.1055/a-1338-1011 EA JAN 2021 PG 30 WC Plant Sciences; Chemistry, Medicinal; Integrative & Complementary Medicine; Pharmacology & Pharmacy SC Plant Sciences; Pharmacology & Pharmacy; Integrative & Complementary Medicine GA TT8YS UT WOS:000607120100001 PM 33434941 OA Bronze DA 2021-10-15 ER PT J AU Li, F Duan, TY Li, YZ AF Li, Fang Duan, Tingyu Li, Yanzhong TI Effects of the Fungal Endophyte Epichloe festucae var. lolii on Growth and Physiological Responses of Perennial Ryegrass cv. Fairway to Combined Drought and Pathogen Stresses SO MICROORGANISMS LA English DT Article DE fungal endophyte; pathogen; soil water regime; plants growth; physiological responses ID ARBUSCULAR MYCORRHIZAL FUNGUS; VINIFERA L. LEAF; POWDERY MILDEW; TALL FESCUE; BLUMERIA-GRAMINIS; APOCYNUM-VENETUM; GAS-EXCHANGE; INFECTION; GRASSES; DISEASE AB Perennial ryegrass (Lolium perenne) is widely cultivated around the world for turf and forage. However, the plant is highly susceptible to disease and is sensitive to drought. The present study aims to determine the effect of the fungal endophyte Epichloe festucae var. lolii of perennial ryegrass on the combined stresses of drought and disease caused by Bipolaris sorokiniana in the greenhouse. In the experiment, plants infected (E+) or not infected (E-) with the fungal endophyte were inoculated with Bipolaris sorokiniana and put under different soil water regimes (30%, 50%, and 70%). The control treatment consisted of E+ and E- plants not inoculated with B. sorokiniana. Plant growth, phosphorus (P) uptake, photosynthetic parameters, and other physiological indices were evaluated two weeks after pathogen infection. The fungal endophyte in E+ plants increased P uptake, plant growth, and photosynthetic parameters but decreased the malondialdehyde concentration, proline content, and disease incidence of perennial ryegrass (p < 0.05). E+ plants had the lowest disease incidence at 70% soil water (p < 0.05). The study demonstrates that the fungal endophyte E. festucae var. lolii is beneficial for plant growth and stress tolerance in perennial ryegrass exposed to the combined stresses of drought and B. sorokiniana. C1 [Li, Fang; Duan, Tingyu; Li, Yanzhong] Lanzhou Univ, Key Lab Grassland Livestock Ind Innovat, Minist Agr & Rural Affairs, Lanzhou 730020, Peoples R China. [Li, Fang; Duan, Tingyu; Li, Yanzhong] Lanzhou Univ, State Key Lab Grassland Agroecosyst, Lanzhou 730020, Peoples R China. [Li, Fang; Duan, Tingyu; Li, Yanzhong] Lanzhou Univ, Engn Res Ctr Grassland Ind, Minist Educ, Lanzhou 730020, Peoples R China. [Li, Fang; Duan, Tingyu; Li, Yanzhong] Lanzhou Univ, Coll Pastoral Agr Sci & Technol, Lanzhou 730020, Peoples R China. RP Duan, TY (corresponding author), Lanzhou Univ, Key Lab Grassland Livestock Ind Innovat, Minist Agr & Rural Affairs, Lanzhou 730020, Peoples R China.; Duan, TY (corresponding author), Lanzhou Univ, State Key Lab Grassland Agroecosyst, Lanzhou 730020, Peoples R China.; Duan, TY (corresponding author), Lanzhou Univ, Engn Res Ctr Grassland Ind, Minist Educ, Lanzhou 730020, Peoples R China.; Duan, TY (corresponding author), Lanzhou Univ, Coll Pastoral Agr Sci & Technol, Lanzhou 730020, Peoples R China. EM lif2013@lzu.edu.cn; duanty@lzu.edu.cn; liyzh@lzu.edu.cn RI a, a·cŽ‰/AAC-8403-2021 FU China Agriculture Research System [CARS-22, CARS-34] FX This research was funded by the China Agriculture Research System (CARS-22 Green Manure, CARS-34 Forage). CR Alam SM, 1999, HDB PLANT CROP STRES, P285, DOI DOI 10.1201/9780824746728.CH12 Amalric C, 1999, PHOTOSYNTHETICA, V37, P107, DOI 10.1023/A:1007027131613 AYRES PG, 1976, J EXP BOT, V27, P1196, DOI 10.1093/jxb/27.6.1196 BEERS RF, 1952, J BIOL CHEM, V195, P133 CHANCE B, 1955, METHOD ENZYMOL, V2, P764, DOI 10.1016/S0076-6879(55)02300-8 CLARKE RG, 1994, NEW ZEAL J AGR RES, V37, P319, DOI 10.1080/00288233.1994.9513070 Clay K, 2004, NATURE, V427, P401, DOI 10.1038/427401a Clay K, 2002, AM NAT, V160, pS99, DOI 10.1086/342161 Craven KD, 2012, MOL ECOL, V21, P2562, DOI 10.1111/j.1365-294X.2012.05564.x Deng J, 2020, AUSTRALAS PLANT PATH, V49, P147, DOI 10.1007/s13313-020-00685-w Duan TY, 2011, SOIL BIOL BIOCHEM, V43, P571, DOI 10.1016/j.soilbio.2010.11.024 ELMI AA, 1995, NEW PHYTOL, V131, P61, DOI 10.1111/j.1469-8137.1995.tb03055.x Faeth SH, 2002, J CHEM ECOL, V28, P1511, DOI 10.1023/A:1019916227153 Florea S, 2015, CURRENT PROTOCOLS MI, V38, p19A11, DOI DOI 10.1002/9780471729259.MC19A01S38 Gao P, 2018, EUR J PLANT PATHOL, V150, P549, DOI 10.1007/s10658-017-1299-1 Guo YE, 2019, EUR J PLANT PATHOL, V154, P659, DOI 10.1007/s10658-019-01689-z Hamilton CE, 2012, FUNGAL DIVERS, V54, P1, DOI 10.1007/s13225-012-0158-9 HANSON WC, 1950, J SCI FOOD AGR, V1, P172, DOI 10.1002/jsfa.2740010604 Holzmann-Wirth A., 1993, P 3 INT C HARMF BENN, P65 Johnston-Monje D, 2011, COMPREHENSIVE BIOTECHNOLOGY, VOL 4: AGRICULTURAL AND RELATED BIOTECHNOLOGIES, 2ND EDITION, P713 Ju YL, 2018, PLANT PHYSIOL BIOCH, V130, P501, DOI 10.1016/j.plaphy.2018.07.036 JUNG GA, 1996, AGRON MONOGR, V34, P605 Li CJ, 2007, MYCOL RES, V111, P1220, DOI 10.1016/j.mycres.2007.08.012 Li F, 2019, SYMBIOSIS, V79, P151, DOI 10.1007/s13199-019-00633-3 Li F, 2018, MYCORRHIZA, V28, P159, DOI 10.1007/s00572-017-0813-9 Li HS, 2000, PRINCIPLE TECHNIQUES Liu H, 2017, MYCORRHIZA, V27, P791, DOI 10.1007/s00572-017-0794-8 Liu N, 2015, CROP PROT, V74, P150, DOI 10.1016/j.cropro.2015.05.001 Liu ZH, 2015, J PLANT REGIST, V9, P121, DOI 10.3198/jpr2014.01.0003crg Ma MZ, 2015, EUR J PLANT PATHOL, V141, P571, DOI 10.1007/s10658-014-0563-x Malinowski DP, 1999, J PLANT NUTR, V22, P835, DOI 10.1080/01904169909365675 Mitchell PJ, 2014, TREE PHYSIOL, V34, P443, DOI 10.1093/treephys/tpu014 Moriondo M, 2005, J PHYTOPATHOL, V153, P350, DOI 10.1111/j.1439-0434.2005.00984.x Muller CB, 2005, CURR OPIN PLANT BIOL, V8, P450, DOI 10.1016/j.pbi.2005.05.007 Nan Z. B., 1996, ACTA PRATACULTURAE S, V5, P1 [南志标 Nan Zhibiao], 2004, [生态学报, Acta Ecologica Sinica], V24, P605 Parthasarathi T., 2012, International Journal of Agronomy and Plant Production, V3, P241 Peng QQ, 2013, FUNGAL ECOL, V6, P83, DOI 10.1016/j.funeco.2012.08.001 Pinto LSRC, 2000, NEW PHYTOL, V147, P609, DOI 10.1046/j.1469-8137.2000.00722.x Reed KFM, 1996, NEW ZEAL J AGR RES, V39, P457, DOI 10.1080/00288233.1996.9513207 Rodriguez RJ, 2008, ISME J, V2, P404, DOI 10.1038/ismej.2007.106 Saifuddin M, 2012, LIFE SCI J, V9, P1509 Schardl CL, 2004, ANNU REV PLANT BIOL, V55, P315, DOI 10.1146/annurev.arplant.55.031903.141735 Smiley R.W., 1992, AM PHYTOPATHOLOGICAL Smith SE, 2011, PLANT PHYSIOL, V156, P1050, DOI 10.1104/pp.111.174581 Srinivasan K., 2010, Journal of Phytology, V2, P37 STARNES W. J., 1965, CROP SCI, V5, P9, DOI 10.2135/cropsci1965.0011183X000500010004x Tian P, 2008, EUR J PLANT PATHOL, V122, P593, DOI 10.1007/s10658-008-9329-7 Tian Z., 2017, THESIS Uddin W, 1999, Plant Dis, V83, P783, DOI 10.1094/PDIS.1999.83.8.783B Upadhyaya H., 2007, General and Applied Plant Physiology, V33, P83 Wang Dong-qing, 2012, Xibei Zhiwu Xuebao, V32, P1198 WHITE JF, 1985, MYCOLOGIA, V77, P487, DOI 10.2307/3793206 Wiewiora B, 2015, FUNGAL ECOL, V15, P1, DOI 10.1016/j.funeco.2015.01.004 Xia C, 2016, FUNGAL ECOL, V22, P26, DOI 10.1016/j.funeco.2016.04.002 Xia C, 2015, FUNGAL ECOL, V16, P26, DOI 10.1016/j.funeco.2015.02.003 Xu LX, 2017, EUR J HORTIC SCI, V82, P90, DOI [10.17660/eJHS.2017/82.2.4, 10.17660/ejhs.2017/82.2.4] Yordanov I, 2000, PHOTOSYNTHETICA, V38, P171, DOI 10.1023/A:1007201411474 Yu OY, 2017, ENVIRON PROG SUSTAIN, V36, P1474, DOI 10.1002/ep.12592 Zhang W, 2017, MYCOLOGIA, V109, P153, DOI 10.1080/00275514.2016.1277469 Zhang XX, 2015, NEW ZEAL J AGR RES, V58, P234, DOI 10.1080/00288233.2014.978874 Zhang YP, 2010, SEED SCI TECHNOL, V38, P522, DOI 10.15258/sst.2010.38.2.25 NR 62 TC 1 Z9 1 U1 5 U2 10 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND EI 2076-2607 J9 MICROORGANISMS JI Microorganisms PD DEC PY 2020 VL 8 IS 12 AR 1917 DI 10.3390/microorganisms8121917 PG 14 WC Microbiology SC Microbiology GA PK6AM UT WOS:000602525300001 PM 33276437 OA gold, Green Published DA 2021-10-15 ER PT J AU Xu, Q Yang, N Feng, S Guo, JF Liu, QB Hu, M AF Xu, Qian Yang, Nan Feng, Shuang Guo, Jianfei Liu, Qi-bing Hu, Ming TI Cost-effectiveness analysis of combining traditional Chinese medicine in the treatment of hypertension: compound Apocynum tablets combined with Nifedipine sustained-release tablets vs Nifedipine sustained-release tablets alone SO BMC COMPLEMENTARY MEDICINE AND THERAPIES LA English DT Article DE TCMs; Compound Apocynum tablets; Nifedipine sustained-release tablets; Blood pressure variability; Markov model; Cost-effectiveness analysis ID BLOOD-PRESSURE VARIABILITY; VISIT-TO-VISIT; PROGNOSTIC-SIGNIFICANCE; MYOCARDIAL-INFARCTION; POPULATION; CORONARY; QUALITY; STROKE; IMPACT; LIFE AB BackgroundWe evaluated the long-term cost-effectiveness of antihypertensive traditional Chinese medicines (TCMs) and to compare the cost-effectiveness of a combined treatment consisting of compound Apocynum tablets and Nifedipine sustained-release tablets with the cost-effectiveness of treatment with Nifedipine sustained-release tablets alone.MethodsA Markov model was used to simulate the potential incremental cost-effectiveness per quality-adjusted life year (QALY) to be gained from compound Apocynum tablets and Nifedipine sustained-release tablets compared with Nifedipine sustained-release tablets alone. Model parameter estimates were informed by previously published studies. The direct medical costs of outpatients with hypertension were estimated from the health care provider's perspective. A 5% annual discount rate was applied to both costs and QALYs.ResultsTCMs combined with Nifedipine sustained-release tablets group generated a total 20-year cost of 11,517.94 RMB (US $1739.87), whereas Nifedipine sustained-release tablets alone group resulted in a 20-year cost of 7253.71 RMB (US $1095.73). TCMs combined with Nifedipine sustained-release tablets group resulted in a generation of 12.69 QALYs, whereas Nifedipine sustained-release tablets alone group resulted in 12.50. The incremental cost-utility ratio was 22,443.32 RMB (US $3390.23) per QALY. Considering the threshold of 1 GDP per capita in China in 2018 (US $9764.95), the combination of compound Apocynum tablets and Nifedipine sustained-release tablets was a cost-effective strategy. One-way and probabilistic sensitivity analysis showed unchanged results over an acceptable range.ConclusionsCombining Traditional Chinese Medicines with chemical medicines is more cost-effective strategy in the treatment of hypertension. C1 [Xu, Qian; Yang, Nan; Feng, Shuang; Hu, Ming] Sichuan Univ, West China Sch Pharm, 17,Renmin South Rd,3rd Sect, Chengdu 610041, Sichuan, Peoples R China. [Guo, Jianfei] Univ Cincinnati, Med Ctr, Coll Pharm, Div Pharm Practice & Adm Sci, Cincinnati, OH 45267 USA. [Liu, Qi-bing] Hainan Med Univ, Sch Pharmaceut Sci, Dept Pharmacol, Haikou, Hainan, Peoples R China. RP Hu, M (corresponding author), Sichuan Univ, West China Sch Pharm, 17,Renmin South Rd,3rd Sect, Chengdu 610041, Sichuan, Peoples R China.; Liu, QB (corresponding author), Hainan Med Univ, Sch Pharmaceut Sci, Dept Pharmacol, Haikou, Hainan, Peoples R China. EM qibingliu@aliyun.com; huming@scu.edu.cn OI Hu, Ming/0000-0002-3637-4130 FU National Key R&D Program of China [2019YFC1709804]; Sichuan Administration of Traditional Chinese Medicine [2018ZC004]; Innovation and Talent Recruiting Program for Higher Education (The 111 Project) [B18035] FX This research has been supported by National Key R&D Program of China (Grant No. 2019YFC1709804), Sichuan Administration of Traditional Chinese Medicine (Project Number: 2018ZC004), Innovation and Talent Recruiting Program for Higher Education (The 111 Project; Project Number: B18035). CR Amirsadri M, 2015, DARU, V23, DOI 10.1186/s40199-015-0129-2 [Anonymous], 2017, CHIN J MED FRONT E Ara R, 2008, HEALTH TECHNOL ASSES, V12, pIII Chan L, 2016, INT J GEN MED, V9, P175, DOI 10.2147/IJGM.S102095 Chang KC, 2010, CLIN NEUROL NEUROSUR, V112, P296, DOI 10.1016/j.clineuro.2009.12.016 Chanthawong S, 2019, SUPPORT CARE CANCER, V27, P1109, DOI 10.1007/s00520-018-4400-1 Chen YY, 2013, CHIN J INTEGR MED Chen ZJ, 2014, NEW CHIN MED, V03, P52 Chiang FT, 2014, J FORMOS MED ASSOC, V113, P794, DOI 10.1016/j.jfma.2013.08.001 China Health and Family Planning Commission, 2013, CHIN HLTH STAT YB Chinese Society of Geriatrics Hypertension Branch, 2015, CHIN J CARDIOVASC ME, V20, P401 Cui LL, 2009, CHIN MED MODERN DIST, V06, P187 Dolan E, 2005, HYPERTENSION, V46, P156, DOI 10.1161/01.HYP.0000170138.56903.7a Eguchi K, 2012, AM J HYPERTENS, V25, P962, DOI 10.1038/ajh.2012.75 Fang XJ, 2010, CHIN J TRADIT CHIN M, V06, P936 Guoen L, 2020, CHINA GUIDELINES PHA Hua SY, 2017, HLTH EC RES, V10, P27 Ju MF, 2014, J CHENGDE MED COLL, P532 Kikuya M, 2000, HYPERTENSION, V36, P901, DOI 10.1161/01.HYP.36.5.901 Kim DW, 2000, J ETHNOPHARMACOL, V72, P53, DOI 10.1016/S0378-8741(00)00197-5 Luo JF, 2016, J PRACT TRAD CHIN IN, V10, P89 Meng LL, 2015, TRAD CHIN MED RES, V04, P68 [《单片复方制剂降压治疗中国专家共识》专家组 Panel of Chinese Expert Consensus on Ant], 2012, [中华高血压杂志, Chinese Journal of Hypertension], V20, P624 Parati G, 2013, NAT REV CARDIOL, V10, P143, DOI 10.1038/nrcardio.2013.1 Rothwell PM, 2010, LANCET NEUROL, V9, P469, DOI 10.1016/S1474-4422(10)70066-1 Rothwell PM, 2010, LANCET, V375, P895, DOI 10.1016/S0140-6736(10)60308-X Sega R, 2005, CIRCULATION, V111, P1777, DOI 10.1161/01.CIR.0000160923.04524.5B Stein J D, 2002, J Clin Hypertens (Greenwich), V4, P181, DOI 10.1111/j.1524-6175.2002.00970.x Stevens W, 2016, BMC HEALTH SERV RES, V16, DOI 10.1186/s12913-016-1420-8 Stolarz K, 2002, J HYPERTENS, V20, P2131, DOI 10.1097/00004872-200211000-00006 Sun Y, 2013, BMC NEUROL, V13, DOI 10.1186/1471-2377-13-133 Tai CH, 2015, J CLIN HYPERTENS, V17, P107, DOI 10.1111/jch.12484 Tangri N, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0180010 Verdecchia P, 2007, AM J HYPERTENS, V20, P154, DOI 10.1016/j.amjhyper.2006.07.017 Wang FQ, 2011, JILIN J TRADIT CHIN, V31, P149 Wu CX, 2014, EVID-BASED COMPL ALT, V2014, DOI 10.1155/2014/804171 Xinyu C, 2014, LIAONING J TRADIT CH, V41, P196 Yang F, 2020, CHIN J RATION DRUG U, V17, P36 Yang GH, 2013, LANCET, V381, P1987, DOI 10.1016/S0140-6736(13)61097-1 Yang Juan, 2019, Zhonghua Yufang Yixue Zazhi, V53, P1000, DOI 10.3760/cma.j.issn.0253-9624.2019.10.009 Yang SC, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0231413 Yikona JINM, 2002, J HYPERTENS, V20, P2173, DOI 10.1097/00004872-200211000-00016 Yixin G, 2013, J EMERG TRADIT CHIN, V22, P189 Zeng B, 2009, CHIN J ETHNOMED ETHN, P11 Zhang F, 2012, J ALTERN COMPLEM MED, V18, P1108, DOI 10.1089/acm.2011.0315 Zhu HJ, 2012, J TRADIT CHIN MED, V32, P529, DOI 10.1016/S0254-6272(13)60065-5 NR 46 TC 1 Z9 1 U1 3 U2 6 PU BMC PI LONDON PA CAMPUS, 4 CRINAN ST, LONDON N1 9XW, ENGLAND EI 2662-7671 J9 BMC COMPLEMENT MED JI BMC Complement. Med. Ther. PD NOV 5 PY 2020 VL 20 IS 1 AR 330 DI 10.1186/s12906-020-03091-3 PG 10 WC Integrative & Complementary Medicine SC Integrative & Complementary Medicine GA OU0ON UT WOS:000591236000001 PM 33153455 OA Green Published, gold DA 2021-10-15 ER PT J AU Yuan, N Li, MM Jia, CL AF Yuan, Na Li, Mimi Jia, Chunlin TI De novo transcriptome assembly and population genetic analyses of an important coastal shrub, Apocynum venetum L SO BMC PLANT BIOLOGY LA English DT Article DE Apocynum venetum L; Transcriptome; EST-SSR marker; Population genetics; Coastal wetland ID MICROSATELLITE MARKERS; HABITAT FRAGMENTATION; COMPUTER-PROGRAM; SSR-MARKERS; DIVERSITY; EST; DNA; CONSEQUENCES; INFERENCE; SOFTWARE AB BackgroundApocynum venetum L. is an important medicinal plant that is mainly distributed in the coastal areas and northwest of China. In addition to its high medical and economic value, its adaptation to saline-alkali and coastal saline lands makes A. venetum an ideal candidate for use in vegetation restoration. To date, the study of A. venetum has been limited in the northwest region of China, little attention has been paid to the genetic diversity and population structure of A. venetum populations in the coastal region. Here, we performed transcriptome sequencing of total RNA from A. venetum leaves and developed efficient expressed sequence tag-simple sequence repeat (EST-SSR) markers for analyzing the genetic diversity and population structure of A. venetum in the coastal region.ResultsA total of 86,890 unigenes were generated after de novo assembly, and 68,751 of which were successfully annotated by searching against seven protein databases. Furthermore, 14,072 EST-SSR loci were detected and 10,243 primer pairs were successfully designed from these loci. One hundred primer pairs were randomly selected and synthesized, twelve primer pairs were identified as highly polymorphic and further used for population genetic analysis. Population genetic analyses showed that A. venetum exhibited low level of genetic diversity (mean alleles per locus, N-A=3.3; mean expected heterozygosity, H-E=0.342) and moderate level of genetic differentiation among the populations (genetic differentiation index, F-ST=0.032-0.220) in the coastal region. Although the contemporary (mean m(c)=0.056) and historical (mean m(h)=0.106) migration rates among the six A. venetum populations were moderate, a decreasing trend over the last few generations was detected. Bayesian structure analysis clustered six populations into two major groups, and genetic bottlenecks were found to have occurred in two populations (QG, BH).ConclusionsUsing novel EST-SSR markers, we evaluated the genetic variation of A. venetum in the coastal region and determined conservation priorities based on these findings. The large dataset of unigenes and SSRs identified in our study, combining samples from a broader range, will support further research on the conservation and evolution of this important coastal plant and its related species. C1 [Yuan, Na] Jiangsu Acad Agr Sci, Prov Key Lab Agrobiol, Inst Crop Germplasm & Biotechnol, Nanjing, Peoples R China. [Li, Mimi] Inst Bot, Nanjing, Jiangsu, Peoples R China. [Li, Mimi] Chinese Acad Sci, Nanjing, Peoples R China. [Jia, Chunlin] Shandong Acad Agr Sci, Inst Agr & Sustainable Dev, Jinan, Peoples R China. RP Yuan, N (corresponding author), Jiangsu Acad Agr Sci, Prov Key Lab Agrobiol, Inst Crop Germplasm & Biotechnol, Nanjing, Peoples R China. EM thefuries@163.com FU Chinese National Natural Science FoundationNational Natural Science Foundation of China (NSFC) [31800312] FX This work was supported by Chinese National Natural Science Foundation (No. 31800312). The funding agency had no role in the design of the study and collection, analysis and interpretation of data or in writing the manuscript. CR Aguilar R, 2008, MOL ECOL, V17, P5177, DOI 10.1111/j.1365-294X.2008.03971.x Ashburner M, 2000, NAT GENET, V25, P25, DOI 10.1038/75556 Baastrup-Spohr L, 2015, J VEG SCI, V26, P619, DOI 10.1111/jvs.12280 Bai L, 2005, CHINESE WILD PLANT R, V24, P65 BAUR B, 1995, GAIA, V4, P221, DOI DOI 10.14512/GAIA.4.4.5 Beerli P, 2006, BIOINFORMATICS, V22, P341, DOI 10.1093/bioinformatics/bti803 Beerli P, 2001, P NATL ACAD SCI USA, V98, P4563, DOI 10.1073/pnas.081068098 Bizoux JP, 2009, MOL ECOL, V18, P4398, DOI 10.1111/j.1365-294X.2009.04365.x Boivin NL, 2016, P NATL ACAD SCI USA, V113, P6388, DOI 10.1073/pnas.1525200113 Bulleri F, 2010, J APPL ECOL, V47, P26, DOI 10.1111/j.1365-2664.2009.01751.x Buschiazzo E, 2006, BIOESSAYS, V28, P1040, DOI 10.1002/bies.20470 Castellarin SD, 2007, PLANT CELL ENVIRON, V30, P1381, DOI 10.1111/j.1365-3040.2007.01716.x Chabane K, 2005, GENET RESOUR CROP EV, V52, P903, DOI 10.1007/s10722-003-6112-7 Chan CO, 2015, ANTIOXIDANTS, V4, P359, DOI 10.3390/antiox4020359 [陈洪全 Chen Hongquan], 2016, [海洋湖沼通报, Transactions of Oceanology and Limnology], P43 Chen M, 2015, PLANT SYST EVOL, V301, P1735, DOI 10.1007/s00606-014-1192-8 Chen P, 2018, DATA BRIEF, V20, P1739, DOI 10.1016/j.dib.2018.08.207 Chen WS, 2016, BIOCHEM SYST ECOL, V65, P171, DOI 10.1016/j.bse.2016.02.005 Chen XY, 2008, FOREST ECOL MANAG, V256, P1143, DOI 10.1016/j.foreco.2008.06.014 Cho YG, 2000, THEOR APPL GENET, V100, P713, DOI 10.1007/s001220051343 Cornuet JM, 1996, GENETICS, V144, P2001 DIEFFENBACH CW, 1993, PCR METH APPL, V3, pS30 Dong ZJ, 1957, CHINESE SCI BULL, V19, P607 Doxa A, 2017, J ENVIRON MANAGE, V201, P425, DOI 10.1016/j.jenvman.2017.06.021 Earl DA, 2012, CONSERV GENET RESOUR, V4, P359, DOI 10.1007/s12686-011-9548-7 Evanno G, 2005, MOL ECOL, V14, P2611, DOI 10.1111/j.1365-294X.2005.02553.x Frankham R, 2005, BIOL CONSERV, V126, P131, DOI 10.1016/j.biocon.2005.05.002 Gao G, 2019, METABOLITES, V9, DOI 10.3390/metabo9120296 Gotz S, 2008, NUCLEIC ACIDS RES, V36, P3420, DOI 10.1093/nar/gkn176 Goudet J., 2001, FSTAT PROGRAM ESTIMA Govindaraj M, 2015, GENET RES INT, V2015, DOI 10.1155/2015/431487 Grabherr MG, 2011, NAT BIOTECHNOL, V29, P644, DOI 10.1038/nbt.1883 Gupta PK, 2003, MOL GENET GENOMICS, V270, P315, DOI 10.1007/s00438-003-0921-4 Hirai M, 2012, CONSERV GENET, V13, P837, DOI 10.1007/s10592-012-0333-2 Islam MS, 2014, PLANT SYST EVOL, V300, P1123, DOI 10.1007/s00606-013-0950-3 Kalinowski ST, 2007, MOL ECOL, V16, P1099, DOI 10.1111/j.1365-294X.2007.03089.x Kirigwi FM, 2008, GENET RESOUR CROP EV, V55, P105, DOI 10.1007/s10722-007-9218-5 Kumpatla SP, 2005, GENOME, V48, P985, DOI 10.1139/G05-060 Lande R, 1998, RES POPUL ECOL, V40, P259, DOI 10.1007/BF02763457 Li GQ, 2019, BIOSCIENCE REP, V39, DOI [10.1042/BSR20190146, 10.1042/bsr20190146] Li XT, 2018, BIOMED PHARMACOTHER, V100, P394, DOI 10.1016/j.biopha.2018.01.137 Liewlaksaneeyanawin C, 2004, THEOR APPL GENET, V109, P361, DOI 10.1007/s00122-004-1635-7 Lindenmayer D.B, 2013, HABITAT FRAGMENTATIO [刘志华 LIU Zhi-hua], 2009, [华北农学报, Acta Agriculturae Boreali-Sinica], V24, P84 [刘志华 LIU Zhi-hua], 2009, [中国草地学报, Chinese Journal of Grassland], V31, P96 Lowe AJ, 2015, HEREDITY, V115, P97, DOI 10.1038/hdy.2015.40 Luikart G, 1998, J HERED, V89, P238, DOI 10.1093/jhered/89.3.238 Martienssen RA, 2001, SCIENCE, V293, P1070, DOI 10.1126/science.293.5532.1070 Medail F, 1997, ANN MO BOT GARD, V84, P112, DOI 10.2307/2399957 Morgante M, 2002, NAT GENET, V30, P194, DOI 10.1038/ng822 Oksanen J., 2018, vegan: Community Ecology Package. R package version 2.5-1 Peng Xue-Mei, 2007, Bulletin of Botanical Research, V27, P302 [彭雪梅 Peng Xuemei], 2008, [南京师大学报. 自然科学版, Journal of Nanjing Normal University. Natural Science], V31, P92 Piry S, 1999, J HERED, V90, P502, DOI 10.1093/jhered/90.4.502 Pritchard JK, 2000, GENETICS, V155, P945 Rousset F, 2008, MOL ECOL RESOUR, V8, P103, DOI 10.1111/j.1471-8286.2007.01931.x Song YT, 2015, OPER MANAGE RES, V8, P1, DOI 10.1007/s12063-014-0096-7 Sork VL, 2006, LANDSCAPE ECOL, V21, P821, DOI 10.1007/s10980-005-5415-9 Spencer CC, 2000, MOL ECOL, V9, P1517, DOI 10.1046/j.1365-294x.2000.01031.x Stefanaki A, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0138414 Strickler SR, 2012, AM J BOT, V99, P257, DOI 10.3732/ajb.1100292 Taheri S, 2018, MOLECULES, V23, DOI 10.3390/molecules23020399 Tehrani MS, 2009, PLANT SYST EVOL, V282, P57, DOI 10.1007/s00606-009-0207-3 Temunovic M, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0042764 Thiel T, 2003, THEOR APPL GENET, V106, P411, DOI 10.1007/s00122-002-1031-0 Thompson TQ, 2019, P NATL ACAD SCI USA, V116, P177, DOI 10.1073/pnas.1811559115 van der Maarel E, 2003, PHYTOCOENOLOGIA, V33, P187, DOI 10.1127/0340-269X/2003/0033-0187 Van Oosterhout C, 2004, MOL ECOL NOTES, V4, P535, DOI 10.1111/j.1471-8286.2004.00684.x Wang Dong-qing, 2012, Xibei Zhiwu Xuebao, V32, P1198 Wang K, 2014, INT J BIOMATH, V7, DOI 10.1142/S1793524514500715 Wang R, 2011, MOL ECOL, V20, P4421, DOI 10.1111/j.1365-294X.2011.05293.x Ward JA, 2012, AM J BOT, V99, P267, DOI 10.3732/ajb.1100334 Wen Mingfu, 2010, BMC Res Notes, V3, P42, DOI 10.1186/1756-0500-3-42 Wilson GA, 2003, GENETICS, V163, P1177 Xie WY, 2012, J ETHNOPHARMACOL, V141, P1, DOI 10.1016/j.jep.2012.02.003 Ye J, 2006, NUCLEIC ACIDS RES, V34, pW293, DOI 10.1093/nar/gkl031 Young A, 1996, TRENDS ECOL EVOL, V11, P413, DOI 10.1016/0169-5347(96)10045-8 Zhang D, 2015, FRONTIERS CARDIOVASC, P3 Zhang Yong-Xia, 2007, Xibei Zhiwu Xuebao, V27, P2555 [赵玉凤 Zhao Yufeng], 2020, [草业科学, Pratacultural Science], V37, P743 NR 80 TC 1 Z9 1 U1 6 U2 9 PU BMC PI LONDON PA CAMPUS, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1471-2229 J9 BMC PLANT BIOL JI BMC Plant Biol. PD SEP 3 PY 2020 VL 20 IS 1 AR 408 DI 10.1186/s12870-020-02626-7 PG 15 WC Plant Sciences SC Plant Sciences GA NO7JN UT WOS:000569664400002 PM 32883231 OA Green Published, gold DA 2021-10-15 ER PT J AU Shen, J Yang, K Jiang, C Ma, XQ Zheng, MX Sun, CH AF Shen, Jie Yang, Kai Jiang, Cheng Ma, Xiao-qiong Zheng, Min-xia Sun, Cai-hua TI Development and application of a rapid HPLC method for simultaneous determination of hyperoside, isoquercitrin and eleutheroside E in Apocynum venetum L. and Eleutherococcus senticosus SO BMC CHEMISTRY LA English DT Article DE Hyperoside; Isoquercitrin; Eleutheroside E; Quality control ID ACANTHOPANAX-SENTICOSUS; 6 FLAVONOIDS; LEAVES; CONSTITUENTS; EXTRACTION; LUOBUMA; MS AB Apocynum venetum L. and Eleutherococcus senticosus have been used for hundreds of years to treat hypertension in China. In previous research, there was not a suitable quality control of method for the formulas of Apocynum venetum L. and Eleutherococcus senticosus. It is urgent and essential to develop modern analytical methods for Apocynum venetum L. and Eleutherococcus senticosus to ensure the quality of the formulas. A rapid approach for simultaneous determination of hyperoside, isoquercitrin and eleutheroside E in Apocynum venetum L. and Eleutherococcus senticosus by high-performance liquid chromatography with a diode array detector was described and validated. The full method validation, including the linearity, limits of detection and quantification, precision, repeatability, stability and recovery, was examined. All target components, including isomers of hyperoside and isoquercitrin, were baseline separated in 35 min. The developed method was sensitive, reliable and feasible. With this method, the optimal decoction conditions of Apocynum venetum L. and Eleutherococcus senticosus were selected, and their quality analysis was carried out. Furthermore, an herbal compatibility study of Apocynum venetum L. and Eleutherococcus senticosus based on detecting variations in the content of their active ingredients was performed by the developed HPLC method. It could be an alternative for the quantitative analysis of herbs that contain hyperoside, isoquercitrin or (and) eleutheroside E in the future. C1 [Shen, Jie; Ma, Xiao-qiong; Zheng, Min-xia; Sun, Cai-hua] Chinese Med Univ, Affiliated Hosp Zhejiang 1, 54 Youdian Rd, Hangzhou 310006, Zhejiang, Peoples R China. [Yang, Kai] Zhejiang Univ, Med Sch, Affiliated Hosp 1, Hangzhou 310003, Zhejiang, Peoples R China. [Jiang, Cheng] Tongde Hosp Zhejiang Prov, Dept Pharm, Hangzhou 310012, Zhejiang, Peoples R China. RP Sun, CH (corresponding author), Chinese Med Univ, Affiliated Hosp Zhejiang 1, 54 Youdian Rd, Hangzhou 310006, Zhejiang, Peoples R China. EM slightsusu@163.com FU Traditional Chinese Medical Science and Technology Projects of Zhejiang Province [2016ZQ017, 2015ZB044]; Clinical Pharmacy Research Fund of Chinese Integrative Medicine Association of Zhejiang Province [2013LYSX018]; Public Service Technology Research Project of Zhejiang Province of China [2016C33127]; Zhejiang Province Traditional Chinese medicine (integration of Chinese and Western Medicine) key discipline identification and processing of traditional Chinese medicine [2017-xk-b01] FX This work was financially supported by the Traditional Chinese Medical Science and Technology Projects of Zhejiang Province [No. 2016ZQ017 and No. 2015ZB044], the Clinical Pharmacy Research Fund of Chinese Integrative Medicine Association of Zhejiang Province [No. 2013LYSX018], the projects were responsible by the author Jie Shen who was in the design of the study; collection, analysis and interpretation of data; and in writing the manuscript. The work was financially supported by the Public Service Technology Research Project of Zhejiang Province of China [No. 2016C33127] which was responsible by the author Cheng Jiang. This work was also financially supported by Zhejiang Province Traditional Chinese medicine (integration of Chinese and Western Medicine) key discipline identification and processing of traditional Chinese medicine (No. 2017-xk-b01) which was responsible by the author Min-xia Zheng. CR Ahn J, 2013, EVID-BASED COMPL ALT, V2013, DOI 10.1155/2013/934183 An HJ, 2013, J PHARMACEUT BIOMED, V85, P295, DOI 10.1016/j.jpba.2013.07.005 Butterweck V, 2001, BIOL PHARM BULL, V24, P848, DOI 10.1248/bpb.24.848 Cao YH, 2003, ANAL BIOANAL CHEM, V376, P691, DOI 10.1007/s00216-003-1961-7 Chan CO, 2015, ANTIOXIDANTS, V4, P359, DOI 10.3390/antiox4020359 Davydov M, 2000, J ETHNOPHARMACOL, V72, P345, DOI 10.1016/S0378-8741(00)00181-1 Deyama T, 2001, ACTA PHARMACOL SIN, V22, P1057 [樊如强 Fan Ruqiang], 2014, [中草药, Chinese Traditional and Herbal Drugs], V45, P260 [韩利文 HAN Liwen], 2008, [中草药, Chinese Traditional and Herbal Drugs], V39, P591 Jung CH, 2014, FOOD SCI BIOTECHNOL, V23, P889, DOI 10.1007/s10068-014-0119-z Kim DW, 2000, J ETHNOPHARMACOL, V72, P53, DOI 10.1016/S0378-8741(00)00197-5 Kwan CY, 2005, CLIN EXP PHARMACOL P, V32, P789, DOI 10.1111/j.1440-1681.2005.04255.x Liang TG, 2010, INT J MOL SCI, V11, P4452, DOI 10.3390/ijms11114452 Piao XL, 2009, ARCH PHARM RES, V32, P1689, DOI 10.1007/s12272-009-2204-z [石秋梅 Shi Qiumei], 2014, [中草药, Chinese Traditional and Herbal Drugs], V45, P1326 Shibano M, 2008, J NAT MED-TOKYO, V62, P349, DOI 10.1007/s11418-008-0244-1 Shirai Mutsuko, 2005, J Med Invest, V52 Suppl, P249, DOI 10.2152/jmi.52.249 Song RJ, 2015, J CHROMATOGR B, V995, P8, DOI 10.1016/j.jchromb.2015.05.019 Takahashi Y, 2014, PHYTOTHER RES, V28, P1513, DOI 10.1002/ptr.5157 Weng SH, 2007, CURR THER RES CLIN E, V68, P280, DOI 10.1016/j.curtheres.2007.08.004 Xie WY, 2012, J ETHNOPHARMACOL, V141, P1, DOI 10.1016/j.jep.2012.02.003 Yang L, 2013, FOOD CHEM, V141, P2426, DOI 10.1016/j.foodchem.2013.05.094 Yokozawa T, 2004, FOOD CHEM TOXICOL, V42, P975, DOI 10.1016/j.fct.2004.02.010 Zheng MZ, 2012, PHYTOMEDICINE, V19, P145, DOI 10.1016/j.phymed.2011.06.029 [周春玲 ZHOU Chun-ling], 2009, [药物分析杂志, Chinese Journal of Pharmaceutical Analysis], V29, P1001 Zhou CL, 2011, CHROMATOGRAPHIA, V73, P353, DOI 10.1007/s10337-010-1879-0 Zhou J, 2015, J PHARMACEUT BIOMED, V107, P273, DOI 10.1016/j.jpba.2015.01.003 NR 27 TC 1 Z9 1 U1 4 U2 17 PU BMC PI LONDON PA CAMPUS, 4 CRINAN ST, LONDON N1 9XW, ENGLAND EI 2661-801X J9 BMC CHEM JI BMC Chem. PD MAY 2 PY 2020 VL 14 IS 1 AR 35 DI 10.1186/s13065-020-00687-1 PG 10 WC Chemistry, Multidisciplinary SC Chemistry GA LL5FS UT WOS:000531583900001 PM 32391523 OA gold, Green Published DA 2021-10-15 ER PT J AU Lou, JT Yao, L Qiu, YP Lin, HY Kuang, Y Qi, SH AF Lou, Jianting Yao, Lan Qiu, Yiping Lin, Huoyue Kuang, Ye Qi, Sihao TI The chemical degumming process and effect on the composition, structure and properties of Apocynum venetum SO TEXTILE RESEARCH JOURNAL LA English DT Article DE Apocynum venetum; degumming; chemical composition; mechanical properties ID MECHANICAL-PROPERTIES; FIBERS AB Apocynum venetum (AV) is a kind of rare wild plant with a strong capability for survival in the world and is named the "the king of wild fiber." As AV bast fibers have defects due to natural and operational interventions, it is difficult to degum them thoroughly. In this study, chemical degumming was applied to obtain degummed fibers for further treatment. The details of degumming were provided and the necessary characterizations of the degummed fibers were tested and analyzed. The average length of AV fiber was 29.68 mm, concentrated in the range of 10-50 mm, which was suitable for blending with cotton, wool, etc. In addition, the fineness of AV fibers was 4673.25 Nm. From the results of color data, AV fibers were reddish yellow. Scanning electron microscopy results showed that the degummed single AV fiber had a certain number of nodes distributing randomly on the surface. The Fourier transform infrared spectrum showed that the peaks associating with the pectin, hemicellulose and lignin decreased significantly, indicating the effectiveness of the chemical degumming. In addition, the AV bast fibers and AV fibers had strong abilities in absorbing water moisture with regains of 11.56% and 8.7%, respectively. For the mechanical properties, the degummed AV fibers had a similar modulus of 401.56 cN/dtex to that of ramie fibers. The X-ray diffraction results indicated that after degumming, the crystalline structure was more obvious. These results provided the necessary basis for studying the structures of AV bast and degummed fibers and provided preparation for further fiber mat reinforced composites. C1 [Lou, Jianting; Yao, Lan; Qiu, Yiping; Lin, Huoyue; Kuang, Ye; Qi, Sihao] Donghua Univ, Coll Text, 2999 North Renmin Rd, Shanghai 201620, Peoples R China. RP Yao, L (corresponding author), Donghua Univ, Coll Text, 2999 North Renmin Rd, Shanghai 201620, Peoples R China. EM yaolan@dhu.edu.cn OI Yao, Lan/0000-0002-9307-5487 CR Abdelhameed RM, 2017, FUEL PROCESS TECHNOL, V159, P306, DOI 10.1016/j.fuproc.2017.02.001 Chen Mingyan, 2006, THESIS Emam HE, 2016, INT J BIOL MACROMOL, V84, P308, DOI 10.1016/j.ijbiomac.2015.12.042 Emam HE, 2015, FIBER POLYM, V16, P1676, DOI 10.1007/s12221-015-5197-x Gao SH, 2015, THERM SCI, V19, P1279, DOI 10.2298/TSCI1504279G Gu Q, 2017, SILK, V54, P11 [顾秦榕 Gu Qinrong], 2017, [丝绸, Journal of Silk], V54, P11 Han G, 2005, J QINGDAO U ENG TECH, V20, P57 Han GT, 2008, CARBOHYD POLYM, V72, P652, DOI 10.1016/j.carbpol.2007.10.002 Huang R, 2005, DYEING, V31, P5 Krishna SH, 2000, BIOPROCESS ENG, V22, P467, DOI 10.1007/s004490050760 Lan H.Y., 2009, SHANGHAI MAO HEMP TE, V3, P1 Li H, 2013, INT TEXT GUIDE, V41, P10 Li MH, 2010, FIBER POLYM, V11, P48, DOI 10.1007/s12221-010-0048-2 Li X.X., 2015, THESIS [李月萍 Li Yueping], 2017, [东北林业大学学报, Journal of North-East Forestry University], V45, P44 [黎征帆 Li Zhengfan], 2015, [东华大学学报. 自然科学版, Journal of Donghua University. Natural Science Edition], V41, P288 Ma H, 2017, PLANT FIBER SCI CHIN, V39, P146 Ma L, 2010, WOOL TEXTILE J, V38, P17 Shaheen TI, 2018, INT J BIOL MACROMOL, V107, P1599, DOI 10.1016/j.ijbiomac.2017.10.028 Song Y, 2017, J TEXT I, V108, P1762, DOI 10.1080/00405000.2017.1285200 Su D., 2017, THESIS Sun K, 2016, HUNAN AGR SCI, V12, P115 Tagawa T, 2010, ENG FRACT MECH, V77, P327, DOI 10.1016/j.engfracmech.2009.02.009 Wang K, 2014, THESIS, P11 Wang LL, 2007, CARBOHYD POLYM, V69, P391, DOI 10.1016/j.carbpol.2006.12.028 Wei C, 2013, CHINA FIBER INSPECT, V11, P85 [吴红玲 Wu Hongling], 2004, [兰州理工大学学报, Journal of Gansu University of Technology], V30, P76 Xie WY, 2012, J ETHNOPHARMACOL, V141, P1, DOI 10.1016/j.jep.2012.02.003 Xu GT, 2000, SPECTROSC SPECT ANAL, V20, P134 Xu Z, 2018, ACTA BOT SIN, V53, P97 Yang F, 2016, J DALIAN POLYTECH U, V35, P217 Yao Y, 2012, J SUSTAIN CEM-BASED, V1, P2, DOI 10.1080/21650373.2012.732917 [俞春华 YU Chunhua], 2006, [纺织学报, Journal of Textile Research], V27, P80 Zhang S, 2000, CHINA WILD PLANT RES, V4, P1 Zhao HB, 2007, CARBOHYD POLYM, V68, P235, DOI 10.1016/j.carbpol.2006.12.013 Zhao Y, 2017, J DALIAN POLYTECH U, V36, P46 Zhou JJ, 2017, FIBER POLYM, V18, P1891, DOI 10.1007/s12221-017-6489-0 1989, J SICHUAN NORMAL U N, V4, P87 NR 39 TC 1 Z9 1 U1 5 U2 32 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0040-5175 EI 1746-7748 J9 TEXT RES J JI Text. Res. J. PD JAN PY 2020 VL 90 IS 1 BP 3 EP 9 DI 10.1177/0040517519850833 PG 7 WC Materials Science, Textiles SC Materials Science GA JW2FT UT WOS:000502874300001 DA 2021-10-15 ER PT J AU Halim, AFMF Lv, ZY Chen, YD Ma, MB Liu, HF Zhou, WL AF Halim, A. F. M. Fahad Lv, Zongyu Chen Yida Ma Mingbo Liu, Haifeng Zhou, Wenlong TI Fidelity of new chemical degumming method for obtaining superior properties of Bast fiber from Apocynum venetum SO TEXTILE RESEARCH JOURNAL LA English DT Article DE Apocynum venetum; bast fiber; pretreatment; chemical degumming; properties ID ALUMINUM SULFATE; IONS BINDING; CALCIUM-IONS; PERFORMANCE; SELECTIVITY; REMOVAL; CATIONS; PECTIN; WATER; L. AB Bast fibers from Apocynum venetum (A. venetum) have the potential to be a natural cellulose textile fiber similar to jute and ramie. In this study, endeavors were made to extract fiber from the bast of A. venetum using a new chemical degumming method (Fiber-N) instead of traditional acid pretreatment and alkali degumming. Traditional chemical degumming (Fiber-C) has certain disadvantages, such as the use of acid for pretreatment and prolonged high-temperature cooking, which causes severe fiber damage and is also an environmental hazard. To overcome these limitations, it is essential to find a new chemical degumming method. Fibers obtained by the new method (Fiber-N) and the traditional method (Fiber-C) were characterized by X-ray diffraction, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), residual gum content, fiber yield, and mechanical property measurement. Compared with Fiber-C, 2 h of the new degumming method (2 h Fiber-N) exhibited 15.15% lower residual gum content, 48.5% higher breaking strength, 22.15% higher breaking elongation, and 27.27% higher fiber yield along with substantial savings of water and energy, 22.22% and 60.75% respectively. Furthermore, SEM images of the Fiber-N process fibers showed a smooth surface with no impurities, indicating that the Fiber-N process is simpler, efficient, and could be a superior method of extracting fibers from the bast of A. venetum. C1 [Halim, A. F. M. Fahad; Lv, Zongyu; Chen Yida; Ma Mingbo; Zhou, Wenlong] Zhejiang Sci Tech Univ, Dept Text Mat, Hangzhou, Zhejiang, Peoples R China. [Liu, Haifeng] China Colored Cotton Grp Co Ltd, Shanghai, Peoples R China. RP Zhou, WL (corresponding author), Zhejiang Sci Tech Univ, Hangzhou 310018, Peoples R China. EM wzhou@zstu.edu.cn OI Rabby, Fahad/0000-0002-4112-7900 CR Axelos MAV, 1996, PROGR BIOTECHNOL, V14, P35, DOI 10.1016/S0921-0423(96)80244-9 Bergmann D, 2008, INT J BIOL MACROMOL, V43, P245, DOI 10.1016/j.ijbiomac.2008.06.001 Berl WG, 1951, PHYS METHODS CHEM AN Berljand S, 1950, AGROTECHNOLOGY KENDI Bunsell A.R., 2009, HDB TENSILE PROPERTI Cave ID, 1997, WOOD SCI TECHNOL, V31, P225, DOI 10.1007/s002260050030 CHANG SL, 1958, AM J PUBLIC HEALTH N, V48, P159, DOI 10.2105/AJPH.48.2.159 Cui YN, 2019, PLANT PHYSIOL BIOCH, V135, P489, DOI 10.1016/j.plaphy.2018.11.011 Das Gupta P. C., 1976, CELL CHEM TECHNOL, V10, P285 Dronnet VM, 1996, CARBOHYD POLYM, V30, P253, DOI 10.1016/S0144-8617(96)00107-5 Durig J R, 1981, VIBRATIONAL SPECTRA Ganjyal GM, 2004, J APPL POLYM SCI, V93, P2627, DOI 10.1002/app.20843 GARNIER C, 1994, CARBOHYD RES, V256, P71, DOI 10.1016/0008-6215(94)84228-0 Ghaheh FS, 2014, J CLEAN PROD, V72, P139, DOI 10.1016/j.jclepro.2014.02.050 Hakkinen S, 1998, J CHROMATOGR A, V829, P91, DOI 10.1016/S0021-9673(98)00756-0 Han X, 2006, MAOFANG KEJI, V2, P33 Harane RS, 2014, INT J ENERGY ENVIR E, V5, DOI 10.1007/s40095-014-0096-2 HINDELEH AM, 1971, J PHYS D APPL PHYS, V4, P259, DOI 10.1088/0022-3727/4/2/311 HINDELEH AM, 1980, TEXT RES J, V50, P667, DOI 10.1177/004051758005001106 Kim DW, 2000, J ETHNOPHARMACOL, V72, P53, DOI 10.1016/S0378-8741(00)00197-5 Kinniburgh DG, 1999, COLLOID SURFACE A, V151, P147, DOI 10.1016/S0927-7757(98)00637-2 Kuljanin TA, 2014, HEM IND, V68, P89, DOI 10.2298/HEMIND121214032K Kundu PK, 1996, INDIAN J FIBRE TEXT, V21, P205 Li H., 2006, SHANDONG FANGZHI JIN, V134, P80 Li MH, 2010, FIBER POLYM, V11, P48, DOI 10.1007/s12221-010-0048-2 Li X.X., 2015, THESIS Liu Z., 2002, PLANT FIBRE PRODUCTS, V24, P30 Lou J, TEXT RES J Meredith R., 1956, MECH PROPERTIES TEXT Meridith R, 1945, J TEXT I, V36, pT107 Pearce EM, 1985, HDB FIBER SCI TECHNO Pinotti A, 2001, WASTE MANAGE, V21, P535, DOI 10.1016/S0956-053X(00)00110-0 Reddy N, 2005, GREEN CHEM, V7, P190, DOI 10.1039/b415102j Robson R, 1998, HDB FIBER CHEM, P415 Segal L., 1959, TEXT RES J, V29, P786, DOI 10.1177/004051755902901003 Shan XH, 2011, ADV MATER RES-SWITZ, V332-334, P11, DOI 10.4028/www.scientific.net/AMR.332-334.11 Silverstein R.M., 1998, SPECTROMETRIC IDENTI, V6th Song Y, 2017, J TEXT I, V108, P1762, DOI 10.1080/00405000.2017.1285200 Sun RC, 1996, J APPL POLYM SCI, V62, P1473 Tang X. Q., 2008, QINGHAI AGR, V17, P48 Thevs N, 2012, J APPL BOT FOOD QUAL, V85, P159 Wang HM, 2003, TEXT RES J, V73, P664, DOI 10.1177/004051750307300802 Wang LL, 2007, CARBOHYD POLYM, V69, P391, DOI 10.1016/j.carbpol.2006.12.028 [王兴国 Wang Xinguo], 2004, [中国粮油学报, Journal of the Chinese Cereals and Oils Association], V19, P67 Wang ZZ, 2012, 2012 FIFTH INTERNATIONAL CONFERENCE ON BUSINESS INTELLIGENCE AND FINANCIAL ENGINEERING (BIFE), P200, DOI 10.1109/BIFE.2012.50 Wei C., 2004, PINZHI XINGNENG FENX, V9, P25 Weiming Z, 2006, CHINESE WILD PLANT R, V4, P33 Wicker L, 2014, FOOD HYDROCOLLOID, V42, P251, DOI 10.1016/j.foodhyd.2014.01.002 Wiedmer SK, 2000, ELECTROPHORESIS, V21, P3212, DOI 10.1002/1522-2683(20000901)21:15<3212::AID-ELPS3212>3.0.CO;2-N [吴红玲 Wu Hongling], 2004, [兰州理工大学学报, Journal of Gansu University of Technology], V30, P76 Xie WY, 2012, J ETHNOPHARMACOL, V141, P1, DOI 10.1016/j.jep.2012.02.003 Zhang Y-m, 2005, PLANT FIBER PROD, V2, P81 Zhou Y, 2008, DESALINATION, V225, P301, DOI 10.1016/j.desal.2007.07.010 1989, J SICHUAN NORMAL U N, V4, P87 NR 54 TC 1 Z9 1 U1 2 U2 19 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0040-5175 EI 1746-7748 J9 TEXT RES J JI Text. Res. J. PD JUN PY 2020 VL 90 IS 11-12 BP 1342 EP 1353 AR 0040517519888828 DI 10.1177/0040517519888828 EA NOV 2019 PG 12 WC Materials Science, Textiles SC Materials Science GA LW3VE UT WOS:000499537800001 DA 2021-10-15 ER PT J AU Lan, YR Li, T Duan, TY Gao, P AF Lan, Yanru Li, Tao Duan, TingYu Gao, Peng TI Effects of pappus removal and low-temperature short-term storage on interspecific and intraspecific variation in seed germination of Luobuma SO SEED SCIENCE AND TECHNOLOGY LA English DT Article DE intraspecific; interspecific; low-temperature storage; Luobuma; pappus ID APOCYNUM-VENETUM L.; SIZE AB Seed germination rarely occurs in Luobuma (Apocynum venetum, Poacynum pictum and P. hendersonii) under natural conditions. The present study was conducted to assess interspecific and intraspecific variation in seed germination and the effect of pappus removal and low-temperature short-term storage on seed germination of Luobuma. The study identified significant differences in germination percentage, germination index, time to 50% germination, bud length and root length between three Luobuma species Apocynum venetum, Poacynum pictum and P. hendersonii, and between six ecotypes of P. pictum. The highest seed germination percentage was recorded in A. venetum (> 90%) followed by P. pictum (53-66%), while the lowest was recorded in P. hendersonii (26-34%). Among the different ecotypes of P. pictum, Pp-BMX recorded the highest seed germination percentage, while Pp-BMQ recorded the lowest. In addition, the intraspecific variation in germination was considerably more than the interspecific variation under different treatments. Pappus removal increased the germination percentage of Luobuma seeds, which indicates that pappus acts as a mechanical barrier to germination. Low temperature significantly reduced (P < 0.05) the time to 50% germination of A. venetum and P. hendersonii seeds compared with seeds with and without pappus. C1 [Lan, Yanru; Li, Tao; Duan, TingYu] Minist Agr & Rural Affairs, State Key Lab Grassland Agroecosyst, Lanzhou 730020, Gansu, Peoples R China. [Lan, Yanru; Li, Tao; Duan, TingYu] Minist Agr & Rural Affairs, Key Lab Grassland Livestock Ind Innovat, Lanzhou 730020, Gansu, Peoples R China. [Lan, Yanru; Li, Tao; Duan, TingYu] Lanzhou Univ, Coll Pastoral Agr Sci & Technol, Lanzhou 730020, Gansu, Peoples R China. [Gao, Peng] Shanxi Agr Univ, Coll Anim Sci & Vet Med, Taigu 030801, Shanxi, Peoples R China. RP Duan, TY (corresponding author), Minist Agr & Rural Affairs, State Key Lab Grassland Agroecosyst, Lanzhou 730020, Gansu, Peoples R China.; Duan, TY (corresponding author), Minist Agr & Rural Affairs, Key Lab Grassland Livestock Ind Innovat, Lanzhou 730020, Gansu, Peoples R China.; Duan, TY (corresponding author), Lanzhou Univ, Coll Pastoral Agr Sci & Technol, Lanzhou 730020, Gansu, Peoples R China. EM duanty@lzu.edu.cn RI a, a·cŽ‰/AAC-8403-2021 FU Key Project of Science and Technology Department of Xinjiang Autonomous Region, China [2016E02015, 2016A03006] FX We acknowledge the financial support from Key Project of Science and Technology Department of Xinjiang Autonomous Region, China (2016E02015, 2016A03006). CR BELLAIRS SM, 1990, AUST J BOT, V38, P451, DOI 10.1071/BT9900451 Bewley JD, 2013, SEED SCI RES, V23, DOI [10.1017/S0960258513000287, DOI 10.1017/S0960258513000287] Chu J. H, 2007, J BAICHENG NORMAL CO, V6, P14 Cony MA, 1996, J ARID ENVIRON, V33, P225, DOI 10.1006/jare.1996.0058 Du R. X, 2018, EFFECTS DIFFERENT TR Farooq M, 2005, J INTEGR PLANT BIOL, V47, P187, DOI 10.1111/j.1744-7909.2005.00031.x Feng JK, 2018, PLASMA SCI TECHNOL, V20, DOI 10.1088/2058-6272/aa9b27 Fenner M., 1991, Seed Science Research, V1, P75, DOI 10.1017/S0960258500000696 Miguel MF, 2017, AM J BOT, V104, P1323, DOI 10.3732/ajb.1700266 Gao Peng, 2015, Acta Botanica Boreali-Occidentalia Sinica, V35, P2069 Hua Y. L, 2017, DISPERSAL ABILITY PR Jiang Y., 1977, CHINA BOT RECORDS, V63 Keiffer CH, 1997, AM J BOT, V84, P104, DOI 10.2307/2445887 Khan MA, 1996, ANN BOT-LONDON, V78, P547, DOI 10.1006/anbo.1996.0159 Loha A, 2009, EUPHYTICA, V165, P189, DOI 10.1007/s10681-008-9806-2 [卢妮妮 Lu Nini], 2015, [东北林业大学学报, Journal of North-East Forestry University], V43, P12 Ma J., 2000, ACTA BOT BOREALI-OCC, V20, P476 NYKIFORUK CL, 1994, CROP SCI, V34, P1047, DOI 10.2135/cropsci1994.0011183X003400040039x Qian X. S., 2016, CHINESE WILD PLANT R, V35, P78 Rong YP, 2015, J APPL BOT FOOD QUAL, V88, P202, DOI 10.5073/JABFQ.2015.088.029 Sreenivasulu Y, 2009, SEED SCI TECHNOL, V37, P10, DOI 10.15258/sst.2009.37.1.02 Sreenivasulu Y, 1999, J PLANT PHYSIOL, V155, P159, DOI 10.1016/S0176-1617(99)80002-9 Thevs N, 2012, J APPL BOT FOOD QUAL, V85, P159 Wang Ju-Hong, 2007, Zhiwu Shengtai Xuebao, V31, P1037 Xie WY, 2012, J ETHNOPHARMACOL, V141, P1, DOI 10.1016/j.jep.2012.02.003 Yamauchi Y., 2004, PLANT CELL, V16 Zhang W. M., 2006, CHINESE WILD PLANT R, V26, P11 Zhang XD, 2011, J PLANT ECOL, V4, P169, DOI 10.1093/jpe/rtq025 Zhang ZJ, 2004, LIFE SCI, V75, P1659, DOI 10.1016/j.lfs.2004.04.014 苏红文, 1997, 西北植物学报, V17, P348 NR 30 TC 1 Z9 1 U1 0 U2 15 PU ISTA-INT SEED TESTING ASSOC PI BASSERSDORF PA ZUERICHSTR 50, PO BOX 308, CH-8303 BASSERSDORF, SWITZERLAND SN 0251-0952 EI 1819-5717 J9 SEED SCI TECHNOL JI Seed Sci. Technol. PD APR PY 2019 VL 47 IS 1 BP 13 EP 24 DI 10.15258/sst.2019.47.1.02 PG 12 WC Agronomy; Plant Sciences; Horticulture SC Agriculture; Plant Sciences GA HV6KT UT WOS:000466093000002 OA gold DA 2021-10-15 ER PT J AU Chen, P Gao, G Yu, CM Chen, JK Chen, KM Zhu, AG AF Chen, Ping Gao, Gang Yu, Chunming Chen, Jikang Chen, Kunmei Zhu, Aiguo TI Data set for transcriptome analysis of Apocynum venetum L. SO DATA IN BRIEF LA English DT Article; Data Paper AB In this paper, we present the transcriptome profiles of the A. venetum L. by RNA-Seq approach. A total of 6.57 Gb raw data were obtained, and 52,983 unigenes with an average length of 1009 bp and N50 of 1632 bp were annotated with the 7 databases. The unigenes annotated to KEGG database were divided into 21 categories from 6 main groups. Among these, 4952 (22.21%) unigenes were clustered to "Global and overview maps", and 1834 (8.23%) unigenes were clustered to "Carbohydrate metabolism". In addition, 6340 unigenes containing 7579 SSRs were identified and the mononucleotide, dinucleotide, trinucleotide motifs were the most common motif type (95.59%), accounting for 39.62%, 36.02%, and 19.95%, respectively. (C) 2018 The Authors. Published by Elsevier Inc. C1 [Chen, Ping; Gao, Gang; Yu, Chunming; Chen, Jikang; Chen, Kunmei; Zhu, Aiguo] Chinese Acad Agr Sci, Inst Bast Fiber Crops, Changsha 410205, Hunan, Peoples R China. RP Zhu, AG (corresponding author), Chinese Acad Agr Sci, Inst Bast Fiber Crops, Changsha 410205, Hunan, Peoples R China. EM zhuaiguo@caas.cn FU Agricultural Science and Technology Innovation Project of Chinese [CAAS-ASTIP-2018] FX This research work was supported by the "Agricultural Science and Technology Innovation Project of Chinese (CAAS-ASTIP-2018)". CR Berglund L, 2005, NATURAL FIBERS, BIOPOLYMERS, AND BIOCOMPOSITES, P807 Ellegren H, 2004, NAT REV GENET, V5, P435, DOI 10.1038/nrg1348 Grabherr MG, 2011, NAT BIOTECHNOL, V29, P644, DOI 10.1038/nbt.1883 Pertea G, 2003, BIOINFORMATICS, V19, P651, DOI 10.1093/bioinformatics/btg034 Xie WY, 2012, J ETHNOPHARMACOL, V141, P1, DOI 10.1016/j.jep.2012.02.003 Xiong QB, 2000, PLANTA MED, V66, P127, DOI 10.1055/s-2000-11135 NR 6 TC 1 Z9 1 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2352-3409 J9 DATA BRIEF JI Data Brief PD OCT PY 2018 VL 20 BP 1739 EP 1744 DI 10.1016/j.dib.2018.08.207 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA HA4OK UT WOS:000450242200253 PM 30271870 OA gold, Green Published DA 2021-10-15 ER PT J AU Begmatov, NB Bobakulov, KM Xin, XL Aisa, HA AF Begmatov, N. B. Bobakulov, Kh. M. Xin, Xuelei Aisa, H. A. TI Low-Molecular-Weight Compounds from Flowers of Apocynum lancifolium SO CHEMISTRY OF NATURAL COMPOUNDS LA English DT Article C1 [Begmatov, N. B.; Xin, Xuelei; Aisa, H. A.] Chinese Acad Sci, Xinjiang Tech Inst Phys & Chem, Key Lab Chem Plant Resources Arid Reg, Urumqi 830011, Peoples R China. [Begmatov, N. B.] Chinese Acad Sci, Grad Univ, Beijing 100049, Peoples R China. [Bobakulov, Kh. M.] Uzbek Acad Sci, S Yu Yunusov Inst Chem Plant Subst, Tashkent 100170, Uzbekistan. RP Begmatov, NB (corresponding author), Chinese Acad Sci, Xinjiang Tech Inst Phys & Chem, Key Lab Chem Plant Resources Arid Reg, Urumqi 830011, Peoples R China. EM khayrulla@rambler.ru; haji@ms.xjb.ac.cn RI Bobakulov, Khayrulla/G-7325-2016 OI Bobakulov, Khayrulla/0000-0001-8924-4279 FU Program for International Collaboration and Exchange of the Chinese National Foundation for Natural Sciences [31110103908]; International Scientific-Technical Collaboration of Xinjiang-Uyghur Autonomous Region [20126023]; Central Asia Research Center for Drug Development of the Chinese Academy of Sciences FX The work was supported by the Program for International Collaboration and Exchange of the Chinese National Foundation for Natural Sciences (No. 31110103908), International Scientific-Technical Collaboration of Xinjiang-Uyghur Autonomous Region (No. 20126023), and the Central Asia Research Center for Drug Development of the Chinese Academy of Sciences. CR Begmatov NB, 2014, CHEM NAT COMPD+, V50, P541, DOI 10.1007/s10600-014-1009-6 Bernard FX, 1997, ANTIMICROB AGENTS CH, V41, P992, DOI 10.1128/AAC.41.5.992 da Silva I, 2011, J PHARM SCI-US, V100, P1588, DOI 10.1002/jps.22379 Endringer DC, 2007, ACTA CRYSTALLOGR E, V63, pO1067, DOI 10.1107/S1600536806037019 Ichimura K, 1999, BIOSCI BIOTECH BIOCH, V63, P189, DOI 10.1271/bbb.63.189 Lee EJ, 2010, FOOD CHEM, V120, P134, DOI 10.1016/j.foodchem.2009.09.088 Liu ZL, 2004, B KOREAN CHEM SOC, V25, P1078 NR 7 TC 1 Z9 1 U1 1 U2 14 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0009-3130 EI 1573-8388 J9 CHEM NAT COMPD+ JI Chem. Nat. Compd. PD DEC PY 2014 VL 50 IS 6 BP 1116 EP 1117 DI 10.1007/s10600-014-1176-5 PG 2 WC Chemistry, Medicinal; Chemistry, Organic SC Pharmacology & Pharmacy; Chemistry GA AU7HL UT WOS:000345771400038 DA 2021-10-15 ER PT J AU Norman, F Martin, CE AF Norman, F Martin, CE TI Ecophysiological responses to neighbor removal in an old-field and a prairie in northeastern Kansas, USA SO PHOTOSYNTHETICA LA English DT Article DE Ambrosia trifida; Apocynum cannabinum; Aster pilosus; competition; Eryngium yuccifolium; Lespedeza capitata; photosynthesis; Solidago canadensis; stomatal conductance; water potential ID PLANT COMMUNITY; WATER RELATIONS; STOMATAL CONDUCTANCE; PHOTOSYNTHETIC RATE; COMPETITION; GROWTH; MECHANISMS; GRASSES AB An ecophysiological approach was used to determine if competition can be detected among plants in a recently abandoned old-field and in a native tallgrass prairie in northeastern Kansas. In situ photosynthetic parameters and water potentials (Psi) of target plants were measured 1-2 d after neighbor (intra- and interspecific) removal as well as 1-4 weeks later, and compared with values for plants with neighbors. Only two of the six study species (four old-field and two prairie species) responded to removal of neighboring plants, and only after several weeks had elapsed. Net photosynthetic rates (P-N) and stomatal conductances (g(s)) of Ambrosia trifida in an old-field increased after removal of both intra- and interspecific neighbors. For Apocynum cannabinum, another old-field species, P-N of target plants without neighbors was significantly higher than that of target plants with neighbors. For both these species, values of Psi were not different between target plants with and without neighbors, suggesting that increased availability of nutrients may have been responsible for the observed ecophysiological responses. Though numerous past studies indicate that competition is a major factor influencing plants in old-field and in prairie communities, the experimental approach used in this study revealed that neighbor removal had only limited effects on ecophysiology of the target plants in either community. C1 Univ Kansas, Dept Bot, Lawrence, KS 66045 USA. RP Martin, CE (corresponding author), Univ Kansas, Dept Bot, Lawrence, KS 66045 USA. CR ALLEN EB, 1976, ECOLOGY, V57, P1233, DOI 10.2307/1935047 ARMESTO JJ, 1986, VEGETATIO, V66, P85 BOWMAN DMJS, 1986, AUST J BOT, V34, P81, DOI 10.1071/BT9860081 CLEMENTS FE, 1929, PLANT COMPETITION DANTONIO CM, 1991, AM J BOT, V78, P885, DOI 10.2307/2445167 DWYER DON D., 1958, JOUR RANGE MANAGEMENT, V11, P115, DOI 10.2307/3893711 EHLERINGER JR, 1984, OECOLOGIA, V63, P153, DOI 10.1007/BF00379871 FONTEYN PJ, 1978, NATURE, V275, P544, DOI 10.1038/275544a0 FONTEYN PJ, 1981, J ECOL, V69, P883, DOI 10.2307/2259643 FOWLER N, 1986, ANNU REV ECOL SYST, V17, P89, DOI 10.1146/annurev.es.17.110186.000513 Gibson DJ, 1996, PHOTOSYNTHETICA, V32, P503 GOLDBERG DE, 1987, ECOLOGY, V68, P1211, DOI 10.2307/1939205 GOLDBERG DE, 1992, AM NAT, V139, P771, DOI 10.1086/285357 HARTNETT DC, 1993, AM J BOT, V80, P1114, DOI 10.2307/2445538 Holmgren Milena, 1997, Ecology (Washington D C), V78, P1966, DOI 10.1890/0012-9658(1997)078[1966:TIOFAC]2.0.CO;2 MILLER TE, 1987, ECOLOGY, V68, P1201, DOI 10.2307/1939204 NORMAN F, 1994, PHOTOSYNTHETICA, V30, P361 NORMAN FJ, 1989, THESIS U KANSAS LAWR PINDER JE, 1975, ECOLOGY, V56, P747, DOI 10.2307/1935513 PRICE DT, 1986, CAN J FOREST RES, V16, P90, DOI 10.1139/x86-015 Rice E.L., 1974, ALLELOPATHY ROBBERECHT R, 1983, OECOLOGIA, V60, P21, DOI 10.1007/BF00379315 Sokal R.R., 1981, BIOMETRY, VSecond SUCOFF E, 1974, FOREST SCI, V20, P25 TILMAN D, 1994, ECOLOGY, V75, P2, DOI 10.2307/1939377 VANAUKEN OW, 1994, AM J BOT, V81, P15, DOI 10.2307/2445557 WANG JR, 1995, FOREST ECOL MANAG, V73, P177, DOI 10.1016/0378-1127(94)03489-J WEDIN D, 1993, ECOL MONOGR, V63, P199, DOI 10.2307/2937180 WILSON SD, 1995, ECOLOGY, V76, P1169, DOI 10.2307/1940924 NR 29 TC 1 Z9 1 U1 0 U2 10 PU INST EXPERIMENTAL BOTANY, ACAD SCI CZECH REPUBLIC PI PRAGUE 6 PA NA KARLOVCE 1A, PRAGUE 6 CS-160 00, CZECH REPUBLIC SN 0300-3604 J9 PHOTOSYNTHETICA JI Photosynthetica PY 1999 VL 36 IS 3 BP 471 EP 476 DI 10.1023/A:1007040506838 PG 6 WC Plant Sciences SC Plant Sciences GA 225TQ UT WOS:000081979400015 DA 2021-10-15 ER PT J AU Plowright, CMS Plowright, RC AF Plowright, CMS Plowright, RC TI Floral use by two sympatric bumble bee species (Bombus terricola and Bombus ternarius): Efficiency considerations SO CANADIAN ENTOMOLOGIST LA English DT Article ID SEED-SET; BEHAVIOR; CONSTRAINTS; MORPHOLOGY; VISITATION; HONEYBEES; CHOICE; NECTAR AB The purpose of this study was to explain a peculiarity of resource use by two sympatric bumble bee species. In one study area, pronounced resource partitioning was observed: Bombus terricola Kirby was confined to Asclepias syriaca L. and Bombus ternarius Say to Apocynum androsaemifolium L., and yet in another area both species frequented Apocynum. Measurements of floral characteristics and forager behaviour on Apocynum led to an hypothesis regarding floral use by two bumble bee species: B. terricola is relatively inefficient at flying between flowers, and so tends to visit Apocynum only in areas where the plants are closely spaced. Half of the patch of Apocynum was clipped so as to decrease flower density, with the expectation that, as a result, the frequency of B. terricola relative to B. ternarius would be reduced. The prediction was confirmed. The results underscore the role of context in floral use by bees. C1 Univ Ottawa, Sch Psychol, Ottawa, ON K1N 6N5, Canada. Univ Toronto, Dept Zool, Toronto, ON M5S 1A1, Canada. RP Plowright, CMS (corresponding author), Univ Ottawa, Sch Psychol, Ottawa, ON K1N 6N5, Canada. CR BAKER RJ, 1978, GLIM SYSTEM DUKAS R, 1993, ANIM BEHAV, V46, P637, DOI 10.1006/anbe.1993.1240 HARDER LD, 1985, ECOLOGY, V66, P198, DOI 10.2307/1941320 Heinrich, 1979, BUMBLEBEE EC HEINRICH B, 1976, ECOLOGY, V57, P874, DOI 10.2307/1941054 INOUYE DW, 1978, ECOLOGY, V59, P672, DOI 10.2307/1938769 INOUYE DW, 1980, OECOLOGIA, V45, P197, DOI 10.1007/BF00346460 JENNERSTEN O, 1988, J ECOL, V76, P1111, DOI 10.2307/2260638 KUNIN WE, 1993, ECOLOGY, V74, P2145, DOI 10.2307/1940859 LAVERTY TM, 1980, CAN J ZOOL, V58, P1324, DOI 10.1139/z80-184 LAVERTY TM, 1985, OECOLOGIA, V66, P25, DOI 10.1007/BF00378548 LAVERTY TM, 1994, ANIM BEHAV, V47, P531, DOI 10.1006/anbe.1994.1077 MCCULLAGH P, 1989, GENERALIZED LINEAR M MEDLER JOHN T., 1962, ANN ENTOMOL SOC AMER, V55, P212 Morse D. H., 1982, Social insects. Vol. III, P245 MORSE DH, 1978, INSECT SOC, V25, P365, DOI 10.1007/BF02224300 OLROYD B, 1992, J APICULT RES, V31, P3 PELLMYR O, 1988, ANN ENTOMOL SOC AM, V81, P792, DOI 10.1093/aesa/81.5.792 Plowright CMS, 1997, CAN ENTOMOL, V129, P51, DOI 10.4039/Ent12951-1 PLOWRIGHT RC, 1984, ANNU REV ENTOMOL, V29, P175, DOI 10.1146/annurev.en.29.010184.001135 Roubik DW., 1989, ECOLOGY NATURAL HIST SCHMIDHEMPEL P, 1985, BEHAV ECOL SOCIOBIOL, V17, P61, DOI 10.1007/BF00299430 SCHMIDHEMPEL P, 1987, J ANIM ECOL, V56, P209, DOI 10.2307/4810 YDENBERG RC, 1994, BEHAV ECOL, V5, P28, DOI 10.1093/beheco/5.1.28 NR 24 TC 1 Z9 1 U1 2 U2 11 PU ENTOMOL SOC CANADA PI OTTAWA PA 393 WINSTON AVE, OTTAWA, ONTARIO K2A 1Y8, CANADA SN 0008-347X J9 CAN ENTOMOL JI Can. Entomol. PD SEP-OCT PY 1998 VL 130 IS 5 BP 595 EP 601 DI 10.4039/Ent130595-5 PG 7 WC Entomology SC Entomology GA 136RR UT WOS:000076873400004 DA 2021-10-15 ER PT J AU Zhang, LX Yu, ZY Wang, HY Jiang, L Zhan, YG Fan, GZ AF Zhang, Lixiang Yu, Zhong Yang Wang, Haiyan Jiang, Li Zhan, Ya Guang Fan, Gui Zhi TI Flavonoid production and antioxidative activity in liquid-cultured hairy roots of Apocynum venetum SO JOURNAL OF PLANT BIOCHEMISTRY AND BIOTECHNOLOGY LA English DT Article; Early Access DE Apocynum venetum; Hairy roots; Liquid culture; Flavonoid ID PHENOLIC-COMPOUNDS; L. AB Apocynum venetum is a traditional and popular Chinese herb used for medicine and tea, and its major bioactive components is flavonoid. This study aimed to analyze the flavonoid production and antioxidative activity of the hairy roots under 250 mL shake flask and 3 L bubble bioreactor cultivation. Agrobacterium rhizogenes strain Ar.1193 was used to induce hairy roots at the wounding site of Apocynum venetum stems, and a 69.17% genetic transformation rate was noted. Hairy roots with the most vigorous growth were selected to analyze growth and flavonoid production over one complete growth cycle (30 d). The dry weight of the roots increased tenfold, flavonoid contents peaked at 25 d under shake flask and bioreactor cultivation, and the flavonoid content of roots in the bioreactor was 43.97% higher than that of roots in the shake flask. The flavonoid content and antioxidative activity of liquid-cultured hairy roots were significantly higher than those of field-planted roots, tissue-cultured plant roots, and callus. Moreover, a total of 117 flavonoids were detected in hairy roots. The results of the present study highlight hairy roots of Apocynum venetum could serve as an alternative to whole plants and may be used for the large-scale production of flavonoid. C1 [Zhang, Lixiang; Wang, Haiyan] Heilongjiang Univ, Coll Modern Agr & Ecol Environm, Harbin 150000, Peoples R China. [Yu, Zhong Yang; Zhan, Ya Guang; Fan, Gui Zhi] Northeast Forestry Univ, Minist Educ, Key Lab Saline Alkali Vegetat Ecol Restorat, Harbin 150040, Peoples R China. [Jiang, Li] Chinese Acad Sci, Xinjiang Inst Ecol & Geog, State Key Lab Desert & Oasis Ecol, Urumqi 830011, Peoples R China. RP Fan, GZ (corresponding author), Northeast Forestry Univ, Minist Educ, Key Lab Saline Alkali Vegetat Ecol Restorat, Harbin 150040, Peoples R China. EM gzf325@126.com FU Foundation of State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences [G2018-02-07]; Heilongjiang Natural Science Foundation of ChinaNatural Science Foundation of Heilongjiang Province [C2016005] FX This work was supported by the Foundation of State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences (G2018-02-07), Heilongjiang Natural Science Foundation of China (C2016005). CR An HJ, 2013, J PHARMACEUT BIOMED, V85, P295, DOI 10.1016/j.jpba.2013.07.005 Banerjee S, 2012, BIOTECHNOL ADV, V30, P461, DOI 10.1016/j.biotechadv.2011.08.010 Cong LH, 2015, PHYTOCHEMISTRY, V115, P70, DOI 10.1016/j.phytochem.2015.01.001 Grzegorczyk-Karolak I, 2018, IND CROP PROD, V117, P235, DOI 10.1016/j.indcrop.2018.03.014 Gupta R, 2016, PROTOPLASMA, V253, P1145, DOI 10.1007/s00709-015-0875-5 Hosu A, 2014, FOOD CHEM, V150, P113, DOI 10.1016/j.foodchem.2013.10.153 Hu M, 2019, IND CROP PROD, V137, P98, DOI 10.1016/j.indcrop.2019.05.024 Jia Haiyan, 2008, Sheng Wu Gong Cheng Xue Bao, V24, P1723, DOI 10.1016/S1872-2075(08)60071-0 Jiang L, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-44623-3 Kim Y, 2002, IN VITRO CELL DEV-PL, V38, P1, DOI 10.1079/IVP2001243 Kong NN, 2014, NAT PROD RES, V28, P928, DOI 10.1080/14786419.2014.886205 Ma M, 2003, J AGR FOOD CHEM, V51, P2390, DOI 10.1021/jf021055i Patra N, 2016, PLANT CELL REP, V35, P143, DOI 10.1007/s00299-015-1875-9 Santos PAG, 2005, PLANT SCI, V168, P1089, DOI 10.1016/j.plantsci.2004.12.009 Srivastava S, 2012, BIOPROC BIOSYST ENG, V35, P1549, DOI 10.1007/s00449-012-0745-x Srivastava S, 2012, APPL BIOCHEM BIOTECH, V166, P365, DOI 10.1007/s12010-011-9430-9 Thiruvengadam M, 2016, SCI HORTIC-AMSTERDAM, V198, P132, DOI 10.1016/j.scienta.2015.11.035 Verma PC, 2015, PLANT SIGNAL BEHAV, V10, DOI 10.1080/15592324.2015.1023976 Weremczuk-Jezyna I, 2016, IND CROP PROD, V91, P125, DOI 10.1016/j.indcrop.2016.07.002 Xie WY, 2012, J ETHNOPHARMACOL, V141, P1, DOI 10.1016/j.jep.2012.02.003 [徐宗昌 Xu Zongchang], 2018, [植物学报, Chinese Bulletin of Botany], V53, P382 Yoon JY, 2015, S AFR J BOT, V100, P80, DOI 10.1016/j.sajb.2015.05.008 You Xiang-ling, 2011, ACTA BOTANICA BOREALI-OCCIDENTALIA SINICA, V31, P1700 Zhang R, 2015, BIOTECHNOL LETT, V37, P2091, DOI 10.1007/s10529-015-1889-y Zhang W, 2018, J PHYSIOL BIOCHEM, V74, P301, DOI 10.1007/s13105-018-0618-0 Zhang YC, 2012, MED CHEM RES, V21, P1684, DOI 10.1007/s00044-011-9668-3 Zidorn C, 2018, PHYTOCHEM REV, V17, P923, DOI 10.1007/s11101-018-9570-4 NR 27 TC 0 Z9 0 U1 0 U2 0 PU SPRINGER INDIA PI NEW DELHI PA 7TH FLOOR, VIJAYA BUILDING, 17, BARAKHAMBA ROAD, NEW DELHI, 110 001, INDIA SN 0971-7811 EI 0974-1275 J9 J PLANT BIOCHEM BIOT JI J. Plant Biochem. Biotechnol. DI 10.1007/s13562-021-00707-8 EA SEP 2021 PG 7 WC Biochemistry & Molecular Biology; Plant Sciences SC Biochemistry & Molecular Biology; Plant Sciences GA UU6DG UT WOS:000698887800001 DA 2021-10-15 ER PT J AU Halim, AFMF AF Halim, A. F. M. Fahad TI Extraction and characterization of microcrystalline cellulose from Apocynum venetum SO INDIAN JOURNAL OF FIBRE & TEXTILE RESEARCH LA English DT Article DE Apocynum venetum; Bast fibre; Degumming; Microcrystalline cellulose ID FIBERS AB In this work, cellulose microcrystal has been isolated from Apocynum venetum (AV) through acid hydrolysis. In addition, the properties of microcrystalline cellulose (MCC-N) extracted from AV are compared with those of commercially available microcrystalline cellulose (MCC-C). The characterizations of MCCs are studied by X-ray diffraction, Fourier transforms infrared spectroscopy, scanning electron microscopy, thermo gravimetric analyzer, and Zeta potential. As compared to MCC-C, MCC-N unveil more crystallinity percentage, fewer impurities, and comparable thermal stability without modifying the chemical composition of the sample. Besides, SEM images demonstrate rough surface and slight aggregation of extracted MCC from AV. Extracted MCC from AV can be possibly utilized as a reinforcement in green composites or hydrophilic micro composites as well as a source for AV fibre derived nanocellulose. Moreover, MCC-N can also be used in food, cosmetics, and medical industries. EM fahadrabbyzstu@yahoo.com CR Adel AM, 2010, BIORESOURCE TECHNOL, V101, P4446, DOI 10.1016/j.biortech.2010.01.047 Berljand S, 1950, AGROTECHNOLOGY KENDI Chuayjuljit S, 2010, WASTE MANAGE RES, V28, P109, DOI 10.1177/0734242X09339324 Cui YN, 2019, PLANT PHYSIOL BIOCH, V135, P489, DOI 10.1016/j.plaphy.2018.11.011 Durig J R, 1981, VIBRATIONAL SPECTRA Elanthikkal S, 2010, CARBOHYD POLYM, V80, P852, DOI 10.1016/j.carbpol.2009.12.043 Fan M, 2012, FOUR TRANSF MAT ANAL, P45, DOI 10.5772/35482 Neto WPF, 2013, IND CROP PROD, V42, P480, DOI 10.1016/j.indcrop.2012.06.041 Ganjyal GM, 2004, J APPL POLYM SCI, V93, P2627, DOI 10.1002/app.20843 Haafiz MKM, 2013, CARBOHYD POLYM, V93, P628, DOI 10.1016/j.carbpol.2013.01.035 Hakkinen S, 1998, J CHROMATOGR A, V829, P91, DOI 10.1016/S0021-9673(98)00756-0 Han Ju, 2004, P 83 TIWC, V1, P24 Hou WS, 2019, INT J BIOL MACROMOL, V123, P363, DOI 10.1016/j.ijbiomac.2018.11.112 Hussin MH, 2016, INT J BIOL MACROMOL, V92, P11, DOI 10.1016/j.ijbiomac.2016.06.094 Islam JMM, 2017, J COMPOS MATER, V51, P31, DOI 10.1177/0021998316636455 Jahan MS, 2011, CELLULOSE, V18, P451, DOI 10.1007/s10570-010-9481-z Jonoobi M, 2011, CELLULOSE, V18, P1085, DOI 10.1007/s10570-011-9546-7 Kian LK, 2017, INT J BIOL MACROMOL, V103, P931, DOI 10.1016/j.ijbiomac.2017.05.135 Kim DW, 2000, J ETHNOPHARMACOL, V72, P53, DOI 10.1016/S0378-8741(00)00197-5 Kim UJ, 2010, POLYM DEGRAD STABIL, V95, P778, DOI 10.1016/j.polymdegradstab.2010.02.009 Lee S-Y, 2009, FIBER POLYM, V76 Lima MMD, 2004, MACROMOL RAPID COMM, V25, P771, DOI 10.1002/marc.200300268 Liu Z., 2002, PLANT FIBRE PRODUCTS, V24, P30 Owolabi AF, 2017, INT J BIOL MACROMOL, V95, P1228, DOI 10.1016/j.ijbiomac.2016.11.016 Pearce E M., 1985, HDB FIBER SCI TECHNO, V4 Razali N, 2015, BIORESOURCES, V10, P1803 Reddy N, 2005, GREEN CHEM, V7, P190, DOI 10.1039/b415102j Segal L., 1959, TEXT RES J, V29, P786, DOI 10.1177/004051755902901003 Silverstein R.M., 1998, SPECTROMETRIC IDENTI, V6th Sonia A, 2013, CARBOHYD POLYM, V92, P668, DOI 10.1016/j.carbpol.2012.09.015 TANG X, 2008, QINGHAI AGR, V17 Trache D, 2014, CARBOHYD POLYM, V104, P223, DOI 10.1016/j.carbpol.2014.01.058 Wang LL, 2007, CARBOHYD POLYM, V69, P391, DOI 10.1016/j.carbpol.2006.12.028 Weimick P H, 2002, FALL TECHN C TRAD FA, P276 Weiming Z, 2006, CHINESE WILD PLANT R, V4 Xiang LY, 2016, CARBOHYD POLYM, V148, P11, DOI 10.1016/j.carbpol.2016.04.055 Xie WY, 2012, J ETHNOPHARMACOL, V141, P1, DOI 10.1016/j.jep.2012.02.003 ZHANG Y-m., 2005, CHINAS FIBER PRODUCT, V2 NR 38 TC 0 Z9 0 U1 0 U2 0 PU NATL INST SCIENCE COMMUNICATION-NISCAIR PI NEW DELHI PA DR K S KRISHNAN MARG, PUSA CAMPUS, NEW DELHI 110 012, INDIA SN 0971-0426 EI 0975-1025 J9 INDIAN J FIBRE TEXT JI Indian J. Fibre Text. Tes. PD SEP PY 2021 VL 46 IS 3 BP 287 EP 292 PG 6 WC Materials Science, Textiles SC Materials Science GA UV9OG UT WOS:000699798100010 DA 2021-10-15 ER PT J AU Duan, SW Xu, BR Cheng, LF Feng, XY Yang, Q Zheng, K Gao, MQ Liu, ZY Liu, CJ Peng, YD AF Duan, Shengwen Xu, Bingrong Cheng, Lifeng Feng, Xiangyuan Yang, Qi Zheng, Ke Gao, Mingqiang Liu, Zhiyuan Liu, Chunjie Peng, Yuande TI Bacterial strain for bast fiber crops degumming and its bio-degumming technique SO BIOPROCESS AND BIOSYSTEMS ENGINEERING LA English DT Article; Early Access DE Pectobacterium wasabiae; Bast fiber crop; Bio-degumming; Enzyme catalysis ID PECTATE LYASE; RAMIE; TECHNOLOGY; DIVERSITY AB The research and development of bio-degumming technology is under a slow progress due to the shortage of proper efficient bacterial strains and processes. A degumming bacterial strain-Pectobacterium wasabiae (PW)-with broad-spectrum degumming abilities was screened out in this study. After the fermentation for 12 h, the residual gum contents of kenaf bast, ramie bast, hemp bast, flax bast, and Apocynum venetum bast were all lower than 15%. This bacterial strain could realize the simultaneous extracellular secretion of pectinase, mannase, and xylanase with the maximum enzyme activity levels of 130.25, 157.58, and 115.24 U/mL, respectively. The optimal degumming conditions of this bacterial strain were as follows: degumming time of 12 h, bath ratio of 1:10, temperature of 33 degrees C, and inoculum size of 2%. After the bio-degumming through this bacterial strain, the COD in wastewater was below 4000 mg/L, which was over 60% lower than that in boiling-off wastewater generated by chemical degumming. This technology achieves higher efficiency, higher quality, and lower pollution. C1 [Duan, Shengwen; Cheng, Lifeng; Feng, Xiangyuan; Yang, Qi; Zheng, Ke; Gao, Mingqiang; Liu, Zhiyuan; Liu, Chunjie; Peng, Yuande] Chinese Acad Agr Sci, Inst Bast Fiber Crops, Changsha, Peoples R China. [Xu, Bingrong] Huzhou Nanxun Shanlian Shengye Text Co Ltd, Huzhou 313014, Peoples R China. RP Liu, CJ; Peng, YD (corresponding author), Chinese Acad Agr Sci, Inst Bast Fiber Crops, Changsha, Peoples R China. EM hunandsw@163.com; liuchunjie@caas.cn; ibfcpyd313@126.com FU National Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC) [31871675]; China Agriculture Research System [CARS-19-E22]; Natural Science Foundation of Hunan ProvinceNatural Science Foundation of Hunan Province [2019JJ40332]; Chinese Agricultural Science and Technology Innovation Project [ASTIP-IBFC08]; Central Public-interest Scientific Institution Basal Research Fund [1610242021002] FX This study was supported by the National Natural Science Foundation of China (No. 31871675), China Agriculture Research System (CARS-19-E22), the Natural Science Foundation of Hunan Province (No. 2019JJ40332), Chinese Agricultural Science and Technology Innovation Project (ASTIP-IBFC08), and Central Public-interest Scientific Institution Basal Research Fund (No.1610242021002). CR Basu S, 2009, J IND MICROBIOL BIOT, V36, P239, DOI 10.1007/s10295-008-0490-y Biswas D, 2016, J NAT FIBERS, V13, P227, DOI 10.1080/15440478.2015.1005327 Cheng LF, 2021, TEXT RES J, V91, P1056, DOI 10.1177/0040517520968280 Cheng XW, 2011, CHINA TEXT LEAD, V11, P60 Chiliveri SR, 2016, SPRINGERPLUS, V5, DOI 10.1186/s40064-016-2173-x Crini G., 2020, SUSTAINABLE AGR REV, DOI [10.1007/978-3-030-41384-2, DOI 10.1007/978-3-030-41384-2] Deng YM., 2010, NATURAL TEXTILE FIBE Ding RY, 2014, J NAT FIBERS, V11, P13, DOI 10.1080/15440478.2013.824851 Duan SW, 2018, J NAT FIBERS, V15, P799, DOI 10.1080/15440478.2017.1369206 Duan SW, 2016, AMB EXPRESS, V6, DOI 10.1186/s13568-016-0255-3 Duan SW, 2012, SCI AGR, V69, P119, DOI 10.1590/S0103-90162012000200006 Fan P, 2015, BIOCHEM ENG J, V97, P50, DOI 10.1016/j.bej.2014.12.010 Fang JJ, 2015, J CHROMATOGR A, V1414, P122, DOI 10.1016/j.chroma.2015.08.038 Jiang FC., 2005, METHOD QUANTITATIVE Liu ZC, 2009, PLANT FIBER SCI CHIN, V31, P93 Liu ZC, 2018, SCI ENG HERBACEOUS F [刘正初 Liu Zhengchu], 2013, [中国农业科技导报, Journal of Agricultural Science and Technology], V15, P17 Liu ZY., 2018, China invention patents, ZL, Patent No. 10942753 Pei F., 2015, IN SITU MICROBIAL DE Shao K., 2003, TEXTILE PROCESSING C Shu T, 2020, J CLEAN PROD, V276, DOI 10.1016/j.jclepro.2020.124217 Subasinghe ADL, 2016, J MATER SCI, V51, P2101, DOI 10.1007/s10853-015-9520-0 Do VH, 2016, ANAL BIOCHEM, V492, P21, DOI 10.1016/j.ab.2015.09.008 Wang XS., 2009, GENE CLONING EXPRESS Wang YW, 2017, PROCESS BIOCHEM, V61, P73, DOI 10.1016/j.procbio.2017.06.008 Xiong HP, 2008, BAST FIBER CROPS BRE Yang Q., 2018, PLANT FIBER SCI CHIN, V40, P36 Yang YZ., 2016, STUDY FUNCTIONAL EFF [曾莹 ZENG Ying], 2007, [纺织学报, Journal of Textile Research], V28, P73 Zhang JC, 2005, HEMP COMPREHENSIVE U Zhang SJ, 2013, CARBOHYD POLYM, V97, P794, DOI 10.1016/j.carbpol.2013.05.041 [郑来久 Zheng Laijiu], 2004, [东华大学学报. 自然科学版, Journal of Donghua University.Natural Science Edition], V30, P66 Zheng LJ., 2007, STUDY DEGUMMING MODI Zheng LS, 2001, BIORESOURCE TECHNOL, V78, P89, DOI 10.1016/S0960-8524(00)00154-1 Zhou C, 2017, PROCESS BIOCHEM, V54, P49, DOI 10.1016/j.procbio.2017.01.010 Zhou C, 2015, APPL ENVIRON MICROB, V81, P5714, DOI 10.1128/AEM.01017-15 NR 36 TC 0 Z9 0 U1 5 U2 5 PU SPRINGER PI NEW YORK PA ONE NEW YORK PLAZA, SUITE 4600, NEW YORK, NY, UNITED STATES SN 1615-7591 EI 1615-7605 J9 BIOPROC BIOSYST ENG JI Bioprocess. Biosyst. Eng. DI 10.1007/s00449-021-02622-7 EA AUG 2021 PG 10 WC Biotechnology & Applied Microbiology; Engineering, Chemical SC Biotechnology & Applied Microbiology; Engineering GA UA8BK UT WOS:000685381700001 PM 34398326 OA Green Submitted DA 2021-10-15 ER PT J AU Li, HQ Cao, ZY Guo, S Gu, DY Wang, S Yang, Y He, F AF Li, Haoquan Cao, Zengyuan Guo, Shuang Gu, Dongyu Wang, Shuai Yang, Yi He, Fei TI An approach based on consecutive high-speed counter-current chromatography for preparation of an active compound rutin from Apocynum venetum L SO JOURNAL OF LIQUID CHROMATOGRAPHY & RELATED TECHNOLOGIES LA English DT Article; Early Access DE high-speed counter-current chromatography; Apocynum venetum; rutin; consecutive separation ID ASSISTED EXTRACTION; IN-VITRO; QUERCETIN; LEAVES; SEPARATION; LUOBUMA AB Apocynum venetum is a kind of plant with high medicinal value. Its main component is rutin, which is widely used. In the present study, an efficient method based on high-speed counter-current chromatography (HSCCC) was established to separate rutin from A. venetum. The optimized solvent system composed of ethyl acetate-n-butanol-water (4:1:5, v/v) was selected for HSCCC separation. It was found that the maximum loading amount was 1 g, but the loading amount did not affect the two-phase equilibrium of solvent system. Therefore, consecutive high-speed counter-current chromatography was introduced to further improve the yield in the present study. As a result, 292 mg of rutin with 95% purity was obtained from 2.4 g crude sample. The retention of the stationary phase was 27%, which was almost unchanged. The current strategy can not only be used for the scale-up preparation of rutin, but also provide an example for the preparation of other natural active compounds. C1 [Li, Haoquan; Cao, Zengyuan; Gu, Dongyu] Dalian Ocean Univ, Coll Marine Sci & Environm, Heishijiao St, Dalian 116023, Peoples R China. [Li, Haoquan] Dalian Polytech Univ, Sch Biol Engn, Dalian, Peoples R China. [Guo, Shuang; Wang, Shuai; Yang, Yi] Dalian Polytech Univ, Sch Light Ind & Chem Engn, Dalian, Peoples R China. [He, Fei] Chinese Acad Sci, Xinjiang Tech Inst Phys & Chem, State Key Lab Basis Xinjiang Indigenous Med Plant, Urumqi, Peoples R China. RP Gu, DY (corresponding author), Dalian Ocean Univ, Coll Marine Sci & Environm, Heishijiao St, Dalian 116023, Peoples R China.; Yang, Y (corresponding author), 1 Qinggongyuan, Dalian 116034, Peoples R China.; He, F (corresponding author), 40-1 South Beijing Rd, Urumqi 830011, Peoples R China. EM gudongyu@dlou.edu.cn; yangyi105@mails.ucas.ac.cn; hefei@ms.xjb.ac.cn FU Natural Science Foundation of Liaoning ProvinceNatural Science Foundation of Liaoning Province [2019-MS-018]; Xinjiang Major Science and Technology Project [2016A03006] FX This work was supported by grants from the Natural Science Foundation of Liaoning Province [No. 2019-MS-018] and Xinjiang Major Science and Technology Project [No. 2016A03006]. CR An HJ, 2013, J PHARMACEUT BIOMED, V85, P295, DOI 10.1016/j.jpba.2013.07.005 Annapurna A, 2009, J PHARM PHARMACOL, V61, P1365, DOI [10.1211/jpp/61.10.0014, 10.1211/jpp.61.10.0014] BUSZEWSKI B, 1993, J PHARMACEUT BIOMED, V11, P211, DOI 10.1016/0731-7085(93)80199-B Butterweck V, 2001, BIOL PHARM BULL, V24, P848, DOI 10.1248/bpb.24.848 Choi I, 2006, BIOFACTORS, V26, P273, DOI 10.1002/biof.5520260405 Chua LS, 2013, J ETHNOPHARMACOL, V150, P805, DOI 10.1016/j.jep.2013.10.036 Dall'Agnol R, 2003, PHYTOMEDICINE, V10, P511, DOI 10.1078/094471103322331476 Duan HT, 2010, J CHROMATOGR A, V1217, P4511, DOI 10.1016/j.chroma.2010.04.069 Fathiazad F, 2006, IRAN J PHARM RES, V3, P222, DOI DOI 10.22037/IJPR.2010.680 Gan Y, 2009, J SHIHEZI U, V27, P334 Grundmann O, 2007, J ETHNOPHARMACOL, V110, P406, DOI 10.1016/j.jep.2006.09.035 Gulpinar AR, 2012, FOOD RES INT, V46, P536, DOI 10.1016/j.foodres.2011.08.011 Hao HH, 2012, LIFE SCI, V91, P959, DOI 10.1016/j.lfs.2012.09.003 Irie K, 2009, J NAT MED, V63, P111, DOI 10.1007/s11418-008-0296-2 Ito Y, 2005, J CHROMATOGR A, V1065, P145, DOI 10.1016/j.chroma.2004.12.044 Jiang L, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-44623-3 Jung CH, 2007, ARCH PHARM RES, V30, P1599, DOI 10.1007/BF02977330 Kang J, 2016, SEP PURIF TECHNOL, V162, P142, DOI 10.1016/j.seppur.2016.02.026 Kim DW, 2000, J ETHNOPHARMACOL, V72, P53, DOI 10.1016/S0378-8741(00)00197-5 Lee W, 2012, FOOD CHEM TOXICOL, V50, P3048, DOI 10.1016/j.fct.2012.06.013 [李芝 Li Zhi], 2012, [中草药, Chinese Traditional and Herbal Drugs], V43, P540 Nam TG, 2015, FOOD CHEM, V170, P97, DOI 10.1016/j.foodchem.2014.08.067 Ongaro A., 2020, NAT PROD RES, V34, P1288, DOI [10.1080/14786419.2018.1553882, DOI 10.1080/14786419.2018.1553882] Paniwnyk L, 2001, ULTRASON SONOCHEM, V8, P299, DOI 10.1016/S1350-4177(00)00075-4 Shi L., 2015, HER MED, V34, P235 [石秋梅 Shi Qiumei], 2014, [中草药, Chinese Traditional and Herbal Drugs], V45, P1326 Song XY, 2020, J CHROMATOGR A, V1615, DOI 10.1016/j.chroma.2019.460719 Sun SS, 2021, J CHROMATOGR B, V1172, DOI 10.1016/j.jchromb.2021.122620 Sutherland I, 2009, J CHROMATOGR A, V1216, P4201, DOI 10.1016/j.chroma.2008.11.097 Tong X, 2012, J SEP SCI, V35, P3609, DOI 10.1002/jssc.201200790 Wang XingChao, 2012, Food Research and Development, V33, P168 Webster RP, 1996, CANCER LETT, V109, P185, DOI 10.1016/S0304-3835(96)04443-6 Wu HW, 2012, TALANTA, V88, P222, DOI 10.1016/j.talanta.2011.10.036 Xie WY, 2012, J ETHNOPHARMACOL, V141, P1, DOI 10.1016/j.jep.2012.02.003 Xiong QB, 2000, PLANTA MED, V66, P127, DOI 10.1055/s-2000-11135 Yamatsu A, 2015, J NUTR SCI VITAMINOL, V61, P182, DOI 10.3177/jnsv.61.182 Yang JX, 2008, LWT-FOOD SCI TECHNOL, V41, P1060, DOI 10.1016/j.lwt.2007.06.010 Yang J, 2018, IND CROP PROD, V124, P363, DOI 10.1016/j.indcrop.2018.08.003 Yang Y., 2020, J CHROMATOGR A, V1614, DOI DOI 10.1016/j.chroma.2019.460727 Yin LH, 2010, CHROMATOGRAPHIA, V71, P15, DOI 10.1365/s10337-009-1407-2 Yokozawa T, 2002, BIOL PHARM BULL, V25, P748, DOI 10.1248/bpb.25.748 Zhang F, 2009, PHYTOCHEM ANALYSIS, V20, P33, DOI 10.1002/pca.1088 Zhou Xiong, 2005, Zhong Yao Cai, V28, P104 NR 43 TC 0 Z9 0 U1 9 U2 9 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA SN 1082-6076 EI 1520-572X J9 J LIQ CHROMATOGR R T JI J. Liq. Chromatogr. Relat. Technol. DI 10.1080/10826076.2021.1948426 EA JUL 2021 PG 8 WC Biochemical Research Methods; Chemistry, Analytical SC Biochemistry & Molecular Biology; Chemistry GA TJ4GH UT WOS:000673441600001 DA 2021-10-15 ER PT J AU Jiang, L She, CW Tian, CY Tanveer, M Wang, L AF Jiang, Li She, Chaowen Tian, Changyan Tanveer, Mohsin Wang, Lei TI Storage Period and Different Abiotic Factors Regulate Seed Germination of Two Apocynum Species - Cash Crops in Arid Saline Regions in the Northwestern China SO FRONTIERS IN PLANT SCIENCE LA English DT Article DE Apocynum; drought; salinity; seed germination; seed storage ID VENETUM L.; POLYETHYLENE-GLYCOL; TEMPERATURE; STRESS; LIGHT; RESPONSES; TOLERANCE; HALOPHYTE; LUOBUMA; FIBERS AB On degraded land in arid regions, cultivation of Apocynum species can provide significant environmental benefits by preventing soil erosion and desertification. Furthermore, Apocynum venetum and Apocynum pictum, which are mainly distributed in salt-barren lands in the northwestern region of China, are traditionally used to produce natural fiber and herbal tea. Direct sowing of both species may encounter various abiotic stresses such as drought and salinity. However, these effects on germination remain largely unknown, especially for seeds with different storage periods. The aim of this study was to evaluate the effects of storage period, light condition, temperature regime, drought, and salinity on germination performances of both species. Germination experiment was carried out in November 2017. There were four replicates for each treatment, and each petri dish contained 25 seeds. The results indicated that prolongation of storage period significantly decreased the germination percentage and velocity, especially under abiotic stresses. Light did not affect seed germination of A. venetum and A. pictum under any conditions. Seeds had better germination performance at 10/25 and 15/30 degrees C than those of seeds incubated at any other temperatures. With the increase of polyethylene glycol (PEG) and salinity concentrations, seed germination for both species gradually decreased, especially for seeds stored for 2 years. Low PEG (0-20%) and salinity concentration (0-200 mM) did not significantly affect germination percentage of freshly matured seeds. However, long-time storage significantly decreased drought and salinity tolerance in A. venetum and A. pictum during germination stage. For saline soils in arid and semi-arid regions, freshly matured seeds or 1-year-stored seeds of both Apocynum species are recommended to be sown by using drip-irrigation in spring. C1 [Jiang, Li; She, Chaowen] Huaihua Univ, Key Lab Res & Utilizat Ethnomed Plant Resources H, Huaihua, Peoples R China. [Jiang, Li; She, Chaowen] Huaihua Univ, Key Lab Hunan Higher Educ Western Hunan Med Plant, Huaihua, Peoples R China. [Jiang, Li; Tian, Changyan; Wang, Lei] Chinese Acad Sci, Xinjiang Inst Ecol & Geog, State Key Lab Desert & Oasis Ecol, Urumqi, Peoples R China. [Tian, Changyan; Wang, Lei] Univ Chinese Acad Sci, Beijing, Peoples R China. [Tanveer, Mohsin] Univ Tasmania, Tasmanian Inst Agr, Hobart, Tas, Australia. RP Wang, L (corresponding author), Chinese Acad Sci, Xinjiang Inst Ecol & Geog, State Key Lab Desert & Oasis Ecol, Urumqi, Peoples R China.; Wang, L (corresponding author), Univ Chinese Acad Sci, Beijing, Peoples R China. EM egiwang@ms.xjb.ac.cn FU Foundation of Hunan Double First-rate Discipline Construction Projects of Bioengineering [XJT2018-469]; West Light Talent Program of the Chinese Academy of Sciences [2019-YDYLTD-001]; National Key Research and Development Program of China [2018YFE0207200] FX This work was supported by the Foundation of Hunan Double First-rate Discipline Construction Projects of Bioengineering (XJT2018-469), the West Light Talent Program of the Chinese Academy of Sciences (No. 2019-YDYLTD-001), and the National Key Research and Development Program of China (No. 2018YFE0207200). CR Lopez SB, 2017, REV MEX CIENC PECU, V8, P291, DOI [10.1016/j.rsase.2016.11.001, 10.22319/rmcp.v8i3.4159] Bettey M, 2000, NEW PHYTOL, V148, P277, DOI 10.1046/j.1469-8137.2000.00760.x Campobenedetto C, 2020, FRONT PLANT SCI, V11, DOI 10.3389/fpls.2020.00836 Cui YN, 2019, PLANT PHYSIOL BIOCH, V135, P489, DOI 10.1016/j.plaphy.2018.11.011 El-Keblawy A, 2018, SEED SCI RES, V28, P140, DOI [10.1017/S0960258518000144, 10.1017/s0960258518000144] El-Keblawy A, 2017, LAND DEGRAD DEV, V28, P1687, DOI 10.1002/ldr.2700 Flora of China Editorial Committee, 2006, FLORA CHINA, V16 Flowers TJ, 2008, NEW PHYTOL, V179, P945, DOI 10.1111/j.1469-8137.2008.02531.x Groot SPC, 2012, ANN BOT-LONDON, V110, P1149, DOI 10.1093/aob/mcs198 Gul B, 2013, ENVIRON EXP BOT, V92, P4, DOI 10.1016/j.envexpbot.2012.11.006 Gutterman Y, 2005, SEED SCI RES, V15, P249, DOI 10.1079/SSR2005215 Han GT, 2008, CARBOHYD POLYM, V72, P652, DOI 10.1016/j.carbpol.2007.10.002 Hu HR, 2018, IND CROP PROD, V123, P254, DOI 10.1016/j.indcrop.2018.06.089 Huang ZY, 2003, J ARID ENVIRON, V55, P453, DOI 10.1016/S0140-1963(02)00294-X Jiang L, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-44623-3 Jiang L, 2015, OXID COMMUN, V38, P347 KHAN MA, 1984, BOT GAZ, V145, P487, DOI 10.1086/337483 Koutsovoulou K, 2014, ANN BOT-LONDON, V113, P135, DOI 10.1093/aob/mct250 Li CH, 2020, IND CROP PROD, V151, DOI 10.1016/j.indcrop.2020.112443 Li JK, 2007, J STORED PROD RES, V43, P530, DOI 10.1016/j.jspr.2006.09.005 Lin JX, 2016, PEERJ, V4, DOI 10.7717/peerj.1485 Liu Z.H., 2015, SEED, V34, P43 Lozano-Isla F, 2018, IND CROP PROD, V118, P214, DOI 10.1016/j.indcrop.2018.03.052 Mao DH, 2018, LAND DEGRAD DEV, V29, P3841, DOI 10.1002/ldr.3135 Moncaleano-Escandon J, 2013, IND CROP PROD, V44, P684, DOI 10.1016/j.indcrop.2012.08.035 Panobianco M, 2007, SCI AGR, V64, P119, DOI 10.1590/S0103-90162007000200003 Lopez-Fernandez MP, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-35476-3 Ping XiaoYan, 2014, Acta Prataculturae Sinica, V23, P49 Rasheed A, 2019, LAND DEGRAD DEV, V30, P1468, DOI 10.1002/ldr.3334 Rasool SG, 2017, FLORA, V236-237, P76, DOI 10.1016/j.flora.2017.09.010 Rong YP, 2015, J APPL BOT FOOD QUAL, V88, P202, DOI 10.5073/JABFQ.2015.088.029 Rouzi A, 2018, SUSTAINABILITY-BASEL, V10, DOI 10.3390/su10010035 Shi Q.M., 2014, N HORTIC, V12, P128 Tang DF, 2019, IND CROP PROD, V137, P180, DOI 10.1016/j.indcrop.2019.01.019 Terrones A, 2016, J ARID ENVIRON, V135, P17, DOI 10.1016/j.jaridenv.2016.08.001 Thevs N, 2012, J APPL BOT FOOD QUAL, V85, P159 Toscano S, 2017, ACTA PHYSIOL PLANT, V39, DOI 10.1007/s11738-017-2484-8 Wiebach J, 2020, PLANT CELL ENVIRON, V43, P303, DOI 10.1111/pce.13651 Willenborg CJ, 2005, CROP SCI, V45, P2023, DOI 10.2135/cropsci2004.0722 Wuest S, 2007, SEED SCI RES, V17, P3, DOI 10.1017/S0960258507383165 Xie WY, 2012, J ETHNOPHARMACOL, V141, P1, DOI 10.1016/j.jep.2012.02.003 Xu XX, 2020, IND CROP PROD, V151, DOI 10.1016/j.indcrop.2020.112419 [徐振朋 Xu Zhenpeng], 2015, [中国草地学报, Chinese Journal of Grassland], V37, P75 Yan A, 2020, BOT REV, V86, P39, DOI 10.1007/s12229-020-09220-4 Zhou WG, 2020, PLANT CELL ENVIRON, V43, P293, DOI 10.1111/pce.13666 Zhu JJ, 2006, J FOREST RES-JPN, V11, P319, DOI 10.1007/s10310-006-0214-y NR 46 TC 0 Z9 0 U1 7 U2 7 PU FRONTIERS MEDIA SA PI LAUSANNE PA AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND SN 1664-462X J9 FRONT PLANT SCI JI Front. Plant Sci. PD JUN 17 PY 2021 VL 12 AR 671157 DI 10.3389/fpls.2021.671157 PG 12 WC Plant Sciences SC Plant Sciences GA TC5GG UT WOS:000668666700001 PM 34220893 OA gold, Green Published DA 2021-10-15 ER PT J AU Wang, L Wang, CM Wang, L Zhang, QL Wang, Y Xia, X AF Wang, Lu Wang, Chenmeizi Wang, Ling Zhang, Qingle Wang, Ying Xia, Xin TI Emulsion electrospun polylactic acid/Apocynum venetum nanocellulose nanofiber membranes with controlled sea buckthorn extract release as a drug delivery system SO TEXTILE RESEARCH JOURNAL LA English DT Article DE sea buckthorn; Apocynum venetum cellulose nanofiber; core– sheath structure; antioxidant activity; controlled-release delivery ID ANTIOXIDANT AB Prolonging the duration of drug action and reducing toxicity play a vital role in wound administration as they reduce the chance of infection and decrease complications and cost. This study reports the natural antioxidant procyanidins extracted from sea buckthorn (SBT) and laboratory-manufactured Apocynum venetum cellulose nanofiber as core drugs. The sustained-release nanofiber membrane was prepared by electrospinning on polylactic acid/polyvinyl pyrrolidone nanofibers. High-performance liquid chromatography-mass spectrometry was used to identify the phenolic compounds in SBT extracts and confirmed the presence of procyanidins with a content of 0.0345 mg/g. The nanofiber membrane was characterized through transmission electron microscopy, encapsulation efficiency, in vitro drug-release study and antioxidant assay. The results indicated that the extracted procyanidins were successfully encapsulated in the core-sheath structure nanofibers, and the encapsulation efficiency of nanofiber membranes reached 83.84%. In vitro measurements of the delivery showed this core-sheath structure could significantly alleviate the drug burst release, which is followed by a linear and smooth release within 30 hours. Further tests showed that the removal efficiency of 2,2-diphenyl-1-picrylhydrazyl reached 88.62%, indicating that the membranes had high antioxidant activity. This work implies that the combination of Apocynum venetum nanocellulose and emulsion electrospun fibers has promising potential applications in tissue engineering or drug delivery. C1 [Wang, Lu; Wang, Chenmeizi; Wang, Ling; Zhang, Qingle; Wang, Ying; Xia, Xin] Xin Jiang Univ, Coll Text & Clothing, Tianshan Dist, Urumchi Wulumuq, Peoples R China. [Wang, Lu; Xia, Xin] Donghua Univ, Key Lab Text Sci & Technol, Minist Educ, Shanghai, Peoples R China. RP Xia, X (corresponding author), Xinjiang Univ, 666 Shengli Rd, Tianshan Dist 830046, Urumchi Wulumuq, Peoples R China. EM xjxiaxin@163.com FU Innovation Research Program for Xinjiang Graduate Students [XJ2019G074]; Development and Application Innovation Team of Xinjiang Special Textile Materials; National Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC) [51763022]; Construction and analysis of comprehensive evaluation system for acid-proof and moisture-permeable nanocomposite fabric [XJEDU2018Y006] FX The authors disclosed receipt of the following financial support for the research, authorship and/or publication of this article: This work was supported by The Innovation Research Program for Xinjiang Graduate Students (XJ2019G074), the Development and Application Innovation Team of Xinjiang Special Textile Materials and The National Natural Science Foundation of China (Grant No. 51763022) and the Construction and analysis of comprehensive evaluation system for acid-proof and moisture-permeable nanocomposite fabric (XJEDU2018Y006). CR Abramova AV, 2020, ULTRASON SONOCHEM, V60, DOI 10.1016/j.ultsonch.2019.104788 Amini F, 2019, INT J POLYM MATER PO, V68, P772, DOI 10.1080/00914037.2018.1506982 Anbarasu S., 2015, INT J PHARM BIO SCI, V6, P263 Tornello PRC, 2018, ADV POLYM TECH, V37, P1570, DOI 10.1002/adv.21814 Ding H, 2017, SEP SCI TECHNOL, V52, P2732, DOI 10.1080/01496395.2017.1374973 Donato-Trancoso A, 2016, J DERMATOL SCI, V83, P60, DOI 10.1016/j.jdermsci.2016.03.012 Duan GG, 2019, J MATER SCI, V54, P6719, DOI 10.1007/s10853-019-03326-w Fioramonti SA, 2017, POWDER TECHNOL, V319, P238, DOI 10.1016/j.powtec.2017.06.052 Gong H, 2019, MAT SCI ENG C-MATER, V102, P820, DOI 10.1016/j.msec.2019.05.004 Gonzalez A, 2016, POWDER TECHNOL, V301, P868, DOI 10.1016/j.powtec.2016.07.026 Hu J, 2013, J BIOMAT SCI-POLYM E, V24, P972, DOI 10.1080/09205063.2012.728193 Janda J, 2016, ARCH DERMATOL RES, V308, P239, DOI 10.1007/s00403-016-1628-9 Janes D., 2015, MODERN COSMETICS ING, V1 Kaplan S, 2020, J APPL POLYM SCI, V137, DOI 10.1002/app.48302 Katalinic V, 2010, FOOD CHEM, V119, P715, DOI 10.1016/j.foodchem.2009.07.019 Kheradvar SA, 2018, COLLOID SURFACE B, V166, P9, DOI 10.1016/j.colsurfb.2018.03.004 Li YJ, 2013, BIOMACROMOLECULES, V14, P3801, DOI 10.1021/bm400540v Lin Gang, 2014, Journal of Donghua University (English Edition), V31, P577 Ma XY, 2019, FOOD CHEM, V272, P1, DOI 10.1016/j.foodchem.2018.08.006 Maneesh A, 2017, INT J FOOD PROP, V20, P931, DOI 10.1080/10942912.2016.1189434 Miletic A, 2019, APPL SCI-BASEL, V9, DOI 10.3390/app9152955 Pan N, 2019, J APPL POLYM SCI, V136, DOI 10.1002/app.47922 Rajzer I, 2019, J MATER SCI-MATER M, V30, DOI 10.1007/s10856-019-6280-4 Shi M, 2019, ACS APPL MATER INTER, V11, P22730, DOI 10.1021/acsami.9b04750 Souza SF, 2018, CARBOHYD POLYM, V201, P87, DOI 10.1016/j.carbpol.2018.08.056 Sytarova I, 2020, FOOD CHEM, V310, DOI 10.1016/j.foodchem.2019.125784 Tavassoli-Kafrani E, 2018, FOOD BIOPROCESS TECH, V11, P427, DOI 10.1007/s11947-017-2026-9 Upadhyay NK, 2009, FOOD CHEM TOXICOL, V47, P1146, DOI 10.1016/j.fct.2009.02.002 Wang L, 2020, TEXT RES J, V90, P593, DOI 10.1177/0040517519873868 Wang Z, 2015, RSC ADV, V5, P2383, DOI 10.1039/c4ra09839k Wani T., 2016, COGENT FOOD AGR, V2 Wu SQ, 2017, IND CROP PROD, V107, P539, DOI 10.1016/j.indcrop.2017.04.033 Yang F, 2016, BIOSCI TRENDS, V10, P188, DOI 10.5582/bst.2016.01056 Zheng HX, 2020, J FOOD QUALITY, V2020, DOI 10.1155/2020/1540925 NR 34 TC 0 Z9 0 U1 15 U2 15 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0040-5175 EI 1746-7748 J9 TEXT RES J JI Text. Res. J. PD MAY PY 2021 VL 91 IS 9-10 BP 1046 EP 1055 DI 10.1177/0040517520970171 PG 10 WC Materials Science, Textiles SC Materials Science GA RS6LU UT WOS:000643889000009 DA 2021-10-15 ER PT J AU Abubakar, AS Gao, G Zhu, AG AF Abubakar, Aminu Shehu Gao, Gang Zhu, Aiguo TI Apocynum venetum, A Bast Fiber Plant With Medicinal Significances and Potentials for Drought Tolerance and Phytoremediation Studies - A Review SO JOURNAL OF NATURAL FIBERS LA English DT Review; Early Access DE Bast; fiber; cellulose; flavonoids; drought; tolerance; phytoremediation AB A. venetum is highly valuable medicinal plant explore mostly in China and Japan owing to its diverse herbal function in the treatment of a number of ailments. Despite being more popular for the medicinal function, it has an appreciable amount of fiber with a potential significance of complementing cotton, ramie, and other fiber plants. Fabric made from A. venetum fiber is reported to emit infra-red rays of about 8-15 mu m wavelength and efficiently resist ultraviolet light - properties that made it a good choice in the industries for making underwear. Presence of small openings in the fiber microstructure permitting air circulation and improves dryness was found helpful in hypertension and coronary heart diseases. Due to its higher modulus and work rupture property, it is commonly blended with cotton or chemical fibers. Besides, the plant with higher lithium accumulation capability is a candidate for remediation of soil from heavy metals and its drought-tolerant nature can as well be exploited for breeding purpose of food/cash crop through gene mining. C1 [Abubakar, Aminu Shehu; Gao, Gang; Zhu, Aiguo] Chinese Acad Agr Sci, Inst Bast Fiber Crops, Dept Perennial Bast Fiber, Changsha 410205, Peoples R China. [Abubakar, Aminu Shehu] Bayero Univ, Dept Agron, Kano, Nigeria. RP Zhu, AG (corresponding author), Chinese Acad Agr Sci, Inst Bast Fiber Crops, Dept Perennial Bast Fiber, Changsha 410205, Peoples R China. EM zhuaiguo@caas.cn FU Chinese Government Scholarship [2018GXZ019733]; Central Public-interest Scientific Institution Basal Research Fund [Y2019XK15-03]; Science and Technology Innovation Project of the Chinese Academy of Agricultural Sciences [CAAS-ASTIP-2018-IBFC04] FX This work was supported by the Chinese Government Scholarship [2018GXZ019733]; Central Public-interest Scientific Institution Basal Research Fund [Y2019XK15-03]; Science and Technology Innovation Project of the Chinese Academy of Agricultural Sciences [CAAS-ASTIP-2018-IBFC04]. CR Berljand S.S, 1950, AGRO TECHNOLOGY KEND Butterweck V, 2001, BIOL PHARM BULL, V24, P848, DOI 10.1248/bpb.24.848 Chan CO, 2015, ANTIOXIDANTS, V4, P359, DOI 10.3390/antiox4020359 Chen CH, 2018, MOLECULES, V23, DOI 10.3390/molecules23030573 Cui YN, 2019, PLANT PHYSIOL BIOCH, V135, P489, DOI 10.1016/j.plaphy.2018.11.011 Dabrowski W.M., 1999, TOXINS IN FOOD DeMan JM, 1999, PRINCIPLES FOOD CHEM Diwan A.D., 2016, J NUTR SCI, V5, P1, DOI DOI 10.1017/jns.2016.41 DSouza R., 2014, ENV RISK ASS SOIL, V17, P485, DOI DOI 10.5772/57469 Duan SW, 2018, TEXT RES J, V88, P1377, DOI 10.1177/0040517517700198 Gao G, 2019, METABOLITES, V9, DOI 10.3390/metabo9120296 Gould K.S., 2005, FLAVONOIDS CHEM BIOC, P408 Greipsson S., 2011, NAT ED KNOWL, V2, P1 Grundmann O, 2009, PHYTOMEDICINE, V16, P295, DOI 10.1016/j.phymed.2008.12.020 Han GT, 2008, CARBOHYD POLYM, V72, P652, DOI 10.1016/j.carbpol.2007.10.002 He XJ, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-017-18133-z Horne M.R.L., 2020, HDB NATURAL FIBRES, V1, P163, DOI DOI 10.1016/B978 Huang SP, 2017, NUTRIENTS, V9, DOI 10.3390/nu9090948 Irie K, 2009, J NAT MED, V63, P111, DOI 10.1007/s11418-008-0296-2 Jiang L, 2014, FLORA, V209, P285, DOI 10.1016/j.flora.2014.03.007 Jin YR, 2004, VASC PHARMACOL, V41, P35, DOI 10.1016/j.vph.2004.04.001 Kasimu R, 2015, J ETHNOPHARMACOL, V168, P116, DOI 10.1016/j.jep.2015.03.013 Kong NN, 2014, NAT PROD RES, V28, P928, DOI 10.1080/14786419.2014.886205 Kumar S, 2013, SCI WORLD J, DOI 10.1155/2013/162750 Lau YS, 2012, J ETHNOPHARMACOL, V143, P565, DOI 10.1016/j.jep.2012.07.012 Li CH, 2020, IND CROP PROD, V151, DOI 10.1016/j.indcrop.2020.112443 Li H., 2006, SHANDONG FANGZHI JIN, V134, P80 Li MH, 2010, FIBER POLYM, V11, P48, DOI 10.1007/s12221-010-0048-2 Liang TG, 2010, INT J MOL SCI, V11, P4452, DOI 10.3390/ijms11114452 Liu J, 2020, J NAT FIBERS, V17, P738, DOI 10.1080/15440478.2018.1532857 Ma M, 2003, J AGR FOOD CHEM, V51, P2390, DOI 10.1021/jf021055i Mishra A, 2013, SCI WORLD J, DOI 10.1155/2013/292934 Mishra AK, 2010, J HYDROL, V391, P204, DOI 10.1016/j.jhydrol.2010.07.012 Mitra S., USDA TECHNICAL B, V8 Mwaikambo L., 2006, AJST, V7, P121 Peng M, 2017, NAT COMMUN, V8, DOI 10.1038/s41467-017-02168-x Peuke AD, 2005, Z NATURFORSCH C, V60, P199 Qiao LT, 2018, PLANT PHYSIOL BIOCH, V132, P341, DOI 10.1016/j.plaphy.2018.09.022 Qu CM, 2016, FRONT PLANT SCI, V7, DOI 10.3389/fpls.2016.01755 Raunkiar C., 1934, LIFE FORMS PLANTS ST Roy S., 2012, HDB NATURAL FIBRES, P39 Roy S., 2012, HDB NATURAL FIBRES, P61 Song RJ, 2015, J CHROMATOGR B, V995, P8, DOI 10.1016/j.jchromb.2015.05.019 Song Y, 2019, CELLULOSE, V26, P8047, DOI 10.1007/s10570-019-02654-z Tangahu BV, 2011, INT J CHEM ENG, V2011, DOI 10.1155/2011/939161 Thevs N, 2012, J APPL BOT FOOD QUAL, V85, P159 Wang LL, 2007, CARBOHYD POLYM, V69, P391, DOI 10.1016/j.carbpol.2006.12.028 Wang Y, 2015, FRONT PLANT SCI, V6, DOI 10.3389/fpls.2015.00293 Wei C., 2004, PINZHI XINGNENG FENX, V9, P25 [吴红玲 Wu Hongling], 2004, [兰州理工大学学报, Journal of Gansu University of Technology], V30, P76 Wu T., 2018, EVID-BASED COMPL ALT Xie WY, 2012, J ETHNOPHARMACOL, V141, P1, DOI 10.1016/j.jep.2012.02.003 Xu J., 2020, HDB NATURAL FIBRES, P71 [薛卫巍 XUE Weiwei], 2009, [纺织学报, Journal of Textile Research], V30, P80 Yan SX, 2015, TROP J PHARM RES, V14, P2269, DOI 10.4314/tjpr.v14i12.17 Yang FR, 2020, J NAT FIBERS, V17, P1401, DOI 10.1080/15440478.2019.1570418 Yokozawa T, 2002, BIOL PHARM BULL, V25, P748, DOI 10.1248/bpb.25.748 Zhang G., 2005, CHINESE WILD PLANT R, V25, P26 Zhang W. M., 2006, CHIN WILD PLANT RESO, V25, P33 Zhang W, 2018, J PHYSIOL BIOCHEM, V74, P301, DOI 10.1007/s13105-018-0618-0 Zhang YC, 2012, MED CHEM RES, V21, P1077, DOI 10.1007/s00044-011-9624-2 Zhang YC, 2010, J CHROMATOGR B, V878, P3149, DOI 10.1016/j.jchromb.2010.09.027 Zhang Z.-G., 2001, SHANDONG TEXTILE SCI, V4, P11 Zheng L., 2011, J TEXT I, V102, DOI [10.1080/00405000.2010.514726, DOI 10.1080/00405000.2010.514726] Zheng MZ, 2013, J ETHNOPHARMACOL, V147, P108, DOI 10.1016/j.jep.2013.02.015 NR 65 TC 0 Z9 0 U1 21 U2 24 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA SN 1544-0478 EI 1544-046X J9 J NAT FIBERS JI J. Nat. Fibers DI 10.1080/15440478.2021.1889436 EA MAR 2021 PG 13 WC Materials Science, Textiles SC Materials Science GA QZ7XC UT WOS:000630934700001 DA 2021-10-15 ER PT J AU Geng, Q Zhou, CF Nie, K Lv, WW Ben, HX Han, GT Jiang, W AF Geng, Qian Zhou, Chengfeng Nie, Kai Lv, Wanwan Ben, Haoxi Han, Guangting Jiang, Wei TI Relationship between Fiber Fineness and Diameter of Three Bast Fibers SO JOURNAL OF NATURAL FIBERS LA English DT Article; Early Access DE Natural fiber; fiber diameter; fiber fineness AB Natural plant fibers are outstanding materials in textile industry. The fiber fineness, length and strength are three of the most important indexes to evaluate the fiber quality. Fiber fineness refers to the thickness of the fiber, which is usually expressed by the mass per unit length. The relationship between fiber fineness and fiber diameter is very important for deeper understanding of a new fiber. In this study, three different natural fibers were collected to measure the fiber fineness, diameter, and density. Furthermore, SEM was conducted to detect the fiber cross section, and the correlation equations were constructed between the fiber fineness and diameter. Results showed that vibration method could generate a lower fiber fineness value; all the correlation equations had high accuracy to predict fiber fineness with different diameters, and most of the prediction errors were lower than 10%. In the final equations, the coefficients were 0.825, 0.69, 0.975 of apocynum, ramie, and kenaf fiber, respectively. C1 [Geng, Qian; Nie, Kai; Lv, Wanwan; Jiang, Wei] Qingdao Univ, Coll Text, Qingdao, Shandong, Peoples R China. [Zhou, Chengfeng; Lv, Wanwan; Ben, Haoxi; Han, Guangting; Jiang, Wei] Qingdao Univ, State Key Lab Biofibers & Ecotext, Qingdao 266071, Shandong, Peoples R China. RP Jiang, W (corresponding author), Qingdao Univ, State Key Lab Biofibers & Ecotext, Qingdao 266071, Shandong, Peoples R China. EM weijiangqd@qdu.edu.cn FU National Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC) [51903131]; Natural Science Foundation of Shandong ProvinceNatural Science Foundation of Shandong Province [ZR2019QEM007, ZR2017BEM045]; Special Foundation of "Taishan Scholar" Construction Program FX This work was supported by National Natural Science Foundation of China [51903131], Natural Science Foundation of Shandong Province [ZR2019QEM007 & ZR2017BEM045], Special Foundation of "Taishan Scholar" Construction Program. CR Ahmed M, 2004, INDIAN J FIBRE TEXT, V29, P362 Chen L., 2002, HEMP IND SCI CHINA, V24, P5 Jiang W, 2018, IND CROP PROD, V120, P131, DOI 10.1016/j.indcrop.2018.04.045 Jiang W, 2017, J WOOD CHEM TECHNOL, V37, P359, DOI 10.1080/02773813.2017.1303514 Li MH, 2016, BIORESOURCES, V11, P6854, DOI 10.15376/biores.11.3.6854-686 Liu J, 2020, J NAT FIBERS, V17, P738, DOI 10.1080/15440478.2018.1532857 Mohamed A. A., 2007, Arab Universities Journal of Agricultural Sciences, V15, P61 Pandey R, 2020, J NAT FIBERS, V17, P298, DOI 10.1080/15440478.2018.1492486 Ramey HH, 1982, MEANING ASSESSMENT C SASSER PE, 1991, TEXT RES J, V61, P681, DOI 10.1177/004051759106101108 Song Y, 2017, J NAT FIBERS, V14, P759, DOI 10.1080/15440478.2016.1212770 Xu SJ, 2017, CELLULOSE, V24, P1493, DOI 10.1007/s10570-016-1178-5 Zhou Y, 2019, ARCH BIOL SCI, V71, P13, DOI 10.2298/ABS180528037Z NR 13 TC 0 Z9 0 U1 11 U2 11 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA SN 1544-0478 EI 1544-046X J9 J NAT FIBERS JI J. Nat. Fibers DI 10.1080/15440478.2021.1877233 EA MAR 2021 PG 8 WC Materials Science, Textiles SC Materials Science GA QT7FT UT WOS:000626755100001 DA 2021-10-15 ER PT J AU Wang, CMZ Wang, L Zhang, QL Cheng, L Yue, HT Xia, X Zhou, HM AF Wang, Chenmeizi Wang, Ling Zhang, Qingle Cheng, Lu Yue, Haitao Xia, Xin Zhou, Huimin TI Preparation and characterization of apoacynum venetum cellulose nanofibers reinforced chitosan-based composite hydrogels SO COLLOIDS AND SURFACES B-BIOINTERFACES LA English DT Article DE Chitosan-based hydrogel; Apocynum venetum cellulose nanofibers; Compressive mechanism; Antibacterial properties AB Addition of nanomaterials into polymer matrix is a promising avenue to reinforce the mechanical properties of composites. In this work, chitosan-based hydrogels reinforced by cellulose nanofibers (CNFs) have been prepared by chitosan as matrix. The effect of CNFs (1vt%, 1.5vt% and 2vt%) on the structure-property relationship in mechanical, swelling capability, pH sensitivity and antibacterial have been investigated, respectively. Different from normal reinforced particle, CNFs with special fiber shape and abundant hydrogen bonding can form interconnected porous structure with chitosan hydrogel, which can spread stress and defer permanent damage under compressing. And the compressive strength increases nearly 20 % and swelling capacity achieve 140 %, when 1.5vt% CNFs added. Thanks to CNFs which obtained from apocynum venetum generated positive effect on the antibacterial rate against E. coli and S. aureus of composite hydrogel. It proves that CNFs display an excellent mechanical and antibacterial enhancement in composite, and it provided a new prospect for the rational selection of the different shapes and aspect ratio of reinforced materials. The obtained CNFs reinforced composite hydrogels could be potentially applied in antibacterial biological and food packaging area. C1 [Wang, Chenmeizi; Wang, Ling; Zhang, Qingle; Cheng, Lu; Xia, Xin; Zhou, Huimin] Xinjiang Univ, Coll Text & Clothing, Urumqi 830046, Xinjiang, Peoples R China. [Wang, Chenmeizi; Xia, Xin; Zhou, Huimin] Donghua Univ, Minist Educ, Key Lab Text Sci & Technol, Shanghai, Peoples R China. [Yue, Haitao] Xinjiang Univ, Coll Life Sci & Technol, Urumqi 830046, Xinjiang, Peoples R China. RP Xia, X; Zhou, HM (corresponding author), Xinjiang Univ, Coll Text & Clothing, Urumqi 830046, Xinjiang, Peoples R China.; Xia, X; Zhou, HM (corresponding author), Donghua Univ, Minist Educ, Key Lab Text Sci & Technol, Shanghai, Peoples R China. EM xjxiaxin@163.com; xjzhouhuimin@126.com OI Haitao, YUE/0000-0001-9429-7631 FU Xinjiang Autonomous Region Graduate Education and Teaching Reform Project [XJ2019GY10]; University Research Program Construction and analysis of comprehensive evaluation system for acid-proof and moisturepermeable nanocomposite fabric [XJEDU2018Y006]; Innovation Research Program for Xinjiang Graduate Students [XJ2019G074] FX This work is supported by No. XJ2019GY10: Xinjiang Autonomous Region Graduate Education and Teaching Reform Project, No. XJEDU2018Y006: University Research Program Construction and analysis of comprehensive evaluation system for acid-proof and moisturepermeable nanocomposite fabric and No. XJ2019G074: The Innovation Research Program for Xinjiang Graduate Students. CR Abu-Danso E, 2017, INT J BIOL MACROMOL, V102, P248, DOI 10.1016/j.ijbiomac.2017.03.172 Alavi M, 2019, APPL MICROBIOL BIOT, V103, P8669, DOI 10.1007/s00253-019-10126-4 Bansal M, 2016, INT J BIOL MACROMOL, V91, P887, DOI 10.1016/j.ijbiomac.2016.06.045 Cao JY, 2019, RSC ADV, V9, P36858, DOI 10.1039/c9ra07116d Delmar K, 2015, CARBOHYD POLYM, V127, P28, DOI 10.1016/j.carbpol.2015.03.039 Doench I, 2019, BIOMIMETICS, V4, DOI 10.3390/biomimetics4010019 El Miri N, 2015, CARBOHYD POLYM, V129, P156, DOI 10.1016/j.carbpol.2015.04.051 Huang WJ, 2019, CARBOHYD POLYM, V222, DOI 10.1016/j.carbpol.2019.114977 Kumar A, 2020, BIOFABRICATION, V12, DOI 10.1088/1758-5090/ab736e Kumar BYS, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-52042-7 Lau YS, 2012, J ETHNOPHARMACOL, V143, P565, DOI 10.1016/j.jep.2012.07.012 Li K, 2018, CARBOHYD POLYM, V199, P473, DOI 10.1016/j.carbpol.2018.07.034 Li N, 2017, CARBOHYD POLYM, V171, P77, DOI 10.1016/j.carbpol.2017.04.035 Li XT, 2018, BIOMED PHARMACOTHER, V100, P394, DOI 10.1016/j.biopha.2018.01.137 Li ZQ, 2020, J AGR FOOD CHEM, V68, P2696, DOI 10.1021/acs.jafc.9b07671 Liu CM, 2019, BIORESOURCES, V14, P1077, DOI 10.15376/biores.14.1.1077-1090 Liu Y, 2020, NEURAL REGEN RES, V15, P1243, DOI 10.4103/1673-5374.272573 Lohrasbi S, 2020, CELLULOSE, V27, P927, DOI 10.1007/s10570-019-02841-y Makepeace D.-K., 2018, J COLLOID INTERF SCI, P52345 Mazzuca C, 2020, COLLOID SURFACE B, V188, DOI 10.1016/j.colsurfb.2020.110777 Nezhad-Mokhtari P, 2020, INT J BIOL MACROMOL, V154, P198, DOI 10.1016/j.ijbiomac.2020.03.112 Nitta S, 2015, EUR POLYM J, V67, P50, DOI 10.1016/j.eurpolymj.2015.03.053 Oleyaei SA, 2016, CARBOHYD POLYM, V152, P253, DOI 10.1016/j.carbpol.2016.07.040 Ooi SY, 2016, IND CROP PROD, V93, P227, DOI 10.1016/j.indcrop.2015.11.082 Pang JH, 2020, CARBOHYD POLYM, V237, DOI 10.1016/j.carbpol.2020.116138 Pella MCG, 2018, CARBOHYD POLYM, V196, P233, DOI 10.1016/j.carbpol.2018.05.033 Qi XL, 2020, CARBOHYD POLYM, V237, DOI 10.1016/j.carbpol.2020.116160 Qu CX, 2014, FIBER POLYM, V15, P498, DOI 10.1007/s12221-014-0498-z Salah F, 2019, CELLULOSE, V26, P4957, DOI 10.1007/s10570-019-02419-8 Sampath UGTM, 2017, CELLULOSE, V24, P2215, DOI 10.1007/s10570-017-1251-8 Seo KW, 2004, J IND ENG CHEM, V10, P794 Song Y, 2014, CHEM RES CHINESE U, V30, P315, DOI 10.1007/s40242-014-3504-5 Talantikite M, 2019, LANGMUIR, V35, P13427, DOI 10.1021/acs.langmuir.9b02080 Wang L, 2020, TEXT RES J, V90, P593, DOI 10.1177/0040517519873868 Wang YP, 2017, CARBOHYD POLYM, V167, P44, DOI 10.1016/j.carbpol.2017.03.030 Xu ZY, 2016, RSC ADV, V6, P43626, DOI 10.1039/c6ra03620a Yang J, 2017, BIOMACROMOLECULES, V18, P2623, DOI 10.1021/acs.biomac.7b00730 Yang J, 2017, BIOMACROMOLECULES, V18, P1019, DOI 10.1021/acs.biomac.6b01915 Zhang P, 2016, FRONT MICROBIOL, V7, DOI 10.3389/fmicb.2016.00260 NR 39 TC 0 Z9 0 U1 19 U2 27 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0927-7765 EI 1873-4367 J9 COLLOID SURFACE B JI Colloid Surf. B-Biointerfaces PD MAR PY 2021 VL 199 AR 111441 DI 10.1016/j.colsurfb.2020.111441 PG 7 WC Biophysics; Chemistry, Physical; Materials Science, Biomaterials SC Biophysics; Chemistry; Materials Science GA QZ8WZ UT WOS:000631002000001 PM 33450706 DA 2021-10-15 ER PT J AU Chen, CH Wang, CC Liu, ZX Cai, ZC Hua, YJ Mei, YQ Wei, LF Liu, XH AF Chen, Cuihua Wang, Chengcheng Liu, Zixiu Cai, Zhichen Hua, Yujiao Mei, Yuqi Wei, Lifang Liu, Xunhong TI iTRAQ-based proteomic technique provides insights into salt stress responsive proteins in Apocyni Veneti Folium (Apocynum venetum L.) SO ENVIRONMENTAL AND EXPERIMENTAL BOTANY LA English DT Article DE Apocyni Veneti Folium; Halophyte; Proteomics; Salt tolerance; Correlate analysis ID SALINITY TOLERANCE; ARABIDOPSIS; ROOTS; HEAT; GENE; BIOSYNTHESIS; METABOLISM; MECHANISMS; EXPRESSION; SYNTHASE AB Soil salinity is a major abiotic stress that limits plant growth and productivity. Understanding the mechanisms of plant salinity tolerance can facilitate engineering for quality improvement. Apocynum venetum L. exhibits tolerance to salinity. Due to the lack of a genomic database, RNA-seq based transcriptomics and isobaric tag for relative and absolute quantitation (iTRAQ) based proteomic profiles of Apocyni Veneti Folium (leaves of Apocynum venetum L.) exposure to four levels of salt treatments (0, 100, 200 and 300 mM NaCl, respectively) were performed. A total of 143, 162 and 167 differentially expressed proteins (DEPs) were found between salt-treated Apocyni Veneti Folium compared with control, respectively. They were mainly involved in carbohydrate and energy metabolism, biosynthesis of metabolites and signal transduction. Furthermore, results showed that carbon and nitrogen metabolisms were altered under salt stress; low and moderate levels of salt stress enhanced photosynthetic functions and ramped up carbohydrate metabolism. However, severe salt stress depressed biosynthesis of secondary metabolites, consistent with the metabolomics results. It is worth emphasizing that some key salt-responsive proteins, such as dehydrin 1, annexin, pathogenesis-related protein, prolyl oligopeptidase, peroxidase, cinnamyl alcohol dehydrogenase, 4-hydroxycinnamoyl-CoA ligase 3, cytochrome P450 CYP73A120, were screened. These novel proteins provide a good starting point for further research into their functions using genetic or other approaches. In addition, a weak correlation between the abundance of DEPs and the corresponding differentially expressed genes highlighted the effect of post-transcriptional modifications and the importance of employing proteomics and transcriptomics to analyze global protein level changes. In conclusion, the protein profiles indicate that halophyte uses a multipronged approach to overcome salt stress, and provides some novel information on revealing the mechanisms of adaption and quality formation. C1 [Chen, Cuihua; Wang, Chengcheng; Liu, Zixiu; Cai, Zhichen; Hua, Yujiao; Mei, Yuqi; Wei, Lifang; Liu, Xunhong] Nanjing Univ Chinese Med, Coll Pharm, Nanjing 210023, Peoples R China. [Liu, Xunhong] Collaborat Innovat Ctr Chinese Med Resources Indu, Nanjing 210023, Peoples R China. [Liu, Xunhong] Natl & Local Collaborat Engn Ctr Chinese Med Reso, Nanjing 210023, Peoples R China. RP Liu, XH (corresponding author), Nanjing Univ Chinese Med, Coll Pharm, Nanjing 210023, Peoples R China. EM liuxunh1959@163.com FU Priority Academic Program Development of Jiangsu Higher Education Institutions of China; Postgraduate Research & Practice Innovation Program of Jiangsu Province [KYCX18_1606] FX This work was supported by Priority Academic Program Development of Jiangsu Higher Education Institutions of China (NO.ysxk-2014) and Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX18_1606) for the financial supporting. CR Bah AM, 2010, J HAZARD MATER, V184, P191, DOI 10.1016/j.jhazmat.2010.08.023 Carelli M, 2011, PLANT CELL, V23, P3070, DOI 10.1105/tpc.111.087312 Chen CH, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-52963-3 Chen CH, 2019, PLANT PHYSIOL BIOCH, V144, P187, DOI 10.1016/j.plaphy.2019.09.043 Chen CY, 2018, INT J MOL SCI, V19 Chen F, 2019, INT J MOL SCI, V20, DOI 10.3390/ijms20133303 Chitteti BR, 2007, J PROTEOME RES, V6, P1718, DOI 10.1021/pr060678z Das PP, 2019, J PROTEOMICS, V194, P191, DOI 10.1016/j.jprot.2018.11.018 Denoeud F, 2014, SCIENCE, V345, P1181, DOI 10.1126/science.1255274 Dietz KJ, 2000, J EXP BOT, V51, P937, DOI 10.1093/jexbot/51.346.937 Ding ZH, 2019, J AGR FOOD CHEM, V67, P3521, DOI 10.1021/acs.jafc.9b00014 Flowers TJ, 2004, J EXP BOT, V55, P307, DOI 10.1093/jxb/erh003 Frydman J, 2001, ANNU REV BIOCHEM, V70, P603, DOI 10.1146/annurev.biochem.70.1.603 Hua YJ, 2016, J PROTEOMICS, V139, P13, DOI 10.1016/j.jprot.2016.02.027 Ijaz R, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-11168-2 Jiang JR, 2001, PLANT J, V26, P35, DOI 10.1046/j.1365-313x.2001.01007.x Jiang Y, 2007, J EXP BOT, V58, P3591, DOI 10.1093/jxb/erm207 Kim HS, 2005, PLANT J, V41, P212, DOI 10.1111/j.1365-313X.2004.02295.x Kim SW, 2019, J GINSENG RES, V43, P143, DOI 10.1016/j.jgr.2018.09.005 Kreps JA, 2002, PLANT PHYSIOL, V130, P2129, DOI 10.1104/pp.008532 Kwon Y, 2007, PLANT J, V49, P184, DOI 10.1111/j.1365-313X.2006.02950.x Lam PY, 2014, PLANT PHYSIOL, V165, P1315, DOI 10.1104/pp.114.239723 Lan P, 2011, PLANT PHYSIOL, V155, P821, DOI 10.1104/pp.110.169508 Li S., 2019, INT J MOL SCI, V20 Li WM, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0082725 Li W, 2015, FRONT PLANT SCI, V6, DOI 10.3389/fpls.2015.00732 Liu AL, 2019, PLANT CELL ENVIRON, V42, P98, DOI 10.1111/pce.13186 Liu CW, 2014, PROTEOMICS, V14, P1759, DOI 10.1002/pmic.201300276 Liu GT, 2014, BMC PLANT BIOL, V14, DOI 10.1186/1471-2229-14-110 Marsalova L, 2016, FRONT PLANT SCI, V7, DOI 10.3389/fpls.2016.01154 Pi EX, 2018, MOL CELL PROTEOMICS, V17, P1209, DOI 10.1074/mcp.RA117.000417 Pi EX, 2016, MOL CELL PROTEOMICS, V15, P266, DOI 10.1074/mcp.M115.051961 Pu YT, 2019, MOL CELL PROTEOMICS, V18, P1157, DOI 10.1074/mcp.RA119.001378 Sobhanian H, 2010, J PROTEOME RES, V9, P2882, DOI 10.1021/pr900974k Szabados L., 2010, TRENDS PLANT SCI, V15, P89 Taji T, 2002, PLANT J, V29, P417, DOI 10.1046/j.0960-7412.2001.01227.x Tan CM, 2013, INT J MOL SCI, V14, P20204, DOI 10.3390/ijms141020204 Tesfaye M, 2001, PLANT PHYSIOL, V127, P1836, DOI 10.1104/pp.010376 Tester M, 2003, ANN BOT-LONDON, V91, P503, DOI 10.1093/aob/mcg058 Tripathy BC, 2012, PLANT SIGNAL BEHAV, V7, P1621, DOI 10.4161/psb.22455 Trovato M, 2008, REND LINCEI-SCI FIS, V19, P325, DOI 10.1007/s12210-008-0022-8 Wang LX, 2013, J PROTEOME RES, V12, P5124, DOI 10.1021/pr4006469 Wang WX, 2004, TRENDS PLANT SCI, V9, P244, DOI 10.1016/j.tplants.2004.03.006 Wang X., 2019, INT J MOL SCI, V20 Wang XJ, 2010, PHYSIOL PLANTARUM, V139, P27, DOI 10.1111/j.1399-3054.2009.01338.x Wang XC, 2009, J PROTEOME RES, V8, P3331, DOI 10.1021/pr801083a Wu GQ, 2018, INT J MOL SCI, V19, DOI 10.3390/ijms19123866 Xie WY, 2012, J ETHNOPHARMACOL, V141, P1, DOI 10.1016/j.jep.2012.02.003 Yadav D, 2018, ENVIRON EXP BOT, V155, P293, DOI 10.1016/j.envexpbot.2018.07.002 Yan JH, 2014, PLANT CELL PHYSIOL, V55, P74, DOI 10.1093/pcp/pct159 Yan YX, 2007, PLANT CELL, V19, P2470, DOI 10.1105/tpc.107.050708 Yang L, 2013, J PROTEOME RES, V12, P4931, DOI 10.1021/pr400177m Yu JJ, 2011, J PROTEOME RES, V10, P3852, DOI 10.1021/pr101102p Zhang AQ, 2018, PLANTA, V247, P715, DOI 10.1007/s00425-017-2818-1 Zhang H, 2012, J PROTEOME RES, V11, P49, DOI 10.1021/pr200861w Zhang YJ, 2019, J PROTEOMICS, V201, P73, DOI 10.1016/j.jprot.2019.04.017 Zhao FY, 2016, FRONT PLANT SCI, V7, DOI 10.3389/fpls.2016.01471 NR 57 TC 0 Z9 0 U1 5 U2 31 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0098-8472 EI 1873-7307 J9 ENVIRON EXP BOT JI Environ. Exp. Bot. PD DEC PY 2020 VL 180 AR 104247 DI 10.1016/j.envexpbot.2020.104247 PG 12 WC Plant Sciences; Environmental Sciences SC Plant Sciences; Environmental Sciences & Ecology GA OC9AQ UT WOS:000579447700019 DA 2021-10-15 ER PT J AU Zhang, TT Li, M Zhan, YG Fan, GZ AF Zhang, Tingting Li, Mao Zhan, Ya Guang Fan, Gui Zhi TI Dataset of full-length transcriptome assembly and annotation of apocynum venetum using pacbio sequel II SO DATA IN BRIEF LA English DT Article; Data Paper DE Apocynum venetum; Transcriptomics; Pacbio sequel ii; Functional annotation ID TOOL AB Apocynum venetum, which belongs to Apocynaceae, is widely distributed throughout salt-barren zones, desert steppes, and alluvial flats of the Mediterranean area and Northwestern China. Apocynum venetum has long been used in traditional Chinese medicine because of its anti-inflammation, antioxidative, anti-hypertensive, anti-cancer, and bactericidal effects. However, the absence of genetic information on Apocynum venetum is an obstacle to understanding its stress resistance or medicinal function. This work was aimed at generating a full-length transcriptome of Apocynum venetum using Pacific Bioscience (PacBio) Single Molecule Real-Time (SMRT) sequencing technology. A total of 18,524 unigenes were obtained, and 18,136 unigenes were successfully annotated. The raw data were uploaded to SRA database, and the BioProject ID is PRJNA650225. The above data will provide the basis for further exploration and understanding of the molecular mechanism in stress resistance or medicinal function of Apocynum venetum. (C) 2020 The Authors. Published by Elsevier Inc. C1 [Zhang, Tingting; Li, Mao; Zhan, Ya Guang; Fan, Gui Zhi] Northeast Forestry Univ, Key Lab Saline Alkali Vegetat Ecol Restorat, Minist Educ, Harbin 150040, Peoples R China. RP Fan, GZ (corresponding author), Northeast Forestry Univ, Key Lab Saline Alkali Vegetat Ecol Restorat, Minist Educ, Harbin 150040, Peoples R China. EM gzf325@126.com FU Foundation of State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences [G2018-02-07]; Fundamental Research Funds for the Central UniversitiesFundamental Research Funds for the Central Universities [2572020DY17] FX This work was supported by the Foundation of State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences (G2018-02-07), the Fundamental Research Funds for the Central Universities (2572020DY17). CR Apweiler R, 2004, NUCLEIC ACIDS RES, V32, pD115, DOI 10.1093/nar/gkw1099 Ashburner M, 2000, NAT GENET, V25, P25, DOI 10.1038/75556 [邓泱泱 DENG Yangyang], 2006, [计算机工程, Computer Engineering], V32, P71 Gu Jenny, 2014, PAG ASIA MAY Haas BJ, 2013, NAT PROTOC, V8, P1494, DOI 10.1038/nprot.2013.084 Huerta-Cepas J, 2016, NUCLEIC ACIDS RES, V44, pD286, DOI 10.1093/nar/gkv1248 Kanehisa M, 2004, NUCLEIC ACIDS RES, V32, pD277, DOI 10.1093/nar/gkh063 Mathieu Seppey, 2019, METHOD MOL BIOL, V1962, P227 Tatusov RL, 2000, NUCLEIC ACIDS RES, V28, P33, DOI 10.1093/nar/28.1.33 Tseng E, 2013, J BIOMOL TECH S, V24, pS45 Waterhouse RM, 2018, MOL BIOL EVOL, V35, P543, DOI 10.1093/molbev/msx319 NR 11 TC 0 Z9 0 U1 6 U2 9 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 2352-3409 J9 DATA BRIEF JI Data Brief PD DEC PY 2020 VL 33 AR 106494 DI 10.1016/j.dib.2020.106494 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA PH8JS UT WOS:000600652300160 PM 33251304 OA Green Published, gold DA 2021-10-15 ER PT J AU Li, CJ Wang, YD Lei, JQ Xu, XW Wang, SJ Fan, JL Fan, SY AF Li, Congjuan Wang, Yongdong Lei, Jiaqiang Xu, Xinwen Wang, Shijie Fan, Jinglong Fan, Shengyu TI Damage by wind-blown sand and its control measures along the Taklimakan Desert Highway in China SO JOURNAL OF ARID LAND LA English DT Article DE wind-blown sand; sand barrier fences; artificial shelterbelt; mechanical sand control measure; biological sand control measure; sustainable development; Taklimakan Desert Highway ID SALINE WATER; SOIL; IRRIGATION; FLOW; GROUNDWATER; HINTERLAND; XINJIANG AB Desertification is one of the most serious environmental problems in the world, especially in the arid desert regions. Combating desertification, therefore, is an urgent task on a regional or even global scale. The Taklimakan Desert in China is the second largest mobile desert in the world and has been called the "Dead Sea" due to few organisms can exist in such a harsh environment. The Taklimakan Desert Highway, the longest desert highway (a total length of 446 km) across the mobile desert in the world, was built in the 1990s within the Taklimakan Desert. It has an important strategic significance regarding oil and gas resources exploration and plays a vital role in the socio-economic development of southern Xinjiang, China. However, wind-blow sand seriously damages the smoothness of the desert highway and, in this case, mechanical sand control system (including sand barrier fences and straw checkerboards) was used early in the life of the desert highway to protect the road. Unfortunately, more than 70% of the sand barrier fences and straw checkerboards have lost their functions, and the desert highway has often been buried and frequently blocked since 1999. To solve this problem, a long artificial shelterbelt with the length of 437 km was built along the desert highway since 2000. However, some potential problems still exist for the sustainable development of the desert highway, such as water shortage, strong sandstorms, extreme environmental characteristics and large maintenance costs. The study aims to provide an overview of the damages caused by wind-blown sand and the effects of sand control measures along the Taklimakan Desert Highway. Ultimately, we provide some suggestions for the biological sand control system to ensure the sustainable development of the Taklimakan Desert Highway, such as screening drought-resistant species to reduce the irrigation requirement and ensure the sound development of groundwater, screening halophytes to restore vegetation in the case of soil salinization, and planting cash crops, such as Cistanche, Wolfberry, Apocynum and other cash crops to decrease the high cost of maintenance on highways and shelterbelts. C1 [Li, Congjuan; Wang, Yongdong; Lei, Jiaqiang; Xu, Xinwen; Wang, Shijie; Fan, Jinglong; Fan, Shengyu] Chinese Acad Sci, Xinjiang Inst Ecol & Geog, Natl Engn Technol Res Ctr Desert Oasis Ecol Const, Urumqi 830011, Peoples R China. [Li, Congjuan; Wang, Yongdong; Lei, Jiaqiang; Xu, Xinwen; Wang, Shijie; Fan, Jinglong; Fan, Shengyu] Chinese Acad Sci, Xinjiang Inst Ecol & Geog, Taklimakan Desert Res Stn, Korla 841000, Peoples R China. [Wang, Shijie] Xinjiang Agr Univ, Urumqi 830052, Peoples R China. RP Wang, YD; Lei, JQ (corresponding author), Chinese Acad Sci, Xinjiang Inst Ecol & Geog, Natl Engn Technol Res Ctr Desert Oasis Ecol Const, Urumqi 830011, Peoples R China.; Wang, YD; Lei, JQ (corresponding author), Chinese Acad Sci, Xinjiang Inst Ecol & Geog, Taklimakan Desert Res Stn, Korla 841000, Peoples R China. EM wangyd@ms.xjb.ac.cn; leijq@ms.xjb.ac.cn RI Li, Congjuan/ABH-8523-2020 FU National Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC) [31971731, 41771121]; Xinjiang National Key Research and Development Program [2019B00005]; National Key Research and Development Program [2017YFC0506705]; Youth Innovation Promotion Association of Chinese Academy of Sciences [2017476] FX This work was supported by the National Natural Science Foundation of China (31971731, 41771121), the Xinjiang National Key Research and Development Program (2019B00005), the National Key Research and Development Program (2017YFC0506705), and the Youth Innovation Promotion Association of Chinese Academy of Sciences (2017476). CR BERGSTROM DJ, 1992, J WIND ENG IND AEROD, V44, P2697, DOI 10.1016/0167-6105(92)90061-E Cao SX, 2008, ENVIRON SCI TECHNOL, V42, P1826, DOI 10.1021/es0870597 Chen WN., 1993, ACTA GEOGR SIN, V48, P33 COPLEY JM, 1987, J WIND ENG IND AEROD, V26, P21, DOI 10.1016/0167-6105(87)90034-1 Dong ZB, 2004, J ARID ENVIRON, V57, P329, DOI 10.1016/j.jaridenv.2002.02.001 Dong ZW, 2020, J SOIL SEDIMENT, V20, P690, DOI 10.1007/s11368-019-02481-6 Fan JL, 2017, TECNOL CIENC AGUA, V8, P19, DOI 10.24850/j-tyca-2017-02-02 Gong F H, 2001, J DESERT RES, V21, P45 Gu F X, 2000, J ARID LAND RESOURCE, V14, P74 Han Z, 2007, J ARID ENVIRON, V68, P260, DOI 10.1016/j.jaridenv.2006.05.007 Han Z W, 2000, ARID LAND RESOURCES, V2, P35 [Han Zhiwen 韩致文], 2003, Journal of Geographical Sciences, V13, P45, DOI 10.1007/BF02873146 Huang Y, 2015, WATER-SUI, V7, P4343, DOI 10.3390/w7084343 Jin ZZ, 2008, CHINESE SCI BULL, V53, P125, DOI 10.1007/s11434-008-6015-2 Johnson T, 1996, J WIND ENG IND AEROD, V60, P251, DOI 10.1016/0167-6105(96)00038-4 Khier W, 2000, COMPUT FLUIDS, V29, P179, DOI 10.1016/S0045-7930(99)00008-0 Lei JQ, 2008, CHINESE SCI BULL, V53, P190, DOI 10.1007/s11434-008-6022-3 [雷加强 Lei Jiaqiang], 2003, [干旱区研究, Arid Zone Research], V20, P1 Li BW, 2008, CHINESE SCI BULL, V53, P31, DOI 10.1007/s11434-008-6003-6 Li CB, 2017, SHIPS OFFSHORE STRUC, V12, pS288, DOI DOI 10.1371/journal.pone.0180875 Li CJ, 2018, J ARID LAND, V10, P429, DOI 10.1007/s40333-018-0002-5 Li CJ, 2015, SOIL TILL RES, V146, P99, DOI 10.1016/j.still.2014.03.013 Li CJ, 2011, ECOL RES, V26, P385, DOI 10.1007/s11284-010-0793-0 Li SY, 2015, ENVIRON EARTH SCI, V73, P873, DOI 10.1007/s12665-014-3443-y Liu F, 2009, SEMICOND SCI TECH, V24, DOI 10.1088/0268-1242/24/8/085005 Malagnoux M., 2007, Unasylva (English ed.), V58, P24 Mariscal I, 2007, SCI TOTAL ENVIRON, V378, P130, DOI 10.1016/j.scitotenv.2007.01.025 Nash DJ, 1999, GEOGR J, V165, P325, DOI 10.2307/3060449 Ofori L, 2010, EOS T AGU, V91, P327 Tuoheti N, 2013, J POLIT LAW, V6, P160, DOI 10.5539/jpl.v6n3p160 Wang HF, 2008, CHINESE SCI BULL, V53, P41, DOI 10.1007/s11434-008-6004-5 WANG XQ, 2000, J DESERT RES, V20, P438 Wang YD, 2018, J SOIL SEDIMENT, V18, P1466, DOI 10.1007/s11368-017-1880-4 Wei YP, 2017, TECNOL CIENC AGUA, V8, P151, DOI 10.24850/j-tyca-2017-02-14 Xu X., 1998, ARID ZONE RES, V15, P21 Xu XW, 2006, CHINESE SCI BULL, V51, P161, DOI 10.1007/s11434-006-8221-0 Yu X X, 2017, ARID ZONE RES, V34, P21 [张佳 Zhang Jia], 2011, [干旱区研究, Arid Zone Research], V28, P118 Zhang JX, 2016, FRONT PLANT SCI, V7, DOI 10.3389/fpls.2016.00005 Zhang KC, 2010, AEOLIAN RES, V1, P143, DOI 10.1016/j.aeolia.2009.10.001 Zhang XM, 2017, ARID LAND RES MANAG, V31, P335, DOI 10.1080/15324982.2017.1300613 Zhou ZhiBin, 2006, Arid Land Geography, V29, P470 ZHU ZD, 1981, STUDY GEOMORPHOLOGY, P27 NR 43 TC 0 Z9 0 U1 3 U2 9 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1674-6767 EI 2194-7783 J9 J ARID LAND JI J. Arid Land PD JAN PY 2021 VL 13 IS 1 SI SI BP 98 EP 106 DI 10.1007/s40333-020-0071-0 EA NOV 2020 PG 9 WC Environmental Sciences SC Environmental Sciences & Ecology GA QA5IE UT WOS:000588887100003 OA Bronze DA 2021-10-15 ER PT J AU Xu, XX Gong, JX Li, Z Li, QJ Zhang, JF Wang, L Huang, JF AF Xu, Xuanxuan Gong, Jixian Li, Zheng Li, Qiujin Zhang, Jianfei Wang, Li Huang, Jingfeng TI Mordant Free Dyeing and Functionalization of Wool Fabrics with Biocolorants Derived from Apocynum venetum L. Bast SO ACS SUSTAINABLE CHEMISTRY & ENGINEERING LA English DT Article DE Apocynum venetum L.; flavonoids; biocolorant; biodyeing; antibacterial activity ID NATURAL DYES; FLAVONOIDS; ANTIBACTERIAL; QUERCETIN; POLYPHENOLS; EXTRACTS; WASTE; RUTIN; RAMAN; FOOD AB Biomass has emerged as a sustainable and renewable resource for dyestuff production. There is an increasing interest in biocolorants, especially in pigments from herbs. Nevertheless, hazardous metal mordants need to be used in conventional dyeing procedures to achieve the desired exhaustion rate and colorfastness. In this study, a novel dyeing strategy was presented for wool fibers with flavonoid pigments extracted from the bast of Apocynum venetum L. (A. venetum) based on in situ polymerization and covalent fixation of the dyes on the fiber. A new dyeing process was developed using NaOH as a dye fixative in the absence of mordants. The dyed fabric obtained by employing a relatively low NaOH concentration of 1.0 g/L in the dyebath, at a constant dyeing temperature of 100 degrees C, a dyeing time of 90 min, and a fixation time of 30 min, had a significant improvement in the color strength as well as the antibacterial activity against the assayed microorganisms, in addition to the good rubbing and washing colorfastness. Moreover, it was found that the wool dyed under optimum conditions suffered almost no damage from the tensile test results. This biodyeing strategy provided a new way for the sustainable wool dyeing process. C1 [Xu, Xuanxuan; Gong, Jixian; Li, Zheng; Li, Qiujin; Zhang, Jianfei] Tiangong Univ, Sch Text Sci & Engn, Educ Minist, Tianjin 300387, Peoples R China. [Xu, Xuanxuan; Gong, Jixian; Li, Zheng; Li, Qiujin; Zhang, Jianfei] Tiangong Univ, Key Lab Adv Text Composites, Educ Minist, Tianjin 300387, Peoples R China. [Wang, Li; Huang, Jingfeng] Altay Gaubau Tea Co Ltd, Altay 836500, Peoples R China. [Zhang, Jianfei] Collaborat Innovat Ctr Ecotext Shandong Prov, Qingdao 266071, Peoples R China. RP Gong, JX; Zhang, JF (corresponding author), Tiangong Univ, Sch Text Sci & Engn, Educ Minist, Tianjin 300387, Peoples R China.; Zhang, JF (corresponding author), Collaborat Innovat Ctr Ecotext Shandong Prov, Qingdao 266071, Peoples R China. EM gongjixian@126.com; zhangjianfei1960@outlook.com FU Xinjiang Autonomous Region Major Significant Project Foundation [2016A03006-3]; Tianjin Natural Science FoundationNatural Science Foundation of Tianjin [18JCYBJC89600]; National Key Research and Development Project Foundation of China [2016YFC0400503-02]; Science and Technology Guidance Project of China National Textile and Apparel Council [2017011] FX This work was supported by the Xinjiang Autonomous Region Major Significant Project Foundation [grant number 2016A03006-3], the Tianjin Natural Science Foundation [grant number 18JCYBJC89600], the National Key Research and Development Project Foundation of China [grant number 2016YFC0400503-02], and the Science and Technology Guidance Project of China National Textile and Apparel Council [grant number 2017011]. CR Achour S, 2012, J FOOD SCI, V77, pC703, DOI 10.1111/j.1750-3841.2012.02696.x Arroyo-Figueroa G, 2011, COLOR TECHNOL, V127, P39, DOI 10.1111/j.1478-4408.2010.00276.x Asano K., 1982, Journal of the American Society of Brewing Chemists, V40, P147 Bechtold T, 2003, J CLEAN PROD, V11, P499, DOI 10.1016/S0959-6526(02)00077-X Bittner S, 2006, AMINO ACIDS, V30, P205, DOI 10.1007/s00726-005-0298-2 Buchner N, 2006, RAPID COMMUN MASS SP, V20, P3229, DOI 10.1002/rcm.2720 Burkinshaw SM, 2009, DYES PIGMENTS, V80, P53, DOI 10.1016/j.dyepig.2008.05.008 Chaaban H, 2017, J FOOD PROCESS PRES, V41, DOI 10.1111/jfpp.13203 Cornard JP, 1997, BIOSPECTROSCOPY, V3, P183, DOI 10.1002/(SICI)1520-6343(1997)3:3<183::AID-BSPY2>3.0.CO;2-7 Cushnie TPT, 2005, INT J ANTIMICROB AG, V26, P343, DOI 10.1016/j.ijantimicag.2005.09.002 Dong YC, 2019, DYES PIGMENTS, V163, P308, DOI 10.1016/j.dyepig.2018.12.011 Gomes A, 2008, CURR MED CHEM, V15, P1586, DOI 10.2174/092986708784911579 Gong JX, 2018, J CLEAN PROD, V182, P301, DOI 10.1016/j.jclepro.2018.01.219 Gonnet JF, 1998, FOOD CHEM, V63, P409, DOI 10.1016/S0308-8146(98)00053-3 Haddar W, 2014, J CLEAN PROD, V66, P546, DOI 10.1016/j.jclepro.2013.11.017 Havsteen BH, 2002, PHARMACOL THERAPEUT, V96, P67, DOI 10.1016/S0163-7258(02)00298-X He JB, 2007, BIOELECTROCHEMISTRY, V71, P157, DOI 10.1016/j.bioelechem.2007.03.003 He JB, 2009, BIOELECTROCHEMISTRY, V75, P110, DOI 10.1016/j.bioelechem.2009.02.006 Hill B, 1997, ACM T GRAPHIC, V16, P109, DOI 10.1145/248210.248212 Jurasekova Z, 2014, PHYS CHEM CHEM PHYS, V16, P12802, DOI 10.1039/c4cp00864b Jurasekova Z, 2009, J MOL STRUCT, V918, P129, DOI 10.1016/j.molstruc.2008.07.025 Lin CSK, 2013, ENERG ENVIRON SCI, V6, P426, DOI 10.1039/c2ee23440h Liu H, 2008, RENEW SUST ENERG REV, V12, P1402, DOI 10.1016/j.rser.2007.01.011 Mello BCBS, 2010, J FOOD ENG, V96, P533, DOI 10.1016/j.jfoodeng.2009.08.040 O'Connell JE, 1999, INT DAIRY J, V9, P523, DOI 10.1016/S0958-6946(99)00124-7 Pan BJ, 2013, DESALINATION, V317, P127, DOI 10.1016/j.desal.2013.03.004 Pihlasalo S, 2012, ANAL CHEM, V84, P8253, DOI 10.1021/ac301569b Ren YF, 2017, J CLEAN PROD, V148, P375, DOI 10.1016/j.jclepro.2017.01.168 Ren YF, 2017, DYES PIGMENTS, V138, P147, DOI 10.1016/j.dyepig.2016.11.043 Ren YF, 2016, DYES PIGMENTS, V134, P334, DOI 10.1016/j.dyepig.2016.07.032 Ricci A, 2015, APPL SPECTROSC REV, V50, P407, DOI 10.1080/05704928.2014.1000461 Ristivojevic P, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0157097 Samper MD, 2013, J APPL POLYM SCI, V129, P1707, DOI 10.1002/app.38871 Shahid M, 2013, J CLEAN PROD, V53, P310, DOI 10.1016/j.jclepro.2013.03.031 Sokolova R, 2016, MONATSH CHEM, V147, P1375, DOI 10.1007/s00706-016-1737-3 Tchounwou Paul B, 2012, Exp Suppl, V101, P133, DOI 10.1007/978-3-7643-8340-4_6 Wang FB, 2018, POLYMERS-BASEL, V10, DOI 10.3390/polym10020196 Wang FB, 2018, ROY SOC OPEN SCI, V5, DOI 10.1098/rsos.171134 Wang LJ, 2013, IND CROP PROD, V49, P312, DOI 10.1016/j.indcrop.2013.04.039 Xiang L, 2016, J MOL STRUCT, V1124, P164, DOI 10.1016/j.molstruc.2016.02.058 Xie WY, 2012, J ETHNOPHARMACOL, V141, P1, DOI 10.1016/j.jep.2012.02.003 Xie YX, 2015, CURR MED CHEM, V22, P132 Xiong QB, 2000, PLANTA MED, V66, P127, DOI 10.1055/s-2000-11135 Xu XX, 2020, IND CROP PROD, V151, DOI 10.1016/j.indcrop.2020.112419 Yao LH, 2004, PLANT FOOD HUM NUTR, V59, P113, DOI 10.1007/s11130-004-0049-7 Zhang LS, 2015, APPL SURF SCI, V328, P501, DOI 10.1016/j.apsusc.2014.12.073 Zheng GH, 2011, KOREAN J CHEM ENG, V28, P2148, DOI 10.1007/s11814-011-0090-9 Zhou AL, 2008, J AGR FOOD CHEM, V56, P12081, DOI 10.1021/jf802413v Zhou C., 2011, IMMUNOL LETT, V141, P116 Zhou YY, 2019, IND CROP PROD, V130, P580, DOI 10.1016/j.indcrop.2019.01.020 NR 50 TC 0 Z9 0 U1 4 U2 20 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2168-0485 J9 ACS SUSTAIN CHEM ENG JI ACS Sustain. Chem. Eng. PD AUG 24 PY 2020 VL 8 IS 33 BP 12686 EP 12695 DI 10.1021/acssuschemeng.0c04757 PG 10 WC Chemistry, Multidisciplinary; Green & Sustainable Science & Technology; Engineering, Chemical SC Chemistry; Science & Technology - Other Topics; Engineering GA NG1YR UT WOS:000563783100038 DA 2021-10-15 ER PT J AU Bautista, MAC Xiao, ZQ Zheng, Y Miao, SY Deng, YF Chen, T AF Bautista, Mary Ann C. Xiao, Zhongqi Zheng, Yan Miao, Shenyu Deng, Yunfei Chen, Tao TI Characterization of the complete chloroplast genome ofApocynum venetumL. (Apocynaceae) SO MITOCHONDRIAL DNA PART B-RESOURCES LA English DT Article DE Apocynum venetum; chloroplast genome; Apocynaceae; phylogenetic analysis AB Apocynum venetumL. (Apocynaceae) or Luobuma is a widely known traditional medicine use to treat hypertension, relieve anxiety, soothe the nerves and promote diuresis. In this study, the complete chloroplast genome of this medicinal plant was determined through Illumina sequencing method. TheA. venetumcp genome is 150,897 bp in length, containing a small single copy region (17,256 bp), a large single copy region (81,957 bp), and a pair of IR regions (25,842 bp). It encodes for a total of 131 genes, including 86 protein-coding genes, 8 rRNA genes, and 37 tRNA genes. Phylogenetic analysis also reveals thatA. venetumis relatively close toAganosma cymosa. C1 [Bautista, Mary Ann C.; Deng, Yunfei] Chinese Acad Sci, Key Lab Plant Resources Conservat & Sustainable U, South China Bot Garden, Guangzhou, Peoples R China. [Bautista, Mary Ann C.; Zheng, Yan; Chen, Tao] Chinese Acad Sci, Key Lab South Subtrop Plant Divers, Shenzhen Fairy Lake Bot Garden, Shenzhen, Peoples R China. [Bautista, Mary Ann C.; Deng, Yunfei; Chen, Tao] Univ Chinese Acad Sci, Beijing, Peoples R China. [Xiao, Zhongqi] Forestry & Grassland Adm, Urumqi, Peoples R China. [Miao, Shenyu] Guangzhou Univ, Sch Life Sci, Guangzhou, Peoples R China. RP Chen, T (corresponding author), Chinese Acad Sci, Key Lab South Subtrop Plant Divers, Shenzhen Fairy Lake Bot Garden, Shenzhen, Peoples R China.; Chen, T (corresponding author), Univ Chinese Acad Sci, Beijing, Peoples R China. EM taochen@szbg.ac.cn OI Bautista, Mary Ann/0000-0002-5614-7170 FU Fourth National Survey of Chinese Traditional Medicine Resources Project from China Ministry of Finance [GZY-KJS-2018-004]; State Administration of Traditional Chinese Medicine [GZY-KJS-2018-004]; Science and Technology Planning Project of Guangdong Province [2018B030320007] FX The funding project/agency was mentioned twice in the funding statement. I think it should be "This work was supported by the Fourth National Survey of Chinese Traditional Medicine Resources Project from China Ministry of Finance and State Administration of Traditional Chinese Medicine (GZY-KJS-2018-004) and the Science and Technology Planning Project of Guangdong Province (2018B030320007) CR Chan PP, 2019, METHODS MOL BIOL, V1962, P1, DOI 10.1007/978-1-4939-9173-0_1 Gao G, 2019, METABOLITES, V9, DOI 10.3390/metabo9120296 Liu C, 2012, BMC GENOMICS, V13, DOI 10.1186/1471-2164-13-715 Nurk S, 2013, J COMPUT BIOL, V20, P714, DOI 10.1089/cmb.2013.0084 Rao H, 2019, MITOCHONDRIAL DNA B, V4, P335, DOI 10.1080/23802359.2018.1544044 Stamatakis A, 2014, BIOINFORMATICS, V30, P1312, DOI 10.1093/bioinformatics/btu033 Xie WY, 2012, J ETHNOPHARMACOL, V141, P1, DOI 10.1016/j.jep.2012.02.003 NR 7 TC 0 Z9 0 U1 1 U2 4 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND EI 2380-2359 J9 MITOCHONDRIAL DNA B JI Mitochondrial DNA Part B-Resour. PD JUL 2 PY 2020 VL 5 IS 3 BP 2475 EP 2476 DI 10.1080/23802359.2020.1780171 PG 2 WC Genetics & Heredity SC Genetics & Heredity GA MH5RE UT WOS:000546785300001 PM 33457833 OA gold, Green Published DA 2021-10-15 ER PT J AU Chang, LY Yu, XL Wang, WX Tian, XX AF Chang, Lianying Yu, Xiaolei Wang, Wenxiu Tian, Xiaoxuan TI The complete chloroplast genome ofApocynum venetum(Apocynaceae) SO MITOCHONDRIAL DNA PART B-RESOURCES LA English DT Article DE Apocynum venetum; chloroplast genome ID APOCYNUM-VENETUM L. AB Apocynum venetum(A. venetum) has high medicinal value that belongs to the family Apocynaceae. Here, we reported the complete chloroplast (cp) genome ofA. venetum,which was 150,858 bp in length. The cp genome was characterized by a typical quadripartite structure composed of a large single-copy region (LSC 81,919 bp) and a small single-copy region (SSC 17,257 bp) interspersed by a pair of 25,841 bp inverted repeat regions (IRs), and it contained 86 protein-coding genes, eight rRNAs, and 37 tRNAs. A maximum-likelihood (ML) phylogenetic tree indicated thatA. venetumwas closely related toTrachelospermum jasminoides. C1 [Chang, Lianying] Tianjin Univ Tradit Chinese Med, Teaching Hosp 1, Natl Clin Res Ctr Chinese Med Acupuncture & Moxib, Tianjin, Peoples R China. [Yu, Xiaolei; Wang, Wenxiu; Tian, Xiaoxuan] Tianjin Univ Tradit Chinese Med, Tianjin State Key Lab Modern Chinese Med, Tianjin 300193, Peoples R China. [Tian, Xiaoxuan] Tianjin Univ Tradit Chinese Med, Coll Pharmaceut Engn Tradit Chinese Med, Tianjin, Peoples R China. RP Tian, XX (corresponding author), Tianjin Univ Tradit Chinese Med, Tianjin State Key Lab Modern Chinese Med, Tianjin 300193, Peoples R China. EM tian_xiaoxuan@tjutcm.edu.cn RI Tian, Xiaoxuan/AAU-8721-2021 OI Tian, Xiaoxuan/0000-0003-4248-9943 CR Cui YX, 2019, PLANTS-BASEL, V8, DOI 10.3390/plants8080283 Dierckxsens N, 2017, NUCLEIC ACIDS RES, V45, DOI 10.1093/nar/gkw955 Grundmann O, 2007, J ETHNOPHARMACOL, V110, P406, DOI 10.1016/j.jep.2006.09.035 Grundmann O, 2009, PHYTOMEDICINE, V16, P295, DOI 10.1016/j.phymed.2008.12.020 Nguyen LT, 2015, MOL BIOL EVOL, V32, P268, DOI 10.1093/molbev/msu300 Tillich M, 2017, NUCLEIC ACIDS RES, V45, pW6, DOI 10.1093/nar/gkx391 Xie WY, 2012, J ETHNOPHARMACOL, V141, P1, DOI 10.1016/j.jep.2012.02.003 Yan M, 2019, INT J MOL SCI, V20, DOI 10.3390/ijms20122886 Yang Z, 2019, PEERJ, V7, DOI 10.7717/peerj.6320 Yu XL, 2019, PLANTS-BASEL, V8, DOI 10.3390/plants8100410 Zhang D, 2020, MOL ECOL RESOUR, V20, P348, DOI 10.1111/1755-0998.13096 NR 11 TC 0 Z9 0 U1 1 U2 3 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND EI 2380-2359 J9 MITOCHONDRIAL DNA B JI Mitochondrial DNA Part B-Resour. PD JUL 2 PY 2020 VL 5 IS 3 BP 2601 EP 2602 DI 10.1080/23802359.2020.1781567 PG 2 WC Genetics & Heredity SC Genetics & Heredity GA MK4IU UT WOS:000548751100001 PM 33457875 OA Green Published, gold DA 2021-10-15 ER PT J AU Dejonge, RB Jones, IM Bourchier, RS Smith, SM AF deJonge, Rhoda B. Jones, Ian M. Bourchier, Robert S. Smith, Sandy M. TI Interpreting host-test results for classical biological control candidates: Can the study of native congeners improve the process? SO BIOLOGICAL CONTROL LA English DT Article DE Asclepias; False positive; Congeneric species; Chrysochus; Host-specificity testing; Vincetoxicum rossicum ID CHRYSOCHUS-AURATUS COLEOPTERA; VINCETOXICUM-ROSSICUM; LEAF BEETLES; CONTROL AGENTS; CHRYSOMELIDAE; PLANT; SPECIFICITY; BEHAVIOR; RANGE; POPULATIONS AB When an insect candidate is identified for classical biological control, the first step is to identify its fundamental host-range. An insect's fundamental host range, however, is typically broader than its ecological host range. This discrepancy can lead to 'false positives' in host testing and hamper the development of potential agents. Here, we propose a novel tool for interpreting host-range tests and identifying 'false positives' by studying native insects closely related to the biological control candidate. We conduct a series of laboratory and field studies comparing the fundamental and ecological host ranges of Chrysochus auratus Fabricius (Coleoptera: Chrysomelidae), a beetle native to North America, and present throughout the range invaded by pale swallow-wort, Vincetoxicum rossicum (Kleopow) Barbar. (Apocynaceae). We use the results to re-evaluate the risk associated with releasing the closely-related European beetle, Chrysochus asclepiadeus (Pallas) (Coleoptera: Chrysomelidae), a biological control candidate for V. rossicum that has raised some concerns because of no-choice feeding on North American milkweed species (Asclepias spp.) during laboratory host-testing. Laboratory and greenhouse trials here show that native North American C. auratus adults can feed and complete larval development on several native Asclepias species (fundamental host range), however in the field where both closely-related plant genera are present, this species specialized only on plants in the genus Apocynum. It appears then that Asclepias species generate 'false positives' for Chrysochus beetles when only the fundamental host range is assessed in the laboratory, and there is a need to re-evaluate C. asclepiadeus for potential biocontrol in North America taking into account its ecological host-plant range. We advocate for the inclusion of closely-related native congeners, where appropriate species exist, to aid in interpreting host-plant testing for potential classical biological control agents. C1 [deJonge, Rhoda B.; Jones, Ian M.; Smith, Sandy M.] Univ Toronto, Fac Forestry, 33 Willcocks St, Toronto, ON M5S 3B3, Canada. [Bourchier, Robert S.] Agr & Agri Food Canada, 5403-1 Ave South, Lethbridge, AB T1J 4B1, Canada. RP Jones, IM (corresponding author), Univ Toronto, Fac Forestry, 33 Willcocks St, Toronto, ON M5S 3B3, Canada. EM Rhoda.dejonge@utoronto.ca; i.jones@utoronto.ca; robert.bourchier@canada.ca; s.smith.a@utoronto.ca FU Invasive Species Centre; Agriculture and Agri-Food CanadaAgriculture & Agri Food Canada; Faculty of Forestry; Ontario Ministry of Natural Resources and Forestry; Ontario Graduate ScholarshipOntario Graduate Scholarship FX Technical assistance by J. de Zoete, and F. Oukhouia. Guidance by R. Dickinson, M.A. Peterson, P. Kotanen, and M. Cadotte is appreciated. Thanks also to the City of Toronto, Koffler Scientific Reserve, Royal Botanical Gardens, and Loewith and Harrop families for use of their properties. This research was funded by the Invasive Species Centre, Agriculture and Agri-Food Canada, Faculty of Forestry, Ontario Ministry of Natural Resources and Forestry, and an Ontario Graduate Scholarship to R. B. deJonge. CR Agrawal AA, 2014, ECOSPHERE, V5, DOI 10.1890/ES14-00161.1 Agrawal AA, 2012, J CHEM ECOL, V38, P893, DOI 10.1007/s10886-012-0145-3 Arnett Jr R. H., 1968, BEETLES US, V1 Belt S., 2011, PLANT FACT SHEET SWA BERNAYS E, 1988, ECOLOGY, V69, P886, DOI 10.2307/1941237 Blossey B, 2002, USDA FOREST SERVICE, P413 Briese DT, 2002, BIOL CONTROL, V25, P259, DOI 10.1016/S1049-9644(02)00110-X BRIESE DT, 2003, CRC TECHNICAL SERIES, V7, P23 Casagrande RA, 2007, ENVIRON ENTOMOL, V36, P631, DOI 10.1603/0046-225X(2007)36[631:MBOOSV]2.0.CO;2 Christensen T., 1998, WILDFLOWER, V14, P21 Cristofaro M, 1995, BIOCONTROL SCI TECHN, V5, P395 DAISIE European Invasive Alien Species Gateway, 2017, ASCL SYR deJonge RB, 2019, BIOL INVASIONS, V21, P3169, DOI 10.1007/s10530-019-02043-4 deJonge RB, 2017, ENVIRON ENTOMOL, V46, P617, DOI 10.1093/ee/nvx072 Delbac L, 2010, CROP PROT, V29, P623, DOI 10.1016/j.cropro.2010.01.009 Dennill GB, 1999, AFR ENTOMOL, P45 DiTommaso A, 2005, CAN J PLANT SCI, V85, P243, DOI 10.4141/P03-056 Dobler S, 1999, MOL ECOL, V8, P1297, DOI 10.1046/j.1365-294X.1999.00693.x DUSSOURD DE, 1987, SCIENCE, V237, P898, DOI 10.1126/science.3616620 EHRLICH PR, 1964, EVOLUTION, V18, P586, DOI 10.2307/2406212 Ernst CM, 2005, BIOL INVASIONS, V7, P417, DOI 10.1007/s10530-004-4062-4 FREY JE, 1992, J CHEM ECOL, V18, P2011, DOI 10.1007/BF00981924 Gassmann A, 2001, EVALUATING INDIRECT ECOLOGICAL EFFECTS OF BIOLOGICAL CONTROL, P147, DOI 10.1079/9780851994536.0147 Gassmann A, 2010, JOINT 2009 ANN REPOR Gassmann A, 2011, WEED BIOL CONTROL Q Haines ML, 2013, BIOCONTROL, V58, P703, DOI 10.1007/s10526-013-9526-y Havens K, 2019, BIOSCIENCE, V69, P247, DOI 10.1093/biosci/biz015 HILL MP, 1995, BIOL CONTROL, V5, P345, DOI 10.1006/bcon.1995.1040 Hinz HL, 2019, Q REV BIOL, V94, P1, DOI 10.1086/702340 Hinz HL, 2014, INVAS PLANT SCI MANA, V7, P565, DOI 10.1614/IPSM-D-13-00095.1 Janz N, 2001, EVOLUTION, V55, P783, DOI 10.1554/0014-3820(2001)055[0783:EDOHPS]2.0.CO;2 JAYANTH KP, 1993, B ENTOMOL RES, V83, P595, DOI 10.1017/S0007485300040013 Jolivet Pierre, 2008, Terrestrial Arthropod Reviews, V1, P3, DOI 10.1163/187498308X345424 Karban R, 1997, ECOLOGY, V78, P1351 Kirmse S, 2019, COLEOPTS BULL, V73, P149, DOI 10.1649/0010-065X-73.1.149 Labeyrie E, 2004, MOL BIOL EVOL, V21, P218, DOI 10.1093/molbev/msg240 Lawlor FM, 2002, WEED SCI, V50, P179, DOI 10.1614/0043-1745(2002)050[0179:ROSWTH]2.0.CO;2 Monachino J., 1957, B TORREY BOT CLUB, V84, P47, DOI DOI 10.2307/2482728 OLCKERS T, 1995, BIOL CONTROL, V5, P336, DOI 10.1006/bcon.1995.1039 Paukova Z., 2014, Journal of Central European Agriculture, V15, P12, DOI 10.5513/JCEA01/15.2.1444 Peterson MA, 2001, ANN ENTOMOL SOC AM, V94, P1, DOI 10.1603/0013-8746(2001)094[0001:BMAMEF]2.0.CO;2 Pobedimova E.G., 1952, FLORA USSR, V18, P487 Rhymer JM, 1996, ANNU REV ECOL SYST, V27, P83, DOI 10.1146/annurev.ecolsys.27.1.83 Schaffner U, 2018, BIOCONTROL, V63, P405, DOI 10.1007/s10526-018-9875-7 Schmitt M, 2011, ZOOKEYS, P131, DOI 10.3897/zookeys.157.1798 Sforza R., 2011, TESTING AGENTS BIOL, V33, P1 Sheppard A.W., 2003, BIOCONTORL, V24, P77 Simberloff D, 1996, ECOLOGY, V77, P1965, DOI 10.2307/2265693 Simberloff D, 1996, BIOL CONSERV, V78, P185, DOI 10.1016/0006-3207(96)00027-4 Soler R, 2012, OIKOS, V121, P1923, DOI 10.1111/j.1600-0706.2012.20415.x Tewksbury L, 2002, BIOL CONTROL INVASIV, P209 Van Hezewijk BH, 2008, BIOL CONTROL, V46, P332, DOI 10.1016/j.biocontrol.2008.04.003 WAPSHERE AJ, 1974, ANN APPL BIOL, V77, P201, DOI 10.1111/j.1744-7348.1974.tb06886.x Weed AS, 2011, J APPL ENTOMOL, V135, P700, DOI 10.1111/j.1439-0418.2010.01594.x Weed A.S., 2010, THESIS Weed AS, 2011, BIOL CONTROL, V56, P50, DOI 10.1016/j.biocontrol.2010.09.009 Weiss H.B., 1921, CAN ENTOMOL, V53, P147 WILLIAMS CE, 1991, COLEOPTS BULL, V45, P195 Williams Charles E., 1992, Banisteria, V1, P8 Winston R, 2014, BIOL CONTROL WEEDS W Withers T, 1998, PEST MANAGEMENT - FUTURE CHALLENGES, VOLS 1 AND 2, PROCEEDINGS, P565 Withers Toni M., 2008, New Zealand Entomologist, V31, P67 NR 62 TC 0 Z9 0 U1 2 U2 9 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 1049-9644 EI 1090-2112 J9 BIOL CONTROL JI Biol. Control PD JUN PY 2020 VL 145 AR 104237 DI 10.1016/j.biocontrol.2020.104237 PG 9 WC Biotechnology & Applied Microbiology; Entomology SC Biotechnology & Applied Microbiology; Entomology GA LB6NK UT WOS:000524750300001 DA 2021-10-15 ER PT J AU Wang, LM Wang, JJ Guo, DF Jiang, AX AF Wang, Lumin Wang, Juanjuan Guo, Dufa Jiang, Aixia TI Catabolic Activity and Structural Diversity of Bacterial Community in Soil Covered by Halophytic Vegetation SO CURRENT MICROBIOLOGY LA English DT Article ID MICROBIAL COMMUNITIES; WATER; RHIZOSPHERE; PLANT AB The catabolic activity and structural diversity of soil bacteria covered by five different halophytic vegetation types in the Yellow River Delta affected by long-term salinization were studied using Biolog-Eco technology. The result showed that soil quality, the diversity, and catabolic activity of the bacterial community of mildly salt-tolerant vegetation (Imperata cylindrical (L.) Beauv. and Apocynum venetum L.) were significantly higher than those of the bacterial community of highly salt-tolerant vegetation (Suaeda salsa (L.) Pall., Aeluropus sinensis (D.) Tzvel.), while these values were lowest for bacterial communities in bare land. The operational taxonomic units (OTUs) and diversity indexes of soil bacteria covered by Aeluropus sinensis were higher than those of soil bacteria covered by other types of vegetation, while those of soil bacteria covered by bare land were lowest. Principal component analysis (PCA) of the carbon source utilization capacity of the soil bacterial communities showed that organic acids, polymers, and amino acids were sensitive carbon sources that enabled study of the diversity of carbon metabolic functions in soil bacterial communities. And redundancy analysis (RDA) showed that d-galacturonic was significantly positively correlated with Verrucomicrobia, which further demonstrated the effect of organic acid carbon sources on metabolic functional diversity of soil bacterial communities in the Yellow River Delta. C1 [Wang, Lumin; Wang, Juanjuan; Guo, Dufa; Jiang, Aixia] Shandong Normal Univ, Coll Geog & Environm, Jinan, Peoples R China. RP Guo, DF (corresponding author), Shandong Normal Univ, Coll Geog & Environm, Jinan, Peoples R China. EM guodufa@163.com FU Natural Science Foundation of Shandong ProvinceNatural Science Foundation of Shandong Province [ZR2018MD003] FX This work was supported by the Natural Science Foundation of Shandong Province under Grant (No. ZR2018MD003). CR Alguacil MM, 2014, SOIL BIOL BIOCHEM, V76, P34, DOI 10.1016/j.soilbio.2014.05.002 Amoo AE, 2017, EGU GEN ASS C VIENN Brolsma KM, 2017, PEDOBIOLOGIA, V61, P43, DOI 10.1016/j.pedobi.2017.01.006 Chen L, 2015, APPL SOIL ECOL, V86, P62, DOI 10.1016/j.apsoil.2014.09.011 Chen Y, 2013, APPL SOIL ECOL, V67, P20, DOI 10.1016/j.apsoil.2013.02.004 Corrigan A, 2015, APPL ENVIRON MICROB, V81, P3460, DOI 10.1128/AEM.04194-14 Fernandez MTH, 2007, BIOLOGIA, V62, P542, DOI 10.2478/s11756-007-0107-3 Gao YC, 2015, APPL SOIL ECOL, V86, P165, DOI 10.1016/j.apsoil.2014.10.011 Ge YY, 2018, ARCH AGRON SOIL SCI, V64, P708, DOI 10.1080/03650340.2017.1373186 Ge ZW, 2018, FRONT MICROBIOL, V9, DOI 10.3389/fmicb.2018.01375 Grzesiak J, 2015, POLAR BIOL, V38, P2069, DOI 10.1007/s00300-015-1767-z Guan S. Y., 1986, SOIL ENZYMES RES MET Guenon R, 2015, EUR J SOIL BIOL, V66, P1, DOI 10.1016/j.ejsobi.2014.11.002 He JZ, 2009, J SOIL SEDIMENT, V9, P547, DOI 10.1007/s11368-009-0120-y Hu WG, 2018, BIOTECHNOL BIOTEC EQ, V32, P408, DOI 10.1080/13102818.2018.1431054 Hwang J, 2010, J BACTERIOL, V192, P2277, DOI 10.1128/JB.00045-10 Jing CL, 2019, APPL SOIL ECOL, V134, P1, DOI 10.1016/j.apsoil.2018.10.009 Lammel DR, 2015, EUR J SOIL BIOL, V66, P32, DOI 10.1016/j.ejsobi.2014.11.001 Leskiw LA, 2012, CAN J SOIL SCI, V92, P179, DOI [10.4141/CJSS2011-018, 10.4141/cjss2011-018] [李昌明 Li Changming], 2012, [冰川冻土, Journal of Glaciology and Geocryology], V34, P713 Li JJ, 2013, J SOIL SEDIMENT, V13, P760, DOI 10.1007/s11368-013-0652-z [刘秉儒 Liu Bingru], 2013, [生态学报, Acta Ecologica Sinica], V33, P7211 Lv XF, 2016, SCI REP-UK, V6, DOI 10.1038/srep36550 Mao Zhi-gang, 2010, Yingyong Shengtai Xuebao, V21, P1986 O'Donnell AG, 2001, PLANT SOIL, V232, P135, DOI 10.1023/A:1010394221729 Pandya PR, 2010, J APPL GENET, V51, P395, DOI 10.1007/BF03208869 Pankratov TA, 2012, MICROBIOLOGY+, V81, P51, DOI 10.1134/S0026261711060166 [曲同宝 Qu Tongbao], 2016, [草业科学, Pratacultural Science], V33, P2398 Ren G, 2015, FRONT MICROBIOL, V6, DOI 10.3389/fmicb.2015.00022 Siczek A, 2016, INT J MOL SCI, V17, DOI 10.3390/ijms17050784 Tian J, 2015, EUR J SOIL BIOL, V66, P57, DOI 10.1016/j.ejsobi.2014.12.001 Tian WJ, 2014, ECOL ENG, V70, P275, DOI 10.1016/j.ecoleng.2014.06.003 [王巧环 Wang Qiaohuan], 2013, [分析试验室, Chinese Journal of Analysis Laboratory], V32, P41 Wang ZB, 2016, DESALIN WATER TREAT, V57, P23516, DOI 10.1080/19443994.2015.1137232 Wei J, 2017, SCI TOTAL ENVIRON, V599, P50, DOI 10.1016/j.scitotenv.2017.04.083 Wei Yuan, 2008, Scientia Silvae Sinicae, V44, P6 Wu LK, 2013, APPL SOIL ECOL, V67, P1, DOI 10.1016/j.apsoil.2013.02.008 Wyszkowska J, 2010, J TOXICOL ENV HEAL A, V73, P1202, DOI 10.1080/15287394.2010.492004 Yang Y, 2018, SCI TOTAL ENVIRON, V626, P48, DOI 10.1016/j.scitotenv.2018.01.081 Zhang KR, 2018, PLANT SOIL, V431, P19, DOI 10.1007/s11104-018-3743-1 Zhang ZY, 2015, EUR J SOIL BIOL, V66, P40, DOI 10.1016/j.ejsobi.2014.11.006 NR 41 TC 0 Z9 0 U1 5 U2 20 PU SPRINGER PI NEW YORK PA ONE NEW YORK PLAZA, SUITE 4600, NEW YORK, NY, UNITED STATES SN 0343-8651 EI 1432-0991 J9 CURR MICROBIOL JI Curr. Microbiol. PD AUG PY 2020 VL 77 IS 8 BP 1821 EP 1828 DI 10.1007/s00284-020-02001-7 EA APR 2020 PG 8 WC Microbiology SC Microbiology GA MF1PB UT WOS:000529120400001 PM 32342187 DA 2021-10-15 ER PT J AU Feng, RQ Zhang, LJ Li, M Liu, J Wen, CL Yuan, ML AF Feng, Run-Qiu Zhang, Li-Jun Li, Min Liu, Jia Wen, Chun-Li Yuan, Ming-Long TI Mitochondrial genome of Chrysochares punctatus (Coleoptera: Chrysomelidae: Eumolpinae) and phylogenetic analysis SO MITOCHONDRIAL DNA PART B-RESOURCES LA English DT Article DE Insects; leaf beetles; mitochondrial DNA; phylogeny AB Here, we determined the nearly complete mitochondrial genome (mitogenome) of Chrysochares punctatus (Coleoptera: Chrysomelidae: Eumolpinae), an important insect pest on Apocynum venetum in Northwestern China. This mitogenome was 14,451 bp long, encoding 13 protein-coding genes (PCGs), 21 transfer RNA genes (tRNAs), and 2 ribosomal RNA genes. The C. punctatus mitogenome presented an A + T content of 75.11%, with a positive AT-skew (0.064) and a negative GC-skew (-0.192). Ten PCGs started with a typical ATN codon, whereas the remaining three PCGs started with AAC (cox1) and TTG (nad1 and nad2). All tRNAs had a typical secondary cloverleaf structure, except for trnS1 which lacked the dihydrouridine arm. Bayesian phylogenetic analysis based on the nucleotide sequences of 13 PCGs recovered a phylogeny within Chrysomelidae: (((Chrysomelinae + Galerucinae), (((Eumolpinae, Lamprosomatinae), Cassidinae), Criocerinae)), Bruchinae). C1 [Feng, Run-Qiu; Zhang, Li-Jun; Li, Min; Liu, Jia; Wen, Chun-Li; Yuan, Ming-Long] Lanzhou Univ, Key Lab Grassland Livestock Ind Innovat, State Key Lab Grassland Agroecosyst, Minist Agr & Rural Affairs,Coll Pastoral Agr Sci, Lanzhou, Peoples R China. RP Yuan, ML (corresponding author), Lanzhou Univ, Key Lab Grassland Livestock Ind Innovat, Minist Agr & Rural Affairs, Lanzhou 730020, Peoples R China.; Yuan, ML (corresponding author), Lanzhou Univ, State Key Lab Grassland Agroecosyst, Lanzhou 730020, Peoples R China.; Yuan, ML (corresponding author), Lanzhou Univ, Coll Pastoral Agr Sci & Technol, Lanzhou 730020, Peoples R China. EM yuanml@lzu.edu.cn FU Program for Changjiang Scholars and Innovative Research Team in UniversityProgram for Changjiang Scholars & Innovative Research Team in University (PCSIRT) [IRT_17R50]; Science and Technology Project of the Xinjiang Uygur Autonomous Region, China [2016E02015, 2016A03006]; Key Project at Central Government Level: The Ability Establishment of Sustainable Use for Valuable Chinese Medicine Resources [2060302] FX This study was funded by the Program for Changjiang Scholars and Innovative Research Team in University [IRT_17R50], the Science and Technology Project of the Xinjiang Uygur Autonomous Region, China [2016E02015 and 2016A03006], and the Key Project at Central Government Level: The Ability Establishment of Sustainable Use for Valuable Chinese Medicine Resources [2060302]. CR Boore JL, 1999, NUCLEIC ACIDS RES, V27, P1767, DOI 10.1093/nar/27.8.1767 Miller M.A., 2010, 2010 GATEWAY COMPUTI, P1 Yuan ML, 2016, MOL PHYLOGENET EVOL, V104, P99, DOI 10.1016/j.ympev.2016.08.002 NR 3 TC 0 Z9 0 U1 0 U2 1 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND EI 2380-2359 J9 MITOCHONDRIAL DNA B JI Mitochondrial DNA Part B-Resour. PD JAN 2 PY 2020 VL 5 IS 1 BP 667 EP 668 DI 10.1080/23802359.2020.1711823 PG 2 WC Genetics & Heredity SC Genetics & Heredity GA KD0VB UT WOS:000507589200001 PM 33366695 OA Green Published, gold DA 2021-10-15 ER PT J AU Lan, YR Duan, TY Gao, P AF Lan, Yanru Duan, Tingyu Gao, Peng TI The Severe Infection of Poacynum pictum by Rust (Melampsora apocyni) Decreases the Flavonoids and Amino Acid Content and Affects Metal Concentrations in Plant Leaves SO INTERNATIONAL JOURNAL OF AGRICULTURE AND BIOLOGY LA English DT Article DE Poacynum pictum; Rust disease; Biomass; Flavonoids; Amino acid ID VENETUM; LEAF; HYPERACCUMULATION; LUOBUMA; DISEASE AB Poacynum pictum (Schrenk) Baill. is a perennial herbaceous plant, which is used as medicine and tea production. Melampsora apocyni Tranzschel. caused the rust disease which is mainly limiting factor for the plant growth. It is not clear whether the degree of infection caused by this disease will have effect on nutrient composition of leaves. The purpose of present work is to evaluate the effects of severity of the rust on biomass, total flavonoids, amino acid and metal content of two cultivated ecotypes of P. pictum, ecotype RSM with red stems of medium leaves (Eco-RSM) and ecotype GSF with green stems of fine leaves (Eco-GSF). When compared with healthy leaves, the biomass and total flavonoids of the GSF ecotype decreased due to the rust infection, but not statistically significant while severe rust significantly (P < 0.05) decrease the leaf biomass and flavonoids content of the RSM ecotype. The rust significantly (P<0.05) decreased the amino acid content in P. pictum leaves by severity 4 except for Methionine and Cystine in RSM ecotype plants, and Tryptophan for plants of GSF ecotype that remained at the same level as for rust-free leaves. The Ca and Cu amount in the plants of the RSM ecotype were decreased by the rust infection at severity 4 and 5; while on the other hand, the contents of these two metals in GSF ecotype plants were increased by severe rust. The extreme occurrence of rust led to decrease in leaf biomass and quality for tea and medicinal production, and is a limiting factor for the cultivation of P. pictum. (C) 2020 Friends Science Publishers C1 [Lan, Yanru; Duan, Tingyu] Lanzhou Univ, State Key Lab Grassland Agroecosyst, Lanzhou 730020, Peoples R China. [Lan, Yanru; Duan, Tingyu] Lanzhou Univ, Key Lab Grassland Livestock Ind Innovat, Minist Agr & Rural Affairs, Lanzhou 730020, Peoples R China. [Lan, Yanru; Duan, Tingyu] Lanzhou Univ, Engn Res Ctr Grassland Ind, Minist Educ, Lanzhou 730020, Peoples R China. [Lan, Yanru; Duan, Tingyu] Lanzhou Univ, Coll Pastoral Agr Sci & Technol, Lanzhou 730020, Peoples R China. [Gao, Peng] Shanxi Agr Univ, Coll Anim Sci & Vet Med, Taigu 030801, Shanxi, Peoples R China. RP Duan, TY (corresponding author), Lanzhou Univ, State Key Lab Grassland Agroecosyst, Lanzhou 730020, Peoples R China.; Duan, TY (corresponding author), Lanzhou Univ, Key Lab Grassland Livestock Ind Innovat, Minist Agr & Rural Affairs, Lanzhou 730020, Peoples R China.; Duan, TY (corresponding author), Lanzhou Univ, Engn Res Ctr Grassland Ind, Minist Educ, Lanzhou 730020, Peoples R China.; Duan, TY (corresponding author), Lanzhou Univ, Coll Pastoral Agr Sci & Technol, Lanzhou 730020, Peoples R China. EM lanyr16@lzu.edu.cn; duanty@lzu.edu.cn RI a, a·cŽ‰/AAC-8403-2021 FU Key Project of Science and Technology Department of Xinjiang Autonomous Region, China [2016E02015, 2016A03006] FX This research was financially supported by Key Project of Science and Technology Department of Xinjiang Autonomous Region, China (2016E02015, 2016A03006). CR DENCHEV CM, 1995, MYCOTAXON, V55, P405 Fones HN, 2013, PLANT PATHOL, V62, P63, DOI 10.1111/ppa.12171 Fones H, 2010, PLOS PATHOG, V6, DOI 10.1371/journal.ppat.1001093 Gao P, 2018, EUR J PLANT PATHOL, V150, P549, DOI 10.1007/s10658-017-1299-1 Gao Peng, 2017, Journal of Plant Protection, V44, P129 Gao Peng, 2015, Acta Botanica Boreali-Occidentalia Sinica, V35, P2069 [巩继贤 Gong Jixian], 2017, [纺织学报, Journal of Textile Research], V38, P83 Hahn M, 1997, MOL PLANT MICROBE IN, V10, P427, DOI 10.1094/MPMI.1997.10.4.427 Hanikenne M, 2008, NATURE, V453, P391, DOI 10.1038/nature06877 Hiratsuka N, 1939, J JAP BOT, V14, P33 Kirbag S, 2004, PAKISTAN J BOT, V36, P445 Kong NN, 2014, NAT PROD RES, V28, P928, DOI 10.1080/14786419.2014.886205 Ksenofontov AL, 2017, BIOCHEMISTRY-MOSCOW+, V82, P1183, DOI 10.1134/S000629791710011X Lu L, 2017, PHARMAZIE, V72, P41, DOI 10.1691/ph.2017.6703 Lu YF, 2017, FRONT PLANT SCI, V8, DOI 10.3389/fpls.2017.01286 Ma M, 2003, J AGR FOOD CHEM, V51, P2390, DOI 10.1021/jf021055i Miranda M, 2007, MOL PLANT MICROBE IN, V20, P816, DOI 10.1094/MPMI-20-7-0816 MORGAN WC, 1980, AUST J AGR RES, V31, P1103, DOI 10.1071/AR9801103 Nan Z. B., 1990, Acta Prataculturae Sinica, V1, P83 Nan ZB, 1986, GANSU AGR SCI TECHNO, V8, P22 Nevodovskii G. S., 1956, CRYPTOGAMIC FLORA KA, V1, P227 Nguyen NH, 2016, PLANT PHYSIOL BIOCH, V103, P133, DOI 10.1016/j.plaphy.2016.03.010 Nishibe Sansei, 2001, Natural Medicines, V55, P38 Pinheiro Jadir Borges, 2011, Rev. Ceres, V58, P43 Shang YY, 2017, NAT PROD RES, V31, P1066, DOI 10.1080/14786419.2016.1272109 Shi JY, 2011, PHYTOCHEM ANALYSIS, V22, P450, DOI 10.1002/pca.1301 Song RJ, 2015, J CHROMATOGR B, V995, P8, DOI 10.1016/j.jchromb.2015.05.019 Struck C, 2004, MOL PLANT PATHOL, V5, P183, DOI [10.1111/j.1364-3703.2004.00222.x, 10.1111/J.1364-3703.2004.00222.X] Struck C, 2002, MOL PLANT PATHOL, V3, P23, DOI 10.1046/j.1464-6722.2001.00091.x Struck C, 2015, FRONT PLANT SCI, V6, DOI 10.3389/fpls.2015.00040 Tai F. L., 1979, SYLLOGE FUNGORUM SIN, P534 Tranzschel WA, 1891, NEW KINDS FUNGI MELA, V3, P137 Wan HH, 2015, FRONT PLANT SCI, V6, DOI 10.3389/fpls.2015.00673 Xie WY, 2012, J ETHNOPHARMACOL, V141, P1, DOI 10.1016/j.jep.2012.02.003 Yan SX, 2015, TROP J PHARM RES, V14, P2269, DOI 10.4314/tjpr.v14i12.17 Yokozawa T, 2002, BIOL PHARM BULL, V25, P748, DOI 10.1248/bpb.25.748 Zhang ZJ, 2004, LIFE SCI, V75, P1659, DOI 10.1016/j.lfs.2004.04.014 Zhao CQ, 2016, INDIAN J MICROBIOL, V56, P498, DOI 10.1007/s12088-016-0602-8 Zhou J, 2015, J PHARMACEUT BIOMED, V107, P273, DOI 10.1016/j.jpba.2015.01.003 NR 39 TC 0 Z9 0 U1 2 U2 5 PU FRIENDS SCIENCE PUBL PI FAISALABAD PA 399-B, PEOPLES COLONY NO 1, FAISALABAD, 38090, PAKISTAN SN 1560-8530 EI 1814-9596 J9 INT J AGRIC BIOL JI Int. J. Agric. Biol. PY 2020 VL 24 IS 5 BP 1393 EP 1400 DI 10.17957/IJAB/15.1575 PG 8 WC Agriculture, Multidisciplinary; Biology SC Agriculture; Life Sciences & Biomedicine - Other Topics GA PB8UI UT WOS:000596589000043 DA 2021-10-15 ER PT J AU Liu, WX Ma, LR Xia, ZF Zeng, H Luo, XX Zhang, LL Wan, CX AF Liu, Wen-Xiang Ma, Li -Ran Xia, Zhan-Feng Zeng, Hong Luo, Xiao-Xia Zhang, Li -Li Wan, Chuan-Xing TI Streptomyces apocyni sp. nov., an endogenous actinomycete isolated from Apocynum venetum SO INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY LA English DT Article DE actinomycete; Apocynum venetum; endogenous ID DNA-DNA HYBRIDIZATION; GENOME; IDENTIFICATION; CLASSIFICATION; GENUS AB A novel actinomycete, designated strain TRM 66233(T). was isolated from Apocynum venetum L. collected from the Xinjiang Uygur Autonomous Region of China and characterized using a polyphasic taxonomic approach. Phylogenetic analysis based on 16S rRNA gene sequences affiliated strain TRM 66233(T) with the genus Streptomyces. Strain TRM 66233(T) showed a high similarity value to Streptomyces bikiniensis NRRL B-1049(T) (98.07%) based on the 16S rRNA gene phylogenetic tree. The whole-cell sugar pattern of TRM 66233(T) consisted of glucose, galactose, mannose and ribose. The predominant menaquinones were MK-9(H-2), MK-9(H-6), MK-9(H-8) and MK-9(H-10). The polar lipids were diphosphatidylglycera phosphatidylethanolamine, phosphatidylinosi- tol and four unidentified lipids. The major fatty acids were iso-C-15(.0), anteiso-C-15.0, iso-C-1(6).0 and iso-C-17.0. The G+C content of the DNA was 70.35 mol%. The DNA-DNA relatedness and average nucleotide identity values as well as evolutionary distances based on multilocus (atpD, gyrB, recA, rpoB and trpB) sequences between strain TRM 66233(T) and closely related type strains were significantly lower than the recommended threshold values. The whole-genome average nucleotide identity and digital DNA-DNA hybridization values between strain TRM 66233(T) and S. bikiniensis NRRL B-1049(T) were 78.86 and 23.2%, respectively. On the basis of evidence from this polyphasic study, strain TRM 66233(T) should represent a novel species of the genus Streptomyces, for which the name Streptomyces apocyni sp. nov. is proposed. The type strain is TRM 66233(T) (=CCTCC AA 2019056(T) = LMG 31559(T). C1 [Liu, Wen-Xiang; Ma, Li -Ran; Xia, Zhan-Feng; Zeng, Hong; Luo, Xiao-Xia; Zhang, Li -Li; Wan, Chuan-Xing] Tarim Univ, Coll Life Sci, Key Lab Protect & Utilizat Biol Resources Tarim B, Alar 843300, Peoples R China. RP Liu, WX; Wan, CX (corresponding author), Tarim Univ, Coll Life Sci, Key Lab Protect & Utilizat Biol Resources Tarim B, Alar 843300, Peoples R China. EM 15739296846@163.com; wanchuanxing@163.com RI Wan, Chuan-Xing/AAQ-5336-2021 FU Key Projects of National Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC) [U1703236]; Microbial Resources Utilization Innovation Team in the Key Field of Xinjiang Production and Construction Crops [2017CB014] FX This research was supported by the Key Projects of National Natural Science Foundation of China (project no. U1703236) and the Microbial Resources Utilization Innovation Team in the Key Field of Xinjiang Production and Construction Crops (project no. 2017CB014). CR Blin K, 2019, NUCLEIC ACIDS RES, V47, pW81, DOI 10.1093/nar/gkz310 Chin CS, 2013, NAT METHODS, V10, P563, DOI [10.1038/NMETH.2474, 10.1038/nmeth.2474] Chun J, 1997, INT J SYST BACTERIOL, V47, P492, DOI 10.1099/00207713-47-2-492 CHUN JS, 1995, INT J SYST BACTERIOL, V45, P240, DOI 10.1099/00207713-45-2-240 Collins M. D., 1985, CHEM METHODS BACTERI, P267 Coombs JT, 2003, APPL ENVIRON MICROB, V69, P4260, DOI 10.1128/AEM.69.7.4260-4262.2003 FELSENSTEIN J, 1985, EVOLUTION, V39, P783, DOI 10.1111/j.1558-5646.1985.tb00420.x Goris J, 2007, INT J SYST EVOL MICR, V57, P81, DOI 10.1099/ijs.0.64483-0 Groth I, 1997, INT J SYST BACTERIOL, V47, P1129, DOI 10.1099/00207713-47-4-1129 Guan Tongwei, 2010, Chinese Journal of Applied and Environmental Biology, V16, P429, DOI 10.3724/SP.J.1145.2010.00429 HASEGAWA T, 1983, J GEN APPL MICROBIOL, V29, P319, DOI 10.2323/jgam.29.319 Kampfer P, 2008, INT J SYST EVOL MICR, V58, P2602, DOI 10.1099/ijs.0.2008/001008-0 Kelly, 1964, INTERSOCIETY COLOR C Kim HJ, 2006, INT J SYST EVOL MICR, V56, P471, DOI 10.1099/ijs.0.63816-0 Kim OS, 2012, INT J SYST EVOL MICR, V62, P716, DOI 10.1099/ijs.0.038075-0 Kurtz S, 2004, GENOME BIOL, V5, DOI 10.1186/gb-2004-5-2-r12 LECHEVALIER M P, 1970, International Journal of Systematic Bacteriology, V20, P435 Li YM, 2018, INT J SYST EVOL MICR, V68, P3322, DOI 10.1099/ijsem.0.002994 Liu H, 2020, PRORTOC EXCH Manfio GP., 1995, BIOTEKHNOLOGIYA, V8, P228 Meier-Kolthoff JP, 2013, BMC BIOINFORMATICS, V14, DOI 10.1186/1471-2105-14-60 MINNIKIN DE, 1984, J MICROBIOL METH, V2, P233, DOI 10.1016/0167-7012(84)90018-6 Rong XY, 2012, SYST APPL MICROBIOL, V35, P7, DOI 10.1016/j.syapm.2011.10.004 Sasser, 1990, USFCC NEWSL, P1 SHIRLING E. B., 1966, INT J SYST BACTERIOL, V16, P313 STANECK JL, 1974, APPL MICROBIOL, V28, P226, DOI 10.1128/AEM.28.2.226-231.1974 Sun CL, 2019, ORG LETT, V21, P1453, DOI 10.1021/acs.orglett.9b00208 Take A, 2015, J ANTIBIOT, V68, P322, DOI 10.1038/ja.2014.162 Tamura K, 2013, MOL BIOL EVOL, V30, P2725, DOI [10.1093/molbev/mst197, 10.1093/oxfordjournals.molbev.a040023] Waksman SA, 1943, J BACTERIOL, V46, P337, DOI 10.1128/JB.46.4.337-341.1943 Walker BJ, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0112963 WAYNE LG, 1987, INT J SYST BACTERIOL, V37, P463, DOI 10.1099/00207713-37-4-463 WILLIAMS ST, 1983, J GEN MICROBIOL, V129, P1743 Williams ST, 1989, BERGEYS MANUAL SYSTE, P2452 Yoon SH, 2017, ANTON LEEUW INT J G, V110, P1281, DOI 10.1007/s10482-017-0844-4 NR 35 TC 0 Z9 0 U1 2 U2 8 PU MICROBIOLOGY SOC PI LONDON PA CHARLES DARWIN HOUSE, 12 ROGER ST, LONDON WC1N 2JU, ERKS, ENGLAND SN 1466-5026 EI 1466-5034 J9 INT J SYST EVOL MICR JI Int. J. Syst. Evol. Microbiol. PY 2020 VL 70 IS 9 BP 4883 EP 4889 DI 10.1099/ijsem.0.004357 PG 7 WC Microbiology SC Microbiology GA NZ7JL UT WOS:000577279800007 PM 32790603 OA Bronze DA 2021-10-15 ER PT J AU Kukharenko, A Brito, A Yashin, YI Yashin, AY Kuznetsov, RM Markin, PA Bochkareva, NL Pavlovskiy, IA Appolonova, SA AF Kukharenko, Alexey Brito, Alex Yashin, Yakov I. Yashin, Alexander Y. Kuznetsov, Roman M. Markin, Pavel A. Bochkareva, Natalia L. Pavlovskiy, Igor A. Appolonova, Svetlana A. TI Total antioxidant capacity of edible plants commonly found in East Asia and the Middle East determined by an amperometric method SO JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION LA English DT Article DE Total antioxidant capacity; Edible plants; Amperometric method; East Asia; Middle East ID SCUTELLARIA-BAICALENSIS GEORGI; PERICARPIUM-CITRI-RETICULATAE; RHIZOMA-SMILACIS-GLABRAE; CARTHAMUS-TINCTORIUS L.; SUSPENSA THUNB. VAHL; FORSYTHIA-SUSPENSA; MEDICINAL-PLANTS; OXIDATIVE STRESS; BIOACTIVE FLAVONOIDS; CHEMICAL-COMPOSITION AB This study presents the determination of the total antioxidant capacity (TAC) in twenty edible plants traditionally considered as having pro-health properties and commonly found in East Asia and the Middle East. The aim of the study was to apply a flow-injection amperometric detector (Blizar antioxidant analyzer) for rapid measurement of TAC. Three extraction solvents were used (water, 40% ethanol and 96% ethanol). On average, the edible plants that presented the highest TAC [expressed as gallic acid equivalents (GAE)] for the three extraction solvents were Rosa rugosa (34 mg/g GAE), Scutellaria baicalensis (22.9 mg/g GAE), Forsythia suspensa (11.7 mg/g GAE), Carthamus tinctorius (11.5 mg/g GAE), Smilacis glabrae rhizoma (10.8 mg/g GAE), Citri reticulatae pericarpium (8.8 mg/g GAE), Apocynum venetum (7.6 mg/g GAE) and Glycyrrhiza uralensis (7.5 mg/g GAE). This investigation contributes to the current knowledge on the overall antioxidant activity of edible plants traditionally consumed for expected pro-health properties, identifying specimens exhibiting high TAC determined by a rapid and low cost amperometric method. C1 [Kukharenko, Alexey; Brito, Alex; Kuznetsov, Roman M.; Markin, Pavel A.; Bochkareva, Natalia L.; Appolonova, Svetlana A.] IM Sechenov First Moscow State Med Univ, Inst Translat Med & Biotechnol, Lab Pharmacokinet & Metabol Anal, 2-4 Bolshaya Pirogovskaya St, Moscow 119991, Russia. [Yashin, Yakov I.; Yashin, Alexander Y.] Sci Dev & Prod Ctr Khimavtomatika, Selskohozyaistvennaya 12 A, Moscow 129226, Russia. [Markin, Pavel A.] Univ Verona, PhD Program Nanosci & Adv Technol, Verona, Italy. [Pavlovskiy, Igor A.] Interlab Ltd, Admirala Makarova St 21,Apartment 33, Moscow 125212, Russia. RP Brito, A; Appolonova, SA (corresponding author), IM Sechenov First Moscow State Med Univ, Inst Translat Med & Biotechnol, Lab Pharmacokinet & Metabol Anal, 2-4 Bolshaya Pirogovskaya St, Moscow 119991, Russia. EM abrito@labworks.ru; svetlana.appolonova@labworks.ru RI Appolonova, Svetlana A/J-7802-2016; Appolonova, Svetlana/AAQ-9558-2021; Markin, Pavel/AAI-2505-2020; Brito, Alex/I-2858-2013 OI Appolonova, Svetlana A/0000-0002-9032-1558; Appolonova, Svetlana/0000-0002-9032-1558; Markin, Pavel/0000-0002-2240-2903; Brito, Alex/0000-0002-6212-8814 FU Project 5-100 Sechenov University Grant FX This study was funded by Project 5-100 Sechenov University Grant. CR An HJ, 2011, INT IMMUNOPHARMACOL, V11, P504, DOI 10.1016/j.intimp.2011.01.002 Antolovich M, 2002, ANALYST, V127, P183, DOI 10.1039/b009171p Asgary S, 2012, J RES MED SCI, V17, P386 Asl MN, 2008, PHYTOTHER RES, V22, P709, DOI 10.1002/ptr.2362 Bao JL, 2016, AM J CHINESE MED, V44, P1043, DOI 10.1142/S0192415X16500580 Benavente-Garcia O, 2008, J AGR FOOD CHEM, V56, P6185, DOI 10.1021/jf8006568 Bonham M, 2005, CLIN CANCER RES, V11, P3905, DOI 10.1158/1078-0432.CCR-04-1974 Brent R. J., 2016, COMPENDIUM INFLAMMAT, P1145 Bursal E, 2011, FOOD RES INT, V44, P2217, DOI 10.1016/j.foodres.2010.11.001 Cai YZ, 2004, LIFE SCI, V74, P2157, DOI 10.1016/j.lfs.2003.09.047 Chan E, 2011, AM J CHINESE MED, V39, P693, DOI 10.1142/S0192415X11009135 Chen CC, 1999, PLANTA MED, V65, P709, DOI 10.1055/s-1999-14093 Chen L, 2007, J PHARMACEUT BIOMED, V43, P1715, DOI 10.1016/j.jpba.2007.01.007 Chen XP, 2013, CHIN J NAT MEDICINES, V11, P577, DOI [10.3724/SP.J.1009.2013.00577, 10.1016/S1875-5364(13)60067-9] Cheng BCY, 2016, PHARMACOL RES, V114, P219, DOI 10.1016/j.phrs.2016.10.029 Cheng CS, 2018, AM J CHINESE MED, V46, P25, DOI 10.1142/S0192415X18500027 Choi CW, 2002, PLANT SCI, V163, P1161, DOI 10.1016/S0168-9452(02)00332-1 Delshad Elahe, 2018, Electron Physician, V10, P6672, DOI 10.19082/6672 Devi KP, 2015, IND CROP PROD, V76, P582, DOI 10.1016/j.indcrop.2015.07.051 Farzaneh V, 2015, IND CROP PROD, V65, P247, DOI 10.1016/j.indcrop.2014.10.057 Fu MQ, 2017, FOOD CHEM, V230, P649, DOI 10.1016/j.foodchem.2017.03.098 Hayashi H, 2009, PLANT BIOTECHNOL-NAR, V26, P101, DOI 10.5511/plantbiotechnology.26.101 Huang SP, 2017, NUTRIENTS, V9, DOI 10.3390/nu9090948 Hussain H, 2018, EXPERT OPIN THER PAT, V28, P383, DOI 10.1080/13543776.2018.1455828 Kang SA, 2005, J ETHNOPHARMACOL, V97, P231, DOI 10.1016/j.jep.2004.11.012 Kaur C, 2001, INT J FOOD SCI TECH, V36, P703, DOI 10.1046/j.1365-2621.2001.00513.x Kim MJ, 2015, J SOC COSMET SCI KOR, V41, P85 Law AHY, 2017, J ETHNOPHARMACOL, V209, P236, DOI 10.1016/j.jep.2017.07.015 Li XT, 2018, BIOMED PHARMACOTHER, V100, P394, DOI 10.1016/j.biopha.2018.01.137 Lu T, 2010, FOOD CHEM TOXICOL, V48, P764, DOI 10.1016/j.fct.2009.12.018 Mao LC, 2006, EUR FOOD RES TECHNOL, V222, P236, DOI 10.1007/s00217-005-0007-0 Martin TS, 2000, J AM OIL CHEM SOC, V77, P667, DOI 10.1007/s11746-000-0107-4 Meng YQ, 2018, FRONT PHARMACOL, V9, DOI 10.3389/fphar.2018.00667 Mocan A, 2014, MOLECULES, V19, P15162, DOI 10.3390/molecules190915162 Ng TB, 2005, BIOCHEM CELL BIOL, V83, P78, DOI 10.1139/O04-100 Nowak R, 2014, J SCI FOOD AGR, V94, P560, DOI 10.1002/jsfa.6294 Ntalli NG, 2010, MOLECULES, V15, P5866, DOI 10.3390/molecules15095866 Olennikov DN, 2010, RUSS J BIOORG CHEM+, V36, P816, DOI 10.1134/S1068162010070046 Pan Y, 2015, BIOMED CHROMATOGR, V29, P87, DOI 10.1002/bmc.3243 Park CH, 2017, KOREAN J MED CROP SC, V25, P315 Phatak R. S., 2015, Pharmacognosy Journal, V7, P254 Pisoschi AM, 2015, EUR J MED CHEM, V97, P55, DOI 10.1016/j.ejmech.2015.04.040 R software R Core Team, 2017, R LANG ENV STAT COMP Satish Chandra, 2016, Research Journal of Medicinal Plant, V10, P1, DOI 10.3923/rjmp.2016.1.9 Shahidi F, 2015, J FUNCT FOODS, V18, P757, DOI 10.1016/j.jff.2015.01.047 Shi Q, 2009, ACTA PHARMACOL SIN, V30, P567, DOI 10.1038/aps.2009.36 Shikov AN, 2014, J ETHNOPHARMACOL, V154, P481, DOI 10.1016/j.jep.2014.04.007 Siracusa L, 2011, FITOTERAPIA, V82, P546, DOI 10.1016/j.fitote.2011.01.009 Sun QL, 2010, AFR J BIOTECHNOL, V9, P3817 Tang CP, 2016, NAT PROD REP, V33, P6, DOI 10.1039/c5np00049a Wang J, 2012, MOLECULES, V17, P12297, DOI 10.3390/molecules171012297 Wang N, 2016, INT J BIOL MACROMOL, V83, P103, DOI 10.1016/j.ijbiomac.2015.11.032 Wang ZY, 2018, J ETHNOPHARMACOL, V210, P318, DOI 10.1016/j.jep.2017.08.040 Wu Jia-Rui, 2014, Zhongguo Zhong Yao Za Zhi, V39, P618 Wu ZG, 2015, BMC GENOMICS, V16, DOI 10.1186/s12864-015-1547-8 Xie WY, 2012, J ETHNOPHARMACOL, V141, P1, DOI 10.1016/j.jep.2012.02.003 Yamaguchi Y, 2000, PHYTOTHER RES, V14, P647, DOI 10.1002/1099-1573(200012)14:8<647::AID-PTR670>3.0.CO;2-W Yashin A., 2011, AM J BIOMEDICAL SCI, V3, P322, DOI DOI 10.5099/AJ110400322 Yashin YI, 2010, MOLECULES, V15, P7450, DOI 10.3390/molecules15107450 Yashin YI, 2004, J ANAL CHEM+, V59, P1121, DOI 10.1023/B:JANC.0000049711.43423.a1 Yoo HG, 2014, J MED FOOD, V17, P1189, DOI 10.1089/jmf.2013.3088 Yu JQ, 2004, PHYTOCHEMISTRY, V65, P881, DOI 10.1016/j.phytochem.2004.02.005 Yu SY, 2013, NUTRIENTS, V5, P4894, DOI 10.3390/nu5124894 Yu X, 2018, J ETHNOPHARMACOL, V220, P265, DOI 10.1016/j.jep.2018.03.031 Zhang XW, 2011, PHARM BIOL, V49, P256, DOI 10.3109/13880209.2010.501803 Zhang YY, 2006, J ETHNOPHARMACOL, V108, P355, DOI 10.1016/j.jep.2006.05.022 Zhao Y, 2015, MOL CARCINOGEN, V54, pE81, DOI 10.1002/mc.22182 Zheng MZ, 2013, J ETHNOPHARMACOL, V147, P108, DOI 10.1016/j.jep.2013.02.015 Zhou HY, 2018, WORLD J SURG ONCOL, V16, DOI 10.1186/s12957-018-1441-3 Zou W, 2017, J ETHNOPHARMACOL, V202, P103, DOI 10.1016/j.jep.2017.02.034 NR 70 TC 0 Z9 0 U1 3 U2 10 PU SPRINGER PI NEW YORK PA ONE NEW YORK PLAZA, SUITE 4600, NEW YORK, NY, UNITED STATES SN 2193-4126 EI 2193-4134 J9 J FOOD MEAS CHARACT JI J. Food Meas. Charact. PD APR PY 2020 VL 14 IS 2 BP 809 EP 817 DI 10.1007/s11694-019-00329-8 EA DEC 2019 PG 9 WC Food Science & Technology SC Food Science & Technology GA KU8YQ UT WOS:000500498300002 DA 2021-10-15 ER PT J AU Seiler, LK Decoteau, DR Marini, RP Davis, DD AF Seiler, Lauren K. Decoteau, Dennis R. Marini, Richard P. Davis, Donald D. TI Staghorn Sumac (Rhus typhina): A New Bioindicator to Detect Phytotoxic Levels of Ambient Ozone in the Eastern United States SO NORTHEASTERN NATURALIST LA English DT Article ID NATIONAL WILDLIFE REFUGE; VEGETATION; SYMPTOMS; MILKWEED; EXPOSURE; INJURY; PLANTS; PARK AB In our air pollution studies at The Pennsylvania State University, we have successfully used Prunus serotina (Black Cherry), Asclepias syriaca (Common Milkweed), Apocynum androsaemifolium (Spreading Dogbane), and Ailanthus altissima (Tree-of-Heaven) as ozone-sensitive bioindicators to detect phytotoxic levels of ambient ozone. However, ambient ozone concentrations have decreased in our study area, and we are seeking a more sensitive bioindicator species. We observed significant levels of ambient ozone-induced leaf injury (stipple) on native Rhus typhina (Staghorn Sumac) within a field in a central Pennsylvania, suggesting that this species might serve as a new and highly sensitive ozone bioindicator. Therefore, we conducted a preliminary survey to determine the incidence and severity of ozone-induced stipple on Staghorn Sumac. In the same location, we concurrently evaluated the level of foliar stipple on the ozone-sensitive bioindicator species listed above. Staghorn Sumac developed significantly greater ozone-induced symptoms than the other bioindicators and has potential to serve as a bioindicator to detect phytotoxic levels of ambient ozone in the eastern US. C1 [Seiler, Lauren K.] Penn State Univ, Dept Ecol, University Pk, PA 16802 USA. [Decoteau, Dennis R.; Marini, Richard P.] Penn State Univ, Dept Plant Sci, University Pk, PA 16802 USA. [Davis, Donald D.] Penn State Univ, Dept Plant Pathol & Environm Microbiol, Penn State Inst Energy & Environm, University Pk, PA 16802 USA. RP Davis, DD (corresponding author), Penn State Univ, Dept Plant Pathol & Environm Microbiol, Penn State Inst Energy & Environm, University Pk, PA 16802 USA. EM ddd2@psu.edu FU USDA National Institute of Food and Agriculture (NIFA) [PEN04564, 1002837]; Pennsylvania Department of Environmental Protection, Bureau of Air Quality, Harrisburg, PA FX This work was supported by the USDA National Institute of Food and Agriculture (NIFA) and Federal appropriations under Project PEN04564, Accession number 1002837, and by the Pennsylvania Department of Environmental Protection, Bureau of Air Quality, Harrisburg, PA. CR ANDERSON RL, 1989, 89136 USDA FOR SERV Bergweiler CJ, 1999, ENVIRON POLLUT, V105, P333, DOI 10.1016/S0269-7491(99)00044-5 Chappelka A, 1997, ENVIRON POLLUT, V95, P13, DOI 10.1016/S0269-7491(96)00120-0 Davis D. D., 2018, J AGR ENV SCI, V7, P156 DAVIS DD, 1976, PLANT DIS REP, V60, P876 Davis DD, 2007, NORTHEAST NAT, V14, P403, DOI 10.1656/1092-6194(2007)14[403:OSOVWT]2.0.CO;2 Davis DD, 2007, NORTHEAST NAT, V14, P415, DOI 10.1656/1092-6194(2007)14[415:OITPWT]2.0.CO;2 Davis DD, 2006, ENVIRON POLLUT, V143, P555, DOI 10.1016/j.envpol.2005.10.051 Davis DD, 2011, NORTHEAST NAT, V18, P115, DOI 10.1656/045.018.0111 Davis DD, 2009, SOUTHEAST NAT, V8, P471, DOI 10.1656/058.008.0308 DUCHELLE SF, 1981, PLANT DIS, V65, P661, DOI 10.1094/PD-65-661 Eckert R.T., 1999, FOLIAR OZONE INJURY Hildebrand E, 1996, CAN J FOREST RES, V26, P658, DOI 10.1139/x26-076 HORSFALL JG, 1945, PHYTOPATHOLOGY, V35, P655 Krupa S, 2001, PLANT DIS, V85, P4, DOI 10.1094/PDIS.2001.85.1.4 Krupa S.R., 1997, AIR POLLUTION PEOPLE KRUPA SV, 1988, ENVIRON POLLUT, V50, P101, DOI 10.1016/0269-7491(88)90187-X Littell R.C., 2006, SAS MIXED MODELS, V2nd LONG RP, 1991, ENVIRON POLLUT, V70, P241, DOI 10.1016/0269-7491(91)90012-L MANNING WJ, 1980, BIOMONITORING AIR PO Myers AC, 2018, NORTHEAST NAT, V25, P265, DOI 10.1656/045.025.0210 Paoletti E, 2007, ENVIRON MONIT ASSESS, V128, P19, DOI 10.1007/s10661-006-9412-5 Richards B.L., 1958, AGRON J, V50, P559, DOI DOI 10.2134/AGRONJ1958.00021962005000090019X Seiler LK, 2014, NORTHEAST NAT, V21, P541, DOI 10.1656/045.021.0405 SIMINI M, 1992, CAN J FOREST RES, V22, P1789, DOI 10.1139/x92-234 Skelly John M., 2000, Northeastern Naturalist, V7, P221, DOI 10.1656/1092-6194(2000)007[0221:TOAIIT]2.0.CO;2 Smith G.C., 2012, NRS103 USDA FOR SERV United States Department of Agriculture Natural Resource Conservation Service (USDA- NRCS), 2019, STAGH SUM PLANT FACT United States Environmental Protection Agency (USEPA), 1996, EPA600AP93004AF, VI USEPA, 2013, EPA600R10076F USEPA, 2003, OZ GOOD HIGH BAD NEA NR 31 TC 0 Z9 0 U1 1 U2 11 PU HUMBOLDT FIELD RESEARCH INST PI STEUBEN PA PO BOX 9, STEUBEN, ME 04680-0009 USA SN 1092-6194 EI 1938-5307 J9 NORTHEAST NAT JI Northeast. Nat PD OCT PY 2019 VL 26 IS 4 BP 807 EP 816 DI 10.1656/045.026.0410 PG 10 WC Biodiversity Conservation; Ecology SC Biodiversity & Conservation; Environmental Sciences & Ecology GA JW3ZN UT WOS:000502993400011 DA 2021-10-15 ER PT J AU Shen, T Xing, GQ Zhu, JF Cai, Y Zhang, SX Xu, G Feng, Y Li, DH Rao, JY Shi, R AF Shen, Tian Xing, Guoqiang Zhu, Jingfen Cai, Yong Zhang, Shuxian Xu, Gang Feng, Yi Li, Donghua Rao, Jianyu Shi, Rong TI Effects of 12-Week Supplementation of a Polyherbal Formulation in Old Adults with Prehypertension/Hypertension: A Randomized, Double-Blind, Placebo-Controlled Trial SO EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE LA English DT Article ID CHRYSANTHEMUM-INDICUM LINN; SINGLE-PILL COMBINATION; APOCYNUM-VENETUM LEAVES; NF-KAPPA-B; PRUNELLA-VULGARIS; BLOOD-PRESSURE; INFLAMMATORY RESPONSE; OXIDATIVE STRESS; AQUEOUS EXTRACT; ANGIOTENSIN-II AB Background. Uncontrolled blood pressure is the leading cause of mortality and disability due to associated cerebral and cardiovascular diseases and kidney failure. More than one-third of the old adult population have hypertension or prehypertension and many of their blood pressure are poorly controlled. Objective. We hypothesized that plant extracts-based antioxidants may benefit those with prehypertension/hypertension. Method. One hundred age- and gender-matched healthy older adults were randomly assigned to receive HyperBalance capsules (n=50) or placebo (n=50) at Tang-Qiao Community Health Service Center, Shanghai. Blood pressure and severity scores of hypertension treatment-related symptoms (dizziness, headache, ringing/buzzing in ears, rapid heart rate, and chest tightness) were evaluated before and after the 12-week intervention. Results. Ninety-eight people completed the study, with 2 dropouts in the placebo group before the end of the study. Forty-one subjects (82%) of the HyperBalance group and 40 subjects (83.3%) of the placebo group had prehypertension (systolic blood pressures (SBP) between 130-139 and diastolic blood pressure (DBP) between 85-89mmHg), and 9 subjects (18%) in the HyperBalance group and 8 subjects (16.7%) in the placebo group had hypertension (>= 140/90mmHg) before the intervention. HyperBalance significantly (P<0.01) reduced SBP from 136.18 +/- 4.38 to 124.14 +/- 3.96 mmHg and reduced DBP from 82.45 +/- 2.91 to 80.24 +/- 2.41mmHg, respectively, and reversed all 9 hypertension people to normotension or prehypertension state, whereas the placebo moderately reduced SBP from 135.79 +/- 4.22 to 132.35 +/- 4.656mmHg and reduced DBP from 82.90 +/- 3.07 to 82.27 +/- 3.01mmHg. All symptom severity scores became significantly lower in the HyperBalance group than in the placebo group after HyperBalance intervention: dizziness (0.82 +/- 0.44; vs 2.02 +/- 0.64, P<0.01); headache (0.46 +/- 0.50; vs 1.81 +/- 0.61, P<0.01); ringing/buzzing in ears (0.44 +/- 0.50; vs 1.04 +/- 0.29, P<0.01); and rapid heart rate and chest tightness (0.30 +/- 0.46; vs 0.92 +/- 0.28, P<0.01). Conclusion. Polyherbal supplementation such as HyperBalance could benefit old adults with prehypertension/hypertension and improve treatment-related symptoms. Further studies are needed to validate the current findings. C1 [Shen, Tian; Zhu, Jingfen; Cai, Yong; Zhang, Shuxian; Xu, Gang; Feng, Yi] Shanghai Jiao Tong Univ, Sch Publ Hlth, Shanghai 200025, Peoples R China. [Xing, Guoqiang] Nanchong Cent Hosp, North Sichuan Med Coll, Affiliated Hosp, Nanchong 637000, Peoples R China. [Xing, Guoqiang] Nanchong Cent Hosp, North Sichuan Med Coll, Clin Med Coll 2, Nanchong 637000, Peoples R China. [Xing, Guoqiang] Johns Hopkins Univ, MCC, Lotus Biotech Com LLC, 9601 Med Ctr Dr, Rockville, MD 20850 USA. [Li, Donghua] Tang Qiao Community Hlth Serv Ctr, Shanghai 200127, Peoples R China. [Rao, Jianyu] Univ Calif Los Angeles, David Geffen Sch Med, Dept Pathol & Lab Med, Los Angeles, CA 90095 USA. [Shi, Rong] Shanghai Univ Tradit Chinese Med, Sch Publ Hlth, Shanghai 201203, Peoples R China. RP Cai, Y (corresponding author), Shanghai Jiao Tong Univ, Sch Publ Hlth, Shanghai 200025, Peoples R China.; Xing, GQ (corresponding author), Nanchong Cent Hosp, North Sichuan Med Coll, Affiliated Hosp, Nanchong 637000, Peoples R China.; Xing, GQ (corresponding author), Nanchong Cent Hosp, North Sichuan Med Coll, Clin Med Coll 2, Nanchong 637000, Peoples R China.; Xing, GQ (corresponding author), Johns Hopkins Univ, MCC, Lotus Biotech Com LLC, 9601 Med Ctr Dr, Rockville, MD 20850 USA. EM pedyshen@126.com; gxing99@yahoo.com; zhujingfenjt@163.com; caiyong202028@163.com; mintgreeny@sjtu.edu.cn; xugang567@sina.com; 591964436@139.com; 13816221419@163.com; jrao@mednet.ucla.edu; shirong61@163.com RI Xing, Guoqiang/ABA-8450-2020 OI Shen, Tian/0000-0002-2839-6911; Xing, Guoqiang/0000-0002-4706-3063; Shi, Rong/0000-0002-5152-3026; zhu, jingfen/0000-0003-0644-1205 FU DRM Resources (Costa Mesa, California, USA); National Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC) [7163187]; Sciences & Technology Bureau of Sichuan Province [KY-1720]; Social Cognitive and Behavioral Sciences Program of Shanghai Jiao Tong University [14JCRY03]; Shanghai Key Discipline Construction Project in Public Health [15GWZK1002] FX Ms. Mina Shariff and Mr. Tuong Nguyen are acknowledged for their sponsors' role in funding this study (DRM Resources (Costa Mesa, California, USA). The authors thank Mr. Evan Xing for proofreading the manuscript. This study was sponsored, in part, by DRM Resources (Costa Mesa, California, USA), National Natural Science Foundation of China (7163187), The Sciences & Technology Bureau of Sichuan Province (KY-1720), the Social Cognitive and Behavioral Sciences Program of Shanghai Jiao Tong University (14JCRY03), Shanghai Key Discipline Construction Project in Public Health (15GWZK1002), and The Sciences & Technology Bureau of Sichuan Province (KY-1720). CR Abdellatif AA, 2012, J CLIN HYPERTENS, V14, P718, DOI 10.1111/j.1751-7176.2012.00696.x Adly AAM, 2014, J DIABETES COMPLICAT, V28, P340, DOI 10.1016/j.jdiacomp.2014.01.011 Ahmad L, 2015, J ETHNOPHARMACOL, V175, P138, DOI 10.1016/j.jep.2015.09.014 Ahn EK, 2007, J ETHNOPHARMACOL, V110, P476, DOI 10.1016/j.jep.2006.10.006 Ames R, 1998, ARCH MAL COEUR VAISS, V91, P23 Arima H, 2014, J NEUROL NEUROSUR PS, V85, P1284, DOI 10.1136/jnnp-2014-307856 Asaba K, 2005, KIDNEY INT, V67, P1890, DOI 10.1111/j.1523-1755.2005.00287.x Assadi F, 2014, INT J PREVENTIVE MED, V5, pS4 Association A. H., 2005, PREH TRIPL HEART ATT Badakhsh Mohammad Hossein, 2015, Med J Islam Repub Iran, V29, P290 Bagherani N, 2015, DERMATOL THER, V28, P176, DOI 10.1111/dth.12185 Beswick RA, 2001, HYPERTENSION, V38, P1107, DOI 10.1161/hy1101.093423 Bi ZQ, 2014, PREV CHRONIC DIS, V11, DOI 10.5888/pcd11.130423 Bozorgmanesh M, 2014, EUR J PREV CARDIOL, V21, P956, DOI 10.1177/2047487313481757 Cai L, 2012, CLIN EXP HYPERTENS, V34, P45, DOI 10.3109/10641963.2011.618206 Cai Y, 2017, LIPIDS HEALTH DIS, V16, DOI 10.1186/s12944-017-0640-1 Chen MX, 2016, NUTRIENTS, V8, DOI 10.3390/nu8090563 Chen MH, 2018, J CLIN PSYCHIAT, V79, DOI 10.4088/JCP.17m11607 Chen RJY, 2010, ACTA PHARMACOL SIN, V31, P696, DOI 10.1038/aps.2010.61 Chen XF, 2014, PLOS ONE, V9, DOI [10.1371/journal.pone.0115462, 10.1371/journal.pone.0103330, 10.1371/journal.pone.0091809, 10.1371/journal.pone.0085716] Cheng WM, 2005, J ETHNOPHARMACOL, V101, P334, DOI 10.1016/j.jep.2005.04.035 Cheon MS, 2009, J ETHNOPHARMACOL, V122, P473, DOI 10.1016/j.jep.2009.01.034 Chern M S, 1997, Changgeng Yi Xue Za Zhi, V20, P86 Choi HG, 2016, NAT PROD COMMUN, V11, P31 Coleman RL, 2017, LANCET ONCOL, V18, P779, DOI 10.1016/S1470-2045(17)30279-6 Cruickshank John M, 2010, Indian Heart J, V62, P101 de la Sierra A, 2009, J HUM HYPERTENS, V23, P503, DOI 10.1038/jhh.2008.157 Egan BM, 2015, NAT REV CARDIOL, V12, DOI 10.1038/nrcardio.2015.100 Egan BM, 2015, NAT REV CARDIOL, V12, P289, DOI 10.1038/nrcardio.2015.17 Fan Guohui, 2015, Zhonghua Yi Xue Za Zhi, V95, P616 Fan Y, 2018, CELL PHYSIOL BIOCHEM, V48, P63, DOI 10.1159/000491663 Fazal H, 2016, J PHOTOCH PHOTOBIO B, V159, P1, DOI 10.1016/j.jphotobiol.2016.03.008 GASILIN VS, 1989, TERAPEVT ARKH, V61, P15 He YM, 2015, MOL MED REP, V12, P5321, DOI 10.3892/mmr.2015.4095 Holland JA, 1997, ENDOTHELIUM-NEW YORK, V5, P191, DOI 10.3109/10623329709053398 Holland JA, 1998, ENDOTHELIUM-NEW YORK, V6, P113, DOI 10.3109/10623329809072198 Hu YX, 2016, PLANTA MED, V82, P97, DOI 10.1055/s-0035-1558112 Iaccarino G, 2005, PHARMACOGENOMICS J, V5, P292, DOI 10.1038/sj.tpj.6500324 KATO T, 1986, ARCH INT PHARMACOD T, V280, P241 KATO T, 1987, ARCH INT PHARMACOD T, V285, P288 Kho MC, 2014, EVID-BASED COMPL ALT, V2014, DOI 10.1155/2014/101624 Kim DW, 2000, PHYTOTHER RES, V14, P501, DOI 10.1002/1099-1573(200011)14:7<501::AID-PTR655>3.0.CO;2-B Kim DW, 2000, J ETHNOPHARMACOL, V72, P53, DOI 10.1016/S0378-8741(00)00197-5 Kloth N, 2011, CRIT CARE RESUSC, V13, P33 Lapperre TS, 1999, FEBS LETT, V443, P235, DOI 10.1016/S0014-5793(98)01723-2 Lawlor DA, 2005, CURR OPIN NEPHROL HY, V14, P259, DOI 10.1097/01.mnh.0000165893.13620.2b Lee K., 2017, CURR EYE RES, P1, DOI [10.1007/s11655-017-2771-7, DOI 10.1007/S11655-017-2771-7] Li WJ, 2016, LIFE SCI, V149, P18, DOI 10.1016/j.lfs.2016.02.037 Liu W., 2015, EVID-BASED COMPL ALT, V2015, DOI [10.1155/2015/ 828427, DOI 10.1155/2015/828427] Liu ZK, 2017, J ETHNOPHARMACOL, V196, P20, DOI 10.1016/j.jep.2016.12.014 Lobay Douglas, 2015, Integr Med (Encinitas), V14, P40 Loga-Zec Svjetlana, 2014, Med Arch, V68, P372, DOI 10.5455/medarh.2014.68.372-375 Lopez B, 2003, HYPERTENSION, V42, P1150, DOI 10.1161/01.HYP.0000101968.09376.79 Manning RD, 2005, AM J NEPHROL, V25, P311, DOI 10.1159/000086411 Manning RD, 2003, ACTA PHYSIOL SCAND, V179, P243, DOI 10.1046/j.0001-6772.2003.01204.x Marshall IJ, 2012, BMJ-BRIT MED J, V345, DOI 10.1136/bmj.e3953 Meng XJ, 2011, J HYPERTENS, V29, P1303, DOI 10.1097/HJH.0b013e328347f79e Mozaffarian D, 2015, CIRCULATION, V131, pE29, DOI 10.1161/CIR.0000000000000152 Neamsuvan O, 2018, J ETHNOPHARMACOL, V214, P58, DOI 10.1016/j.jep.2017.11.032 Pearse DB, 1999, CHEST, V116, p55S, DOI 10.1378/chest.116.suppl_1.55S Perticone F, 2010, INT J CARDIOL, V142, P236, DOI 10.1016/j.ijcard.2008.12.131 Qureshi AI, 2005, MED SCI MONITOR, V11, pCR403 Qureshi AI, 2005, STROKE, V36, P1859, DOI 10.1161/01.STR.0000177495.45580.f1 Ritz E, 2007, AM J CARDIOL, V100, p53J, DOI 10.1016/j.amjcard.2007.05.015 Ritz E, 2010, CARDIOVASC DIABETOL, V9, DOI 10.1186/1475-2840-9-60 Ruster C, 2011, J AM SOC NEPHROL, V22, P1189, DOI 10.1681/ASN.2010040384 Russo P, 2013, CURR MED CHEM, V20, P1686 Ryan JJ, 2019, J ALTERN COMPLEM MED, V25, P249, DOI 10.1089/acm.2018.0311 Sagi S, 2016, ANAL BIOANAL CHEM, V408, P177, DOI 10.1007/s00216-015-9093-4 Shamon SD, 2016, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD007655.pub3 Shamon SD, 2009, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD007655.pub2 Shao QH, 2018, MOL IMMUNOL, V99, P115, DOI 10.1016/j.molimm.2018.04.014 Shen T, 2019, CLIN EXP HYPERTENS, V41, P244, DOI 10.1080/10641963.2018.1469640 Shen T, 2017, LIPIDS HEALTH DIS, V16, DOI 10.1186/s12944-017-0617-0 Shu KH, 2007, CLIN NEPHROL, V67, P157 Sorof J, 2002, HYPERTENSION, V40, P441, DOI 10.1161/01.HYP.0000032940.33466.12 Sorof JM, 2002, J PEDIATR-US, V140, P660, DOI 10.1067/mpd.2002.125228 Souza LM, 2009, SAO PAULO MED J, V127, P366, DOI 10.1590/S1516-31802009000600009 Toyoshima H, 1997, CLIN THER, V19, P1458, DOI 10.1016/S0149-2918(97)80019-7 Vasan RS, 2001, NEW ENGL J MED, V345, P1291, DOI 10.1056/NEJMoa003417 Wang J., 2013, INSURANCE STUDIES, V8, P79, DOI DOI 10.2147/DDDT.S38617 Yang G, 2016, INT J ENV RES PUB HE, V13, DOI 10.3390/ijerph13010082 Yang L, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0146181 Yang X, 2017, PHARM BIOL, V55, P1207, DOI 10.1080/13880209.2016.1278454 Yokozawa T, 2004, FOOD CHEM TOXICOL, V42, P975, DOI 10.1016/j.fct.2004.02.010 Yoo KY, 2016, NEURAL REGEN RES, V11, P270, DOI 10.4103/1673-5374.177735 Zhang Q, 2015, J ETHNOPHARMACOL, V173, P48, DOI 10.1016/j.jep.2015.06.011 Zhang X, 2016, ANTIVIR RES, V127, P20, DOI 10.1016/j.antiviral.2016.01.001 Zhu DL, 2014, J INT MED RES, V42, P52, DOI 10.1177/0300060513503756 Zhu JF, 2016, EVID-BASED COMPL ALT, V2016, DOI 10.1155/2016/7898093 Zhu SY, 2005, J ETHNOPHARMACOL, V96, P151, DOI 10.1016/j.jep.2004.08.031 NR 91 TC 0 Z9 0 U1 5 U2 13 PU HINDAWI LTD PI LONDON PA ADAM HOUSE, 3RD FLR, 1 FITZROY SQ, LONDON, W1T 5HF, ENGLAND SN 1741-427X EI 1741-4288 J9 EVID-BASED COMPL ALT JI Evid.-based Complement Altern. Med. PD JUL 14 PY 2019 VL 2019 AR 7056872 DI 10.1155/2019/7056872 PG 15 WC Integrative & Complementary Medicine SC Integrative & Complementary Medicine GA IM2PU UT WOS:000477835200001 PM 31391860 OA gold, Green Published DA 2021-10-15 ER PT J AU Gao, P Nan, ZB Christensen, MJ Barbetti, MJ Duan, TY Liu, QT Meng, FJ Huang, JF AF Gao, P. Nan, Z. B. Christensen, M. J. Barbetti, M. J. Duan, T. Y. Liu, Q. T. Meng, F. J. Huang, J. F. TI Factors Influencing Rust (Melampsora apocyni) Intensity on Cultivated and Wild Apocynum venetum in Altay Prefecture, China SO PHYTOPATHOLOGY LA English DT Article DE Apocynum venetum; cultivated crop; disease index; path modeling; wild plant ID LEAF RUST; WATER-STRESS; WHEAT LEAF; STEM RUST; PLANT; EPIDEMIOLOGY; DISEASE; MANAGEMENT; SEVERITY; POPLAR AB Rust (Melampsora apocyni) on Apocynum venetum is the major constraint to the commercial development of this medicinal herb. To determine the factors influencing rust intensity (maximum disease index [DImax]), rust was investigated from 2011 to 2015 in both cultivated and wild A. venetum plants. Partial least squares path modeling (PLS-PM) was used to analyze the paths and extent of the factors related to pathogen, environment, and host that affect rust intensity. DImax exhibited considerable variations across years and study sites, with variations linked to various factors fostering disease development. PLS-PM explained 80.0 and 70.1% of variations in DImax in cultivated and wild plants, respectively. Precipitation was the key factor determining DImax in both cultivated and wild plants (path coefficient [PC] = 0.313 and 0.544, respectively). In addition, the topsoil water content in cultivated plants and the total vegetation coverage in wild plants were also critical determinants of DImax via their effects on the microclimatic factor (contribution coefficients [CC] = 0.681 and 0.989, respectively; PC = 0.831 and 0.231, respectively). In both cultivated and wild plants, host factors were mainly dominated by A. venetum density (CC = 0.989 and 0.894, respectively), and their effect on DImax via the microclimatic factor (PC = 0.841 and 0.862, respectively) exceeded that via the inoculum factor (PC = 0.705 and 0.130, respectively). However, the indirect effects led to DImax variation, while the dilution effect on host (CC = 0.154) from weed in wild plants led to the indirect effect size in wild plants of 0.200, which was lower than -0.699 in cultivated plants. C1 [Gao, P.; Nan, Z. B.; Christensen, M. J.; Duan, T. Y.] Lanzhou Univ, State Key Lab Grassland Agroecosyst, Lanzhou 730020, Gansu, Peoples R China. [Gao, P.] Shanxi Agr Univ, Coll Anim Sci & Vet Med, Taigu 030801, Shanxi, Peoples R China. [Nan, Z. B.; Duan, T. Y.] Lanzhou Univ, Key Lab Grassland Livestock Ind Innovat, Minist Agr, Lanzhou, Gansu, Peoples R China. [Nan, Z. B.; Christensen, M. J.; Duan, T. Y.] Lanzhou Univ, Coll Pastoral Agr Sci & Technol, Lanzhou, Gansu, Peoples R China. [Barbetti, M. J.] Univ Western Australia, Fac Sci, Sch Agr & Environm, Crawley, WA 6009, Australia. [Barbetti, M. J.] Univ Western Australia, Fac Sci, UWA Inst Agr, Crawley, WA 6009, Australia. [Liu, Q. T.; Meng, F. J.; Huang, J. F.] Altay Gaubau Tea Co Ltd, Altay 836500, Peoples R China. RP Duan, TY (corresponding author), Lanzhou Univ, State Key Lab Grassland Agroecosyst, Lanzhou 730020, Gansu, Peoples R China.; Duan, TY (corresponding author), Lanzhou Univ, Key Lab Grassland Livestock Ind Innovat, Minist Agr, Lanzhou, Gansu, Peoples R China.; Duan, TY (corresponding author), Lanzhou Univ, Coll Pastoral Agr Sci & Technol, Lanzhou, Gansu, Peoples R China. EM zyjt_721@163.com RI a, a·cŽ‰/AAC-8403-2021; Barbetti, Martin J/B-3455-2011 OI Barbetti, Martin J/0000-0002-5331-0817 FU Integrated Disease Control Techniques [201191135]; Science and Technology Department of Xinjiang Uygur Autonomous Region, China FX This research was financially supported by the Integrated Disease Control Techniques (grant number 201191135) of The Science and Technology Department of Xinjiang Uygur Autonomous Region, China. CR Barua P, 2018, PLANT PATHOL, V67, P799, DOI 10.1111/ppa.12794 Bletsos FA, 1999, J PHYTOPATHOL, V147, P243, DOI 10.1046/j.1439-0434.1999.147004243.x Burdon JJ, 2006, ANNU REV PHYTOPATHOL, V44, P19, DOI 10.1146/annurev.phyto.43.040204.140238 CHANDRASHEKAR M, 1981, EUPHYTICA, V30, P113, DOI 10.1007/BF00033666 Chester K.S., 1946, NATURE PREVENTION CE Costes E, 2013, EUR J PLANT PATHOL, V135, P455, DOI 10.1007/s10658-012-0158-3 Covarelli L, 2013, BIOMASS BIOENERG, V49, P315, DOI 10.1016/j.biombioe.2012.12.032 Cox CM, 2004, PHYTOPATHOLOGY, V94, P961, DOI 10.1094/PHYTO.2004.94.9.961 Custodio AAD, 2014, PLANT DIS, V98, P943, DOI 10.1094/PDIS-07-13-0801-RE DENCHEV CM, 1995, MYCOTAXON, V55, P405 Efron B., 1994, INTRO BOOTSTRAP Eversmeyer MG, 2000, ANNU REV PHYTOPATHOL, V38, P491, DOI 10.1146/annurev.phyto.38.1.491 Gao P, 2014, METHOD SPECIAL EQUIP Gao Peng, 2017, Journal of Plant Protection, V44, P129 Gao Peng, 2015, Acta Botanica Boreali-Occidentalia Sinica, V35, P2069 GOODALL DW, 1952, AUST J SCI RES SER B, V5, P1, DOI 10.1071/BI9520001 [郭志青 Guo Zhiqing], 2010, [西北林学院学报, Journal of Northwest Forestry College], V25, P118 Habiken G, 2011, ARID ZONE RES, V28, P83 Harveson RM, 2002, PLANT DIS, V86, P901, DOI 10.1094/PDIS.2002.86.8.901 Hiratsuka N., 1937, J JAPANESE BOTANY, V13, P244 Hu R. L, 1985, CHIN WILD PLANT RES, V2, P7 HUBER L, 1992, ANNU REV PHYTOPATHOL, V30, P553, DOI 10.1146/annurev.py.30.090192.003005 Johnson KB, 2010, PLANT DIS, V94, P581, DOI 10.1094/PDIS-94-5-0581 Kirbag S, 2004, PAKISTAN J BOT, V36, P445 Kou YP, 2017, SOIL BIOL BIOCHEM, V111, P104, DOI 10.1016/j.soilbio.2017.04.005 Kriss AB, 2010, PHYTOPATHOLOGY, V100, P784, DOI 10.1094/PHYTO-100-8-0784 Lawrence GJ, 2007, MOL PLANT PATHOL, V8, P349, DOI 10.1111/J.1364-3703.2007.00405.X [李倩 Li Qian], 2013, [植物病理学报, Acta Phytopathologica Sinica], V43, P267 [刘勇 Liu Yong], 2016, [生态学报, Acta Ecologica Sinica], V36, P4211 LIVELY CM, 1995, ECOLOGY, V76, P1859, DOI 10.2307/1940718 Lundquist JE, 2007, PLANT DIS, V91, P147, DOI 10.1094/PDIS-91-2-0147 Ma ZH, 2001, PLANT DIS, V85, P745, DOI 10.1094/PDIS.2001.85.7.745 McCracken AR, 2000, EUR J PLANT PATHOL, V106, P879, DOI 10.1023/A:1008797503403 Mitchell CE, 2002, ECOLOGY, V83, P1713, DOI 10.1890/0012-9658(2002)083[1713:EOGPSD]2.0.CO;2 Mundt CC, 2009, PHYTOPATHOLOGY, V99, P1116, DOI 10.1094/PHYTO-99-10-1116 Nevodovskii G. S., 1956, CRYPTOGAMIC FLORA KA, V1, P227 Norman J.M., 1982, BIOMETEOROL INTEGR P, P65, DOI DOI 10.1016/B978-0-12-332850-2.50009-8 [彭雪梅 Peng Xuemei], 2008, [南京师大学报. 自然科学版, Journal of Nanjing Normal University. Natural Science], V31, P92 Pfender WF, 2006, PLANT DIS, V90, P1225, DOI 10.1094/PD-90-1225 Pfleeger TG, 1998, PHYTOPATHOLOGY, V88, P708, DOI 10.1094/PHYTO.1998.88.7.708 Ping XiaoYan, 2014, Acta Prataculturae Sinica, V23, P49 Saccardo P. A, 1895, SYLLOGE FUNGORUM, V11, P183 Sanchez G., 2013, PLS PATH MODELING R, VTrowchez Schmitz HF, 2009, AGR FOREST METEOROL, V149, P1621, DOI 10.1016/j.agrformet.2009.05.001 Sikora EJ, 2014, PLANT DIS, V98, P864, DOI 10.1094/PDIS-02-14-0121-FE Song RJ, 2015, J CHROMATOGR B, V995, P8, DOI 10.1016/j.jchromb.2015.05.019 Tai F. L., 1979, SYLLOGE FUNGORUM SIN, P534 TAYLOR PWJ, 1992, AUST J AGR RES, V43, P443, DOI 10.1071/AR9920443 Paiva BRTL, 2011, CIENC AGROTEC, V35, P137, DOI 10.1590/S1413-70542011000100017 Thevs N, 2012, J APPL BOT FOOD QUAL, V85, P159 Toome M, 2010, BIOMASS BIOENERG, V34, P1201, DOI 10.1016/j.biombioe.2010.03.012 Tranzschel W. A, 1891, BOT NOTES ISSUED BOT, V3, P137 Turechek WW, 2004, PHYTOPATHOLOGY, V94, P1018, DOI 10.1094/PHYTO.2004.94.9.1018 van Bruggen AHC, 2016, ANNU REV PHYTOPATHOL, V54, P25, DOI 10.1146/annurev-phyto-080615-100123 Vialle A, 2011, FUNGAL DIVERS, V50, P227, DOI 10.1007/s13225-011-0129-6 WAGGONER PE, 1965, ANNU REV PHYTOPATHOL, V3, P103, DOI 10.1146/annurev.py.03.090165.000535 WENNSTROM A, 1991, OIKOS, V60, P35, DOI 10.2307/3544989 WIDIN KD, 1980, CAN J FOREST RES, V10, P257, DOI 10.1139/x80-044 Xu B, 2013, MYCOSISTEMA, V32, P170 Yang HJ, 2011, GLOBAL CHANGE BIOL, V17, P452, DOI 10.1111/j.1365-2486.2010.02253.x Zadoks J. C., 1979, EPIDEMIOLOGY PLANT D Zeng SM, 2006, PLANT DIS, V90, P980, DOI 10.1094/PD-90-0980 Zhang YuPing, 2007, Acta Phytophylacica Sinica, V34, P507 Zhuang J. Y., 1989, Acta Mycologica Sinica, V8, P259 NR 64 TC 0 Z9 1 U1 1 U2 29 PU AMER PHYTOPATHOLOGICAL SOC PI ST PAUL PA 3340 PILOT KNOB ROAD, ST PAUL, MN 55121 USA SN 0031-949X EI 1943-7684 J9 PHYTOPATHOLOGY JI Phytopathology PD APR PY 2019 VL 109 IS 4 BP 593 EP 606 DI 10.1094/PHYTO-04-18-0145-R PG 14 WC Plant Sciences SC Plant Sciences GA ID3VQ UT WOS:000471605600010 PM 30307801 OA hybrid DA 2021-10-15 ER PT J AU Dadea, C Dejmkova, H Scampicchio, M Zerbe, S AF Dadea, Claudia Dejmkova, Hana Scampicchio, Matteo Zerbe, Stefan TI Medical compounds and the antioxidant capacity of aqueous extracts of Apocynum venetum L. in Xinjiang, NW China SO MONATSHEFTE FUR CHEMIE LA English DT Article DE Natural products; High-pressure liquid chromatography; UV; Vis spectroscopy; Polyphenols; Antioxidants ID ANTIMICROBIAL ACTIVITIES; PHENOLIC CONTENT; GREEN TEA; COMPONENTS; LEAVES; LUOBUMA; CONSTITUENTS; APOCYNACEAE; FIBERS; MS AB Content of selected nutrients and antioxidant activity based on the Folin-Ciocaltau assay, the DPPH assays, and the ferric-reducing antioxidant power assay was determined in samples of Apocynum venetum L., Chinese herbal plant. Results for different parts of plant or different sampling sites were compared and determination of some phenolic compounds was performed. The found antioxidant activity is similar to other commonly used herbal teas; the total phenolic content is comparable to that of green and black teas. [GRAPHICS] . C1 [Dadea, Claudia; Dejmkova, Hana; Scampicchio, Matteo; Zerbe, Stefan] Free Univ Bozen Bolzano, Fac Sci & Technol, Piazza Univ 1, I-39100 Bolzano, Italy. [Dejmkova, Hana] Charles Univ Prague, Dept Analyt Chem, Fac Sci, UNESCO Lab Environm Electrochem, Albertov 6, Prague 12843 2, Czech Republic. RP Scampicchio, M (corresponding author), Free Univ Bozen Bolzano, Fac Sci & Technol, Piazza Univ 1, I-39100 Bolzano, Italy. EM Matteo.scampicchio@unibz.it RI Dejmkova, Hana/H-4882-2017 OI Dejmkova, Hana/0000-0002-3897-2396 FU Federal Ministry of Education and Research, Germany (BMBF)Federal Ministry of Education & Research (BMBF) FX We are grateful to Dr. Niels Thevs who provided us with the plant samples of Apocynum collected during a field campaign within the project "Sustainable Management of River Oases along the Tarim River, China (SuMaRiO)" funded by the Federal Ministry of Education and Research, Germany (BMBF). CR An HJ, 2013, J PHARMACEUT BIOMED, V85, P295, DOI 10.1016/j.jpba.2013.07.005 Cao YH, 2003, ANAL BIOANAL CHEM, V376, P691, DOI 10.1007/s00216-003-1961-7 Carmona-Jimenez Y, 2014, FOOD CHEM, V165, P198, DOI 10.1016/j.foodchem.2014.05.106 Chaieb N, 2011, FOOD RES INT, V44, P970, DOI 10.1016/j.foodres.2011.02.026 Chan EWC, 2010, J FOOD COMPOS ANAL, V23, P185, DOI 10.1016/j.jfca.2009.10.002 Chen Y, 1999, J AGR FOOD CHEM, V47, P2226, DOI 10.1021/jf990092f Gil DMA, 2011, FOOD CHEM, V129, P1537, DOI 10.1016/j.foodchem.2011.06.003 Han GT, 2008, CARBOHYD POLYM, V72, P652, DOI 10.1016/j.carbpol.2007.10.002 Kamata K, 2008, J NAT MED-TOKYO, V62, P160, DOI 10.1007/s11418-007-0202-3 Kim DW, 2000, J ETHNOPHARMACOL, V72, P53, DOI 10.1016/S0378-8741(00)00197-5 Kubola J, 2008, FOOD CHEM, V110, P881, DOI 10.1016/j.foodchem.2008.02.076 Liang TG, 2010, INT J MOL SCI, V11, P4452, DOI 10.3390/ijms11114452 Liu HY, 2008, FOOD RES INT, V41, P363, DOI 10.1016/j.foodres.2007.12.012 Ma YX, 1999, CHIN J MOD DEV TRADI, V9, P335 Martins AC, 2013, FOOD CHEM, V138, P574, DOI 10.1016/j.foodchem.2012.10.143 Oh J, 2013, FOOD CONTROL, V31, P403, DOI 10.1016/j.foodcont.2012.10.021 Perez-Jimenez J, 2008, FOOD RES INT, V41, P274, DOI 10.1016/j.foodres.2007.12.004 SAKUSHIMA A, 1978, YAKUGAKU ZASSHI, V98, P1395, DOI 10.1248/yakushi1947.98.10_1395 Shirai Mutsuko, 2005, J Med Invest, V52 Suppl, P249, DOI 10.2152/jmi.52.249 Thevs N, 2012, J APPL BOT FOOD QUAL, V85, P159 Tsai TH, 2008, FOOD CHEM, V110, P859, DOI 10.1016/j.foodchem.2008.02.085 Tsao R, 2010, NUTRIENTS, V2, P1231, DOI 10.3390/nu2121231 Valifard M, 2014, S AFR J BOT, V93, P92, DOI 10.1016/j.sajb.2014.04.002 Wang LL, 2007, CARBOHYD POLYM, V69, P391, DOI 10.1016/j.carbpol.2006.12.028 Xie WY, 2012, J ETHNOPHARMACOL, V141, P1, DOI 10.1016/j.jep.2012.02.003 Xiong QB, 2000, PLANTA MED, V66, P127, DOI 10.1055/s-2000-11135 Yokozawa T, 2004, FOOD CHEM TOXICOL, V42, P975, DOI 10.1016/j.fct.2004.02.010 Yokozawa T, 2002, BIOL PHARM BULL, V25, P748, DOI 10.1248/bpb.25.748 Zhang W. M., 2006, CHINESE WILD PLANT R, V26, P11 NR 29 TC 0 Z9 0 U1 5 U2 21 PU SPRINGER WIEN PI WIEN PA SACHSENPLATZ 4-6, PO BOX 89, A-1201 WIEN, AUSTRIA SN 0026-9247 EI 1434-4475 J9 MONATSH CHEM JI Mon. Chem. PD MAR PY 2019 VL 150 IS 3 BP 451 EP 460 DI 10.1007/s00706-019-2376-2 PG 10 WC Chemistry, Multidisciplinary SC Chemistry GA HP0ZF UT WOS:000461394400012 DA 2021-10-15 ER PT J AU Jin, Y Wang, CY Hu, WH Huang, Y Xu, ML Wang, HY Kong, XP Chen, YC Dong, TT Qin, QW Tsim, KWK AF Jin, Yan Wang, Caroline Yang Hu, Weihui Huang, Yun Xu, Miranda Li Wang, Huaiyou Kong, Xiangpeng Chen, Yicun Dong, Tina Tingxia Qin, Qiwei Tsim, Karl Wah Keung TI An optimization of ultra-sonication-assisted extraction from flowers of Apocynum venetum in targeting to amount of free amino acids determined by UPLC-MS/MS SO FOOD QUALITY AND SAFETY LA English DT Article DE Apocynum venetum response surface methodology; ultra-sonication-assisted extraction; amino acid; UPLC-MS/MS ID PERFORMANCE LIQUID-CHROMATOGRAPHY; L. LUOBUMA; PU-ERH; TEA; ALKALOIDS; THEANINE; LEAVES AB Amino acids are naturally occurring compounds in many edible or medicinal plants, which possess a variety of nutraceutical effects in human. Here, a method of ultrasound-assisted extraction was optimized using Box-Behnken design of response surface methodology in maximizing the yield of free amino acids deriving from flowers of Apocynum venetum L. Under the optimal condition of ultrasound-assisted extraction, i.e. 187.5 W of ultrasonic power, 31.93 min of extraction time, and 0.47 mg/ml of solid-liquid ratio, the experimental yield of extractive was 287.17 +/- 0.205 mg/g, which was in close agreement with the value, as predicted by the established model. In addition, a hydrophilic interaction ultra-high performance liquid chromatography coupled with QqQ-MS/MS method was developed and validated for simultaneous quantification of 20 types of amino acids without derivatization contained in A. venetum flowers. The analytical method was validated by matrix effect, linearity, limit of detection, limit of quantification, precision, repeatability, stability, and recovery. The analysis results showed that A. venetum flower was rich in free amino acids of similar to 3% of total dried weight, and which contained leucine (13.7 g/mg), isoleucine (7.9 g/mg), and lysine (2.2 g/mg) as the most abundant amino acids. Thus, A. venetum flower could provide beneficial nutrient values for human health, e.g. adult weight maintenance or glucose homeostasis. C1 [Jin, Yan; Wang, Caroline Yang; Hu, Weihui; Huang, Yun; Xu, Miranda Li; Wang, Huaiyou; Kong, Xiangpeng; Dong, Tina Tingxia; Tsim, Karl Wah Keung] HKUST Shenzhen Res Inst, Shenzhen Key Lab Edible & Med Bioresources, Hitech Pk, Shenzhen 518000, Peoples R China. [Jin, Yan; Wang, Caroline Yang; Hu, Weihui; Huang, Yun; Xu, Miranda Li; Wang, Huaiyou; Kong, Xiangpeng; Chen, Yicun; Dong, Tina Tingxia; Tsim, Karl Wah Keung] Hong Kong Univ Sci & Technol, Div Life Sci, Clear Water Bay, Hong Kong, Peoples R China. [Jin, Yan; Wang, Caroline Yang; Hu, Weihui; Huang, Yun; Xu, Miranda Li; Wang, Huaiyou; Kong, Xiangpeng; Chen, Yicun; Dong, Tina Tingxia; Tsim, Karl Wah Keung] Hong Kong Univ Sci & Technol, Ctr Chinese Med, Clear Water Bay, Hong Kong, Peoples R China. [Chen, Yicun] Shantou Univ, Med Coll, Pharmacol Dept, Shantou 515041, Peoples R China. [Qin, Qiwei] South China Agr Univ, Coll Marine Sci, Joint Lab Guangdong Prov & Hong Kong Reg Marine B, Guangzhou 510642, Guangdong, Peoples R China. RP Tsim, KWK (corresponding author), Hong Kong Univ Sci & Technol, Div Life Sci, Clear Water Bay, Hong Kong, Peoples R China.; Tsim, KWK (corresponding author), Hong Kong Univ Sci & Technol, Ctr Chinese Med, Clear Water Bay, Hong Kong, Peoples R China. EM botsim@ust.hk OI Wang, Huai-You/0000-0003-1407-9912 FU Shenzhen Science and Technology Committee Research Grant [CKFW2016082916015476, ZDSYS201707281432317476, JCYJ20170413173747440, JCYJ20160229205726699, JCYJ20160229205812004, JCYJ20160229210027564]; Guangzhou Science and Technology Committee Research Grant [GZSTI16SC02, GZSTI17SC02]; Hong Kong RGC Theme-based Research Scheme [T13-607/12R]; Innovation Technology Fund [UIM/288, UIM/302, UIM/340, UIT/137, ITS/022/16FP, TUYF15SC01]; National Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC) [81503387] FX This study was supported by Shenzhen Science and Technology Committee Research Grant (CKFW2016082916015476, ZDSYS201707281432317476, JCYJ20170413173747440, JCYJ20160229205726699, JCYJ20160229205812004, JCYJ20160229210027564), Guangzhou Science and Technology Committee Research Grant (GZSTI16SC02, GZSTI17SC02), Hong Kong RGC Theme-based Research Scheme (T13-607/12R), Innovation Technology Fund (UIM/288, UIM/302, UIM/340, UIT/137, ITS/022/16FP, TUYF15SC01), and National Natural Science Foundation of China (No. 81503387). CR Bas D, 2007, J FOOD ENG, V78, P836, DOI 10.1016/j.jfoodeng.2005.11.024 Bi W, 2016, ACTA PHARM SIN B, V6, P170, DOI 10.1016/j.apsb.2015.11.003 Butterweck V, 2001, BIOL PHARM BULL, V24, P848, DOI 10.1248/bpb.24.848 Carrera C, 2015, ULTRASON SONOCHEM, V22, P499, DOI 10.1016/j.ultsonch.2014.05.021 Chen CH, 2018, MOLECULES, V23, DOI 10.3390/molecules23030573 Grundmann O, 2007, J ETHNOPHARMACOL, V110, P406, DOI 10.1016/j.jep.2006.09.035 Kamata K, 2008, J NAT MED-TOKYO, V62, P160, DOI 10.1007/s11418-007-0202-3 Kobayashi M, 2004, BIOL PHARM BULL, V27, P1649, DOI 10.1248/bpb.27.1649 Lahrichi SL, 2013, J PROTEOMICS, V88, P83, DOI 10.1016/j.jprot.2013.02.018 Layman DK, 2006, J NUTR, V136, p319S, DOI 10.1093/jn/136.1.319S Long P, 2014, ACTA PHARM SIN B, V4, P227, DOI 10.1016/j.apsb.2014.02.006 Ma M, 2003, J AGR FOOD CHEM, V51, P2390, DOI 10.1021/jf021055i Song CH, 2012, INT J FOOD SCI NUTR, V63, P170, DOI 10.3109/09637486.2011.610780 Sugiyama T, 1999, CLIN CANCER RES, V5, P413 Tan FY, 2011, J AGR FOOD CHEM, V59, P10839, DOI 10.1021/jf2023325 Troise AD, 2015, AMINO ACIDS, V47, P111, DOI 10.1007/s00726-014-1845-5 Wang HQ, 2013, J SEP SCI, V36, P2244, DOI 10.1002/jssc.201300266 Wu GY, 2013, AMINO ACIDS, V45, P241, DOI 10.1007/s00726-013-1515-z Xiao P.G., 2002, MODERN CHINESE MAT M Xie WY, 2012, J ETHNOPHARMACOL, V141, P1, DOI 10.1016/j.jep.2012.02.003 YOKOGOSHI H, 1995, BIOSCI BIOTECH BIOCH, V59, P615, DOI 10.1271/bbb.59.615 Yokozawa T, 2002, BIOL PHARM BULL, V25, P748, DOI 10.1248/bpb.25.748 Zhang LL, 2014, J SEP SCI, V37, P1265, DOI 10.1002/jssc.201301267 Zhao M, 2013, FOOD ANAL METHOD, V6, P69, DOI 10.1007/s12161-012-9408-4 Zhao M, 2011, J AGR FOOD CHEM, V59, P3641, DOI 10.1021/jf104601v Zhou GS, 2015, AMINO ACIDS, V47, P1589, DOI 10.1007/s00726-015-2002-5 Zhu YC, 2016, FOOD CHEM, V194, P643, DOI 10.1016/j.foodchem.2015.08.054 NR 27 TC 0 Z9 0 U1 2 U2 8 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 2399-1399 EI 2399-1402 J9 FOOD QUAL SAF-OXFORD JI Food Qual. Saf. PD MAR PY 2019 VL 3 IS 1 BP 52 EP 60 DI 10.1093/fqsafe/fyz001 PG 9 WC Food Science & Technology SC Food Science & Technology GA IC3ZT UT WOS:000470903000007 OA gold DA 2021-10-15 ER PT J AU MacEachern-Balodis, MC Boyd, NS White, SN Cutler, GC AF MacEachern-Balodis, Megan C. Boyd, Nathan S. White, Scott N. Cutler, G. Christopher TI Examination of dogbane beetle (Chrysochus auratus) feeding and phenology on spreading dogbane, and considerations for biological control SO ARTHROPOD-PLANT INTERACTIONS LA English DT Article DE Lowbush blueberry; Spreading dogbane; Chrysochus auratus; Weed biological control; Degree day models ID APOCYNUM-ANDROSAEMIFOLIUM; COLEOPTERA AB We carried out experiments that considered the feeding, phenology, and biocontrol potential of dogbane beetle, Chrysochus auratus, on spreading dogbane, Apocynum androsaemifolium, a native perennial weed in lowbush blueberry (Vaccinium angustifolium). In no-choice host-feeding experiments, adult beetles did not feed upon common milkweed (Asclepias syriaca), periwinkle (Vinca minor), wild raisin (Viburnum cassenoides), and lowbush blueberry, all plants related to spreading dogbane or found around lowbush blueberry fields. In a field experiment, significant decreases in spreading dogbane total and foliar weight occurred at a density of 16 beetles per ramet, but not at lower beetle densities. In our Nova Scotia (NS) field sites, beetles were present for 8-12 weeks, beginning in late June or early July (225-335 growing degree days, GDD). Beetle abundance peaked at 4-7 beetles/m(2) and occurred at 357-577 GDD, which temporally coincides with the incidence of mature spreading dogbane plants in the field. The results suggest that although inundations of C. auratus could cause significant defoliation of spreading dogbane, natural populations of the beetle probably could not satisfactorily suppress development of this weed as a stand-alone control tactic. Conservation and augmentation of C. auratus populations should nonetheless be encouraged in integrated management programs for spreading dogbane. C1 [MacEachern-Balodis, Megan C.; White, Scott N.; Cutler, G. Christopher] Dalhousie Univ, Dept Plant Food & Environm Sci, Fac Agr, Truro, NS, Canada. [Boyd, Nathan S.] Univ Florida, Gulf Coast Res & Educ Ctr, Wimauma, FL USA. RP Cutler, GC (corresponding author), Dalhousie Univ, Dept Plant Food & Environm Sci, Fac Agr, Truro, NS, Canada. EM chris.cutler@dal.ca OI Cutler, Chris/0000-0002-4666-9987; White, Scott/0000-0001-8658-4024 FU NS Department of Agriculture; Wild Blueberry Producers Association of NS [DEV29-053]; Natural Sciences and Engineering Research Council CGS FX Financial support for this project was through a Technology Development grant from the NS Department of Agriculture in partnership with the Wild Blueberry Producers Association of NS (Grant No. DEV29-053), and through a Natural Sciences and Engineering Research Council CGS scholarship to MCM-B. CR Bakr EM, 2005, J APPL ENTOMOL, V129, P173, DOI 10.1111/j.1439-0418.2005.00948.x Barbosa P, 1998, CONSERVATION BIOL CO, P39 Bousquet Y, 1991, PUBLICATION AGR CA E Crozier HL, 2014, J APPL ENTOMOL, V138, P159, DOI 10.1111/jen.12089 DAILEY P J, 1978, Coleopterists Bulletin, V32, P223 Dobler S, 1999, MOL ECOL, V8, P1297, DOI 10.1046/j.1365-294X.1999.00693.x Dobler S, 1998, CHEMOECOLOGY, V8, P111, DOI 10.1007/s000490050015 Environment Canada, 2014, HIST CLIM DAT Jolivet P., 1988, Series Entomologica (Dordrecht), V42, P1 Kulkarni SS, 2015, WEED SCI, V63, P355, DOI 10.1614/WS-D-14-00067.1 Lapointe L, 2001, CAN J PLANT SCI, V81, P471, DOI 10.4141/P00-096 Lundgren JG., 2009, RELATIONSHIPS NATURA McFadyen REC, 1998, ANNU REV ENTOMOL, V43, P369, DOI 10.1146/annurev.ento.43.1.369 Nietschke BS, 2007, CROP PROT, V26, P1444, DOI 10.1016/j.cropro.2006.12.006 NOWLAND JL, 1973, SOILS CUMBERLAND COU Peterson MA, 2005, BIOL J LINN SOC, V84, P273, DOI 10.1111/j.1095-8312.2004.00429.x Peterson MA, 2001, ANN ENTOMOL SOC AM, V94, P1, DOI 10.1603/0013-8746(2001)094[0001:BMAMEF]2.0.CO;2 Sampson D.L., 1990, WEEDS E CANADIAN BLU SAS, 2008, ONLINEDOC 9 2 St Pierre MJ, 2005, ECOL ENTOMOL, V30, P105, DOI 10.1111/j.0307-6946.2005.00659.x Systat Software Inc, 2011, SIGMAPLOT WIND VERS WALLNER WE, 1987, ANNU REV ENTOMOL, V32, P317, DOI 10.1146/annurev.en.32.010187.001533 WAPSHERE AJ, 1989, CROP PROT, V8, P227, DOI 10.1016/0261-2194(89)90009-4 Weiss H. B., 1921, Canadian Entomologist, V53, P146 Williams Charles E., 1992, Banisteria, V1, P8 Wu L, 2013, WEED SCI, V61, P422, DOI 10.1614/WS-D-12-00156.1 Wu L, 2012, WEED TECHNOL, V26, P777, DOI 10.1614/WT-D-11-00113.1 Yarborough DE, 1997, ACTA HORTIC, P293, DOI 10.17660/ActaHortic.1997.446.44 NR 28 TC 0 Z9 0 U1 0 U2 7 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1872-8855 EI 1872-8847 J9 ARTHROPOD-PLANT INTE JI Arthropod-Plant Interact. PD DEC PY 2017 VL 11 IS 6 BP 807 EP 814 DI 10.1007/s11829-017-9535-3 PG 8 WC Ecology; Entomology SC Environmental Sciences & Ecology; Entomology GA FM1DI UT WOS:000414713000007 DA 2021-10-15 ER PT J AU Peng, XM Cao, Y Yang, ZY Zhang, WM Liu, QT Lu, CM AF Peng Xuemei Cao Yan Yang Ziyi Zhang Weiming Liu Qitang Lu Changmei TI DNA SEQUENCE AND RAPD INFORMATION RE-AFFIRMS THE TAXONOMIC RELATIONSHIPS BETWEEN APOCYNUM VENETUM L. AND POACYNUM PICTUM (SCHRENK) BAILL SO PAKISTAN JOURNAL OF BOTANY LA English DT Article ID RBCL GENE; PHYLOGENY; PROSARTES AB Medicinal plants Apocynum venetum L and Poacynum pictum (Schrenk) Baill. having similar efficacy belong to two genera. However, many similarities of morphological characteristics in pollen, seeds, leaves and stems etc. between the two species recommend it under one genus Apocynum L. To address this question, we selected DNA sequences [nuclear rDNA internal transcribed spacer (ITS), trnL intron and trnL-trnF intergenic spacer (IGS) sequence] and RAPD markers to assess the relationship between them, with samples from 10 populations of A. venetum and 5 populations of P. pictum from China. ITS sequences from all samples of A. venetum and P. pictum were same, and only two different sites were found in the trnL intron region and one different site in the trnL-trnF IGS region. The genetic distance between A. venetum and P. pictum calculated upon these regions was much smaller than both the intergeneric and interspecies genetic distances calculated upon the same regions in the vast majority of plants. This reaffirmed the notion that A. venetum and P. pictum had a close genetic relationship. Results from RAPD markers showed that there was high similarity and still stable difference between A. venom and P. pictum. The genetic difference between A. venetum and P. pictum was greater than the differences among populations within species. Our studies recommend that A. venetum and P. pictum were genetic close-related species and they may be treated within one genus. C1 [Peng Xuemei; Cao Yan; Yang Ziyi; Zhang Weiming; Lu Changmei] Nanjing Normal Univ, Coll Life Sci, Jiangsu Key Lab Biodivers & Biotechnol, Nanjing 210046, Jiangsu, Peoples R China. [Zhang Weiming] Nanjing Inst Comprehens Utilizat Wild Plants, Nanjing 210042, Jiangsu, Peoples R China. [Peng Xuemei] Shanxi Datong Univ, Anal & Testing Ctr, Datong 037009, Peoples R China. [Liu Qitang] Xinjiang Gebao Luobuhongma & Luobubaima Col Ltd, Altai 836500, Peoples R China. RP Lu, CM (corresponding author), Nanjing Normal Univ, Coll Life Sci, Jiangsu Key Lab Biodivers & Biotechnol, Nanjing 210046, Jiangsu, Peoples R China. EM luchangmei@njnu.edu.cn FU Chinese "Tenth Five-Year" National Science and Technology Research Fund [2004 BA502B10]; High-tech Research Projects of Jiangsu Province [BG2006318] FX Thanks for the financial assistance of Chinese "Tenth Five-Year" National Science and Technology Research Fund (2004 BA502B10) and High-tech Research Projects of Jiangsu Province (BG2006318). CR [Anonymous], 2005, CHINESE PHARMACOPOEI, P147 Baillon H.E., 1888, B MENS SOC LINN LYON, V1, P757 Chaw SM, 2005, MOL PHYLOGENET EVOL, V37, P214, DOI 10.1016/j.ympev.2005.01.006 Chen X.M., 1991, GUIHAIA, V11, P146 Emshwiller E, 1998, AM J BOT, V85, P975, DOI 10.2307/2446364 Gilani SS, 2002, PAKISTAN J BOT, V34, P257 Hageskal G, 2006, APPL ENVIRON MICROB, V72, P7586, DOI 10.1128/AEM.01628-06 Hamrick JL, 1989, PLANT POPULATION GEN, P43 Hook f., 1873, ANN MISSOURI BOT GAR, P327 Jan HU, 2011, J MED PLANTS RES, V5, P823 Jeanmougin F, 1998, TRENDS BIOCHEM SCI, V23, P403, DOI 10.1016/S0968-0004(98)01285-7 Jiang Y., 1977, FLORA CHINA, V63, P157 Kamata K., 2008, NAT MED, V62, P60 Kojoma M, 2002, PLANTA MED, V68, P94, DOI 10.1055/s-2002-20051 Kumar S, 2004, BRIEF BIOINFORM, V5, P150, DOI 10.1093/bib/5.2.150 Kumar S. A., 2008, International Journal of Integrative Biology, V3, P150 [刘起棠 Liu Qitang], 2009, [中国野生植物资源, Chinese Wild Plant Resources], V28, P13 Ma J., 2000, ACTA BOT BOREALI-OCC, V20, P476 Mahmood T, 2010, PAK J BOT, V42, P1163 Marzouk RI, 2011, PAK J BOT, V43, P2289 NILSSON S, 1993, GRANA, P3, DOI 10.1080/00173139309428973 Perez-Barros P, 2008, BIOL J LINN SOC, V94, P421, DOI 10.1111/j.1095-8312.2008.00987.x Pobedmova E.G., 1952, FLORA USSR, V18, P660 Qu Lianghu, 1999, Acta Scientiarum Naturalium Universitatis Sunyatseni, V38, P1 Ransom CV, 1998, WEED SCI, V46, P71, DOI 10.1017/S0043174500090196 Ransom CV, 1998, WEED SCI, V46, P408, DOI 10.1017/S0043174500090810 Rohlf FJ, 1993, NTSYS PC NUMERICAL T Roth A, 1998, J CLIN MICROBIOL, V36, P139, DOI 10.1128/JCM.36.1.139-147.1998 Schrenk S.L., 1844, B ACAD IMP SCI 2 PM, V2, P115 Shinwari ZK, 2010, PAK J BOT, V42, P111 Shinwari ZK, 2002, PAKISTAN J BOT, V34, P191 SHINWARI ZK, 1994, TAXON, V43, P353, DOI 10.2307/1222713 Shinwari ZK, 1995, PAKISTAN J BOT, V27, P361 Shinwari ZK, 2000, PAKISTAN J BOT, V32, P7 SHINWARI ZK, 1994, PLANT SYST EVOL, V192, P263, DOI 10.1007/BF00986256 Szczecinska M, 2006, ANN BOT FENN, V43, P379 TABERLET P, 1991, PLANT MOL BIOL, V17, P1105, DOI 10.1007/BF00037152 Tanaka T., 1993, SHOYAKUGAKU ZASSHI, V47, P388 White T.J., 1990, PCR PROTOCOLS GUIDE, P315, DOI DOI 10.1016/B978-0-12-372180-8.50042-1 Woodson R.E., 1930, ANN MISSOURI BOT GAR, V17, P167 Woodson R. E., 1938, N AM FLORA, V29, P103 Wu Z., 1995, FLORA CHINA, V16, P181 Yeh F. C., 1999, POPGENE VERSION 1 31 Zhang Wei-ming, 2007, Xibei Zhiwu Xuebao, V27, P931 苏红文, 1997, 西北植物学报, V17, P348 NR 45 TC 0 Z9 0 U1 0 U2 4 PU PAKISTAN BOTANICAL SOC PI KARACHI PA DEPT OF BOTANY UNIV KARACHI, 32 KARACHI, PAKISTAN SN 0556-3321 EI 2070-3368 J9 PAK J BOT JI Pak. J. Bot. PD AUG PY 2012 VL 44 IS 4 BP 1261 EP 1266 PG 6 WC Plant Sciences SC Plant Sciences GA 013OJ UT WOS:000309314400014 DA 2021-10-15 ER PT J AU Li, SN Liu, CM Zhao, T Hu, Y Hu, YM AF Li, Sainan Liu, Chunming Zhao, Tong Hu, Yang Hu, Yunmei TI APPLICATION OF HPLC COUPLED WITH HPCCC TO SEPARATION OF MAJOR CHEMICAL COMPONENTS WITH A WIDE RANGE OF POLARITIES FROM THE FLOWERS OF APOCYNUM VENETUM SO JOURNAL OF LIQUID CHROMATOGRAPHY & RELATED TECHNOLOGIES LA English DT Article DE Apocynum venetum; counter-current chromatography; flavonoids; flower; HPLC/HPCCC; wide range of polarities ID COUNTER-CURRENT CHROMATOGRAPHY; COMPREHENSIVE SEPARATION; LEAVES; L.; CONSTITUENTS; IDENTIFICATION; EXTRACT; RATS AB A novel separation method of HPLC coupled with HPCCC was established and applied to the isolation of bioactive components from the extract of Apocynum venetum flowers. Two sets of solvent systems, ethyl acetate-acetonitrile-water-acetic acid (5:0:5:0.05, v:v:v:v) and ethyl acetate-acetonitrile-water-acetic acid (6:3:5:0.05, v:v:v:v) were used as binary solvent systems of HPCCC for the one-step elution. The CCC column was first filled with the upper phase of ethyl acetate-acetonitrile-water-acetic acid (5:0:5:0.05, v:v:v:v) followed by elution with its lower phase to separate the hydrophilic compounds. And then the lower phase of ethyl acetate-acetonitrile-water-acetic acid (5:0:5:0.05, v:v:v:v) (A) and the lower phase of ethyl acetate-acetonitrile-water-acetic acid (6:3:5:0.05, v:v:v:v) (B) were used as the mobile phases to perform a binary gradient elution as follows: 0-60 min, 90% A and 10% B; 60-180 min, from 90% A and 10% B to 0% A and 100% (B), six compounds were eluted continuously. Via HPLC-HPCCC, nine compounds with a wide range of polarities were separated in one-step separation. The purities of the compounds were analyzed by HPLC, and the structures were identified by HPLC-MS, H-1 NMR, and C-13 NMR. C1 [Li, Sainan; Liu, Chunming; Hu, Yang; Hu, Yunmei] Changchun Normal Univ, Cent Lab, Changchun 130032, Peoples R China. [Zhao, Tong] Jilin Univ, China Japan Union Hosp, Dept Ultrason Iconog, Changchun 130023, Peoples R China. RP Liu, CM (corresponding author), Changchun Normal Univ, Cent Lab, 677 N Changji Rd, Changchun 130032, Peoples R China. EM chunmingliu2000@yahoo.com.cn FU National Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC) [31170326, 30970299]; National Natural Science Foundation of Jilin Province [20090936, 20110928] FX This project was supported by the National Natural Science Foundation of China (No. 31170326, 30970299) and the National Natural Science Foundation of Jilin Province (No. 20090936, 20110928). CR Butterweck V, 2003, PHARMACOL BIOCHEM BE, V75, P557, DOI 10.1016/S0091-3057(03)00118-7 Butterweck V, 2001, BIOL PHARM BULL, V24, P848, DOI 10.1248/bpb.24.848 Chen L., 2005, J CHIN MAT MED, V17, P1340 Grundmann O, 2007, J ETHNOPHARMACOL, V110, P406, DOI 10.1016/j.jep.2006.09.035 Hawas UW, 2008, NAT PROD RES, V22, P1540, DOI 10.1080/14786410600898987 Ito Y, 2005, J CHROMATOGR A, V1065, P145, DOI 10.1016/j.chroma.2004.12.044 Kim DW, 2000, J ETHNOPHARMACOL, V72, P53, DOI 10.1016/S0378-8741(00)00197-5 QIU Y, 2003, J CHIN PHARM SCI, V12, P1 Skalicka-Wozniak K, 2009, J CHROMATOGR A, V1216, P5669, DOI 10.1016/j.chroma.2009.05.077 Svehlikova V, 2004, PHYTOCHEMISTRY, V65, P2323, DOI 10.1016/j.phytochem.2004.07.011 Tagawa C, 2004, YAKUGAKU ZASSHI, V124, P851, DOI 10.1248/yakushi.124.851 Wang KJ, 2007, FOOD CHEM, V101, P365, DOI 10.1016/j.foodchem.2006.01.044 Yang Y, 2010, PHYTOCHEM ANALYSIS, V21, P205, DOI 10.1002/pca.1169 Zhang YC, 2010, J CHROMATOGR B, V878, P3149, DOI 10.1016/j.jchromb.2010.09.027 Zhang YC, 2010, J SEP SCI, V33, P2743, DOI 10.1002/jssc.201000308 NR 15 TC 0 Z9 0 U1 1 U2 20 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 325 CHESTNUT ST, SUITE 800, PHILADELPHIA, PA 19106 USA SN 1082-6076 J9 J LIQ CHROMATOGR R T JI J. Liq. Chromatogr. Relat. Technol. PY 2012 VL 35 IS 18 BP 2545 EP 2557 DI 10.1080/10826076.2011.636473 PG 13 WC Biochemical Research Methods; Chemistry, Analytical SC Biochemistry & Molecular Biology; Chemistry GA 032RY UT WOS:000310738000004 DA 2021-10-15 ER PT J AU Zheng, LJ Du, B AF Zheng Laijiu Du Bing TI Isolation, selection and characteristics of strain for enzymatic degumming on Apocynum vernetum L. SO TEKSTIL LA English DT Article DE Apocynum vernetum L.; pectinase; enzymatic degumming; Acinetobacter junii; Bacillus subtilis; selection and sign AB The plant Apocynum vernetum L. retted in Chaidamu basin of Qinghai province as the test sample. Domesticated and isolated are two highly productive pectinase strain suitable for degumming on Apocynum vernetum L. and following that, one strains is determined to be a new Acinetobacter junii and another is Bacillus subtilis, both of which are produced by pectinase through identification on the basis of physiological and biochemical index as well as the shape index and I 6S rDNA strain identification. The hydrolysis circle experiment finds that the H/C value for the former (H/C is the rations of ring diameter to that of bacterial colony) is 5, and that for the latter is 3; the test of enzyme activity tells that Acinetobacter junii will be at the peak (103.2 IU/ml) at 1 1 h and Bacillus subtilis at 9h at the same temperature of 37 degrees C, moreover, the enzyme activity of the former is 12.5% higher than that of the latter. C1 [Zheng Laijiu; Du Bing] Dalian Ploytech Univ, Text Engn Key Lab, Dalian, Peoples R China. RP Zheng, LJ (corresponding author), Dalian Ploytech Univ, Text Engn Key Lab, Dalian, Peoples R China. EM fztrxw@dlpu.edu.cn CR BAO MD, 2002, SHANDONG AGR SCI, P11 NICOLE HC, 1992, J BACTERIOL, P7807 RICHARD TZK, 1985, APPL ENVIRON MICROB, P714 SHEN P, 1999, MICROBIOLOGY EXPT, V116, P120 WANG XM, 2007, SCI TECHNOLOGY FOOD, P227 XU H, 2006, TEXT RES J, P102 ZHANG F, 2004, J NW AGR U, P134 ZHENG LJ, 2007, J DONGHUA U, P404 NR 8 TC 0 Z9 0 U1 0 U2 3 PU ASSOC TEXTILE ENGINEERS TECHNICIANS CROATIA PI ZAGREB PA NOVAKOVA 8-11, POB 829, HR-41001 ZAGREB, CROATIA SN 0492-5882 J9 TEKSTIL JI Tekstil PD JAN-FEB PY 2010 VL 59 IS 1-2 BP 1 EP 5 PG 5 WC Materials Science, Textiles SC Materials Science GA 632LI UT WOS:000280425700001 DA 2021-10-15 ER EF