Science Advances

Supplementary Materials for

High-throughput genetic engineering of nonmodel and undomesticated bacteria via iterative site-specific genome integration

Joshua R. Elmore et al.

Corresponding author: Robert G. Egbert, robert.egbert@pnnl.gov; Adam M. Guss, gussam@ornl.gov.

Sci. Adv. **9**, eade1285 (2023) DOI: 10.1126/sciadv.ade1285

The PDF file includes:

Figs. S1 to S13 Tables S1 to S10 Legend for supplementary data D1 Legend for figure source data Legends for supplementary files F1 to F5 Legend for supplementary file P1 Legends for supplementary files T1 and T2 References

Other Supplementary Material for this manuscript includes the following:

Supplementary Data D1 Figure Source Data Supplementary Files F1 to F5 Supplementary File P1 Supplementary Files T1 and T2

Supplemental Materials

Fig. S1. SAGE cycle workflow and timeline. Example SAGE cycle workflow for an organism that forms visible colonies overnight. The same steps are taken for slower growing organisms, but with extended time for cultivation. *Competent cell preparation methods will vary from organism to organism.

Fig. S2. Plasmid maps of replicating plasmids used in this study. Both (A) pJE354 and (B) pEYF2K contain the widely utilized broad host-range pBBR1 origin that enables autonomous replication in many Gram-negative bacterial hosts. (A) pJE354 is a derivative of pBTL-2(*80*) that contains a constitutive P_{tac} :mNeonGreen fluorescent protein reporter cassette, as well as the kanamycin resistance selection marker *aph-I*. (B) pEYF2K is a derivative of pBBR-MCS-2, contains a different kanamycin resistance marker than pJE354 (*npt-II* – of note, this is the same marker used in all KanR SAGE plasmids), a constitutive P_{J23150} :mKate2 fluorescent reporter cassette, an origin of transfer that enables conjugative transfer with the RK2/RP4 mobilization systems, and a lacZ α fragment for blue-white screening when cloning.

Fig. S4. Development of a conditionally-replicating plasmid for broad use in Pseudomonads. (A) Graphic diagram of the temperature-sensitive pGW26 plasmid and an initial assay for determining its sensitivity to replication at 34 °C in *Pseudomonas fluorescens* SBW25. pGW26 contains a pUC origin for high copy replication in *E. coli*, an *aac* gene for selection with apramycin in *E. coli* and Pseudomonads, and a temperature-sensitive Pseudomonad-specific origin of replication mSF^{ts1}. (B) Graphic diagram of a plasmid stability assay to determine the stability of pGW26 under growth without selection at temperatures that are 'permissive' and 'non-permissive' for plasmid replication. SBW25 containing pGW26 was cultivated with apramycin selection at 25 °C, and subsequently subcultured in selective or non-selective liquid medium at three temperatures. Each resulting culture was evaluated for total culture viability (cell viability with no apramycin) or plasmid maintenance (cell viability with apramycin) at each of the three temperatures. No growth was observed in subculture in selective medium at 34 °C so it is not included in the subsequent plasmid maintenance assay. (C) Charts displaying results of plasmid stability assay. Gray bars indicate viable cells per mL in each culture, and colored bars indicate viable cells with apramycin selection (i.e., cells hosting plasmid). Dots represent individual samples. Error bars represent the two-sided standard deviation in four biological replicates.

Fig. S5. The SAGE toolkit plasmid set. We have developed a series of modular plasmids that can either be used directly to perform SAGE or that can be readily modified to address host-specific needs. Shown above are maps of these plasmids with the exception of poly-attP plasmids other than (A) pJE1818 (e.g., pGW60 in Fig 2c). This toolkit includes a modular collection of single attP 'target' plasmids, each which contains either the nptll (kanamycin resistance) marker (B) alone (pJH204-212) or (C) in combination with sacB for sucrose counter-selection (pJE1828-1836). Each component of the attP plasmids (e.g., selection marker, attP site, E. coli origin, cargo insertion site) is designed to be modular and is flanked by unique restriction sites to allow easy replacement of components, or for addition of genetic elements (e.g., oriT sequences for conjugation). The 'cargo' region in each plasmid is flanked by a pair of double rho-independent terminators (indicated by 'T' symbols) and contains several unique restriction sites - including a pair of BbsI recognition sites that are compatible with Golden Gate cloning. Additional terminator sequences insulate neighboring genomic DNA from plasmid cargo expression. Each attP plasmid contains a pair of Φ C31 attP / attB sites (TT att site variants) for plasmid backbone excision. (D) Plasmid pJE990 is a related plasmid that is designed to be used as a fluorescent reporter plasmid, with sites for modular integration and replacement of promoter (multiple), ribosomal binding site (Ndel/AfIII), terminator sequences (Xbal/NotI), or reporter gene with any gene of interest (Ndel/Xbal)(68). Recombinase expression plasmids are available as both (E) suicide (non-replicating) and (F) mSF^{ts1}-based (temperature-sensitive Pseudomonas origin) plasmids. In addition to the reporter plasmids generated in this study, additional pJE990-based reporter plasmids containing the commonly used tac and T7 promoter (variants)(67), or the far-red fluorescent protein mKate2 are also currently available (31, 68). (G-I) Tables of plasmids described above. We anticipate that these tools and future expansions of the SAGE genetic toolkit will be broadly useful for genetic manipulation across the entire bacterial domain.

Fig. S6. PCR validation of *P. fluorescens* strains generated by performing 3 consecutive SAGE cycles. (A) Map of the poly-*attB* cassette in *P. fluorescens* JE5117 – a derivative of *P. fluorescens* JE4621 generated by performing two cycles of plasmid integration and backbone excision with plasmids pJE1286 (mNeonGreen) and pJE1992 (mKate2). The binding location of primers for screening integration into each *attB* site are indicated by colored arrows and bind in 40 nt randomly generated DNA sequences that intersperse each of the *attB* sites. (B) Gel electrophoresis analysis of PCR products generated by amplification of 9 *attB* sites in both JE5117 and 7 of its derivatives. Each derivative was generated by integration of an additional *attP* target plasmid at one of the remaining unused *attB* sites in JE5117. Primer sets 1F/1R and 6F/6R were used to screen for the mNeonGreen and mKate2 expression constructs found in the JE5117 chromosome at the Bxb1 and R4 *attB* sites, respectively. The sizes (kb) of select bands from the NEB 1 kb DNA ladder are indicated next to each image.

mNeonGreen internal primer (2)

Fig. S7. Transient expression of φC31 integrase with pGW30 excises the *attP*-plasmid backbone and enables **selection marker recycling.** (A-B) Colony PCR validation of plasmid backbone excision in sucrose-resistant (A) *P. fluorescens* JE4621 and (B) *R. palustris* JE4632-based strains following incubation on sucrose-containing medium. Primer binding sites indicated in Fig 3. Expected band sizes are as follows: JE4866 (4741 bp), JE4866 with backbone excision (1152 bp), JE4855 with backbone excision (1375 bp). Control PCR with JE4855 parent strain can be observed in Figure 3C, which was performed concurrently with these colony PCR reactions.

Fig. S8. SAGE enables stable expression of heterologous genes in the absence of selection. Flow cytometry measurements of fluorescence in populations of *R. palustris* CGA009 containing either no heterologous expression construct (Parent Strain) or a non-replicating mNeonGreen expression vector that has been chromosomally integrated at the indicated *attB* site by the corresponding recombinase. Starter cultures except for the Parent Strain were cultivated in medium containing 200 µg/mL kanamycin sulfate. Passages were cultivated without antibiotic, each inoculated with a 128-fold dilution of its precursor culture (Starter -> Passage 1 -> Passage 2) to enable 7 generations of exponential growth per passage. The x-axis indicates the relative fluorescence of each cell. The y-axis represents the abundance of cells in the population with a given relative fluorescence value (RFU).

Fig. S9. Stable maintenance of multi-cycle SAGE constructs containing two backbone excision sites. Flow cytometry measurements of mNeonGreen (x-axis) and mKate2 (y-axis) fluorescence in populations of *P. fluorescens* SBW25 containing either no heterologous expression construct (JE4621) or a dual-fluorescent mNeonGreen and mKate2 expression strain (JE5117) generated by successive SAGE cycles using recombinases Bxb1 and R4, respectively. JE5117 fluorescence shown at passage 1 (10 generations) and passage 10 (100 generations). Full multi-passage fluorescence results for JE5117 shown in Table S4.

Fig. S10. Flow cytometry evaluation of promoter strength distribution for pLibrary replicating in *E. coli* and for the five SAGE integrated promoter libraries. Background autofluorescence of wild-type *R. palustris* (CGA009), *P. fluorescens* (SBW25), and *R. jostii* (RHA1) are shown for reference. The y-axis represents the abundance of cells in the population with a given relative fluorescence value (RFU).

Consistent Promoters

Pseudomonas frederiksbergensis TBS10

ցին Աներին առնունիստին հանձին մինի նույնունուն է ինչդիկիս, որ է Աներայի

Promoters (N = 179 of 241 with sufficient data for analysis)

Fig. S11. Consistent promoters. Charts displaying the mean relative transcriptional activity for consistent (5'UTR and condition insensitive) promoters in each SAGE bacterial host. Error bars represent two-sided standard deviation of between 36-80 (SBW25), 27-60 (TBS10, Gpo1, RHA1), or 18-40 (CGA009) samples (see source data file and Data 1 for exact numbers of replicates for each promoter).

Fig. S12. Evaluating consistency between microtiter plate reader experiments and RTP for *Pseudomonas fluorescens* SBW25. (A) Promoter performance for a subset of pLibrary promoters in microtiter plate growth assays during growth from various nitrogen sources. Error bars represent two-sided standard deviations in three replicates. Relative promoter strength is calculated by comparing mean RFU/OD600 values across all nitrogen sources, normalized to JEb2. (B) Correlation between relative expression levels determined by RTP (y-axis) and fluorescent protein reporter assay (x-axis) for the set of promoters used in panel a. Linear equation and coefficient of determination (box inset) as determined by Pearson correlation.

Fig. S13. Scatter plots comparing relative transcriptional activity of promoters between organisms. Scatter plot of data used to perform Pearson correlation and the linear equation and coefficient of determination generated using Pearson correlation. All charts generated using data set that includes all promoters regardless of their consistency. Data used to generate this figure is located in data file D1.

Table S1. Strains and Plasmids used in this study.

Name	Relevant Genotype	Source
Strains		
NEB 5-alpha F'lq	Escherichia coli F′ proA⁺B⁺ laclª Δ(lacZ)M15 zzf::Tn10 (Tet [®]) / fhuA2Δ(argF-lacZ)U169 phoA glnV44 Φ80Δ(lacZ)M15 gyrA96 recA1 relA1 endA1 thi-1 hsdR17	New England Biolabs
	Escherichia coli F ⁻ mcrA Δ(mrr-hsdRMS-mcrBC)	
Epi400	Φ80dlacZΔM15 ΔlacX74 recA1 endA1 araD139 Δ(ara, leu)7697 galU galK λ ⁻ rpsL (Str ^R) nupG trfA tonA pcnB4 dhfr	Lucigen
QP15	Escherichia coli proA+B+ laclq Δ(lacZ)M15 zzf::Tn10 (TetR) / mcrA Δ(mrr-hsdRMS-mcrBC) Φ80dlacZΔM15 ΔlacX74 recA1 endA1 araD139 Δ(ara, leu)7697 galU galK λ- rpsL (StrR) nupG trfA tonA pcnB4 dhfr	(68)
SBW25	Pseudomonas fluorescens SBW25	(50)
CGA009	Rhodopseudomonas palustris CGA009	(51)
TBS10	Pseudomonas frederiksbergensis TBS10	this work
Gpo1	Pseudomonas putida (oleovorans) Gpo1	(52)
RHA1	Rhodococcus jostii RHA1	(53)
JE4621	P. fluorescens SBW25 ampC:10x poly-attB	this work
JE4632	R. palustris CGA009 ΔRPA1300:10x poly-attB	this work
JE5029	<i>P. putida</i> Gpo1 att ^{Tn5} : <i>npt1</i> /:10x poly-attB:att ^{Tn5}	this work
JE5035	<i>P. putida</i> Gpo1 <i>att</i> ^{Tn5} :10x poly- <i>attB</i> : <i>att</i> ^{Tn5}	this work
JE5031	P. frederiksbergensis TBS10 att^{Tn5} :nptll:10x poly- $attB$: att^{Tn5}	this work
JE5041	P. frederiksbergensis TBS10 att^{Tn5} :10x poly- $attB:att^{Tn5}$	this work
JE4689	P. fluorescens JE4621 attL ^{Bxb1} :pGW60: attR ^{Bxb1}	this work
JE4866	<i>P. fluorescens</i> JE4621 <i>attL</i> ^{Bxb1} :pJE1818: <i>attR</i> ^{Bxb1}	this work
JE4885	<i>R. palustris</i> JE4632 <i>attL</i> ^{Bxb1} :pJE1818: <i>attR</i> ^{Bxb1}	this work
JE4763	<i>P. fluorescens</i> JE4621 <i>attL</i> ^{Bxb1} :pJE1045: <i>attR</i> ^{Bxb1}	this work
JE4768	<i>P. fluorescens</i> JE4621 <i>attL</i> ^{Bxb1} :pJE1281: <i>attR</i> ^{Bxb1}	this work
JE4770	<i>P. fluorescens</i> JE4621 <i>attL</i> ^{Bxb1} :pJE1283: <i>attR</i> ^{Bxb1}	this work
JE4771	P. fluorescens JE4621 attL ^{Bxb1} :pJE1284:attR ^{Bxb1}	this work
JE4772	<i>P. fluorescens</i> JE4621 <i>attL</i> ^{Bxb1} :pJE1285: <i>attR</i> ^{Bxb1}	this work
JE4773	P. fluorescens JE4621 attL ^{Bxb1} :pJE1286:attR ^{Bxb1}	this work
JE5117	P. fluorescens JE4621 attL ^{Bxb1} :P _{JEa3} :mNeonGreen:attR ^{Bxb1} attL ^{R4} :P _{tac} :mKate2:attR ^{R4}	this work
JE4670	<i>E. coli</i> QP15 + pLibrary	this work
AG5879	R. jostii RHA1_RS20555::10x poly-attB	this work

Plasmids

pK18sB	pUC origin, nptII, sacB	(81)
pJQ200SK	p15a origin, <i>sacB</i> , gentR, <i>mob</i>	(61)
pJE354	pBBR1 origin, aphl, Ptac:mNeonGreen	this work
pEYF2K	pBBR1 origin, nptII, mKate2, mob, lacZalpha	this work
pJE1610	pJQ200SK ΔRPA1300:: <i>10x poly-attB</i>	this work

pJE1700	pK18sB ampC(PFLU3467):10x poly-attB	this work
pK18mobsacB	pUC origin, <i>nptII, sacB, oriT</i>	(30)
pGW26	pUC origin, mSF ^{ts1} , aac (AprR)	this work
pGW13	pGW26 P _{tac} :Bxb1 integrase	this work
pGW14	pGW26 P _{tac} : <i>dBT1 integrase</i>	this work
pGW16	pGW26 P _{tac} : ¢C1 integrase	this work
pGW17	pGW26 P _{tac} :A118 integrase	this work
pGW18	pGW26 P _{tac} :MR11 integrase	this work
pGW20	pGW26 P _{tac} :\$370 integrase	this work
pGW21	pGW26 P _{tac} :RV integrase	this work
pGW22	pGW26 P _{tac} :TG1 integrase	this work
pGW23	pGW26 Ptac:R4 integrase	this work
pGW24	pGW26 Ptac: BL3 integrase	this work
pGW30	pGW26 P _{tac} : ¢C31 integrase	this work
pGW31	pGW26 P _{tac} : <i>Bxb1 integrase</i> ΔmSF ^{ts1}	this work
pGW32	pGW26 P_{tac} :RV integrase ΔmSF^{ts1}	this work
pGW33	pGW26 Ptac: $\phi BT1$ integrase ΔmSF^{ts1}	this work
pGW34	pGW26 P_{tac} : ϕ C1 integrase Δ mSF ^{ts1}	this work
pGW35	pGW26 P_{tac} :A118 integrase ΔmSF^{ts1}	this work
pGW36	pGW26 P_{tac} :MR11 integrase ΔmSF^{ts1}	this work
pGW37	pGW26 P_{tac} : φ 370 <i>integrase</i> Δ mSF ^{ts1}	this work
pGW38	pGW26 P_{tac} :TG1 integrase ΔmSF^{ts1}	this work
pGW39	pGW26 P_{tac} :R4 integrase ΔmSF^{ts1}	this work
pGW40	pGW26 P_{tac} : <i>BL3 integrase</i> ΔmSF^{ts1}	this work
pJE1817	pGW26 Ptac: ϕ C31 integrase Δ mSF ^{ts1}	this work
pJE990	pUC origin, nptII, mNeonGreen (promoterless), Bxb1 attP	(31)
pLibrary	pJE990 Plibrary:mNeonGreen	this work
pGW60	pJE990 P _{tac-mod} :mNeonGreen, 10x poly-attP cassette	this work
pJH204	pUC origin, <i>nptII</i> , Bxb1 <i>attP</i>	this work
pJH205	pUC origin, nptII, RV attP	this work
pJH206	pUC origin, <i>nptII</i> , φ370 <i>attP</i>	this work
pJH207	pUC origin, nptII, R4 attP	this work
pJH208	pUC origin, nptII, фВТ1 attP	this work
pJH209	pUC origin, nptII, MR11 attP	this work
pJH210	pUC origin, nptII, TG1 attP	this work
pJH211	pUC origin, nptII, BL3 attP	this work
pJH212	pUC origin, nptII, A118 attP	this work
pJE1828	pUC origin, nptII-sacB, Bxb1 attP	this work
pJE1829	pUC origin, nptII-sacB, RV attP	this work
pJE1830	pUC origin, <i>nptII-sacB</i> , φ370 <i>attP</i>	this work
pJE1831	pUC origin, <i>nptII-sacB</i> , R4 <i>attP</i>	this work
pJE1832	pUC origin, <i>nptll-sacB</i> , фВТ1 <i>attP</i>	this work
pJE1833	pUC origin, nptII-sacB, MR11 attP	this work

pJE1834	pUC origin, nptIl-sacB, TG1 attP	this work
pJE1835	pUC origin, nptIl-sacB, BL3 attP	this work
pJE1836	pUC origin, nptIl-sacB, A118 attP	this work
pJE1045	pJE990 Ptac-mod:mNeonGreen	(68)
pJE1281	pJE990 P _{JEa1} :mNeonGreen	this work
pJE1283	pJE990 P _{JEb2} :mNeonGreen	this work
pJE1284	pJE990 PJEa2:mNeonGreen	this work
pJE1285	pJE990 P _{JEc3} :mNeonGreen	this work
pJE1286	pJE990 P _{JEa3} :mNeonGreen	this work
pJE1818	pJE990 Ptac-mod:mNeonGreen, 10x poly-attP cassette, sacB	this work
pGW28	pUC origin, nptII, 10x poly-attP cassette	this work
pGW63	pUC origin, aacC1 (gentR), 10x poly-attP cassette	this work
	pUC origin, aacC1 (gentR), 10x poly-attP cassette	
pJE1866	P _{JEa3} :mNeonGreen	this work
pJE1854	pTwist_Amp_HC with EZ-Tn5- <i>aac-attB</i> cassette	this work
pJE1855	pTwist_Amp_HC with EZ-Tn5- <i>nptll-attB</i> cassette	this work
pQP425	pK18mobsacB RHA1_RS20555::10x poly-attB	this work
pJE1992	pJH207 P _{tac} :mKate2	this work

Table S2	Phage integrase	attachment	(att)	socioncos
Table SZ.	Phage integrase	attachment	(au)	sequences.

Table S2. F	Phage integrase attachment (att) sequences.
Integras e	Attachment sites
phiC31	
attB-TT	tgcgggtgccagggcgtgccc <mark>tt</mark> gggctccccgggcgcgtactcc
attP-TT	gtgccccaactggggtaacct <mark>tt</mark> gagttctctcagttggggg
attB-CA	tgegggtgccagggcgtgcccc <mark>ca</mark> gggctccccgggcgcgtactcc
attP-CA	gtgccccaactggggtaacct <u>ca</u> gagttctctcagttggggg
phiBT1	
attB	gtccttgaccaggtttttgacgaaagtgatccagatgatccagctccacaccccgaacgc
attP	ggtgctgggttgttgtctctggacagtgatccatgggaaactactcagcaccaatgttcc
R4	
attB	gcgcccaagttgcccatgaccatgccgaagcagtggtagaagggcaccggcagacac
attP	aggcatgttccccaaagcgataccacttgaagcagtggtactgcttgtgggtacactctgcgggtgatga
BxB1	
attB	tcggccggcttgtcgacgacggcggtctccgtcgggatcatccgggc
attP	gtcgtggtttgtctggtcaaccaccgcggtctcagtggtgtacggtacaaaccccgac
RV	
attB	tctcgtggtggtaggaaggtgttggtgggggttggccgtggtcgaggtgggggggg
attP	gcacaggtgtagtgtatctcacaggtccacggttggccgtggactgctgaagaacattccacgccagga
TG1	
attB	gatcagctccgcgggcaagaccttctccttcacggggtggaaggtc
attP	tcaaccccgttccagcccaacagtgttagtctttgctcttacccagttgggcgggatagcctgcccg
phiC1	
attB	atatttaaccgcttcccgaaaaatttcgcgtggatgagcaatactttgattcagtgaacctttgaaaaatcgttttctgttggataa
attP	attaaatataaattttagtacatagtgttatatacactaataaacaaaatcatatacctaaaatattacatt
MR11	
attB	$a {\tt caggtcaacacatcgcagttatcgaacaatcttcgaaaatgtatggaggcacttgtatcaatataggatgtataccttcgaagacacttgtacatgatggatg$
attP	caaaataaaaaacattgatttttattaacttcttttgtgcggaactacgaacagttcattaatacgaagtgtacaaacttccatacaaaaataaccacgaagtgtacaaacttccatacaaaaataaccacacaattaagacgtggtttcta
phi370	
attB	tgtaaaggagactgataatggcatgtacaactatactcgtcggtaaaaaggca
attP	taaaaaaatacagcgtttttcatgtacaactatactagttgtagtgcctaaa
A118	
attB	tgtaactttttcggatcaagctatgaaggacgcaaagagggaactaaacacttaatt
attP	ttgtttagttcctcgttttctctcgttggaagaagaagaagaagaaacgagaaactaaaatta
BL3	
attB	caacctgttgacatgtttccacagacaactcacgtggaggtagtcacggcttttacgttagtt
attP	gagaatactgttgaacaatgaaaaactaggcatgtagaagttgtttgt

Table S3. Oligos used in study.

Oligo Name Promoter library amplificati	Sequence (5'-3') ion	Purpose
oPNL824- prom_lib_fwd2	aacgtaccgagGAAGACaaGTCTgactgctgcgagtc	Forward primer for amplification of promoter library from twist biosciences for cloning into pJE990 to construct pLibrary
oPNL825-prom_lib_rev2	ttcttgcttGAAGACcataagCTTAcGAGACCggaccac	Reverse primer for amplification of promoter library from twist biosciences for cloning into pJE990 to construct pLibrary
Illumina sequencing library	prep	
oPNL887-mNeon-RT	TGCAGTTCATGCGTAGCTGGCAAC	Reverse transcription from mNeonGreen
oPNL888-3'-adaptor	/5Phos/ NNATGTACTCTGCGTTGATACCACTGCTT /3SpC3/	Adaptor for 3'-cDNA end ligation
oPNL889-DNA-amp1-F	GAGTTCAGACGTGTGCTCTTCCGATCTGTCTGACTGCTGCGAGTC	Fwd Primer for 1st amplification of DNA
oPNL890-RNA-amp1-F	GAGTTCAGACGTGTGCTCTTCCGATCTAAGCAGTGGTATCAACGC	Fwd Primer for 1st amplification of RNA
oPNL891-Amp1-R-N3	CCTACACGACGCTCTTCCGATCT NNN CCTGTGTGGAGTTAATCTTAAGCT	Rev primer for 1st amplification of DNA and RNA
oPNL892-Amp1-R-N4	CCTACACGACGCTCTTCCGATCT NNNN CCTGTGTGGAGTTAATCTTAAGCT	Rev primer for 1st amplification of DNA and RNA
oPNL893-Amp1-R-N5	CCTACACGACGCTCTTCCGATCT NNNNN CCTGTGTGGAGTTAATCTTAAGCT	Rev primer for 1st amplification of DNA and RNA
oPNL894-Amp1-R-N6	CCTACACGACGCTCTTCCGATCT NNNNNN CCTGTGTGGAGTTAATCTTAAGCT	Rev primer for 1st amplification of DNA and RNA
oPNL895-Amp2-F-IT058	CAAGCAGAAGACGGCATACGAGAT ACAAAC GTGACTGGAGTTCAGACGTGTGCTCTTC	Fwd primer for 2nd amplification (P7)
oPNL896-Amp2-F-IT008	CAAGCAGAAGACGGCATACGAGAT ACTTGA GTGACTGGAGTTCAGACGTGTGCTCTTC	Fwd primer for 2nd amplification (P7)
oPNL897-Amp2-F-IT030	CAAGCAGAAGACGGCATACGAGAT CACCGG GTGACTGGAGTTCAGACGTGTGCTCTTC	Fwd primer for 2nd amplification (P7)
oPNL898-Amp2-F-IT020	CAAGCAGAAGACGGCATACGAGAT GTGGCC GTGACTGGAGTTCAGACGTGTGCTCTTC	Fwd primer for 2nd amplification (P7)
oPNL899-Amp2-F-IT091	CAAGCAGAAGACGGCATACGAGAT TGCCAT GTGACTGGAGTTCAGACGTGTGCTCTTC	Fwd primer for 2nd amplification (P7)
oPNL926-Amp2-F-IT010	CAAGCAGAAGACGGCATACGAGAT TAGCTT GTGACTGGAGTTCAGACGTGTGCTCTTC	Fwd primer for 2nd amplification (P7)
oPNL927-Amp2-F-IT076	CAAGCAGAAGACGGCATACGAGAT CGAGAA GTGACTGGAGTTCAGACGTGTGCTCTTC	Fwd primer for 2nd amplification (P7)
oPNL928-Amp2-F-IT021	CAAGCAGAAGACGGCATACGAGAT GTTTCG GTGACTGGAGTTCAGACGTGTGCTCTTC	Fwd primer for 2nd amplification (P7)
oPNL929-Amp2-F-IT028	CAAGCAGAAGACGGCATACGAGAT CAAAAG GTGACTGGAGTTCAGACGTGTGCTCTTC	Fwd primer for 2nd amplification (P7)
oPNL930-Amp2-F-IT066	CAAGCAGAAGACGGCATACGAGAT AGCATC GTGACTGGAGTTCAGACGTGTGCTCTTC	Fwd primer for 2nd amplification (P7)
oPNL900-Amp2-R-IT055	AATGATACGGCGACCACCGAGATCTACAC AAGCGA ACACTCTTTCCCTACACGACGCTCTTCCGATCT	Rev primer for 2nd amplification (P5)
oPNL901-Amp2-R-IT022	AATGATACGGCGACCACCGAGATCTACAC CGTACG ACACTCTTTCCCTACACGACGCTCTTCCGATCT	Rev primer for 2nd amplification (P5)
oPNL902-Amp2-R-IT084	AATGATACGGCGACCACCGAGATCTACAC GCACTT ACACTCTTTCCCTACACGACGCTCTTCCGATCT	Rev primer for 2nd amplification (P5)
oPNL903-Amp2-R-IT017	AATGATACGGCGACCACCGAGATCTACAC GTAGAG ACACTCTTTCCCTACACGACGCTCTTCCGATCT	Rev primer for 2nd amplification (P5)

oPNL904-Amp2-R-IT095	AATGATACGGCGACCACCGAGATCTACAC TTCTCC ACACTCTTTCCCTACACGACGCTCTTCCGATCT	Rev primer for 2nd amplification (P5)
oPNL931-Amp2-R-IT042	AATGATACGGCGACCACCGAGATCTACAC TAATCG ACACTCTTTCCCTACACGACGCTCTTCCGATCT	Rev primer for 2nd amplification (P5)
oPNL932-Amp2-R-IT027	AATGATACGGCGACCACCGAGATCTACAC ATTCCT ACACTCTTTCCCTACACGACGCTCTTCCGATCT	Rev primer for 2nd amplification (P5)
oPNL933-Amp2-R-IT037	AATGATACGGCGACCACCGAGATCTACAC CGGAAT ACACTCTTTCCCTACACGACGCTCTTCCGATCT	Rev primer for 2nd amplification (P5)
oPNL934-Amp2-R-IT045	AATGATACGGCGACCACCGAGATCTACAC TCATTC ACACTCTTTCCCTACACGACGCTCTTCCGATCT	Rev primer for 2nd amplification (P5)
oPNL935-Amp2-R-IT080	AATGATACGGCGACCACCGAGATCTACAC GACGGA ACACTCTTTCCCTACACGACGCTCTTCCGATCT	Rev primer for 2nd amplification (P5)
P. fluorescens poly-attB str	ain construction screening primers	
oPNL611-3'ampC_fl_F	CTCGGTGAGCAAAACCTTC	flanking primers to screen for insertion of DNA downstream of ampC locus
oPNL612-3'ampC_fl_R	TGCTGATGATCGCGATCTA	flanking primers to screen for insertion of DNA downstream of ampC locus
R. palustris poly-attB strair	construction screening primers	
oPNL413-RPA1300_fl_F	CTTGATGCCCGAAGCCTTCT	primers flanking RPA1300 to screen for its deletion and replacement with poly-attB cassette in R. palustris
oPNL414-RPA1300_fl_R	TTCGTCGTCACCTTCGGTTC	primers flanking RPA1300 to screen for its deletion and replacement with poly-attB cassette in R. palustris
oPNL415- RPA1300_int_F	CAGTGGGCTGTCGATGTCTT	primers internal to RPA1300 to screen for its deletion in R. palustris CGA009
oPNL416- RPA1300_int_R	TGAGTTTCGTTTGCACTGCG	primers internal to RPA1300 to screen for its deletion in R. palustris CGA009
R. jostii poly-attB strain coi	nstruction screening primers	
oQP2195	GTCGGCGATCTCTCGACGTG	Fwd Primer for verifying attB insertion flanking the
oQP2196	TTAACGAGTCTCTGCACTCGTCAAC	attB site in R. jostii RHA1 Rev Primer for verifying attB insertion flanking the
oQP1722	CTAAATCCGCGTGATAGGGGATTTC	Fwd primer internal to the attB insertion
oQP1521	GTTCTGCAGCTGCGGGAAC	Rev primer internal to the attB insertion
Primers for screening ts plo	ismid loss and attP plasmid backbone excision	
oPNL556	AGCGAGTCAGTGAGCGA	screening for pGW26/30 plasmid loss
oPNL879	TTCTTAAGATTAACTCACACAGGAGA	screening for pGW26/30 plasmid loss
oPNL621	CATCGGCGTGGTGATATTGG	screening for pGW60 and pJE1817 backbone excision by phiC31 integrase
oPNL622	TGCCGTGGCTGATGATCC	screening for pGW60 and pJE1817 backbone excision by phiC31 integrase
Primers for generating DN	A sequences in EZ-Tn5 transposomes	
oPNL1254	[pho]CTGTCTCTTATACACATCTattaatgcagctggcacgac	amplification of Mini-Tn5 transposons designed to integrate poly-attB cassettes with EZ-Tn5 transposases
oPNL1255	[pho]CTGTCTCTTATACACATCTagctagcttatcgccattcg	amplification of Mini-Tn5 transposons designed to integrate poly- <i>attB</i> cassettes with EZ-Tn5 transposases

Primers for screening excision of nptII / aac from Tn5 inserted poly-attB cassettes

oPNL911	ATTAATGCAGCTGGCACGAC	Forward primer that binds 5' end of the antibiotic marker / poly- <i>attB</i> cassette, pair with oPNL912 to
oPNL912	AGCTAGCTTATCGCCATTCG	Reverse primer that binds 3' end of the antibiotic marker / poly-attB cassette, pair with oPNL911 to amplify entire cassette
oPNL623	CGTCCAAGCGGATGCAATGC	partner with oPNL1011 primer to amplify fragment of 10x poly- <i>attB</i> cassette.
oPNL1011	AAGTACTGACGAGCTGCAAGA	partner with oPNL623 primer to amplify fragment of 10x poly- <i>attB</i> cassette.
oPNL1147	CTTCCTCGTGCTTTACGGTATC	alternate screening primer for use with oPNL912 to screen for presence of <i>nptll</i> -10x poly- <i>attB</i> cassette. Binds within <i>nptll</i> .
Primers for screening attP p	lasmid insertion in P. fluorescens	
oPNL622	TGCCGTGGCTGATGATCC	screening for attP plasmid insertion downstream of
oPNL629	AAAACCGCCCAGTCTAGCTATCG	ampC in JE4621 screening of genomic integration of attP plasmids
Primers for screening attP p	lasmid insertion in R. palustris	
oPNL819	GTGGCAGAAAGCTTTCACGG	forward primer for screening attR side of pGW60 into ΔRPA_1300::12x poly- <i>attB</i> cassette, binds in ColE1/nUC origin
oPNL817	GAGGGGCAGGCAGAACATAG	reverse primer for screening attR side of pGW60 into Δ RPA_1300::10x poly- <i>attB</i> cassette, binds in R. palustris CGA009 genome
Primers for screening attP p	lasmid insertion in P. frederiksbergensis, P. putida, R. jostii	
oPNL1010	TTGATCGAATTCTTTCATTTAAGACC	Forward primer for screening insertion of <i>attP</i> plasmids into the 10x poly- <i>attB</i> cassette. Binds just inside the upstream terminator.
oPNL816	AGCTCTTGATCCGGCAAACA	Reverse primer for screening pGW60 insertion into <i>attB</i> sites. Binds in ColE1/pUC origin of pGW60.
Primers for screening attP p	lasmid insertion into individual attB sites in the poly-attB cassette	
Bxb1_F	TGATCGAATTCTTTCATTTAAGACCCT	Forward primer that binds in the spacer upstream of the Bxb1 attB site in the poly-attB cassette and is used to specifically screen for integration into the Bxb1 attB site. (Primer 1E in Fig. S6)
Bxb1_R	GGCAGAATTTTGGGAGTGGCAT	Reverse primer that binds in the spacer upstream of the Bxb1 attB site in the poly-attB cassette and is used to specifically screen for integration into
BT1_F	TCCCAAAATTCTGCCTAGAAAGTC	the Bxb1 attB site. (Primer 1R in Fig. S6) Forward primer that binds in the spacer upstream of the BT1 attB site in the poly-attB cassette and is used to specifically screen for integration into the
BT1_R	TAGTGGAGCGAACTTAAACAGC	BT1 attB site. (Primer 2F in Fig. S6) Reverse primer that binds in the spacer upstream of the BT1 attB site in the poly-attB cassette and is
phiC1_F	GACTACGAGCGCCGGATCA	BT1 attB site. (Primer 2R in Fig. S6) Forward primer that binds in the spacer upstream of the phiC1 attB site in the poly-attB cassette and
phiC1_R	TCCTCTTGAGGTAGAAACGGGG	is used to specifically screen for integration into the phiC1 attB site. (Primer 3F in Fig. S6) Reverse primer that binds in the spacer upstream of the phiC1 attB site in the poly-attB cassette and is used to specifically screen for integration into
RV_F	GAATTCCGACATGGCAATAACCC	the phiC1 attB site. (Primer 3R in Fig. S6) Forward primer that binds in the spacer upstream of the RV attB site in the poly-attB cassette and is used to specifically screen for integration into the RV attB site. (Primer 4F in Fig. S6)

RV_R	GCCGACAGCAGTCATGTTAATAC	Reverse primer that binds in the spacer upstream of the RV attB site in the poly-attB cassette and is used to specifically screen for integration into the
TG1_F	AAGTATTAACATGACTGCTGTCGG	RV attB site. (Primer 4R in Fig. S6) Forward primer that binds in the spacer upstream
		of the TG1 attB site in the poly-attB cassette and is used to specifically screen for integration into the TG1 attB site (Primer 5E in Fig. S6)
TG1_R	GGAGGATCGCATTGCATCCG	Reverse primer that binds in the spacer upstream of the TG1 attB site in the poly-attB cassette and is
R4 F	CGTCCAAGCGGATGCAATG	used to specifically screen for integration into the TG1 attB site. (Primer 5R in Fig. S6) Forward primer that binds in the spacer upstream
<u>-</u> .		of the R4 attB site in the poly-attB cassette and is used to specifically screen for integration into the R4 attB site (Primer 6E in Fig. S6)
R4_R	GAAGTGTTCAACGCGTACGC	Reverse primer that binds in the spacer upstream of the R4 attB site in the poly-attB cassette and is
BL3_F	TGGCGTACGCGTTGAACAC	R4 attB site. (Primer 6R in Fig. S6) Forward primer that binds in the spacer upstream
_		of the BL3 attB site in the poly-attB cassette and is used to specifically screen for integration into the BL3 attB site. (Primer 7E in Fig. S6)
BL3_R	CACCCGCGCTTATAGCTTCC	Reverse primer that binds in the spacer upstream of the BL3 attB site in the poly-attB cassette and is
A118_F	TAAGCGCGGGTGAGAGGGTA	BL3 attB site. (Primer 7R in Fig. S6) Forward primer that binds in the spacer upstream
		of the A118 attB site in the poly-attB cassette and is used to specifically screen for integration into the A118 attB site. (Primer 85 in Fig. 66)
A118_R	CCGTGCAACATCAGATGCTCAC	Reverse primer that binds in the spacer upstream of the A118 attB site in the poly-attB cassette and
MR11 F	TGAGCATCTGATGTTGCACGG	is used to specifically screen for integration into the A118 attB site. (Primer 8R in Fig. S6) Forward primer that binds in the spacer upstream
-		of the MR11 attB site in the poly-attB cassette and is used to specifically screen for integration into the MR11 attB site (Dringer Of in Sig Sc)
MR11_R	GAGTCGTGAGTACTGATAGTAGTGAG	Reverse primer that binds in the spacer upstream of the MR11 attB site in the poly-attB cassette and is used to specifically screen for integration into
phi370_F	CGTTCAGGTAATGAGTGCAGC	the MR11 attB site. (Primer 9R in Fig. S6) Forward primer that binds in the spacer upstream of the phi370 attB site in the poly-attB cassette
nhi370 R		and is used to specifically screen for integration into the phi370 attB site. (Primer 10F in Fig. S6) Reverse primer that binds in the spacer unstream
p		of the phi370 attB site in the poly-attB cassette and is used to specifically screen for integration into the phi370 attB site. (Primer 10R in Fig. S6)

Table S4. Genetic stability of *P. fluorescens* with multiple heterologous DNA insertions

-

П

		JE5517					JE5117	Passage				
Lineage 1	JE4621*	Starter	1	2	3	4	5	6	7	8	9	10
both colors	0.01%	99.58%	99.92%	99.94%	99.94%	99.91%	99.93%	99.92%	99.96%	99.92%	99.93%	99.94%
green	0.209%	0.347%	0.035%	0.022%	0.019%	0.025%	0.024%	0.032%	0.016%	0.035%	0.032%	0.026%
red	0.29%	0.038%	0.02%	0.013%	0.013%	0.029%	0.015%	0.023%	0.019%	0.018%	0.02%	0.015%
no color	99.49%	0.033%	0.028%	0.025%	0.026%	0.04%	0.034%	0.022%	0.009%	0.022%	0.021%	0.019%

Percentage of flow cytometry events (percentage of population)

Percentage of flow cytometry events (percentage of population)

		JE5517					JE5117	Passage				
Lineage 2	JE4621*	Starter	1	2	3	4	5	6	7	8	9	10
both												
colors	0.01%	99.64%	99.91%	99.93%	99.93%	99.89%	99.85%	99.94%	99.92%	99.86%	99.87%	99.9%
green	0.209%	0.265%	0.034%	0.022%	0.026%	0.023%	0.026%	0.014%	0.02%	0.028%	0.033%	0.04%
red	0.29%	0.045%	0.026%	0.036%	0.03%	0.042%	0.068%	0.044%	0.045%	0.081%	0.077%	0.027%
no color	99.49%	0.049%	0.026%	0.017%	0.018%	0.044%	0.056%	0.0078%	0.01%	0.03%	0.02%	0.04%

*data from a single non-fluorescent parent strain culture included in each table

Table S5. Overall promoter assay statistics.

Organism	num bc pass	num prom in bc pass	num prom suff data	num bc pass outlier	num UTR insensitive	num Cond insensitive	num consistent	UTR cutoff	Cond cutoff	expression range	Problematic percent	Number of promoters w prob bc	% barcodes that are outliers.
RHA1	713	190	136	568	112	118	102	3	4	2574	23.76%	93	20.34%
Pflu	930	221	186	797	156	184	154	3	4	4054	22.81%	128	14.30%
TBS10	1205	260	241	1072	184	203	169	3	4	8930	24.91%	173	11.04%
Gpo1	1116	250	218	957	159	148	103	3	4	18413	30.04%	167	14.25%
CGA009	1061	254	205	874	92	159	85	3	4	55797	50.92%	185	17.62%

num bc pass = number of barcodes that have the minimal amount of data for analysis.

num prom in bc pass = number of promoters represented in the group of barcodes with the minimum amount of data (within an individual barcode promoter variant's data) for use in analysis

num prom suff data = number of promoters with sufficient barcode variants for analysis. This involves having at least 3 barcode variants with sufficient data for analysis for a given promoter

num bc pass outlier = number of barcodes that pass the barcode outlier test

num UTR insensitive = number of promoters that are insensitive to 5' UTR sequence

num Cond insensitive = number of promoters that are insensitive to tested conditions

num consistent = number of promoters that are both insensitive to 5' UTR sequence and tested conditions

UTR cutoff = fold expression difference between barcode variants that must be passed for a promoter to be considered insensitive to 5' UTR sequences

Cond cutoff = fold expression difference between conditions that must be passed for a promoter to be considered insensitive to conditions

expression range = range of expression generated by dividing RTA for strongest and weakest consistent promoters in the given organism

Problematic percent = % of promoter barcode variants whose expression would have been outside of the UTR cutoff range had they been the sole promoter variant tested. This includes all promoters, including all promoters represented in num bc pass.

Number of promoters w prob bc = number of promoters that had at least one problematic barcode variant.

% barcodes that are outliers = % of barcodes whose expression was statistically distinct from the other barcode variants for the given promoter

Table S6. Expression stats for SBW25 with different sensitivity cuto	ffs.
--	------

Organism	num bc pass	num prom in bc pass	num prom suff data	num bc pass outlier	num UTR insensitive	num Cond insensitive	num consistent	UTR cutoff	Cond cutoff	Expression range
SBW25	930	221	186	797	112	137	81	2	2	4054.09
SBW25	930	221	186	797	112	169	101	2	2.5	4054.09
SBW25	930	221	186	797	112	176	105	2	3	4054.09
SBW25	930	221	186	797	112	183	109	2	3.5	4054.09
SBW25	930	221	186	797	112	184	110	2	4	4054.09
SBW25	930	221	186	797	112	184	110	2	5	4054.09
SBW25	930	221	186	797	112	185	111	2	6	4054.09
SBW25	930	221	186	797	112	185	111	2	7	4054.09
SBW25	930	221	186	797	112	185	111	2	8	4054.09
SBW25	930	221	186	797	112	186	112	2	10	4054.09
SBW25	930	221	186	797	140	137	100	2.5	2	4054.09
SBW25	930	221	186	797	140	169	126	2.5	2.5	4054.09
SBW25	930	221	186	797	140	176	132	2.5	3	4054.09
SBW25	930	221	186	797	140	183	137	2.5	3.5	4054.09
SBW25	930	221	186	797	140	184	138	2.5	4	4054.09
SBW25	930	221	186	797	140	184	138	2.5	5	4054.09
SBW25	930	221	186	797	140	185	139	2.5	6	4054.09
SBW25	930	221	186	797	140	185	139	2.5	7	4054.09
SBW25	930	221	186	797	140	185	139	2.5	8	4054.09
SBW25	930	221	186	797	140	186	140	2.5	10	4054.09
SBW25	930	221	186	797	156	137	113	3	2	4054.09
SBW25	930	221	186	797	156	169	141	3	2.5	4054.09
SBW25	930	221	186	797	156	176	147	3	3	4054.09
SBW25	930	221	186	797	156	183	153	3	3.5	4054.09
SBW25	930	221	186	797	156	184	154	3	4	4054.09
SBW25	930	221	186	797	156	184	154	3	5	4054.09
SBW25	930	221	186	797	156	185	155	3	6	4054.09
SBW25	930	221	186	797	156	185	155	3	7	4054.09
SBW25	930	221	186	797	156	185	155	3	8	4054.09
SBW25	930	221	186	797	156	186	156	3	10	4054.09
SBW25	930	221	186	797	167	137	123	3.5	2	4054.09
SBW25	930	221	186	797	167	169	152	3.5	2.5	4054.09
SBW25	930	221	186	797	167	176	158	3.5	3	4054.09
SBW25	930	221	186	797	167	183	164	3.5	3.5	4054.09
SBW25	930	221	186	797	167	184	165	3.5	4	4054.09
SBW25	930	221	186	797	167	184	165	3.5	5	4054.09
SBW25	930	221	186	797	167	185	166	3.5	6	4054.09

SBW25	930	221	186	797	167	185	166	3.5	7	4054.09
SBW25	930	221	186	797	167	185	166	3.5	8	4054.09
SBW25	930	221	186	797	167	186	167	3.5	10	4054.09
SBW25	930	221	186	797	175	137	130	4	2	4054.09
SBW25	930	221	186	797	175	169	159	4	2.5	4054.09
SBW25	930	221	186	797	175	176	165	4	3	4054.09
SBW25	930	221	186	797	175	183	172	4	3.5	4054.09
SBW25	930	221	186	797	175	184	173	4	4	4054.09
SBW25	930	221	186	797	175	184	173	4	5	4054.09
SBW25	930	221	186	797	175	185	174	4	6	4054.09
SBW25	930	221	186	797	175	185	174	4	7	4054.09
SBW25	930	221	186	797	175	185	174	4	8	4054.09
SBW25	930	221	186	797	175	186	175	4	10	4054.09
SBW25	930	221	186	797	180	137	133	5	2	4054.09
SBW25	930	221	186	797	180	169	164	5	2.5	4054.09
SBW25	930	221	186	797	180	176	170	5	3	4054.09
SBW25	930	221	186	797	180	183	177	5	3.5	4054.09
SBW25	930	221	186	797	180	184	178	5	4	4054.09
SBW25	930	221	186	797	180	184	178	5	5	4054.09
SBW25	930	221	186	797	180	185	179	5	6	4054.09
SBW25	930	221	186	797	180	185	179	5	7	4054.09
SBW25	930	221	186	797	180	185	179	5	8	4054.09
SBW25	930	221	186	797	180	186	180	5	10	4054.09
SBW25	930	221	186	797	183	137	136	6	2	4054.09
SBW25	930	221	186	797	183	169	167	6	2.5	4054.09
SBW25	930	221	186	797	183	176	173	6	3	4054.09
SBW25	930	221	186	797	183	183	180	6	3.5	4054.09
SBW25	930	221	186	797	183	184	181	6	4	4054.09
SBW25	930	221	186	797	183	184	181	6	5	4054.09
SBW25	930	221	186	797	183	185	182	6	6	4054.09
SBW25	930	221	186	797	183	185	182	6	7	4054.09
SBW25	930	221	186	797	183	185	182	6	8	4054.09
SBW25	930	221	186	797	183	186	183	6	10	4054.09
SBW25	930	221	186	797	183	137	136	7	2	4054.09
SBW25	930	221	186	797	183	169	167	7	2.5	4054.09
SBW25	930	221	186	797	183	176	173	7	3	4054.09
SBW25	930	221	186	797	183	183	180	7	3.5	4054.09
SBW25	930	221	186	797	183	184	181	7	4	4054.09
SBW25	930	221	186	797	183	184	181	7	5	4054.09
SBW25	930	221	186	797	183	185	182	7	6	4054.09
SBW25	930	221	186	797	183	185	182	7	7	4054.09

SBW25	930	221	186	797	183	185	182	7	8	4054.09
SBW25	930	221	186	797	183	186	183	7	10	4054.09
SBW25	930	221	186	797	184	137	137	8	2	4054.09
SBW25	930	221	186	797	184	169	168	8	2.5	4054.09
SBW25	930	221	186	797	184	176	174	8	3	4054.09
SBW25	930	221	186	797	184	183	181	8	3.5	4054.09
SBW25	930	221	186	797	184	184	182	8	4	4054.09
SBW25	930	221	186	797	184	184	182	8	5	4054.09
SBW25	930	221	186	797	184	185	183	8	6	4054.09
SBW25	930	221	186	797	184	185	183	8	7	4054.09
SBW25	930	221	186	797	184	185	183	8	8	4054.09
SBW25	930	221	186	797	184	186	184	8	10	4054.09
SBW25	930	221	186	797	185	137	137	10	2	4054.09
SBW25	930	221	186	797	185	169	168	10	2.5	4054.09
SBW25	930	221	186	797	185	176	175	10	3	4054.09
SBW25	930	221	186	797	185	183	182	10	3.5	4054.09
SBW25	930	221	186	797	185	184	183	10	4	4054.09
SBW25	930	221	186	797	185	184	183	10	5	4054.09
SBW25	930	221	186	797	185	185	184	10	6	4054.09
SBW25	930	221	186	797	185	185	184	10	7	4054.09
SBW25	930	221	186	797	185	185	184	10	8	4054.09
SBW25	930	221	186	797	185	186	185	10	10	4054.09

num_prom_in_bc_pass = number of promoters represented in the group of barcodes with the minimum amount of data for analysis

num_prom_suff_data = number of promoters with sufficient data for analysis. This involves having at least 3 barcode variants with sufficient data for analysis for a given promoter

num_bc_pass_outlier = number of barcodes that pass the barcode outlier test

num_UTR_insensitive = number of promoters that are insensitive to 5' UTR sequence

num_Cond_insensitive = number of promoters that are insensitive to tested conditions

num_consistent = number of promoters that are both insensitive to 5' UTR sequence and tested conditions UTR_cutoff = fold expression difference between barcode variants that must be passed for a promoter to be considered insensitive to 5' UTR sequences

Cond_cutoff = fold expression difference between conditions that must be passed for a promoter to be considered insensitive to conditions

Organism	num bc pass	num prom in bc pass	num prom suff data	num bc pass outlier	num UTR insensitive	num Cond insensitive	num consistent	UTR cutoff	Cond cutoff	expression range
TBS10	1205	260	241	1072	123	115	63	2	2	4491.80
TBS10	1205	260	241	1072	123	155	82	2	2.5	4491.80
TBS10	1205	260	241	1072	123	180	98	2	3	4491.80
TBS10	1205	260	241	1072	123	196	111	2	3.5	7977.70
TBS10	1205	260	241	1072	123	203	113	2	4	8929.99
TBS10	1205	260	241	1072	123	214	116	2	5	8929.99
TBS10	1205	260	241	1072	123	220	118	2	6	23096.74
TBS10	1205	260	241	1072	123	227	119	2	7	23096.74
TBS10	1205	260	241	1072	123	230	120	2	8	23096.74
TBS10	1205	260	241	1072	123	232	122	2	10	23096.74
TBS10	1205	260	241	1072	165	115	85	2.5	2	5572.04
TBS10	1205	260	241	1072	165	155	114	2.5	2.5	8828.35
TBS10	1205	260	241	1072	165	180	135	2.5	3	8828.35
TBS10	1205	260	241	1072	165	196	149	2.5	3.5	8828.35
TBS10	1205	260	241	1072	165	203	152	2.5	4	8929.99
TBS10	1205	260	241	1072	165	214	156	2.5	5	8929.99
TBS10	1205	260	241	1072	165	220	159	2.5	6	23096.74
TBS10	1205	260	241	1072	165	227	160	2.5	7	23096.74
TBS10	1205	260	241	1072	165	230	161	2.5	8	23096.74
TBS10	1205	260	241	1072	165	232	163	2.5	10	23096.74
TBS10	1205	260	241	1072	184	115	96	3	2	5572.04
TBS10	1205	260	241	1072	184	155	129	3	2.5	8828.35
TBS10	1205	260	241	1072	184	180	152	3	3	8828.35
TBS10	1205	260	241	1072	184	196	166	3	3.5	8828.35
TBS10	1205	260	241	1072	184	203	169	3	4	8929.99
TBS10	1205	260	241	1072	184	214	173	3	5	8929.99
TBS10	1205	260	241	1072	184	220	176	3	6	23096.74
TBS10	1205	260	241	1072	184	227	178	3	7	23096.74
TBS10	1205	260	241	1072	184	230	179	3	8	23096.74
TBS10	1205	260	241	1072	184	232	181	3	10	23096.74
TBS10	1205	260	241	1072	199	115	102	3.5	2	5572.04
TBS10	1205	260	241	1072	199	155	136	3.5	2.5	8828.35
TBS10	1205	260	241	1072	199	180	161	3.5	3	8828.35
TBS10	1205	260	241	1072	199	196	175	3.5	3.5	8828.35
TBS10	1205	260	241	1072	199	203	179	3.5	4	8929.99
TBS10	1205	260	241	1072	199	214	185	3.5	5	8929.99
TBS10	1205	260	241	1072	199	220	188	3.5	6	23096.74
TBS10	1205	260	241	1072	199	227	191	3.5	7	23096.74

Table S7.	Expression	stats for	TBS10 with	different	sensitivity	cutoffs.
10010 0711	Expression	56465 101	10010 0000	annerene	Scholerviey	cacons

	i.									
TBS10	1205	260	241	1072	199	230	193	3.5	8	23096.74
TBS10	1205	260	241	1072	199	232	195	3.5	10	23096.74
TBS10	1205	260	241	1072	208	115	107	4	2	5572.04
TBS10	1205	260	241	1072	208	155	141	4	2.5	8828.35
TBS10	1205	260	241	1072	208	180	166	4	3	8828.35
TBS10	1205	260	241	1072	208	196	180	4	3.5	8828.35
TBS10	1205	260	241	1072	208	203	185	4	4	8929.99
TBS10	1205	260	241	1072	208	214	192	4	5	8929.99
TBS10	1205	260	241	1072	208	220	195	4	6	23096.74
TBS10	1205	260	241	1072	208	227	199	4	7	23096.74
TBS10	1205	260	241	1072	208	230	201	4	8	23096.74
TBS10	1205	260	241	1072	208	232	203	4	10	23096.74
TBS10	1205	260	241	1072	219	115	112	5	2	5572.04
TBS10	1205	260	241	1072	219	155	148	5	2.5	8828.35
TBS10	1205	260	241	1072	219	180	173	5	3	8828.35
TBS10	1205	260	241	1072	219	196	189	5	3.5	9412.80
TBS10	1205	260	241	1072	219	203	194	5	4	9412.80
TBS10	1205	260	241	1072	219	214	202	5	5	14357.24
TBS10	1205	260	241	1072	219	220	205	5	6	23096.74
TBS10	1205	260	241	1072	219	227	209	5	7	23096.74
TBS10	1205	260	241	1072	219	230	211	5	8	23096.74
TBS10	1205	260	241	1072	219	232	213	5	10	23096.74
TBS10	1205	260	241	1072	223	115	112	6	2	5572.04
TBS10	1205	260	241	1072	223	155	151	6	2.5	8828.35
TBS10	1205	260	241	1072	223	180	176	6	3	8828.35
TBS10	1205	260	241	1072	223	196	192	6	3.5	9412.80
TBS10	1205	260	241	1072	223	203	197	6	4	9412.80
TBS10	1205	260	241	1072	223	214	206	6	5	14357.24
TBS10	1205	260	241	1072	223	220	209	6	6	23096.74
TBS10	1205	260	241	1072	223	227	213	6	7	23096.74
TBS10	1205	260	241	1072	223	230	215	6	8	23096.74
TBS10	1205	260	241	1072	223	232	217	6	10	23096.74
TBS10	1205	260	241	1072	224	115	112	7	2	5572.04
TBS10	1205	260	241	1072	224	155	151	7	2.5	8828.35
TBS10	1205	260	241	1072	224	180	176	7	3	8828.35
TBS10	1205	260	241	1072	224	196	192	7	3.5	9412.80
TBS10	1205	260	241	1072	224	203	198	7	4	9412.80
TBS10	1205	260	241	1072	224	214	207	7	5	14357.24
TBS10	1205	260	241	1072	224	220	210	7	6	23096.74
TBS10	1205	260	241	1072	224	227	214	7	7	23096.74
TBS10	1205	260	241	1072	224	230	216	7	8	23096.74

TBS10	1205	260	241	1072	224	232	218	7	10	23096.74
TBS10	1205	260	241	1072	227	115	112	8	2	5572.04
TBS10	1205	260	241	1072	227	155	151	8	2.5	8828.35
TBS10	1205	260	241	1072	227	180	176	8	3	8828.35
TBS10	1205	260	241	1072	227	196	192	8	3.5	9412.80
TBS10	1205	260	241	1072	227	203	198	8	4	9412.80
TBS10	1205	260	241	1072	227	214	207	8	5	14357.24
TBS10	1205	260	241	1072	227	220	211	8	6	23096.74
TBS10	1205	260	241	1072	227	227	216	8	7	23096.74
TBS10	1205	260	241	1072	227	230	218	8	8	23096.74
TBS10	1205	260	241	1072	227	232	220	8	10	23096.74
TBS10	1205	260	241	1072	234	115	115	10	2	5572.04
TBS10	1205	260	241	1072	234	155	155	10	2.5	8828.35
TBS10	1205	260	241	1072	234	180	180	10	3	8828.35
TBS10	1205	260	241	1072	234	196	196	10	3.5	9412.80
TBS10	1205	260	241	1072	234	203	203	10	4	9412.80
TBS10	1205	260	241	1072	234	214	213	10	5	14357.24
TBS10	1205	260	241	1072	234	220	217	10	6	23096.74
TBS10	1205	260	241	1072	234	227	222	10	7	23096.74
TBS10	1205	260	241	1072	234	230	224	10	8	23096.74
TBS10	1205	260	241	1072	234	232	226	10	10	23096.74

num_prom_in_bc_pass = number of promoters represented in the group of barcodes with the minimum amount of data for analysis

num_prom_suff_data = number of promoters with sufficient data for analysis. This involves having at least 3 barcode variants with sufficient data for analysis for a given promoter

num_bc_pass_outlier = number of barcodes that pass the barcode outlier test

num_UTR_insensitive = number of promoters that are insensitive to 5' UTR sequence

num_Cond_insensitive = number of promoters that are insensitive to tested conditions

num_consistent = number of promoters that are both insensitive to 5' UTR sequence and tested conditions

UTR_cutoff = fold expression difference between barcode variants that must be passed for a promoter to be considered insensitive to 5' UTR sequences

Cond_cutoff = fold expression difference between conditions that must be passed for a promoter to be considered insensitive to conditions

Organism	num bc pass	num prom in bc pass	num prom suff data	num bc pass outlier	num UTR insensitive	num Cond insensitive	num consistent	UTR cutoff	Cond cutoff	expression range
Gpo1	1116	250	218	957	97	70	27	2	2	3927.49
Gpo1	1116	250	218	957	97	97	43	2	2.5	3927.49
Gpo1	1116	250	218	957	97	112	51	2	3	3927.49
Gpo1	1116	250	218	957	97	132	54	2	3.5	3927.49
Gpo1	1116	250	218	957	97	148	60	2	4	9733.06
Gpo1	1116	250	218	957	97	161	64	2	5	9733.06
Gpo1	1116	250	218	957	97	172	69	2	6	9733.06
Gpo1	1116	250	218	957	97	179	72	2	7	9733.06
Gpo1	1116	250	218	957	97	188	78	2	8	9733.06
Gpo1	1116	250	218	957	97	191	81	2	10	9733.06
Gpo1	1116	250	218	957	138	70	42	2.5	2	3927.49
Gpo1	1116	250	218	957	138	97	60	2.5	2.5	3927.49
Gpo1	1116	250	218	957	138	112	71	2.5	3	3927.49
Gpo1	1116	250	218	957	138	132	78	2.5	3.5	3927.49
Gpo1	1116	250	218	957	138	148	87	2.5	4	12813.96
Gpo1	1116	250	218	957	138	161	94	2.5	5	19793.07
Gpo1	1116	250	218	957	138	172	101	2.5	6	19793.07
Gpo1	1116	250	218	957	138	179	105	2.5	7	19793.07
Gpo1	1116	250	218	957	138	188	113	2.5	8	19793.07
Gpo1	1116	250	218	957	138	191	116	2.5	10	19793.07
Gpo1	1116	250	218	957	159	70	50	3	2	7429.86
Gpo1	1116	250	218	957	159	97	71	3	2.5	7429.86
Gpo1	1116	250	218	957	159	112	83	3	3	7429.86
Gpo1	1116	250	218	957	159	132	94	3	3.5	7429.86
Gpo1	1116	250	218	957	159	148	103	3	4	18412.57
Gpo1	1116	250	218	957	159	161	112	3	5	19793.07
Gpo1	1116	250	218	957	159	172	120	3	6	19793.07
Gpo1	1116	250	218	957	159	179	124	3	7	19793.07
Gpo1	1116	250	218	957	159	188	132	3	8	19793.07
Gpo1	1116	250	218	957	159	191	135	3	10	19793.07
Gpo1	1116	250	218	957	172	70	56	3.5	2	13942.65
Gpo1	1116	250	218	957	172	97	78	3.5	2.5	13942.65
Gpo1	1116	250	218	957	172	112	91	3.5	3	13942.65
Gpo1	1116	250	218	957	172	132	105	3.5	3.5	18390.70
Gpo1	1116	250	218	957	172	148	114	3.5	4	24286.63
Gpo1	1116	250	218	957	172	161	124	3.5	5	24286.63
Gpo1	1116	250	218	957	172	172	132	3.5	6	24286.63
Gpo1	1116	250	218	957	172	179	137	3.5	7	24286.63

Table S8. Expression stats for Gpo1 with different sensitivity cutoffs.

		1	I	1		1				
Gpo1	1116	250	218	957	172	188	145	3.5	8	24286.63
Gpo1	1116	250	218	957	172	191	148	3.5	10	24286.63
Gpo1	1116	250	218	957	180	70	58	4	2	13942.65
Gpo1	1116	250	218	957	180	97	82	4	2.5	13942.65
Gpo1	1116	250	218	957	180	112	95	4	3	13942.65
Gpo1	1116	250	218	957	180	132	111	4	3.5	18390.70
Gpo1	1116	250	218	957	180	148	121	4	4	24286.63
Gpo1	1116	250	218	957	180	161	131	4	5	24286.63
Gpo1	1116	250	218	957	180	172	139	4	6	24286.63
Gpo1	1116	250	218	957	180	179	144	4	7	24286.63
Gpo1	1116	250	218	957	180	188	152	4	8	24286.63
Gpo1	1116	250	218	957	180	191	155	4	10	24286.63
Gpo1	1116	250	218	957	193	70	63	5	2	13942.65
Gpo1	1116	250	218	957	193	97	88	5	2.5	13942.65
Gpo1	1116	250	218	957	193	112	102	5	3	13942.65
Gpo1	1116	250	218	957	193	132	120	5	3.5	18390.70
Gpo1	1116	250	218	957	193	148	132	5	4	24286.63
Gpo1	1116	250	218	957	193	161	143	5	5	24286.63
Gpo1	1116	250	218	957	193	172	151	5	6	24286.63
Gpo1	1116	250	218	957	193	179	157	5	7	24286.63
Gpo1	1116	250	218	957	193	188	165	5	8	24286.63
Gpo1	1116	250	218	957	193	191	168	5	10	24286.63
Gpo1	1116	250	218	957	201	70	65	6	2	13942.65
Gpo1	1116	250	218	957	201	97	90	6	2.5	13942.65
Gpo1	1116	250	218	957	201	112	104	6	3	13942.65
Gpo1	1116	250	218	957	201	132	124	6	3.5	18390.70
Gpo1	1116	250	218	957	201	148	136	6	4	24286.63
Gpo1	1116	250	218	957	201	161	148	6	5	24286.63
Gpo1	1116	250	218	957	201	172	157	6	6	24286.63
Gpo1	1116	250	218	957	201	179	164	6	7	24286.63
Gpo1	1116	250	218	957	201	188	172	6	8	24286.63
Gpo1	1116	250	218	957	201	191	175	6	10	24286.63
Gpo1	1116	250	218	957	209	70	67	7	2	13942.65
Gpo1	1116	250	218	957	209	97	92	7	2.5	13942.65
Gpo1	1116	250	218	957	209	112	106	7	3	13942.65
Gpo1	1116	250	218	957	209	132	126	7	3.5	18390.70
Gpo1	1116	250	218	957	209	148	140	7	4	24286.63
Gpo1	1116	250	218	957	209	161	152	7	5	24286.63
Gpo1	1116	250	218	957	209	172	163	7	6	24286.63
Gpo1	1116	250	218	957	209	179	170	7	7	24286.63
Gpo1	1116	250	218	957	209	188	179	7	8	24286.63

Gpo1	1116	250	218	957	209	191	182	7	10	24286.63
Gpo1	1116	250	218	957	210	70	67	8	2	13942.65
Gpo1	1116	250	218	957	210	97	92	8	2.5	13942.65
Gpo1	1116	250	218	957	210	112	106	8	3	13942.65
Gpo1	1116	250	218	957	210	132	126	8	3.5	18390.70
Gpo1	1116	250	218	957	210	148	140	8	4	24286.63
Gpo1	1116	250	218	957	210	161	153	8	5	24286.63
Gpo1	1116	250	218	957	210	172	164	8	6	24286.63
Gpo1	1116	250	218	957	210	179	171	8	7	24286.63
Gpo1	1116	250	218	957	210	188	180	8	8	24286.63
Gpo1	1116	250	218	957	210	191	183	8	10	24286.63
Gpo1	1116	250	218	957	213	70	68	10	2	13942.65
Gpo1	1116	250	218	957	213	97	93	10	2.5	13942.65
Gpo1	1116	250	218	957	213	112	108	10	3	13942.65
Gpo1	1116	250	218	957	213	132	128	10	3.5	18390.70
Gpo1	1116	250	218	957	213	148	143	10	4	24286.63
Gpo1	1116	250	218	957	213	161	156	10	5	24286.63
Gpo1	1116	250	218	957	213	172	167	10	6	24286.63
Gpo1	1116	250	218	957	213	179	174	10	7	24286.63
Gpo1	1116	250	218	957	213	188	183	10	8	24286.63
Gpo1	1116	250	218	957	213	191	186	10	10	24286.63

num_prom_in_bc_pass = number of promoters represented in the group of barcodes with the minimum amount of data for analysis

num_prom_suff_data = number of promoters with sufficient data for analysis. This involves having at least 3 barcode variants with sufficient data for analysis for a given promoter

num_bc_pass_outlier = number of barcodes that pass the barcode outlier test

num_UTR_insensitive = number of promoters that are insensitive to 5' UTR sequence

num_Cond_insensitive = number of promoters that are insensitive to tested conditions

num_consistent = number of promoters that are both insensitive to 5' UTR sequence and tested conditions UTR_cutoff = fold expression difference between barcode variants that must be passed for a promoter to be considered insensitive to 5' UTR sequences

Cond_cutoff = fold expression difference between conditions that must be passed for a promoter to be considered insensitive to conditions

Organism	num bc pass	num prom in bc pass	num prom suff data	num bc pass outlier	num UTR insensitive	num Cond insensitive	num consistent	UTR cutoff	Cond cutoff	expression range
CGA009	1061	254	205	874	60	109	44	2	2	41576.41
CGA009	1061	254	205	874	60	124	49	2	2.5	41576.41
CGA009	1061	254	205	874	60	142	53	2	3	41576.41
CGA009	1061	254	205	874	60	153	54	2	3.5	41576.41
CGA009	1061	254	205	874	60	159	54	2	4	41576.41
CGA009	1061	254	205	874	60	169	56	2	5	41576.41
CGA009	1061	254	205	874	60	172	56	2	6	41576.41
CGA009	1061	254	205	874	60	172	56	2	7	41576.41
CGA009	1061	254	205	874	60	177	57	2	8	41576.41
CGA009	1061	254	205	874	60	180	57	2	10	41576.41
CGA009	1061	254	205	874	79	109	56	2.5	2	41905.69
CGA009	1061	254	205	874	79	124	62	2.5	2.5	41905.69
CGA009	1061	254	205	874	79	142	69	2.5	3	55796.73
CGA009	1061	254	205	874	79	153	72	2.5	3.5	55796.73
CGA009	1061	254	205	874	79	159	72	2.5	4	55796.73
CGA009	1061	254	205	874	79	169	74	2.5	5	55796.73
CGA009	1061	254	205	874	79	172	74	2.5	6	55796.73
CGA009	1061	254	205	874	79	172	74	2.5	7	55796.73
CGA009	1061	254	205	874	79	177	76	2.5	8	55796.73
CGA009	1061	254	205	874	79	180	76	2.5	10	55796.73
CGA009	1061	254	205	874	92	109	65	3	2	41905.69
CGA009	1061	254	205	874	92	124	72	3	2.5	41905.69
CGA009	1061	254	205	874	92	142	79	3	3	55796.73
CGA009	1061	254	205	874	92	153	84	3	3.5	55796.73
CGA009	1061	254	205	874	92	159	85	3	4	55796.73
CGA009	1061	254	205	874	92	169	87	3	5	55796.73
CGA009	1061	254	205	874	92	172	87	3	6	55796.73
CGA009	1061	254	205	874	92	172	87	3	7	55796.73
CGA009	1061	254	205	874	92	177	89	3	8	55796.73
CGA009	1061	254	205	874	92	180	89	3	10	55796.73
CGA009	1061	254	205	874	102	109	71	3.5	2	41905.69
CGA009	1061	254	205	874	102	124	80	3.5	2.5	41905.69
CGA009	1061	254	205	874	102	142	88	3.5	3	55796.73
CGA009	1061	254	205	874	102	153	94	3.5	3.5	55796.73
CGA009	1061	254	205	874	102	159	95	3.5	4	55796.73
CGA009	1061	254	205	874	102	169	97	3.5	5	55796.73
CGA009	1061	254	205	874	102	172	97	3.5	6	55796.73
CGA009	1061	254	205	874	102	172	97	3.5	7	55796.73

Table S9. Expression stats for CGA009 with different sensitivity cutoffs

	I			I						
CGA009	1061	254	205	874	102	177	99	3.5	8	55796.73
CGA009	1061	254	205	874	102	180	99	3.5	10	55796.73
CGA009	1061	254	205	874	109	109	75	4	2	41905.69
CGA009	1061	254	205	874	109	124	86	4	2.5	41905.69
CGA009	1061	254	205	874	109	142	94	4	3	55796.73
CGA009	1061	254	205	874	109	153	101	4	3.5	55796.73
CGA009	1061	254	205	874	109	159	102	4	4	55796.73
CGA009	1061	254	205	874	109	169	104	4	5	55796.73
CGA009	1061	254	205	874	109	172	104	4	6	55796.73
CGA009	1061	254	205	874	109	172	104	4	7	55796.73
CGA009	1061	254	205	874	109	177	106	4	8	55796.73
CGA009	1061	254	205	874	109	180	106	4	10	55796.73
CGA009	1061	254	205	874	119	109	83	5	2	41905.69
CGA009	1061	254	205	874	119	124	95	5	2.5	41905.69
CGA009	1061	254	205	874	119	142	104	5	3	55796.73
CGA009	1061	254	205	874	119	153	111	5	3.5	55796.73
CGA009	1061	254	205	874	119	159	112	5	4	55796.73
CGA009	1061	254	205	874	119	169	114	5	5	55796.73
CGA009	1061	254	205	874	119	172	114	5	6	55796.73
CGA009	1061	254	205	874	119	172	114	5	7	55796.73
CGA009	1061	254	205	874	119	177	116	5	8	55796.73
CGA009	1061	254	205	874	119	180	116	5	10	55796 73
CGA009	1061	254	205	874	126	100	85	6	2	/1905.69
	1061	254	205	874	126	124	98	6	2	41905.05
CGA009	1061	254	205	074	120	142	107	6	2.5	41903.09
CGA009	1061	254	205	074	120	152	115	6	25	55750.75
CGA009	1061	254	205	074	120	155	115	6	5.5	55790.75
CGA009	1061	254	205	074	120	160	120	6	4	55790.75
CGA009	1061	254	205	874	120	109	120	6	5	55790.73
CGA009	1061	254	205	874	120	172	120	0	7	55790.73
CGA009	1061	254	205	874	126	172	120	6	/	55796.73
CGA009	1061	254	205	874	126	1//	122	6	8	55796.73
CGA009	1061	254	205	874	126	180	122	6	10	55796.73
CGA009	1061	254	205	874	132	109	86	7	2	41905.69
CGA009	1061	254	205	874	132	124	99	7	2.5	41905.69
CGA009	1061	254	205	874	132	142	110	7	3	55796.73
CGA009	1061	254	205	874	132	153	120	7	3.5	55796.73
CGA009	1061	254	205	874	132	159	122	7	4	55796.73
CGA009	1061	254	205	874	132	169	125	7	5	55796.73
CGA009	1061	254	205	874	132	172	125	7	6	55796.73
CGA009	1061	254	205	874	132	172	125	7	7	55796.73
CGA009	1061	254	205	874	132	177	127	7	8	55796.73

CGA009	1061	254	205	874	132	180	128	7	10	55796.73
CGA009	1061	254	205	874	142	109	92	8	2	41905.69
CGA009	1061	254	205	874	142	124	106	8	2.5	41905.69
CGA009	1061	254	205	874	142	142	118	8	3	55796.73
CGA009	1061	254	205	874	142	153	129	8	3.5	55796.73
CGA009	1061	254	205	874	142	159	131	8	4	55796.73
CGA009	1061	254	205	874	142	169	135	8	5	55796.73
CGA009	1061	254	205	874	142	172	135	8	6	55796.73
CGA009	1061	254	205	874	142	172	135	8	7	55796.73
CGA009	1061	254	205	874	142	177	137	8	8	55796.73
CGA009	1061	254	205	874	142	180	138	8	10	55796.73
CGA009	1061	254	205	874	144	109	92	10	2	41905.69
CGA009	1061	254	205	874	144	124	107	10	2.5	41905.69
CGA009	1061	254	205	874	144	142	119	10	3	55796.73
CGA009	1061	254	205	874	144	153	130	10	3.5	55796.73
CGA009	1061	254	205	874	144	159	132	10	4	55796.73
CGA009	1061	254	205	874	144	169	137	10	5	55796.73
CGA009	1061	254	205	874	144	172	137	10	6	55796.73
CGA009	1061	254	205	874	144	172	137	10	7	55796.73
CGA009	1061	254	205	874	144	177	139	10	8	55796.73
CGA009	1061	254	205	874	144	180	140	10	10	55796.73

num_prom_in_bc_pass = number of promoters represented in the group of barcodes with the minimum amount of data for analysis

num_prom_suff_data = number of promoters with sufficient data for analysis. This involves having at least 3 barcode variants with sufficient data for analysis for a given promoter

num_bc_pass_outlier = number of barcodes that pass the barcode outlier test

num_UTR_insensitive = number of promoters that are insensitive to 5' UTR sequence

num_Cond_insensitive = number of promoters that are insensitive to tested conditions

num_consistent = number of promoters that are both insensitive to 5' UTR sequence and tested conditions UTR_cutoff = fold expression difference between barcode variants that must be passed for a promoter to be considered insensitive to 5' UTR sequences

Cond_cutoff = fold expression difference between conditions that must be passed for a promoter to be considered insensitive to conditions

Organism	num bc pass	num prom in bc pass	num prom suff data	num bc pass outlier	num UTR insensitive	num Cond insensitive	num consistent	UTR cutoff	Cond cutoff	expression range
RHA1	713	190	136	568	73	50	36	2	2	1858.27
RHA1	713	190	136	568	73	78	51	2	2.5	1858.27
RHA1	713	190	136	568	73	95	59	2	3	1858.27
RHA1	713	190	136	568	73	110	66	2	3.5	1858.27
RHA1	713	190	136	568	73	118	68	2	4	1858.27
RHA1	713	190	136	568	73	128	70	2	5	1858.27
RHA1	713	190	136	568	73	128	70	2	6	1858.27
RHA1	713	190	136	568	73	130	70	2	7	1858.27
RHA1	713	190	136	568	73	133	71	2	8	1858.27
RHA1	713	190	136	568	73	134	71	2	10	1858.27
RHA1	713	190	136	568	96	50	41	2.5	2	1858.27
RHA1	713	190	136	568	96	78	58	2.5	2.5	1858.27
RHA1	713	190	136	568	96	95	73	2.5	3	1858.27
RHA1	713	190	136	568	96	110	85	2.5	3.5	1858.27
RHA1	713	190	136	568	96	118	88	2.5	4	1858.27
RHA1	713	190	136	568	96	128	91	2.5	5	1858.27
RHA1	713	190	136	568	96	128	91	2.5	6	1858.27
RHA1	713	190	136	568	96	130	92	2.5	7	1858.27
RHA1	713	190	136	568	96	133	93	2.5	8	1858.27
RHA1	713	190	136	568	96	134	94	2.5	10	1858.27
RHA1	713	190	136	568	112	50	48	3	2	1858.27
RHA1	713	190	136	568	112	78	70	3	2.5	2574.18
RHA1	713	190	136	568	112	95	85	3	3	2574.18
RHA1	713	190	136	568	112	110	97	3	3.5	2574.18
RHA1	713	190	136	568	112	118	102	3	4	2574.18
RHA1	713	190	136	568	112	128	106	3	5	2574.18
RHA1	713	190	136	568	112	128	106	3	6	2574.18
RHA1	713	190	136	568	112	130	107	3	7	2574.18
RHA1	713	190	136	568	112	133	109	3	8	2574.18
RHA1	713	190	136	568	112	134	110	3	10	2574.18
RHA1	713	190	136	568	120	50	49	3.5	2	1858.27
RHA1	713	190	136	568	120	78	74	3.5	2.5	2574.18
RHA1	713	190	136	568	120	95	89	3.5	3	2574.18
RHA1	713	190	136	568	120	110	102	3.5	3.5	2574.18
RHA1	713	190	136	568	120	118	108	3.5	4	2574.18
RHA1	713	190	136	568	120	128	114	3.5	5	2574.18
RHA1	713	190	136	568	120	128	114	3.5	6	2574.18
RHA1	713	190	136	568	120	130	115	35	7	2574 18

Table S10. Ex	pression stats	for RHA1 with	different sensitivity	/ cutoffs

NHAI7131901165681201331173.58.4274:18NHAI7131901365681235601484.42.2155:71NHAI713190136568123570914.43.73.7NHAI713190136568123950914.43.73.7NHAI7131901365681231101044.43.73.7NHAI7131901365681231181114.44.23.74NHAI7131901365681231381114.46.23.74NHAI7131901365681231381124.46.23.74NHAI7131901365681231381204.62.74NHAI7131901365681231381204.52.74NHAI7131901365681281381205.52.74NHAI7131901365681281301205.52.74NHAI7131901365681281301205.52.74NHAI7131901365681281301205.52.74NHAI7131901365681281301265.6<											
NHA1713110116568120134113130130136568123500494.4201358.27NHA1713190136568123764.42.5157.18NHA17131901365681231101044.43.5157.18NHA17131901365681231101044.43.5157.18NHA17131901365681231181114.44.73.5157.18NHA17131901365681231381104.48.7157.18NHA17131901365681231381204.48.74.18NHA17131901365681231381204.413.4130NHA17131901365681281101205.5127.418NHA17131901365681281101055.5127.418NHA17131901365681281101005.5127.418NHA17131901365681281281205.5127.418NHA17131901365681281281205.5127.418NHA17131901365681281301205.5127.418<	RHA1	713	190	136	568	120	133	117	3.5	8	2574.18
RHAI7131901165681235049421852.71RHAI713190136568123764.42.51574.18RHAI713190136568123190914.43.02574.18RHAI7131901365681231101114.44.22574.18RHAI7131901365681231281174.45.22574.18RHAI7131901365681231301184.42.74.18RHAI7131901365681231301184.42.74.18RHAI7131901365681231301184.02.57.18RHAI71319013656812813014015.2.57.18RHAI7131901365681281281005.52.74.18RHAI7131901365681281281205.52.74.18RHAI7131901365681281281205.52.74.18RHAI7131901365681281281205.52.74.18RHAI7131901365681281281205.52.74.18RHAI7131901365681281281205.52.74.	RHA1	713	190	136	568	120	134	118	3.5	10	2574.18
RHA171311901365681237607644.25257.418RHA17131001365681239591.4.45357.418RHA171310013656812311010.44.45357.418RHA171310013656812311281174.450257.418RHA17131001365681231301184.450257.418RHA17131001365681231301184.450257.418RHA17131001365681231301184.0257.418RHA17131901365681231301204.0257.418RHA1713190136568128760552.52.57.418RHA1713190136568128760503.52.57.418RHA1713190136568128130120562.57.418RHA1713190136568128130120562.57.418RHA1713190136568128130120562.57.418RHA1713190136568128130120562.57.418RHA1713190136568<	RHA1	713	190	136	568	123	50	49	4	2	1858.27
RHA171311901365681239509144359574.18RHA1713190136568123110010443.5574.18RHA171319013656812312811144257.418RHA171319013656812312811746257.418RHA17131901365681231301184.06257.418RHA17131901365681231301184.0257.418RHA17131901365681231301204.0257.418RHA17131901365681287806.02.52.5RHA17131901365681287806.02.52.5RHA17131901365681281301205.52.72.5RHA17131901365681281301205.52.72.7RHA17131901365681281301205.52.52.52.5RHA17131901365681281301205.52.52.52.5RHA171319013656813350505.51302.52.52.5RHA1713	RHA1	713	190	136	568	123	78	76	4	2.5	2574.18
RNA171319013656812311010444.52.574.18RNA17131901365681231181114.44.42.574.18RNA17131901365681231281174.45.52.574.18RNA17131901365681231301184.62.574.18RNA17131901365681231301204.48.02.574.18RNA17131901365681231341214.48.02.574.18RNA1713190136568128504.95.52.52.574.18RNA1713190136568128504.95.52.52.574.18RNA171319013656812810010.55.52.574.18RNA17131901365681281181125.54.574.18RNA17131901365681281381205.55.74.18RNA17131901365681281381205.55.74.18RNA17131901365681281381205.55.74.18RNA17131901365681281381205.55.74.18RNA171319013656813	RHA1	713	190	136	568	123	95	91	4	3	2574.18
RHA171319013656812311811144274.18RHA17131901365681231281174.05.55.74.18RHA17131901365681231301184.02.74.18RHA17131901365681231331204.08.274.18RHA17131901365681231341214.00.05.74.18RHA17131901365681285004.05.02.21.74.18RHA17131901365681287.67.65.02.21.74.18RHA17131901365681289.59.25.03.22.57.18RHA17131901365681281101055.03.22.57.18RHA17131901365681281381205.05.22.57.418RHA17131901365681281381205.05.02.57.418RHA17131901365681281381256.02.57.418RHA17131901365681281381265.01.57.418RHA17131901365681331001265.01.57.418RHA1713190136	RHA1	713	190	136	568	123	110	104	4	3.5	2574.18
RHA1713190136568123128117452574.18RHA171319013656812313811746574.18RHA1713190136568123130118472574.18RHA1713190136568123134121482574.18RHA17131901365681287864952578.18RHA171319013656812878760525257.18RHA17131901365681287892532574.18RHA17131901365681281101055352574.18RHA17131901365681281101055352574.18RHA17131901365681281101055352574.18RHA1713190136568128130120572574.18RHA1713190136568128130120572574.18RHA1713190136568133130120572574.18RHA1713190136568133130160642574.18RHA1713190136	RHA1	713	190	136	568	123	118	111	4	4	2574.18
RHA171319013656812312811746257.18RHA171319013656812313011847257.18RHA171319013656812313312048257.18RHA1713190136568128504952.5185.77RHA171319013656812850495.52.5257.418RHA171319013656812878605.53.5257.418RHA17131901365681281101055.63.5257.418RHA17131901365681281181125.53.5257.418RHA17131901365681281281205.63.5257.418RHA17131901365681281281205.63.5257.418RHA17131901365681281301205.6257.418RHA17131901365681331301265.62.52.5RHA17131901365681331301662.52.52.52.52.52.52.52.52.52.52.52.52.52.52.52.52.52.52.5 </td <td>RHA1</td> <td>713</td> <td>190</td> <td>136</td> <td>568</td> <td>123</td> <td>128</td> <td>117</td> <td>4</td> <td>5</td> <td>2574.18</td>	RHA1	713	190	136	568	123	128	117	4	5	2574.18
RHA1713190136568123130118472574.18RHA171319013656812313312048574.18RHA1713190136568128504952155.27RHA1713190136568128504952.5155.27RHA1713190136568128504953.52574.18RHA171319013656812811811253.52574.18RHA17131901365681281281205.53.62574.18RHA17131901365681281281205.53.62574.18RHA17131901365681281281205.53.62574.18RHA17131901365681281281205.53.62574.18RHA17131901365681331301205.62.52.5RHA1713190136568133130163.62.52.5RHA17131901365681331301642.52.5RHA171319013656813311016642.52.5RHA1713190 <t< td=""><td>RHA1</td><td>713</td><td>190</td><td>136</td><td>568</td><td>123</td><td>128</td><td>117</td><td>4</td><td>6</td><td>2574.18</td></t<>	RHA1	713	190	136	568	123	128	117	4	6	2574.18
RHA17131901365681231331201482574.18RHA171319013656812313412144102574.18RHA17131901365681285049521858.27RHA171319013656812878765252574.18RHA17131901365681289592532574.18RHA171319013656812811010552574.18RHA1713190136568128110120562574.18RHA1713190136568128130122562574.18RHA1713190136568128130122562574.18RHA1713190136568128130122582574.18RHA1713190136568128133120582574.18RHA171319013656813350506252574.18RHA1713190136568133130160632574.18RHA1713190136568133130160632574.18RHA1713190136568 <td>RHA1</td> <td>713</td> <td>190</td> <td>136</td> <td>568</td> <td>123</td> <td>130</td> <td>118</td> <td>4</td> <td>7</td> <td>2574.18</td>	RHA1	713	190	136	568	123	130	118	4	7	2574.18
RHA171319013656812313412144102574.18RHA171319013656812850449521858.27RHA1713190136568128787652.52574.18RHA1713190136568128959253.52574.18RHA17131901365681281101055.63.52574.18RHA17131901365681281181125.642574.18RHA17131901365681281281205.65.72574.18RHA17131901365681281331205.62574.18RHA17131901365681281331205.61272574.18RHA17131901365681281331205.6102574.18RHA171319013656813350506.62574.18RHA17131901365681331301606.63.52574.18RHA17131901365681331301606.63.52574.18RHA17131901365681331301606.63.52574.18RHA1713190 </td <td>RHA1</td> <td>713</td> <td>190</td> <td>136</td> <td>568</td> <td>123</td> <td>133</td> <td>120</td> <td>4</td> <td>8</td> <td>2574.18</td>	RHA1	713	190	136	568	123	133	120	4	8	2574.18
RHA171319013656812850495<121858.27RHA171319013656812878765252574.18RHA1713190136568128959253.52574.18RHA171319013656812811010553.52574.18RHA1713190136568128112150542574.18RHA171319013656812812055257.18RHA171319013656812813012256257.18RHA171319013656812813312058257.18RHA1713190136568128134126512.5257.18RHA1713190136568133505062.5257.18RHA171319013656813311010862.5257.18RHA171319013656813311010863.5257.18RHA171319013656813311010864257.18RHA171319013656813312812563.5257.18RHA1713190136568<	RHA1	713	190	136	568	123	134	121	4	10	2574.18
RHA17131901365681287676525257.4.8RHA1713190136568128959253.5257.1.8RHA17131901365681281101055.53.5257.1.8RHA17131901365681281181125.64.4257.1.8RHA17131901365681281281205.6257.4.8RHA17131901365681281301225.66257.4.8RHA17131901365681281301225.66257.4.8RHA1713190136568133505062.5257.4.8RHA1713190136568133787862.5257.4.8RHA171319013656813311010863.5257.4.8RHA171319013656813311010863.5257.4.8RHA171319013656813312812566257.4.8RHA171319013656813312812566257.4.8RHA171319013656813313012767257.4.8RHA1713190 <t< td=""><td>RHA1</td><td>713</td><td>190</td><td>136</td><td>568</td><td>128</td><td>50</td><td>49</td><td>5</td><td>2</td><td>1858.27</td></t<>	RHA1	713	190	136	568	128	50	49	5	2	1858.27
RHA171319013656812895925332574.18RHA171319013656812811010553.52574.18RHA171319013656812811811254.42574.18RHA17131901365681281281205.55.52574.18RHA17131901365681281281205.56.62574.18RHA17131901365681281301205.52574.18RHA17131901365681281331255.56.62574.18RHA1713190136568133505.06.62.5153.18RHA1713190136568133505.66.62.52574.18RHA17131901365681331101086.63.52574.18RHA17131901365681331101086.63.52574.18RHA17131901365681331181166.642574.18RHA17131901365681331181166.63.52574.18RHA17131901365681331301276.65.52574.18RHA1 <td< td=""><td>RHA1</td><td>713</td><td>190</td><td>136</td><td>568</td><td>128</td><td>78</td><td>76</td><td>5</td><td>2.5</td><td>2574.18</td></td<>	RHA1	713	190	136	568	128	78	76	5	2.5	2574.18
RHA171319013656812811010553.5257.43RHA171319013656812811811254257.43RHA171319013656812812812055257.43RHA171319013656812813012056257.43RHA171319013656812813012058257.43RHA1713190136568128134126512257.43RHA17131901365681385050625257.43RHA17131901365681335050625257.43RHA1713190136568133959463257.43RHA1713190136568133110108635257.43RHA1713190136568133110108635257.43RHA171319013656813313012766257.43RHA1713190136568133130130630257.43RHA17131901365681331301306130257.43RHA1713190136568	RHA1	713	190	136	568	128	95	92	5	3	2574.18
RHA17131901365681281181105542574.18RHA171319013656812812812055552574.18RHA171319013656812813012250602574.18RHA1713190136568128130120552574.18RHA1713190136568128133120552574.18RHA1713190136568133505060252574.18RHA1713190136568133787860252574.18RHA1713190136568133100106632574.18RHA171319013656813310110860352574.18RHA171319013656813311811664422574.18RHA171319013656813312812566552574.18RHA171319013656813313012760702574.18RHA1713190136568133130130601252574.18RHA1713190136568133130130722574.18RHA1713190136568<	RHA1	713	190	136	568	128	110	105	5	3.5	2574.18
RHA17131901365681281281205555257.418RHA1713190136568128130122556257.18RHA1713190136568128133125558257.18RHA17131901365681281331255510257.18RHA17131901365681281341265510257.18RHA17131901365681335050625257.18RHA17131901365681337878625257.18RHA171319013656813311010863.5257.18RHA171319013656813311010863.5257.18RHA171319013656813311010863.5257.18RHA171319013656813311010863.5257.18RHA1713190136568133128125665.5257.18RHA171319013656813313012767.5257.18RHA171319013656813313012767.5257.18RHA1713	RHA1	713	190	136	568	128	118	112	5	4	2574.18
RHA171319013656812812812055662574.18RHA17131901365681281301225572574.18RHA17131901365681281331255582574.18RHA17131901365681281341265582574.18RHA1713190136568133505066222574.18RHA1713190136568133787866252574.18RHA17131901365681339594663.22574.18RHA1713190136568133110108663.52574.18RHA171319013656813311010863.52574.18RHA171319013656813311010863.52574.18RHA1713190136568133128125665574.18RHA1713190136568133130127672574.18RHA1713190136568133130127672574.18RHA1713190136568133130127672574.18RHA1713190<	RHA1	713	190	136	568	128	128	120	5	5	2574.18
RHA1713190136568128130122572574.18RHA171319013656812813312555882574.18RHA171319013656812813412655102574.18RHA1713190136568133505066222574.18RHA17131901365681337878662.52574.18RHA17131901365681339594663.52574.18RHA1713190136568133110108663.52574.18RHA1713190136568133110108663.52574.18RHA1713190136568133110108663.52574.18RHA171319013656813312812566622574.18RHA17131901365681331301276672574.18RHA17131901365681331341316102574.18RHA17131901365681331341316102574.18RHA17131901365681331341316102574.18RHA1713	RHA1	713	190	136	568	128	128	120	5	6	2574.18
RHA1 713 190 136 568 128 133 125 5 8 2574.18 RHA1 713 190 136 568 128 134 126 5 10 2574.18 RHA1 713 190 136 568 133 50 50 6 2 1588.27 RHA1 713 190 136 568 133 78 78 6 2.5 2574.18 RHA1 713 190 136 568 133 95 94 6 3.5 2574.18 RHA1 713 190 136 568 133 110 108 6 3.5 2574.18 RHA1 713 190 136 568 133 128 125 6 5 2574.18 RHA1 713 190 136 568 133 130 127 6 7 2574.18 RHA1	RHA1	713	190	136	568	128	130	122	5	7	2574.18
RHA1 713 190 136 568 128 134 126 5 100 2574.18 RHA1 713 190 136 568 133 50 50 6 2 1858.27 RHA1 713 190 136 568 133 78 78 6 2.5 2574.18 RHA1 713 190 136 568 133 95 94 6 3 2574.18 RHA1 713 190 136 568 133 110 108 6 3.5 2574.18 RHA1 713 190 136 568 133 110 108 6 3.5 2574.18 RHA1 713 190 136 568 133 128 125 6 6 2574.18 RHA1 713 190 136 568 133 130 127 6 7 2574.18 RHA1	RHA1	713	190	136	568	128	133	125	5	8	2574.18
RHA1 713 190 136 568 133 50 50 6 2 1858.27 RHA1 713 190 136 568 133 78 78 6 2.5 2574.18 RHA1 713 190 136 568 133 95 94 6 3.5 2574.18 RHA1 713 190 136 568 133 100 108 6 3.5 2574.18 RHA1 713 190 136 568 133 110 108 6 4 2574.18 RHA1 713 190 136 568 133 128 125 6 6 2574.18 RHA1 713 190 136 568 133 130 127 6 7 2574.18 RHA1 713 190 136 568 133 130 127 6 13 2574.18 RHA1	RHA1	713	190	136	568	128	134	126	5	10	2574.18
RHA1 713 190 136 568 133 78 78 6 2.5 2574.18 RHA1 713 190 136 568 133 95 94 6 3 2574.18 RHA1 713 190 136 568 133 110 108 6 3.5 2574.18 RHA1 713 190 136 568 133 110 108 6 3.5 2574.18 RHA1 713 190 136 568 133 118 116 6 4 2574.18 RHA1 713 190 136 568 133 128 125 6 6 2574.18 RHA1 713 190 136 568 133 130 127 6 7 2574.18 RHA1 713 190 136 568 133 130 127 6 7 2574.18 RHA1	RHA1	713	190	136	568	133	50	50	6	2	1858.27
RHA1713190136568133959466332574.18RHA1713190136568133110108663.52574.18RHA17131901365681331181166642574.18RHA17131901365681331181166642574.18RHA17131901365681331281256662574.18RHA17131901365681331301276672574.18RHA17131901365681331301276672574.18RHA171319013656813313016082574.18RHA17131901365681331301306682574.18RHA171319013656813313413166102574.18RHA1713190136568133787872.52574.18RHA171319013656813311010873.52574.18RHA1713190136568133118116742574.18RHA1713190136568133128125762574.18RHA171319013	RHA1	713	190	136	568	133	78	78	6	2.5	2574.18
RHA171319013656813311010863.52574.18RHA1713190136568133118116642574.18RHA1713190136568133128125652574.18RHA1713190136568133128125662574.18RHA1713190136568133130127672574.18RHA1713190136568133130127672574.18RHA1713190136568133130127672574.18RHA1713190136568133130127672574.18RHA1713190136568133130127672574.18RHA1713190136568133134131602574.18RHA17131901365681331341316102574.18RHA1713190136568133787872.52574.18RHA171319013656813311010873.52574.18RHA171319013656813311010873.52574.18RHA1713190 <t< td=""><td>RHA1</td><td>713</td><td>190</td><td>136</td><td>568</td><td>133</td><td>95</td><td>94</td><td>6</td><td>3</td><td>2574.18</td></t<>	RHA1	713	190	136	568	133	95	94	6	3	2574.18
RHA1713190136568133118116642574.18RHA1713190136568133128125652574.18RHA1713190136568133128125662574.18RHA1713190136568133130127672574.18RHA1713190136568133130127672574.18RHA1713190136568133130127672574.18RHA17131901365681331301682574.18RHA17131901365681331341316102574.18RHA17131901365681331341316102574.18RHA1713190136568133787872.52574.18RHA171319013656813311010873.52574.18RHA171319013656813311010873.52574.18RHA171319013656813311010873.52574.18RHA1713190136568133128125752574.18RHA1713190136	RHA1	713	190	136	568	133	110	108	6	3.5	2574.18
RHA171319013656813312812566552574.18RHA171319013656813312812566602574.18RHA17131901365681331301276672574.18RHA171319013656813313012766882574.18RHA171319013656813313012766882574.18RHA1713190136568133134131661002574.18RHA17131901365681335050721858.27RHA1713190136568133787872.52574.18RHA1713190136568133959473.52574.18RHA171319013656813311010873.52574.18RHA171319013656813311010873.52574.18RHA171319013656813311010873.52574.18RHA171319013656813311010873.52574.18RHA171319013656813311010873.52574.18RHA1713<	RHA1	713	190	136	568	133	118	116	6	4	2574.18
RHA171319013656813312812566662574.18RHA17131901365681331301276672574.18RHA171319013656813313313066882574.18RHA1713190136568133134131661002574.18RHA17131901365681335050721858.27RHA1713190136568133787872.52574.18RHA17131901365681339594732574.18RHA171319013656813311010873.52574.18RHA171319013656813311010873.52574.18RHA171319013656813311010873.52574.18RHA1713190136568133118116742574.18RHA1713190136568133128125752574.18RHA1713190136568133130127772574.18RHA1713190136568133130127762574.18RHA1713190 <td>RHA1</td> <td>713</td> <td>190</td> <td>136</td> <td>568</td> <td>133</td> <td>128</td> <td>125</td> <td>6</td> <td>5</td> <td>2574.18</td>	RHA1	713	190	136	568	133	128	125	6	5	2574.18
RHA17131901365681331301276672574.18RHA17131901365681331331306682574.18RHA171319013656813313413166102574.18RHA171319013656813350500721858.27RHA1713190136568133787872.52574.18RHA17131901365681339594732574.18RHA171319013656813311010873.52574.18RHA171319013656813311010873.52574.18RHA171319013656813311010873.52574.18RHA1713190136568133118116742574.18RHA1713190136568133128125762574.18RHA1713190136568133128125762574.18RHA1713190136568133130127772574.18RHA1713190136568133130127762574.18RHA1713190 <t< td=""><td>RHA1</td><td>713</td><td>190</td><td>136</td><td>568</td><td>133</td><td>128</td><td>125</td><td>6</td><td>6</td><td>2574.18</td></t<>	RHA1	713	190	136	568	133	128	125	6	6	2574.18
RHA1713190136568133133130682574.18RHA17131901365681331341316102574.18RHA17131901365681335050721858.27RHA1713190136568133787872.52574.18RHA17131901365681339594732574.18RHA17131901365681339594732574.18RHA171319013656813311010873.52574.18RHA171319013656813311010873.52574.18RHA171319013656813311010873.52574.18RHA1713190136568133128125762574.18RHA1713190136568133128125762574.18RHA1713190136568133130127772574.18RHA1713190136568133130127762574.18RHA1713190136568133130127762574.18RHA1713190136<	RHA1	713	190	136	568	133	130	127	6	7	2574.18
RHA17131901365681331341316102574.18RHA17131901365681335050721858.27RHA1713190136568133787872.52574.18RHA17131901365681339594732574.18RHA171319013656813311010873.52574.18RHA1713190136568133110108742574.18RHA1713190136568133118116742574.18RHA1713190136568133128125752574.18RHA1713190136568133128125762574.18RHA1713190136568133130127772574.18RHA1713190136568133130127762574.18RHA1713190136568133130127762574.18RHA1713190136568133130127782574.18RHA1713190136568133133130782574.18RHA1713190136 <td>RHA1</td> <td>713</td> <td>190</td> <td>136</td> <td>568</td> <td>133</td> <td>133</td> <td>130</td> <td>6</td> <td>8</td> <td>2574.18</td>	RHA1	713	190	136	568	133	133	130	6	8	2574.18
RHA17131901365681335050721858.27RHA1713190136568133787872.52574.18RHA17131901365681339594732574.18RHA171319013656813311010873.52574.18RHA171319013656813311010873.52574.18RHA1713190136568133118116742574.18RHA1713190136568133128125752574.18RHA1713190136568133128125762574.18RHA1713190136568133130127772574.18RHA1713190136568133130127782574.18RHA1713190136568133130127782574.18RHA1713190136568133130127782574.18RHA1713190136568133133130782574.18	RHA1	713	190	136	568	133	134	131	6	10	2574.18
RHA1713190136568133787872.52574.18RHA17131901365681339594732574.18RHA171319013656813311010873.52574.18RHA1713190136568133110108742574.18RHA1713190136568133118116742574.18RHA1713190136568133128125752574.18RHA1713190136568133128125762574.18RHA1713190136568133130127772574.18RHA1713190136568133130127782574.18RHA1713190136568133130127782574.18RHA1713190136568133130127782574.18	RHA1	713	190	136	568	133	50	50	7	2	1858.27
RHA17131901365681339594732574.18RHA171319013656813311010873.52574.18RHA1713190136568133118116742574.18RHA1713190136568133128125752574.18RHA1713190136568133128125762574.18RHA1713190136568133130127762574.18RHA1713190136568133130127782574.18RHA1713190136568133133130782574.18	RHA1	713	190	136	568	133	78	78	7	2.5	2574.18
RHA1 713 190 136 568 133 110 108 7 3.5 2574.18 RHA1 713 190 136 568 133 110 108 7 3.5 2574.18 RHA1 713 190 136 568 133 118 116 7 4 2574.18 RHA1 713 190 136 568 133 128 125 7 5 2574.18 RHA1 713 190 136 568 133 128 125 7 6 2574.18 RHA1 713 190 136 568 133 128 125 7 6 2574.18 RHA1 713 190 136 568 133 130 127 7 7 2574.18 RHA1 713 190 136 568 133 130 127 7 7 2574.18 RHA1	RHA1	713	190	136	568	133	95	94	7	3	2574.18
RHA1 713 190 136 568 133 118 116 7 4 2574.18 RHA1 713 190 136 568 133 128 125 7 5 2574.18 RHA1 713 190 136 568 133 128 125 7 6 2574.18 RHA1 713 190 136 568 133 128 125 7 6 2574.18 RHA1 713 190 136 568 133 130 127 7 6 2574.18 RHA1 713 190 136 568 133 130 127 7 7 2574.18 RHA1 713 190 136 568 133 130 127 7 8 2574.18	RHA1	713	190	136	568	133	110	108	7	3.5	2574.18
RHA1 713 190 136 568 133 128 125 7 5 2574.18 RHA1 713 190 136 568 133 128 125 7 6 2574.18 RHA1 713 190 136 568 133 128 125 7 6 2574.18 RHA1 713 190 136 568 133 130 127 7 7 2574.18 RHA1 713 190 136 568 133 130 127 7 7 2574.18	RHA1	713	190	136	568	133	118	116	7	4	2574.18
RHA1 713 190 136 568 133 128 125 7 6 2574.18 RHA1 713 190 136 568 133 130 127 7 6 2574.18 RHA1 713 190 136 568 133 130 127 7 7 2574.18 RHA1 713 190 136 568 133 133 130 7 8 2574.18	RHA1	713	190	136	568	133	128	125	7	5	2574.18
RHA1 713 190 136 568 133 130 127 7 7 2574.18 RHA1 713 190 136 568 133 133 130 7 8 2574.18	RHA1	713	190	136	568	133	128	125	7	6	2574.18
RHA1 713 190 136 568 133 133 130 7 8 2574.18	RHA1	713	190	136	568	133	130	127	7	7	2574.18
	RHA1	713	190	136	568	133	133	130	7	8	2574.18

RHA1	713	190	136	568	133	134	131	7	10	2574.18
RHA1	713	190	136	568	133	50	50	8	2	1858.27
RHA1	713	190	136	568	133	78	78	8	2.5	2574.18
RHA1	713	190	136	568	133	95	94	8	3	2574.18
RHA1	713	190	136	568	133	110	108	8	3.5	2574.18
RHA1	713	190	136	568	133	118	116	8	4	2574.18
RHA1	713	190	136	568	133	128	125	8	5	2574.18
RHA1	713	190	136	568	133	128	125	8	6	2574.18
RHA1	713	190	136	568	133	130	127	8	7	2574.18
RHA1	713	190	136	568	133	133	130	8	8	2574.18
RHA1	713	190	136	568	133	134	131	8	10	2574.18
RHA1	713	190	136	568	134	50	50	10	2	1858.27
RHA1	713	190	136	568	134	78	78	10	2.5	2574.18
RHA1	713	190	136	568	134	95	94	10	3	2574.18
RHA1	713	190	136	568	134	110	109	10	3.5	2574.18
RHA1	713	190	136	568	134	118	117	10	4	2574.18
RHA1	713	190	136	568	134	128	126	10	5	2574.18
RHA1	713	190	136	568	134	128	126	10	6	2574.18
RHA1	713	190	136	568	134	130	128	10	7	2574.18
RHA1	713	190	136	568	134	133	131	10	8	2574.18
RHA1	713	190	136	568	134	134	132	10	10	2574.18

num_prom_in_bc_pass = number of promoters represented in the group of barcodes with the minimum amount of data for analysis

num_prom_suff_data = number of promoters with sufficient data for analysis. This involves having at least 3 barcode variants with sufficient data for analysis for a given promoter

num_bc_pass_outlier = number of barcodes that pass the barcode outlier test

num_UTR_insensitive = number of promoters that are insensitive to 5' UTR sequence

num_Cond_insensitive = number of promoters that are insensitive to tested conditions

num_consistent = number of promoters that are both insensitive to 5' UTR sequence and tested conditions UTR_cutoff = fold expression difference between barcode variants that must be passed for a promoter to be considered insensitive to 5' UTR sequences

Cond_cutoff = fold expression difference between conditions that must be passed for a promoter to be considered insensitive to conditions

Additional Supplementary Materials

Supplementary Data D1: Promoter source & DNA sequence with relative transcriptional profiling scores for gene expression library.

Figure Source Data: Measurement data used to visualize figure panels with N < 20, with individual Excel tabs for each relevant figure panel.

Supplementary File F1: Relative transcriptional activity plot for all promoters, conditions, and associated barcodes in *Pseudomonas fluorescens* SBW25.

Supplementary File F2: Relative transcriptional activity plot for all promoters, conditions, and associated barcodes in *Pseudomonas frederiksbergensis* TBS10.

Supplementary File F3: Relative transcriptional activity plot for all promoters, conditions, and associated barcodes in *Pseudomonas putida* Gpo1.

Supplementary File F4: Relative transcriptional activity plot for all promoters, conditions, and associated barcodes in *Rhodopseudomonas palustris* CGA009.

Supplementary File F5: Relative transcriptional activity plot for all promoters, conditions, and associated barcodes in *Rhodococcus jostii* RHA1.

Supplementary File P1: Sequence maps for all plasmids constructed for this study.

Supplementary File T1: Source and DNA sequence information for 287 natural and synthetic transcriptional promoters for bacteria included in the SAGE expression library.

Supplementary File T2: Relative transcriptional activity (RTA) scores across strains, conditions, and barcodes.

REFERENCES

- V. M. Isabella, B. N. Ha, M. J. Castillo, D. J. Lubkowicz, S. E. Rowe, Y. A. Millet, C. L. Anderson, N. Li, A. B. Fisher, K. A. West, P. J. Reeder, M. M. Momin, C. G. Bergeron, S. E. Guilmain, P. F. Miller, C. B. Kurtz, D. Falb, Development of a synthetic live bacterial therapeutic for the human metabolic disease phenylketonuria. *Nat. Biotechnol.* 36, 857–864 (2018).
- V. Bahuguna, G. Bhatt, R. Maikhuri, D. Chandra, in *Microbial Metatranscriptomics Belowground*, M. Nath, D. Bhatt, P. Bhargava, D. K. Choudhary, Eds. (Springer Singapore, 2021), pp. 109–122.
- 3. R. K. Goyal, M. A. Schmidt, M. F. Hynes, Molecular biology in the improvement of biological nitrogen fixation by rhizobia and extending the scope to cereals. *Microorganisms* **9**, 125 (2021).
- 4. A. Z. Werner, R. Clare, T. D. Mand, I. Pardo, K. J. Ramirez, S. J. Haugen, F. Bratti, G. N. Dexter, J. R. Elmore, J. D. Huenemann, G. L. Peabody V, C. W. Johnson, N. A. Rorrer, D. Salvachúa, A. M. Guss, G. T. Beckham, Tandem chemical deconstruction and biological upcycling of poly(ethylene terephthalate) to β-ketoadipic acid by Pseudomonas putida KT2440. *Metab. Eng.* 67, 250–261 (2021).
- 5. A. Banner, H. S. Toogood, N. S. Scrutton, Consolidated bioprocessing: Synthetic biology routes to fuels and fine chemicals. *Microorganisms* **9**, 1079 (2021).
- J. Kim, S. Hwang, S. M. Lee, Metabolic engineering for the utilization of carbohydrate portions of lignocellulosic biomass. *Metab. Eng.* 71, 2–12 (2022).
- 7. F. Käβ, S. Junne, P. Neubauer, W. Wiechert, M. Oldiges, Process inhomogeneity leads to rapid side product turnover in cultivation of Corynebacterium glutamicum. *Microb. Cell Fact.* **13**, 6 (2014).
- M. Pigou, J. Morchain, Investigating the interactions between physical and biological heterogeneities in bioreactors using compartment, population balance and metabolic models. *Chem. Eng. Sci.* 126, 267– 282 (2015).
- 9. L. A. Riley, A. M. Guss, Approaches to genetic tool development for rapid domestication of non-model microorganisms. *Biotechnol. Biofuels* **14**, 30 (2021).

- M. E. Kovach, P. H. Elzer, D. Steven Hill, G. T. Robertson, M. A. Farris, R.M. Roop II, K. M. Peterson, Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. *Gene* 166, 175–176 (1995).
- T. S. Lee, R. A. Krupa, F. Zhang, M. Hajimorad, W. J. Holtz, N. Prasad, S. K. Lee, J. D. Keasling, BglBrick vectors and datasheets: A synthetic biology platform for gene expression. *J. Biol. Eng.* 5, 12 (2011).
- W. Pansegrau, E. Lanka, P. T. Barth, D. H. Figurski, D. G. Guiney, D. Haas, D. R. Helinski, H. Schwab, V. A. Stanisich, C. M. Thomas, Complete nucleotide sequence of Birmingham IncPα plasmids. *J. Mol. Biol.* 239, 623–663 (1994).
- R. H. Durland, A. Toukdarian, F. Fang, D. R. Helinski, Mutations in the trfA replication gene of the broad-host-range plasmid RK2 result in elevated plasmid copy numbers. *J. Bacteriol.* **172**, 3859–3867 (1990).
- 14. J. Frey, M. M. Bagdasarian, M. Bagdasarian, Replication and copy number control of the broad-host-range plasmid RSF1010. *Gene* **113**, 101–106 (1992).
- 15. E. De Rossi, A. Milano, P. Brigidi, F. Bini, G. Riccardi, Structural organization of pBC1, a cryptic plasmid from Bacillus coagulans. *J. Bacteriol.* **174**, 638–642 (1992).
- L. De Gelder, J. J. Williams, J. M. Ponciano, M. Sota, E. M. Top, Adaptive plasmid evolution results in host-range expansion of a broad-host-range plasmid. *Genetics* 178, 2179–2190 (2008).
- 17. W. P. Gill, N. S. Harik, M. R. Whiddon, R. P. Liao, J. E. Mittler, D. R. Sherman, A replication clock for Mycobacterium tuberculosis. *Nat. Med.* **15**, 211–214 (2009).
- C. A. Mason, J. E. Bailey, Effects of plasmid presence on growth and enzyme activity of *Escherichia* coli DH5α. Appl. Microbiol. Biotechnol. 32, 54–60 (1989).
- 19. J. Mi, A. Sydow, F. Schempp, D. Becher, H. Schewe, J. Schrader, M. Buchhaupt, Investigation of plasmid-induced growth defect in Pseudomonas putida. *J. Biotechnol.* **231**, 167–173 (2016).

- 20. A. San Millan, M. Toll-Riera, Q. Qi, A. Betts, R. J. Hopkinson, J. McCullagh, R. C. MacLean, Integrative analysis of fitness and metabolic effects of plasmids in Pseudomonas aeruginosa PAO1. *ISME J.* 12, 3014–3024 (2018).
- 21. M. Sota, H. Yano, J. M Hughes, G. W. Daughdrill, Z. Abdo, L. J. Forney, E. M. Top, Shifts in the host range of a promiscuous plasmid through parallel evolution of its replication initiation protein. *ISME J.* **4**, 1568–1580 (2010).
- 22. L. Yin, H. Ma, E. S. Nakayasu, S. H. Payne, D. R. Morris, C. S. Harwood, Bacterial longevity requires protein synthesis and a stringent response. *MBio* **10**, e02189-19 (2019).
- S. Lin-Chao, H. Bremer, Effect of the bacterial growth rate on replication control of plasmid pBR322 in Escherichia coli. *Mol. Gen. Genet.* 203, 143–149 (1986).
- 24. J. Paulsson, M. Ehrenberg, Noise in a minimal regulatory network: Plasmid copy number control. *Q. Rev. Biophys.* 34, 1–59 (2001).
- 25. A. Pena-Gonzalez, L. M. Rodriguez-R, C. K. Marston, J. E. Gee, C. A. Gulvik, C. B. Kolton, E. Saile, M. Frace, A. R. Hoffmaster, K. T. Konstantinidis, Genomic characterization and copy number variation of *bacillus anthracis* plasmids pXO1 and pXO2 in a historical collection of 412 strains. 3, e00065-18 (2018).
- 26. T. B. Cook, J. M. Rand, W. Nurani, D. K. Courtney, S. A. Liu, B. F. Pfleger, Genetic tools for reliable gene expression and recombineering in Pseudomonas putida. *J. Ind. Microbiol. Biotechnol.* 45, 517–527 (2018).
- 27. S. C. Troeschel, S. Thies, O. Link, C. I. Real, K. Knops, S. Wilhelm, F. Rosenau, K. E. Jaeger, Novel broad host range shuttle vectors for expression in Escherichia coli, Bacillus subtilis and Pseudomonas putida. *J. Biotechnol.* 161, 71–79 (2012).
- 28. L. Li, X. Liu, K. Wei, Y. Lu, W. Jiang, Synthetic biology approaches for chromosomal integration of genes and pathways in industrial microbial systems. *Biotechnol. Adv.* **37**, 730–745 (2019).

- 29. R. D. Arroyo-Olarte, R. B. Rodriguez, E. Morales-Rios, Genome editing in bacteria: CRISPR-cas and beyond. *Microorganisms* 9, 844 (2021).
- 30. R. D. Arroyo-Olarte, R. B. Rodríguez, E. Morales-Ríos, Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: Selection of defined deletions in the chromosome of Corynebacterium glutamicum. *Gene* 145, 69–73 (1994).
- 31. J. R. Elmore, A. Furches, G. N. Wolff, K. Gorday, A. M. Guss, Development of a high efficiency integration system and promoter library for rapid modification of Pseudomonas putida KT2440. *Metab. Eng. Commun.* 5, 1–8 (2017).
- 32. E. M. Lammens, P. I. Nikel, R. Lavigne, Exploring the synthetic biology potential of bacteriophages for engineering non-model bacteria. *Nat. Commun.* **11**, 5294 (2020).
- J. A. N. Brophy, A. J. Triassi, B. L. Adams, R. L. Renberg, D. N. Stratis-Cullum, A. D. Grossman, C. A. Voigt, Engineered integrative and conjugative elements for efficient and inducible DNA transfer to undomesticated bacteria. *Nat. Microbiol.* 3, 1043–1053 (2018).
- 34. M. A. Gregory, R. Till, M. C. Smith, Integration site for Streptomyces phage phiBT1 and development of site-specific integrating vectors. *J. Bacteriol.* **185**, 5320–5323 (2003).
- 35. A. M. Guss, M. Rother, J. K. Zhang, G. Kulkarni, W. W. Metcalf, New methods for tightly regulated gene expression and highly efficient chromosomal integration of cloned genes for Methanosarcina species. *Archaea* **2**, 193–203 (2008).
- 36. A. Keravala, A. C. Groth, S. Jarrahian, B. Thyagarajan, J. J. Hoyt, P. J. Kirby, M. P. Calos, A diversity of serine phage integrases mediate site-specific recombination in mammalian cells. *Mol. Genet. Genomics* 276, 135–146 (2006).
- 37. L. Li, K. Wei, X. Liu, Y. Wu, G. Zheng, S. Chen, W. Jiang, Y. Lu, aMSGE: Advanced multiplex sitespecific genome engineering with orthogonal modular recombinases in actinomycetes. *Metab. Eng.* 52, 153–167 (2019).

- 38. C. A. Merrick, J. Zhao, S. J. Rosser, Serine integrases: Advancing synthetic biology. *ACS Synth. Biol.*7, 299–310 (2018).
- 39. J. G. Thomson, R. Chan, J. Smith, R. Thilmony, Y. Y. Yau, Y. J. Wang, D. W. Ow, The Bxb1 recombination system demonstrates heritable transmission of site-specific excision in Arabidopsis. *BMC Biotechnol.* 12, 9 (2012).
- 40. Z. Xu, W. R. Brown, Comparison and optimization of ten phage encoded serine integrases for genome engineering in Saccharomyces cerevisiae. *BMC Biotechnol.* **16**, 13 (2016).
- 41. G. Wang, Z. Zhao, J. Ke, Y. Engel, Y.M. Shi, D. Robinson, K. Bingol, Z. Zhang, B. Bowen, K. Louie, B. Wang, R. Evans, Y. Miyamoto, K. Cheng, S. Kosina, M. de Raad, L. Silva, A. Luhrs, A. Lubbe, D. W. Hoyt, C. Francavilla, H. Otani, S. Deutsch, N. M. Washton, E. M. Rubin, N. J. Mouncey, A. Visel, T. Northen, J.F. Cheng, H. B. Bode, Y. Yoshikuni, CRAGE enables rapid activation of biosynthetic gene clusters in undomesticated bacteria. *Nat. Microbiol.* 4, 2498–2510 (2019).
- 42. W. R. A. Brown, N. C. O. Lee, Z. Y. Xu, M. C. M. Smith, Serine recombinases as tools for genome engineering. *Methods* **53**, 372–379 (2011).
- P. C. Fogg, S. Colloms, S. Rosser, M. Stark, M. C. Smith, New applications for phage integrases. J. Mol. Biol. 426, 2703–2716 (2014).
- 44. T. E. Saleski, M. T. Chung, D. N. Carruthers, A. Khasbaatar, K. Kurabayashi, X. N. Lin, Optimized gene expression from bacterial chromosome by high-throughput integration and screening. *Sci. Adv.* **7**, eabe1767 (2021).
- 45. B. Wang, Z. Zhao, L. K. Jabusch, D. M. Chiniquy, K. Ono, J. M. Conway, Z. Zhang, G. Wang, D. Robinson, J.F. Cheng, J. L. Dangl, T. R. Northen, Y. Yoshikuni, CRAGE-duet facilitates modular assembly of biological systems for studying plant-microbe interactions. *ACS Synth. Biol.* 9, 2610–2615 (2020).
- 46. M. Bierman, R. Logan, K. O'Brien, E. T. Seno, R. Nagaraja Rao, B. E. Schoner, Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp. *Gene* **116**, 43–49 (1992).

- 47. Y. Jiang, B. Chen, C. Duan, B. Sun, J. Yang, S. Yang, Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system. *Appl. Environ. Microb.* **81**, 2506–2514 (2015).
- 48. C. W. Song, J. Lee, S. Y. Lee, Genome engineering and gene expression control for bacterial strain development. *Biotechnol. J.* **10**, 56–68 (2015).
- 49. P. L. H. Vo, C. Ronda, S. E. Klompe, E. E. Chen, C. Acree, H. H. Wang, S. H. Sternberg, CRISPR RNA-guided integrases for high-efficiency, multiplexed bacterial genome engineering. *Nat. Biotechnol.* 39, 480–489 (2021).
- 50. M. J. Bailey, A. K. Lilley, I. P. Thompson, P. B. Rainey, R. J. Ellis, Site directed chromosomal marking of a fluorescent pseudomonad isolated from the phytosphere of sugar beet; Stability and potential for marker gene transfer. *Mol. Ecol.* **4**, 755–764 (1995).
- 51. F. W. Larimer, P. Chain, L. Hauser, J. Lamerdin, S. Malfatti, L. do, M. L. Land, D. A. Pelletier, J. T. Beatty, A. S. Lang, F. R. Tabita, J. L. Gibson, T. E. Hanson, C. Bobst, J. L. T. Torres, C. Peres, F. H. Harrison, J. Gibson, C. S. Harwood, Complete genome sequence of the metabolically versatile photosynthetic bacterium Rhodopseudomonas palustris. *Nat. Biotechnol.* 22, 55–61 (2004).
- 52. E. J. McKenna, M. J. Coon, Enzymatic omega-oxidation. IV. Purification and properties of the omegahydroxylase of Pseudomonas oleovorans. *J. Biol. Chem.* **245**, 3882–3889 (1970).
- 53. M. Seto, K. Kimbara, M. Shimura, T. Hatta, M. Fukuda, K. Yano, A novel transformation of polychlorinated biphenyls by rhodococcus sp. strain RHA1. *Appl. Environ. Microbiol.* **61**, 3353–3358 (1995).
- 54. Y. J. Chen, P. Liu, A. A. K. Nielsen, J. A. N. Brophy, K. Clancy, T. Peterson, C. A. Voigt, Characterization of 582 natural and synthetic terminators and quantification of their design constraints. *Nat. Methods* 10, 659–664 (2013).
- 55. N. C. Shaner, G. G. Lambert, A. Chammas, Y. Ni, P. J. Cranfill, M. A. Baird, B. R. Sell, J. R. Allen, R. N. Day, M. Israelsson, M. W. Davidson, J. Wang, A bright monomeric green fluorescent protein derived from Branchiostoma lanceolatum. *Nat. Methods* **10**, 407–409 (2013).

- 56. D. Shcherbo, C. S. Murphy, G. V. Ermakova, E. A. Solovieva, T. V. Chepurnykh, A. S. Shcheglov, V. V. Verkhusha, V. Z. Pletnev, K. L. Hazelwood, P. M. Roche, S. Lukyanov, A. G. Zaraisky, M. W. Davidson, D. M. Chudakov, Far-red fluorescent tags for protein imaging in living tissues. *Biochem. J.* 418, 567–574 (2009).
- 57. Y. Hong, M. K. Hondalus, Site-specific integration of *Streptomyces* ΦC31 integrase-based vectors in the chromosome of *Rhodococcus* equi. *FEMS Microbiol. Lett.* **287**, 63–68 (2008).
- 58. J. P. du Toit, D. J. Lea-Smith, A. Git, J. R. D. Hervey, C. J. Howe, R. W. M. Pott, Expression of alternative nitrogenases in *Rhodopseudomonas palustris* is enhanced using an optimized genetic toolset for rapid, markerless modifications. *ACS Synth.Biol.* **10**, 2167–2178 (2021).
- 59. A. C. Groth, M. P. Calos, Phage integrases: Biology and applications. *J. Mol. Biol.* **335**, 667–678 (2004).
- 60. S. D. Colloms, C. A. Merrick, F. J. Olorunniji, W. M. Stark, M. C. M. Smith, A. Osbourn, J. D. Keasling, S. J. Rosser, Rapid metabolic pathway assembly and modification using serine integrase site-specific recombination. *Nucleic Acids Res.* 42, e23 (2014).
- 61. L. A. Silo-Suh, B. Elmore, D. E. Ohman, S. J. Suh, Isolation, characterization, and utilization of a temperature-sensitive allele of a Pseudomonas replicon. *J. Microbiol. Meth.* **78**, 319–324 (2009).
- 62. J. Quandt, M. F. Hynes, Versatile suicide vectors which allow direct selection for gene replacement in gram-negative bacteria. *Gene* **127**, 15–21 (1993).
- 63. H. Alper, C. Fischer, E. Nevoigt, G. Stephanopoulos, Tuning genetic control through promoter engineering. *Proc. Natl. Acad. Sci. U.S.A.* **102**, 12678–12683 (2005).
- 64. N. I. Johns, A. L. C. Gomes, S. S. Yim, A. Yang, T. Blazejewski, C. S. Smillie, M. B. Smith, E. J. Alm, S. Kosuri, H. H. Wang, Metagenomic mining of regulatory elements enables programmable speciesselective gene expression. *Nat. Methods* 15, 323–329 (2018).
- 65. N. Xu, L. Wei, J. Liu, Recent advances in the applications of promoter engineering for the optimization of metabolite biosynthesis. *World J. Microbiol. Biotechnol.* **35**, 33 (2019).

- 66. M. D. Engstrom, B. F. Pfleger, Transcription control engineering and applications in synthetic biology. *Synth. Syst. Biotechnol.* **2**, 176–191 (2017).
- 67. C. Engler, R. Kandzia, S. Marillonnet, A one pot, one step, precision cloning method with high throughput capability. *PLOS ONE* **3**, e3647 (2008).
- 68. J. A. Jones, V. R. Vernacchio, D. M. Lachance, M. Lebovich, L. Fu, A. N. Shirke, V. L. Schultz, B. Cress, R. J. Linhardt, M. A. G. Koffas, ePathOptimize: A combinatorial approach for transcriptional balancing of metabolic pathways. *Sci. Rep.* 5, 11301 (2015).
- 69. J. R. Elmore, G. N. Dexter, D. Salvachúa, J. Martinez-Baird, E. A. Hatmaker, J. D. Huenemann, D. M. Klingeman, G. L. Peabody V, D. J. Peterson, C. Singer, G. T. Beckham, A. M. Guss, Production of itaconic acid from alkali pretreated lignin by dynamic two stage bioconversion. *Nat. Commun.* **12**, 2261 (2021).
- 70. M. G. Durrant, A. Fanton, J. Tycko, M. Hinks, S. S. Chandrasekaran, N. T. Perry, J. Schaepe, P. P. du, P. Lotfy, M. C. Bassik, L. Bintu, A. S. Bhatt, P. D. Hsu, Systematic discovery of recombinases for efficient integration of large DNA sequences into the human genome. *Nat. Biotechnol.* (2022). 10.1038/s41587-022-01494-w
- 71. L. Yang, A. A. K. Nielsen, J. Fernandez-Rodriguez, C. J. McClune, M. T. Laub, T. K. Lu, C. A. Voigt, Permanent genetic memory with >1-byte capacity. *Nat. Methods* 11, 1261–1266 (2014).
- 72. P. Ghosh, L. R. Wasil, G. F. Hatfull, Control of phage Bxb1 excision by a novel recombination directionality factor. *PLOS Biol.* **4**, e186 (2006).
- 73. T. Khaleel, E. Younger, A. R. McEwan, A. S. Varghese, M. C. Smith, A phage protein that binds φC31 integrase to switch its directionality. *Mol. Microbiol.* **80**, 1450–1463 (2011).
- 74. J. R. Elmore, G. N. Dexter, D. Salvachúa, M. O'Brien, D. M. Klingeman, K. Gorday, J. K. Michener, D. J. Peterson, G. T. Beckham, A. M. Guss, Engineered Pseudomonas putida simultaneously catabolizes five major components of corn stover lignocellulose: Glucose, xylose, arabinose, p-coumaric acid, and acetic acid. *Metab. Eng.* 62, 62–71 (2020).

- 75. L. Yin, C. S. Harwood, Charging state analysis of transfer RNA from an alpha-proteobacterium. *Bio Protoc.* **10**, e3834 (2020).
- 76. C. Gao, L. Montoya, L. Xu, M. Madera, J. Hollingsworth, E. Purdom, V. Singan, J. Vogel, R. B. Hutmacher, J. A. Dahlberg, D. Coleman-Derr, P. G. Lemaux, J. W. Taylor, Fungal community assembly in drought-stressed sorghum shows stochasticity, selection, and universal ecological dynamics. *Nat. Commun.* **11**, 34 (2020).
- 77. L. Xu, D. Naylor, Z. Dong, T. Simmons, G. Pierroz, K. K. Hixson, Y.M. Kim, E. M. Zink, K. M. Engbrecht, Y. Wang, C. Gao, S. DeGraaf, M. A. Madera, J. A. Sievert, J. Hollingsworth, D. Birdseye, H. V. Scheller, R. Hutmacher, J. Dahlberg, C. Jansson, J. W. Taylor, P. G. Lemaux, D. Coleman-Derr, Drought delays development of the sorghum root microbiome and enriches for monoderm bacteria. *Proc. Natl. Acad. Sci. U.S.A.* 115, E4284–E4293 (2018).
- 78. G. L. Peabody, J. R. Elmore, J. Martinez-Baird, A. M. Guss, Engineered Pseudomonas putida KT2440 co-utilizes galactose and glucose. *Biotechnol. Biofuels* 12, 295 (2019).
- 79. C. W. Johnson, D. Salvachúa, N. A. Rorrer, B. A. Black, D. R. Vardon, P. C. St. John, N. S. Cleveland, G. Dominick, J. R. Elmore, N. Grundl, P. Khanna, C. R. Martinez, W. E. Michener, D. J. Peterson, K. J. Ramirez, P. Singh, T. A. VanderWall, A. N. Wilson, X. Yi, M. J. Biddy, Y. J. Bomble, A. M. Guss, G. T. Beckham, Innovative chemicals and materials from bacterial aromatic catabolic pathways. *Joule* 3, 1523–1537 (2019).
- 80. S. S. Yim, N. I. Johns, J. Park, A. L.C. Gomes, R. M. McBee, M. Richardson, C. Ronda, S. P. Chen, D. Garenne, V. Noireaux, H. H. Wang, Multiplex transcriptional characterizations across diverse bacterial species using cell-free systems. *Mol. Syst. Biol.* 15, e8875 (2019).
- 81. L. N. Jayakody, C. W. Johnson, J. M. Whitham, R. J. Giannone, B. A. Black, N. S. Cleveland, D. M. Klingeman, W. E. Michener, J. L. Olstad, D. R. Vardon, R. C. Brown, S. D. Brown, R. L. Hettich, A. M. Guss, G. T. Beckham, Thermochemical wastewater valorization via enhanced microbial toxicity tolerance. *Energ. Environ. Sci.* **11**, 1625–1638 (2018).