
The Innovation, Volume 4
Supplemental Information
An emerging plume head

interacting with the Hawaiian plume tail

Lipeng Zhang, Zebin Cao, Robert E. Zartman, Congying Li, Saijun Sun, Lijun
Liu, and Weidong Sun



1. Other double chains in the Pacific plate 

 

Figure S1 Map showing the other double volcano chains of (a) the Samoa and (b) the 

Marquesas plumes. In contrast to the Hawaiian plume, these two plumes are not bended 

nor increased in eruption. Also, these double chains appeared later than the Hawaiian 

double chain. The base maps are from the software of GeoMapApp. Age data are from 

literature as follow.  
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2. Geochemical data for each island of the Hawaiian chain 

 

Figure S2 SiO2 vs. total alkalis diagram. All the samples for which element 

concentrations are available were calculated as tholeiites. The tholeiitic/alkalic 

boundary is from Macdonald and Katsura (1964). The references used to determine the 

composition of each seamount are as follows. 

 

Reference: Macdonald GA, Katsura T. Chemical Composition of Hawaiian Lavas1. Journal of Petrology 

5, (1964). 
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3. Geodynamic model setup 



To study plume-plume interaction, we used a user-updated version of 3D spherical finite 

element code CitcomS. On finite-element mesh, we solved the conservation equations of mass, 

momentum, and energy, under the Boussinesq approximation: 

∇ ∙ �⃗� = 0 

−∇𝑃 + ∇ ∙ [𝜂(∇�⃗� + ∇𝑇�⃗� )] + 𝜌𝑚𝛼∆𝑇𝑔 = 0 

𝜕𝑇

𝜕𝑡
+ �⃗� ∙ ∇𝑇 = 𝜅∇2𝑇 

where �⃗�   is velocity, P is dynamic pressure, 𝜂  is effective viscosity, 𝜌𝑚  is reference mantle 

density, 𝛼  is thermal expansion coefficient, ∆𝑇  is thermal anomaly, 𝑔   is gravitational 

acceleration, T is temperature, and 𝜅 is thermal diffusivity, respectively. 

The model spans 30˚ × 30˚ × 2000 km in longitude × latitude × radius, a region 

much larger than the Hawaiian volcanic chain. The vertical and horizontal resolution are 15 km and 

6 km, respectively. Passive tracers are used to track the evolution of two plumes, assuming no extra 

chemical buoyancy of plume material. 

Boundary conditions involve temperature and velocity boundary conditions at surface. The 

surface potential temperature is set to be 0 ˚C, beneath the surface we set up a thermal oceanic 

lithosphere based on half-space cooling model, assuming 80 Myr old seafloor. The surface has been 

prescribed a constant westward plate motion at 10 cm/yr through the whole simulation.  

To model realistic plume structure above 1000 km depth, we fixed heat sources as cones at 

depth from 1400 km to 1500 km. The resultant plume conduits have spatial averaged excess 

temperatures varying from 100 ˚C to 300 ˚C at LAB depth (~100 km). The present plume conduit 

under Hawaii has a spatial averaged excess temperature around 300 ˚C, which is consistent with 

literature estimates5,6. The heat source for Loa trend is located 220 km south to the one for Kea trend, 

and its base radius is twice as large as that for Kea trend. To simulate the evolution of Hawaiian 

volcanic chain, we started with the heat source for Kea trend only. After 40 Myr, the Kea trend is 

formed and became steady. At this time, the heat source for Loa trend was added (Figure S3). 

Temperature- and depth-dependent Newtonian rheology is applied for the whole model 

domain. The background mantle viscosity at the ambient mantle temperature has a 3 layer-profile: 

lithosphere (0-100km), asthenosphere (100-410 km), and below (410-2000 km). Their respective 



viscosity values are 0.1*η0  (1020 Pa s), 0.1*η0  (1020 Pa s), η0  (1021 Pa s), where η0  is the 

reference viscosity (1021 Pa s). The temperature-dependent Newtonian rheology follows: 

𝜂 = 𝜂𝑏.𝑔.(r)exp (
𝐸(𝑟)

𝑇 + 𝑇0
− 

𝐸(𝑟)

𝑇𝑚 + 𝑇0
) 

where 𝜂 is effective viscosity, 𝜂𝑏.𝑔. is background mantle viscosity, E is activation energy, T is 

temperature, 𝑇0  is temperature offset, and 𝑇𝑚  is ambient mantle temperature. The activation 

energy used in this study is the same as in Hu et al. (2018). With strong temperature-dependent 

Newtonian rheology, our strong lithosphere reaches 1023 Pa s in the upper part and smoothly 

transient to weak asthenosphere. Other physical parameters used are shown in table S2. 
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Figure S3 3D view of the Hawaiian plume system at 40 Myr from starting time, when the Loa 

plume emerged from the lower mantle. View towards northwest direction. The right plume is 

established Kea plume, the left one is newly formed Loa plume which has a larger size than the Kea 

plume. Plumes are presented by isothermal surface with 50 ˚C excess temperature. 



 

Table S2 Physical parameters used in geodynamic model 

Parameter Symbol Value Unit 

Earth radius R 6371.0 km 

Gravitational acceleration g 9.81 m/s2 

Reference mantle density ρ 3340 kg/m3 

Reference viscosity 𝜂0 1021 Pa s 

Background viscosity 𝜂𝑏.𝑘. 1020, 1020, 1021 Pa s 

Thermal diffusivity κ 10-6 m2/s 

Thermal expansivity α 3.0×10-5 1/˚C 

Rayleigh number Ra 5.0e8 - 

Activation energy E 100, 166, 100 kJ/mol 

Minimum viscosity 𝜂𝑚𝑖𝑛 1.0e19 Pa s 

Maximum viscosity 𝜂𝑚𝑎𝑥 1.0e23 Pa s 

4. Migration history of plume system center 

We identified the centers of Hawaiian plume system in our geodynamic model at 200 km depth 

which can be used to show the migration of surface volcanic activities. The hottest part of the 

Hawaiian plume system is defined as the center of the plume system at each output timestep. Since 

melting processes highly depend on the P-T condition, the hottest part may well represent the center 

of the plume system with the highest melt production rate at this depth. After identification, the 

centers were assumed to move with the oceanic lithosphere at the same speed. The temporal and 

spatial evolution of plume system center is shown in Figure 5 in the main text. 

 


