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Supplementary Figure 1. Flowchart of study participants from randomization through 
membership in the baseline SARS-CoV-2 negative marker case-cohort sets (Day 29 and Day 57). 
Antibody data from the placebo arm are not used in correlates analyses, given no variability in values; 
they were only used to verify low false positive rates of the immunoassays. In this diagram, we use “per-
protocol” to designate participants who received both planned vaccinations without any specified 
protocol deviations, and who were SARS-CoV-2 negative at the terminal vaccination visit, which differs 
from the definition of “per-protocol” in Falsey et al.   
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Supplementary Figure 2. (A) Day 29 marker case-cohort set and (B) Day 57 marker case-cohort set. 
In this diagram, we use “per-protocol” to designate participants who received both planned vaccinations 
without any specified protocol deviations, and who were SARS-CoV-2 negative at the terminal vaccination 
visit, which differs from the definition of “per-protocol” in Falsey et al.   
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Supplementary Figure 3. Timing of AZD1222 doses, serum sampling, and the two time periods for 
diagnosis of COVID-19 endpoints (“Intercurrent” and “Post Day 57”). The schematic applies to 
baseline SARS-CoV-2 negative recipients who received two doses of AZD1222 without any specified 
protocol deviations, and who were SARS-CoV-2 negative at the terminal vaccination visit. Only follow-up 
information while participants were blinded is included; participant follow-up was right-censored by receipt 
of a vaccine administered under an Emergency Use Authorization.  
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Supplementary Figure 4. For each antibody marker, correlations of Day 29 levels with Day 57 
levels in baseline SARS-CoV-2 negative vaccine recipients in the immunogenicity subcohort. Corr = 
baseline variable adjusted IPS-weighted Spearman rank correlation. PsV, pseudovirus.   
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Supplementary Figure 5. Inverse probability sampling (IPS)-weighted empirical reverse cumulative 
distribution function curves for each Day 57 marker (A: spike IgG, B: nAb ID50) and application of 
the Siber (2007) method1 for estimating a threshold of perfect vs. no protection. 
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Supplementary Figure 6. Baseline risk score-adjusted cumulative incidence of COVID-19 in baseline 
SARS-CoV-2 negative vaccine recipients by 92 days post D57 by D57 (A) anti-spike IgG or (B) PsV-nAb 
ID50 titer above a given threshold. The estimates and CIs assume a non-increasing threshold-response 
function. The values correspond to those for the blue dots in Figure 4 panels C and D, respectively. PsV, 
pseudovirus. 
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Supplementary Figure 7. Vaccine efficacy with causal sensitivity analysis by Day 57 (A) anti-spike IgG 
concentration or (B) pseudovirus (PsV)-nAb ID50 titer. Vaccine efficacy estimates were obtained using the 
method of Gilbert et al.2 The green histogram is an estimate of the density of D57 antibody marker level and the 
horizontal gray line is the overall vaccine efficacy from 7 to 92 days post D57, with the dotted gray lines indicating 
the 95% confidence intervals (this number 66.8% differs from the 74.0% reported in ref.3, which was based on 
counting COVID-19 endpoints starting 15 days post D29). The pink solid line is point estimates assuming no 
unmeasured confounding; the dashed lines are bootstrap point-wise 95% CIs. The red solid line is point estimates 
assuming unmeasured confounding in a sensitivity analysis (dashed lines are bootstrap point-wise 95% CIs); see the 
Statistical Analysis Plan for details. LLOQ, lower limit of quantitation; LOD, (lower) limit of detection.  Analyses 
adjusted for age and baseline risk score.  
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Supplementary Figure 8. D29 antibody marker level by COVID-19 outcome status in baseline SARS-CoV-2 
negative vaccine recipients. (A) Anti-spike IgG concentration and (B) pseudovirus (PsV) neutralization ID50 titer. 
The violin plots contain interior box plots with upper and lower horizontal edges the 25th and 75th percentiles of 
antibody level and middle line the 50th percentile, and vertical bars the distance from the 25th (or 75th) percentile of 
antibody level and the minimum (or maximum) antibody level within the 25th (or 75th) percentile of antibody level 
minus (or plus) 1.5 times the interquartile range. At both sides of the box, a rotated probability density curve 
estimated by a kernel density estimator with a default Gaussian kernel is plotted. Frequencies of participants with 
positive spike IgG/detectable nAb ID50 responses were computed with inverse probability of sampling weighting 
(reported at the top of the plots as “Rate”). Pos.Cut, Positivity cut-off for spike IgG defined by IgG > 10.8424 
BAU/ml, the assay positivity cut-off.  ULoQ = 6934 BAU/ml for spike IgG. Seroresponse for ID50 was defined by a 
detectable value > limit of detection (LOD) (2.612 IU50/ml). ULoQ = 8319.938 IU50/ml. Intercurrent cases 
experienced the primary COVID-19 endpoint starting 7 days post D29 through 6 days post D57; post-D57 cases 
experienced the primary COVID-19 endpoint starting 7 days post D57 visit through to the data cut (March 5, 2021). 
Non-cases are sampled into the immunogenicity subcohort with no evidence of SARS-CoV-2 infection (i.e., never 
tested RT-PCR positive) up to the end of the correlates study period (the data cut-off date March 5, 2021). 
  



14 
 

 
 
Supplementary Figure 9. Scatterplot of D29 spike IgG vs. D29 pseudovirus (PsV)-nAb ID50 values for baseline 
SARS-CoV-2 negative vaccine recipients in the immunogenicity subcohort. Corr, Spearman rank correlation.  
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Supplementary Figure 10. COVID-19 risk by D29 antibody marker level in baseline SARS-CoV-2 negative 
vaccine recipients. Cumulative incidence of COVID-19 by Low, Medium, High tertile of D29 antibody marker level. 
(A, C) Anti-spike IgG concentration; (B, C) pseudovirus (PsV) neutralization ID50 titer. The overall P-value is from a 
generalized Wald-test p-value of the null hypothesis that the hazard rate is constant across the Low, Medium, and 
High tertile groups. 
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Supplementary Figure 11. Analyses of D29 antibody markers as a correlate of risk in baseline SARS-CoV-2 
negative vaccine recipients. (A, B) Baseline risk score-adjusted cumulative incidence of COVID-19 by 117 days 
post D29 by D29 (A) anti-spike IgG or (B) pseudovirus (PsV)-nAb ID50 titer, estimated using a marginalized Cox 
model. The dotted black lines indicate bootstrap pointwise 95% CIs. The upper and lower horizontal gray lines are the 
overall cumulative incidence of COVID-19 from 7 to 117 days post D29 in placebo and vaccine recipients, 
respectively. Curves are plotted over the antibody marker range from the 2.5th percentile to the 97.5th percentile: 1.04 
to 895 BAU/ml for spike IgG and 1.31 to 388 IU50/ml for PsV-nAb ID50.  (C-F) Baseline risk score-adjusted 
cumulative incidence of COVID-19 by 117 days post D29 by D29 (C, E) anti-spike IgG or (D, F) PsV-nAb ID50 titer 
above a threshold. The blue dots are point estimates at each COVID-19 primary endpoint linearly interpolated by 
solid black lines; the gray shaded area is pointwise 95% confidence intervals (CIs). The upper boundary of the green 
shaded area is the estimate of the reverse cumulative distribution function (CDF) of D29 antibody marker level. The 
vertical red dashed line is the D29 antibody marker threshold above which no COVID-19 endpoints occurred (in the 
time frame of 7 days post D29 through to the data cut-off date March 5, 2021).  (E, F) D29 antibody marker 
thresholds, risk estimates, and 95% confidence intervals corresponding to the blue dots in panels C and D, 
respectively. PsV, pseudovirus.  
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Supplementary Figure 12. Vaccine efficacy by D29 antibody marker level in baseline SARS-CoV-2 negative 
vaccine recipients. Curves shown are for D29 (A) anti-spike IgG concentration or (B) pseudovirus (PsV)-nAb ID50 
titer. The dotted black lines indicate bootstrap pointwise 95% confidence intervals. The green histogram is an estimate 
of the density of D29 antibody marker level and the horizontal gray line is the overall vaccine efficacy from 7 to 117 
days post D29, with the dotted gray lines indicating the 95% confidence intervals. Analyses adjusted for age and 
baseline risk score. Curves are plotted over the antibody marker range from the 2.5th percentile to the 97.5th percentile: 
1.04 to 895 BAU/ml for spike IgG and 1.31 to 388 IU50/ml for PsV-nAb ID50.    
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Supplementary Figure 13. COVID-19 risk by fold-rise D57 vs. D29 antibody marker level in baseline SARS-
CoV-2 negative vaccine recipients. Cumulative incidence of COVID-19 by Low, Medium, High tertile of 
log10(D57/D29) antibody marker level. (A, C) Fold-rise in anti-spike IgG concentration; (B, C) fold-rise in 
pseudovirus (PsV) neutralization ID50 titer. The overall P-value is from a generalized Wald-test p-value of the null 
hypothesis that the hazard rate is constant across the Low, Medium, and High tertile groups. 
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Supplementary Figure 14. Performance of the baseline risk score built from ensemble machine learning. (A) 
Receiver operating characteristic (ROC) curves based on cross-validated (CV)-estimated predicted probabilities for 
the top two learners, Superlearner and Discrete Superlearner. CV-estimated predicted probabilities were computed 
using only data from the placebo arm. (B) ROC curve based on Superlearner predicted probabilities in vaccine 
recipients.   
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Supplementary Table 1. Sample sizes of baseline SARS-CoV-2 negative vaccine recipients included in immune 
correlates analyses, by baseline sampling strata and case/non-case strata. Included participants received both 
planned vaccinations without any specified protocol deviations and were SARS-CoV-2 negative at the second 
vaccination visit.   

 

1 Demographic covariate strata used for defining participants in the Immunogenicity Subcohort (IS) via the case-cohort sampling 
design:  

1. U.S. White Non-Hispanic, age 18-64 2. U.S. White Non-Hispanic, age ≥ 65 
3. U.S. Minority, age 18-64 4. U.S. Minority, age ≥ 65 
5. Chile or Peru, age 18-64 6. Chile or Peru, age ≥ 65 
In these strata White Non-Hispanic is defined as Race=White and Ethnicity=Not Hispanic or Latino. All other Race subgroups 
are defined as Black, Asian, American Indian or Alaska Native, Native Hawaiian or Other Pacific Islander, Multiracial, Other, 
Not reported, or Unknown. Minority is defined as the complement of known to be White Non-Hispanic. 

2 Intercurrent cases are baseline SARS-CoV-2 negative vacine recipients with the primary COVID-19 endpoint starting 7 days 
post D29 through 6 days post D57 and before the data cut (March 5, 2021). 
 

3 Post Day 57 cases are baseline SARS-CoV-2 negative vaccine recipients with the primary COVID-19 endpoint starting 7 days 
post D57 through to the data cut (March 5, 2021). 
 
4 Included in the Day 29 marker case-cohort set: the set of participants included in Day 29 marker correlates analyses.  This set is 
defined as baseline SARS-CoV-2 negative vaccine recipients in the IS with available D29 antibody marker data and/or an 
Intercurrent Case and/or a Post Day 57 Case.  For D29 correlates analyses, only D29 antibody data were required to be available. 

5 Included in the Day 57 marker case-cohort set: the set of participants included in Day 57 marker correlates analyses.  This set is 
defined as baseline SARS-CoV-2 negative vaccine recipients in the IS with available D57 antibody marker data and/or a Post Day 
57 Case.  For D57 correlates analyses, only D57 antibody marker data were required to be available. 
6 Non-cases/Controls are baseline negative vaccine recipients sampled into the IS with no evidence of SARS-CoV-2 infection up 
to the end of the correlates study period (the data cut-off date March 5, 2021).   

 
Baseline Sampling Strata of Baseline SARS-CoV-2 Negative 

Vaccine Participants Included in Correlates Analyses1  
1 2 3 4 5 6 Total 

Intercurrent Cases2 17 4 8 0 7 0 36 
Post Day 57 Cases3 21 1 5 0 6 0 33 
        
Breakthrough cases included in Day 29 marker 
correlates analyses4 38 5 13 0 13 0 69 

Breakthrough cases included in Day 57 marker 
correlates analyses5 21 1 5 0 6 0 33 

Non-cases in the immunogenicity subcohort used in Day 
29 marker correlates analyses2, 6 129 102 123 118 140 131 743 

Non-cases in the immunogenicity subcohort used in Day 
57 marker correlates analyses3, 6 103 59 83 71 88 59 463 
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Supplementary Table 2. AZD1222 cohort demographic and clinical characteristics at enrollment in 
baseline SARS-CoV-2 negative participants selected into the immunogenicity subcohort*  

Characteristics  
Vaccine  

(N = 762) 
Placebo  
(N = 99) 

Total 
(N = 861) 

Age 
Age 18-64 400 (52.5%) 49 (49.5%) 449 (52.1%) 
Age ≥ 65 362 (47.5%) 50 (50.5%) 412 (47.9%) 
Mean (Range) 56.2 (18.0, 94.0) 55.5 (18.0, 86.0) 56.1 (18.0, 94.0) 

Coexisting Conditions**  
Yes  508 (66.7%) 65 (65.7%) 573 (66.6%) 
No  254 (33.3%) 34 (34.3%) 288 (33.4%) 

Age, Coexisting Conditions  
Age 18-64 Coexisting conditions  216 (28.3%) 29 (29.3%) 245 (28.5%) 
Age 18-64 No coexisting conditions  184 (24.1%) 20 (20.2%) 204 (23.7%) 
Age ≥ 65 362 (47.5%) 50 (50.5%) 412 (47.9%) 

Sex  
Female 306 (40.2%) 44 (44.4%) 350 (40.7%) 
Male 456 (59.8%) 55 (55.6%) 511 (59.3%) 

Hispanic or Latino Ethnicity 
Hispanic or Latino 410 (53.8%) 44 (44.4%) 454 (52.7%) 
Not Hispanic or Latino 345 (45.3%) 53 (53.5%) 398 (46.2%) 
Not reported and unknown 7 (0.9%) 2 (2.0%) 9 (1.0%) 

Race 
White 500 (65.6%) 59 (59.6%) 559 (64.9%) 
Black or African American 111 (14.6%) 19 (19.2%) 130 (15.1%) 
Asian 16 (2.1%) 2 (2.0%) 18 (2.1%) 
American Indian or Alaska Native 93 (12.2%) 15 (15.2%) 108 (12.5%) 
Native Hawaiian or Other Pacific Islander 3 (0.4%) -  3 (0.3%) 
Multiracial 22 (2.9%) 3 (3.0%) 25 (2.9%) 
Not reported and unknown 17 (2.2%) 1 (1.0%) 18 (2.1%) 

Country    
United States 482 (63.3%) 67 (67.7%) 549 (63.8%) 
Chile 154 (20.2%) 12 (12.1%) 166 (19.3%) 
Peru 126 (16.5%) 20 (20.2%) 146 (17.0%) 

* Of the N=762 vaccine recipients selected for antibody measurement, N=745 have antibody 
data available at Day 29 and hence are included in Day 29 correlates analyses and N=465 have 
antibody data available at Day 57 and hence are included in Day 57 correlates analyses.   
** Coexisting conditions means having at least one of the coexisting conditions listed in Table 1 
of Falsey et al.3  
 

  



 

Supplementary Table 3. D57 antibody marker response rates and geometric means by COVID-19 outcome status. Analysis based on 
baseline SARS-CoV-2 negative placebo recipients in the case-cohort set. Median (interquartile range) days from vaccination to D57 was 57 (3).  

 Placebo COVID-19 Cases1 Placebo Non-Cases in Immunogenicity 
Subcohort2 

Comparison 

D57 Marker N Proportion with 

Antibody 

Response3     

(95% CI)  

Geometric 

Mean (GM) 

(95% CI) 

N Proportion with 

Antibody 

Response3      

(95% CI) 

Geometric Mean 

(GM) (95 % CI) 

Response Rate 

Difference (Non-

Cases – Cases) 

Ratio of GM 

(Non-Cases/  

Cases) 

Anti Spike IgG 

(BAU/ml) 

1 0.0% 

 

0.96 

(0.96, 0.96) 

61 8.3% 

(2.1%, 27.6%) 

1.06 

(0.56, 1.98) 

8.3% (NaN, NaN) 1.1 (0.59, 2.0) 

Pseudovirus-nAb 

ID50 (IU50/ml)  

1 0.0% 

 

1.31 

(1.31, 1.31) 

61 0.0% 

(0.0%, 0.0%) 

1.31 

(1.31, 1.31) 

0 

(NaN, NaN) 

1.00 

(1.00, 1.00) 

 

1Cases are baseline SARS-CoV-2 negative placebo recipients who received both planned injections without any specified protocol 
deviations with symptomatic RT-PCR-confirmed COVID-19 starting 7 days post D57 visit through to the efficacy data cut-off date 
(March 5, 2021). 
2Non-cases are baseline negative placebo recipients who received both planned injections without any specified protocol deviations 
sampled into the immunogenicity subcohort with no evidence of SARS-CoV-2 infection up to the end of the correlates study period 
(the data cut-off date March 5, 2021). 
3Antibody response defined by Spike IgG concentration above the antigen-specific positivity cut-off (10.8424 BAU/ml) or by 
detectable ID50 > limit of detection (LOD) = 2.612 IU50/ml.  



 

Supplementary Table 4. Comparison of primary efficacy endpoints in five randomized, placebo-controlled COVID-19 vaccine efficacy 
trials. 

 COVE4 AZD12223 ENSEMBLE5 PREVENT-196 AZCOV0027 

Primary efficacy 
endpoint 

First occurrence of 
PCR-confirmed, mild, 
moderate or 
severe/critical 
COVID-19, in 
baseline seronegative 
participants  
 

First occurrence of 
PCR-confirmed, mild, 
moderate or 
severe/critical 
COVID-19, in 
baseline seronegative 
participants  
 

First occurrence of 
PCR-confirmed, 
moderate to 
severe/critical 
COVID-19, in 
baseline seronegative 
participants1  
 

First occurrence of 
PCR-confirmed, mild, 
moderate or 
severe/critical 
COVID-19, in 
baseline seronegative 
participants  
 

First occurrence of 
nucleic acid 
amplification test 
(NAAT)-confirmed, 
mild, moderate, or 
severe/critical 
COVID-19 in baseline 
seronegative 
participants 

Start of primary 
efficacy endpoint 

14 days after second 
dose  
 

14 days after second 
dose  
 

14 days after 
vaccination  
 

7 days after second 
dose  
 

14 days after second 
dose  
 

1 As detailed in Fong et al.,8 there was 1 mild case in the 117 cases of symptomatic COVID-19 in the vaccine group, and 3 mild cases in the 351 
cases of symptomatic COVID-19 in the placebo group.  

  



 

Supplementary Table 5. D29 antibody marker SARS-CoV-2 seroresponse rates and geometric means by COVID-19 outcome status. 
Analysis based on baseline SARS-CoV-2 negative vaccine recipients in the case-cohort set. Median (interquartile range) days from vaccination to 
D29 was 29 (1).  

 COVID-19 Cases1 Non-Cases in Immunogenicity Subcohort2 Comparison 

D29 Marker N Proportion with 

Antibody 

Response3 (95% 

CI)  

Geometric 

Mean (GM) 

(95% CI) 

N Proportion with 

Antibody 

Response3 (95% 

CI) 

Geometric Mean 

(GM) (95 % CI) 

Response Rate 

Difference (Non-Cases – 

Cases) 

Ratio of GM 

(Non-Cases/ 

Cases) 

Anti Spike IgG 

(BAU/ml) 

69 87.0% 

(76.6%, 93.2%) 

53.0 

(38.6, 72.6) 

743 89.2% (85.7%, 

91.9%) 

51.3 

(44.3, 59.4) 

2.2% (-4.9, 13%)  0.97 (0.68, 1.37) 

Pseudovirus-nAb 

ID50 (IU50/ml)  

56 51.8% 

(38.6%, 64.8%) 

5.1 

(3.4, 7.6) 

692 52.0% (46.7%, 

57.3%) 

5.0 

(4.2, 5.9) 

0.2% (-13.8, 14.5%) 0.99 (0.64, 1.54) 

 
1Post Day 29 cases are baseline SARS-CoV-2 negative vaccine recipients who received both planned vaccinations without any specified protocol 
deviations and were at risk at D29 and had symptomatic RT-PCR-confirmed COVID-19 starting 7 days post D29 visit through to the data cut 
(March 5, 2021) and hence included in the D29 correlates analyses. “N” refers to the number of these cases  (see Supplementary Figure 3).  
2Non-cases are baseline negative vaccine recipients sampled into the immunogenicity subcohort who received both planned vaccinations without 
any specified protocol deviations and had no evidence of SARS-CoV-2 infection (i.e., never tested RT-PCR positive) up to the end of the 
correlates study period (the data cut-off date March 5, 2021) and with D29 antibody data and hence included in the D29 correlates analyses. 
3Antibody response defined by IgG concentration above the assay positivity cut-off (10.8424 BAU/ml) or by detectable ID50 > limit of detection 
(LOD) = 2.612 IU50/ml.  

  



 

Supplementary Table 6.  Hazard ratios of COVID-19 (A) per 10-fold increase or (B) per standard deviation increase in each D29 marker 
in baseline negative vaccine recipients. 

A      

D29 Antibody Marker No. cases/No at-
risk* 

Hazard Ratio per 10-fold Increase P-value (2-
sided) 

Q-value** FWER** 
Point Est. 95% CI 

Anti Spike IgG (BAU/ml) 73/17,404 1.01 (0.66, 1.55) 0.947 0.945 0.946 
PsV-nAb ID50 (IU50/ml) 73/17,404 1.02 (0.67, 1.57) 0.914 0.914 0.914 
B       

D29 Antibody Marker No. cases/No at-
risk* 

Hazard Ratio per Standard 
Deviation-Increment Increase 

   

Point Est. 95% CI 
Anti Spike IgG (BAU/ml) 73/17,404 1.01 (0.77, 1.32)    
PsV-nAb ID50 (IU50/ml) 73/17,404 1.02 (0.76, 1.36)    

 

Analyses were adjusted for age and baseline risk score. Maximum failure event 117 days post Day 29 visit. 

*No. at-risk = estimated total number of baseline SARS-CoV-2 negative vaccine recipients who received both planned vaccinations without any 
specified protocol deviations and did not experience symptomatic RT-PCR-confirmed COVID-19 nor had documented SARS-CoV-2 infection 
through 6 days post Day 57 visit; no. cases = number of this cohort with symptomatic RT-PCR-confirmed COVID-19 at least 7 days after D29 and 
prior to the data cut-off March 5, 2021.  P-values are not shown for B because they are structurally identical to those for A. 

**Q-value and FWER (family-wise error rate) are computed over the two p-values for the two quantitative markers using the Westfall and Young 
permutation method (10,000 replicates).  

  



 

Supplementary Table 7. D29 antibody marker response rates and geometric means by COVID-19 outcome status. Analysis based on 
baseline SARS-CoV-2 negative placebo recipients in the case-cohort set. Median (interquartile range) days from vaccination to D29 was 29 (1).  

 Placebo COVID-19 Cases1 Placebo Non-Cases in Immunogenicity 
Subcohort2 

Comparison 

D29 Marker N Proportion with 

Antibody 

Response3     

(95% CI)  

Geometric 

Mean (GM) 

(95% CI) 

N Proportion with 

Antibody 

Response3      

(95% CI) 

Geometric Mean 

(GM) (95 % CI) 

Response Rate 

Difference (Non-

Cases – Cases) 

Ratio of GM 

(Non-Cases/  

Cases) 

Anti Spike IgG 

(BAU/ml) 

2 0.0% 

 

0.57 

(0.14, 2.3) 

96 4.2% 

(0.9%, 18.1%) 

0.67 

(0.47, 0.95)  

4.2% (NaN, 18.1%) 1.2 (0.28, 4.8) 

Pseudovirus-nAb 

ID50 (IU50/ml)  

2 0.0% 

 

1.31 

(1.31, 1.31) 

91 0.0% 

(0.0%, 0.0%) 

1.31 

(1.31, 1.31) 

0 

(NaN, NaN) 

1.00 

(1.00, 1.00) 

 

1Cases are baseline SARS-CoV-2 negative placebo recipients who received both planned injections without any specified protocol 
deviations and experienced symptomatic RT-PCR-confirmed COVID-19 starting 7 days post D57 visit through to the efficacy data 
cut-off date (March 5, 2021). 
2Non-cases are baseline negative placebo recipients sampled into the immunogenicity subcohort who received both planned injections 
without any specified protocol deviations and had no evidence of SARS-CoV-2 infection up to the end of the correlates study period 
(the data cut-off date March 5, 2021). 
3Antibody response defined by Spike IgG concentration above the antigen-specific positivity cut-off (10.8424 BAU/ml) or by 
detectable ID50 > limit of detection (LOD) = 2.612 IU50/ml.  

  



 

Supplementary Table 8.  Hazard ratios of COVID-19 (A) per unit increase or (B) per standard deviation increase in fold 
change D57 vs. D29 marker in baseline negative vaccine recipients. 

A     

log10(D57/D29) 
Antibody Marker 

Hazard Ratio per 1 unit increase 
in 10-fold rise D57/D29 

P-value*         
(2-sided) 

Q-value** FWER** 

Point Est. 95% CI 
Anti Spike IgG 
(BAU/ml) 

0.41 (0.09, 1.95) 0.263 0.266 0.272 

PsV-nAb ID50 
(IU50/ml) 

0.23 (0.12, 0.47) <0.001 <0.001 
 

<0.001 

B      

log10(D57/D29) 
Antibody Marker 
 

Hazard Ratio per Standard 
Deviation-Increment Increase 

   

Point Est. 95% CI 
Anti Spike IgG 
(BAU/ml) 

0.62 (0.27, 1.44)    

PsV-nAb ID50 
(IU50/ml) 

0.40 (0.26, 0.62)    

 

*P-values are not shown for B because they are structurally identical to those for A. 

**Q-value and FWER (family-wise error rate) are computed over the two p-values for the two quantitative markers using the Westfall 
and Young permutation method (10,000 replicates).  
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Supplementary Table 9. Assay limits of the two antibody markers evaluated as immune correlates. 
BAU = binding antibody units; IU = International Units; LLOQ, lower limit of quantitation; ULOQ, 
upper limit of quantitation. 

MSD Binding Assay (Nexelis) (Spike IgG marker) 

Reported units BAU/ml 

 Spike 

Positivity Cutoff 10.8424 

LOD 0.3076 

ULOD 172,226.2 

LLOQ 1.35 

ULOQ 6934 
All values < LLOQ were set to LLOQ/2 
All values > ULOQ were set to ULOQ (for immune correlates analyses)  

Pseudovirus neutralization titer (Monogram) (nAb ID50 marker) 

Reported units IU50/ml 

LOD* 2.612 

LLOQ 3.3303 

ULOQ 8319.938 
Values < LOD are denoted as undetectable responses and were set to LOD/2 
All values > ULOQ were set to ULOQ (for immune correlates analyses) 

*The limit of detection (LOD) was not formally defined; we denote the value corresponding to the starting dilution 
level of the assay as the LOD. 
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Supplementary Text 

Overlap of COVID-19 endpoints in Falsey et al. 3 and the present correlates study  

Of the 73 vaccine arm primary endpoints in Falsey et al., all 67 with available antibody marker data at 
D29 were included in the D29 correlates analyses, and all 33 with available antibody marker data at D57 
were included in the D57 correlates analyses.  The two additional COVID-19 endpoints included in the 
D29 correlates analyses (for a total of 69 COVID-19 endpoints included in the D29 correlates analyses) 
occurred between 7 and 14 days post-D29 visit and hence did not qualify as primary endpoints in Falsey 
et al.  

University of Oxford-defined symptom criteria for SARS-CoV-2 RT-PCR symptomatic illness (taken from 
the study protocol published with Falsey et al.3): 

First case of SARS-CoV-2 RT-PCR-positive symptomatic illness for a participant occurring ≥ 15 days 
post second dose of study intervention. Cases are defined as RT-PCR-confirmed SARS-CoV-2 and 
having at least one of the following symptoms:  

1 New onset of fever (> 100 °F [> 37.8 °C]), OR  

2 Cough, OR  

3 Shortness of breath, OR  

4 Anosmia/ageusia 
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1 Introduction

This SAP describes the statistical analysis of antibody markers measured at Day 29 and at Day 57
as immune correlates of risk and as immune correlates of protection against the COVID primary
endpoint in the Coronavirus Efficacy (COV002) phase 3 trial of the AZD1222 COVID-19 vaccine.
In this trial, estimated efficacy of the AZD1222 vaccine against symptomatic COVID illness was
94.1% (95% confidence interval, 89.3 to 96.8%) [Baden et al. (2021)].

2 Antibody Assays and Day 29 and Day 57 Markers

The antibody markers of interest are measured using two different humoral immunogenicity assays
[more detail on assay type (2) can be found in Sholukh et al. (2020)]:

(1) bAbs: Binding antibodies to the vaccine insert SARS-CoV-2 proteins;

and (2) Pseudovirus-nAbs: Neutralizing antibodies against viruses pseudotyped with the
vaccine insert SARS-CoV-2 proteins.

The Supplementary text in the article provides details of the assays. We include the necessary
statistical details below.

(1) bAb assay: The MSD-ECL Multiplex Assay (MSD-ECL = meso scale
disCOV002ry-electrochemiluminescence assay).

The MSD assay measures binding antibody to antigens corresponding to: Spike (an engineered
version of the Spike protein harboring a double proline substitution (S-2P) that stabilizes it in the
closed, prefusion conformation [McCallum et al. (2020)]); the Receptor Binding Domain (RBD) of
the Spike protein; and Nucleocapsid protein (N), which is not contained in any of the COVID-19
vaccines.

The bAb assay readouts, from Nexelis not VRC, are in units AU/ml, where AU stands for arbitrary
units from a standard curve. The process of validating the assay defined a lower limit of detection
(LOD), an upper limit of detection (ULOD), a lower limit of quantitation (LLOQ), an upper limit
of quantitation (ULOQ), and a positivity cut-off for each antigen that defines positive vs. negative
response. These values are as follows:

• bAb Spike:

– LLOQ = 62.8 AU/ml

– ULOQ = 238,528.4 AU/mL

• bAb RBD:

– Pos. Cutoff = xx AU/ml

– LOD = xx AU/ml

– ULOD = xx AU/ml

– LLOQ = xx AU/ml
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– ULOQ = xx AU/ml

• N:

– Pos. Cutoff = xx AU/ml

– LOD = xx AU/ml

– ULOD = xx AU/ml

– LLOQ = xx AU/ml

– ULOQ = xx AU/ml

The Vaccine Research Center established factors for bridging the MSD assay readouts from AU/ml
to Binding Antibody Units/ml (BAU/ml), based on bridging to the WHO International Standard
for anti-SARS-CoV-2 immunoglobulin. For the three binding antibody variables CoV-2 Spike IgG,
CoV-2 RBD IgG, and CoV-2 N IgG, these conversion factors are 0.0090, 0.0272, and 0.0024,
respectively. These conversion factors are applied, such that all binding Ab readouts are reported
in BAU/ml, for all analyses. These conversion factors are also applied to yield the LOD, ULOD,
LLOQ, and ULOQ on the WHO IU/ml scale. The following shows the assay limits on the BAU/ml
scale:

• bAb Spike:

– LLOQ = 0.5652 BAU/ml

– ULOQ = 2146.756 BAU/ml

• bAb RBD:

– Pos. Cutoff = xx AU/ml

– LOD = xx AU/ml

– ULOD = xx AU/ml

– LLOQ = xx AU/ml

– ULOQ = xx AU/ml

• bAb N:

– Pos. Cutoff = xx AU/ml

– LOD = xx AU/ml

– ULOD = xx AU/ml

– LLOQ = xx AU/ml

– ULOQ = xx AU/ml

All values below the LOD are assigned the value LOD/2. For immunogenicity reporting, values
greater than the ULOQ are not given a ceiling value of the ULOQ, the actual readouts are used.

7



For the immune correlates analyses, values greater than the ULOQ are assigned the value of the
ULOQ.

(2) Pseudovirus-nAb assay: A firefly luciferase (ffLuc) reporter neutralization assay for measur-
ing neutralizing antibodies against SARS-CoV-2 Spike-pseudotyped viruses.

Based on the assay in the Monogram lab, serum inhibitory dilution 50% titer (ID50) values are
estimated based on a starting serum dilution of 1:40, with a total of ten 3-fold dilutions. Each
sample is diluted initially at 1:20, then diluted serially 3-fold for a total of 10 concentrations. The
starting dilution of 1:20 is reported as 1:40 after addition of the virus. So, the dilution series is 1:40
to 1:787,320 (= 40 * 39). Thus 1:40 is the LOD on the scale of the assay. The process of validating
the assay defined the LOD, LLOQ, and ULOQ for ID50 as follows:

• ID50:

– LOD = 40

– LLOQ = 56

– ULOQ = 47806

ID50 values below the LOD are assigned the value 40/2 = 20. Values between the LOD and the
LLOQ are taken as their actual numeric value. For immunogenicity reporting, values greater than
the ULOQ are not given a ceiling value of the ULOQ, the actual readouts are used. For the immune
correlates analyses, values greater than the ULOQ are assigned the value of the ULOQ.

ID50 values are reported in international units with the following calibration factor:

• Calibration factor ID50: 0.0653

The original readouts are calibrated to the IU scale by multiplying each original ID50 value by
0.0653 (See Feng et al. Table 2 and Gilbert et al. Supplementary Material) and units are reported
in international units as IU50/ml for ID50. Consequently, the LOD, LLOQ and ULOQ for IU50/ml
are as follows in International Units:

• IU50/ml:

– LOD = 2.612

– LLOQ = 3.657

– ULOQ = 3074.32

Based on each immunoassay applied to triples of serum samples collected from participants on Day
1 (baseline, first dose of vaccination visit), Day 29 (second dose of vaccination visit), and Day 57
(post-vaccination visit), the following set of antibody markers was defined for immunogenicity and
immune correlates analyses.

• For bAb: log10 IgG concentration (BAU/ml) at each time point, the difference in log10 concen-
tration (Day 29 minus Day 1) representing log10 fold-rise in IgG concentration from baseline
to dose two, and the difference in log10 concentration (Day 57 minus Day 1) representing
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log10 fold-rise in IgG concentration from baseline to 28 days post dose two. These markers
are defined for each antigen Spike, RBD, and N.

• For PsV nAb: log10 serum inhibitory dilution 50% titer (ID50 in IU50/ml) and serum inhi-
bition dilution 80% titer (ID80 in IU80/ml) at each time point, as well as the log10 fold-rise
of these markers over Day 1 to Day 29, and over Day 1 to Day 57.

3 Study Cohorts and Endpoints

3.1 Study Cohort for Correlates Analyses

The analysis cohort for the correlates analysis is baseline SARS-CoV-2 negative participants in
the per-protocol cohort, with the per-protocol cohort defined as those who received both planned
vaccinations without any specified protocol deviations, and who were SARS-CoV-2 negative at
the terminal vaccination visit. We refer to this cohort representing the primary population for
correlates analysis as the Per-Protocol Baseline Negative Cohort.

As the primary analysis of vaccine efficacy is conducted in baseline negative individuals, correlates
of risk (CoR) and correlates of protection (CoP) analyses are only done in baseline negative individ-
uals, and the analysis of data from baseline positive individuals is for purposes of immunogenicity
characterization, given too-few anticipated vaccine breakthrough study endpoints for CoR/CoP
assessment (although if there are many baseline positive vaccine breakthrough endpoint cases that
baseline positive subgroup analyses may be considered). In baseline negative individuals, antibody
marker data in placebo recipients is relevant for verifying the expectation that almost all Day 29
and Day 57 marker responses will be negative, given the lack of SARS-CoV-2 antigen exposure.

3.2 Study Endpoints

Endpoints for correlates analyses of Day 57 markers are included if they occur at least 7 days
after the Day 57 visit, to help ensure that the endpoint did not occur prior to Day 57 antibody
measurement. Similarly, endpoints for correlates analyses of Day 29 markers are included if they
occur at least 7 days after the Day 29 visit, again to help ensure that the endpoint did not occur
prior to Day 29 antibody measurement.

Figure 1 defines five study endpoints assessed in COVID-19 vaccine efficacy trials, where COVID
(symptomatic infection) is used as the primary endpoint in the COV002 trial. Only the COVID
endpoint is assessed in the current manuscript.

When a correlates analysis is done, all available follow-up for participants is included through to
the minimum of (1) the time of the database lock for the correlates analysis and (2) the last day
of follow-up post Day 57 visit for which stable inference on marginalized cumulative incidence can
be made; call this time the ‘administrative censoring time’. This means that the time of right
censoring for a given failure time endpoint will be the first event of loss to follow-up or the date of
administrative censoring defined as the last date of available follow-up. For CoP analyses, which
use both vaccine and placebo recipient data and leverage the randomization, follow-up is censored
at the time of unblinding if this date occurs earlier. In general for the first correlates analyses all
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blinded follow-up through the date of data base lock is included and no post-unblinding follow-up
is included.

For the first correlates analyses, the administrative censoring time is taken to be a participant’s
earliest event of March 5, 2021 (date of data base lock for selecting samples for the correlates study)
and 92 days after the Day 57 study visit. Ninety-two days is chosen to address the fact that the
end of follow-up time t0 for defining the marginalized cumulative incidence parameter of interest in
the vaccine arm needs to be chosen so that there are a reasonable number of participants at risk in
the subcohort at time t0. We choose t0 as the last time such that 15 participants in the subcohort
are still at risk, pooling over the three geographic regions, which yields t0 = 92 days.

4 Objectives of Immune Correlates Analyses of a Phase 3 Trial
Data Set

4.1 Correlates of Risk and Correlates of Protection

We broadly classify the proposed analyses into two related categories: correlates of risk (CoR) and
correlates of protection (CoP) analyses. CoR analyses seek to characterize correlations/associations
of markers with future risk of the outcome amongst vaccinated individuals in the study cohort. CoP
analyses seek to formally characterize causal relationships among vaccination, antibody markers
and the study endpoint, and use data from both vaccine and placebo recipients. Table 1 summarizes
these objectives and statistical frameworks that are commonly used to these ends; while the table
focuses on Day 57 markers, the same objectives are of interest for Day 29 markers.

The advantage of CoR analyses it that it is possible to obtain definitive answers from the phase
3 data sets, that is one can credibly characterize associations between markers and outcome. The
advantage of CoP analyses is that the effects being estimated have interpretation directly in terms
of how an antibody marker can be used to reliably predict vaccine efficacy (the criterion for use
of a non-validated surrogate endpoint for accelerated approval, Fleming and Powers, 2012). The
disadvantage of CoR analyses are that a CoR may fail to be a CoP, for example due to unmeasured
confounding, lack of transitivity where a vaccine effect on an antibody marker occurs in different in-
dividuals than clinical vaccine efficacy, or off-target effects (VanderWeele, 2013). The disadvantage
of CoP analyses is that statistical inferences rely on causal assumptions that cannot be completely
verified from the phase 3 data, such that compelling evidence may require multiple phase 3 trials
and external evidence on mechanism of protection (e.g., from adoptive transfer or vaccine challenge
trials). Our approach presents results for both CoR and CoP analyses, seeking clear exposition of
how to interpret results, the assumptions undergirding the validity of the results, and diagnostics
of these assumptions and assessment of robustness of findings to violation of assumptions.
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Table 1: Correlates of Risk (CoRs) and Correlates of Protection (CoPs) Objectives for Day 57
Markers

Objective Type Objective

CoRs (Risk Prediction To assess Day 57 markers as CoRs in vaccine
Modeling) recipients

a. Relative risks of outcome across marker levels
b. Absolute risk of outcome across marker levels
c. Machine learning risk prediction for
multivariable markers

CoP: Correlates of VE To assess Day 57 markers as correlates of VE in
vaccine recipients
a. Principal stratification effect modification analysis
b. Assesses VE across subgroups of vaccine recipients defined by
Day 57 marker level in vaccine recipients

CoP: Controlled To assess Day 57 markers for how assignment
Effects on to vaccine and a fixed marker value would
Risk and VE alter risk compared to assignment to placebo

CoP: Stochastic To assess Day 57 markers for how stochastic
Interventional Effects shifts in their distribution would
on Risk and VE alter mean risk and VE (Hejazi et al., 2020)

CoP: Mediators of VE To assess Day 57 markers as mediators of VE
a. Mechanisms of protection via natural direct and indirect effects
a. Estimate the proportion of VE mediated by a marker or markers

4.2 Synthesis of the Phase 3 Correlates Analyses for Decisions

Establishment of an immunologic biomarker for approval/bridging applications is generally not
based on pre-fabricated criteria nor a single type of correlates analysis. Therefore, the goal of
the correlates analysis is to generate evidence about correlates from many perspectives, and to
synthesize the evidence to support certain decisions. Consequently, we believe there is value in
assessing all of the types of correlates presented in Table 1, given that the analyses address dis-
tinct questions. Obtaining a set of results from multiple distinct approaches that provide com-
plementary and coherent support may increase the rigor and robustness of an evidence package
supporting potential use of an antibody marker as a validated surrogate (for traditional approval)
or as a non-validated surrogate (for accelerated approval) (Fleming and Powers, 2012); these uses
of a biomarker are summarized below. However, the assumptions needed for valid inferences are
somewhat different across the methods, and some of these assumptions have testable implications;
therefore examination of the assumptions may lead to favoring some methods over others, and affect
the synthesis and interpretation of results, and moreover if diagnostics support that some necessary
assumptions are infeasible then certain analyses will be canceled, as described below. Section 13
summarizes the approach that is used and the interpretation of the set of multiple correlates of
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protection methods.

5 Case-cohort Sampling Design for Measuring Antibody Markers

Figure 3 illustrates the case-cohort (Prentice, 1986) sampling design that is used for measuring Day
1, 29, 57 antibody markers in a random sample of trial participants. The random sample is stratified
by the key baseline covariates: assigned randomization arm, baseline SARS-CoV-2 status (defined
by serostatus and NAAT and/or RNA PCR testing, Baden et al., 2021), and randomization strata
(defined by age and heightened COVID at-risk status). Because the design uses a stratified random
sample instead of the simple random sample proposed by Prentice (1986), the design may also be
referred to as a “two-phase sampling design” (Breslow et al., 2009b,a), where “phase one” refers
to variables measured in all participants and “phase two” refers to variables only measured in a
subset (thus the “case-cohort sample” constitutes the phase-two data).

The case-cohort design enables obtaining marker data (Day 1, 29, 57) for the immunogenicity
subcohort during early trial follow-up in real-time batches, thereby accelerating the time until final
data set creation and hence data analysis and results on Day 29 and Day 57 marker correlates. The
design allows using the same immunogenicity subcohort to assess correlates for multiple endpoints,
relevant for the COVID-19 VE trials with multiple endpoints (Figure 1). This makes the design
operationally simpler than a case-control sampling design.

5.1 Immunogenicity subcohort

Participants with samples available at Day 1 are eligible for sampling into the immunogenicity
subcohort. In addition, only participants with a known baseline SARS-CoV-2 serostatus and a
known value of each other baseline stratification variable (listed in the next paragraph) are eligible
for sampling into the Random Subcohort.

Table 2 summarizes the planned size of the immunogenicity subcohort, by the baseline factors
used to stratify the random sampling. In this subcohort, six baseline demographic covariate strata
defined by age (18-64 vs. 65 and above), underrepresented minority status (Yes/No; underrepre-
sented minority includes reporting the following races and ethnicities: Blacks or African Americans,
Hispanics or Latinos, American Indians or Alaska Natives, Native Hawaiians, and other Pacific Is-
landers, while participants with Unknown and Not reported are considered to have missing values
for this sampling stratum variable), and enrollment at a US vs. non-US site. The subcohort
sampling is implemented to create representative sampling across the entire period of enrollment.
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Table 2: Planned Immunogenicity Subcohort Sample Sizes by Baseline Strata for Antibody Marker
Measurement

Baseline SARS-CoV-2 Negative2 Baseline SARS-CoV-2 Positive3

Bas. Cov. Strata1 1 2 3 4 5 6 1 2 3 4 5 6
Vaccine 150 150 150 150 150 150 50 50 50 50 50 50
Placebo 20 20 20 20 20 20 50 50 50 50 50 50

1Sampling was stratified within 6 baseline covariate strata:

1 = US Age > 65 minority; 2 = US Age 18-64 minority; 3 = non-US Age > 65;

4 = US Age > 65 non-minority; 5 = non-US Age 18-64; 6 = US Age 18-64 non-minority

Minorities are defined as participants who report the following race or ethnicities: Blacks or African

Americans, Hispanics or Latinos, American Indians or Alaska Natives, Native Hawaiians, and other Pacific

Islanders. US is enrollment at a US site. 2The vaccine group baseline negative strata are assigned large

sample sizes because the correlates of risk analysis focuses on baseline negative vaccine recipients. The

placebo group baseline negative strata are assigned small sample sizes given the expectation that almost all

Day 57 bAb and nAb readouts will be negative/zero given the absence of prior exposure to SARS-CoV-2

antigens.
3Equal stratum sizes are assigned for the vaccine and placebo groups in order to compare bAb and nAb

responses in previously infected persons, studying potential differences in natural+vaccine-elicited

responses vs. natural-elicited responses.

If certain strata do not have enough eligible participants available for sampling, then additional
sampling is done from other strata to keep the total immunogenicity subcohort sample size close
to 1620 or somewhat higher.

Figures S1, S2, and Table S1 in the Supplementary Material describe the actual numbers of partic-
ipants sampled into the baseline negative portion of the immunogenicity subcohort – the relevant
portion given the focus of correlates analyses on baseline negative participants.

5.2 Correlates Objectives Addressed in Two Stages

Figure 4 depicts the two stages of the immune correlates analyses. Stage 1 includes antibody
marker data from all COVID and infection (COV-INF) cases diagnosed through to the last date of:
(1) the time that at least 25 evaluable vaccine breakthrough COVID endpoint cases are available
for analysis; and (2) the time of a data-cut at or after the primary analysis used to define the
data base for the first correlates analysis. Only Day 1, 29, 57 antibody markers, and COVID and
COV-INF diagnosis time point antibody markers, are measured in Stage 1. The objectives of Stage
1 correlates analyses focus on Day 29 and Day 57 markers, which are the objectives listed in Table
1. Stage 1 focuses on Day 57 markers because in general validated or non-validated surrogate
endpoints for approved vaccines are based on the peak antibody time point, and this approach
fits the priority to develop a validated or non-validated surrogate endpoint as rapidly as possible.
Stage 1 also focuses on Day 29 markers because if a correlate based on this time point is found to
perform as well as a Day 57 correlate, then it may be preferred given the practical advantage to
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be measured earlier and to not require a Day 57 post-vaccination visit and blood draw. Another
advantage of an earlier measurement is providing opportunity to include additional breakthrough
COVID endpoint cases (intercurrent endpoints) in the correlates analyses.

Stage 2 includes antibody marker data from all COVID and COV-INF cases diagnosed after the
Stage 1 cases through to the end of the trial, including all available sampling time points (6–7
time points). For immunogenicity subcohort participants, the antibody markers at all available
time points other than Day 1, 29, 57 are measured for Stage 2 correlates analyses (4–5 additional
time points). The Stage 2 clinical endpoint data and antibody marker data enable assessment of
longitudinal antibody markers as outcome-proximal correlates of instantaneous endpoint risk and
as various types of outcome-proximal correlates of protection.

The manuscript restricts to assessment of Stage 1 correlates.

6 Unsupervised Feature Engineering of Antibody Markers (Stage
1: Day 1, 57)

6.1 Descriptive Tables and Graphics

6.1.1 Antibody marker data

Binding antibody titers to full length SARS-CoV-2 Spike protein, to the RBD domain of the
Spike protein, and to the Nucleocapsid (N) protein will be measured in all participants in the
immunogenicity subcohort (augmented with infected cases). N-specific binding antibody titers
are not used for correlates analyses or for graphical reporting; these data are only used for tabular
reporting. Binding antibody IgG Spike, IgG RBD, IgG N, as well as fold-rise in these three markers
from baseline, are measured at each pre-defined time point. Indicators of 2-fold rise and 4-fold rise
in IgG concentration (fold rise [post/pre] ≥ 2 and ≥ 4, 2FR and 4FR) are measured at each
pre-defined post-vaccination timepoint. Binding antibody responders to a given antigen at each
pre-defined timepoint are defined as participants with value above the antigen-specific positivity
cut-off. Binding antibody IgG 2FR (4FR) at each pre-defined timepoint to a given antigen are
defined as participants who had baseline values below the LLOQ with IgG concentration at least
2 times (4 times) above the assay LLOQ, or as participants with baseline values above the LLOQ
with at least a 2-fold (4-fold) increase in IgG concentration.

Pseudovirus neutralizing antibody ID50 and ID80 titers, as well as fold-rise in ID50 and ID80 titers
from baseline, are measured at each pre-defined time point. Indicators of 2-fold rise and 4-fold rise
in ID50 titer (fold rise [post/pre] ≥ 2 and ≥ 4, 2FR and 4FR) are measured at each pre-defined
post-vaccination timepoint. Neutralization responders at each pre-defined timepoint are defined
as participants who had baseline values below the LOD with detectable ID50 neutralization titer
above the assay LOD, or as participants with baseline values above the LOD with a 4-fold increase
in neutralizing antibody titer. Neutralization 2FR (4FR) at each pre-defined timepoint are defined
as participants who had baseline values below the LLOQ with ID50 at least 2 times (4 times) above
the assay LLOQ, or as participants with baseline values above the LLOQ with at least a 2-fold (4-
fold) increase in neutralizing antibody titer. While quantitative fold-rise is shown for both ID50 and
ID80, response above LOD, 2FR and 4FR responder status are shown only for ID50. (However, for
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superlearner analysis of multivariable CoRs, 2FR and 4FR responder status variables are included
for each of pseudovirus-nAb ID50 and ID80, given the objectives of more comprehensive analysis
in building the estimated optimal surrogate.)

Note that for defining positive response, 2FR, and 4FR, a reason why values below the LOD are set
to half the LOD before calculating the indicator of response, is to ensure that a vaccine recipient
that has an unusually low antibody readout at baseline and a post-vaccination value below or near
the LOD is not erroneously counted as a responder.

The following list describes the antibody variables that are measured from immunogenicity subco-
hort and infection case participants. (The pre-defined time points are Day 1, 29, 57.)

1. Individual anti-Spike antibody concentration at each pre-defined time point

2. Individual anti-Spike antibody fold-rise concentration post-vaccination relative to baseline at
each pre-defined post-vaccination time point

3. Individual anti-RBD antibody concentration at each pre-defined time point

4. Individual anti-RBD antibody fold-rise post-vaccination relative to baseline at each pre-
defined post-vaccination time point

5. Individual anti-N antibody concentration at each pre-defined time point

6. Individual anti-N antibody fold-rise post-vaccination relative to baseline at each pre-defined
post-vaccination time point

7. 2-fold-rise and 4-fold rise (fold rise in anti-Spike antibody concentration [post/pre] ≥ 2 and
≥ 4, 2FR and 4FR) at each pre-defined post-vaccination time point

8. 2-fold-rise and 4-fold rise (fold rise in anti-RBD antibody concentration [post/pre] ≥ 2 and
≥ 4, 2FR and 4FR) at each pre-defined post-vaccination time point

9. 2-fold-rise and 4-fold rise (fold rise in anti-N antibody concentration [post/pre] ≥ 2 and ≥ 4,
2FR and 4FR) at each pre-defined post-vaccination time point

10. Pseudovirus-nAb responders, at each pre-defined timepoint defined as participants who had
baseline values below the LLOQ with detectable pseudovirus-nAb ID50 titers above the assay
LLOQ or as participants with baseline values above the LLOQ with a 4-fold increase in
pseudovirus-nAb ID50 titers

Summaries of the immunogenicity data will be reported in tables. In particular, the tables will
include, for each pre-defined post-baseline time point:

1. For each binding antibody marker, the estimated percentage of participants defined as re-
sponders, and with concentrations ≥ 2x LLOQ or ≥ 4 x LLOQ, will be provided with the
corresponding 95% CIs using the Clopper-Pearson method.

In addition, the estimated percentage of participants defined as responders, participants with
2-fold rise (2FR), and participants with 4-fold rise (4FR) will be provided with the corre-
sponding 95% CIs using the Clopper-Pearson method.
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2. For the ID50 pseudo-virus neutralization antibody marker, the estimated percentage of par-
ticipants defined as responders, participants with 2-fold rise (2FR), and participants with
4-fold rise (4FR) will be provided with the corresponding 95% CIs using the Clopper-Pearson
method

3. Geometric mean titers (GMTs) and geometric mean concentrations (GMCs) will be sum-
marized along with their 95% CIs using the t-distribution approximation of log-transformed
concentrations/titers (for each of the four Spike-targeted marker types including pseudovirus-
nAb ID50 and ID80, as well as for binding Ab to N).

4. Geometric mean titer ratios (GMTRs) or geometric mean concentration ratios (GMCRs) are
defined as geometric mean of individual titers/concentration ratios (post-vaccination/pre-
vaccination for each injection)

5. GMTRs/GMCRs will be summarized with 95% CI (t-distribution approximation) for any
post-baseline values compared to baseline, and post-Day 57 values compared to Day 57

6. The ratios of GMTs/GMCs will be estimated between groups with the two-sided 95% CIs
calculated using t-distribution approximation of log-transformed titers/concentrations [the
groups compared are vaccine recipient non-cases vs. vaccine recipient breakthrough cases
used for Day 57 marker correlates analyses (Post Day 57 cases) and vaccine recipient non-
cases vs. vaccine recipient breakthrough cases used for Day 29 marker correlates analyses
(Intercurrent cases and Post Day 57 cases)].

7. The differences in the responder rates, 2FRs, 4FRs between groups will be computed along
with the two-sided 95% CIs by the Wilson-Score method without continuity correction (New-
combe, 1998) (the groups for comparison are as described in the previous bullet).

All of the above point and confidence interval estimates will use inverse probability of antibody
marker sampling weighting in order that estimates and inferences are for the population from
which the whole study cohort was drawn. In two-phase sampling data analysis nomenclature,
the “phase 1 ptids” are the per-protocol individuals excluding individuals with a COVID failure
event or any other evidence of SARS-CoV-2 infection < 7 days post Day 57 visit. The “phase 2
ptids” are then the subset of these phase 1 ptids in the immunogenicity subcohort with Day 1 and
Day 29 and Day 57 Ab marker data available. Thus, marker data for the COVID endpoint cases
outside the subcohort will not be used in immunogenicity analyses; these cases are excluded from
immunogenicity analyses. Similarly, for Day 29 marker correlates analyses the “phase 1 ptids”
are the per-protocol individuals excluding individuals with a COVID failure event or any other
evidence of SARS-CoV-2 infection < 7 days post Day 29. The “phase 2 ptids” are then the subset
of these phase 1 ptids in the immunogenicity subcohort with Day 1 and Day 29 Ab marker data
available. Thus again, marker data for the COVID endpoint cases outside the subcohort will not
be used in immunogenicity analyses; these cases are excluded from immunogenicity analyses.

The estimated weight ŵsubcohort.57x is the inverse sampling probability weight, calculated as the
empirical fraction (No. Day 57 phase 1 ptids / No. Day 57 phase 2 ptids) within each of the
baseline strata [(vaccine, placebo) × (baseline negative, baseline positive) × (demographic strata)].
For individuals outside the phase 1 ptids, ŵsubcohort.57x is assigned the missing value code NA. All
other individuals have a positive value for ŵsubcohort.57x, including cases not in the subcohort. This
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weight is only used for case outcome-status blinded immunogenicity inferential analyses. Note that
ŵsubcohort.57x is used for all immunogenicity analyses, which are based solely on the immunogenicity
subcohort, for Day 1, Day 29, and Day 57 markers. (Not used for correlates analyses.)

Tables will be provided separately for (1) baseline negative individuals, (2) baseline positive in-
dividuals, (3) baseline negative individuals by subgroup defined as in Table 3, and (4) baseline
positive individuals by the same subgroups as in (3). Each table will show data for all available
time points and for each of the vaccine and placebo arms.

Table 3: Baseline Subgroups that are Analyzed1.

Age: < 65, ≥ 65
Heightened Risk for Severe COVID: At risk, Not at risk
Age x Risk for Severe COVID:
< 65 At risk, < 65 Not at risk, ≥ 65 At risk, ≥ 65 Not at risk
Sex Assigned at Birth: Male, Female
Age x Sex Assigned at Birth:
< 65 Male, < 65 Male, ≥ 65 Female, ≥ 65 Female
Hispanic or Latino Ethnicity: Hispanic or Latino, Not Hispanic or Latino
Race or Ethnic Group:
White Non-Hispanic2, Black, Asian, American Indian or Alaska Native (NatAmer)
Native Hawaiian or Other Pacific Islander (PacIsl), Multiracial,
Other, Not reported, Unknown
Underrepresented Minority Status in the U.S.:
Communities of color (Comm. of color), White2

Age x Underrepresented Minority Status in the U.S.:
Age ≥ 65 Comm. of color, Age < 65 Comm. of color, Age ≥ 65 White, Age ≥ 65 White

1All analyses are done within strata defined by randomization arm and baseline positive/negative
status, such that these variables are not listed here as subgroups for analysis.

2White Non-Hispanic is defined as Race=White and Ethnicity=Not Hispanic or Latino. All of the
other Race subgroups are defined solely by the Race variable, with levels Black, Asian, American

Indian or Alaska Native, Native Hawaiian or Other Pacific Islander, Multiracial, Other, Not
reported, Unknown. Communities of color is defined by the complement of being known White

Non-Hispanic.

For comparing antibody levels between groups, the following groups are compared:

• Baseline negative vaccine vs. baseline negative placebo

• Baseline positive vaccine vs. baseline positive placebo

• Baseline negative vaccine vs. baseline positive vaccine

• Within baseline negative vaccine recipients, compare each of the following pairs of subgroups
listed in Table 3: Age ≥ 65 vs. age < 65; risk for severe COVID: at risk vs. not at risk;
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age ≥ 65 at risk vs. age ≥ 65 not at risk; age < 65 at risk vs. age < 65 not at risk; male
vs. female; Hispanic or Latino ethnicity: Hispanic or Latino vs. Not Hispanic or Latino;
Underrepresented minority status: Communities of color vs. White Non-Hispanic (within the
U.S.).

The entire immunogenicity analysis is done in the per-protocol cohort with Day 1, Day 29, and
Day 57 marker data available (the two-phase sample).

6.1.2 Graphical description of antibody marker data

The Day 1, 29, 57 antibody marker data collected from the immunogenicity subcohort participants
will be described graphically. These data are representative of the entire study cohort. Importantly,
only antibody data from the immunogenicity subcohort are included (i.e., no data from cases outside
the subcohort are included). This makes the analyses unsupervised (independent of case-control
status), enabling interrogation and optimization of the antibody biomarkers prior to the inferential
correlates analyses.

Plots are developed for the following purposes. All of the analyses are done separately within each
of the four subgroups defined by randomization arm cross-classified with baseline negative/positive
status. In addition, many of the descriptive analyses will also be done separately for each demo-
graphic subgroup of interest listed above. For descriptive plots of individual marker data points
that pool over one or more of the baseline strata subgroups, plots show all observed data points.

For each antibody marker readout, both Day 57 and baseline-subtracted Day 57 readouts are of
interest. We will refer to the latter as ‘delta.’ All readouts, including delta, will be plotted on the
log10 scale, with plotting labels on the natural scale. As such, delta is log10 fold-rise in the marker
readout from baseline.

The following descriptive graphical analyses are done.

1. The distribution of each antibody marker readout at Day 1, Day 29, and Day 57 will be de-
scribed with plots of empirical reverse cumulative distribution functions (rcdfs) and boxplots
(including individual data points) within each of the four groups defined by randomization
arm (vaccine, placebo) and baseline positivity stratum (seronegative, seropositive). Inverse
probability of sampling into the subcohort weights (ŵsubcohort.57x) are used in the estimation
of the rcdf curves; henceforth we refer to these weights as “inverse probability of sampling”
(IPS) weights. Analyses of Day 1 markers always pool across vaccine and placebo recipients
given that the two subgroups are the same at baseline.

2. Plots are arranged to compare each Day 29 or Day 57 marker readout between randomization
arms within each of the baseline seropositive and baseline seronegative subgroups.

3. Plots are also arranged to compare each Day 29 or Day 57 marker readout between baseline
serostatus groups within each randomization arm.

4. The correlation of each antibody marker readout among Day 1, Day 29, and Day 57, and
between Day 1 and fold-rise to Day 29 and to Day 57 (delta), is examined within each random-
ization arm and baseline positivity stratum. Pairs plots/scatterplots will be used, annotated
with baseline strata-adjusted Spearman rank correlations, implemented in the PResiduals
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R package available on CRAN. For calculating the correlation within each randomization
arm and baseline positivity stratum, because PResiduals does not currently handle sampling
weights, the correlation estimates are computed as follows: For each re-sampled data set in
the second approach to graphical plotting, the covariate-adjusted Spearman correlation is
calculated. The average of the estimated correlations across re-sampled data sets is reported.

5. The correlation of each pair of Day 1 antibody marker readouts are compared within each
baseline positivity stratum, pooling over the two randomization arms. Pairs plots/scatterplots
and baseline-strata adjusted Spearman rank correlations are used, with covariate-adjusted
Spearman rank correlations computed as described above. The same analyses are done for
each pair of Day 29 antibody marker readouts and for each pair of Day 57 antibody marker
readouts.

6. Point estimates of Day 57 marker positive response rates for each randomization arm within
each baseline positivity stratum are provided. The point and 95% CI estimates include all
of the data and use IPS weights. The same analyses are done for Day 29 marker positive
response rates.

6.2 Methods for Positive Response Calls for bAb and nAb Assays

As noted above, binding antibody responders at each pre-defined timepoint are defined as partic-
ipants with concentration above the specified positivity cut-off, with a separate cut-off for each
antigen Spike, RBD, N (10.8424, 14.0858, and 23.4711, respectively, in BAU/ml). This approach
is used for each of the Spike and RBD and N protein antigen targets.

Pseudovirus neutralization responders at each pre-defined timepoint are defined as participants who
had baseline ID50 values below the LOD with detectable ID50 neutralization titer above the assay
LOD, or as participants with baseline values above the LOD with a 4-fold increase in neutralizing
antibody titer. Otherwise a value is negative for pseudovirus neutralization. The same approach
is used based on ID80 titer.

6.3 SARS-CoV-2 Antigen Targets Used for bAb and nAb Markers

The homologous vaccine strain antigens are used for the immune correlates analyses for the bAb
markers, whereas the homologous vaccine strain with D614G mutation is used for the pseudovirus
nAb markers.

6.4 Score Antibody Markers Combining Information Across Individual bAb
and/or nAb Readouts

For each time point Day 29 and Day 57 separately, score antibody markers that combine information
across the five individual markers are defined and included in the multivariable CoR machine
learning analyses. In particular, five score variables are studied:

1. Maximum signal-diversity score calculated as described in He and Fong (2019).

2. First two linear principal components PCA1 and PCA2
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3. Nonlinear extensions of principal components FSDAM1 and FSDAM2 calculated as in Fong
et al. (2020).

The purpose of these score markers is to seek to maximally capture the main immune response
signal and to study whether there are more than one distinct signals that are associated with the
COVID outcome, and to study whether score markers can provide strengthened association with
COVID compared to the individual assay markers. The score markers are included as input features
in the machine learning (superlearning) prediction modeling (multivariable CoR objective).

7 Baseline Risk Score (Proxy for SARS-CoV-2 Exposure)

The list of baseline covariates potentially relevant for SARS-CoV-2 exposure and risk of COVID
was specified (Table S2 in the Supplementary Material). Based on these covariates, a baseline risk
score is developed and controlled for in correlates analyses to adjust for potential confounding.
The risk score is defined as the logit of the predicted outcome probability from a regression model
estimated using the ensemble algorithm superlearner (i.e. stacking), where this logit predicted
outcome is scaled to have empirical mean zero and empirical standard deviation one. The settings
of superlearner (i.e., loss function, cross-validation technique, library of learners) that are used for
implementation of superlearner for building a baseline risk score are described in Section 9.6.

The development of risk score will involve training the superlearner using placebo arm data and
predictions made on vaccine arm data (CV-predictions will be made on placebo arm data). In both
arms, risk score development will be restricted to baseline negative per-protocol subjects with cases
as COVID endpoints starting post-enrollment. The CV-prediction performance of superlearner
(CV-AUC calculation and CV-ROC curves) will be derived with cases as COVID endpoints starting
post-enrollment as well. The prediction performance of superlearner (AUC calculation and ROC
curve) in the vaccine arm, however, will be restricted to the same set of vaccine recipients as used
in the correlates analyses with cases considered as COVID endpoints starting 7 days post second
vaccination visit and non-cases as participants with follow-up beyond 7 days post second vaccination
visit and never registered a COVID endpoint.

Independent of the superlearner risk score, important individual risk factors are also specified for
inclusion as adjustment factors in correlates analyses. In particular, in addition to the risk score the
at-risk indicator and the communities of color indicator are adjusted for in all correlates analyses.
This choice is justified by the epidemiological data showing that these two indicators are strong
infection and COVID-19 risk factors, and making use of the flexibility of super learner to develop
a model for how age relates to risk.

Henceforth we refer to the baseline variables that are adjusted for in correlates analyses as “base-
line factors” which, depending on the risk score results and performance, will consist of only the
individual key risk factors, or key individual risk factors plus the baseline risk score.
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8 Correlates Analysis Descriptive Tables by Case/Non-Case Sta-
tus

The key table summarizing the distribution of each of the five antibody markers at the Day 1, 29,
and 57 times points is listed below. For each time point Day 1, Day 29, and Day 57 separately,
the positive response rate with 95% CI, and the GMT or GMC with 95% CI, is reported for each
of of the case and non-case groups. In addition, the point and 95% CI estimate of the difference
in positive response rate (non-cases vs. cases) and the GMT or GMC ratio (non-cases/cases), is
reported. Two cases vs. non-cases comparisons are done: Post Day 57 cases vs. Non-cases, and
Intercurrent + Post Day 57 cases vs. Non-cases, with Post Day 57 cases and Intercurrent cases
defined below. The same set of non-cases is used in each comparison.

• Immunogenicity table: Antibody levels in the baseline SARS-CoV-2 negative per-protocol
cohort (vaccine recipients). Post Day 57 cases are baseline negative per-protocol vaccine
recipients with the symptomatic infection COVID-19 primary endpoint diagnosed starting
7 days after the Day 57 study visit. Intercurrent cases are baseline negative per-protocol
vaccine recipients with the symptomatic infection COVID-19 primary endpoint diagnosed
starting 7 days after the Day 29 study visit and before 7 days post Day 57 study visit.
Non-cases/Controls are baseline negative per-protocol vaccine recipients sampled into the
immunogenicity subcohort with no COVID primary endpoint up to the time of data cut and
no evidence of SARS-CoV-2 infection up to six days post Day 57 visit.

The point and confidence interval estimates are computed using inverse probability sampling
weights ŵsubcohort.57x for Post Day 57 cases and for Non-cases, and using ŵ29.x for Intercurrent
+ Post Day 57 cases combined, as defined in Section 9.3.1.

9 Correlates of Risk Analysis Plan

This analysis plan for CoRs and CoPs focuses on the COVID primary endpoint, with its continuous
failure times (failure time defined by the day of the event) and no competing risks.

9.1 CoR Objectives

The following CoR objectives are assessed in baseline seronegative per-protocol vaccine recipients:

1. Univariable CoR To assess each individual Day 29 and Day 57 antibody marker as a CoR
of outcome in vaccine recipients, adjusting for baseline factors (See Section 7)

2. Multivariable CoR To assess a specified set of Day 29 markers in a multivariable regression
model for their correlation with outcome and to repeat for Day 57 markers, and to build
models predictive of outcome based on a set of Day 29 and Day 57 antibody marker readouts,
adjusting for baseline factors (See Section 7)

9.2 Outline of the Set of CoR Analyses

The univariable CoR objective is addressed by Cox proportional hazards regression and nonpara-
metric threshold regression. The multivariable CoR objective is addressed in two ways, first by a
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Cox proportional hazards model with specified set of Day 29 markers and repeating for the parallel
set of Day 57 markers, and second by superlearning that compares many models with different sets
of input features. All of these analyses are implemented in automated and reproducible press-button
fashion.

In addition, supportive exploratory analyses of the univariable CoR objective are conducted using
flexible parametric regression modeling: generalized additive model regression.

9.3 Day 29 and Day 57 Markers Assessed as CoRs and CoPs

The following four markers at Day 29 and at Day 57 are assessed as CoRs and CoPs, usually as
quantitative variables and in some analyses as ordered trinary variables or binary variables, all of
which do not subtract Day 1 (baseline) values:

1. binding Ab to Spike (IgG BAU/ml)

2. binding Ab to RBD (IgG BAU/ml)

3. pseudovirus neutralization ID50 (IU50/ml)

4. pseudovirus neutralization ID80 (IU80/ml)

For all univariable CoR analyses (first objective), the non-baseline subtracted versions of the Day
29 and Day 57 antibody markers are studied; the baseline-subtracted versions are not studied given
that the analyses are done in the baseline negative cohort for which Day 1 readouts will generally be
negative. The multivariable machine learning CoR analyses include synthesis markers that combine
information across the individual markers listed above, as well as including 2FR and 4FR versions
of variables.

9.3.1 Inverse probability sampling weights used in CoR analyses

In section 6.1, estimated inverse probability sampling (IPS) weights ŵsubcohort.57x were defined for
per-protocol immunogenicity subcohort members, for the purpose of immunogenicity analyses. This
section describes the two IPS weights, one used for Day 57 marker correlates analyses (ŵ57.x) and
the other used for Day 29 marker correlates analyses (ŵ29.x).

Consider the correlates analyses of Day 57 markers. For baseline sampling stratum x [(vaccine,
placebo) × (demographic strata)], the IPS weight w57.x assigned to a non-case participant in stra-
tum x is defined by ŵ57.x = 1/π̂57(x) = Nx/nx, where Nx is the number of stratum x vaccine
recipient non-cases in the Per-Protocol Baseline Negative (PPBN) cohort and nx is the number
of these participants that also have Day 1, 29, and 57 marker data available, where participants
with any evidence of SARS-CoV-2 infection before 7 days post Day 57 visit are excluded from the
counts Nx and nx. For non-case participant i in the immunogenicity subcohort, ŵ57.i = 1/π̂57(Xi)
denotes the weight ŵ57.x for this individual’s sampling stratum. All Post Day 57 cases are assigned
sampling weight N1/n1 where N1 is the total number of vaccine recipient cases in the PPBN cohort
restricting to cases with event time starting 7 days post Day 57, and n1 is the number of these
participants that also had the Day 1, 29, and 57 markers measured, and again participants with
any evidence of SARS-CoV-2 infection < 7 days post Day 57 visit are excluded from the counts
Nx and nx.
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In terms of two-phase sampling data analysis nomenclature, for the Day 57 marker analyses “phase
1 ptids” are defined as the entire PPBN cohort except excluding participants with any evidence
of SARS-CoV-2 infection < 7 days post Day 57 visit. The “phase 2 ptids” are then the subset of
these phase 1 ptids with Day 1, 29, and 57 Ab marker data available. Thus the weight ŵ57.x is the
inverse sampling probability weight, calculated as the empirical fraction (No. phase 1 ptids / No.
phase 2 ptids) within each of the baseline negative strata (14 strata defined by PPBN vaccine group
cases, PPBN placebo group cases, PPBN vaccine group non-cases divided into the 6 demographic
strata, and PPBN placebo group non-cases divided into the 6 demographic strata). For baseline
negative individuals outside the phase 1 ptids, ŵ57.x is assigned the missing value code NA. All
other individuals have a positive value for ŵ57.x.

Next consider the correlates analyses of Day 29 markers. For baseline sampling stratum x [(vac-
cine, placebo) × (demographic strata)], the IPS weight w29.x assigned to a non-case participant in
stratum x is defined by ŵ29.x = 1/π̂29(x) = Nx/nx, where Nx is the number of stratum x vaccine
recipient non-cases in the PPBN cohort and nx is the number of these participants that also have
Day 1 and Day 29 marker data available, where participants with any evidence of SARS-CoV-2
infection before 7 days post Day 29 visit are excluded from the counts Nx and nx. For non-case
participant i in the immunogenicity subcohort, ŵ29.i = 1/π̂29(Xi) denotes the weight ŵ29.x for this
individual’s sampling stratum. All Intercurrent and Post Day 57 cases are assigned sampling weight
N1/n1 where N1 is the total number of vaccine recipient cases in the PPBN cohort restricting to
cases with event time starting 7 days post Day 29, and n1 is the number of these participants that
also had the Day 1 and Day 29 markers measured, and again participants with any evidence of
SARS-CoV-2 infection < 7 days post Day 29 visit are excluded from the counts Nx and nx.

In terms of two-phase sampling data analysis nomenclature, for the Day 29 marker analyses “phase
1 ptids” are defined as the entire PPBN cohort except excluding participants with any evidence
of SARS-CoV-2 infection < 7 days post Day 29 visit. The “phase 2 ptids” are then the subset of
these phase 1 ptids with Day 1 and Day 29 Ab marker data available. Thus the weight ŵ29.x is the
inverse sampling probability weight, calculated as the empirical fraction (No. phase 1 ptids / No.
phase 2 ptids) within each of the baseline negative strata (14 strata defined by PPBN vaccine group
cases, PPBN placebo group cases, PPBN vaccine group non-cases divided into the 6 demographic
strata, and PPBN placebo group non-cases divided into the 6 demographic strata). For baseline
negative individuals outside the phase 1 ptids, ŵ29.x is assigned the missing value code NA. All
other individuals have a positive value for ŵ29.x. In sum, the weights ŵ29.x are calculated in the
same way as the weights ŵ57.x, except the relevant time window for evidence of infection or COVID
is at least 7 days post Day 29 visit instead of at least 7 days post Day 57 visit.

9.3.2 Choice of regression methods

Time-to-event methods of Day 57 marker correlates analyses use the Day 57 visit date as the time
origin. Similarly, time-to-event methods of Day 29 marker correlates analyses use the Day 29 visit
date as the time origin.

The IPWCC Cox regression model designed for case-cohort sampling designs will be used for
estimation and inference on hazard ratios of outcomes by Day 29 or Day 57 marker levels, and for
estimation and inference on marginalized marker-conditional cumulative incidence over time. The
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models will be fit using the survey R package available on CRAN, and will adjust for the baseline
factors. We use a method from the survey package that assumes without replacement two-phase
sampling and not Bernoulli sampling, which matches the sampling design and approach to weight
estimation (Lumley, 2010).

The final time point tF of follow-up for correlates analyses is taken to be the latest COVID outcome
event time. Let T be the failure time, S a Day 29 or Day 57 marker of interest, and X the vector
of baseline factors that are adjusted for. With S1(t|s, x) = P (T > t|S = s,X = x,A = 1), the
Cox model fit yields an estimate of S1(t|s,Xi) for each individual i in the phase-two sample. The
marginalized conditional risk risk1(t|s) = EX [P (T ≤ t|s,X,A = 1)] through time t (for all times t
through tF simultaneously) is estimated based on the equation

risk1(t|s) =

∫
(1− S1(t|s, x))dH(x) (1)

where H(·) is the distribution of X in A = 1 individuals.

The function risk1(t|s) can be estimated by

r̂isk1(t|s) =
∑n

i=1
1

π̂(Xi)
(1− Ŝ1(t|s,Xi))∑n
i=1

1
π̂(Xi)

, (2)

where n is the number of participants with phase-two data.

The bootstrap is used to obtain 95% pointwise confidence intervals for risk1(tF |s).

The bootstrap process will be performed by resampling with replacement the subjects within the
subcohort and the subjects outside the subcohort separately within each stratum and by resampling
with replacement subjects with undetermined stratification variables. Across all bootstrap samples,
the number of participants in each stratum in the immunogenicity subcohort remains fixed, but
the number of cases does not stay the same.

The results of the above Cox modeling will be output in a variety of ways:

1. Plot r̂isk1(tF |s) vs. s with 95% CIs for continuous S = s varying over its whole range.

Include on the plot the estimate of r̂isk0(tF ) with a 95% CI for the placebo arm (horizontal
bands), computed by a Cox model marginalizing over the same baseline factors as for the
analysis of the vaccine arm.

2. Based on a fit of the Cox model to a nominal categorical antibody marker defined as the
tertiles of S, plot r̂isk1(t|s) for each category of S values with 95% CIs, for all time points
t from Day 57 through tF . If more than 20% of vaccine recipients have S below the LOD
of the assay, then the categories instead will be (1) values ≤ LOD; (2) values below the
median of values > LOD; (3) values above the median of values > LOD. Include on the plot

the estimated curve r̂isk0(t) with 95% CIs for the placebo arm, computed by a Cox model
marginalizing over the same baseline factors as for the analysis of the vaccine arm.

3. Tabular reporting of the hazard ratio per 10-fold change in the quantitative Day 29 or Day
57 antibody marker with 95% confidence interval and 2-sided p-value.
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4. Tabular reporting of the hazard ratio for the Middle and Upper categories of the categorical
Day 57 antibody marker vs. the Lower category, with 95% confidence interval and 2-sided
p-value, as well as a global generalized Wald two-sided p-value for whether the hazard rate
of the endpoint varies across the three categories. The table includes the attack rate (with
no. of cases / no. at risk) through tF for each of the three vaccine marker subgroups and for
the placebo arm.

5. Report point and 95% CI estimates for the hazard ratio per 10-fold change in the Day 29
or Day 57 antibody marker, for the entire per-protocol baseline negative vaccine cohort and
for each of the baseline demographic strata subgroups defined in Table 3 (reported via forest
plotting).

6. Westfall-Young (1997) q-values and FWER-adjusted p-values for the generalized Wald tests
are included in the table.

The bootstrap is used to calculate 95% pointwise CIs for risk1(tF |s) in s. The 2-sided Wald p-value
for testing the regression coefficient of the marker in the Cox model provides a valid test of the null
hypothesis H0 : risk1(tF |s) = risk1(tF ) for all s, and is reported.

In addition, the same Cox model analysis will be used to estimate the alternative marginalized
conditional risk parameter defined by risk1(t|S ≥ s) where risk1(t|S ≥ s) = EX [P (T ≤ t|S ≥
s,X,A = 1)], which can be estimated by

r̂isk1(t|S ≥ s) =

∑n
i=1

1
π̂(Xi)

(1− Ŝ1(t|S ≥ s,Xi))∑n
i=1

1
π̂(Xi)

.

This parameter is useful because typically subgroups of interest are defined by having marker
response above a threshold. We will plot r̂isk1(tF |S ≥ s) vs. s with 95% CIs for continuous S with
s varying over the range of S in which the number of cases to estimate Ŝ1(t|S ≥ s,Xi) is 5 or more.
This type of analysis is also included because it analyzes the same parameter as the nonparametric
threshold estimation method described below, providing a way to address the threshold question
both by Cox modeling and by nonparametric analysis.

9.3.3 Univariate CoR: Nonparametric threshold regression modeling

The van der Laan et al. (2021) extension of the nonparametric CoR threshold estimation method
of Donovan et al. (2019) is applied to each of the five non-baseline subtracted antibody markers,
at each time point Day 29 and Day 57, using the version that defines the binary outcome Y of
interest as Y = 1 if a COVID endpoint occurred during the blinded period of follow-up and Y = 0
otherwise. The analyses adjust for the same baseline factors X as used in the Cox model CoR
analyses.

The extension adjusts for baseline covariates by estimating the conditional mean function E[Y |S ≥
s,X,A = 1] using discrete-SuperLearner and then empirically averaging over the baseline covariates
X to estimate the marginal risk riskY1 (S ≥ s) = EX [P (Y = 1|S ≥ s,X,A = 1)] for each threshold
s of the the antibody marker in a specified discrete set. We do not perform pooled regression
across the thresholds s, which ensures we are totally nonparametric in estimating the threshold
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dependence of riskY1 (S ≥ s) on s. The SuperLearner library includes a range of increasingly flexi-
ble parametric learners including logistic regression (glm), bayesian logistic regression (bayesglm),
and L1-penalized logistic regression (glmnet). (Two of each learner is included in the library, one
with only main-term variables and another with main-term and interaction variables.) An advan-
tage of the nonparametric CoR threshold method compared to Cox modeling that specifies a log
linear hazard ratio with the marker is that it can potentially detect a threshold of very low risk.
The method is implemented with and without the monotonicity constraint that riskY1 (S ≥ s) is
monotone non-increasing in s, where the results assuming monotonicity are reported unless there
is evidence for violation of this assumption.

The results are reported in the same way that Donovan et al. (2019) reports results in its Figure
2, where point estimates, pointwise 95% confidence bands, and simultaneous 95% confidence bands
for riskY1 (S ≥ s) are plotted for a range of threshold values. The simultaneous confidence bands
COV002r the entire curve in s with at least 95% probability and are useful for judging whether
risk varies over threshold subgroups, whereas the pointwise 95% confidence bands are useful for
quantifying precision at particular threshold values. The method uses the same empirical two-phase
sampling estimated weights (IPS weights) as used for the other univariable IPWCC CoR analyses.
In addition, for each pre-specified risk threshold c set to take values over a grid with lowest value
0, the method is applied to estimate the inverse function sc = inf{s : EX [P (Y = 1|S ≥ s,A =
1, X] ≤ c}, where sc is estimated by substitution of the marginal risk function estimate. Note
that the substitution estimator of sc requires that the marginal risk function is estimated for all
thresholds, which is computationally infeasible. Instead, we estimate the marginal risk function
on a sufficiently large discrete set and linearly interpolate to obtain marginal risk estimates for
all thresholds outside the discrete set. In order for this estimand to be well defined, we operate
(for this estimand only) under the assumption that s 7→ riskY1 (S ≥ s) is monotone. For the
substitution-based estimator of the inverse function sc to be well-defined, we require the estimate
of s 7→ riskY1 (S ≥ s) to be monotone as well. If there is evidence that the function estimate
is not monotone then we replace the estimate with its monotone projection, which preserves its
theoretical properties (Westling, van der Laan, Carone, 2020).

A plot of point and pointwise 95% confidence interval estimates of sc (over the grid of c values)
is provided to help indicate marker thresholds defining subgroups with very low risk of outcome.
The confidence interval estimates for sc are derived directly from the confidence interval estimates
for the marginal risk function s 7→ riskY1 (S ≥ s), and therefore its estimates are compatible with
those of the marginal risk function. In addition, a plot of point and simultaneous 95% confidence
interval estimates of sc (over the grid of c values) is provided, where the simultaneous confidence
interval estimates for sc are derived directly from the simultaneous 95% confidence band estimates
for the marginal risk function s 7→ riskY1 (S ≥ s), and therefore its estimates are compatible with
those of the marginal risk function. In particular, no multiple testing adjustments are needed.

The analysis is done using targeted maximum likelihood estimation (TMLE) as described in van
der Laan, Zhang, and Gilbert (2021), and the pointwise and simultaneous simultaneous confidence
bands are of the Wald-type, obtained from the asymptotic distribution of the TMLE.
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9.4 Univariable CoR: Supportive Exploratory Flexible Parametric Risk Mod-
eling

For each of the four non-baseline subtracted Day 57 antibody markers, flexible nonlinear modeling
of outcome risk studied as a dichotomous outcome Y will be conducted, as exploratory supportive
analyses. Again, the analyses adjust for the same baseline factors X as used in the Cox model CoR
analyses. A generalized additive model with degree of smoothing estimated by cross-validation is
employed (Wood, 2017). Two-phase sampling designs are accounted for through inverse probability
weighting and confidence intervals are obtained through the same bootstrap scheme as the Cox
proportional hazard model bootstrap inference.

9.4.1 P-values and Multiple hypothesis testing adjustment for CoR analysis

In general, p-values are only reported from pre-specified and automated (press-button) analyses.
For the CoR analyses, p-values are reported for the univariable Cox regression analyses of the four
specified Day 57 antibody marker variables. Two-sided p-values for hypothesis testing of a Day 57
marker CoR are calculated both for the Cox regression of quantitative markers (two-sided Wald
tests), and for the Cox regression of markers binned into tertiles (two-sided Generalized Wald tests).
Therefore a total of eight 2-sided p-values for Day 57 CoRs are calculated.

It is not completely clear whether to perform multiple hypothesis testing adjustment, given the
expectation that the correlations among the markers are high, and possibly very high, meaning
that multiplicity correction could incur a relatively high cost on the false negative error rate.
However, given that robust evidence supporting an antibody marker as a CoR will be required for
qualifying a marker, we will conduct multiplicity adjustment for CoR analysis, as the ability to
make an inference that a marker passed pre-specified multiplicity adjusted criteria should aid an
overall evidence package for establishing a validated or non-validated surrogate endpoint. Therefore,
multiplicity adjustment is performed across the eight 2-sided p-values.

A permutation-based method (Westfall et al., 1993) will be used for both family-wise error rate
(Holm-Bonferroni) and false-disCOV002ry rate (q-values; Benjamini-Hochberg) correction. 104

replicates of the data under the null hypotheses will be created by randomly resampling the im-
munologic biomarkers with replacement. For each Cox regression CoR analysis the unadjusted
p-value, the FWER-adjusted p-value, and the q-value is reported for whether there is a covariate-
adjusted association, where all p-values and q-values are 2-sided. The FWER-adjusted p-values and
q-values are computed pooling over both the quantitative marker and tertilized marker CoR anal-
yses. As a guideline for interpreting CoR findings, markers with FWER-adjusted p-value ≤ 0.05
are flagged as having statistical evidence for being a CoR. Additionally, markers with unadjusted
p-value ≤ 0.05 and q-value ≤ 0.10 are flagged as having a hypothesis generated for being a CoR.

The multiplicity adjustment analyses described above for Day 57 marker CoR analyses are repeated
(conducted separately) for Day 29 marker CoR analyses.

9.5 Multivariable CoR: Cox Proportional Hazards Models

A multivariable Cox model is fit (using the same fitting approach as for individual markers) that
includes the three Day 29 markers bAb RBD, pseudovirus nAb ID50, and WT LV MN50, with the
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same baseline prognostic factors adjusted for in the univariable marker analyses also adjusted for
in the multivariable marker analyses. Point estimates and 95% confidence intervals are reported
for the 3 marker hazard ratio parameters. An unadjusted p-value from a generalized Wald test for
whether the set of 3 markers has any correlation with HIV-1 acquisition is (rejecting the complete
null hypothesis that the 3 hazard ratios are all unity) is reported. The p-values for the individual
hazard ratio parameters are also reported but it is the generalized Wald test p-value that is the
pre-specified test for whether the set of markers correlate with outcome. This analysis is repeated
for the same three antibody markers measured at Day 57.

In addition, the Cox models will be repeated in exploratory analyses with six separate Cox models
fit for pairs of antibody markers: (1) D29 bAb RBD, D29 PsV nAb ID50; (2) D29 bAb RBD, D29
WT LV MN50; (3) D29 PsV nAb ID50, D29 WT LV MN50; (4) D57 bAb RBD, D57 PsV nAb
ID50; (5) D57 bAb RBD, D57 WT LV MN50; (6) D57 PsV nAb ID50, D57 WT LV MN50. Point
estimates, 95% confidence intervals, and unadjusted p-values for the individual hazard ratios are
reported for each hazard ratio parameter.

9.6 Multivariable CoR: Superlearning of Optimal Risk Prediction Models

9.6.1 Objectives

The multivariable CoR objective is addressed through two sub-objectives: first to build an ‘esti-
mated optimal surrogate’ (Price et al., 2018), a model that best predicts the outcome from Day
57 antibody markers and baseline factors. The second sub-objective is estimation and inference on
variable importance measures for each Day 57 antibody marker, for ranking of antibody markers
by their importance/influence on predicting risk. The analysis plan is patterned off of the analysis
of the HVTN 505 HIV-1 vaccine efficacy trial (Neidich et al., 2019). This objective also builds
models for predicting outcome from Day 29 antibody markers and baseline factors, and from Day
29 antibody markers, Day 57 antibody markers, and baseline factors. For these analyses both
baseline-subtracted and non-baseline subtracted versions of the Day 29 and Day 57 markers are
used, in a broader unbiased analysis to build models most predictive of outcome.

9.6.2 Input variable sets

Day 57 antibody markers are classified into the following three antibody marker variable sets, with
individual variables listed within categories:

1. Binding antibody anti-Spike (S-bAb)

a Day 57 anti-Spike IgG concentration

b delta (Day 57 - Day 1) anti-Spike IgG concentration

c indicator 2FR anti-Spike IgG concentration

d indicator 4FR anti-Spike IgG concentration

2. Binding antibody anti-RBD (RBD-bAb)

a Day 57 anti-RBD concentration
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b delta (Day 57 - Day 1) anti-RBD concentration

c indicator 2FR anti-RBD concentration

d indicator 4FR anti-RBD concentration

3. Pseudovirus neutralizing antibody anti-Spike (pseudovirus-nAb)

a Day 57 anti-Spike ID50

b Day 57 anti-Spike ID80

c delta (Day 57 - Day 1) anti-Spike ID50

d delta (Day 57 - Day 1) anti-Spike ID80

e indicator 2FR anti-Spike ID50

f indicator 4FR anti-Spike ID50

g indicator 2FR anti-Spike ID80

h indicator 4FR anti-Spike ID80

4. Wild Type Live virus neutralizing antibody (WT live virus-nAb)

a Day 57 anti-Spike MN50

b delta (Day 57 - Day 1) anti-Spike MN50

c indicator 2FR anti-Spike MN50

d indicator 4FR anti-Spike MN50

For the primary analyses that only include baseline negative vaccine recipients, the markers 1b, 2b,
3c, 3d, and 4b are excluded from the analysis, because for this cohort there is very little potential
independent information in these markers compared to the Day 57 markers (that are not baseline
subtracted). A second set of antibody marker variable sets is defined by replacing Day 57 above
with Day 29. In addition, a third set of antibody marker variable sets is defined by replacing Day
57 antibody markers with both Day 29 and Day 57 antibody marker variables. Inclusion of these
sets allow comparing classification accuracy of Day 29 markers vs. Day 57 markers, and whether
including both time points improves classification accuracy.

The baseline factors without any marker data constitutes another set of variables to include in the
superlearner modeling.

9.6.3 Missing data

We expect a very small amount of missing data from the four antibody marker types (bAb Spike,
RBD; pseudovirus-nAb ID50, ID80). However, there may be a small amount of missing data, with
possibly different participants missing data for different markers. We take the following approach
to handle any missing data that occurs.
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In the first dataset we only have ID50 data. Imputation takes two steps: 1) For the subjects
with D57 ID50, we impute their missing baseline and D29 ID50. 2) For the subjects with D29
ID50, we impute their missing baseline ID50. Imputing baseline allows these subjects to be used
in immunogenicity reports where we may compute fold change etc. Imputing D29 allows these
subjects to be used for analyses using D29 and D57 markers, but it does not allow these subjects to
be included in analyses using only D29 markers, because ph2 indicator for D29 analyses is computed
before imputation.

We define the two-phase sampling indicator ϵ as taking value of one if a participant has Day 1
and Day 29 and Day 57 bAb data for both Spike and RBD, where here we assume that the MSD
platform is highly robust such that it will have nearly 100% complete data for sampled participants.
Second, for the other two marker types (pseudovirus-nAb ID50, ID80), for participants with ϵ = 1
but the Day 1 and/or Day 29 and/or Day 57 marker value is missing, we use single imputation to
fill in any missing values, ignoring the uncertainty in the imputations in the analysis, because it
should have negligible impact on results given the (very) small amount of missing data. Multiple
linear regression will be used to impute missing values, separately for each antibody marker, based
on the set of individuals with that antibody marker measured at Day 1, Day 29, and Day 57.
Accurate imputations are possible given the high correlations of the markers, especially between
ID50 and ID80 within the same immunoassay. This process means that the two-phase data set has
a simple ‘all-or-nothing’ missing data pattern where participants with ϵ = 1 have all markers with
Day 1 and Day 29 and Day 57 data, and are included in IPWCC analyses, and participants with
ϵ = 0 have some or all markers missing and are excluded from IPWCC analyses. This means that
all IPWCC data analyses can use the same empirical frequency (IPS) sampling weights, separately
for correlates analyses of Day 29 markers and of Day 57 markers.

For analysis methods that use the whole cohort (phase-one plus phase-two data), the same phase-
two data as described above are used. If some of the phase-one baseline factors that are adjusted
for variables are missing with only a small amount of missing values, then single imputation will be
used to fill in the values, and, as for the immunologic marker imputations, the uncertainty in the
imputations will be ignored in the analyses. Simple average values will be used to fill in baseline
covariate missing values of the baseline factors.

9.6.4 Implementation of superlearner

For baseline risk score development, Superlearner is applied to the placebo arm only, as mentioned
in Section 7. For multivariable immune correlates of risk/estimated optimal surrogate development,
Superlearner is applied to the vaccine arm only. The following details are used in the implementation
of superlearner of the vaccine arm only:

• Pre-scale each quantitative and ordinal variable to have empirical mean 0 and standard de-
viation 1.

• For the immune correlates analysis, the final library of learners is selected accounting for the
number of phase-two endpoint cases in the vaccine arm. If the number of cases is limited, at or
near 25 evaluable endpoint cases, then the modeling will only allow learning algorithms to have
a maximum of 5 antibody marker variables, and will use leave-one-out cross-validation and the
negative log-likelihood loss function, a combination that tends to provide good performance
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in small sample size settings. This approach was used for the AstraZeneca COV002 trial
given the numbers of endpoints.

• Include learning algorithms with and without screening of variables. Screens used will be:
1) glmnet (lasso) pre-screening (with default tuning parameter selection), 2) logistic regres-
sion univariate 2-sided p-value screening (at level p < 0.10), and 3) high-correlation vari-
able screening (described below). The adaptive algorithms (SL.randomForest, SL.xgboost,
SL.gam, SL.polymars) are only used with these screens, given that the limited number of
endpoint cases may challenge use of these methods with no variable screening. Moreover, the
adaptive algorithms are not used if there are only 25 (or close to it) endpoint cases, which
is the case for the AstraZeneca COV002 trial. All of the selected learners are coded into the
SuperLearner R package available on CRAN.

• Include high-correlation variable screening, not allowing any pair of input variables to have
Spearman rank correlation r > 0.9. When a pair of variables has r > 0.9, the variable with
the highest ranked signal-to-noise ratio (i.e., biological dynamic range) is selected; if these
data are not available (they are not for AstraZeneca COV002) or there is a tie then variables
are selected in the following order of priority: first pseudovirus-nAb, then bAb. Given than
the Spike and RBD variables have r > 0.95 at each time point Day 29 and Day 57, any model
that would consider both Spike and RBD includes only RBD. Similarly, given than the PsV
ID50 and PsV ID80 variables have r > 0.95 at each time point Day 29 and Day 57, any model
that would consider both PsV ID50 and PsV ID80 includes only PsV ID50.

• The superlearner is conducted averaging over 10 random seeds, to make results less dependent
on random number generator seed.

• All of the learners are implemented with IPS weighting, using the weights ŵ57.x defined in
Section 9.3.1 to account for the two-phase sampling design. Note that these weights are used
even for models that include Day 29 markers but not Day 57 markers, because only Post Day
57 cases (starting 7 days post Day 57 visit) are included in the multivariable CoR analyses.

• Discrete-SL estimated models, derived using the learning algorithms specified in Table 5,
will be used to compare the relative performance for each of the variable sets based off the
estimated CV-AUC with a 95% confidence interval.

• Two levels of cross-validation are used:

– Outer level: CV-AUC computed over 5-fold cross-validation repeated 10 times to improve
stability

– Inner level: leave-one-out CV used to estimate ensemble weights (if nv is near 25) and
5-fold CV if nv is larger. (For AstraZeneca COV002 leave-one-out is used.)

• Results for comparing classification accuracy of different models are based on point and 95%
confidence interval estimates of cross-validated area under the ROC curve (CV-AUC) and
difference in CV-AUC as a predictiveness metric (Hubbard et al., 2016; Williamson et al.,
2020). Results are presented as forest plots of point and 95% confidence interval estimates
similar to those used in Figure 3 of Neidich et al. (2019) and Magaret et al. (2019). CV-AUC
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is estimated using the R package vimp available on CRAN, including the IPS weights that
are used for other data analyses.

For the baseline risk score SuperLearner analysis of the placebo arm (Section 7), the same approach
is used, with the following modifications: (1) 5-fold cross-validation will be used with no more than
max(20, floor(np/20)) input variables included in each model, where np is the number of evaluable
placebo arm cases; (2) no IPS weighting is needed; (3) the adaptive learning algorithms are included.

Table 4 lists the learning algorithms that are applied to estimate the conditional probability of
the outcome based on the input variable sets considered above. Most of the algorithms are non-
data-adaptive type learning algorithms, such as parametric regression models (e.g., generalized
linear models [glms]), which are simple, stable, and advantageous for an application with a limited
number of endpoint events. Data-adaptive type algorithms are also included if the number of
endpoint events is high enough, for increasing flexibility of modeling and reducing the risk of model
misspecification: SL.ranger, SL.gam, and SL.xgboost. All of the selected learners are coded into
the SuperLearner R package.

Before fitting the superlearner models to the vaccine arm data, a decision is made on how to
define the “baseline risk factors” input variable set, based on prediction-accuracy results of the
Superlearner analysis that built the baseline behavioral risk score based on the placebo arm, as
well as on external knowledge of important individual risk factors. For AstraZeneca COV002 the
baseline factors are defined as the baseline risk score, the indicator of being at heightened risk for
COVID (a randomization factor), and the indicator of being a member of community of color.

For the immune correlates objective the superlearner model is fit to each of the following 28 variable
sets, with immunological variables listed in Section 9.6.2:

1. Baseline risk factors

2. Baseline risk factors and the Day 57 bAb anti-Spike markers

3. Baseline risk factors and the Day 57 bAb anti-RBD markers

4. Baseline risk factors and the Day 57 pseudovirus-nAb ID50 markers

5. Baseline risk factors and the Day 57 pseudovirus-nAb ID80 markers

6. Baseline risk factors and the Day 57 bAb markers and the pseudovirus-nAb ID50 markers

7. Baseline risk factors and the Day 57 bAb markers and the pseudovirus-nAb ID80 markers

8. Baseline risk factors and the Day 57 bAb markers and the combination scores across the four
markers [PCA1, PCA2, FSDAM1/FSDAM2 (the first two components of nonlinear PCA),
and the maximum signal diversity score He and Fong (2019)].

9. Baseline risk factors and all individual Day 57 marker variables

10. Baseline risk factors and all individual Day 57 marker variables and all combination scores
(full model of Day 57 markers)

11. Baseline risk factors and the Day 29 bAb anti-Spike markers
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12. Baseline risk factors and the Day 29 bAb anti-RBD markers

13. Baseline risk factors and the Day 29 pseudovirus-nAb ID50 markers

14. Baseline risk factors and the Day 29 pseudovirus-nAb ID80 markers

15. Baseline risk factors and the Day 29 bAb markers and the pseudovirus-nAb ID50 markers

16. Baseline risk factors and the Day 29 bAb markers and the pseudovirus-nAb ID80 markers

17. Baseline risk factors and the Day 29 bAb markers and the combination scores across the four
markers [PCA1, PCA2, FSDAM1/FSDAM2 (the first two components of nonlinear PCA),
and the maximum signal diversity score He and Fong (2019)].

18. Baseline risk factors and all individual Day 29 marker variables

19. Baseline risk factors and all individual Day 29 marker variables and all combination scores
(full model of Day 29 markers)

20. Baseline risk factors and the Day 29 and Day 57 bAb anti-Spike markers

21. Baseline risk factors and the Day 29 and Day 57 bAb anti-RBD markers

22. Baseline risk factors and the Day 29 and Day 57 pseudovirus-nAb ID50 markers

23. Baseline risk factors and the Day 29 and Day 57 pseudovirus-nAb ID80 markers

24. Baseline risk factors and the Day 29 and Day 57 bAb markers and the pseudovirus-nAb ID50
markers

25. Baseline risk factors and the Day 29 and Day 57 bAb markers and the pseudovirus-nAb ID80
markers

26. Baseline risk factors and the Day 29 and Day 57 bAb markers and the combination scores
across the eight markers [PCA1, PCA2, FSDAM1/FSDAM2 (the first two components of
nonlinear PCA), and the maximum signal diversity score He and Fong (2019)].

27. Baseline risk factors and all individual Day 29 and Day 57 marker variables

28. Baseline risk factors and all individual Day 29 and Day 57 marker variables and all combina-
tion scores (full model of Day 29 and Day 57 markers)

Therefore in total, 28 variable sets are studied. The reason to include the baseline risk factors only
variable set is to investigate how much incremental improvement in predicting outcome is obtained
by adding antibody marker variables on top of baseline demographic/exposure factors. The other
variable sets are designed to compare the three immunoassay types by their predictiveness, to
compare the two pseudovirus neutralization readouts ID50 and ID80 for their predictiveness, to
compare the two time points of marker measurement for their predictiveness, and to investigate
incremental predictive value in using multiple immunoassays and time points. The final variable set
is included as the full model that considers all variables together, which serves as another reference
model.
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Table 4: Learning Algorithms in the Superlearner Library of Estimators of the Conditional Prob-
ability of Outcome, for Building the Baseline Risk Score Based on the Placebo Arm1.

Screens/
Algorithms Tuning Parameters

SL.mean None
SL.glm Low-collinearity and (All, Lasso, LR)2

SL.glm.interaction Low-collinearity and (Lasso, LR)
SL.glmnet (alpha=1; All)
SL.gam Low-collinearity and (Lasso, LR)
SL.xgboost3 All and (maxdepth,shrinkage,balance)= (4, 0.1, no)
SL.ranger3 All and balance = no

1All continuous and ordinal covariates are pre-standardized to have empirical mean 0 and
standard deviation 1.

2All = include all variables; Lasso = include variables with non-zero coefficients in the standard
implementation of SL.glmnet that optimizes the lasso tuning parameter via cross-validation;
Low-collinearity = do not allow any pairs of quantitative variables with Spearman rank
correlation > 0.90; LR = Univariate logistic regression Wald test 2-sided p-value < 0.10.

3Covariate balancing (if requested) is done using option scale pos weight in SL.xgboost and
option case.weights in SL.ranger.

Table 5: Learning Algorithms in the Superlearner Library of Estimators of the Conditional Prob-
ability of Outcome: Simplified Library in the Event of Fewer than 50 Vaccine Breakthrough Cases
for an Analysis, for Use in Multivariable CoR Analysis of AstraZeneca COV0021.

Screens/
Algorithms Tuning Parameters

SL.mean None
SL.glm Low-collinearity and (All, Lasso, LR)2

SL.glmnet alpha=0, 1
SL.xgboost (maxdepth,shrinkage,balance3)= (2, 0.1, yes) (2, 0.1, no) (4, 0.1, yes) (4, 0.1, no)
SL.ranger balance = (yes, no)

1All continuous and ordinal covariates are pre-standardized to have empirical mean 0 and
standard deviation 1.

2All = include all variables; Lasso = include variables with non-zero coefficients in the standard
implementation of SL.glmnet that optimizes the lasso tuning parameter via cross-validation;
Low-collinearity = do not allow any pairs of quantitative variables with Spearman rank
correlation > 0.90; LR = Univariate logistic regression Wald test 2-sided p-value < 0.10.

3Covariate balancing (if requested) is done using option scale pos weight in SL.xgboost and
option case.weights in SL.ranger.
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Given the class-imbalance issue, with many more non-case than case records, all of the cross-
validation for the multivariable immune CoR objective is done stratified by case/non-case status.

In order to evaluate the relative performance of the superlearner estimated models for each of the 28
variable sets, derived using the learning algorithms specified in Table 4, the CV-AUC is estimated
with a 95% confidence interval (Hubbard et al., 2016; Williamson et al., 2020). The point and
95% confidence interval estimates of CV-AUC are reported in a forest plot, which provide a way
to discern which antibody assays and readouts/markers provide the most information in predicting
COVID or other outcomes. As noted above CV-AUC is estimated using the R package vimp
available on CRAN, which uses augmented inverse probability weighting to properly estimate CV-
AUC accounting for the two-phase sampling design.

If there are fewer than 50 vaccine breakthrough cases included in a correlates analysis, then the
libary of learners will be simplified to that specified in Table 5.

In addition, for selected variable sets, similar forest plots will be made comparing performance of
the various estimated models (e.g., by individual learning algorithm types such as lasso), includ-
ing discrete superlearner and superlearner models. The plot will be examined to determine which
individual learning algorithm types are performing the best. If there is an interpretable algorithm
that has performance close to the best-performing algorithm (which is most likely to be the su-
perlearner), then it will be fit on the entire data set of vaccine recipients and the estimated model
presented in a table.

Cross-validated ROC curves are plotted for the superlearner estimated models for each of the
input variable sets. In addition, boxplots of cross-validated estimated probabilities of outcome by
case-control status (as estimated from the superlearner models) are plotted.

9.6.5 Variable set and individual variable importance

The importance of variable sets (and individual variables) will be summarized by the estimated gain
in population prediction potential (also referred to as the intrinsic importance) when comparing
each variable set plus baseline risk factors to baseline risk factors alone. Prediction potential
(predictiveness) will be measured using CV-AUC. Inference on the intrinsic importance will be
based off sample splitting; thus, both the estimated variable importance and the estimated CV-
AUC of each variable set when evaluated on independent data from the data used to evaluate the
CV-AUC of the baseline risk factors will be reported. The class-balancing versions of SL.xgboost
will be dropped from the Super Learner library in the variable importance computation as the
regression carried out to account for the two-phase sampling will be based on a continuous outcome
(so there won’t be any imbalance).

10 Correlates of Protection: Generalities

In general, for all of the correlate of protection analyses, the same antibody markers are assessed
that were analysed as correlates of risk: the Day 29 and Day 57 antibody markers not subtracting
for the Day 1 baseline readout are used. Each of the eight Day 29 and Day 57 antibody biomarkers
are separately studied as CoPs by the different analysis approaches summarized below.
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We describe the CoP methods for Day 57 antibody markers; the same methods are applied to Day
29 antibody markers.

11 Correlates of Protection: Correlates of Vaccine Efficacy Anal-
ysis Plan

For each of the Day 57 antibody markers, the method of Gilbert, Blette, Shepherd, and Hudgens
(2020) will be used to estimate V E(1), V E(0), and V E(1) − V E(0), each with a 95% confidence
interval and a 95% estimated uncertainty interval (EUI), where V E(1) is vaccine efficacy for the
subgroup of vaccine recipients with Day 57 marker if assigned vaccine S(1) above a specified cut-
point value scut, and V E(0) is vaccine efficacy for the subgroup of vaccine recipients with Day 57
marker if assigned vaccine S(1) not greater than scut. That is,

V E(1) = 1− P (Y (1) = 1|S(1) > scut)

P (Y (0) = 1|S(1) > scut)

V E(0) = 1− P (Y (1) = 1|S(1) ≤ scut)

P (Y (0) = 1|S(1) ≤ scut)

The analysis will be done under the NEH assumption (“no early harm”) of Gilbert et al. (2020).
The cut point is defined as the percentile equal to one minus the estimated vaccine efficacy in the
primary analysis, with logic that a maximally simple version of a perfect CoP would have binary
marker with S = 1 corresponding to protection and S = 0 corresponding to no protection. If the
estimated vaccine efficacy is high (say 90% or higher), it is possible that this cutpoint will not
yield stable results, because of sparse cells; in this situation we will repeat the analysis using two
additional cut-points that creates greater balance in frequencies of S = 1 and S = 0 in the vaccine
group immunogenicity subcohort: 20th and 40th percentiles. If the estimated vaccine efficacy is
moderate (between 50% and 80%), we will also use the two additional cut-points the 20th and 40th
percentiles. This analysis method does not require closeout placebo vaccination (CPV) (Follmann,
2006) or a good baseline immunogenicity predictor of the Day 57 antibody marker. The method
is implemented using Bryan Blette’s R package “psbinary” posted at his Github repository. Based
on the AstraZeneca COV002 data, the analyses are done using the 8th, 20th, and 40th percentiles
of markers.

A limitation of the Gilbert et al. method is that it only assesses a binary biomarker. Other analyses
will be considered to estimate V E(s) over biomarker values s over the entire range, treating S as a
quantitative or categorical variable, and gaining efficiency by incorporating CPV and/or putative
baseline immunogenicity predictors (BIPs). Based on earlier simulation studies (Follmann, 2006;
Huang et al., 2013, e.g.,), methods that only leverage CPV data tend to have low power relative to
methods that leverage BIP data alone (BIP-only methods) or both BIP and CPV data (BIP+CPV
methods). Therefore, the key for improving efficiency will be the availability of a BIP. VE curve
analysis for continuous S will thus be conducted contingent on the availability of a BIP that satisfies
the R2 criterion outlined in Table 7. It is anticipated that post-crossover immune response marker
data will not be available in early correlates analyses, and so BIP-only methods will be used in these
initial analyses. When CPV data becomes available, new BIP+CPV analyses will be conducted
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that incorporate this new information. Details of the BIPs used can be found at the end of this
section.

Let Y (a) denote the potential binary outcome of interest if receiving intervention a, with a =
1, 0 standing for assignment to vaccine and placebo, respectively. Let S(a) denote the potential
biomarker value if receiving intervention a. The vaccine efficacy curve (Follmann, 2006; Gilbert
and Hudgens, 2008) is defined as the curve of vaccine efficacy as a function of the immune response
biomarker if assigned vaccination (i.e., S(1)): V E(s) = 1 − P (Y (1) = 1|S(1) = s)/P (Y (0) =
1|S(1) = s). It characterizes the percentage reduction in clinical risk under vaccine assignment
compared to under placebo assignment conditional on S(1) and informs about the magnitude of
potential immune response associated with certain levels of VE. Consider the existence of BIPs X
correlated with S(1) and/or a CPV component in the trial where a subset of placebo recipients free
of the outcome are vaccinated and have their immune response biomarkers measured as substitutes
for S(1). Under the NEE assumption and assuming the set of participants with S(1) available
is nested within the set of participants with BIP measures, the pseudo-score estimation method
(Huang et al., 2013; Zhuang et al., 2019) based on discrete BIP measures allowing for adjustment
of X will be adopted for estimating the risk model P (Y (z) = 1|S(1), X) and subsequently V E(s) =
1−
∫
P (Y (1) = 1|S(1), x)dFX(x|S(1))/

∫
P (Y (0) = 1|S(1), x)dFX(x|S(1)). Hypothesis testing will

be conducted for testing the null hypothesis that the VE curve is constant (Zhuang et al., 2019).
Estimated parametric (Gilbert and Hudgens, 2008), semiparametric (Huang and Gilbert, 2011),
or nonparametric (Li and Luedtke, 2020) likelihood estimators of VE curves will be applied to
continuous BIPs. In scenarios where some BIPs are not measured from all trial participants, VE
curve estimators accounting for this monotone missingness in X and S(1) will be adopted (Huang,
2018). If the data support positive vaccine efficacy before Day 57, sensitivity analysis approaches
will be conducted for VE curve estimation under the NEH assumption. In the presence of multiple
candidate biomarkers and when a CPV component is present, a multiple imputation approach as
proposed in Dasgupta and Huang (2019) will be utilized to impute missing S(1) data for selecting
markers from multiple candidates and deriving a univariate marker score for VE curve estimation.

Finally, for scenarios with very rare events such that methods described above lack precision even
with a CPV component but where the available BIP still satisfies the R2 criterion outlined in
Table 7, we will adopt sensitivity analysis methods that model the placebo risk conditional on the
counterfactual S(1) based on a sensitivity parameter that varies over some pre-specified range.

Among different strategies to identify BIPs, the following will be tried. First, for vector vaccines,
we will study Day 1 bAb or nAb response to the vector as a BIP for the Day 57 markers of
interest (not relevant for AstraZeneca COV002). Second, we will check whether Day 1 bAb or
nAb to Nucleocapsid protein is a BIP for the anti-Spike/anti-RBD Day 57 markers of interest.
The rationale for this latter analysis is that some studies have shown cross-reactive responses to
Nucleocapsid protein and to common circulating human coronaviruses.

We will also evaluate using a multivariate BIP that corresponds to all of these aforementioned
candidate univariate BIPs, which may help to achieve the target R2 (see Table 7). When doing
this, a separate BIP W will be used for each vaccine-induced immune response marker S(1). Let
Y (a) be the counterfactual outcome of interest — e.g., a COVID disease endpoint by a prespecified
time — if randomization assignment had been set to A = a. The analyses conducted will provide
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unbiased estimates of the estimands of interest when Y (a) ⊥ W |S(1) for a ∈ {0, 1}. The BIP
W will be a learned function of baseline covariates L — that is, W = f(L) for a function f that
will be learned based on the available data. All available baseline covariates will be considered for
inclusion in L, including age, BMI, and Day 1 bAb or nAb to Nucleocapsid protein. If available,
measurements of prior immune response to the vaccine vector will always be included in L.

If the trial has more than 100 events on the vaccine arm in the subgroup of interest, then f will be
chosen to be an estimate of the following population-level optimization problem:

minimize E[{S − f(L)}2|A = 1]

subject to f(L) ⊥ Y |A = 1, S.

The rationale for choosing f to (approximately) solve this optimization problem is that the BIP
should be maximally predictive of S, while also satisfying the needed conditional independence as-
sumption Y (a) ⊥ W |S(1) when a = 1. Moreover, the needed conditional independence assumption
Y (a) ⊥ W |S(1) for the case that a = 0 is most plausible when this assumption is also satisfied for
the case that a = 1. Also, because W = f(L) for some function f , Y (0) ⊥ W |S(1) is always more
plausible than Y (a) ⊥ L|S(1).

The solution to the above optimization problem is given by:

f(ℓ) := θ(ℓ)− E[θ(L)r(L)]

E[r(L)2]
r(ℓ)

where θ(ℓ) := E{S|A = 1, L = ℓ}, r(ℓ) := m(ℓ)
E[m(L)] −

1−m(ℓ)
1−E[m(L)] and m(ℓ) := E[Y |A = 1, L = ℓ]. The

following strategy is used to estimate this solution:

1. Obtain an estimate θ̂ of the function θ by running a Superlearner of S against L in the
vaccine arm, where inverse probability of sampling weights are used to account for two-phase
sampling of the marker.

2. Obtain an estimate m̂ of m by using Superlearner to regress Y against L in the vaccine arm.

3. Obtain an estimate r̂ via a plug-in estimator, where E[m(L)] is estimated by taking the
empirical mean of m̂(L).

4. The final estimate f̂ of f is given by

f̂(ℓ) := θ̂(ℓ)− Ê[θ̂(L)r̂(L)]

Ê[r̂(L)2]
r̂(ℓ),

where Ê denotes an empirical expectation.

Each Superlearner will be run using the same library and settings described in Table 6. If the trial
has fewer than 100 events on the vaccine arm, then the function f will be learned via Step 1 above
only — that is, we will take f̂ = θ̂. All standard errors will be obtained via the bootstrap, with
the above fitting of f̂ redone within each bootstrap sample.
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12 Correlates of Protection: Interventional Effects

In these analyses, we seek to understand whether, how, and to what extent Day 57 antibody markers
impact vaccine efficacy in causal ways. We describe three approaches to this problem. Each involves
consideration of a binary counterfactual outcome Y (a, s) (e.g., indicator of the COVID disease
endpoint by a pre-specified time) under a hypothetical intervention that both sets randomization
assignment A = a and sets the Day 57 immunologic marker S to a fixed value or based upon a
random draw from a analyst-specified distribution. Below, we assume that S is scalar-valued, but
some of the approaches below naturally extend to the case where a vector of immunologic markers
are considered (currently such analyses are not planned). Given the central goal to develop a
parsimonious surrogate endpoint based on a single immunoassay, the main analysis will use each of
the methods to assess each of the four quantitative readouts (not baseline-subtracted) separately
as CoPs, adjusting for the same set of baseline covariates as used in the CoR analyses previously
described in Section 9.

The current COV002 immune correlates manuscript does not include correlates of vaccine efficacy
analyses, given the number of vaccine breakthrough cases.

12.1 CoP: Controlled Vaccine Efficacy

We first describe the controlled vaccine efficacy curve defined as

CVE(s) = 1− P (Y (1, s) = 1)

P (Y (0) = 1)
.

The value of CVE(s) represents the relative decrease in endpoint frequency achieved by adminis-
tering vaccine and setting Day 57 immunologic marker level to s compared to the placebo control
intervention. Under our approach, the value of CVE(s) is assumed to be monotone non-decreasing
in s; in other words, vaccine efficacy can only potentially be improved by setting greater marker lev-
els. The extent to which the marker plays a role in determining vaccine efficacy can be determined
by the degree of flatness of the graph of CVE(s) versus s.

In addition, because the primary study cohort for correlates analysis is naive to SARS-CoV-2, each
of the Day 57 markers S has no variability in the placebo arm [all values are ‘negative,’ below the
positivity cut-off of the binding antibody variables and below the lower limit of detection (LOD)
of the neutralizing antibody variables]. Therefore, advantageously in this setting CVE (s) has a
special connection to the mediation literature, where CVE (s = LOD) is the natural direct effect,
and vaccine efficacy is 100% mediated through S if and only if CVE (s = LOD) = 0. Therefore
inference on CVE (s = LOD) evaluates full mediation.

Since P (Y (0) = 1) = P (Y = 1 |A = 0) in view of vaccine versus placebo randomization, the
controlled vaccine efficacy CVE(s) at level s can be identified using the fact that

P (Y (1, s) = 1) = E [P (Y = 1 |S = s,A = 1, X)]

whenever Y (1, s) and S are independent given A = 1 and a vector X of covariates, and P (S =
s |A = 1, X) > 0 almost surely. In other words, identification of the controlled vaccine efficacy
CVE(s) requires that a rich enough set of covariates be available so that deconfounding of the

39



relationship between endpoint Y and marker S is possible in the subpopulation of vaccine recipients
(no-unmeasured confounding assumption), and that marker level S = s may occur within each
subpopulation defined by values of the covariates X (positivity assumption).

12.1.1 Point and 95% confidence interval estimation of CVE(s) and of RRC(s1, s2) =
(1−CVE(s2))/(1−CVE(s1)) assuming the causal assumptions hold

In this subsection, we describe how the point and 95% confidence interval estimates for CVE(s) that
are reported in the main article (Fig. 4C) and the Supplement are calculated, which assume that
both causal assumptions mentioned above hold (no unmeasured confounders and positivity). In this
subsection we also describe how the point and 95% confidence interval estimates for RRC(0, 1) =
(1−CVE(1))/(1−CVE(0)) for a binary marker S are calculated, with results for S = 1 representing
the upper tertile and S = 0 representing the lower tertile reported in Supplementary Text S2. In
the next subsection, we describe how the sensitivity analysis is conducted, which quantifies the
sensitivity of the results to potential unmeasured confounding.

Gilbert, Fong, and Carone (2021) details the inferential and sensitivity analysis approach, which
was applied to the CYD14 and CYD15 dengue phase 3 data sets (Moodie et al., 2018); the same
approach was applied to the current AstraZeneca COV002 trial data set, given that the structure of
the problem is the same. We summarize here the key details needed for understanding the analysis
of the COV002 trial. Under the two causal assumptions, the numerator term P (Y (1, s) = 1) of
CVE(s) = 1− P (Y (1, s) = 1)/P (Y (0) = 1) is

P (Y (1, s) = 1) = E [P (Y = 1 |S = s,A = 1, X)] = risk1(tF |s),

as defined in Section 9.3.2, using the notation of Section 9.3.2. That section described the Cox
modeling approach that was used to compute an estimate r̂isk1(tF |x) of risk1(tF |s), where Y =
I(T ≤ tF ), T is the time from the Day 57 (or Day 29) marker measurement date until the COVID
outcome starting 7 days post measurement date, and tF is taken to be the latest COVID outcome
event time, as noted earlier.

The same estimate r̂isk1(tF |s) is used to estimate the numerator term P (Y (1, s) = 1) of CVE(s).
That is, there is a harmonization of the correlate of risk and controlled VE analyses, where the
estimate r̂isk1(tF |x) used for the former is also used for the numerator term P (Y (1, s) = 1) of
CVE(s) for the latter:

ĈVE(s) = 1− r̂isk1(tF |x)
P̂ (Y (0) = 1)

(where we detail the estimator P̂ (Y (0) = 1) next). For instance, for analysis of the ID50 titer

marker in the main article, the estimate r̂isk1(tF |x) in Fig. 4B is also used for the estimate of
CVE(s) in Fig. 4C, and similarly for all corresponding panels B and C of supplementary figures
for the other immunological biomarkers.

To estimate the denominator of CVE(s), P (Y (0) = 1) = P (Y = 1 |A = 0) = P (T ≤ tF |A = 0), note
that there is no concern about unmeasured confounding given the study is randomized. While this
denominator may be estimated validly ignoring the potential baseline confoundersX, we favor using
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an estimation approach compatible with the approach used to estimate the numerator r̂isk1(tF |s)
– in this case a Cox model. Accordingly, E[P (Y = 1 |A = 0, X)] was estimated with a standard
Cox model (without two-phase sampling, i.e., including all baseline negative per-protocol placebo
recipients without evidence of infection by 6 days post Day 29 visit or by 6 days post Day 57 visit for
analyses of Day 29 markers and of Day 57 markers, respectively), with point estimate the average
of the fitted values Ê[P (Yi = 1|Ai = 0, Xi)] across the included placebo recipients. Then, the point
estimate of CVE(s) is computed as one minus the ratio of the numerator point estimate divided
by the denominator point estimate. Pointwise 95% confidence intervals for CVE (s) were computed

using the same set of bootstrap estimates of the numerator r̂isk1(tF |s) as used for the correlates of
risk analysis, and also including bootstrap estimates of the denominator Ê[P (Y = 1 |A = 0, X)].
The nonparametric percentile bootstrap method was used for the confidence intervals.

12.1.2 Sensitivity analysis (to unmeasured confounding) for the Cox model controlled
vaccine efficacy analysis

Sensitivity analysis is generally warranted when a no-unmeasured confounders assumption is made.
The sensitivity analysis quantifies the rigor of evidence for a controlled VE CoP after accounting for
potential bias from unmeasured confounding. We define S to be a controlled V E CoP if CVE(s)
is monotone non-decreasing in s with CVE(s) < CVE(s’) for at least some s < s′, where point
and 95% confidence interval estimates of CVE(s) versus s, with built in robustness to unmeasured
confounding, describe the strength of the CoP in terms of the amount and nature of increase.
Because the denominator P (Y (0) = 1) of CVE(s) does not depend on s, a controlled V E CoP can
equivalently be defined as the numerator P (Y (1, s) = 1) being monotone non-increasing in s with
P (Y (1, s) = 1) > P (Y (1, s′) = 1) for at least some s < s′, where point and 95% confidence interval
estimates of P (Y (1, s) = 1) versus s indicate some robustness to unmeasured confounding.

Two sensitivity analyses are conducted, the first of which considers the binary immunologic marker
S with 0 indicating the first tertile and 1 indicating the third tertile. The second sensitivity analysis
considers the quantitative marker S varying over its full range.

As set-up for both sensitivity analyses, for any two marker values s1 and s2, define the controlled
risk ratio

RRC(s1, s2) =
rC(s2)

rC(s1)
=

(1− CVE(s2))

(1− CVE(s1))
,

where rC(s) = P (Y (1, s) = 1) is the controlled risk at S = s. From the observed data without the
causal assumptions, the statistical parameters rM (s) = risk1(tF |s) (the marginalized conditional
risk) and

RRM (s1, s2) =
rM (s2)

rM (s1)

(the marginalized conditional risk ratio) can be estimated. Moreover, under the causal assumptions
(no-unmeasured confounding and positivity), rM (s) = rC(s) and RRM (s1, s2) = RRC(s1, s2).
Given that CoR analysis is based on observational data — the biomarker value is not randomly
assigned — a central concern is that unmeasured or uncontrolled confounding of the association
between S and Y could render rM (s) ̸= rC(s), biasing estimates of the causal parameters of interest
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rC(s) and RRC(s1, s2). Because we can never be certain that confounding is adequately adjusted
for, sensitivity analysis is warranted, as considered in extensive literature — see, e.g., VanderWeele
and Ding (2017) and references therein.

Sensitivity analysis is useful to evaluate how strong unmeasured confounding would have to be to
explain away an observed causal association, that is, to determine the strength of association of an
unmeasured confounder between S and Y needed for the observed exposure-outcome association
to not be causal, rM (s) ̸= rC(s) and RRM (s1, s2) ̸= RRC(s1, s2). We follow the recommendation
of VanderWeele and Ding (2017) to report the E-value as a summary measure of the evidence of
causality, or, in our application, evidence of whether S is a controlled risk CoP based on variation
in the controlled risk curve. We also include other closely related measures of sensitivity.

The E-value is the minimum strength of association, on the risk ratio scale, that an unmeasured
confounder would need to have with both the exposure variable (S) and the outcome (Y ) in
order to fully explain away a specific observed exposure–outcome association, conditional on the
measured covariates [VanderWeele and Ding (2017); VanderWeele and Mathur (2020)]. Here, in
this section alone, we refer to the antibody marker S as an “exposure” variable following the typical
set-up in the causal inference statistical methods literature. If, as in CoP analyses, the estimated
marginalized risk ratio R̂RM (s1, s2) = r̂M (s2)/r̂M (s1) for s1 < s2 is less than one, then the E-value

for R̂RM (s1, s2) is calculated as

eRR(s1, s2) =
1 +

√
1− R̂RM (s1, s2)

R̂RM (s1, s2)
. (3)

We include the argument (s1, s2) in the notation, with s1 < s2 by convention, to be clear that the
E-value depends on specification of two specific marker-level subgroups.

To illustrate the interpretation of an E-value, suppose S is binary with levels 0 and 1 and regression
analysis yields an estimate R̂RM (0, 1) = r̂M (1)/r̂M (0) = 0.40 with 95% confidence interval (CI)
(0.14, 0.78). An E-value e(0, 1) of 4.4 means that a marginalized risk ratio RRM (0, 1) at the
observed value 0.40 could be explained away (i.e., RRC(0, 1) = 1.0) by an unmeasured confounder
associated with both the exposure and the outcome by a marginalized risk ratio of 4.4-fold each,
after accounting for the vector X of measured confounders, but that weaker confounding could not
do so.

In addition, we follow the recommendation of VanderWeele and Ding (2017) to also report the

E-value eUL(s1, s2) for the upper limit ÛL(s1, s2) of the 95% CI for the observed marginalized risk

ratio R̂RM (s1, s2), computed as 1 if ÛL(s1, s2) ≥ 1 and, otherwise, as

1 +

√
1− ÛL(s1, s2)

ÛL(s1, s2)
,

which in the example equals eUL(0, 1) = 1.88. This E-value for the upper limit indicates, for given
s1 < s2, the strength of unmeasured confounding at which statistical significance of the inference
that RRC(s1, s2) < 1 would be lost. The two E-values above are useful for judging how confident we
can be that an immunologic biomarker is a controlled risk CoP, with E-values near one suggesting
weak support and evidence increasing with greater E-values.
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Because RRC(s1, s2) = (1− CV E(s2))/(1− CV E(s1)), evidence for
RRC(s1, s2) < 1 is equivalently evidence for CV E(s1) < CV E(s2). Thus in a placebo-controlled
trial RRC(s1, s2) can be interpreted as the multiplicative degree of superior vaccine efficacy caused
by marker level s2 vs. marker level s1, and E-values quantify evidence for whether CV E(s1) is less
than CV E(s2). It is also useful to provide conservative estimates of controlled risk ratios and of
the controlled risk curve, accounting for unmeasured confounding. We approach these tasks based
on the sensitivity analysis, or bias analysis, approach of Ding and VanderWeele (2016). We give
their main result and refer readers to the paper for details.

We begin by defining two (possibly context-specific) fixed sensitivity parameters. First, we set
RRUD(s1, s2) to be the maximum risk ratio for the outcome Y comparing any two categories
of the unmeasured confounders U , within either exposure group S = s1 or S = s2, conditional
on the vector X of observed covariates. Second, we set RREU (s1, s2) to be the maximum risk
ratio for any specific level of the unmeasured confounder U comparing individuals with S = s1
to those with S = s2, with adjustment already made for the measured covariate vector X. Thus,
RRUD(s1, s2) quantifies the importance of the unmeasured confounder U for the outcome, and
RREU (s1, s2) quantifies how imbalanced the exposure/marker subgroups S = s1 and S = s2 are in
the unmeasured confounder U . The values RRUD(s1, s2) and RREU (s1, s2) are always specified as
greater than or equal to one. We suppose that RRM (s1, s2) < 1 for the fixed values s1 < s2 — this
is the case of interest for immune correlates.

Define the bias factor

B(s1, s2) =
RRUD(s1, s2)RREU (s1, s2)

RRUD(s1, s2) +RREU (s1, s2)− 1

for s1 ≤ s2, and define RRU
M (s1, s2) the same way as RRM (s1, s2), except marginalizing over the

joint distribution of X and U . Then, RRU
M (s1, s2) ≤ RRM (s1, s2)×B(s1, s2), where RRU

M (s1, s2) =
E{r(s2, X∗)}/E{r(s1, X∗)} with X∗ = (X,U) and r(s, x, u) = P (Y = 1 |S = s,A = 1, X = x, U =
u) conditional risk. Translating this result to our problem context, under the positivity assumption,
we have that RRU

M (s1, s2) = RRC(s1, s2) and so, it follows that

RRC(s1, s2) ≤ RRM (s1, s2)×B(s1, s2) . (4)

This inequality states that the controlled risk ratio is bounded above by the marginalized risk ratio
multiplied by the bias factor. It follows that a conservative (upper bound) estimate of RRC(s1, s2)

is obtained as R̂RM (s1, s2)×B(s1, s2), and a conservative 95% CI is obtained by multiplying each
confidence limit for RRM (s1, s2) by B(s1, s2). These estimates for RRC(s1, s2) account for the
presumed-maximum plausible amount of deviation from the no unmeasured confounders assump-
tion specified by RRUD(s1, s2) and
RREU (s1, s2). An appealing feature of this approach is that the bound (4) holds without making
any assumption about the confounder vector X or the unmeasured confounder U .

12.1.2.1. Conservative (bounded) estimation of rC(s) and RRC(s1, s2) for a quantitative marker S

The above approach does not directly provide a conservative estimate of the controlled risk curve
rC(s), because additional information is needed for absolute versus relative risk estimation. To
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provide conservative inference for rC(s), we next select a central value scent of S such that r̂M (scent)
matches the observed overall risk, P̂ (Y = 1|A = 1). This value is a ‘central’ marker value at which
the observed marginalized risk equals the observed overall risk. Next, we ‘anchor’ the analysis by
assuming rC(s

cent) = rM (scent), where picking the central value scent makes this plausible to be at
least approximately true. Under this assumption, the bound (4) implies the bounds

rC(s) ≤ rM (s)B(scent, s) if s ≥ scent (5)

rC(s) ≥ rM (s)
1

B(s, scent)
if s < scent. (6)

Therefore, after specifying B(scent, s) and B(scent, s) for all s, we conservatively estimate rc(s) by
plugging r̂M (s) into the formulas (5) and (6).

Because B(s1, s2) is always greater than one for s1 < s2, formula (5) pulls the observed risk r̂M (s)
upwards for subgroups with high biomarker values, and formula (6) pulls the observed risk r̂M (s)
downwards for subgroups with low biomarker values. This makes the estimate of the controlled
risk curve flatter, closer to the null curve, as desired for a sensitivity/robustness analysis.

To specify B(s1, s2), we note that it should have greater magnitude for a greater distance of s1
from s2, as determined by specifying RRUD(s1, s2) and RREU (s1, s2) increasing with s2 − s1 (for
s1 ≤ s2). We consider one specific approach, which sets RRUD(s1, s2) = RREU (s1, s2) to the
common value RRU (s1, s2) that is specified log-linearly: logRRU (s1, s2) = γ(s2 − s1) for s1 ≤ s2.

Then, for a user-selected pair of values s1 = sfix1 and s2 = sfix2 with sfix1 < sfix2 , we set a sensitivity

parameter RRU (s
fix
1 , sfix2 ) to some value above one. It follows that

logRRU (s1, s2) =

(
s2 − s1

sfix2 − sfix1

)
logRRU (s

fix
1 , sfix2 ), s1 ≤ s2.

We anchor the analysis by setting s1 = sfix1 at the 15th percentile of the Day 57 antibody marker

and s2 = sfix2 at the 85th percentile of the Day 57 antibody marker.

Once rC(s) is conservatively estimated via the formulas (5) and (6), it is immediate how to obtain
a conservative estimate of CVE(s):

ĈVE(s) = 1− r̂M (s)B(scent, s)

P̂ (Y (0) = 1)
,

where the estimate of the placebo arm risk, P̂ (Y (0) = 1), is the same as for the controlled VE
analysis assuming no-unmeasured confounders.

12.1.2.2. Sensitivity analyses for controlled vaccine efficacy reported in the article

The sensitivity analysis is done for each of the two Cox model CoR analyses described in Sec-
tion 9.3.2, first for the binary Day 57 marker and second for the quantitative Day 57 marker. For
the former analysis, E-values are reported for both the point estimate and the upper 95% confi-
dence limit for RRC(0, 1), where category 1 is the upper tertile (vaccine recipients with antibodies
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S in the top third), category 0 is the lower tertile (vaccine recipients with antibodies in the bot-
tom third), and the intermediate middle tertile subgroup of vaccine recipients is excluded from the
analysis. In addition, we set RRUD(0, 1) = RREU (0, 1) = 2, such that B(0, 1) = 4/3, and report
conservative estimation and inference on the controlled risk ratio RRC(0, 1) and equivalently on
the ratio of controlled vaccine efficacy curves RRC(0, 1) = (1 − CV E(1))/(1 − CV E(0)). These
results are reported in Supplementary Text S1 and Supplementary Table S4.

Next, we conduct the sensitivity analysis treating S as a quantitative variable, as detailed in
Section 12.1.2.1. This analysis reports results in terms of point and 95% point-wise confidence
interval estimates of CVE(s) vs. s assuming the specified amount of unmeasured confounding that
makes the estimates of CVE(s) flatter than under the assumption of no unmeasured confounding.
These results are reported in Fig. 4C for the Day 57 ID50 titer marker and in Fig. S29 and Fig.
S30 for the other seven antibody markers.

For validity the controlled risk/vaccine efficacy analyses require the positivity assumption, and thus
the methods will only be applied if the data are reasonably supportive of the positivity assumption.
To check positivity, we study the antibody marker distribution in vaccine recipients within each
subgroup of the covariates X that are adjusted for. For the tertiles analysis we require evidence
that within each subgroup some vaccine recipients have lower tertile responses and some vaccine
recipients have upper tertile responses. For the quantitative S analysis, we look for evidence that
S varies over its full range within each level of the potential confounders that are adjusted for.

12.2 CoP: Stochastic Interventional Effects on Risk and Vaccine Efficacy

Another approach to studying correlates of protection involves estimating the effect of shifting the
immune response marker distribution in the vaccinated individuals (Hejazi et al., 2020a). Specifi-
cally, we can consider the effect on risk of a given endpoint of a controlled intervention that shifts
the distribution of an immune response by δ units, where δ is an analyst-specified real number.
Considering a counterfactual scenario in which we are able to intervene so as to modify the immune
response induced by the vaccine (e.g., a hypothetical change in dose or other re-formulation of the
vaccine), we take this hypothetical intervention to lead to an improved (if δ > 0) or lessened immune
response (if δ < 0) relative to the current vaccine (at δ = 0). Using this framework, we can query
the counterfactual risk of the endpoint under this hypothetical vaccine. Using notation established
above, this quantity can be expressed as the mean of the counterfactual variable Y (1, S(1) + δ).

This approach is similar to the controlled effects approach described in Section 12.3, but with an
important distinction. In the controlled effects approach, one assumes that it is possible to set S = s
for all individuals in the population. For high values of s, this assumption may be unrealistic if the
vaccine fails to be strongly immunogenic for some subpopulations. On the other hand, with the
interventional approach, it is only required that individuals’ immune responses be shifted relative
to their observed immune response, which may be more plausible for some vaccines.

Under assumptions (Hejazi et al., 2020a), the main two of which being no unmeasured confounding
and positivity (forms of both are also required for the Controlled VE CoP analyses), the counter-
factual risk of interest E[Y (1, S(1) + δ)] is identified by

E[P (Y = 1 | A = 1, S = S + δ,X = x) | A = 1, X] .
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Examining this quantity across a range of δ provides insight into the relative contribution of a given
immune response marker in preventing the endpoint of interest.

Hejazi et al. (2020a) proposed nonparametric estimators that rely on estimates of the outcome
regression (as described above) and the conditional density of the immune response marker in
vaccinated participants. Their estimators efficiently account for two-phase sampling of immune
responses and are implemented in the txshift package (Hejazi and Benkeser, 2020) for the R

language and environment for statistical computing (R Core Team, 2020), available via both GitHub
at https://github.com/nhejazi/txshift and the Comprehensive R Archive Network at https:
//CRAN.R-project.org/package=txshift.

These estimators will be applied to each of the five Day 57 antibody markers (without baseline
adjustment) controlling for the same set of baseline risk factors that are controlled for in other
analyses previously discussed. As with the mediation analysis approach described in Section 12.3,
the procedure will leverage low-dimensional risk factors alongside parametric regression strategies
and flexible conditional density estimators for endpoints with fewer than 100 observed cases (pooling
over the randomization arms); however, more flexible learning techniques will be employed for
modeling the outcome process for endpoints with a greater number of observed cases.

In particular, conditional density estimates of immune response markers will be principally based on
a nonparametric estimation strategy that reconstructs the conditional density through estimates of
the conditional hazard of the discretized immune response marker values (Hejazi et al., 2020a,d,c);
this approach is an extension of the proposal of Dı́az and van der Laan (2011). A Super Learner
ensemble (van der Laan et al., 2007) of variants of this nonparametric conditional density estimator
and semiparametric conditional density estimators based on Gaussinization of residuals will be
constructed using the sl3 R package (Coyle et al., 2020). In settings with limited numbers of
case endpoints, the outcome process will be modeled as a Super Learner ensemble of a library
of parametric regression techniques (as recommend by Gruber and van der Laan, 2010), while
the library will be augmented with flexible regression techniques — including, for example, lasso
and ridge regression (Tibshirani, 1996; Tikhonov and Arsenin, 1977; Hoerl and Kennard, 1970),
elastic net regression (Zou and Hastie, 2003; Friedman et al., 2009), random forests (Breiman,
2001; Wright et al., 2017), extreme gradient boosting machines (Chen and Guestrin, 2016), light
and efficient gradient boosting machines (Ke et al., 2017), multivariate adaptive polynomial and
regression splines (Friedman et al., 1991; Stone et al., 1994; Kooperberg et al., 1997), and the highly
adaptive lasso (van der Laan, 2017; Benkeser and van der Laan, 2016; Hejazi et al., 2020b) — as
the number of endpoint cases grows. These algorithm libraries will be coordinated to match those
used in other CoP analyses. For AstraZeneca COV002 the more flexible algorithms are not used
given the limited number of vaccine breakthrough COVID endpoints.

Additionally, we recall that P (Y (0) = 1) = P (Y = 1 | A = 0) (in view of vaccine versus placebo
randomization, as stated previously in Section 12.1) and may be estimated in the same way as for
the analysis of controlled vaccine efficacy, thus yielding an estimate of stochastic interventional VE
defined by

SV E(δ) = 1− E[P (Y = 1 | A = 1, S = S + δ,X = x) | A = 1, X]

P (Y (0) = 1)
.

Output of the analyses will be presented as point and 95% point-wise confidence interval estimates
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of E[Y (1, S(1) + δ)] and of SV E(s) over the values of s for each of the Day 57 antibody markers,
for each of a range of δ spanning -2 to 2 on the standard unit scale for each antibody marker.

Lastly, just as for the controlled VE CoP analyses, these analyses will only be performed if di-
agnostics support plausibility of the positivity assumption. Importantly, however, the positivity
assumption for the stochastic interventional effects differs from that usually required. That is,
where the positivity assumption for effects defined by static interventions requires a positive prob-
ability of treatment assignment across all strata defined by baseline factors (i.e., that a discretized
immune response value be possible regardless of baseline factors), the positivity assumption of these
effects is

si ∈ S =⇒ si + δ ∈ S | A = 1, X = x

for all x ∈ X and i = 1, . . . n. In particular, this positivity assumption does not require that the
post-intervention exposure density, q0,S(S − δ | A = 1, X), place mass across all strata defined by
X. Instead, it requires that the post-intervention exposure mechanism be bounded, i.e.,

P{q0,S(S − δ | A = 1, X)/q0,S(S | A = 1, X) > 0} = 1,

which may be readily satisfied by a suitable choice of δ.

More importantly, the static intervention approach may require consideration of counterfactual
variables that are scientifically unrealistic. Namely, it may be inconceivable to imagine a world
where every participant exhibits high immune responses, given the phenotypic variability of partic-
ipants’ immune systems. This too may be resolved by considering an intervention δ(X), allowing
the choice of δ to be a function of baseline covariates X (Hejazi et al., 2020a; Dı́az and van der
Laan, 2012; Haneuse and Rotnitzky, 2013; Dı́az and van der Laan, 2018).

The current COV002 immune correlates manuscript does not include stochastic intervention vaccine
efficacy analyses.

12.3 CoP: Mediation of Vaccine Efficacy

Using mediation methods, we can decompose the overall VE into so-called natural direct and
indirect effects. We will estimate this decomposition for each Day 57 antibody marker individually
(focusing on the non-baseline subtracted markers as for the other CoP analyses described above),
as well as when considering all antibody markers together (although this SAP currently restricts
to analysis of the individual markers).

For simplicity, as before, we describe this approach using a binary outcome, noting that exten-
sions to time-to-event (with competing risks) are possible. The total effect of the vaccine can be
represented by one minus the risk ratio

RR =
P (Y (1, S(1)) = 1)

P (Y (0, S(0)) = 1)
.

The natural direct and indirect effects are, respectively,

RRDE =
P (Y (1, S(0)) = 1)

P (Y (0, S(0)) = 1)
and RRIDE =

P (Y (1, S(1)) = 1)

P (Y (1, S(0)) = 1)
.
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Note that RR = RRDERRIDE , showing that the total effect decomposes into the direct times
indirect effect. Another quantity of interest is the proportion mediated, which we express as

PM = 1− log(RRDE)

log(RR)
.

We note that PM=1 if and only if RRDE = 1, i.e., no direct effect means that the marker fully
mediates VE. We will estimate PM defined in this way.

As above, we must assume all confounders X of S and Y have been measured. We also assume there
are no confounders of the mediator-outcome relationship that are affected by treatment. Moreover,
we require an overlap assumption that

P (S = s|A = 0, X = x) > 0 implies P (S = s|A = 1, X = x) > 0 (7)

for all subgroups X = x (i.e., a.e.). Under these assumptions, P (Y (a, S(a′) = 1) is identified by

E[P (Y = 1 | A = a, S,X)|A = a′, X] .

In our immune CoP application it is expected that, for analyses restricting to baseline negative
individuals, the conditional density of the immune response marker in the placebo arm will be a
point mass at 0, that is with S below the LOD. In other words, we do not expect any placebo
recipients to have a positive value of the immune response marker. This implies the identification
result that for a = 0, 1, P (Y (a, S(0)) = 1) = E[P (Y = 1 | A = a, S = 0, X)]. While P (Y (0, S(1) =
1) is not identified, it is not necessary to estimate this term in order for estimation of the parameters
of interest (natural direct effect, natural indirect effect, PM).

For a highly immunogenic vaccine, it may be the case that the needed overlap assumption (7) will be
violated. This could happen, for example if each baseline negative placebo recipient has antibody
marker value below the assay’s LOD (which is expected), and every vaccine recipient has antibody
marker value above the LOD. We will only include antibody markers for mediation analysis if at
least 10% of vaccine recipients have marker value equal to the value in placebo recipients.

Benkeser et al. (2021) provide a multiply robust targeted minimum loss-based plug-in estimator
of natural direct and indirect effects that is appropriate for case-cohort sampling. The estimator
requires estimation of several regressions, which are used in an augmented inverse probability of
treatment weighted estimator. The propensity score will be estimated by a main terms logistic
regression model to account for chance imbalances across randomization arms. The sequential
outcome regressions used by the approach will be based on a super learner with the 14 algorithms
listed in Table 6.
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Table 6: Learning Algorithms in the super learner Library for mediation methods1.

Screens2/
Algorithms Tuning Parameters

SL.mean All
SL.glm Low-collinearity and (All, Lasso, LR)
SL.glm.interaction (All, Lasso, LR)
SL.gam Low-collinearity and (Lasso, LR)
SL.glmnet All
SL.xgboost All
SL.ranger All

1 some nuisance parameters have binary outcomes, others quantitative. For the former, we used
family = binomial() input to the SuperLearner function; for the latter, we used family =

gaussian().
2All = include all variables; Lasso = include variables with non-zero coefficients in the standard

implementation of SL.glmnet that optimizes the lasso tuning parameter via 10-fold
cross-validation; Low-collinearity = do not allow any pairs of quantitative variables with

Spearman rank correlation > 0.90; LR = Univariate logistic regression Wald test 2-sided p-value
< 0.10.

The estimator is implemented in the natmed2 package available on GitHub (https://github.com/benkeser/natmed2).
The baseline covariates X adjusted for are the same as for the other analyses (e.g. of CoR and of
controlled vaccine efficacy).

In addition to studying all qualifying individual markers as mediators, D29 PsV ID50 and D29
PsV ID80 will be studied for their joint mediation, and D29 PsV ID50 and D29 WT LV MN50
will be studied for their joint mediation. Only one of the bAb markers is included given the high
correlation of the bAb Spike and bAb RBD markers.

13 Summary of the Set of CoR and CoP Analyses and Their Re-
quirements and Contingencies, and Synthesis of the Results,
Including Reconciling Any Possible Contradictions in Results

Table 7 summarizes all of the Stage 1 correlates analyses of Day 29 and Day 57 antibody markers
that are done, including contingencies for whether and when each analysis is done. All of the Day
29 and Day 57 markers are the versions that are not baseline subtracted, given that the cohort for
analysis is baseline negative. Most of the analyses focus on univariate Day 29 and Day 57 markers.
The primary reason to do this is the goal to identify a parsimonious correlate based on a single
marker without needing to run the set of assays, and secondary reasons are: (1) the assay readouts
are expected to be highly correlated, especially for the ID50 and ID80 readouts, and (2) there is
ample precedent for univariate markers being accepted as immunological surrogate endpoints for
approved vaccines (Plotkin, 2010).
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Table 7: Summary of Stage 1 Day 57 Marker CoR and CoP Analyses with Require-
ments/Contingencies for Conduct of the Analysis (Same Considerations Apply for Day 29 Markers)

Structure Requirements/Contingencies
of Min No. Vaccine

Analysis Day 57 Marker(s) Endpoints Other

CoR Cox Model Tertiles of S1 25 None
Quant. S = s2 25 None
Quant. S ≥ s1 25 None

CoR Cox Multiv. Quant. S = s 25 None

CoR Nonpar. threshold Quant. S ≥ s1 35 None

CoR GAM Quant. S = s2 35 None

CoR Superlearner3 Quant. S = s, 2FR, 4FR 35 None

CoP: Correlates of VE Binary S 50 None
Quant. S = s 50 BIP with R2 ≥ 0.25

CoP: Controlled VE Quant. S = s 50 Feasibility of positivity4

Tertiles of S = s 50 Feasibility of positivity4

CoP: Stoch. Interv. VE Quant. S = s 50 Feasibility of positivity4

CoP: Mediators of VE Quant. S = s 50 Feasibility of positivity4

1These analyses are harmonized in addressing the same scientific question of how does endpoint
risk vary over vaccinated subgroups defined by S above a threshold.

2These exploratory supportive analyses are harmonized in addressing the same scientific question
of how does endpoint risk vary over vaccinated subgroups defined by S equal to a given marker

value.
3Only this Superlearner analysis uses data from multiple assays and multiple readouts as input

features; the other analyses consider one Day 57 biomarker at a time. 4The positivity
assumptions are as follows. Controlled VE: P (S = s |A = 1, X) > 0 almost surely. Stochastic

Interventional VE: si ∈ S =⇒ si + δ ∈ S | A = 1, X = x for all x ∈ X and i = 1, . . . n. Mediators
of VE: P (S = s |A = 1, X) > 0 almost surely and

P (S = s|A = 0, X = x) > implies P (S = s|A = 1, X = x) > 0. The quantitative analysis will
require that the largest value S observed in the placebo is larger than the smallest value of S
observed in the vaccine recipients. This assumption would naturally be satisfied for the tertiles
analysis. For quantitative S, the assumption is weaker for the Stochastic Interventional VE

analysis, such that it is possible that only this analysis of the three will be done.

Some of the analyses include parametric assumptions for characterizing associations (Cox model and
threshold analyses, Cox model versions of Controlled VE analyses) and others are nonparametric or
approximately so (all other analyses). If parametric and nonparametric analyses of the same type
(e.g., Cox model vs. nonparametric CoR analysis of the same association parameter; Controlled
VE Cox model vs. nonparametric monotone dose-response) suggest contradictory results, then the
interpretation from the nonparametric analysis will be prioritized, given it is more robust and less
likely to be an incorrect result. The diagnostic testing of the parametric assumptions will aid this
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interpretation. As noted above, if the nonparametric analysis suggesting a contradictory result
requires a positivity assumption, then its results will only be prioritized if diagnostics support
feasibility of the positivity assumption.

13.1 Synthesis Interpretation of Results

To structure the interpretation of the whole set of CoR and CoP results, we consider the Bradford-
Hill criteria for supporting causality assessments:

1. Temporal sequence of association (vaccination causes generation of antibodies, which precede
occurrence of the clinical disease outcome)

2. Strength of association (CoR magnitude)

3. Consistency of association (across studies and methods)

4. Biological gradient (may be interpreted as dose-response with greater Day 57 antibody cor-
responding to lower risk and greater VE)

5. Specificity (that the antibody marker is induced by vaccination not natural infection, and the
antibody impacts the particular clinical endpoint being analyzed)

6. Plausibility [(supported by other COVID vaccines through study in efficacy trials and chal-
lenge (animal or human) trials, and by other potential studies such as natural history re-
infection studies and monoclonal antibody prevention efficacy studies that could be challenge
(animal or human) or field trials])

7. Coherence (the causality assumption does not appear to conflict with current knowledge)

8. Experimental reversibility (if VE wanes to a low level then the antibody marker also wanes
coincidently; if the Day 57 marker is a strong correlate for outcome during the period of high
VE, then it becomes a weaker correlate against endpoints occurring during the later period of
low VE; also could be supported if vaccine breakthrough cases tend to occur early in follow-up
when antibody levels are known to be relatively low)

9. Analogy (supported by other respiratory virus vaccines, and natural history studies or chal-
lenge studies of other respiratory virus vaccines)

We discuss evaluation of these criteria for Day 57 markers, where the same evaluations accounting
for Day 29 markers are similarly relevant.

On temporal sequence, because the analyses are done in baseline negative individuals, generally
the Day 57 antibody responses must be generated by the vaccine, and if the outcome occurs well
after Day 57, then there is clear temporal ordering of vaccination causing antibodies followed by
outcome. The nuance is outcome cases with event times near 7 days post Day 57, some of which
could have been infected with SARS-CoV-2 prior to Day 57 and have relatively long incubation
periods, possibly perturbing temporal ordering by creating naturally-induced rather than vaccine-
induced antibody. However, the knowledge about the distribution of the time period between
SARS-CoV-2 acquisition and symptomatic COVID, and the time needed for an infection to create
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an adaptive immune response, suggests that this issue could only haves a minor impact, and overall
the temporal sequence criterion readily holds.

On strength of association, this is directly quantified in all of the analyses as a core output of
each method, quantified by point estimates and confidence interval estimates of covariate-adjusted
association parameters or causal effect parameters.

On consistency of association, checking for similar estimates and inferences across the multiple
vaccine efficacy trials will be relevant. The fact that all of the tested vaccines are designed to
protect through induction of antibody to Spike protein suggest that consistency is plausible. The
vaccine platform needs to be accounted for in this evaluation, where consistency may be expected
for vaccines of a given type (e.g., mRNA vaccines, Spike protein vaccines, viral vector vaccines with
a similar vector), whereas across types a consistent body of evidence would be very helpful, but not
a requirement. FDA guidance has stipulated that a surrogate endpoint for one vaccine platform is
not necessarily expected to hold for another, and that evidence for one platform would not be seen
on its own as support for a surrogate endpoint for another.

Moreover, consistency of association may be assessed in another sense - by studying whether the
different CoR methods tend to reveal a consistent directionality and pattern of an antibody marker
correlated with risk, and whether the different CoP methods tend to reveal a consistent direc-
tionality and pattern of an antibody marker connected to vaccine efficacy (as measured by the
various causal effect parameters) and with different versions of vaccine efficacy. A common core
element of all of the CoR and CoP methods is covariate-adjusted estimation of marker-conditional
risk in vaccine recipients, e.g. of marginal conditional risk EX [P (T ≤ tF |S = s,A = 1, X)] or
EX [P (T ≤ tF |S ≥ s,A = 1, X)]. Generally, if an estimate of this function shows strongly de-
creasing risk with s, then likely all of the CoR analyses will detect such a decrease, and the CoP
analyses will detect a version of vaccine efficacy increasing in s. A nuance in looking for consistency
of results across methods stems from the fact that different methods have different power to detect
the same effect; because of this fact, consistency in magnitude (point estimate) and directionality
are more important than consistency in inference/statistical significance.

The fact that all of the methods adjust for the same set of baseline covariates X will aid the abil-
ity to compare the results across methods in an interpretable manner. This discussion highlights
the relevance of adjusting for the same set of baseline covariates across the different efficacy tri-
als, although our choice to do covariate-adjustment through marginalization (rather than through
conditional association parameters) lends some resilience to this issue.

Our comments on consistency of association have supposed a given study endpoint, such as COVID.
Another dimension of consistency evaluation could include comparing results across endpoints.
On the one hand, consistency in evidence across endpoints could strengthen the case for a CoP,
especially for endpoints in the same ‘class’ such as moderate disease and severe disease. On the other
hand, the greater the difference between endpoints, the less relevant consistency may be, because
the vaccine may protect through different mechanisms against each endpoint (one potential example
is prevention of asymptomatic infection vs. prevention of severe disease). Thus evidence for a CoP
for a given endpoint should not necessarily be down-graded based on evidence that the same marker
does not appear to be a CoP for another endpoint.
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On biological gradient, many of the methods are flexible and designed to detect a dose-response
pattern of antibody with risk or antibody with vaccine efficacy, with tabular and graphical output
of point and confidence interval estimates designed to reveal dose-response.

On specificity, as noted above antibodies generally are almost surely vaccine-induced given the
analysis is done in baseline negative individuals, although with nuance that care is needed to eval-
uate whether some vaccine breakthrough cases may have had SARS-CoV-2 acquisition unusually
early in follow-up (e.g., prior to second vaccination). In addition, the assays are validated for
measuring specific anti-SARS-CoV-2 antigen response. Moreover, the Day 57 antibody markers
can be verified to be negative in all or almost all baseline negative placebo recipients. Therefore,
the specificity criterion should readily hold, with the proviso of the complication of the possible
inclusion of unusually early infections as vaccine breakthrough cases in some analyses.

On coherence, the results will be interpreted in the light of knowledge of immune correlates of
protection for the same vaccine in animal challenge studies (and human challenge studies as avail-
able), where multiple studies have demonstrated that both binding and neutralizing antibodies are
a correlate of protection.

The results will also be interpreted in light of any knowledge available on passively administered
SARS-CoV-2 monoclonal antibodies for prevention of SARS-CoV-2 infection or COVID disease,
either in challenge studies (animals or humans) or efficacy trials. In addition, the results will be
interpreted in light of results on the antibody markers as correlates of re-infection in natural history
studies. Note we are cautious to not use correlates studies in already-infected individuals, because
the fact of infection may readily change the nature of a correlate of protection.

On experimental reversibility, in future analyses we will evaluate whether the strength of association
of the Day 57 CoRs and CoPs weakens when restricting to outcomes occurring more distal to
vaccination. If the vaccine efficacy is found to wane over time, and the antibody marker wanes
over time, then this decrease in the strength of association would be consistent with antibody as
a correlate of protection. In contrast, if vaccine efficacy and antibody waned over time, but the
strength of a Day 57 CoR and CoP was the same regardless of the timing of outcomes, it might
call into question the role of the antibody marker as a CoP. The Stage 2 correlates analyses will
also be helpful, where experimental reversibility could be supported simply by coincident waning
of VE and waning antibody.

Experimental reversibility may also be supported by “population-level” correlates analyses, a term
sometimes used in reference to meta-analysis that associates the level of VE with the population-
level of a Day 57 marker across subgroups or trials; e.g. the population-level Day 57 marker response
may be summarized by the geometric mean titer or geometric mean concentration. Future analyses
of multiple phase 3 trial data sets will apply meta-analysis surrogate endpoint evaluation methods.

On analogy, perhaps the most relevant vaccines to consider are vaccines against other respiratory
viruses, including influenza vaccine and RSV vaccines. The fact that neutralizing antibodies are
a CoR and CoP for both inactivated and live virus vaccines supports that neutralizing antibodies
can be a CoP for SARS-CoV-2. In addition, there is ongoing correlates of protection analysis of
Novavax’s Phase 3 RSV vaccine efficacy trial, that is evaluating binding antibody and neutralizing
antibody CoRs and CoP correlates for severe respiratory disease in infants of vaccinated pregnant
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mothers (submitted). Once those results are available, they will aid in checking the analogy (and
coherence) criterion.

The univariate CoR analyses assess five Day 57 antibody biomarkers. The questions arise as to
how do we select which biomarker seems to be the best-supported CoP, and do we need to be
concerned about multiplicity adjustment issues? Given the multifactorial nature of the assessment
involving biology and statistics, we for the most part avoid an approach that tries to pre-specify a
quantitative ranking system; rather our approach presents the results of each marker side by side and
allows human synthesis and interpretation. To guard against errors in this subjective process, we
suggest that consistent results across analyses of a given trial, and consistent results (and predictive
validation) across multiple trials, will provide particularly strong guidance for interpreting results.
For example, if a particular Day 57 antibody marker shows remarkably consistent results in being a
strong CoR and supported CoP but the other readouts do not, it may emerge as the best-supported
CoP. In addition, the superlearning CoR estimated optimal surrogate objective has a special place
of importance, because it includes variable importance quantification, providing some quantitative
guidance on ranking the predictivneness of markers. This variable importance will be defined both
internal to a given trial and based on external validation on the other efficacy trials. The metrics
of CV-AUC and AUC on new trials quantifies evidence for signal in the data in a way that is
protected from risk of false positive results, by virtue of having two layers of cross-validation used
to estimate CV-AUC and hence avoid over-fitting. In addition, the CoR analyses use multiple
hypothesis testing adjustment to help ensure clear signals and not false positive results (see Section
9.4.1). We also need a plan for minimizing the risk of false positive results for CoP analyses, which
we now address.

13.2 Multiple Hypothesis Testing Adjustment for CoP Analysis

For the univariable CoP analyses of the prioritized set of Day 29 and Day 57 antibody markers
among the four specified marker variables, the analysis plan seeks evidence of a CoP through four
different causal effect approaches. Because of this looking for evidence through different lenses, for
CoP analysis we do not focus on family-wise error rate adjustment, because FWER-adjustment
aims to control the risk of making even a single false rejection. Rather, in an effort to build a
body of consistent evidence and to ensure that a large fraction of that evidence is reliable, for CoP
analysis we focus on false disCOV002ry rate correction. To do this, we use the same permutation-
based method (Westfall et al., 1993) that is used for CoR analysis. The multiplicity adjustment
is performed across the Day 29 and Day 57 markers and across the set of CoP methods that
are applied, in a single suite of hypothesis tests with calculation of q-values. As a guideline for
interpreting CoP findings (but not meant to be a rigid gateway), markers with unadjusted p-value
≤ 0.05 and q-value ≤ 0.10 are flagged as having statistical evidence for being a CoP.

14 Estimating a Threshold of Protection Based on an Established
or Putative CoP (Population-Based CoP)

For each antibody marker studied as a CoP, we will apply the Chang-Kohberger (2003) / Siber
(2007) method to estimate a threshold of the antibody marker associated with the estimate of
overall vaccine efficacy observed in the trial.
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This method makes two simplifying assumptions: (1) that a high enough antibody marker value s∗

implies that individuals with S > s∗ have essentially zero disease risk (perfect protection) regardless
of whether they were vaccinated; and (2) P (Y = 1|S ≤ s∗, A = 1)/P (Y = 1|S ≤ s∗, A = 0) = 1
(zero vaccine efficacy if S ≤ s∗). Based on these assumptions, s∗ is calculated as the value equating
1− P̂ (S ≤ s∗|A = 1)/P̂ (S ≤ s∗|A = 0) to the estimate of overall vaccine efficacy. This estimate is
supplemented by estimating the reverse cumulative distribution function (RCDF) of S in baseline
negative vaccine recipients and calculating a 95% confidence interval for the threshold value s∗ as
the points of intersection of the estimated RCDF curve with the 95% confidence interval for overall
vaccine efficacy (as in the figure in Andrews and Goldblatt, 2014).

This method essentially assumes that S has already been established as a CoP, and under that
assumption estimates a threshold that may be considered as a benchmark / study endpoint for
future immunogenicity vaccine trial applications.

It is acknowledged that this approach makes simplifying assumptions that are diagnosed to be
violated in the COV002 trial; nonetheless it may yield a useful benchmark and complementary
information on a threshold correlate of protection.

15 Considerations for Baseline SARS-CoV-2 Positive Study Par-
ticipants

As stated above, if enough COVID cases in baseline positive vaccine and/or placebo recipients
occur, then additional correlates analyses may be planned in baseline positive individuals. For
example, the same or similar correlates of risk analysis plan that is used to analyze Day 29 and
Day 57 marker correlates of risk in baseline negative vaccine recipients could be applied to assess
Day 1 marker correlates of risk in baseline positive placebo recipients. In addition, analyses could
be done to assess how vaccine efficacy in baseline positive participants varies with Day 1 markers.
It is straightforward to make this analysis rigorous because Day 1 markers are a baseline covariate,
such that regression analyses are valid based on the randomization.

16 Avoiding Bias with Pseudovirus Neutralization Analysis due
to Use of Anti-HIV Antiretroviral Drugs

Because the lentivirus-based pseudovirus neutralization assay uses an HIV backbone, the presence
of anti-retroviral drugs in serum will give a false positive neutralization signal. This can be easily
screened for using an MuLV pseudotype control. Therefore, Day 1, Day 29, and Day 57 samples of
all study participants with data included in correlates analyses will be tested for presence of anti-
retroviral drugs. Participants with any of the samples at Day 1, 29, 57 positive for antiretroviral
use are excluded from analyses, for all analyses that include pseudovirus neutralization. Analyses
that do not consider pseudovirus neutralization are unaffected by this issue.
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17 Accommodating Crossover of Placebo Recipients to the Vac-
cine Arm

After the primary efficacy endpoint was met per the protocol-defined interim analysis, supporting
the issuance on December 18, 2020 of an Emergency Use Authorization (EUA) from the FDA for
the AZD1222 vaccine, AZD1222 vaccination was offered to participants who originally received
placebo so that they could have the potential benefit of vaccination against COVID-19 [Moderna
(2020)].

For crossed-over placebo recipients who have study visits and blood sample storage on the same
schedule as if they had originally been assigned to the vaccine arm, follow-up data from the crossed
over placebo recipients will be included in the correlates of risk analyses, which is expected to yield
improved power and precision given the expanded sample size of vaccine recipients.

However, correlates of protection will only be assessed over follow-up through to the point that
there is no longer a placebo cohort under blinded follow-up. Moreover, if immune marker data from
crossed-over placebo recipients are available, then correlate of VE CoP analyses will be conducted
that leverage the additional closeout placebo vaccination data.

The current manuscript restricts to the primary blinded follow-up period.
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Figure 1: A) Structural relationships among study endpoints in a COVID-19 vaccine efficacy trial
(Mehrotra et al., 2020). B) Study endpoint definitions.
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Figure 2: Example at-COVID diagnosis and post-COVID diagnosis disease severity and virologic
sampling schedule, in a setting where frequent follow-up of confirmed cases can be assured. Partic-
ipants diagnosed with virologically-confirmed symptomatic SARS-CoV-2 infection (COVID) enter
a post-diagnosis sampling schedule to monitor viral load and COVID-related symptoms (types,
severity levels, and durations).
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Figure 3: Case-cohort sampling design (Prentice, 1986) that measures Day 1, 29, 57 antibody
markers in all participants selected into the subcohort and in all COVID and COV-INF cases
occurring outside of the subcohort.
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Figure 4: Two-stage correlates analysis. Stage 1 consists of analyses of Day 29 and Day 57 markers
as correlates of risk and of protection of the primary endpoint and potentially also of some sec-
ondary endpoints, and includes antibody marker data from all COVID and SARS-CoV-2 infection
cases (COV-INF) through to the time of the data lock for the first correlates analyses. Stage 2
consists of analyses of Day 29 and Day 57 markers as correlates of risk and of protection of longer
term endpoints and analyses of longitudinal markers as outcome-proximal correlates of risk and of
protection, and includes antibody marker data from all subsequent COVID and COV-INF cases.
Stage 1 measures Day 1, 29, 57 antibody markers and COV-INF and COVID diagnosis time point
markers; Stage 2 measures antibody markers from all sampling time points and COV-INF plus
COVID diagnosis sampling time points not yet assayed. The same immunogenicity subcohort is
used for both stages.
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