Supplemental Table 1. Data Used for Trio Analysis.

Sample HiFi Coverage ONT Coverage CLR Coverage

HG002 35.2499 46.6151 54.8693
HGO003 33.6795 80.6551 25.6278
HGO004 33.1812 83.1599 23.4694

Source: https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/data/AshkenazimTrio/



https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/data/AshkenazimTrio/

Supplemental Table 2. Data Used for Cohort Analysis.

Tech Sample Coverage Study Ancestry
HiFi HGO001 29.4987 GIAB CEU
HiFi HG00512 29.3707 1KGP CHS
HiFi HG00513 40.3823 1KGP CHS
HiFi HGO006 32.4010 GIAB CHS
HiFi HG00731 32.9366 1KGP PUR
HiFi HG00732 21.2571 1KGP PUR
HiFi HG007 36.1509 GIAB CHS
HiFi HG01109 31.7902 HPRC+ PUR
HiFi HG01243 34.8145 HPRC+ PUR
HiFi HG01442 36.9866 HPRC+ CLM
HiFi HG02055 39.0903 HPRC+ ACB
HiFi HG02080 33.7257 HPRC+ KHV
HiFi HG02109 30.2620 HPRC+ ACB
HiFi HG02145 35.7587 HPRC+ ACB
HiFi HG02723 45.4921 HPRC+ GWD
HiFi HG03098 35.1080 HPRC+ MSL
HiFi HG03492 33.2615 HPRC+ PJL
HiFi NA19238 24.9931 1KGP YRI
HiFi NA19239 25.8028 1KGP YRI
ONT HG003 80.6551 GIAB ASH
ONT HG004 83.1599 GIAB ASH
CLR AK1 79.2865 Audano EAS
CLR CHM13 97.1029 Audano EUR*
CLR CHM!1 51.2768 Audano EUR*
CLR HG00268 69.5876 Audano FIN
CLR HG01352 56.2097 Audano CLM
CLR HG02059 63.9237 Audano KHV
CLR HG02106 59.9712 Audano PEL
CLR HG04217 128.5960 Audano ITU
CLR HX1 76.6489 Audano EAS
CLR NA19434 58.3505 Audano LWK

*Hydatidiform mole for which only the super-population has been reported

1KGP: http://ftp.1000genomes.ebi.ac.uk/vol1/fip/data_collections/HGSVC2/working/

GIAB: http://ftp-trace.ncbi.nim.nih.gov/giab/ftp/data
HPRC+: https://github.com/human-pangenomics/HPP Year1 Data Freeze v1.0

Audano: %



http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/HGSVC2/working/
http://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data
https://github.com/human-pangenomics/HPP_Year1_Data_Freeze_v1.0
https://paperpile.com/c/bGhr8g/he1MF

Supplemental Table 3. Software Versions.

Software Version

Jasmine 1.1.0

Iris 1.04

sniffles 1.0.11

winnowmap 2.0

racon 1.4.10

minimap?2 217

samtools 1.9

SURVIVOR 1.0.7

svtools 0.5.1

svimmer 0.1

dbsvmerge commit 85b3687a54ce21ba25862c58707daa212b9fbcbd
svpop commit 8be50c55f8e81f8¢c701077bb9c00ee5beal3e0d2b
sv-merger commit b7745239348c7a6623efa516bd284 1b53ff6046a

Paragraph 2.4

CAVIAR commit 135b58baffac92b5e9b45f8db78315a9b4d713bc

plink 1.90b6.4

snphwe 1.0.2




HGO0O02 Trio Variant Size Distribution (Jasmine)
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Supplementary Figure 1. HG002 Trio HiFi Variant Size Density

The density distribution of variant sizes called in the HG002 trio from HiFi data. The spikes in the distribution

around 300bp and 6-7kbp correspond to SINE and LINE elements, respectively.
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Supplementary Figure 2. Discordance by Length with Double Thresholding.
The benefits of using “double thresholding” to improve variant discovery in HG002 while also reducing the rate
of Mendelian discordance. SVs and indels were called with a more lenient length threshold of 20bp, but only
those which were merged with a variant with length at least 30bp in a different sample were kept. “Rescued
from absence” refers to variants which would have been missed in HG002 using a single threshold. “Rescued

from discordance” refers to variants which would have been discordant in HG002 with a single threshold, but
which we were able to detect in one or both parents with double thresholding.
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Supplementary Figure 3. Optimized Variant Calling Parameters for HiFi.
We called SVs and indels in HG002, HG003, and HG004 from HiFi reads using different values of the max_dist

parameter in sniffles and merged each trio callset with Jasmine. For each max_dist value we measured the
total number of variants in the trio, the number of discordant variants, and the discordance rate.
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Supplementary Figure 4. Discordance in HG002 of All Merging Software for SVs and Indels
The rate of discordance when comparing SVs and indels between individuals with Jasmine as well as six
existing methods for population inference.
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Supplementary Figure 5. Example of Breakpoint Directionality.

In complex regions with nested SVs, some variant types such as inversions and translocations, which typically
correspond to two novel breakpoint adjacencies, may only be partially present due to other variants interacting
with that one. In the case of inversions, one novel adjacency is that of the start of the inverted region to
downstream sequence, and the other is that of the end of the inverted region to upstream sequence, This
example shows an inversion where there are two novel breakpoint adjacencies; 1) the sequence near A going
towards the 5’ end being newly adjacent to the sequence near B going towards the 5’ end (denoted by
STRANDS=++), and 2) the sequence near A going towards the 3’ end being newly adjacent to the sequence
near B going towards the 3’ end (denoted by STRANDS=--). While these novel adjacencies typically co-occur,
it is necessary to distinguish which is present in the case where only one occurs. While some SV callers
collapse these adjacencies into a single SV call, they are reported by sniffles as distinct SV calls with different
values for the STRANDS INFO field, and downstream SV comparison/merging software must be aware of the
difference between them when comparing across samples.
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Supplementary Figure 6. HG002 Cross-Technology Agreement for SVs and Indels

This diagram shows the number of variants, including both SVs and indels, discovered by each subset of
technologies when calling variants in HG002 from CLR, ONT. and HiFi reads.
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Supplementary Figure 7. HG002 Trio Technology-Concordant Variant Size Density
The density distribution of variant sizes called in the HG002 trio which are supported by HiFi, CLR, and ONT
data. The spikes in the distribution around 300bp and 6-7kbp correspond to SINE and LINE elements,

respectively.
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Supplementary Figure 8. HG002 Cross-Technology Agreement for SVs by Genomic Context.
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Supplementary Figure 9. HG002 Cross-Technology Agreement for SVs/Indels by Genomic Context.
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Mendelian Discordance (Prior Methods)
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Supplementary Figure 10. Discordance in HG002 of Prior Methods for SVs and Indels
The number of SVs and indels called in each subset of individuals when using prior methods to call variants
from HiFi data in the HG0O02 trio: ngmir for alignment, Sniffles for SV calling, and SURVIVOR for consolidating
SVs between samples.
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Supplementary Figure 11. Lower-Confidence Potential de novo SV in HG002.

This SV is supported by all three technologies as being present in HG002, and is a 10,607bp deletion at
chr7:142786222, in the highly variable T cell Receptor Beta (TRB) region. a.) IGV screenshot showing the
immediate context of the variant. b.) IGV screenshot which shows the highly variable region near the variant,
leading us to be less confident of the variant being de novo.
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Supplementary Figure 12. Additional Potential de novo variants in HG002.

a.) A 64bp insertion at chr3:85552367. This variant was supported as being present in HG002 by HiFi and CLR
reads, but missed by the ONT-based calls, likely due to the adjacent homopolymer.

b.) A43bp insertion at chr5:97089276 supported by all three technologies.
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Supplementary Figure 13. Additional Potential de novo variants in HG002.

a.) A43bp insertion at chr8:125785998 on the paternal haplotype supported by all three technologies.

b.) A 34bp insertion at chr18:62805217 on the paternal haplotype. This variant was supported as being present
in HG0O02 by HiFi and ONT reads, but missed by the CLR-based calls.
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Supplementary Figure 14. Breakpoint Range in Cohort as Proportion of Length

The distribution of the range of breakpoints of variant calls merged into single variants by each software,
excluding unmerged variants, when merging SVs and indels in our cohort of 31 samples of diverse ancestry.
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Supplementary Figure 15. Variant Counts per Sample.

This shows a.) the number of high-confidence variants called in each sample, including both SVs and indels,
and b.) the number of SVs called in each sample. While most samples sequenced from the same technology
have similar numbers of variants, the coverage of a sample, particularly in those sequenced with CLR, is
positively associated with the number of variants detected.
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Supplementary Figure 16. Variant Counts per Sample including Low-Confidence Variants.

This shows a.) the number of variants called in each sample with a highly sensitive threshold, including both
SVs and indels, and b.) the number of SVs called in each sample with a highly sensitive threshold. There is a
high enrichment of low-confidence calls in samples sequenced with CLR, especially samples with high
coverage, due to the technology’s higher error rate.
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Supplementary Figure 17. Variant Allele Frequencies of all Merging Software.

The allele frequency distribution of SVs and indels in the 31-sample cohort when using different methods for
merging calls across samples: a.) Jasmine b.) dbsvmerge ¢.) svpop d.) SURVIVOR e.) svimmer f.) svtools.
When using methods which use a constant distance threshold for merging (SURVIVOR, svimmer, svtools), we
observe a spike in the allele frequency distribution near 10 samples, where false positive calls from
CLR-sequenced samples are merged with each other and with high-confidence variants in other samples.
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Supplementary Figure 18. SV Allele Frequencies of all Merging Software.

The allele frequency distribution of SVs of length at least 50bp in the 31-sample cohort when using different
methods for merging calls across samples: a.) Jasmine b.) dbsvmerge c.) svpop d.) SURVIVOR e.) svimmer f.)
svtools.



Cohort Variant Size Distribution (Jasmine)
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Supplementary Figure 19. Cohort Variant Size Density
The density distribution of variant sizes called in the 31-sample cohort. The spikes in the distribution around
300bp and 6-7kbp correspond to SINE and LINE elements, respectively.
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Supplementary Figure 20. Genomic Positions of SVs and Indels in Cohort
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Supplementary Figure 21. Functional impact of SVs and indels from Jasmine in 1KGP samples

We used Paragraph to genotype SVs and indels from the cohort of 31 samples in 444 samples from the 1000
Genomes Project which have RNA-seq data. a.) Number of variants detected per sample for genotyped SVs
and indels (Jasmine) versus SVs reported in the 1000 Genomes Project (1KGP) after HWE filtering. b.) Effect
sizes of significant SV and indel eQTLs mapped from Jasmine variants or 1KGP SVs. ¢.) CAVIAR posterior
probabilities for each gene with significant SV/indel and SNP data. The x-axis is the maximum CAVIAR
posterior of a SNP reported as a SNP-eQTL by the GTEx consortium, and the y-axis is the maximum CAVIAR
posterior of a Jasmine variant from our mapped SV and indel eQTLs. Variants above the diagonal line have a
higher Jasmine variant posterior than GTEx SNP posterior. The inset box contains genes with highly causal
(posterior >0.8) SVs. d.) Jasmine variant distance to the nearest ENCODE cCRE versus CAVIAR posterior.
The histogram shows the distribution of distances to ENCODE cCREs. e.) Genotype and gene expression
distribution in TKGP samples for novel CSF2RB-associated insertion (n=444). f.) Manhattan plot for SNPs and
the novel SV near CSF2RB, with p-value measured by one-sided Wilcoxon rank-sum test. The green point is
the SNP reported in GTEx eQTLs (chr22_36864559_A_G); other points are colored by LD to that SNP. For e
and f, one-sided Wilcoxon Rank Sum test was performed to assess the p-values of variant-gene association.
We corrected for multiple hypothesis using gene level Bonferroni test at FDR 10%. The boxplot’s lower bound is
1st quartile and the upper bound is 3rd quartile. And the whiskers are at +/- 1.5 interquartile range from the 1st or
3rd quartile. and the center is the mean expression level of a genotype group.



A Effect of deletion on LRGUK
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Supplementary Figure 22. Potential Functionally Relevant Deletion in LRGUK in 1KGP.

Deletion in LRGUK genotyped with Jasmine in 1KGP samples in LD with reported GWAS SNP. a.) Genotype
versus gene expression among the 1000 Genomes Project samples for the deletion in LRGUK (n=444). b.)
Manhattan plot for SNPs and SV near LRGUK, with p-value measured by one-sided Wilcoxon rank-sum test.
The green point is the SNP reported in GWAS to be associated with smoking initiation (rs1561112), and other
points are colored by LD to that SNP. For A and B, one-sided Wilcoxon Rank Sum test was performed to
assess the p-values of variant-gene association. We corrected for multiple hypothesis using gene level
Bonferroni test at FDR 10%. The boxplot’'s lower bound is 1st quartile and the upper bound is 3rd quartile. And the
whiskers are at +/- 1.5 interquartile range from the 1st or 3rd quartile. and the center is the mean expression level of
a genotype group.



Effect of insertion on CAMKMT
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Supplementary Figure 23. Potential Functionally Relevant Insertion in CAMKMT in 1KGP.

Insertion in CAMKMT genotyped with Jasmine in 1KGP samples in LD with reported SNP-eQTLs. a.)
Genotype versus gene expression among the 1000 Genomes Project samples for the insertion in CAMKMT
(n=444). b.) Manhattan plot for SNPs and SV near CAMKMT, with p-value measured by one-sided Wilcoxon
rank-sum test. The green point is the SNP-eQTL from GTEXx (chr2_44665995_C_T), and other points are
colored by LD to that SNP. For A and B, one-sided Wilcoxon Rank Sum test was performed to assess the
p-values of variant-gene association. We corrected for multiple hypothesis using gene level Bonferroni test at
FDR 10%. The boxplot’'s lower bound is 1st quartile and the upper bound is 3rd quartile. And the whiskers are at +/-
1.5 interquartile range from the 1st or 3rd quartile. and the center is the mean expression level of a genotype group.
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Supplementary Figure 24. Manhattan Plot of cis-eQTL association t-statistics for HACL1 in Testis

Manhattan plot for the t-statistic of SNPs and the SV near HACL1, with the t-statistic measured as the
beta effect size divided by the variance of beta. The x-axis shows the position along chr3.
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Supplementary Figure 25. Manhattan Plot of cis-eQTL association t-statistics for DDTL in Whole Blood

Manhattan plot for the t-statistic of SNPs and the SV near DDTL1, with the t-statistic measured as the
beta effect size divided by the variance of beta. The x-axis shows the position along chr22.



Comparison of absolute p-values of eQTL effect size
between top SNP and SV
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Supplementary Figure 26. Boxplot of the distributions of p-values for cis-eQTL associations across
multiple tissues

For the DDTL SV-eQTL, we found the SV has the strongest CAVIAR posterior in 36 tissues. The left boxplot
displays the distribution of the SV association p-values in these tissues, and the right boxplot displays GTEx v8
top SNP p-values. Comparing the SV p-value to corresponding top reported SNP p-value in matched tissue
using one-sided Wilcoxon Rank Sum test, we found the SV p-values to be significantly higher than that of the
SNPs with a p-value of 1.1e-8. This demonstrates that this SV is more likely to be the causal eQTL across
tissues. The boxplot’s lower bound is 1st quartile and the upper bound is 3rd quartile. And the whiskers are at +/-
1.5 interquartile range from the 1st or 3rd quartile. and the center is the mean -log10 p-values of each group. Points
in diamiond shape are the outliers according to being greater than the 3rd Quartile + 1.51QR rule.
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Supplementary Figure 27. SV-eQTL of ASMTL.

(top) Using our Jasmine-Paragraph pipeline in GTEx, we also identified a 60bp insertion on chromosome X
that is an eQTL of ASMTL in GTEXx heart left ventricle tissue (n=384). (middle) The insertion is in moderate LD
(0.7 r?) with the lead SNP-eQTLs but has a substantially stronger p-value of 1.5e-08 than the lead SNPs. The
x-axis shows the position along chrX. (bottom) The insertion also has substantially stronger t-statistics of 5.81
in comparison to 4.14 of the lead SNP. The x-axis shows the position along chrX. For top, middle and bottom
figures, two-sided t-test was performed to assess the p-values of variant-gene association. We corrected for
multiple hypothesis using gene level Bonferroni test at FDR 5%. The middle plot is the negative log 10
p-values which are unsigned. And the bottom plots meant to show the direction of effect so t-statistics was
used. The boxplot’s lower bound is 1st quartile and the upper bound is 3rd quartile. And the whiskers are at +/- 1.5
interquartile range from the 1st or 3rd quartile. and the center is the mean expression level of a genotype group.
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Supplementary Figure 28. Runtime and Memory on Large Simulated Datasets

a.) Runtime in seconds, and b.) Memory in GB required to merge simulated SV calls in different numbers of
samples from the 1000 Genomes Project. Per-sample SVs were simulated based on the population-level
Phase 3 structural variant dataset (https://www.internationalgenome.org/phase-3-structural-variant-dataset/) by
consolidating all calls marked as present in that sample and shifting each of their start positions by a uniform
random integer in [-50, 50].
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Supplementary Figure 29. Read Support across Sequencing Technologies.

In our population analysis, to examine the SV caller’s ability to detect reads supporting variants across
technologies, we measured the read support of each SV and indel for a representative sample sequenced with
each technology. a.) HG00512, a HiFi sample with 29x average coverage. As expected, we see a sharp
decrease at about 50% read support, corresponding to the transition from heterozygous to homozygous
variants. b.) AK1, a CLR sample with 79x average coverage. In this sample, there are many variants supported
by only a couple of reads, which is an artifact of reads having high sequencing error and moderate length. c.)
HGO003, an ONT sample with 81x average coverage.
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Supplementary Figure 30. Variant Type/Length Distribution in HG002 HiFi Trio by Genomic Context
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Supplementary Figure 31. HG002 HiFi Trio SV Sample Presence by Genomic Context.
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Supplementary Figure 32. HG002 HiFi Trio SV and Indel Sample Presence by Genomic Context.
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Supplementary Figure 33. Variable Breakpoints and Sequences among Individual Reads.
This figure shows an insertion SV in HG002 at chr1:1477881 in which the breakpoints and sequence length

vary among individual ONT reads.
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Supplementary Figure 34. Improved Insertion Sequence Accuracy with Iris.

a.) The distribution of insertion sequence accuracy in 200 SV calls from the simulation of human chromosome
1 with and without Iris refinement.

b.) The distribution of insertion sequence accuracy in the HG002 SV calls derived from ONT reads, using the
HiFi calls as ground truth, with and without Iris refinement.
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Supplementary Figure 35. Discordance in HG002 of Jasmine for SVs and Indels

The number of SVs and indels called in each subset of individuals when using our optimized pipeline to call
variants from HiFi data in the HG0O02 trio.
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Supplementary Figure 36. Mendelian Discordance across Jasmine Distance Thresholds in the HG002
Trio.

We varied the min_dist parameter when merging SVs and indels in HG002, HG003, and HG004, and observed
the total number of variants, the number of discordant variants, and the discordance rate for each run.
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Supplementary Figure 37. Optimized Variant Calling Parameters for CLR.

We called SVs and indels in HG002, HG003, and HG004 from CLR reads using different values of the
max_dist parameter in sniffles and merged each trio callset with Jasmine. For each max_dist value we
measured the total number of variants in the trio, the number of discordant variants, and the discordance rate.
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Supplementary Figure 38. Optimized Variant Calling Parameters for ONT.

We called SVs and indels in HG002, HG003, and HG004 from ONT reads using different values of the
max_dist parameter in sniffles and merged each trio callset with Jasmine. For each max_dist value we
measured the total number of variants in the trio, the number of discordant variants, and the discordance rate.
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Supplementary Figure 39. Double Thresholding to Reduce Threshold Effects.

To avoid cases where variants with length or read support near the variant calling threshold are detected in
some but not all samples where they are present, we use a double threshold. In the case of trio analysis, we
are able to both a.) discover more variants in the child and b.) reduce the number of discordant variants
compared to using a single threshold.
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Supplementary Figure 40. Discordance by Read Support with Double Thresholding.

This illustrates the read support distribution of SVs and indels in HG002 called from HiFi data. SVs and indels
were called with a more lenient length threshold of 20bp, but only those which were merged with a variant with
length at least 30bp in a different sample were kept. “Rescued from absence” refers to variants which would
have been missed in HG002 using a single threshold. “Rescued from discordance” refers to variants which
would have been discordant in HG002 with a single threshold, but which we were able to detect in one or both
parents with double thresholding. As the read support increases, the number of discordant variants decreases,
but even among variants with low read support there are many which are not discordant, and double
thresholding improves our ability to resolve them.
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Supplementary Figure 41. Length and Read Support among HG002 HiFi Variants with Double
Thresholding.
a.) The length and read support of variants which would have missed in HG002 if using only a single threshold.

b.) The length and read support of variants which would have been discordant in HG002 if using only a single
threshold.
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Supplementary Figure 42. PCA of 1KGP SV and Indel Genotypes.
A two-dimensional projection of the absence/presence vectors of all genotyped variants in the 444 samples
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Allele Frequency in 1KGP Data
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Supplementary Figure 43. 1KGP Allele Frequencies before and after HWE Filtering.

Histogram of variant allele frequencies passing and failing the HWE test to filter out variants genotyped by

Paragraph in the 1000 Genomes samples that do not match expected Hardy-Weinberg allele frequencies,

following best practices *3. We later filter out rare variants with allele frequency less than 0.05 (dashed blue
line).
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Supplementary Figure 44. 1KGP CAVIAR Score vs. Distance to Regulatory Elements.

Distances to nearest regulatory elements colored by the type of the nearest elements for SVs and indels
genotyped with Jasmine in 1KGP samples. a.) Log-scaled distances of SVs and indels to various regulatory
elements in Ensembl regulatory build. b.) Log-scaled distances of SVs and indels to the nearest regulatory
elements in ENCODE cis regulatory regions. Both databases are independently derived and most of the
variants with high CAVIAR posteriors are within the 6kb proximal region of regulatory elements. The types of
elements near those high-posterior variants, are primarily promoters, enhancers which are relevant to the
regulation of gene expression.
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Supplementary Figure 45. 1KGP Jasmine Caviar Posteriors by HOT Region and Gene Distance.

a.) Jasmine SV and indel (genotyped in 1KGP samples) distance to nearest HOT (Highly Occupied by
Transcription factors) regions from FunSeq2. Histogram shows distribution of distances to HOT regions. b.)
Jasmine SV and indel distance to nearest gene. Histogram shows distribution of distances to genes.



CAVIAR Posteriors by CADD score
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CAVIAR Posteriors by PhastCons 20 Species Scores
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Supplementary Figure 46. 1KGP CAVIAR Score vs. CADD and PhastCons Scores.

The mean of the top 10 single-base a.) CADD scores scaled as positive Phred-like values and b.) PhastCons
scores among 20 core mammalian species are calculated in each variant interval for SVs and indels
genotyped by Jasmine in TKGP samples. Higher CADD scores indicate higher pathogenic likelihood, while
higher PhastCons scores indicate strongly conserved regions. We do not observe evidence of enrichment for
conservedness or pathogenicity among variants with high CAVIAR posteriors.



CAVIAR Posteriors by Mean GC Content
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Supplementary Figure 47. 1KGP CAVIAR Score vs. GC Content and LINSIGHT Score.

a) The mean GC content and b) the mean of the top 10 single-base LINSIGHT scores are calculated for each
variant interval for SVs and indels genotyped by Jasmine in 1KGP samples. GC content is measured as a
percentage and is taken from the corresponding track of the UCSC Genome Browser. LINSIGHT scores
represent posterior probabilities that each variant has non-coding consequences. We do not observe evidence
for variants with high CAVIAR posteriors to be enriched for extreme GC content or high LINSIGHT scores.



Supplemental Note 1. Jasmine Merging Algorithm.

// Takes a set of variants and merges them
MergeAllVariants (vars)

{

MergedSet = {}

// Separately merge each chromosome and type
for (chr in unique({v.chr | v € vars})
{
for type in unique({v.type | v € wvars})
{
SetToMerge = {v | [(v € vars) A (v.chr = chr) A (v.type = type)]l}
MergedSet = MergedSet U MergeSingleGraph (SetToMerge)
}
}

return MergedSet

// Merges a set of variants that have the same chromosome and type
MergeSingleGraph (vars)

{

// Convert SVs to 2D points based on their positions and lengths
for (v in vars)

{

X = V.pos
y = v.length

if(v.type == "TRA") y = v.pos2
v.point2D = (x, V)

}

// Add all points to a KD Tree which supports rapid k-nearest neighbor queries
kdtree = new KDTree ()
kdtree.addAllPoints ({v.point2D | v € vars)

// Initialize a heap to store variant pairs to consider merging
PairsToProcess = new MinHeap ()

for (v in vars)

{
// Initially all variants are in their own component
v.ComponentId = v.id

// Initially store the 4 nearest neighbors for each variant
v.UpcomingNeighbors = kdtree.kNearestNeighbors (v.point2D, 4)

// Keep track of how many neighbors of each SV have been considered so we know
// when to refresh the list of upcoming neighbors
v.NeighborsChecked = 0

// Add the nearest neighbor for each point to the heap of pairs to consider
// with the priority key being the Euclidean distance between them
DistToNearest = EuclideanDistance(v.point2D, v.UpcomingNeighbors[O0]
PairsToProcess.add (Pair (v, v.UpcomingNeighbors[0].id), DistToNearest)

}

// Iterate over the heap until we have no more pairs to consider
while (PairsToProcess.size > 0)
{

NearestPair = PairsToProcess.getMin ()

first = NearestPair.first
second = NearestPair.second

// If their distance is bigger than the first point’s threshold we can stop
// considering any of the first point’s neighbors since they will all be bigger
if (NearestPair.dist > first.DistanceThreshold) continue

CanMerge = true

SamplesWithFirst = unique ({v.Sample | v.ComponentID = first.Component})
SamplesWithSecond = unique ({v.Sample | v.ComponentID = second.Component})



// If the SVs come from the same sample or have been merged with anything
// from the same sample, this merge cannot occur
if (SamplesWithFirst N SamplesWithSecond # 9)
{
CanMerge = False

}

// If the distance is too large, the merge cannot occur
if (NearestPair.dist > second.DistanceThreshold)
{

CanMerge - False

// Perform merging of this variant pair if the merge is valid
if (CanMerge)
{

Merge (vars, first, second)

}
// Now get the next nearest neighbor for the first variant in the pair
first.NeighborsChecked += 1

// I1f we used everything we got from the KDTree query, make another
// query for twice as many neighbors
if (first.NeighborsChecked == first.UpcomingNeighbors.size)
{
NewSize = 2 * first.UpcomingNeighbors.size
first.UpcomingNeighbors = kdtree.kNearestNeighbors (first.point2D, NewSize)
}

// Get the next neighbor from the list and add the pair to the heap
NextNeighbor = first.UpcomingNeighbors[first.NeighborsChecked]
DistToNext = EuclideanDistance (v.point2D, NextNeighbor)
PairsToProcess.add(Pair (v, NextNeighbor.id), DistToNext)

}

// Group variants by component and return
Results = new Map ()
for (component in unique (vars.ComponentID))

{

Results[component] = {v | [(v € vars) A (v.ComponentID = component)]}

}

return Results

// Merge a palr of variants together by iterating over the smaller component
// and updating their component IDs to match the other variants’.
Merge (vars, first, second)

{
FirstComponent = {v | [(v € wvars) A (v.ComponentID = first.ComponentID)]}
SecondComponent = {v | [(v € vars) A (v.ComponentID = second.ComponentID)]}

if (FirstComponent.size > SecondComponent.size)

{

for (v in SecondComponent)

{

v.ComponentID = first.ComponentID

}

else

{

for(v in FirstComponent)

{

v.ComponentID = second.ComponentID



Supplemental Note 2. Commands Used.

Jasmine Merging
$ Jjasmine file 1ist=FILELIST out file=MERGED VCF max dist linear=0.5
min dist=100

dbsvmerge Merging
$ dbSV merge -f FILELIST -o MERGED VCF -1 2.0 -r 0.4

svpop Merging
$ python $SVPOPPATH/merge.py FILELIST SAMPLE LIST MERGED VCF

SURVIVOR Merging
$ SURVIVOR merge FILELIST 1000 1 1 1 0 1 MERGED VCF

svtools Merging
$ svtools lsort -r -f FILELIST OUTPUT SORTED VCF
$ svtools lmerge -i SORTED VCF -f 250 > MERGED VCF

svimmer Merging
$ python svimmer FILELIST CHROMOSOME LIST --threads 2 --output MERGED VCF
--max _distance 1000 --max size difference 1000 --ids

sv-merger Merging (separate for each chromosome and SV type)

$ python main.py FIND TRR OVERLAPS SINGLE SAMPLE SVS TSV

trf coords/chrl.trf.sorted.gor TR OVERLAPS FILE 5

$ python $BINDIR/main.py PRE CLUSTER TR OVERLAPS FILE PRECLUSTERED FILE 50 1
$ python $BINDIR/main.py FIND CLIQUES PRECLUSTERED FILE MERGED TSV

TRR MERGED TSV DEL 85 50

Paragraph Genotyping
$ multigrmpy.py -m SAMPLE MANIFEST -i POPULATION SV VCF -M [20*DEPTH] -o
OUTPUTFOLDER -r REFERENCE --threads 24 --scratch-dir SCRATCHFOLDER

More details of the preprocessing steps and commands used for different merging methods can be found here:
https://github.com/mkirsche/SVMergingMethodComparison.

All code for eQTL analysis of SVs can be found here: https://github.com/gautam-prab/jasmine-sv-eqtls.


https://github.com/mkirsche/SVMergingMethodComparison
https://github.com/gautam-prab/jasmine-sv-eqtls

