iScience, Volume 26

Supplemental information

Centrifugal microfluidic-based multiplex

recombinase polymerase amplification assay

for rapid detection of SARS-CoV-2

Ruoxu Li, Ning Su, Xiaodong Ren, Xiange Sun, Wenman Li, Yuwei Li, Jin Li, Chen Chen, Hong Wang, Weiping Lu, Shaoli Deng, and Qing Huang

Figure S1. Schematic map of the transfer plasmid of retroviral vector containing the target genes of SARS-CoV-2, related to STAR methods. The complete N gene, complete E gene, and partial ORF1ab gene of SARS-CoV-2 contained on the retroviral vector.

Figure S2. Illustrations of the microscope slide-shaped microfluidic chip, related to Figure 4.

(A) Schematic of the 3D structures of the microfluidic chip consisted of a PMMA plate and a pressure-sensitive adhesive layer.

(B) An enlarged schematic of each unit contained a buffer chamber, a sample chamber, a mixing chamber, an aliquoting chamber, a metering chamber, and four reaction chambers.

(C) Pictures of chip packaging.

Figure S3. Multiple sequence alignments of the original strain of SARS-CoV-2 with the other four common VOCs, related to Figure 3. Matched bases were highlighted in black; partially matched bases were highlighted in red or blue color, and mismatched bases were shown with a white background. A consensus sequence among all five sequences was shown. The red and blue arrows above the aligned sequences indicated the primers and probes used in this study, respectively.

Table S1. Sequences of the SARS-CoV-2 pseudovirus with N, E, and ORF1ab genes, related to STAR methods.

Gene	Sequence $(5'-3')$
	ATGTCTGATAATGGACCCCAAAATCAGCGAAATGCACCCCGCATTACGTTTGGTG
	GACCCTCAGATTCAACTGGCAGTAACCAGAATGGAGAACGCAGTGGGGCGCGAT
	CAAAACAACGTCGGCCCCAAGGTTTACCCAATAATACTGCGTCTTGGTTCACCGC
	TCTCACTCAACATGGCAAGGAAGACCTTAAATTCCCTCGAGGACAAGGCGTTCC
	AATTAACACCAATAGCAGTCCAGATGACCAAATTGGCTACTACCGAAGAGCTACC
	AGACGAATTCGTGGTGGTGACGGTAAAATGAAAGATCTCAGTCCAAGATGGTATT
	TCTACTACCTAGGAACTGGGCCAGAAGCTGGACTTCCCTATGGTGCTAACAAAGA
	CGGCATCATATGGGTTGCAACTGAGGGAGCCTTGAATACACCAAAAGATCACATT
	GGCACCCGCAATCCTGCTAACAATGCTGCAATCGTGCTACAACTTCCTCAAGGAA
	CAACATTGCCAAAAGGCTTCTACGCAGAAGGGAGCAGAGGCGGCAGTCAAGCC
	TCTTCTCGTTCCTCATCACGTAGTCGCAACAGTTCAAGAAATTCAACTCCAGGCA
N	GCAGTAGGGGAACTTCTCCTGCTAGAATGGCTGGCAATGGCGGTGATGCTGCTCT
Ν	TGCTTTGCTGCTGCTTGACAGATTGAACCAGCTTGAGAGCAAAATGTCTGGTAAA
	GGCCAACAACAAGGCCAAACTGTCACTAAGAAATCTGCTGCTGAGGCTTCT
	AAGAAGCCTCGGCAAAAACGTACTGCCACTAAAGCATACAATGTAACACAAGCT
	TTCGGCAGACGTGGTCCAGAACAAACCCAAGGAAATTTTGGGGGACCAGGAACT
	AATCAGACAAGGAACTGATTACAAACATTGGCCGCAAATTGCACAATTTGCCCCCC
	AGCGCTTCAGCGTTCTTCGGAATGTCGCGCATTGGCATGGAAGTCACACCTTCGG
	GAACGTGGTTGACCTACACAGGTGCCATCAAATTGGATGACAAAGATCCAAATTT
	CAAAGATCAAGTCATTTTGCTGAATAAGCATATTGACGCATACAAAACATTCCCA
	CCAACAGAGCCTAAAAAGGACAAAAAGAAGAAGGACTGATGAAACTCAAGCCTT
	ACCGCAGAGACAGAAGAAACAGCAAACTGTGACTCTTCTTCCTGCTGCAGATTT
	GGATGATTTCTCCAAACAATTGCAACAATCCATGAGCAGTGCTGACTCAACTCAG
	GCCTAA
	ATGTACTCATTCGTTTCGGAAGAGACAGGTACGTTAATAGTTAATAGCGTACTTCT
	TTTTCTTGCTTTCGTGGTATTCTTGCTAGTTACACTAGCCATCCTTACTGCGCTTCG
Е	ATTGTGTGCGTACTGCTGCAATATTGTTAACGTGAGTCTTGTAAAACCTTCTTTT
	ACGTTTACTCTCGTGTTAAAAATCTGAATTCTTCTAGAGTTCCTGATCTTCTGGTC
	ТАА
	GTGACTTA A A AGGTA AGTATGTAC A A ATACCTACA ACTTGTGCTA ATGACCCTGT
	GGGTTTTACACTTAAAAACACAGTCTGTACCGTCTGCGGTATGTGGAAAGGTTAT
ORF1a b	GGCTGTAGTTGTGATCAACTCCGCGAACCCATGCTTCAGTCAG
	CGTTTTTAAACGGGTTTGCGGTGTAAGTGCAGCCCGTCTTACACCGTGCGGCACA
	GGCACTAGTACTGATGTCGTATACAGGGCTTTTGACATCTACAATGATAAAGTAGC
	TGGTTTTGCTAAAATTCCTAAAAACTAATTGTTGTCGCTTCCAAGAAAAGGACGAA
	GATGACAATTTAATTGATTCTTACTTTGTAGTTAAGAGACACACTTTCTCTAACTA
	CCAACATGAAGAAACAATTTATAATTTACTTAAGGATTGTCCAGCTGTTGCTAAAC

AT

Table S2. RPA primers and probes used in this study, related to STAR methods.

Gene	Oligonucleotide	Sequence (5'–3') ^a
Ν	forward primer	CAGCAGTAGGGGAACTTCTCCTGCTAGAAT
	reverse primer	GGCCTTTACCAGACATTTTGCTCTCAAGCTG
	probe	CTGGCAATGGCGGTGATGCTGCTCTTGCTT[HEX-dT]G[THF][BHQ1-dT]GCTGCTTGACAGATT
		GTGTGCAACTTTAG[phosphate]
ORF1ab	forward primer	CCTACAACTTGTGCTAATGACCCTGTGGGTTTTACACTT
	reverse primer	CACCGCAAACCCGTTTAAAAACGATTGTGC
	probe	ACACAGTCTGTACCGTCTGCGGTATGTGGAAAGG[HEX-dT][THF]A[BHQ1-dT]GGCTGTAGTTG
		TGATCAAC[phosphate]
Е	forward primer	GAAGAGACAGGTACGTTAATAGTTAATAGCGTA
	reverse primer	AAAAAGAAGGTTTTACAAGACTCACGTTAACA
	probe	ATCGAAGCGCAGTAAGGATGGCTAG[HEX-dT][THF][BHQ1-dT]AACTAGCAAGAATAC[phosphat
		e]
ACTB	forward primer	CTCCATCCTGGCCTCGCTGTCCACCTTCCAG
	reverse primer	AATCTCATCTTGTTTTCTGCGCAAGTTAGG
	probe	GTCAAGAAAGGGTGTAACGCAACTAAGTCA[HEX-dT][THF]G[BHQ1-dT]CCGCCTAGAAGCAT
		[phosphate]

^a HEX-dT, thymidine nucleotide carrying fluorescein ROX; THF, tetrahydrofuran spacer; BHQ1-dT, thymidine nucleotide carrying Black Hole Quencher 1; phosphate, 3' phosphate to block elongation.

Nucleic acid	Ν	Е	ORF1ab
SARS-CoV-2	+	+	+
SARS-CoV	—	—	+
human coronavirus 229E	_	_	—
human coronavirus NL63	_	_	—
human coronavirus OC43	_	_	—
human coronavirus HKU1	_	_	—
MERS-Coronavirus	_	_	—
influenza A virus	_	_	—
influenza B virus	_	_	—
respiratory syncytial virus A and B	_	_	_
human parainfluenza virus	—	—	—
adenovirus	_	_	—
enterovirus	—	—	—
epstein-barr virus	—	—	—
human cytomegalovirus	—	—	—
human genome	_	—	—

Table S3. The analytical specificity of three SARS-CoV-2 RT-RPA assay, related toFigure 3 and 6.

Capillary valve	Calculated burst frequency (RPM)	working spin speed (RPM)
the inlet to the mixing chamber	1054.95	3000
the inlet to the aliquoting chamber	981.69	1500
the inlet to the reaction chamber	1720.38	7000

Table S4. The burst frequency of each capillary valve on the microscope slidemicrofluidic chip, related to Figure 4.