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Supplementary Table 1: Principal component analysis (PCA)-derived scores of inherent resistance to single-shot radiotherapy (RTX), 
fractionated RTX, temozolomide (TMZ), and the combination thereof in human glioblastoma cell lines A172, LN18, LN229, T98G, U87, U138, 
and U251 

  A172 LN18 T98G U138 U87 LN229 U251 

RRID CVCL-0131 CVCL-0392 CVCL_0556 CVCL_0020 CVCL_0022 CVCL-0393 CVCL-0021 

Single-shot RTX  0.11  -1.08  0.91  -0.98  0.29  -0.77  1.53 

Fractionated RTX  0.18  0.03  0.99  -1.67  -0.38  -0.50  1.35 

TMZ  -0.94  1.13  0.84  0.84  -1.03  -1.13  0.29 

Single-shot RTX/TMZ  0.00  0.11  0.61  -1.34  0.02  -1.04  1.65 
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Supplementary Table 2: Overview of composite karyotypes in human glioblastoma cell lines A172, LN18, LN229, T98G, U87, U138, and 
U251 

Cell line Composite clonal karyotype Subclones 

A172 83,XXYY,der(1)t(1;14)(p13;?),der(1)t(1;18)(p22;?),+der(1)del(1)(p11)t(1;14)(q21;?),+del(1)(p22;q11),+der(2)t(2;5)(q31;?)x2,+der(3)(

3;9)(q25;?),+5,+der(5)del(5)(q15)t(2;5)(?;p13)x2,+6,+7,+der(7)t(6;7)(q22;?),del(8)(q23),+del(8)(q11),+del(8)(q13),der(9)t(9;16)(p11;

?)x2,+10,+11,+der(11)t(1;11)(?;p11)x2,+12,+12,+13,+der(14)t(9;14)(?;q13)x2,+15,+16,+16,+16,+17,+der(17)t(17;18)(q11;?),der(18)

t(1;18)(?;q21),+der(18)t(1;18)(?;q21),+19,+19,+20,+20,add(21)(q21),+22 

Yes 

LN18 61,XY,+t(X;10)(q?;q11),+t(X;9)(p?;p?),+3,+t(5;15)(p13;q?),+7,+7,t(6;10)(q11;q?),+t(5;10)(q11;q?),+t(6;10)(p11;p?),+t(10)(p10),t(11;1

4)(q?;?),+t(11,18)(q?;q11),+t(12;16)(q?;p11),+20,+t(16;20)(p11;q?)+add(22)(q?) 

Yes 

LN229 86,XXX,der(X)t(x;2)(q23;?),der(X)t(X;16)(p11;?),+der(X)t(X;19)(p21;?),+1,del(1)(p10),+der(1)t(1;18)(?;q11),+2,+2,+2,+3,+3,+der(4)t(

4;6)(p14;?)x2,+der(4)t(4;9)(q11;?),+5,+der(5)t(5;12)(p11;?),+der(6)t(6;16)(p13;?)x2,+der(6)t(6;7)(?;?),+7,+7,+der(7)t(5;7)(?;p11)x2,+

der(8)t(6;8)(?;q22),+9,+9,+der(9)t(8;9)(?;q10),+10,+der(11)(q14),+del(12)(q13),+der(14)t(14;18)(q24;?),+16,+16,+del(17)(q12),+18,

+der(19)t(X;19)(?;q12),+20,+20,+20,+21,+21,+22,+22,+der(22)t(15;22)(?;p12)x2 

Yes 

T98G 131,XXXYYYY,trc(7;7;7)(q?;p?;p?)x2,+t(7;8)(q?;p?)x2,dic(10;10)(q?;q?)x1,+i(15)(q10) Yes 

U87 44,X,t(1)(1:13)(p22;p?)x2,der(6)t(6;7)(p21;p?),der(6)t(6;12)(q23;?),del(7)(q10),del(10)(q21),der(12)t(6;12)(?;q22),-13,-

14,der(16)t(1;16)(?;q13),del(20)(p11),+der(20)t(1;14;20)(?;?;q12),t(10;22)(?;p12) 

Yes 

U138 61-62,XYY,+Y,+der(1)t(1;12)(p31;?),+3,der(4)t(4;17)(q32;?),ins(4)(4;14;4)(p15;?;p13)x2,+7,+der(8)t(8;17)(p21;?),+der(11)t(11;19)(p

13;?),der(12)t(1;12)(?;q14),+13,-14,+15,+18,+der(18)t(6;18)(?;q12),+del(19)(p12),+20,+20,+22,+der(22)t(5;22)(?;q11) 

No 

U251 66,XXY,+1,+2,+3,der(4)t(4;16;4;20)(q12;?;q?;q?),der(4)t(4;16;4;16)(q12;?;q?;?),+5,+7,+7,+iso(8)(q10),+9,+der(11)t(10;11;15)(q10;q

?;q?),+der(11)t(6;10;11)(q?;q?;q?),+15,+17,+17,+del(18)(q12),+19,+20,+21 

No 

 

The second column describes the predominant clonal karyotype including all chromosomal aberrations. The third column shows whether subclones 

are present in the cell lines. 
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Supplementary Table 3: Overview of molecular glioblastoma subtype-specific chromosomal 
amplifications and deletions, and subtype-specific expression of relevant driver genes  

 

Subtype Feature A172 LN18 LN229 T98G U87 U138 U251 

C
la

s
s

ic
al

 

EGFR (7p11.2) amplification 1 1 1 1 0 0 1 

CDKN2A (9p21.3) deletion 1 1 1 1 1 1 1 

NOTCH3 expression 1 0 0 0 1 0 0 

NES expression 1 0 1 0 1 0 1 

SMO expression 1 0 1 1 0 0 1 

Score classical 1.0 0.4 0.8 0.6 0.6 0.2 0.8 

M
e

se
n

ch
ym

a
l 

NF1 (17q11.2) deletion 0 0 1 0 0 1 0 

CHI3L1 expression 0 0 0 0 1 0 0 

TRADD, RELB, TNFRSF1A 
expression 

1 1 1 1 1 1 1 

CASP1 espression 0 1 0 1 1 1 1 

TLR4 expression 0 0 1 0 0 0 1 

Score mesenchymal 0.2 0.4 0.6 0.4 0.6 0.6 0.6 

P
ro

n
eu

ra
l 

PDGFRA (4q12) amplification 0 0 0 0 0 0 1 

NKX2-2 expression 0 0 1 0 0 0 0 

OLIG2 expression 0 0 1 0 0 0 0 

SOX2 expression 0 0 1 0 0 0 0 

ERBB3 expression 0 0 1 0 0 0 0 

Score proneural 0 0 0.8 0 0 0 0.2 

Classification key feature-based C C/M C/P C C/M M C 
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Supplementary Table 4: Genes with overlapping positive (R  0.9, red) or negative (R  -0.9, blue) correlation with inherent therapy 
resistance in human glioblastoma cell lines as retrieved by global mRNA expression microarray analysis 

Gene 
ID 

SSIR FIR COM
BI 

TMZ General information Connection to glioblastoma Inhibitors Clinical trials 

A4GALT > 0.9 > 0.9 > 0.9 - Lactosylceramide-4-alpha-
galactosyltransferase (A4GALT) 
catalyzes the transfer of galactose 
residues onto sphingolipids thereby 
contributing to the generation of 
glycosphingolipids [1, 2]. 
 

Connections between A4GALT and glioblastoma are not reported so 
far.  
 
In lung cancer models, A4GALT was shown to affect tumor progression, 
metastasis formation, resistance to chemotherapy, and epthelial-
mesenchymal transition (EMT) [3]. 
 

None None 

POLA1 > 0.9 > 0.9 > 0.9 - DNA polymerase alpha 1 (POLA1) 
catalytic subunit, together with one 
regulatory and two primase 
subunits, forms the DNA 
polymerase alpha (POLA) complex. 
POLA1 is important for the initiation 
of DNA replication as it synthesizes 
RNA:DNA hybrids thereby initiating 
the synthesis of Okazaki fragments 
[4-7]. POLA1 also synthesizes 
cytosolic RNA:DNA hybrids thereby 
modulating the type I interferon 
immune response [8]. 
 

Connections between POLA1 and glioblastoma are not reported so far. 
However, MIR075, an unpublished POLA1 inhibitor, reduced the growth 
of glioblastomas generated by intracranial implantation of U87 cells into 
mice (doi.org/10.1158/1538-7445.AM2018-48489).  
 
POLA1 is of prognostic value in non-small cell lung cancer (NSCLC), 
and colorectal cancer [9-12].  

CD437 [13]                                     
ST1926 [14, 15] 
MIR002 [16]  
GEM144 [16]    
(co-inhibits HDAC11)      
MIR020,  
MIR072,  
MIR075  
(all unpublished) 

None 

AP2B1 > 0.9 > 0.9 > 0.9 - AP2 complex subunit Beta 1 (AP2 
B1) is one of two components that 
form the Assembly Protein 2 (AP2) 
complex which links clathrin to its 
receptors on vesicles. Thus, AP2B1 
is important for intracellular vesicle 
trafficking and endocytosis [17].  
 

Connections between AP2B1 and glioblastoma are not reported so far, 
but have been suggested [18].  
 
Aberrancies in expression of AP2B1 and expression of alternative 
splicing forms of AP2B1 were detected in different cancer entities 
including lung cancer and breast cancer [19, 20]. 
 

Barbadin  [21] 
(co-inhibits  
beta-Arrestin) 

None 

TSNAXIP
1 

> 0.9 - > 0.9 - Translin-Associated X-Interacting 
Protein 1 (TSNAXIP1) is a so far 
uncharacterized protein predicted 
to be involved in cell proliferation, 
cell differentiation, cell polarity, and 
spermatogenesis [22].  
 

TSNAXIP1 was identified in a nomogram of alternative splicing forms 
that were of predictive value for low-grade gliomas [23].  
 

None None 

ZZEF1 > 0.9 - > 0.9 - ZZ-type zinc finger and EF-hand 
domain-containing protein 1 
(ZZEF1) specifically detects histone 
H3 at promoters thereby 
functioning co-activator of 
transcription [24].  
 

ZZEF1 is deleted in a notable portion of pediatric gliomas [25].  
 
Single-nucleotide polymorphisms (SNPs) and copy number alterations 
(CNAs) of ZZEF1 are associated with several types of cancer including 
pancreatic cancer, gastric cancer, breast cancer, and esophageal 
cancer [26].  
 

None None 
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MAP2K4 - > 0.9 > 0.9 - Dual specificity Mitogen-Activated 
Kinase Kinase 4 (MAP2K4/MEK4/ 
MKK4) is a part of the MAPK (RAF-
MEK-ERK) and Stress-Activated 
Protein (SAP) Kinase/c-Jun N-
terminal Kinase (JNK) signaling 
pathway network [27]. 

MAP2K4 exhibits tumor suppressing functions by decelerating tumor 
progression and metastasis formation [28-33]. MAP2K4 is frequently 
mutated in cancer, and mutations of MAP2K4 exhibit proto-oncogenic 
potential [34-40]. In addition, mutations of MAP2K4 frequently conincide 
with resistances to MAPK-targeting therapies [41].  
 
MAP2K4, together with ZDHHC17 and JNK/p38, contributes to 
progression of glioblastoma by promoting the self-renewal of glioma 
stem cells (GSCs) [42]. This effect can be inhibited by Genistein, an 
isoflavone protein tyrosine kinase (PTK) inhibitor derived from soy bean 
[43] which disrupts the interaction between MAP2K4 and ZDHHC17 in 
glioblastoma cells [42]. Genistein synergizes with radiotherapy and 
temozolomide (TMZ) in terms of abrogating survival of glioblastoma 
cells in vitro [44, 45]. Finally, expression of miR-744, a MAP2K4-
targeting miRNA interferes with migration and invasiveness of 
glioblastoma cells in vitro [46].  

MEK4 inhibitor-1 [47] 
MEK4 inhibitor-2 [47]              
3-Arylimidazoles [48] 
BSJ-04-122 [49]                                                            
(co-inhibits MEK7)  
HRX-0215 
(unpublished) 
 
Genistein/NPI031L 
[43] (PTK inhibitor) 
 

Genistein was tested in 
multiple trials on patients 
suffering from different 
diseases including 
different malignancies, 
but not in glioblastoma so 
far [50].  
 
Currently, Genistein is 
tested in combination with 
systemic chemotherapy in 
a randomized trial on 
pediatric patients either 
suffering from lymphomas 
or different kinds of solid 
tumors including pediatric 
gliomas (NCT02624388).  
 

PLAAT2/   
HRASLS
2 

- > 0.9 > 0.9 - Phospholipase A and 
Acyltransferase 2 
(PLAAT2/HRASLS2) exhibits two 
enzymatic activities, a 
phospholipase and an 
acyltransferase activity. 
PLAAT2/HRASLS2 catalyzes the 
hydrolysis of dipalmitoylated 
phosphatidylcholine into 
lysophosphatidylcholin and palmitic 
acid as well as the acylation of 
phosphatidylethanolamine [51, 52]. 
 

PLAAT2/HRASLS2 is differentially expressed in the stromal cells of 
glioblastoma tumors [53].  
 
PLAAT2/HRASLS2 exhibits tumor suppressive functions, most likely by 
attenuating the oncogenic potential of RAS GTPase [51].  
 

LEI110 [54]  
(pan-HRASLS 
inhibitor) 
LEI301 [55]   
(pan-HRASLS 
inhibitor)             

None 

CDS1 - > 0.9 > 0.9 - Phosphatidate Cytidylyltransferase 
1 (CDS1) catalyzes the conversion 
of phosphatidic acid into CDP-
diacylglycerol. CDS1 is involved in 
syntheses of phosphatidylinositol, 
phosphatidylglycerol, and 
cardiolipin. Thus, CDS1 regulates 
the intracellular pool of the signal 
transduction-related second 
messenger phosphatidylinositol 
[56, 57].  
 

Alterations in mRNA expression levels of CDS1 are associated with 
poor prognosis in glioblastoma and liver cancer [58, 59]. Functionally, 
CDS1 was shown to affect the lipid metabolism of glioblastoma cells 
upon hypoxic stress [60].  

None None 

SLC25A1
1 

- > 0.9 > 0.9 - The Solute Carrier family 25 
member 11 (SLC25A11) catalyzes 
the electron-neutral transport of 2-
oxoglutarate across mitochondrial 
membranes thereby allowing for 
the synthesis of malate and other 
dicarboxylic acids. SLC25A11 is 
involved in the generation of ATP 
and in maintenance of the redox 
equilibrium [61]. 
 

Connections between SLC25A11 and glioblastoma are not reported so 
far.  
 
SLC25A11 is deregulated in several types of malignancy including 
NSCLC, liver cancer, and melanoma [62, 63]. Germline mutations of 
SLC25A11 are associated with increased susceptibilty for developing 
paragangliomas [64].  

None None 

HAP1 - > 0.9 > 0.9 - Huntingtin-Associated Protein 1 
(HAP1) physically interacts with the 
huntingtin (HTT) protein. HAP1 
functions in intracellular vesicle and 

Expression levels of HAP1 are closely related to resistance against 
radiotherapy in glioblastoma and other cancer entities [67-71].  
 

None None 
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organelle transport by linking HTT 
to motor proteins such as dynactin. 
In addition, HAP1 is important for 
autophagosomal degradation of 
proteins [65, 66].  
 

HAP1 is also supposed to have functions in the pathogenicity of 
pancreatic cancer and breast cancer [66]. 

TXNDC1
7 

- > 0.9 > 0.9 - Thioredoxin Domain Containing 
protein 17 (TXNDC17) catalyzes 
the reduction of disulfides. 
TXNDC17 exhibits a peroxidase 
activity which is involved in the 
elimination of hydrogen peroxide 
from cells. TXNDC17 is also 
involved in Nuclear Factor B (NF-
B) and Tumor Necrosis Factor 
alpha (TNFA) signaling [72]. 
 

Connections between TXNDC17 and glioblastoma or other cancer 
entities are not reported so far.  
 
However, inhibition of protein disulfide isomerases in general is 
supposed to represent a promising approach for treatment of 
glioblastoma and other cancer entities [73].  

None None 

NPEPPS - > 0.9 > 0.9 - Puromycin-Sensitive 
Aminopeptidase M1 (NPEPPS) is a 
zinc metallopeptidase which 
hydrolyzes amino acids from the N-
termini of substrate proteins such 
as enkephalins and Superoxide 
Dismutase 1 (SOD1) [74-76]. 
 

NPEPPS affects the migratory and the differentation behaviour of 
glioblastoma cells in vitro [77].  

Puromycin  
(pan-inhibitor of M1 
aminopeptidases) 
 

None 

KLHL11 - > 0.9 > 0.9 - Kelch-like famiy member protein 11 
(KLHL11) is part of the cullin-RING-
based BCR (BTB-CUL3-RBX1) 
ubiquitin ligase complex which 
ubiquitinates the NF-2-Related 
Factor 2 (NRF2), a core component 
of the oxidative stress response, 
upon oxidative stress [78, 79].  

Connections between KLHL11 and glioblastoma or other cancer entities 
are not reported so far.  
 
However, inhibition of NRF2/KEAP1 signaling per se represents a 
promising approach for cancer treatment [80-83]. 

No specific inhibitor 
of KLHL11 available 
so far.  
 
Modulators (both, 
activators and 
inhibitors) of the 
NRF2/KEAP1 
signaling hub are 
readily available and 
also trial-tested [84-
86], e.g. 
 
Resveratrol [87] 
Curcumin [88] 
Brusatol [89] 
Oltipraz [90] 
Omaveloxolone [91, 
92] 
ML385 [93]  
ML334 [94] 
 

None                                           
 
Modulators of the 
NRF2/KEAP1 signaling 
hub are currently trial 
tested in patients with 
different malignancies 
[84-86], but so far not in 
glioblastoma patients. 
 
 

PSMB3 - > 0.9 > 0.9 - The Proteasomal Subunit beta 3 
(PSMB3) is a non-catalytic subunit 
of the 20S core proteasome. Thus, 
PSMB3 has a crucial function in the 
protein homeostasis of cells [95].  

Connections between PSMB3 and glioblastoma or other cancer entities 
are not reported so far.  
 
However, the proteasome as a target for cancer therapy is of great 
importance [96]. 

No specific inhibitor 
of PSMB3 available 
so far.  
 
Inhibitors of the 
20S/26S core/holo-
proteasome are 
readily available and 
also trial-tested [96, 
97], e.g. 
 

None                                                         
 
Inhibitors of the 20S/26S 
core/holo-proteasome are 
currently trial tested in 
patients with different 
malignancies [96, 97], but 
so far not in glioblastoma 
patients. 
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Bortezomib [98, 99] 
Carfilzomib [100]  
Celastrol [101, 102] 
Delanzomib [103] 
Ixazomib [104] 
MG-132 [105]  
 

Bortezomib is an FDA-
approved drug for the 
treatment of multiple 
myeloma and of mantle 
cell lymphoma [106]. 

TGFBR2 < - 0.9 - < - 0.9 - Transforming Growth Factor (TGF) 
beta Receptor-2 (TGFBR2) is a 
subunit of the serine/threonine 
kinase associated receptor which, 
together with TGFBR1/ALK5, forms 
the TGF beta receptor (TGFBR) 
[107]. 

Expression of TGFBR2 correlates with expression levels of platelet 
derived growth factor receptor (PDFGR), a signature marker of the 
proneural molecular glioblastoma subtype, in glioblastoma cells [108]. 
In addition, TGFBR2 modulates TGF beta and Smad2/3-dependent 
signaling in glioblastoma cells [109].  

No specific inhibitor 
of TGFBR2 available 
so far.  
 
Inhibitors of TGFBR1 
are readily available 
and also trial-tested 
[110], e.g.  
 
Galunisertib [111]  
Vactosertib [112, 113] 
LY364947 [114] 
LSKL [115] 
 

None                                                            
 
Inhibitors of TGFBR1 are 
currently trial tested in 
patients with different 
malignancies including 
glioblastoma [110].  
 
Galunisertib/LY2157299 
was tested in combination 
with radiotherapy and 
TMZ in a phase 1B/2A 
trial on patients suffering 
from glioblastoma, but 
failed to improve clinical 
outcome (NCT01220271) 
[116]. 
  

MYNN - < - 0.9 < - 0.9 - Myoneurin (MYNN) is a member of 
the protein family called BTB/POZ 
and zinc finger domain-containing 
proteins. This protein family is 
involved in the regulation of gene 
expression [117].  
 

Connections between MYNN and glioblastoma or other cancer entities 
are not reported so far. 

None None 

SYT14 - < - 0.9 < - 0.9 - Synaptotagmin-14 (SYT14) is a 
calcium-independent member of 
the synaptotagmin protein family 
which exhibits functions in synaptic 
transmission and exocytosis [118].  
 

Connections between SYT14 and glioblastoma or other cancer entities 
are not reported so far. 

CN110420328A 
(unpublished) 

None 

MED15 - < - 0.9 < - 0.9 - Mediator complex subunit 15 
(MED15) is a central component of 
the mediator complex (MC) which 
acts as a co-activator in RNA 
polymerase II-dependent 
transcription [119]. 
 

Connections between MED15 and glioblastoma are not reported so far.  
 
Alterations in expression of MED15 were detected in testis cancer, 
prostate cancer, and bladder cancer [120-123].  

None None 

SYPL2 - < - 0.9 < - 0.9 - Synaptophysin-like 2 (SYPL2) 
mediates the communication 
between membranes of the T-
tubular and the junctional 
sarcoplasmic reticulum (SR). As 
such, SYPL2 is involved in calcium 
homeostasis of the skeletal 
muscular system [124]. 
 

Connections between SYPL2 and glioblastoma or other cancer entities 
are not reported so far.  
 
However, expression levels of Synaptophysin-like 1 (SYPL1) clearly 
correlate with clinical outcomes in cancer patients, e.g. in patients 
suffering from papillary thyroid cancer, and liver cancer [125, 126]. 
 

None None 

C1GALT1 - < - 0.9 < - 0.9 - Core 1 Glycoprotein-N-Acetyl-
galactosamine-3-beta-Galactosyl-
Transferase 1 (C1GALT1) 
catalyzes O-linked glycosylation of 

Connections between C1GALT1 and glioblastoma are not reported so 
far.  
 

None None 
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mucin-like proteins [127]. C1GALT1 
has documented functions in 
angiogenesis, platelet production, 
and kidney development [128].   
 

Yet, alterations in gene expression of C1GALT1 are associated with 
poor prognosis in head and neck cancer and gastric cancer [129, 130].  

POLR1F/ 
TWISTNB 

- < - 0.9 < - 0.9 - RNA Polymerase 1 subunit F 
(POLR1F/TWISTNB) is part of the 
RNA polymerase 1 (POL1) 
complex which synthesizes 
ribosomal RNAs (rRNAs). 
POLR1F/TWISTNB regulates the 
5'-3' RNA polymerase activity of the 
POL1 complex [131, 132].  

Connections between POLR1F/TWISTNB and glioblastoma are not 
reported so far.  
 
POLR1F/TWISTNB is overexpressed in lung cancer and testis cancer 
[133].  

No specific inhibitor 
of 
POLR1F/TWISTNB 
available so far.  
 
Inhibitors of POL1 
transcription in 
general are readily 
available [134], e.g.  
 
BMH-21 [135] 
CX-3543 [136]  
CX-5461 [137] 
 

None 

CFH - < - 0.9 < - 0.9 - Complement Factor H (CFH) 
belongs to the Regulator of 
Complement Activation (RCA) 
cluster of genes [138]. The CFH 
glycoprotein is secreted into the 
blood where it regulates the activity 
of the complement system and 
thus, immune responses [139].  
 

Overexpression of CFH in glioblastoma cells as the result of 
overexpression of non-metabolic indoleamine 2,3-dioxygenase 1 (IDO1) 
suppresses anti-tumor immune responses thereby impairing survival in 
syngeneic mouse models of glioblastoma [140]. Furthermore, CFH 
promotes the progression of glioblastoma cells by affecting AKT1 and 
miR-149 [141].  
 
Finally, CFH expression is accelerated in ovarian cancer and lung 
cancer [142, 143]. 
 

None None 
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Supplementary Table 5: CGC genes with overlapping positive (R  0.7) correlation with inherent therapy resistance in human glioblastoma 
cells, for which drugs are readily available  

Name SSIR FIR COMBI TMZ General Information Connection to Glioblastoma 
 

Inhibitors Clinical Trials 

AR ≥ 0.7 ≥ 0.7 ≥ 0.7 - Androgen Receptor (AR) is a 
nuclear receptor activated by 
androgenic hormones like 
testosterone and 
dihydrotestosterone. AR acts 
as an activator of transcription 
regulating the expression of 
androgen-responsive genes 
like KLK2 and KLK3 [144]. As 
such, AR exhibits functions in 
the development and the 
maintenance of the 
reproductive system as well as 
in the cardiovascular, the 
musculoskeletal, and the 
haematopoietic system [145, 
146]. 
 

Overexpression of AR has been associated with reduced survival 
in glioblastoma patients [147-152]. Activation of AR signaling in 
glioblastoma cells accelerates their proliferation, clonogenic ability, 
migratory behaviour, invasiveness, and therapy resistance (both to 
radiotherapy and TMZ) [151-158], and these effects can be 
reversed by AR-targeting approaches [152, 156-158]. 
 
 
 
 
 

AR inhibitors are readily available 
and also trial-tested [146, 159-
161], e.g.  
 
Apalutamide/ARN-509 [162] 
Bicalutamide/ICI-176334 [163, 
164]   
Darolutamide/OMD-201 [165] 
Enzalutamide/MVD3100 [166] 
Flutamide/SCH-13521 [167] 
Nilutamide/RU23908 [168, 169] 
Cyproterone acetate 
[170] 
ALZ003 [152] 
 

AR inhibitors are currently 
trial-tested in patients with 
different malignancies 
focussing on prostate 
cancer [146, 159-161].  
No trials in glioblastoma 
patients so far. 
 
Several AR inhibitors 
such as Apalutamide and 
Darolutamide are FDA-
approved for treatment of 
prostate cancer [171]. 

STAT5b ≥ 0.7 ≥ 0.7 ≥ 0.7 - Signal Transducer and 
Activator of Transcription 5b 
(STAT5b) induces the 
transcription of target genes 
such as FOXP3 and IL2RA 
[172] upon its activation by the 
Janus Kinase (JAK) in 
response to extracellular 
signals (e.g. IL2, IL4, CSF1) 
[173]. 
 
 
 
 
 
 
 
 

STAT5b has been associated with poor prognosis in glioblastoma 
patients [174]. Pro-malignant signaling mediated by the Epidermal 
Growth Factor Receptor variant III (EGFR vIII)/STAT5 axis was 
shown to contribute significantly to survival and migration of 
glioblastoma cells [175, 176], and inhibition of STAT5 suppressed 
the proliferation, invasion, and stemness of glioblastoma cells in 
vitro and in vivo [177, 178]. 
 
 
 
 
 
 
 
 

No specific inhibitor of STAT5b 
available so far.  
 
However, pan-STAT5 inhibitors 
are readily available and also 
trial-tested [179], e.g. 
 
STAT5-IN-1 [180] 
(pan-STAT5 inhibitor) 
IQDMA [181] 
(pan-STAT5 inhibitor) 
Pimozide [182] 
(pan-STAT5 inhibitor) 
AC-4-130 [183] 
(pan-STAT5 inhibitor) 
IST5-002 [184] 
(pan-STAT5 inhibitor) 
BD750 [185] 
(pan-STAT5 inhibitor, co-inhibits 
JAK3)  
 

Pan-STAT5 inhibitors are 
currently trial tested in 
patients with different 
malignancies focussing 
on the haematopoetic 
system [179]. No trials in 
glioblastoma patients so 
far. 
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MAP2K4 ≥ 0.7 ≥ 0.7 ≥ 0.7 - Dual specificity Mitogen-
Activated Kinase Kinase 4 
(MAP2K4/MEK4/ MKK4) is a 
part of the MAPK (RAF-MEK-
ERK) and Stress-Activated 
Protein (SAP) Kinase/c-Jun N-
terminal Kinase (JNK) 
signaling pathway network 
[27]. 

MAP2K4 exhibits tumor suppressing functions by decelerating 
tumor progression and metastasis formation [28-33]. MAP2K4 is 
frequently mutated in cancer, and mutations of MAP2K4 exhibit 
proto-oncogenic potentials [34-40]. Mutations of MAP2K4 often 
conincide with resistances to MAPK-targeting therapies [41].  
 
MAP2K4 contributes to glioblastoma progression by promoting the 
self-renewal of GSCs [42]. This effect can be reverted by Genistein 
[42]. Genistein synergizes with radiotherapy and TMZ in vitro [44, 
45]. Expression of miR-744, a MAP2K4-targeting miRNA, interferes 
with migration and invasiveness of glioblastoma cells in vitro [46].  
 

MEK4 inhibitor-1 [47] 
MEK4 inhibitor-2 [47]                                                           
3-Arylimidazoles [48] 
BSJ-04-122 [49]                                                            
(co-inhibits MEK7)  
HRX-0215 (unpublished) 
 
Genistein/NPI031L [43] (protein 
tyrosine kinase (PTK) inhibitor) 
 
 
 
 
 

Genistein was tested in 
multiple clinical trials in 
patients with different 
diseases including 
different malignancies, 
but not in glioblastoma 
patients so far [50].  
 
Currently, Genistein is 
tested in combination with 
systemic chemotherapy in 
a randomized trial on 
pediatric patients either 
suffering from lymphomas 
or from solid tumors 
including pediatric 
gliomas (NCT02624388).  
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Supplementary Table 6: Intersect leading edge genes for which drugs are readily available  

 

Leading edge genes at the SSIR and FIR intersection of the reactive oxygen species (ROS) pathway gene set for which inhibitors are readily available 
 

Name General Information Connections to Glioblastoma 
 

Inhibitors Clinical Trials 

G6PD Glucose-6-phosphate-1-dehydrogenase (G6PD) is an 
enzyme of the pentose phosphate pathway [186] whose 
main function is the production of NADPH, a key electron 
donor in defense against oxidizing agents, and reductive 
biosynthetic reactions [60, 187, 188]. 
 

G6PD is essential for protection from oxidative stress in GSCs 
[189]. Overexexpression of G6PD correlates with reduced survival, 
and poor prognosis in glioblastoma patients, and with increased 
proliferation and therapy resistance in glioblastoma cell lines [190-
192].  
 
 

6-Aminonicotinamide [193] 
RRx-001 [194-196] 
(epigenetically active [197]) 
Polydatin [198] 
G6PDi-1 [199] 
Wedelolactone [200] 

RRx-001 is currently tested in a 
phase I trial in combination with 
fractionated radiotherapy (30x 2 
Gy) and TMZ in patients suffering 
from primary glioblastoma or 
anaplastic glioma (NCT02871843). 
. 

GCLC Glutamate-Cysteine Ligase catalytic subunit (GCLC) 
catalyzes the ligation of L-cysteine with L-glutamate, a 
rate-limiting step in the synthesis of gluthathione (GSH) 
[201, 202]. Thus, GCLC is essential for protection from 
oxidative stress and for intracellular redox homeostasis 
[202]. 
 

Expression of GCLC in glioblastoma cells is regulated by CD147 
[203, 204], and isocitrate dehydrogenase 1 (IDH1) [205, 206].  
 

L-Buthionine-Sulfoximine  
(L-BSO) [207] 
2-Deoxy-d-ribose [208] 
NaAsO2 [209] 

L-BSO was tested in a phase I  
trial on pediatric neuroblastoma 
patients (NCT00005835) [210, 
211]. No trial data for glioblastoma 
so far.                                                         
 

TXNRD1 Thioredoxin Reductase 1 (TXNRD1) is a selenocysteine-
containing flavoenzyme of the pyridine nucleotide-
disulfide oxidoreductase family. TXNRD1 is an integral 
component of the thioredoxin reductive system (TRX) 
which eliminates reactive oxygen species (ROS) thereby 
ensuring redox homoeostasis in cells [212, 213].  
 

Deregulations in expression of thioredoxin reductases (TXNRs) 
including TXNRD1 are associated with malignancy, progression, 
and angiogenesis in glioblastoma [214-217]. Interference with 
TXNRD1/TXN function sensitizes glioblastoma cells to 
chemotherapy and to radiotherapy [218-222]. 
  

Auranofin [223-226] 
(pan-TXNR inhibitor) 
Curcumin [227] 
Diffractaic acid [228]  
Ethaselene [229] 
Laromustine [230] 
(pan-TXNR inhibitor) 
Myricetin [231] 
Piperlongumine [232] 
Santamarine [233] 
TRi-1/HUN20688 [234] 
TrxR1-5 [218] 
TrxR1-6 [218] 
IP-Se-06 [235] 
 

Ethaselene is tested in a phase Ic 
trial (NCT02166242) in non-small 
cell lung cancer patients. No trial 
data on glioblastoma so far.               

TXN Thioredoxin (TXN) acts as a homodimer and is active in 
S-nitrosylation of cysteines, an integral step in response 
to intracellular nitric oxides [212, 213]. 
 

Deregulation of TXN expression is reported for many cancers 
including glioblastoma [215, 236, 237]. Interference with TXN 
function sensitizes glioblastoma cells to radiotherapy [238]. 

Arsenic trioxide [239] 
Diallyl trisulfite [238] 
Pleurotin [240] 
PX-12/DB05448 [240] 
Diallyl trisulfite [238] 
 

PX-12 was tested in several trials 
on different malignancies [241-
243], but not on glioblastoma so 
far. 

NDUFB4 NADH:Ubiquinone oxidoreductase subunit B4 (NDUFB4) 
is a non-catalytic subunit of the NADH:Ubiquinone 
oxidoreductase enzyme complex (complex I) of the 
mitochondrial electron transport chain [244]. 
 

NDUFB4, alongside with other genes of the ATP generating 
system, is upregulated in different glioblastoma subtypes [245]. 
Deregulations of NDUFB4 are a hallmark of many treatment-
resistant cancers [246-248].  

No specific inhibitor of 
NDUFB4 available so far.  
 
Inhibitors of the oxidative 
phosphorylation (OXPHOS)-
related respiratory chain 
complex I are readily available 
and also trial-tested, e.g.  
 
Metformin [249-252] 
Intervenolin [253, 254]  
Gboxin [255] 
Olaparib [256] 
EVT-701 [257] 

OXPHOS inhibitors, e.g. ME-143, 
ME-344, IACS-010759, and BAY-
87-2243 are trial tested in different 
types of malignancy [258, 260, 
265], but so far not in glioblastoma. 
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ME-143 [258, 259] 
ME-344 [259, 260] 
IACS-010759 [261] 
BAY-87-2243 [262, 263] 
 
Multiple natural products, e.g. 
rotenoids and piericidins, as 
well as synthetic compounds, 
e.g. insecticides [264].   
 

STK25 Serine/Threonine kinase 25 (STK25) is a member of the 
germinal centre kinase III (GCK III) subfamily belonging to 
the sterile 20 kinase superfamily. STK25 is involved in 
serine/threonine liver kinase B1 (LKB1) signaling, 
regulating neuronal polarization and morphology of the 
Golgi apparatus. STK25 is translocated from the Golgi 
apparatus to nuclei in response to anoxia, and also plays 
a role in the regulation of cell death [266, 267].  
 

Connections between STK25 and glioblastoma are not reported so 
far. 
 
STK25 exhibits tumor-suppressive functions as it directly activates 
the tumor-suppressing Hippo signaling pathway [268]. STK25 also 
inhibits glycolysis [269]. However, tumor-promoting functions of 
STK25 are reported as well, particularly in liver cancer [270, 271].  

None None 

GSR Gluththione Disulfide Reductase (GSR) is a homodimeric 
flavoprotein and member of the class-I pyridine 
nucleotide-disulfide oxidoreductase family. GSR is a core 
enzyme of the antioxidant defense, as it reduces oxidized 
glutathione disulfide (GSSG) to its sulfhydryl form GSH 
[201, 202]. 
 

GSR mediates drug resistance in glioblastoma cells via its function 
to regulate redox homeostasis [272]. GSR is deregulated in several 
cancer entities including lung cancer and liver cancer [273-275]. 

GSH [276] 
2-AAPA [277] 
LCS3 [278] 
(co-inhibits TXNRD1) 

None 

ABCC1 ATP Binding Cassette subfamily C member 1 (ABCC1) is 
a member of the superfamily of ATP-Binding Cassette 
(ABC) transporters. ABCC1 is involved in drug resistance, 
functioning as a multispecific organic anion transporter 
with a substrate range encompassing oxidized GSH, 
cysteinyl leukotrienes, activated aflatoxins, glucuronides, 
and sulfate conjugates of steroid hormones [279, 280]. 
 

ABCC1 alongside with other ABC transporters is overexpressed in 
many cancer entities including glioblastoma [281, 282]. ABCC1 
contributes to therapy resistance by eliminating therapeutic agents 
from cancer cells. In glioblastoma, several miRNAs that target 
ABCC1 have been identified, and their expression levels determine 
the degree of therapy resistance in these tumors [283-287]. 

MK-571 [288] 
Reversan [289] 
Thienopyrimidines [290] 

None 

 
Leading edge genes at the SSIR and TMZ intersection of the mammalian target of rapamycin complex 1 (mTORC1) pathway gene set for which inhibitors are readily 
available 
 
Name General Information Connections to Glioblastoma 

 
Inhibitors Clinical Trials 

PSMG1 Proteasome assembly chaperone 1 (PSMG1) dimerizes 
with PSMG2 to form a chaperone complex with molecular 
adaptor activity that is crucial for the assembly of the 20S 
core proteasome [291]. 
 

PSMG1 as well as other proteasomal components are frequently 
deregulated in cancers [292-295], including glioblastoma [296]. 

No specific inhibitor of PSMG1 
available so far. 
 
Inhibitors of the 20S/26S 
core/holo-proteasome are 
readily available and trial-
tested [96, 97], e.g. 
 
Bortezomib [98, 99] 
Carfilzomib [100]  
Celastrol [101, 102] 
Delanzomib [103] 
Ixazomib [104] 
MG-132 [105]  
 

None                                                         
 
Inhibitors of the 20S/26S core/holo-
proteasome are currently trial 
tested on different malignancies 
[96, 97], but not on glioblastoma. 
 
Bortezomib/Velcade is an FDA-
approved drug for the treatment of 
multiple myeloma and mantle cell 
lymphoma [106]. 
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PSMA4 Proteasome 20S subunit alpha 4 (PSMA4) constitutes a 
core subunit of the 20S core proteasome, thus playing an 
important role in protein homeostasis [297]. 
 

Connections between PSMA4 and glioblastoma are not reported 
so far.  
 
However, polymorphisms of PSMA4 have been associated with 
increased susceptibility to lung cancer [298]. 
 

No specific inhibitor of PSMG1 
available so far. 
 
Inhibitors of the 20S/26S 
core/holo-proteasome are 
readily available and trial-
tested [96, 97], e.g. 
 
Bortezomib [98, 99] 
Carfilzomib [100]  
Celastrol [101, 102] 
Delanzomib [103] 
Ixazomib [104] 
MG-132 [105]  
 

None                                                         
 
Inhibitors of the 20S/26S core/holo-
proteasome are currently trial 
tested on different malignancies 
[96, 97], but not on glioblastoma. 
 
Bortezomib/Velcade is an FDA-
approved drug for the treatment of 
multiple myeloma and mantle cell 
lymphoma [106]. 

HPRT1 Hypoxanthine phosphoribosyltransferase 1 (HPRT1) is an 
enzyme that catalyzes the conversions of hypoxanthine to 
inosine monophosphate and of guanine to guanosine 
monophosphate. Thus, HPRT1 plays a crucial role in 
purine salvage pathway-dependent synthesis of purine 
nucleotides [299, 300].  
 

Connections between HPRT1 and glioblastoma are not reported so 
far.  
 
HPRT1 is upregulated in various cancer entities, resulting in 
worsened prognoses and increased levels of therapy resistance 
[300-303].  

None None 

RRM2 Ribonucleotide Reductase regulatory subunit M2 (RRM2) 
is one of two subunits that form ribonucleotide reductase. 
RRM2 catalyzes the conversion of ribonucleotides into 
desoxyribonucleotides [304].  
 

RRM2 is overexpressed in glioblastoma [305], and its 
overexpression correlates with reduced patient survival and 
increased resistance to therapy [305-308]. Similar data are 
reported for other cancer entities [309-315] 

Hydroxyurea 
COH29 [316] 
Osalmid [317] 
Pectolinarigenin [307] 
4-Hydroxysalicylanilide [318] 
(for review see [312]) 
 

4-Hydroxysalicylanilide was tested 
in a phase I trial on patients with 
multiple myeloma (NCT03670173) 
[318]. No trial data on glioblastoma 
so far. 

SLC7A11 Solute Carrier family 7 member 11 (SLC7A11) is part of a 
heteromeric anionic amino acid transporter with specificity 
for cysteine and glutamate. In this system called Xc(-), the 
anionic form of cysteine is imported into cells in exchange 
for glutamate [319-321].  
 

SLC7A11 is frequently overexpressed in glioblastoma [322], and its 
overexpression correlates with reduced survival and poor 
prognosis [308, 322]. Mechanistically, overexpression of SLC7A11 
increases the stem cell-like properties of glioblastoma cells [323]. 
Similar findings were published for other cancer entities [319, 324]. 
 
  

No specific inhibitor of 
SLC7A11 available so far.  
 
Inhibitors of the Xc(-) system 
are readily available [96, 97], 
e.g. 
 
Erastin [325] 
Sulfasalazine [326] 
Imidazole ketone erastin [327] 
HG106 [328] 
  

None 

SLC1A5/ASCT2 Solute Carrier family 1 member 5 (SLC1A5/ASCT2) is a 
sodium-dependent neutral amino acid transporter with 
high specifity for glutamine. As such, SLC1A5 plays an 
important role in the redox homeostasis in cells [329]. 
 

SLC1A5/ASCT2 contributes to tumorigenesis and tumor 
progression in several cancer entities including head-and-neck 
cancer, stomach cancer and liver cancer [330-335]. Variants of 
SLC1A5 were shown to reprogram cancer cells thereby facilitating 
therapy resistances [336]. SLC1A5/ASCT2 is also overexpressed 
in astrocytomas and glioblastomas [337, 338]. 
 

L--Glutamyl-p-nitroanilide 
(GPNA) [339] 
V9302 [340] 
Sulfonamide/sulfonic acid 
ester scaffolds [341] 
Lc-proline biphenyl esters 
[342] 
 

None 
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