

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

BMJ Open

Lipid management in Ischemic Stroke or Transient Ischemic Attack in China: Result from China National Stroke Registry III

Journal:	BMJ Open
Manuscript ID	bmjopen-2022-069465
Article Type:	Original research
Date Submitted by the Author:	11-Nov-2022
Complete List of Authors:	Xu, Yuyuan; Beijing Tiantan Hospital, Chen, Weiqi; Beijing Tiantan Hospital Wang, Mengxing; Beijing Tiantan Hospital PAN, YUESONG; Beijing Tiantan Hospital, China National Clinical Research Center for Neurological Diseases Li, Zixiao; Beijing Tiantan Hospital, Neurology Liu, Liping; Beijing Tiantan Hospital, Neurology; China National Clinical Research Center for Neurological Diseases, Zhao, Xingquan; Beijing Tiantan Hospital, Neurology Wang, Yilong; Beijing Tiantan Hospital, Department of Neurology Li, Hao; Beijing Tiantan Hospital, Department of Neurology Li, Hao; Beijing Tiantan Hospital, China National Clinical Research Center for Neurological Diseases Meng, Xia; Beijing Tiantan Hospital, Department of Neurology; Capital Medical University
Keywords:	Neurology < INTERNAL MEDICINE, Lipid disorders < DIABETES & ENDOCRINOLOGY, Stroke medicine < INTERNAL MEDICINE, Stroke < NEUROLOGY

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Lipid management in Ischemic Stroke or Transient Ischemic Attack in China: Result from China National Stroke Registry III

Yu-Yuan Xu, MD^{a, b}; Wei-Qi Chen, MD^{a, b}; Meng-Xing Wang, PhD^b; Yue-Song Pan, PhD^b; Zi-Xiao Li, MD^{a, b}; Li-Ping Liu, MD^{a, b}; Xing-Quan Zhao, MD^{a, b}; Yi-Long Wang, MD^{a, b}; Hao Li, PhD^b; Yong-Jun Wang, MD^{a, b, c, d}; Xia Meng, MD^{a, b}; on behalf of the CNSR-III Investigators

^a Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China

^b China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China

^c Advanced Innovation Center for Human Brain Protection, Capital Medical

University, Beijing, China

^d Research Unit of Artificial Intelligence in Cerebrovascular Disease, Chinese

Academy of Medical Sciences, 2019RU018

Running title: Lipid management in Ischemic Stroke or TIA

Correspondence to Dr. Xia Meng: No. 119 South 4th Ring West Road, Fengtai

District, Beijing 100070, China. Email: mengxia45@163.com. Phone: +86 10

59978245. Fax: +86 10 59973383.

Number of Tables: 7

Number of Figures: 1

stroke, second prevention

Word count: 3444

Keywords: low-density lipoprotein cholesterol, lipid-lowering treatment, ischemic

1		
2		
3		
4		
5		
6		
7		
8		
9		
10		
11 12		
13		
14		
15		
16		
17		
18		
19		
20		
21		
22		
23		
24		
25		
26		
27		
28		
29		
30		
31		
32		
33		
34		
35		
36		
37		
38		
30 39		
40		
41		
42		
43		
44		
45		
46		
47		
48		
49		
50		
51		
52		
53		
54		
55		
56		
57		
58		
50 59		

Abstract

Background and purpose: Dyslipidaemia is a significant risk factor for ischemic stroke and transient ischemic attack (TIA). This study aimed to assess the management of LDL-C and the goal achievement and to investigate the association between baseline low-density lipoprotein cholesterol (LDL-C) level, lipid-lowering treatment (LLT), and stroke recurrence in patients with ischemic stroke or TIA.
Methods: We derived data from the Third China National Stroke Registry (CNSR-III). The primary outcome was a new stroke, LDL-C goal (LDL-C<1.8mmol/L and LDL-C<1.4mmol/L, respectively) achievement rates, and LLT compliance within 3, 6, and 12 months. The association of baseline LDL-C level, LLT at discharge, and outcomes were assessed.

Results: Among the 15,166 patients, over 90% of patients received LLT during hospitalization and 2 weeks after discharge; the LLT compliance was 84.5% at 3 months, 75.6% at 6 months, and 64.8% at 12 months. LDL-C goal achievement for 1.8mmol/L and 1.4mmol/L was 35.4% and 17.6% at 12 months. LLT at discharge was associated with reduced risk of ischemic stroke recurrence (HR=0.687, 95% CI: 0.480-0.985, p=0.0411) at 3 months. The rate of LDL-C reduction from baseline to 3month follow-up was not associated with a reduced risk of stroke recurrence, and major adverse cardiovascular events (MACE) at 12 months. Patients with baseline LDL-C \leq 1.4mmol/L had a numerically lower risk of stroke, ischemic stroke and MACE at both 3 months and 12 months.

BMJ Open

 Conclusions: The goal achievement of LDL-C has increased mildly in the stroke and TIA population in mainland China. Lowered baseline LDL-C level was significantly associated with a decreased short- and long-term risk of ischemic stroke among stroke and TIA patients. LDL-C<1.4mmol/L might be a safe standard for this population.

to beet terien only

Introduction

Low-density lipoprotein cholesterol (LDL-C) has been well established as an independent risk factor for ischemic stroke ¹. Intensive lipid-lowering treatment (LLT) has been proven to reduce cardiovascular event recurrence in ischemic stroke/TIA patients. The Stroke Prevention by Aggressive Reduction in Cholesterol Levels (SPARCL) study ² showed that intensive atorvastatin treatment for five years reduced the risk of stroke recurrence up to 16% (HR 0.84, 95% CI 0.71-0.99; P<0.03) in ischemic stroke (IS) or transient ischemic attack (TIA). Recently, TST study ³ also demonstrated that IS/TIA patients who had a target LDL-C level of less than 70 mg/dl (1.8mmol/L) had a lower risk of subsequent cardiovascular events than those who had a target range of 90 to 110 mg/dl (HR 0.78, 95% CI 0.61-0.98; P=0.04). Therefore, European Stroke Organisation (ESO) and American Stroke Association (ASA) both updated the IS/TIA second prevention guideline with a recommendation of LDL-C target goal to less than 70mg/dl (1.8mmol/L) ^{4,5}.

However, there are still clinical questions not thoroughly investigated. Firstly, SPARCL and Treat Stroke to Target (TST) trials are randomized controlled trials conducted mainly in the Caucasian population ^{2,6}, while studies focusing on the Asian population on lipid management in stroke patients are limited. Since there are more intracranial artery stenosis (ICAS) ^{7,8} and cerebral small vessel disease (CSVD) patients in Asia ^{9,10}, especially in east Asia, the conclusions of these two trials in Asia should be discreet. Secondly, there were inconsistencies and conflicts about whether the lower LDL-C level could increase the risk of intracranial hemorrhage (ICH),

BMJ Open

especially during the acute or subacute phase. In the SPARCL study, subgroup analysis indicated that atorvastatin treatment might increase the risk of ICH, which led to a big concern for statin usage during the acute phase of IS/TIA ¹¹. In contrast, the TST study showed that the incidence of ICH did not differ significantly between the lower- and higher-target groups ³. Thirdly, with emerging evidence from non-stain therapies such as IMPROVE-IT ¹², FOURIER ¹³, and ODYSSEY ¹⁴, a lower LDL-C target of less than 1.4mmol/L or even 1.0mmol/L has been recommended by international guidelines. However, the benefit of a lower LDL-C target other than 1.8mmol/L has not been investigated.

The Third China National Stroke Registry (CNSR-III) is one of the world's most extensive IS/TIA cohort studies, which included comprehensive medical history, centralized the Trial of Org 10172 in Acute Stroke Treatment (TOAST) classification judication, and follow-up outcomes. We aim to collect data from CNSR-III to investigate China's current lipid management situation and the association between LDL-C level, LLT, and stroke recurrence in ischemic stroke or TIA patients.

Methods

Patient and Public Involvement

The development and organization of the study depended on stroke center organizations and networks in China. Our co-investigators conducted a series of meetings and discussions with national stroke patients. Patient education is always an important work of the organization. We provided standard educational materials and a

BMJ Open

research tutorial to each stroke center, to help to encourage familiarity with research concepts and terminology. The discussion of study design and research method were conveyed to the patients by co-investigators, using laypersons' language to facilitate common understanding, and we solicited patients' feedback. We also conduct quality control regularly to provide advice and service for patients. When results emerged, we reviewed the results with patient co-investigators to obtain their perspectives and feedback to ensure that we presented the findings in the most effective way beyond the research community to general populations.

Study design and participants

We derived data from the CNSR-III database. The CNSR-III is a nationwide clinical registry of ischemic stroke or transient ischemic attack (TIA) based on etiology, imaging, and biological markers in China from August 2015 to March 2018 ¹⁵. Consecutive patients were recruited consecutively if they were: (1) aged>18 years; (2) patients with physician-diagnosed ischemic stroke or TIA; (3) within 7 days from the onset of symptoms to enrolment; (4) patients who have provided consent to participant in the study. Patients were excluded if they had silent cerebral infarction with no symptoms or signs, or those who refused to participate in the registry. The study protocol of the CNSR-III was approved by the ethics committee at Beijing Tiantan Hospital (IRB approval number: KY2015-001-01) and all participating centres. Every participant provided written informed consent before participation.

BMJ Open

Among all the clinical centers included in CNSR-III, 169 centers voluntarily participated in the prespecified blood biomarker substudy. All the patients at these centers participated in this biomarker substudy. Patients participating in the biomarker substudy provided a separate written informed consent form, including consent for blood sample collection and further study of biomarkers.

A total of 15166 patients were eligible and had complete information at baseline.

Data Collection and Management

Patient information, including demographics, risk factors, comorbidities, medications, selected laboratory tests, and hospital-level characteristics, were collected systematically during hospitalization and at discharge by trained research coordinators at each participating hospital. National Institutes of Health Stroke Scale (NIHSS) score at admission, and ischemic stroke recurrence, composite vascular event, and modified Rankin Scale (mRS) at 3 months and 1 year after stroke onset were also collected.

Venous blood samples were collected from fasting patients within 24 hours from admission. Serum specimens were extracted, aliquoted, and transported through the cold chain to the central laboratory in Beijing Tiantan Hospital and stored at -80°C. LDL-C measurements were centrally and blindly assayed by enzymatic method on the Cobas 8000 analyzer c702 module (Roche Diagnostics, Mannheim, Germany).

Follow-Up and Clinical Outcome Evaluations

BMJ Open

Patients were followed up by face-to-face interviews at 3 months and by telephone interviews at 6 and 12 months by trained research coordinators based on a standardized interview protocol. Information collected at each follow-up included cardio-/cerebrovascular events, all causes of death, and medications use. Vascular events were confirmed from the treating hospital, and death was either confirmed on a death certificate from the attended hospital or the local civil registry. The primary outcome was a new stroke (defined as a new neurological deficit lasting more than 24 hours or re-hospitalization with a diagnosis of ischemic stroke, intracerebral hemorrhage, and subarachnoid hemorrhage), LDL-C goal (LDL-C<1.4mmol/L, and LDL-C<1.8mmol/L, respectively) achievement rates and LLT compliance in China within 3, 6, and 12 months. The secondary outcomes included major adverse cardiovascular events (including stroke, myocardial infarction, or vascular death) and all caused death at 3 months and 12 months. All reported efficacy and safety outcomes were verified by a central independent adjudication committee blinded to study treatment assignments and baseline LDL-C level.

Patients were categorized into four groups according to baseline LDL-C levels and lipid-lowering treatment during hospitalization and after discharge: LDL-C \leq 1.4mmol/L, 1.4mmol/L<LDL-C \leq 1.8mmol/L, 1.8 mmol/L<LDL \leq 2.6mmol/L, LDL>2.6mmol/L.

LLT compliance was defined as the continuation of LLT medication from discharge to 3, 6, or 12 months after the onset of symptoms. Patients assigned to LLT at

discharge but later discontinuing LLT at any follow-up point within 3, 6, or 12 months were considered "non-persistent". Patients were considered persistent if they discontinued one medication but took another statin medication within 3, 6, or 12 months.

Statistical analysis

Baseline variables were presented as median with interquartile range (IQR) for continuous variables and percentages for categorical variables.

To analyze the association of baseline LDL-C levels and outcomes, we only included those subjects who provided 3-month or 12-month bio-sample. Univariate and multivariate Cox proportional hazard regression models were used. The model included the following covariates: age, sex, education, current smoking, heavy drinking, medical history, stroke severity on the NIHSS, history of stroke, history of diabetes, and history of hypertension. Adjusted hazard ratios (HRs) with 95% confidence intervals (CIs) were calculated. The dose-response-relationship curves were also presented.

To analyze the effect of discharge LLT on outcomes, we excluded subjects who reached the end point (stroke recurrence or MACE, death, and loss to follow-up) during hospitalization. We performed a univariate model and multivariable analysis by adjusting for age, sex, education, current smoking, heavy drinking, medical history, stroke severity on the NIHSS, history of stroke, history of diabetes, and history of hypertension.

In addition, to analyze the association of 3-month LDL-C change with stroke recurrence and MACE in 12 months, we excluded subjects who reached the end point (stroke recurrence or MACE, death, and loss to follow-up) within 3 months. Related statistical analyses in the study was performed by SAS 9.4 software. All statistical analysis adopted a two-sided test which will be performed at a 5% significance level.

Results

Characteristics of study participants

From August 2015 to March 2018, a total of 15166 patients with acute stroke and TIA were recruited to the CNSR-III trial and entered our final analysis. The average age of 62.2 ± 11.3 years, 31.7% of patients were women, 14146 (93.3%) had an index event of stroke, and 1020 (6.7%) had a TIA ¹⁵.

Baseline LDL-C levels

There were 10,738 patients in LDL-C analysis set: 1407 (13.1%), 1636 (15.2%), 3655

(34.0%), and 4040 (37.6%) patients with an LDL-C ≤ 1.4 mmol/L, LDL-C 1.4–

1.8mmol/L, LDL-C 1.8–2.6mmol/L, LDL-C \geq 2.6mmol/L, respectively (Table 1).

Table 1. Baseline Characteristics for the LDL-C analysis set

2 3 4	Variables	LDL≤1.4mmol/L N=1407	1.4 < LDL≤1.8mmol/L N=1636	1.8 < LDL≤2.6mmol/L N=3655	LDL>2.6mmol/L N=4040	P Value*
5	Women, n (%)	378 (26.9)	439 (26.8)	1057 (28.9)	1517 (37.6)	< 0.001
6	Mean age, years (SD)	60.8±11.9	62.4±11.3	62.2±11.3	62.8±11.1	< 0.001
7	Ethnicity (non-Han), n (%)	30 (2.1)	49 (3.0)	122 (3.3)	104 (2.6)	0.07
8	Current smoker, n (%)	435 (30.9)	525 (32.1)	1239 (33.9)	1198 (29.7)	< 0.001
9	Heavy drinker, n (%)*	185 (13.2)	210 (12.8)	545 (14.9)	589 (14.6)	0.12

1 2									
3		1.0 (0.0.1.0)				0.001			
4	Triglycerides (IQR)	1.3 (0.9-1.9)	1.3 (1.0-1.8)	1.3 (1.0-1.8)	1.5 (1.1-2.0)	< 0.001			
5	TC, mmol/L	2.7 (2.4-3.1)	3.2 (3.0-3.5)	3.8 (3.5-4.1)	4.9 (4.5-5.5)	< 0.001			
6	HDL-C, mmol/L	0.8 (0.7-1.0)	0.9 (0.8-1.1)	0.9 (0.8-1.1)	1.0 (0.8-1.2)	< 0.001			
7	LDL-C, mmol/L	1.2 (1.0-1.3)	1.6 (1.5-1.7)	2.2 (2.0-2.4)	3.2 (2.9-3.8)	< 0.001			
8	BMI	24.4 (22.5-26.4)	24.5 (22.7-26.6)	24.4 (22.5-26.4)	24.5 (22.7-26.7)	0.06			
9	Systolic pressure, mmHg 145.0 (132.5-160.0) 146.5 (133.0-161.0) 148.5 (135.0-163.5) 150.0 (136.0-166.5) <0.001								
10 11	Medical history, n (%)								
12	Ischemic stroke TIA	369 (26.2)	429 (26.2)	715 (19.6)	748 (18.5)	<0.001 0.38			
13	Coronary heart diseases	44 (3.1) 147 (10.5)	46 (2.8) 193 (11.8)	115 (3.6) 366 (10.0)	102 (2.5) 449 (11.1)	0.38			
14	Atrial fibrillation	93 (6.6)	193 (11.8) 124 (7.6)	272 (7.4)	257 (6.4)	0.20			
15	Hypertension	897 (63.8)	1045 (63.9)	2295 (62.8)	2516 (62.3)	0.62			
16	Diabetes mellitus	· · · ·	394 (24.1)		· /				
17		386 (27.4)		824 (22.5)	960 (23.8)	0.004			
18	Hypercholesterolemia	119 (8.5)	120 (7.3)	302 (8.3)	341 (8.4)	0.56			
19 20	NIHSS at admission, median (IQR)	3.0 (1.0-6.0)	3.0 (1.0-6.0)	3.0 (1.0-6.0)	3.0 (1.0-6.0)	< 0.001			
21	NIHSS 0-3	743 (52.8)	914 (55.9)	1974 (54.0)	2073 (51.3)	0.009			
22	NIHSS≥4	664 (47.2)	722 (44.1)	1681 (46.0)	1967 (48.7)				
23	mRS (IQR)	0 (0-1.0)	0 (0-1.0)	0 (0-1.0)	0 (0-0)	< 0.001			
24	Stroke subtype, n (%)								
25	LAA	303 (21.5)	390 (23.8)	933 (25.5)	1092 (27.0)	0.0095			
26 27	CE	81 (5.8)	96 (5.9)	251 (6.9)	256 (6.3)				
27	SAO	312 (22.2)	359 (21.9)	740 (20.3)	819 (20.3)				
29	Other	21 (1.5)	16 (1.0)	38 (1.0)	47 (1.2)				
30	Unknown	690 (49.0)	775 (47.4)	1693 (46.3)	1826 (45.2)				
31	Antiplatelet therapy, n (%)	1357 (97.4)	1569 (97.1)	3504 (96.7)	3894 (97.0)	0.57			
32	LLT, n (%)	1359 (97.6)	1558 (96.4)	3498 (96.5)	3897 (97.1)	0.15			
33	Statin, n (%)	1355 (97.3)	1556 (96.3)	3491 (96.3)	3887 (96.9)	0.27			
34	TC: total chole	sterol. HDL-C: high-de	ensity lipoprotein choles	sterol. LDL-C: low-der	sity lipoprotein				
35 36	cholesterol. BM	II: body mass index. T	IA: transient ischemic a	attack. NIHSS: Nationa	l Institutes of				
30 37	Health Stroke S	Scale. mRS: modified R	Rankin Scale. LAA: larg	ge artery atherosclerosi	s. CE: cardiogenic				
38	embolism. SAC	D: small artery occlusio	n. LLT: lipid-lowering	therapy.					
39	D.:	1 1 1. 7.			1.1 1				
40	Patients in th	e lower baseline Ll	DL-C level group (\leq 1.4 mmol/L) were	more likely to				
41									
42 43	be younger (p<0.0001) and had	a greater prevalenc	e of cardiovascular	risk factors				
43 44		- /							
45	(previous str	oke, hypertension, 1	hyperchalesteralem	uia diabetes mellitu	s and history of				
46	(previous su	oke, hypertension, i	nyperenoiesteroiem	na, diabetes menitu	s, and mistory of				
47		0004) 1 1							
48	(1, 2)								
49									
50	density lipop	orotein (HDL) (p<0.	.0001). About 97%	of included patient	s had				
51	2 1 1	× / 4	,	1					
52	modiantianh	istory of antiplatal	at and linid lowerin	a thorony and the	atas showed no				
53 54	medication	istory of antiplatele	and npid-lowellin	g merapy, and me i	alls showed no				
55									
56	difference among the four groups.								

Association between baseline LDL-C levels and outcomes at 3 months and 12

months

There were 656 (6.11%) new stroke occurrences at 3 months and 1037 (9.66%) at 12

months (Table 2).

Table 2. Association between baseline LDL-C levels and outcomes at 3 months

and 12 months

C	Total	Events (n%)	HR (95% CI) Unadjusted	P value	HR (95% CI) Adjusted	P value
3 months		(11/0)	enaujuotea	, arao	114345764	
Stroke recurrence						
LDL≤1.4mmol/L	1407	69 (4.9)	0.72 (0.55-0.94)	0.01	0.74 (0.57-0.97)	0.03
$1.4 \le LDL \le 1.8 \text{mmol/L}$	1636	95 (5.8)	0.85 (0.68-1.08)	0.18	0.89 (0.70-1.12)	0.32
1.8 <ldl≤2.6mmol l<="" td=""><td>3655</td><td>219 (6.0)</td><td>0.88 (0.74-1.05)</td><td>0.17</td><td>0.91 (0.76-1.08)</td><td>0.28</td></ldl≤2.6mmol>	3655	219 (6.0)	0.88 (0.74-1.05)	0.17	0.91 (0.76-1.08)	0.28
LDL>2.6mmol/L	4040	273 (6.8)	Reference	-	Reference	-
Ischemic stroke						
LDL≤1.4mmol/L	1407	65 (4.6)	0.72 (0.55-0.95)	0.02	0.74 (0.56-0.98)	0.03
1.4 <ldl≤1.8mmol l<="" td=""><td>1636</td><td>88 (5.4)</td><td>0.84 (0.66-1.07)</td><td>0.16</td><td>0.87 (0.68-1.11)</td><td>0.27</td></ldl≤1.8mmol>	1636	88 (5.4)	0.84 (0.66-1.07)	0.16	0.87 (0.68-1.11)	0.27
1.8 <ldl≤2.6mmol l<="" td=""><td>3655</td><td>201 (5.5)</td><td>0.86 (0.72-1.04)</td><td>0.11</td><td>0.89 (0.74-1.07)</td><td>0.22</td></ldl≤2.6mmol>	3655	201 (5.5)	0.86 (0.72-1.04)	0.11	0.89 (0.74-1.07)	0.22
LDL>2.6mmol/L	4040	257 (6.4)	Reference	-	Reference	_
Hemorrhagic stroke						
LDL≤1.4mmol/L	1407	4 (0.3)	0.52 (0.18-1.51)	0.23	0.55 (0.19-1.61)	0.28
1.4 <ldl≤1.8mmol l<="" td=""><td>1636</td><td>9 (0.6)</td><td>1.01 (0.46-2.19)</td><td>0.98</td><td>1.03 (0.47-2.26)</td><td>0.93</td></ldl≤1.8mmol>	1636	9 (0.6)	1.01 (0.46-2.19)	0.98	1.03 (0.47-2.26)	0.93
1.8 <ldl≤2.6mmol l<="" td=""><td>3655</td><td>20 (0.6)</td><td>1.00 (0.55-1.84)</td><td>0.99</td><td>0.93 (0.50-1.73)</td><td>0.82</td></ldl≤2.6mmol>	3655	20 (0.6)	1.00 (0.55-1.84)	0.99	0.93 (0.50-1.73)	0.82
LDL>2.6mmol/L	4040	22 (0.5)	Reference	-	Reference	-
MACE						
LDL≤1.4mmol/L	1407	71 (5.1)	0.72 (0.56-0.94)	0.01	0.75 (0.57-0.97)	0.03
1.4 <ldl≤1.8mmol l<="" td=""><td>1636</td><td>100 (6.1)</td><td>0.88 (0.70-1.10)</td><td>0.27</td><td>0.91 (0.72-1.15)</td><td>0.42</td></ldl≤1.8mmol>	1636	100 (6.1)	0.88 (0.70-1.10)	0.27	0.91 (0.72-1.15)	0.42
1.8 <ldl≤2.6mmol l<="" td=""><td>3655</td><td>231 (6.3)</td><td>0.91 (0.77-1.08)</td><td>0.29</td><td>0.93 (0.78-1.11)</td><td>0.43</td></ldl≤2.6mmol>	3655	231 (6.3)	0.91 (0.77-1.08)	0.29	0.93 (0.78-1.11)	0.43
LDL>2.6mmol/L	4040	279 (6.9)	Reference	-	Reference	-
12 months						
Stroke recurrence						
LDL≤1.4mmol/L	1407	114 (8.1)	0.76 (0.62-0.93)	0.009	0.77 (0.62-0.95)	0.01
$1.4 \le LDL \le 1.8 mmol/L$	1636	158 (9.7)	0.91 (0.76-1.08)	0.30	0.92 (0.76-1.10)	0.36
1.8 <ldl≤2.6mmol l<="" td=""><td>3655</td><td>339 (9.7)</td><td>0.87 (0.76-1.01)</td><td>0.06</td><td>0.89 (0.77-1.03)</td><td>0.12</td></ldl≤2.6mmol>	3655	339 (9.7)	0.87 (0.76-1.01)	0.06	0.89 (0.77-1.03)	0.12
LDL>2.6mmol/L	4040	426 (10.5)	Reference	-	Reference	-
Ischemic stroke						
LDL≤1.4mmol/L	1407	102 (7.6)	0.72 (0.58-0.90)	0.004	0.73 (0.59-0.91)	0.00
$1.4 \le LDL \le 1.8 mmol/L$	1636	145 (8.9)	0.89 (0.73-1.07)	0.22	0.90 (0.74-1.09)	0.27
$1.8 \leq LDL \leq 2.6 mmol/L$	3655	304 (8.3)	0.83 (0.72-0.97)	0.02	0.86 (0.74-1.00)	0.04
LDL>2.6mmol/L	4040	400 (9.9)	Reference	-	Reference	-
Hemorrhagic stroke						
LDL≤1.4mmol/L	1407	12 (0.9)	0.96 (0.50-1.84)	0.89	0.97 (0.50-1.88)	0.93
$1.4 \le LDL \le 1.8 mmol/L$	1636	15 (0.9)	1.03 (0.56-1.87)	0.94	1.02 (0.56-1.88)	0.95
$1.8 \le LDL \le 2.6 mmol/L$	3655	37 (1.0)	1.13 (0.72-1.80)	0.59	1.10 (0.69-1.75)	0.69
LDL>2.6mmol/L	4040	36 (0.9)	Reference	-	Reference	_

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
22	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
34 35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
40 47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
50 59	
59	

60

MACE						
LDL≤1.4mmol/L	1407	119 (8.5)	0.76 (0.62-0.93)	0.008	0.77 (0.62-0.94)	0.01
$1.4 \le LDL \le 1.8 mmol/L$	1636	170 (10.4)	0.94 (0.79-1.12)	0.47	0.94 (0.79-1.13)	0.50
$1.8 \le LDL \le 2.6 mmol/L$	3655	363 (9.9)	0.90 (0.78-1.03)	0.13	0.91 (0.79-1.05)	0.20
LDL>2.6mmol/L	4040	444 (11.0)	Reference	-	Reference	-

LDL-C: low-density lipoprotein cholesterol. MACE: major adverse cardiovascular events.

Compared with patients with other LDL-C level subgroups, patients with LDL-C ≤ 1.4 mmol/L had a numerically lower risk of stroke (HR=0.742, 95% CI: 0.568-0.970, p=0.0291), ischaemic stroke (HR=0.741, 95% CI: 0.562-0.976, p=0.0329) and MACE (HR=0.746, 95% CI: 0.573-0.972, p=0.0297) at 3 months. Similar results were found for the outcome of stroke (HR=0.767, 95% CI: 0.622-0.946, p=0.0131), ischaemic stroke (HR=0.731, 95% CI: 0.587-0.911, p=0.0052) and MACE (HR=0.766, 95% CI: 0.624-0.940, p=0.0106) in 12 months. Lower baseline LDL-C level was not associated with an increased risk of hemorrhagic stroke at both 3 months and 12 months (**Table 2**). Using a Cox regression model with restricted cubic splines, a larger magnitude of associations was also found between baseline LDL-C level and risk of stroke, ischemic stroke, hemorrhagic stroke, and MACE (**Figure 1**).

Lipid-lowering management, LLT compliance, and association of discharge LLT and outcomes

LLT management and compliance of the included patients during hospitalization, at discharge, 3 months, 6 months, and 12 months were shown in **Table 3**.

Table 3. Lipid-lowering Treatment (LLT) and the compliance of patients in

	Hospitalization	Discharge	3 months	6 months	12 months
Non LLT	547 (3.6)	1300 (8.6)	2590 (17.4)	3007 (22.4)	3754 (26.0)
LLT	14506 (96.4)	13831 (91.4)	12271 (82.6)	11726 (77.6)	10682 (74.0)
Compliance					

Non-Persistent	/	/	2147 (15.5)	3382 (24.5)	4863 (35.2)
Persistent	/	/	11684 (84.5)	10449 (75.6)	8968 (64.8)

Over 90% of patients received LLT during hospitalization and 2 weeks after

discharge. The LLT compliance was 84.5% at 3 months, 75.6% at 6 months, and

64.8% at 12 months. The drug regimens of lipid-lowering treatment of the patients in

CNSR-III in 3 months, 6 months, and 12 months were shown in Table 4.

Table 4. Lipid-lowering Treatment of the included patients in CNSR-III at 3-

month, 6-month, 12-month follow-up (n=15166)

Turestar	Patients with statins, N (%)						
Treatment	Hospitalization	Discharge	3 months	6 months	12 months		
Atorvastatin	10527 (69.41)	9851 (64.95)	8656 (57.08)	8228 (54.25)	7470 (49.25)		
<40mg	7442 (70.71)	8770 (89.03)	8284 (95.7)	7963 (96.78)	7269 (97.35)		
≥40mg	3083 (29.29)	1081 (10.97)	372 (4.3)	265 (3.22)	198 (2.65)		
Rosuvastatin	3546 (23.38)	3395 (22.39)	2903 (19.14)	2779 (18.32)	2489 (16.41)		
<20mg	2876 (81.15)	2983 (87.86)	2650 (91.38)	2536 (91.29)	2313 (92.93)		
≥20mg	668 (18.85)	412 (12.14)	250 (8.62)	242 (8.71)	176 (7.07)		
Simvastatin	272 (1.79)	239 (1.58)	390 (2.57)	411 (2.71)	444 (2.93)		
Pravastatin	166 (1.09)	165 (1.09)	137 (0.9)	128 (0.84)	100 (0.66)		
lovastatin	25 (0.16)	24 (0.16)	33 (0.22)	33 (0.22)	30 (0.2)		
Fluvastatin	54 (0.36)	53 (0.35)	52 (0.34)	43 (0.28)	47 (0.31)		
Pravastatin	61 (0.40)	78 (0.51)	70 (0.46)	64 (0.42)	61 (0.4)		

Compared with the non-discharge LLT group, LLT at discharge was associated with

reduced risk of ischemic stroke (HR=0.65, 95% CI: 0.45-0.94, p=0.02) and stroke

recurrence (HR=0.69, 95% CI: 0.48-0.99, p=0.04) at 3 months (Table 5).

Table 5. The association of Discharge Lipid Lowering Therapy (LLT) and

	Total	Events, (n%)	HR (95% CI) Unadjusted	P value	HR (95% CI) Adjusted	P value
3 months						
Stroke recurrence Discharge LLT Non discharge LLT	13248 1181	269 (2.0%) 35 (3.0%)	0.68(0.48-0.96) Reference	0.03	0.69(0.48-0.99) Reference	0.04
Ischemic stroke Discharge LLT Non discharge LLT Hemorrhagic stroke	13263 1188	245 (1.9%) 32 (2.7%)	0.68(0.47-0.98) Reference	0.04	0.65(0.45-0.94) Reference	0.02

Discharge LLT	13740	31 (0.2%)	0.71(0.25-2.01)	0.52	1.19(0.36-3.98)	0.78
Non discharge LLT	1266	4 (0.3%)	Reference		Reference	
MACE						
Discharge LLT	13248	299 (2.3%)	0.71(0.51-1.003)	0.052	0.74(0.52-1.04)	0.08
Non discharge LLT	1181	37 (3.1%)	Reference		Reference	
12 months						
Stroke recurrence						
Discharge LLT	13248	758 (5.7%)	0.88(0.7-1.12)	0.30	0.89(0.7-1.14)	0.36
Non discharge LLT	1181	75 (6.4%)	Reference		Reference	
Ischemic stroke						
Discharge LLT	13263	683 (5.2%)	0.87(0.68-1.11)	0.26	0.86(0.67-1.10)	0.23
Non discharge LLT	1188	69 (5.8%)	Reference		Reference	
Hemorrhagic stroke						
Discharge LLT	13740	86 (0.6%)	0.97(0.47-2.00)	0.94	1.23(0.56-2.69)	0.60
Non discharge LLT	1266	8 (0.6%)	Reference		Reference	
MACE						
Discharge LLT	13248	838 (6.3%)	0.94(0.75-1.19)	0.60	0.96(0.76-1.21)	0.72
Non discharge LLT	1181	78(6.6%)	Reference		Reference	

Patients who reached the end point (stroke recurrence or MACE, death, and loss to follow-up) during hospitalization were excluded.

LDL-C goal achievement and change of LDL-C from baseline to 3 months with

outcomes at 12 months

The overall blood lipid level at baseline, 3-month, and 12-month follow-up were

shown in Table 6. LDL-C goal achievement for 1.8mmol/L were 28.3% at baseline,

46.7% at 3 months, and 35.4% at 12 months, respectively; while LDL-C goal

achievement for 1.4mmol/L were 13.1% at baseline, 25.6% at 3 months, and 17.6% at

12 months, respectively.

Table 6. Blood Lipid Level of the included patients at baseline, 3 months and 1

year in CNSR-III

Lipids, mmol/L	Baseline	3M	12M
Lipids, minol/L	N=10738	N=6034	N=4899
Median triglycerides (IQR), mmol/L	1.37(1.03-1.87)	1.32(0.98-1.81)	1.46(1.04-2.16)
Total cholesterol, mmol/L	3.97(3.31-4.72)	3.74(3.13-4.54)	3.92(3.25-4.76)
HDL-C, mmol/L	0.93(0.78-1.12)	1.02(0.86-1.21)	0.99(0.79-1.2)
LDL-C, mmol/L	2.31(1.73-2.97)	1.87(1.39-2.55)	2.14(1.57-2.87)
LDL <1.4mmol/L, n (%)	1407 (13.1)	1547 (25.6)	862 (17.6)
1.4 < LDL≤1.8mmol/L, n (%)	1636 (15.2)	1272 (21.1)	872 (17.8)

1.8 < LDL≤2.6mmol/L, n (%)	3655 (34.0)	1785 (29.6)	1533 (31.3)
LDL>2.6mmol/L, n (%)	4040 (37.6)	1430 (23.7)	1632 (33.3)

HDL-C: high-density lipoprotein cholesterol. LDL-C: low-density lipoprotein cholesterol.

We did not find that the LDL-C reduction rate from baseline to 3-month follow-up

was associated with reduced risk of stroke and MACE at 12 months (Table 7).

Table 7. Association of change of LDL-C from baseline to 3 months with

outcomes at 12 months

Percentage of LDL level decrease (compared to baseline)	Total	Events, (n%)	HR (95% CI) unadjusted	P value	HR (95% CI) adjusted	P value
12 months		5				
Stroke recurrence*						
<30%, n (%)	3526	137 (3.9)	1.48 (0.92-2.39)	0.11	1.42 (0.87-2.30)	0.16
30-50%, n (%)	1146	45 (3.9)	1.50 (0.88-2.56)	0.14	1.44 (0.84-2.47)	0.19
>50%, n (%)	718	19 (2.7)	Reference		Reference	
MACE‡						
<30%, n (%)	3526	149 (4.2)	1.46 (0.92-2.20)	0.11	1.39 (0.88-2.21)	0.16
30-50%, n (%)	1146	47 (4.1)	1.41 (0.84-2.36)	0.19	1.36 (0.81-2.28)	0.24
>50%, n (%)	718	21 (2.9)	Reference		Reference	
		1 .1 11		• •		

* Patients with stroke recurrence, death, and loss to follow-up within 3 months were excluded.

‡ Patients with MACE, death, and loss to follow-up within 3 months were excluded.

Discussion

This national hospital-based study described the current LDL level and LLT of stroke patients in the real world. We described the LLT management and LDL-C goal achievement and found that lowered baseline LDL-C level was associated with a decreased risk of new ischaemic stroke and MACE at both 3 months and 12 months, without increasing risk of intracranial hemorrhage. In addition, LLT at discharge was associated with a reduced risk of CV events at 3 and 12 months. Our study may have important clinical implications with the large sample size of LDL-C levels of stroke patients and comprehensive prognostic characteristics recorded.

BMJ Open

Firstly, LDL-C of 1.4 mmol/l might be a reasonable target for the high-risk population. Our study indicated that the LDL <1.4 mmol/L group, with the highest risk factors, developed the lowest stroke and MACE at 3 and 12 months. The paradox of high risk of stroke with low LDL-C level could be due to the previous intensive LLT and rigid LDL-C control. It is consistent with the previous study that fixed-dose statin regimens are less effective than targeting LDL-C levels of 1.8 or 1.4 mmol/l when pre-treatment LDL-C levels exceed 4 mmol/L¹⁶. The target LDL-C of 1.4 mmol/l recently advocated in particularly high-risk patients is most effective when pretreatment LDL-C exceeds about 3 mmol/l¹⁶. The TST trial found that an intensive LDL-C lowering target of less than 1.8 mmol/L further reduced the risk of cardiovascular events by approximately 20% during a median follow-up of 3.5 years in patients with ischaemic stroke within 3 months or a TIA within 15 days, compared with the higher target of 2.3–2.8mmol/L.³ 2019 ESC/EAS Guidelines for the management of dyslipidaemias set the most aggressive target of less than 1.4 mmol/L and a reduction of more than 50% in LDL-C¹⁷.

Secondly, our findings proved the safety of the LDL-C level lower than 1.4mmol/L in Chinese people: it did not associate with an increased risk of hemorrhagic stroke. Studies of LDL-C and ICH have reported conflicting results. In a twenty-year epidemiologic study, an excess risk of hemorrhagic stroke was observed in patients with uncontrolled hypertension and LDL-C <70 mg/dL (1.8mmol/L) ¹⁸. However, in subgroup analysis of FOURIER trial ¹⁹, among patients with prior stroke, the risk of hemorrhagic stroke did not increase, even when the median LDL-C decreased from

2.4 mmol/L at randomization to 0.8 (0.5–1.2) mmol/L at 48 weeks in the evolocumab group. All stroke and ischemic stroke were reduced, with no difference in hemorrhagic stroke. Meanwhile, in a systematic review and meta-analysis, the higher level of LDL-C seemed to be associated with a lower risk of hemorrhagic stroke ²⁰. Our study proved the efficacy and safety of that baseline LDL-C of <1.4 mmol/L in stroke patients, providing evidence for the first and second prevention strategies. Thirdly, we described the epidemiological characteristics of LDL-C levels and LLT of Chinese stroke patients. Compared to the study conducted in 2013²¹, our study indicated some progress in blood lipid management in mainland China. In our study, about 97% of patients had a medication history of LLT before onset. Compared to the LLT rate of 79.6% in 2013, over 90% of patients received LLT during hospitalization and at discharge; the LLT compliance was 84.5% at 3 months, 75.6% at 6 months, and 64.8% at 12 months. In addition, LDL-C goal achievement for 1.8mmol/L had improved mildly, increasing from 27.4% to 35.4%, while LDL-C goal achievement for 1.4mmol/L was 17.6% at 12 months. The non-ideal LLT compliance and LDL-C control rate might be due to statin intolerance in Asian people, including statinassociated myopathy and hemorrhagic stroke ^{22,23}. A meta-analysis indicated that statins increase the risk of hemorrhagic stroke in a medication dose-dependent and type of index brain vascular injury-dependent manner, while PCSK9 inhibitors do not increase hemorrhagic stroke risk²⁴. Thus, statins, rather than low-leveled LDL-C, might closely relate to hemorrhagic stroke. PCSK9 inhibitors might be a more promising lipid-lowering medication class in patients with an elevated risk of

BMJ Open

hemorrhagic stroke. In addition, our analysis revealed a significant association between LLT at discharge and 3-month outcomes, indicating the importance of early LLT.

Fourthly, we did not observe the correlation between the 3-month LDL-C decrease amplitude and 12-month outcomes. To analyze the association of 3-month LDL-C change with 12-month outcomes, we excluded subjects who reached the end point within 3 months, which led to a limited sample size and loss of a considerable amount of target events, for most stroke recurrences happened within 3 months ²⁵. Another critical factor was that we could not adjust some risk factors in the model, such as IL-6 level and relevant intracranial artery stenosis (ICAS). They were independent risk factors of the residual risk. Although substantially reduced by secondary prevention treatment, there was still 8.3% residual risk of 12-month recurrent stroke even in patients with persistent adherence to guideline-based secondary stroke prevention ²⁶. Our study has several limitations. First, only LLT medication use at the follow-up time point was recorded, not the details of use during the whole trial, such as continuous use, intermittent use, and the change of dose; thus, lipid-lowering agents use at 3 months and 12 months could not represent the actual situation. Second, statin use before admission was not recorded in the trial and may confound the results. Details of medication use, such as class, dose, duration, and adherence of lipidlowering agents, did not enter the regression model. Third, there could be some undetected confounding factors except for residual risk. Additionally, the trial was conducted exclusively on Chinese patients. The finding in this study needs to be

further validated in studies with a larger sample size and non-Asian populations.

Conclusions

The LDL-C goal achievement has increased mildly in the stroke and TIA population in mainland China and improving of the LDL-C goal achievement is still an essential task for secondary prevention of stroke. The lowered baseline LDL-C level was significantly associated with a decreased short-and long-term risk of ischemic stroke among stroke and TIA patients. LDL-C<1.4mmol/L could be a safe standard for this population.

Ethics Approval Statement

The study protocol of the CNSR-III was approved by the ethics committee at Beijing Tiantan Hospital (IRB approval number: KY2015-001-01) and all participating centers. Every participant provided written informed consent before participation.

Acknowledgement

We thank Drs. Feng Sheng and Luan-Luan Sun for their important intellectual contributions to the article. We thank all participating hospitals, their physicians, and nurses. We appreciate all the patients who took part in the CNSR-III trial.

Competing Interests

The authors have no conflicts of interest to declare.

Funding Sources

This work was supported by the National Key R&D Program of China (No. 2018YFC1312903), National Natural Science Foundation of China (No. 81870905,

1 2	
3 4 5	82
6 7	Sta
8 9 10	Co
11 12 13	(I)
14 15 16	(II
17 18 19	(II
20 21 22	(IV
23 24 25	(V
26 27 28	(V
29 30 31	(V
32 33 34	Da
35 36	Th
37 38 39	rea
40 41	
42 43	
44 45	
46	
47 48	
49 50	
51	
52 53	
54 55	
56	
57 58	
59	
60	

82071295, 81801139), and Beijing Hospitals Authority Innovation Studio of Young Staff Funding Support (Code: 202113).

Contributorship statement

- (I) Conception and design: Drs. YY Xu and WQ Chen
- (II) Administrative support: Drs. X Meng
- (III) Provision of study materials or patients: Drs. X Meng, ZX Li
- (IV) Collection and assembly of data: Drs. X Meng, XQ Zhao, LP Liu, and YL Wang
- (V) Data analysis and interpretation: Drs. MX Wang and YS Pan
- (VI) Manuscript writing: All authors.
- (VII) Final approval of manuscript: All authors.

Data sharing statement

The datasets used in this study are not publicly available, but these can be provided on

reasonable request after the approval.

Reference

- Wang Y-J, Li Z-X, Gu H-Q, Zhai Y, Jiang Y, Zhao X-Q, Wang Y-L, Yang X, Wang C-J, Meng X, et al. China Stroke Statistics 2019: A Report From the National Center for Healthcare Quality Management in Neurological Diseases, China National Clinical Research Center for Neurological Diseases, the Chinese Stroke Association, National Center for Chronic and Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention and Institute for Global Neuroscience and Stroke Collaborations. *Stroke Vasc. Neurol.* 2020;5:211–239.
- Amarenco P, Bogousslavsky J, Callahan A 3rd, Goldstein LB, Hennerici M, Rudolph AE, Sillesen H, Simunovic L, Szarek M, Welch KMA, et al. Highdose atorvastatin after stroke or transient ischemic attack. *N. Engl. J. Med.* 2006;355:549–559.
- Amarenco P, Kim JS, Labreuche J, Charles H, Abtan J, Béjot Y, Cabrejo L, Cha J-K, Ducrocq G, Giroud M, et al. A Comparison of Two LDL Cholesterol Targets after Ischemic Stroke. *N. Engl. J. Med.* 2020;382:9.
- Klijn CJ, Paciaroni M, Berge E, Korompoki E, Kõrv J, Lal A, Putaala J, Werring DJ. Antithrombotic treatment for secondary prevention of stroke and other thromboembolic events in patients with stroke or transient ischemic attack and non-valvular atrial fibrillation: A European Stroke Organisation guideline. *Eur. stroke J.* 2019;4:198–223.

Page 25 of 31

BMJ Open

2		
3	_	
4 5	5.	Kleindorfer DO, Towfighi A, Chaturvedi S, Cockroft KM, Gutierrez J,
6		
7		Lombardi-Hill D, Kamel H, Kernan WN, Kittner SJ, Leira EC, et al. 2021
8		
9		Guideline for the Prevention of Stroke in Patients with Stroke and Transient
10		Suidenne for the Trevention of Stroke in Futients with Stroke and Transient
11		
12		Ischemic Attack: A Guideline From the American Heart Association/American
13		
14		Stroke Association. Stroke. 2021;52:e364-e467.
15 16		
17		
18	6.	Amarenco P, Kim JS, Labreuche J, Giroud M, Lee BC, Mahagne MH,
19		
20		Nighoghossian N, Simon T, Steg PG, Touboul PJ, et al. Treat stroke to target
21		Trighoghossian T, Shinon T, Steg TO, Toubour TS, et al. Treat subke to target
22		
23		trial design: First trial comparing two LDL targets in patients with
24		
25		atherothrombotic strokes. Eur. Stroke J. 2019;4:271–280.
26		
27		
28 29	7.	Qureshi AI, Caplan LR. Intracranial atherosclerosis. Lancet (London,
30		
31		E_{naland} 2014:292:094 009
32		<i>England</i>). 2014;383:984–998.
33		
34	8.	Wong LKS. Global burden of intracranial atherosclerosis. Int. J. stroke Off. J.
35	0.	wong EKS. Global burden of intractanial atteroscietosis. <i>Int. 5. stroke Off. 5.</i>
36		
37		Int. Stroke Soc. 2006;1:158–159.
38		
39		
40 41	9.	Mok V, Srikanth V, Xiong Y, Phan TG, Moran C, Chu S, Zhao Q, Chu WWC,
41		
43		Wong A, Hong Z, et al. Race-ethnicity and cerebral small vessel disease
44		
45		comparison between Chinese and White populations. Int. J. stroke Off. J. Int.
46		companson between chinese and white populations. Int. J. stroke Off. J. Int.
47		
48		<i>Stroke Soc.</i> 2014;9 Suppl A1:36–42.
49		
50		
51	10.	Wolma J, Nederkoorn PJ, Goossens A, Vergouwen MDI, van Schaik IN,
52 53		
53 54		Vermeulen M. Ethnicity a risk factor? The relation between ethnicity and large-
55		
56		and small second discuss in William and Di di di di di di di
57		and small-vessel disease in White people, Black people, and Asians within a
58		
59		hospital-based population. Eur. J. Neurol. 2009;16:522-527.
60		

- Collins R, Armitage J, Parish S, Sleight P, Peto R. Effects of cholesterollowering with simvastatin on stroke and other major vascular events in 20536 people with cerebrovascular disease or other high-risk conditions. *Lancet* (London, England). 2004;363:757–767.
- Oyama K, Giugliano RP, Blazing MA, Park J-G, Tershakovec AM, Sabatine MS, Cannon CP, Braunwald E. Baseline Low-Density Lipoprotein Cholesterol and Clinical Outcomes of Combining Ezetimibe with Statin Therapy in IMPROVE-IT. J. Am. Coll. Cardiol. 2021;78:1499–1507.
- Sabatine MS, Giugliano RP, Keech AC, Honarpour N, Wiviott SD, Murphy SA, Kuder JF, Wang H, Liu T, Wasserman SM, et al. Evolocumab and Clinical Outcomes in Patients with Cardiovascular Disease. *N. Engl. J. Med.* 2017;376:1713–1722.
- McKenney JM, Koren MJ, Kereiakes DJ, Hanotin C, Ferrand A-C, Stein EA. Safety and efficacy of a monoclonal antibody to proprotein convertase subtilisin/kexin type 9 serine protease, SAR236553/REGN727, in patients with primary hypercholesterolemia receiving ongoing stable atorvastatin therapy. *J. Am. Coll. Cardiol.* 2012;59:2344–2353.
- 15. Wang Y, Jing J, Meng X, Pan Y, Wang Y, Zhao X, Lin J, Li W, Jiang Y, Li Z, et al. The Third China National Stroke Registry (CNSR-III) for patients with acute ischaemic stroke or transient ischaemic attack: design, rationale and baseline patient characteristics. *Stroke Vasc. Neurol.* 2019;4:158–164.

1		
2		
3		
4	16.	Soran H, Adam S, Durrington PN. Optimising treatment of hyperlipidaemia:
5		
6		Quantitative evaluation of UK, USA and European guidelines taking account
7		Quantitative evaluation of one, operation European garactines while account
8 9		
10		of both LDL cholesterol levels and cardiovascular disease risk. Atherosclerosis.
11		
12		2018;278:135–142.
13		
14		
15	17.	(EAS) TTF for the management of dyslipidaemias of the ES of C (ESC) and
16	17.	
17		
18		EAS. 2019 ESC/EAS guidelines for the management of dyslipidaemias: Lipid
19		
20		modification to reduce cardiovascular risk. Atherosclerosis. 2019;290:140-205.
21		
22		
23	18.	Zhang X, Liu J, Wang M, Qi Y, Sun J, Liu J, Wang Y, Hao Y, Li Y, Zhou M,
24	101	
25		
26		et al. Twenty-year epidemiologic study on LDL-C levels in relation to the risks
27		
28		of atherosclerotic event, hemorrhagic stroke, and cancer death among young
29		
30 31		
32		and middle-aged population in China. J. Clin. Lipidol. 2018;12:1179-1189.e4.
33		
34	10	
35	19.	Giugliano RP, Pedersen TR, Saver JL, Sever PS, Keech AC, Bohula EA,
36		
37		Murphy SA, Wasserman SM, Honarpour N, Wang H, et al. Stroke Prevention
38		
39		
40		With the PCSK9 (Proprotein Convertase Subtilisin-Kexin Type 9) Inhibitor
41		
42		Evolocumab Added to Statin in High-Risk Patients With Stable
43		
44		Atherosclerosis. <i>Stroke</i> . 2020;51:1546–1554.
45		Auteroscierosis. <i>Stroke</i> . 2020, 51.1540–1554.
46		
47	20	Wang V. Dang V. Oi V. Huang C. Hay I. Chalasteral layels and risk of
48	20.	Wang X, Dong Y, Qi X, Huang C, Hou L. Cholesterol levels and risk of
49 50		
50 51		hemorrhagic stroke: a systematic review and meta-analysis. Stroke.
52		•
53		2013;44:1833–1839.
54		201 <i>3</i> ,тт.10 <i>33</i> ⁻ 10 <i>37</i> .
55		
56		
57		
58		
59		

21.	Wang C-J, Wang Y-L, Li Z-X, Wang Y-J. The Management of LDL
	Cholesterol and Predictors of Goal Achievement in Stroke Patients in China: A
	Cross-Sectional Study. CNS Neurosci. Ther. 2016;22:577-583.
22.	Tomlinson B, Chan P, Liu Z-M. Statin Responses in Chinese Patients. J.
	Atheroscler. Thromb. 2018;25:199–202.
23.	Tomlinson B, Chan P, Liu Z-M. Statin Intolerance-An Asian Perspective. J.
	Atheroscler. Thromb. 2020;27:485–488.
24.	Sanz-Cuesta BE, Saver JL. Lipid-Lowering Therapy and Hemorrhagic Stroke
	Risk: Comparative Meta-Analysis of Statins and PCSK9 Inhibitors. Stroke.
	2021;52:3142–3150.
25.	Coull AJ, Lovett JK, Rothwell PM. Population based study of early risk of
	stroke after transient ischaemic attack or minor stroke: implications for public
	education and organisation of services. BMJ. 2004;328:326.
26.	Pan Y, Li Z, Li J, Jin A, Lin J, Jing J, Li H, Meng X, Wang Y, Wang Y.
	Residual Risk and Its Risk Factors for Ischemic Stroke with Adherence to
	Guideline-Based Secondary Stroke Prevention. J. stroke. 2021;23:51-60.

BMJ Open

Figure 1. Dose-response-relationship curves

Adjusted odds ratio of events and MACE at 3 months and 12 months according to LDL-C at baseline in patients. (a) stroke at 3 months; (b) ischemic stroke at 3 months; (c) hemorrhagic stroke at 3 months; (d) MACE at 3 months; (e) stroke at 12 months; (f) ischemic stroke at 12 months; (g) hemorrhagic stroke at 12 months; (h) MACE at 12 months. The full line indicates the adjusted hazard ratio and the dashed lines the 95% confidence interval bands. Reference is LDL-C >2.6mmol/L. Data were fitted using a logistic regression model of restricted cubic spline with three knots (the 5th, 50th, 90th percentiles) for LDL-C level, adjusting for potential covariates.

3 months

(b) Isc

2.5

1.5

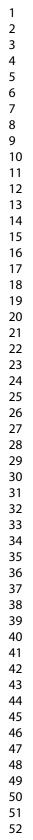
(d) MACE at 3 months

LDL-C, mmol/L

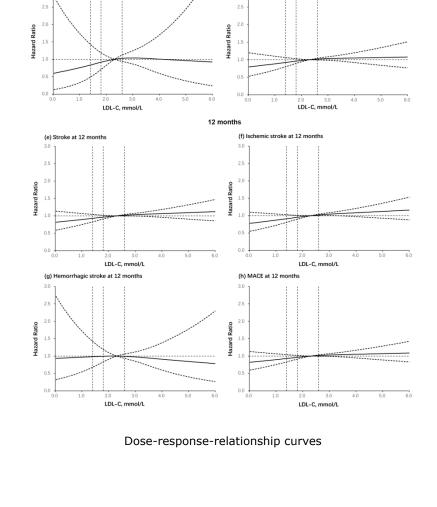
Hazard Ratio

4.0

LDL-C, mmol/L


(c) Hemorrhagic stroke at 3 months

(a) Stroke at 3 mont


2.5

3.0

Hazard Ratio

56 57

STROBE Statement—Checklist of items that should be included in reports of cohort studies

	Item No	Recommendation	Page No
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the	1
		abstract	
		(b) Provide in the abstract an informative and balanced summary of what was	3
		done and what was found	
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being	5
		reported	
Objectives	3	State specific objectives, including any prespecified hypotheses	6
Methods			-1
Study design	4	Present key elements of study design early in the paper	7
Setting	5	Describe the setting, locations, and relevant dates, including periods of	8
		recruitment, exposure, follow-up, and data collection	
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of	7
		participants. Describe methods of follow-up	
		(b) For matched studies, give matching criteria and number of exposed and	N/A
		unexposed	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and	8
		effect modifiers. Give diagnostic criteria, if applicable	
Data sources/	8*	For each variable of interest, give sources of data and details of methods of	8
measurement		assessment (measurement). Describe comparability of assessment methods if	
		there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	9
Study size	10	Explain how the study size was arrived at	8
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable,	10
		describe which groupings were chosen and why	
Statistical methods	12	(a) Describe all statistical methods, including those used to control for	10
		confounding	
		(b) Describe any methods used to examine subgroups and interactions	10
		(c) Explain how missing data were addressed	10
		(d) If applicable, explain how loss to follow-up was addressed	11
		(e) Describe any sensitivity analyses	N/A
Results			
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially	11
i unicipanto	15	eligible, examined for eligibility, confirmed eligible, included in the study,	
		completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	N/A
		(c) Consider use of a flow diagram	N/A
			+
Descriptive data	14*		11
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social)	11
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders	11 N/A
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social)	

Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their	13
		precision (eg, 95% confidence interval). Make clear which confounders were adjusted for	
		and why they were included	
		(b) Report category boundaries when continuous variables were categorized	13
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	14
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	14
Discussion			
Key results	18	Summarise key results with reference to study objectives	17
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision.	20
		Discuss both direction and magnitude of any potential bias	
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations,	18
1		multiplicity of analyses, results from similar studies, and other relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	18
Other informati	on		
Funding	22	Give the source of funding and the role of the funders for the present study and, if	21

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at http://www.strobe-statement.org.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

BMJ Open

Lipid Management in Ischemic Stroke or Transient Ischemic Attack in China: Result from China National Stroke Registry III

Journal:	BMJ Open
Manuscript ID	bmjopen-2022-069465.R1
Article Type:	Original research
Date Submitted by the Author:	27-Dec-2022
Complete List of Authors:	Xu, Yuyuan; Beijing Tiantan Hospital, Chen, Weiqi; Beijing Tiantan Hospital Wang, Mengxing; Beijing Tiantan Hospital PAN, YUESONG; Beijing Tiantan Hospital, China National Clinical Research Center for Neurological Diseases Li, Zixiao; Beijing Tiantan Hospital, Neurology Liu, Liping; Beijing Tiantan Hospital, Neurology; China National Clinical Research Center for Neurological Diseases, Zhao, Xingquan; Beijing Tiantan Hospital, Neurology Wang, Yilong; Beijing Tiantan Hospital, Department of Neurology Li, Hao; Beijing Tiantan Hospital, Department of Neurology Li, Hao; Beijing Tiantan Hospital, China National Clinical Research Center for Neurological Diseases Meng, Xia; Beijing Tiantan Hospital, Department of Neurology; Capital Medical University
Primary Subject Heading :	Medical management
Secondary Subject Heading:	Neurology, Medical management
Keywords:	Neurology < INTERNAL MEDICINE, Lipid disorders < DIABETES & ENDOCRINOLOGY, Stroke medicine < INTERNAL MEDICINE, Stroke < NEUROLOGY

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Lipid Management in Ischemic Stroke or Transient Ischemic Attack in China: Result from China National Stroke Registry III

Yu-Yuan Xu, MD^{a, b}; Wei-Qi Chen, MD^{a, b}; Meng-Xing Wang, PhD^b; Yue-Song Pan, PhD^b; Zi-Xiao Li, MD^{a, b}; Li-Ping Liu, MD^{a, b}; Xing-Quan Zhao, MD^{a, b}; Yi-Long Wang, MD^{a, b}; Hao Li, PhD^b; Yong-Jun Wang, MD^{a, b, c, d}; Xia Meng, MD^{a, b}; on behalf of the CNSR-III Investigators

^a Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China

^b China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China

^c Advanced Innovation Center for Human Brain Protection, Capital Medical

University, Beijing, China

^d Research Unit of Artificial Intelligence in Cerebrovascular Disease, Chinese

Academy of Medical Sciences, 2019RU018

Running title: Lipid management in Ischemic Stroke or TIA

Correspondence to Dr. Xia Meng: No. 119 South 4th Ring West Road, Fengtai

District, Beijing 100070, China. Email: mengxia45@163.com. Phone: +86 10

59978245. Fax: +86 10 59973383.

Number of Tables: 7

Number of Figures: 1

stroke, second prevention

Word count: 3469

Keywords: low-density lipoprotein cholesterol, lipid-lowering treatment, ischemic

1		
2		
4		
5		
2 3 4 5 6 7 8		
8 9		
10		
11 12		
13		
14 15		
16		
17 18		
19		
20 21		
22		
23 24		
25		
26 27		
20 21 22 23 24 25 26 27 28 29		
30		
31 32		
33		
34 35		
36 37		
37 38		
39 40		
41		
42 43		
44		
45 46		
47 48		
49		
50 51		
52		
53 54		
55		
56 57		
58		
59 60		

Abstract

Background and purpose: Dyslipidaemia is a significant risk factor for ischemic stroke and transient ischemic attack (TIA). The aims of the study were to assess the management of low-density lipoprotein cholesterol (LDL-C) and the goal achievement, as well as to investigate the association between baseline LDL-C level, lipid-lowering treatment (LLT), and stroke recurrence in patients with ischemic stroke or TIA.

Methods: We derived data from the Third China National Stroke Registry (CNSR-III). The primary outcome was a new stroke, LDL-C goal (LDL-C<1.8mmol/L and LDL-C<1.4mmol/L, respectively) achievement rates, and LLT compliance within 3, 6, and 12 months. The associations among the baseline LDL-C level, LLT at discharge, and outcomes were also assessed.

Results: Among the 15,166 patients, over 90% of patients received LLT during hospitalization and 2 weeks after discharge; the LLT compliance was 84.5% at 3 months, 75.6% at 6 months, and 64.8% at 12 months. At 12 months, LDL-C goal achievement rate for 1.8mmol/L and 1.4mmol/L was 35.4% and 17.6%, respectively. LLT at discharge was associated with reduced risk of ischemic stroke recurrence (HR=0.687, 95% CI: 0.480-0.985, p=0.0411) at 3 months. The rate of LDL-C reduction from baseline to 3-month follow-up was not associated with a reduced risk of stroke recurrence or major adverse cardiovascular events (MACE) at 12 months. Patients with baseline LDL-C \leq 1.4mmol/L had a numerically lower risk of stroke, ischemic stroke and MACE at both 3 months and 12 months.

Conclusions: The LDL-C goal achievement rate has increased mildly in the stroke and TIA population in mainland China. Lowered baseline LDL-C level was significantly associated with a decreased short- and long-term risk of ischemic stroke among stroke and TIA patients. LDL-C<1.4mmol/L might be a safe standard for this population.

Strengths and limitations of this study

- This hospital-based study analyzed the low-density lipoprotein cholesterol (LDL-C) levels and lipid-lowering therapy (LLT) in patients with ischemic stroke (IS)/transient ischemic attack (TIA) in the general population of mainland China.
- 2. The study included the largest sample of IS/TIA patients and recorded detailed prognostic characteristics.
- The design of the cohort study did not allow for further detailed analysis of lipidlowering medication use, such as dose change and duration.
- 4. Some undetected confounding factors, including residual risk, were not able to be assessed in this study.

Introduction

 Low-density lipoprotein cholesterol (LDL-C) has been well established as an independent risk factor for ischemic stroke¹. Intensive lipid-lowering treatment (LLT) has been proven to reduce cardiovascular event recurrence in ischemic stroke (IS)/ transient ischemic attack (TIA) patients. The Stroke Prevention by Aggressive Reduction in Cholesterol Levels (SPARCL) study ² showed that intensive atorvastatin treatment for five years reduced the risk of stroke recurrence up to 16% (HR 0.84, 95% CI 0.71-0.99; P<0.03) in IS/TIA. Recently, Treat Stroke to Target (TST) study ³ also demonstrated that IS/TIA patients who had a target LDL-C level of less than 70 mg/dl (1.8mmol/L) had a lower risk of subsequent cardiovascular events than those who had a target range of 90 to 110 mg/dl (HR 0.78, 95% CI 0.61-0.98; P=0.04). Therefore, European Stroke Organisation (ESO) and American Stroke Association (ASA) both updated the IS/TIA second prevention guideline with a recommendation of LDL-C target goal to be less than 70mg/dl (1.8mmol/L)^{4,5}. However, there are still clinical questions not thoroughly investigated. Firstly, SPARCL and TST trials are randomized controlled trials conducted mainly in the

Caucasian population ^{2,6}, whereas studies focusing on the Asian population on lipid management in stroke patients are limited. Since there are more intracranial artery stenosis (ICAS) ^{7,8} and cerebral small vessel disease (CSVD) patients in Asia ^{9,10}, especially in east Asia, the applicability of the conclusions of these two trials to Asian people should be discreet. Secondly, there are inconsistencies and conflicts about whether the reduced LDL-C level, especially during the acute or subacute phase,

BMJ Open

could increase the risk of intracranial hemorrhage (ICH). In the SPARCL study, subgroup analysis indicated that atorvastatin treatment might increase the risk of ICH, which led to a big concern for statin usage during the acute phase of IS/TIA ¹¹. In contrast, the TST study showed that the incidence of ICH did not differ significantly between the lower- and higher-target groups ³. Thirdly, with emerging evidence from non-stain therapies such as IMPROVE-IT ¹², FOURIER ¹³, and ODYSSEY ¹⁴, a lower LDL-C target of less than 1.4mmol/L or even 1.0mmol/L has been recommended for adoption as international guidelines. However, the benefits of a lower LDL-C target lower than 1.8mmol/L have not been investigated.

The Third China National Stroke Registry (CNSR-III) is one of the world's most extensive IS/TIA cohort studies and it includes comprehensive medical histories, centralized the Trial of Org 10172 in Acute Stroke Treatment (TOAST) classification judication, and follow-up outcomes. We aimed to collect data from CNSR-III to investigate the China's current lipid management practices and the associations between LDL-C level, LLT, and stroke recurrence in ischemic stroke or TIA patients. **Methods**

Study design and participants

The study was based on the CNSR-III database. The CNSR-III is a nationwide clinical registry of ischemic stroke or transient ischemic attack (TIA) based on etiology, imaging, and biological markers in China from August 2015 to March 2018 ¹⁵. 201 participating hospitals were selected in China, and 15,166 patients were

eligible and had complete information at baseline. The total 15,166 patients were included in the analysis.

Among all the clinical centers included in CNSR-III, 169 centers voluntarily participated in the prespecified blood biomarker substudy, with all the patients at these centers participating in the biomarker substudy. Such patients provided a separate written informed consent form that included their consent for blood sample collection and further study of biomarkers.

The study protocol of the CNSR-III was approved by the ethics committee at Beijing Tiantan Hospital (IRB approval number: KY2015-001-01) and all participating centres. Every participant provided written informed consent before participation.

Data Collection and Management

 Patient information, including demographics, risk factors, comorbidities, medications, selected laboratory tests, and hospital-level characteristics, were collected systematically during hospitalization and at discharge by trained research coordinators at each participating hospital. National Institutes of Health Stroke Scale (NIHSS) score at admission, and ischemic stroke recurrence, composite vascular event, and modified Rankin Scale (mRS) at 3 months and 1 year after stroke onset were also collected.

Venous blood samples were collected from fasting patients within 24 hours from admission. Serum specimens were extracted, aliquoted, and transported through the cold chain to the central laboratory in Beijing Tiantan Hospital and stored at -80°C.

BMJ Open

LDL-C measurements were centrally and blindly assayed by enzymatic method on the Cobas 8000 analyzer c702 module (Roche Diagnostics, Mannheim, Germany).

Follow-Up and Clinical Outcome Evaluations

Patients were followed up through face-to-face interviews at 3 months and by telephone interviews at 6 and 12 months by trained research coordinators who followed a standardized interview protocol. Information collected at each follow-up included cardio- and cerebrovascular events, all causes of death, and medications use. Vascular events were confirmed with the treating hospital, and death was either confirmed based on a death certificate issued by the attended hospital or the local civil registry.

The primary outcome was a new stroke (defined as a new neurological deficit lasting more than 24 hours or re-hospitalization with a diagnosis of ischemic stroke, intracerebral hemorrhage, or subarachnoid hemorrhage), LDL-C goal (LDL-C<1.4mmol/L, and LDL-C<1.8mmol/L, respectively) achievement rates and LLT compliance in China within 3, 6, and 12 months. The secondary outcomes included major adverse cardiovascular events (including stroke, myocardial infarction, or vascular death) and all caused death at 3 months and 12 months.

All reported efficacy and safety outcomes were verified by a central independent adjudication committee blinded to study treatment assignments and baseline LDL-C level.

Patients were categorized into four groups according to the baseline LDL-C levels and lipid-lowering treatment during hospitalization and after discharge: LDL-C ≤ 1.4 mmol/L, 1.4mmol/L $\leq LDL-C \leq 1.8$ mmol/L, 1.8 mmol/L $\leq LDL \leq 2.6$ mmol/L,

LDL>2.6mmol/L.

LLT compliance was defined as the continuation of LLT medication from discharge to 3, 6, or 12 months after the onset of symptoms. Patients assigned to LLT at discharge but later discontinuing LLT at any follow-up point within 3, 6, or 12 months were considered "non-persistent". Patients were considered persistent if they discontinued one medication but replaced it with another statin medication that they continued taking through 3, 6, or 12 months after enrollment.

Statistical analysis

Baseline variables were presented as median with interquartile range (IQR) for continuous variables and percentages for categorical variables. To analyze the association of baseline LDL-C levels and outcomes, we only included those subjects who provided 3-month or 12-month bio-sample. Univariate and multivariate Cox proportional hazard regression models were used. The model included the following covariates: age, sex, education, current smoking, heavy drinking, medical history, stroke severity on the NIHSS, history of stroke, history of diabetes, and history of hypertension. Adjusted hazard ratios (HRs) with 95% confidence intervals (CIs) were calculated. The dose-response-relationship curves were also presented.

BMJ Open

To analyze the effect of discharge LLT on outcomes, we excluded subjects who reached the end point (stroke recurrence or MACE, death, and loss to follow-up) during hospitalization. We performed a univariate model and multivariate analysis by adjusting for age, sex, education, current smoking, heavy drinking, medical history, stroke severity on the NIHSS, history of stroke, history of diabetes, and history of hypertension.

In addition, to analyze the association of 3-month LDL-C change with stroke recurrence and MACE within 12 months, we excluded subjects who reached the end point (stroke recurrence or MACE, death, and loss to follow-up) within 3 months. All statistical analyses in the study were performed by SAS 9.4 software. All statistical analysis adopted a two-sided test which was performed at a 5% significance Lien level.

Patient and Public Involvement

This registry study was designed and conducted without patient and public involvement. Our results will be disseminated to the public through publication in this journal.

Results

Characteristics of study participants

From August 2015 to March 2018, a total of 15166 patients with acute stroke and TIA were recruited to the CNSR-III trial and entered our final analysis. The average age of patients was 62.2±11.3 years, 31.7% of patients were women, 14,146 (93.3%) had an

index event of stroke, and 1020 (6.7%) had a TIA ¹⁵.

Baseline LDL-C levels

There were 10,738 patients in LDL-C analysis set: 1,407 (13.1%), 1,636 (15.2%),

3,655 (34.0%), and 4,040 (37.6%) patients with the baseline LDL-C \leq 1.4mmol/L,

1.4–1.8mmol/L, 1.8–2.6mmol/L, \geq 2.6mmol/L, respectively (Table 1).

Table 1. Baseline Characteristics for the LDL-C analysis set

22						
22 23 24	Variables	LDL≤1.4mmol/L N=1407	1.4 < LDL≤1.8mmol/L N=1636	1.8 < LDL≤2.6mmol/L N=3655	LDL>2.6mmol/L N=4040	P Value*
25 26	Women, n (%)	378 (26.9)	439 (26.8)	1057 (28.9)	1517 (37.6)	< 0.001
20 27	Mean age, years (SD)	60.8±11.9	62.4±11.3	62.2±11.3	62.8±11.1	< 0.001
27	Ethnicity (non-Han), n (%)	30 (2.1)	49 (3.0)	122 (3.3)	104 (2.6)	0.07
29	Current smoker, n (%)	435 (30.9)	525 (32.1)	1239 (33.9)	1198 (29.7)	< 0.001
30	Heavy drinker, n (%)*	185 (13.2)	210 (12.8)	545 (14.9)	589 (14.6)	0.12
31	Triglycerides (IQR)	1.3 (0.9-1.9)	1.3 (1.0-1.8)	1.3 (1.0-1.8)	1.5 (1.1-2.0)	< 0.001
32	TC, mmol/L	2.7 (2.4-3.1)	3.2 (3.0-3.5)	3.8 (3.5-4.1)	4.9 (4.5-5.5)	< 0.001
33	HDL-C, mmol/L	0.8 (0.7-1.0)	0.9 (0.8-1.1)	0.9 (0.8-1.1)	1.0 (0.8-1.2)	< 0.001
34	LDL-C, mmol/L	1.2 (1.0-1.3)	1.6 (1.5-1.7)	2.2 (2.0-2.4)	3.2 (2.9-3.8)	< 0.001
35	BMI	24.4 (22.5-26.4)	24.5 (22.7-26.6)	24.4 (22.5-26.4)	24.5 (22.7-26.7)	0.06
36 37	Systolic pressure, mmHg	145.0 (132.5-160.0)	146.5 (133.0-161.0)	148.5 (135.0-163.5)	150.0 (136.0-166.5)	< 0.001
37 38	Medical history, n (%)					
30 39	Ischemic stroke	369 (26.2)	429 (26.2)	715 (19.6)	748 (18.5)	< 0.001
40	TIA	44 (3.1)	46 (2.8)	115 (3.6)	102 (2.5)	0.38
41	Coronary heart diseases	147 (10.5)	193 (11.8)	366 (10.0)	449 (11.1)	0.20
42	Atrial fibrillation	93 (6.6)	124 (7.6)	272 (7.4)	257 (6.4)	0.19
43	Hypertension	897 (63.8)	1045 (63.9)	2295 (62.8)	2516 (62.3)	0.62
44	Diabetes mellitus	386 (27.4)	394 (24.1)	824 (22.5)	960 (23.8)	0.004
45	Hypercholesterolemia	119 (8.5)	120 (7.3)	302 (8.3)	341 (8.4)	0.56
46 47	NIHSS at admission, median (IQR)	3.0 (1.0-6.0)	3.0 (1.0-6.0)	3.0 (1.0-6.0)	3.0 (1.0-6.0)	< 0.001
48 49	NIHSS 0-3	743 (52.8)	914 (55.9)	1974 (54.0)	2073 (51.3)	0.009
49 50	NIHSS≥4	664 (47.2)	722 (44.1)	1681 (46.0)	1967 (48.7)	
51	mRS (IQR)	0 (0-1.0)	0 (0-1.0)	0 (0-1.0)	0 (0-0)	< 0.001
52	Stroke subtype, n (%)			× ,		
53	LAA	303 (21.5)	390 (23.8)	933 (25.5)	1092 (27.0)	0.0095
54	CE	81 (5.8)	96 (5.9)	251 (6.9)	256 (6.3)	
55	SAO	312 (22.2)	359 (21.9)	740 (20.3)	819 (20.3)	
56	Other	21 (1.5)	16 (1.0)	38 (1.0)	47 (1.2)	
57	Unknown	690 (49.0)	775 (47.4)	1693 (46.3)	1826 (45.2)	
58 59 60	Prestroke antiplatelet therapy, n (%)	1357 (97.4)	1569 (97.1)	3504 (96.7)	3894 (97.0)	0.57

54

55

56

57

58

59

60

Ischemic stroke

 $LDL \leq 1.4 mmol/L$

LDL>2.6mmol/L

 $LDL \leq 1.4 mmol/L$

Hemorrhagic stroke

 $1.4 \le LDL \le 1.8 mmol/L$

 $1.8 \le LDL \le 2.6 \text{mmol/L}$

	9 (97.6)	1558 (96.4	· · · · · · · · · · · · · · · · · · ·	· · · ·	3897 (97.1)	(
tatin, n (%) 1355	5 (97.3)	1556 (96.3	3) 3491 (9	96.3)	3887 (96.9)	(
TC: total cholesterol.	HDL-C: high-o	density lipopro	otein cholesterol. LI	DL-C: lov	v-density lipoprotein	n
cholesterol. BMI: boo	dy mass index.	TIA: transient	ischemic attack. N	HSS: Na	tional Institutes of	
Health Stroke Scale.	•					enic
embolism. SAO: sma			• •	unierosei		
embolism. SAO. sina	in allery occlus		u-lowering merapy.			
Patients in the low	ver baseline l	LDL-C leve	l group (≤1.4 m	nol/L) v	were more likely	to
be younger (p<0.0	0001) and ha	d a greater p	prevalence of car	diovasc	cular risk factors	
(previous stroke,]	hypertension	, hyperchole	esterolemia, diab	etes me	ellitus, and histor	y of
stroke) (p<0.0001) and lower l	levels of trig	glycerides, total	choleste	rol and high-den	sity
		_				
lipoprotein (HDL)) (p<0.0001)	. About 97%	6 of the natients	had a hi	istory of antiplate	elet
			P			
and lipid-lowering	therany on	d the rates a	howed no differ	anca am	ong the four	
	5 merapy, an	u inc raies s		chee all	iong the total	
1 " 101 0						
baseline LDL-C g	groups.					
Association betw	een baseline	e LDL-C le	vels and outcom	nes at 3	months and 12	
months						
There were 656 (6	5 11%) new o	stroke occur	rences at 3 mon	hs and	1037 (9.66%) at	12
			renees at 5 mon	and and	1057 (7.0070) at	1 4
months (Table 2)						
		_				
Table 2. Associat	tion between	i baseline L	DL-C levels an	d outco	mes at 3 month	S
and 12 months						
	Total	Events	HR (95% CI)	P	HR (95% CI)	P
		(n%)	Unadjusted	value	Adjusted	value
3 months						
Stroke recurrence	1407	60 (1 0)	0.72 (0.55.0.04)	0.01	0.74 (0.57.0.07)	0.02
Stroke recurrence LDL≤1.4mmol/L	1407 1636	69 (4.9) 95 (5.8)	0.72 (0.55-0.94)	0.01	0.74 (0.57-0.97)	0.03
Stroke recurrence LDL≤1.4mmol/L 1.4 <ldl≤1.8mm< td=""><td>ol/L 1636</td><td>95 (5.8)</td><td>0.85 (0.68-1.08)</td><td>0.18</td><td>0.89 (0.70-1.12)</td><td>0.32</td></ldl≤1.8mm<>	ol/L 1636	95 (5.8)	0.85 (0.68-1.08)	0.18	0.89 (0.70-1.12)	0.32
Stroke recurrence LDL≤1.4mmol/L	ol/L 1636		· · · ·		· · · · · ·	

0.72 (0.55-0.95)

0.84 (0.66-1.07)

0.86 (0.72-1.04)

0.52 (0.18-1.51)

Reference

0.02

0.16

0.11

0.23

_

0.74 (0.56-0.98)

0.87 (0.68-1.11)

0.89 (0.74-1.07)

0.55 (0.19-1.61)

Reference

65 (4.6)

88 (5.4)

201 (5.5)

257 (6.4)

4 (0.3)

1407

1636

3655

4040

1407

1:

0.03

0.27

0.22

0.28

_

$1.4 \le LDL \le 1.8 mmol/L$	1636	9 (0.6)	1.01 (0.46-2.19)	0.98	1.03 (0.47-2.26)	0.93
$1.8 \le LDL \le 2.6 mmol/L$	3655	20 (0.6)	1.00 (0.55-1.84)	0.99	0.93 (0.50-1.73)	0.82
LDL>2.6mmol/L	4040	22 (0.5)	Reference	-	Reference	-
MACE						
LDL≤1.4mmol/L	1407	71 (5.1)	0.72 (0.56-0.94)	0.01	0.75 (0.57-0.97)	0.03
$1.4 \le LDL \le 1.8 mmol/L$	1636	100 (6.1)	0.88 (0.70-1.10)	0.27	0.91 (0.72-1.15)	0.42
$1.8 \le LDL \le 2.6 mmol/L$	3655	231 (6.3)	0.91 (0.77-1.08)	0.29	0.93 (0.78-1.11)	0.43
LDL>2.6mmol/L	4040	279 (6.9)	Reference	-	Reference	-
12 months						
Stroke recurrence						
LDL≤1.4mmol/L	1407	114 (8.1)	0.76 (0.62-0.93)	0.009	0.77 (0.62-0.95)	0.01
$1.4 \le LDL \le 1.8 mmol/L$	1636	158 (9.7)	0.91 (0.76-1.08)	0.30	0.92 (0.76-1.10)	0.36
$1.8 \le LDL \le 2.6 mmol/L$	3655	339 (9.7)	0.87 (0.76-1.01)	0.06	0.89 (0.77-1.03)	0.12
LDL>2.6mmol/L	4040	426 (10.5)	Reference	-	Reference	-
Ischemic stroke						
LDL≤1.4mmol/L	1407	102 (7.6)	0.72 (0.58-0.90)	0.004	0.73 (0.59-0.91)	0.005
1.4 <ldl≤1.8mmol l<="" td=""><td>1636</td><td>145 (8.9)</td><td>0.89 (0.73-1.07)</td><td>0.22</td><td>0.90 (0.74-1.09)</td><td>0.27</td></ldl≤1.8mmol>	1636	145 (8.9)	0.89 (0.73-1.07)	0.22	0.90 (0.74-1.09)	0.27
1.8 <ldl≤2.6mmol l<="" td=""><td>3655</td><td>304 (8.3)</td><td>0.83 (0.72-0.97)</td><td>0.02</td><td>0.86 (0.74-1.00)</td><td>0.04</td></ldl≤2.6mmol>	3655	304 (8.3)	0.83 (0.72-0.97)	0.02	0.86 (0.74-1.00)	0.04
LDL>2.6mmol/L	4040	400 (9.9)	Reference	-	Reference	-
Hemorrhagic stroke						
LDL≤1.4mmol/L	1407	12 (0.9)	0.96 (0.50-1.84)	0.89	0.97 (0.50-1.88)	0.93
$1.4 \le LDL \le 1.8 mmol/L$	1636	15 (0.9)	1.03 (0.56-1.87)	0.94	1.02 (0.56-1.88)	0.95
1.8 <ldl≤2.6mmol l<="" td=""><td>3655</td><td>37 (1.0)</td><td>1.13 (0.72-1.80)</td><td>0.59</td><td>1.10 (0.69-1.75)</td><td>0.69</td></ldl≤2.6mmol>	3655	37 (1.0)	1.13 (0.72-1.80)	0.59	1.10 (0.69-1.75)	0.69
LDL>2.6mmol/L	4040	36 (0.9)	Reference	-	Reference	-
MACE						
LDL≤1.4mmol/L	1407	119 (8.5)	0.76 (0.62-0.93)	0.008	0.77 (0.62-0.94)	0.01
$1.4 \le LDL \le 1.8 mmol/L$	1636	170 (10.4)	0.94 (0.79-1.12)	0.47	0.94 (0.79-1.13)	0.50
$1.8 \le LDL \le 2.6 mmol/L$	3655	363 (9.9)	0.90 (0.78-1.03)	0.13	0.91 (0.79-1.05)	0.20
LDL>2.6mmol/L	4040	444 (11.0)	Reference	-	Reference	-

LDL-C: low-density lipoprotein cholesterol. MACE: major adverse cardiovascular events.

Compared with patients with other LDL-C level subgroups, the patients with LDL-C ≤ 1.4 mmol/L had a numerically lower risk of stroke (HR=0.742, 95% CI: 0.568-0.970, p=0.0291), ischaemic stroke (HR=0.741, 95% CI: 0.562-0.976, p=0.0329) and MACE (HR=0.746, 95% CI: 0.573-0.972, p=0.0297) at 3 months. Similar results were found for the outcome of stroke (HR=0.767, 95% CI: 0.622-0.946, p=0.0131), ischaemic stroke (HR=0.731, 95% CI: 0.587-0.911, p=0.0052) and MACE (HR=0.766, 95% CI: 0.624-0.940, p=0.0106) at 12 months after the initial event. Lower baseline LDL-C level was not associated with an increased risk of hemorrhagic stroke at either 3 months or 12 months (**Table 2**). Using a Cox regression model with restricted cubic

splines, a strong association was also found between baseline LDL-C level and risk of stroke, ischemic stroke, hemorrhagic stroke, and MACE (**Figure 1**).

Lipid-lowering management, LLT compliance, and association of discharge LLT

and outcomes

LLT management and compliance of the included patients during hospitalization, at

discharge, 3 months, 6 months, and 12 months after the initial event were shown in

Table 3.

Table 3. Lipid-lowering Treatment (LLT) and the compliance of patients in

CNSR-III

	Hospitalization	Discharge	3 months	6 months	12 months
Non LLT	547 (3.6)	1300 (8.6)	2590 (17.4)	3007 (22.4)	3754 (26.0)
LLT	14506 (96.4)	13831 (91.4)	12271 (82.6)	11726 (77.6)	10682 (74.0)
Compliance					
Non-Persistent	/	/	2147 (15.5)	3382 (24.5)	4863 (35.2)
Persistent	/	/	11684 (84.5)	10449 (75.6)	8968 (64.8)

Over 90% of patients received LLT during hospitalization and for 2 weeks after

discharge. The LLT compliance was 84.5% at 3 months, 75.6% at 6 months, and

64.8% at 12 months. The drug regimens of LLT for the patients in CNSR-III at 3

months, 6 months, and 12 months were shown in Table 4.

Table 4. Lipid-lowering Treatment of the included patients in CNSR-III at 3-

month, 6-month, 12-month follow-up (n=15166)

Treatment	Patients with statins, N (%)							
	Hospitalization	Discharge	3 months	6 months	12 months			
Atorvastatin	10527 (69.41)	9851 (64.95)	8656 (57.08)	8228 (54.25)	7470 (49.25)			
<40mg	7442 (70.71)	8770 (89.03)	8284 (95.7)	7963 (96.78)	7269 (97.35)			
≥40mg	3083 (29.29)	1081 (10.97)	372 (4.3)	265 (3.22)	198 (2.65)			
Rosuvastatin	3546 (23.38)	3395 (22.39)	2903 (19.14)	2779 (18.32)	2489 (16.41)			
<20mg	2876 (81.15)	2983 (87.86)	2650 (91.38)	2536 (91.29)	2313 (92.93)			
≥20mg	668 (18.85)	412 (12.14)	250 (8.62)	242 (8.71)	176 (7.07)			
Simvastatin	272 (1.79)	239 (1.58)	390 (2.57)	411 (2.71)	444 (2.93)			
Pravastatin	166 (1.09)	165 (1.09)	137 (0.9)	128 (0.84)	100 (0.66)			

lovastatin	25 (0.16)	24 (0.16)	33 (0.22)	33 (0.22)	30 (0.2)
Fluvastatin	54 (0.36)	53 (0.35)	52 (0.34)	43 (0.28)	47 (0.31)
Pravastatin	61 (0.40)	78 (0.51)	70 (0.46)	64 (0.42)	61 (0.4)

Compared with the non-discharge LLT group, LLT at discharge was associated with

reduced risk of ischemic stroke (HR=0.65, 95% CI: 0.45-0.94, p=0.02) and stroke

recurrence (HR=0.69, 95% CI: 0.48-0.99, p=0.04) at 3 months (Table 5).

Table 5. The association of Discharge Lipid Lowering Therapy (LLT) and

outcomes

	Total	Events, (n%)	HR (95% CI) Unadjusted	P value	HR (95% CI) Adjusted	P value
3 months					-	
Stroke recurrence						
Discharge LLT	13248	269 (2.0%)	0.68(0.48-0.96)	0.03	0.69(0.48-0.99)	0.04
Non discharge LLT	1181	35 (3.0%)	Reference		Reference	
Ischemic stroke						
Discharge LLT	13263	245 (1.9%)	0.68(0.47-0.98)	0.04	0.65(0.45-0.94)	0.02
Non discharge LLT	1188	32 (2.7%)	Reference		Reference	
Hemorrhagic stroke						
Discharge LLT	13740	31 (0.2%)	0.71(0.25-2.01)	0.52	1.19(0.36-3.98)	0.78
Non discharge LLT	1266	4 (0.3%)	Reference		Reference	
MACE						
Discharge LLT	13248	299 (2.3%)	0.71(0.51-1.003)	0.052	0.74(0.52-1.04)	0.08
Non discharge LLT	1181	37 (3.1%)	Reference		Reference	
12 months						
Stroke recurrence						
Discharge LLT	13248	758 (5.7%)	0.88(0.7-1.12)	0.30	0.89(0.7-1.14)	0.36
Non discharge LLT	1181	75 (6.4%)	Reference		Reference	
Ischemic stroke						
Discharge LLT	13263	683 (5.2%)	0.87(0.68-1.11)	0.26	0.86(0.67-1.10)	0.23
Non discharge LLT	1188	69 (5.8%)	Reference		Reference	
Hemorrhagic stroke						
Discharge LLT	13740	86 (0.6%)	0.97(0.47-2.00)	0.94	1.23(0.56-2.69)	0.60
Non discharge LLT	1266	8 (0.6%)	Reference		Reference	
MACE						
Discharge LLT	13248	838 (6.3%)	0.94(0.75-1.19)	0.60	0.96(0.76-1.21)	0.72
Non discharge LLT	1181	78(6.6%)	Reference		Reference	

Patients who reached the end point (stroke recurrence or MACE, death, and loss to follow-up) during hospitalization were excluded.

LDL-C goal achievement and the association of LDL-C changes (from baseline

to 3 months) with outcomes at 12 months

The overall blood lipid levels at baseline and at 3-month, and 12-month follow-up were shown in **Table 6**. LDL-C goal of 1.8mmol/L was achieved by 28.3% of patients at baseline, 46.7% at 3 months, and 35.4% at 12 months; LDL-C goal of 1.4mmol/L was achieved by 13.1% of patients at baseline, 25.6% at 3 months, and 17.6% at 12 months.

Table 6. Blood Lipid Level of the included patients at baseline, 3 months and 1

year	in	CNSR-III
------	----	----------

Lipids, mmol/L	Baseline N=10738	3M N=6034	12M N=4899
Median triglycerides (IQR), mmol/L	1.37(1.03-1.87)	1.32(0.98-1.81)	1.46(1.04-2.16)
Total cholesterol, mmol/L	3.97(3.31-4.72)	3.74(3.13-4.54)	3.92(3.25-4.76)
HDL-C, mmol/L	0.93(0.78-1.12)	1.02(0.86-1.21)	0.99(0.79-1.2)
LDL-C, mmol/L	2.31(1.73-2.97)	1.87(1.39-2.55)	2.14(1.57-2.87)
LDL <1.4mmol/L, n (%)	1407 (13.1)	1547 (25.6)	862 (17.6)
1.4 < LDL≤1.8mmol/L, n (%)	1636 (15.2)	1272 (21.1)	872 (17.8)
1.8 < LDL≤2.6mmol/L, n (%)	3655 (34.0)	1785 (29.6)	1533 (31.3)
LDL>2.6mmol/L, n (%)	4040 (37.6)	1430 (23.7)	1632 (33.3)

HDL-C: high-density lipoprotein cholesterol. LDL-C: low-density lipoprotein cholesterol.

We did not find any significant association between the LDL-C reduction rate from

baseline to 3-month follow-up and the risk of stroke and MACE at 12 months (Table

Table 7. Association of LDL-C changes (from baseline to 3 months) with

Percentage of LDL level decrease (compared to baseline)	Total	Events, (n%)	HR (95% CI) unadjusted	P value	HR (95% CI) adjusted	P value
12 months						
Stroke recurrence*						
<30%, n (%)	3526	137 (3.9)	1.48 (0.92-2.39)	0.11	1.42 (0.87-2.30)	0.16
30-50%, n (%)	1146	45 (3.9)	1.50 (0.88-2.56)	0.14	1.44 (0.84-2.47)	0.19
>50%, n (%)	718	19 (2.7)	Reference		Reference	
MACE‡						

outcomes at 12 months

^{7).}

(, t)						
>50%, n (%)	718	21 (2.9)	Reference		Reference	
30-50%, n (%)	1146	47 (4.1)	1.41 (0.84-2.36)	0.19	1.36 (0.81-2.28)	0.24
<30%, n (%)	3526	149 (4.2)	1.46 (0.92-2.20)	0.11	1.39 (0.88-2.21)	0.16

* Patients with stroke recurrence, death, and loss to follow-up within 3 months were excluded. ‡ Patients with MACE, death, and loss to follow-up within 3 months were excluded.

Discussion

This national hospital-based study described the current LDL-C level and LLT of IS/TIA patients in the real world. We described the LLT management and LDL-C goal achievement. We also found that a lowered baseline LDL-C level was associated with a decreased risk of new ischemic stroke and MACE at both 3 months and 12 months after the initial event, without an increased risk of intracranial hemorrhage. In addition, LLT at discharge was associated with a reduced risk of CV events at 3 and 12 months. Given the large sample size of LDL-C levels of IS/TIA patients and comprehensive prognostic characteristics recorded, these findings may have important clinical implications.

Firstly, LDL-C of 1.4 mmol/l might be a reasonable target for the high-risk population. Our study indicated that the LDL \leq 1.4 mmol/L group, with the highest risk factors, had the lowest stroke and MACE rates at 3 and 12 months. The paradox of high risk of stroke with low LDL-C level could be due to the previous intensive LLT and rigid LDL-C control. It is consistent with the previous study that fixed-dose statin regimens are less effective than targeting LDL-C levels of 1.8 or 1.4 mmol/l when pre-treatment LDL-C levels exceed 4 mmol/L ¹⁶; and the target of 1.4 mmol/l recently advocated in particularly high-risk patients is most effective when pretreatment LDL-C exceeds 3 mmol/l ¹⁶. In addition, 2019 ESC/EAS Guidelines for the management of dyslipidaemias set the most aggressive target of less than 1.4 mmol/L

BMJ Open

and a reduction of more than 50% in LDL-C¹⁷.

Secondly, our findings suggested that the safety of the LDL-C \leq 1.4mmol/L at least in Chinese population, because this level was not associate with an increased risk of hemorrhagic stroke. Studies of LDL-C and ICH have reported conflicting results. In a twenty-year epidemiologic study, an excess risk of hemorrhagic stroke was observed in patients with uncontrolled hypertension and LDL-C <70 mg/dL (1.8mmol/L)¹⁸. However, in a subgroup analysis of FOURIER trial ¹⁹, among patients with prior stroke, the risk of hemorrhagic stroke did not increase, even when the median LDL-C decreased from 2.4 mmol/L at randomization to 0.8 (0.5–1.2) mmol/L at 48 weeks in the evolocumab group. All stroke and ischemic stroke rates were reduced, and the rate of hemorrhagic stroke was not significantly changed. Meanwhile, in a systematic review and meta-analysis, the higher level of LDL-C tended to be associated with a lower risk of hemorrhagic stroke ²⁰. Thus, our study indicated the efficacy and safety of the baseline LDL-C of <1.4 mmol/L in IS/TIA patients, providing evidence for the first and second prevention strategies.

Thirdly, we described the epidemiological characteristics of Chinese IS/TIA patients in relation to their LDL-C levels and LLT. Compared to the study conducted in 2013 ²¹, our study indicated some progress in blood lipid management in mainland China. Notably, about 97% of patients had LLT medication history prior to the entry into our study. Also, compared to the LLT rate of 79.6% in 2013, over 90% of patients in our cohort received LLT during hospitalization and at discharge; the LLT compliance was 84.5% at 3 months, 75.6% at 6 months, and 64.8% at 12 months. In addition, LDL-C

BMJ Open

goal achievement for 1.8mmol/L had improved mildly, from 27.4% to 35.4%, and LDL-C goal achievement for 1.4mmol/L was 17.6% at 12 months. The less than perfect LLT compliance and LDL-C control rate might be due to statin intolerance in Asian people, including statin-associated myopathy and hemorrhagic stroke ^{22,23}. An earlier meta-analysis indicated that statins increase the risk of hemorrhagic stroke in a medication dose-dependent and type of index brain vascular injury-dependent manner, while PCSK9 inhibitors do not increase hemorrhagic stroke risk ²⁴. Thus, statins, rather than low-level of LDL-C, might closely relate to the risk of hemorrhagic stroke. Accordingly, PCSK9 inhibitors might be a more promising lipidlowering medication class in patients with an elevated risk of hemorrhagic stroke. In addition, our analysis revealed a significant association between LLT at discharge and 3-month outcomes, indicating the importance of early LLT implementation. Fourthly, we did not observe the correlation between the 3-month LDL-C decrease amplitude and 12-month outcomes. To analyze the association of 3-month LDL-C change with 12-month outcomes, we excluded subjects who reached the end point within 3 months, which led to a reduction of our sample size and a loss of a considerable number of target events, for most stroke recurrences occurred within 3 months ²⁵. Another critical factor was that we could not adjust some risk factors in the model, such as IL-6 level or the evidence of relevant intracranial artery stenosis (ICAS), which were independent risk factors of the residual risk. Although substantially reduced by secondary prevention treatment, there was still 8.3% residual

BMJ Open

risk of 12-month recurrent stroke even in patients with persistent adherence to guideline-based secondary stroke prevention ²⁶.

Our study has several limitations. First, only LLT medication use at the follow-up time points was recorded, whereas additional details of use during the whole trial, such as continuous use, intermittent use, and the dose changes were not subjected to specific analysis. Thus, lipid-lowering agents use at 3 months and 12 months provided only a partial picture of the course of medication during the trial. Second, statin use before admission was not recorded in the trial which may confound the results. Furthermore, details of medication use, such as class, dose, duration, and adherence of lipid-lowering agents, did not enter the regression model. Third, there could be some undetected confounding factors in addition to those regarded as the residual risk. Forth, the use of dual antiplatelet therapy may reduce the risk of a 3-month recurrence of stroke for more than half of the patients presented with an initial NIHSS score of ≤3. Fifth, the trial was conducted exclusively on Chinese patients. The finding in this study needs to be further validated in studies with a larger sample size and non-Asian populations.

Conclusions

The LDL-C goal achievement has increased mildly in the stroke and TIA population in mainland China, and its further improvement is still an essential task for secondary prevention of stroke. The lowered baseline LDL-C level was significantly associated with a decreased short-and long-term risk of ischemic stroke among stroke and TIA patients. LDL-C<1.4mmol/L could be a safe standard for this population.

Ethics Approval Statement

The study protocol of the CNSR-III was approved by the ethics committee at Beijing Tiantan Hospital (IRB approval number: KY2015-001-01) and all participating centers. Every participant provided written informed consent before participation.

Acknowledgement

We thank Dr. Feng Sheng for his important intellectual contributions to the article. We thank all participating hospitals, their physicians, and nurses. We appreciate all the patients who took part in the CNSR-III trial.

Competing Interests

The authors have no conflicts of interest to declare.

Funding Sources

This work was supported by the National Key R&D Program of China (No. 2018YFC1312903), National Natural Science Foundation of China (No. 81870905, 82071295, 81801139), and Beijing Hospitals Authority Innovation Studio of Young Staff Funding Support (Code: 202113).

Contributorship statement

Drs. YY Xu and X Meng conceived and designed the study. Drs. X Meng and YJ Wang served as scientific advisors. Drs. X Meng, ZX Li, Hao Li, and YJ Wang critically reviewed the study proposal. Drs. X Meng, XQ Zhao, LP Liu, and YL Wang collected and assembled the data. Drs. MX Wang and YS Pan did statistical analyses. Drs. YY Xu and WQ Chen interpreted the data. Drs. YY Xu drafted the manuscript and did the language editing. Dr. X Meng is responsible for the overall content as

guarantor. All the authors approved the final manuscript as submitted and agree to be accountable for all aspects of the work.

Data sharing statement

The datasets used in this study are not publicly available, but these can be provided on reasonable request after the approval.

to occure work

Reference

- Wang Y-J, Li Z-X, Gu H-Q, Zhai Y, Jiang Y, Zhao X-Q, Wang Y-L, Yang X, Wang C-J, Meng X, et al. China Stroke Statistics 2019: A Report from the National Center for Healthcare Quality Management in Neurological Diseases, China National Clinical Research Center for Neurological Diseases, the Chinese Stroke Association, National Center for Chronic and Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention and Institute for Global Neuroscience and Stroke Collaborations. *Stroke Vasc. Neurol.* 2020;5:211–239.
- Amarenco P, Bogousslavsky J, Callahan A 3rd, Goldstein LB, Hennerici M, Rudolph AE, Sillesen H, Simunovic L, Szarek M, Welch KMA, et al. Highdose Atorvastatin after Stroke or Transient Ischemic Attack. *N. Engl. J. Med.* 2006;355:549–559.
- Amarenco P, Kim JS, Labreuche J, Charles H, Abtan J, Béjot Y, Cabrejo L, Cha J-K, Ducrocq G, Giroud M, et al. A Comparison of Two LDL Cholesterol Targets after Ischemic Stroke. *N. Engl. J. Med.* 2020;382:9.
- Klijn CJ, Paciaroni M, Berge E, Korompoki E, Kõrv J, Lal A, Putaala J, Werring DJ. Antithrombotic Treatment for Secondary Prevention of Stroke and Other Thromboembolic Events in Patients with Stroke or Transient Ischemic Attack and Non-valvular Atrial Fibrillation: A European Stroke Organisation guideline. *Eur. stroke J.* 2019;4:198–223.

BMJ Open

2		
3		
4	5.	Kleindorfer DO, Towfighi A, Chaturvedi S, Cockroft KM, Gutierrez J,
5		
6		
7		Lombardi-Hill D, Kamel H, Kernan WN, Kittner SJ, Leira EC, et al. 2021
8		
9		Guideline for the Prevention of Stroke in Patients with Stroke and Transient
10		Ourdenne for the revention of Stroke in rations with Stroke and Transfent
11		
12		Ischemic Attack: A Guideline from the American Heart Association/American
13		
14		
15		Stroke Association. Stroke. 2021;52:e364–e467.
16		
17		
18	6.	Amarenco P, Kim JS, Labreuche J, Giroud M, Lee BC, Mahagne MH,
19		
20		Nichochassian N. Simon T. Stac DC. Tauhaul DL at al. Treat Strake to Target
21		Nighoghossian N, Simon T, Steg PG, Touboul PJ, et al. Treat Stroke to Target
22		
23		Trial Design: First Trial Comparing Two LDL Targets in Patients with
24		
25		
26		Atherothrombotic Strokes. Eur. Stroke J. 2019;4:271–280.
27		
28		
	7.	Qureshi AI, Caplan LR. Intracranial Atherosclerosis. Lancet (London,
29		
30		
31		<i>England</i>). 2014;383:984–998.
32		
33		
34	8.	Wong LKS. Global Burden of Intracranial Atherosclerosis. Int. J. stroke Off. J.
35		
36		
37		Int. Stroke Soc. 2006;1:158–159.
38		
39		
40	9.	Mok V, Srikanth V, Xiong Y, Phan TG, Moran C, Chu S, Zhao Q, Chu WWC,
41		
42		Wang A. Hang Z. at al. Daga atheniaity and Comphusi Small Maggal Diagaga
43		Wong A, Hong Z, et al. Race-ethnicity and Cerebral Small Vessel Disease
44		
45		Comparison between Chinese and White Populations. Int. J. stroke Off. J. Int.
46		
47		
48		<i>Stroke Soc.</i> 2014;9 Suppl A1:36–42.
49		
50		
51	10.	Wolma J, Nederkoorn PJ, Goossens A, Vergouwen MDI, van Schaik IN,
52		
53		Warmandan M. Educides a Di 1 C. (1) OTIL D. 1 (1) 1 (1) D.(1) i (1) 1
54		Vermeulen M. Ethnicity a Risk factor? The Relation between Ethnicity and
55		
56		Large- and Small-vessel Disease in White People, Black People, and Asians
57		
58		
59		within a Hospital-based Population. Eur. J. Neurol. 2009;16:522-527.

 Collins R, Armitage J, Parish S, Sleight P, Peto R. Effects of Cholesterollowering with Simvastatin on Stroke and Other Major Vascular Events in 20536 people with cerebrovascular disease or other high-risk conditions. *Lancet (London, England)*. 2004;363:757–767.

- Oyama K, Giugliano RP, Blazing MA, Park J-G, Tershakovec AM, Sabatine MS, Cannon CP, Braunwald E. Baseline Low-Density Lipoprotein Cholesterol and Clinical Outcomes of Combining Ezetimibe with Statin Therapy in IMPROVE-IT. J. Am. Coll. Cardiol. 2021;78:1499–1507.
- Sabatine MS, Giugliano RP, Keech AC, Honarpour N, Wiviott SD, Murphy SA, Kuder JF, Wang H, Liu T, Wasserman SM, et al. Evolocumab and Clinical Outcomes in Patients with Cardiovascular Disease. *N. Engl. J. Med.* 2017;376:1713–1722.
- McKenney JM, Koren MJ, Kereiakes DJ, Hanotin C, Ferrand A-C, Stein EA. Safety and Efficacy of a Monoclonal Antibody to Proprotein Convertase Subtilisin/Kexin Type 9 Serine Protease, SAR236553/REGN727, in Patients with Primary Hypercholesterolemia Receiving Ongoing Stable Atorvastatin Therapy. J. Am. Coll. Cardiol. 2012;59:2344–2353.
- 15. Wang Y, Jing J, Meng X, Pan Y, Wang Y, Zhao X, Lin J, Li W, Jiang Y, Li Z, et al. The Third China National Stroke Registry (CNSR-III) for Patients with Acute Ischaemic Stroke or Transient Ischaemic Attack: Design, Rationale and Baseline Patient Characteristics. *Stroke Vasc. Neurol.* 2019;4:158–164.

1 ว		
2 3		
4	16.	Soran H, Adam S, Durrington PN. Optimising Treatment of Hyperlipidaemia:
5	10.	solun 11, reall 6, Durington 114. Optimising freatment of Hypernplatennu.
6		
7		Quantitative Evaluation of UK, USA and European Guidelines Taking Account
8		
9		of Both LDL Cholesterol Levels and Cardiovascular Disease Risk.
10		
11		Atherosclerosis. 2018;278:135–142.
12		Ameroscierosis. 2018,278.155–142.
13 14		
15	17.	(EAS) TTF for the management of dyslipidaemias of the ES of C (ESC) and
16	17.	(LAS) I II for the management of dyshpidaennas of the LS of C (LSC) and
17		
18		EAS. 2019 ESC/EAS Guidelines for the Management of Dyslipidaemias: Lipid
19		
20		Modification to Reduce Cardiovascular Risk. Atherosclerosis. 2019;290:140-
21		
22		205
23		205.
24		
25 26	18.	Zhang X, Liu J, Wang M, Qi Y, Sun J, Liu J, Wang Y, Hao Y, Li Y, Zhou M,
27	10.	Zhang A, Liu J, Wang Wi, Qi I, Sun J, Liu J, Wang T, Hao T, Li T, Zhou Wi,
28		
29		et al. Twenty-year Epidemiologic Study on LDL-C Levels in Relation to the
30		
31		Risks of Atherosclerotic Event, Hemorrhagic Stroke, and Cancer Death among
32		
33		Voung and Middle agod Dopulation in China I Clin Linidal 2019:12:1170
34		Young and Middle-aged Population in China. J. Clin. Lipidol. 2018;12:1179-
35		
36 37		1189.e4.
38		
39		
40	19.	Giugliano RP, Pedersen TR, Saver JL, Sever PS, Keech AC, Bohula EA,
41		
42		Murphy SA, Wasserman SM, Honarpour N, Wang H, et al. Stroke Prevention
43		
44		with the PCSK9 (Proprotein Convertase Subtilisin-Kexin Type 9) Inhibitor
45		with the PCSK9 (Proprotein Convertase Subtrishi-Kexin Type 9) initiation
46 47		
47		Evolocumab Added to Statin in High-Risk Patients With Stable
49		
50		Atherosclerosis. Stroke. 2020;51:1546-1554.
51		,
52		
53	20.	Wang X, Dong Y, Qi X, Huang C, Hou L. Cholesterol Levels and Risk of
54		
55		Hemorrhagic Stroke: a Systematic Review and Meta-analysis. Stroke.
56 57		remonnugio outore, a ogstematio review and meta anarysis, bu one.
58		2012 44 1022 1020
59		2013;44:1833–1839.
60		

21.	Wang C-J, Wang Y-L, Li Z-X, Wang Y-J. The Management of LDL
	Cholesterol and Predictors of Goal Achievement in Stroke Patients in China: A
	Cross-Sectional Study. CNS Neurosci. Ther. 2016;22:577-583.
22.	Tomlinson B, Chan P, Liu Z-M. Statin Responses in Chinese Patients. J.
	Atheroscler. Thromb. 2018;25:199–202.
23.	Tomlinson B, Chan P, Liu Z-M. Statin Intolerance-An Asian Perspective. J.
	Atheroscler. Thromb. 2020;27:485–488.
24.	Sanz-Cuesta BE, Saver JL. Lipid-Lowering Therapy and Hemorrhagic Stroke
	Risk: Comparative Meta-Analysis of Statins and PCSK9 Inhibitors. Stroke.
	2021;52:3142–3150.
25.	Coull AJ, Lovett JK, Rothwell PM. Population Based Study of Early Risk of
	Stroke after Transient Ischaemic Attack or Minor Stroke: Implications for
	Public Education and Organisation of Services. BMJ. 2004;328:326.
26.	Pan Y, Li Z, Li J, Jin A, Lin J, Jing J, Li H, Meng X, Wang Y, Wang Y.
	Residual Risk and Its Risk Factors for Ischemic Stroke with Adherence to
	Guideline-Based Secondary Stroke Prevention. J. stroke. 2021;23:51-60.

BMJ Open

Figure 1. Dose-response-relationship curves

Adjusted odds ratio of events and MACE at 3 months and 12 months according to LDL-C at baseline in patients. (a) stroke at 3 months; (b) ischemic stroke at 3 months; (c) hemorrhagic stroke at 3 months; (d) MACE at 3 months; (e) stroke at 12 months; (f) ischemic stroke at 12 months; (g) hemorrhagic stroke at 12 months; (h) MACE at 12 months. The full line indicates the adjusted hazard ratio and the dashed lines the 95% confidence interval bands. Reference is LDL-C >2.6mmol/L. Data were fitted using a logistic regression model of restricted cubic spline with three knots (the 5th, 50th, 90th percentiles) for LDL-C level, adjusting for potential covariates.

3 months

(b) Isc

2.5

1.5

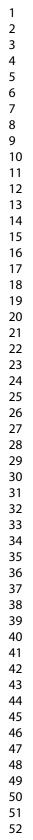
(d) MACE at 3 months

LDL-C, mmol/L

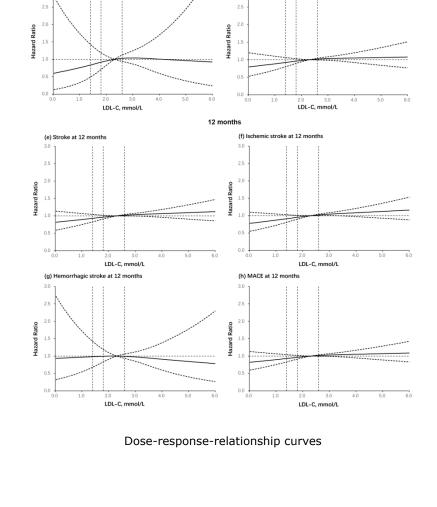
Hazard Ratio

4.0

LDL-C, mmol/L


(c) Hemorrhagic stroke at 3 months

(a) Stroke at 3 mont


2.5

3.0

Hazard Ratio

56 57

STROBE Statement—Checklist of items that should be included in reports of cohort studies

	Item No	Recommendation	Page No
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the	1
		abstract	
		(b) Provide in the abstract an informative and balanced summary of what was	3
		done and what was found	
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being	5
		reported	
Objectives	3	State specific objectives, including any prespecified hypotheses	6
Methods			-
Study design	4	Present key elements of study design early in the paper	7
Setting	5	Describe the setting, locations, and relevant dates, including periods of	8
		recruitment, exposure, follow-up, and data collection	
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of	7
		participants. Describe methods of follow-up	
		(b) For matched studies, give matching criteria and number of exposed and	N/A
		unexposed	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and	8
		effect modifiers. Give diagnostic criteria, if applicable	
Data sources/	8*	For each variable of interest, give sources of data and details of methods of	8
measurement		assessment (measurement). Describe comparability of assessment methods if	
		there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	9
Study size	10	Explain how the study size was arrived at	8
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable,	10
		describe which groupings were chosen and why	
Statistical methods	12	(a) Describe all statistical methods, including those used to control for	10
		confounding	
		(b) Describe any methods used to examine subgroups and interactions	10
		(c) Explain how missing data were addressed	10
		(d) If applicable, explain how loss to follow-up was addressed	11
		(e) Describe any sensitivity analyses	N/A
Results			
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially	11
i uno punto	15	eligible, examined for eligibility, confirmed eligible, included in the study,	
		completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	N/A
		(c) Consider use of a flow diagram	N/A
			11
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic clinical social)	
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders	
Descriptive data	14*	and information on exposures and potential confounders	
Descriptive data	14*		N/A

Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their	13
		precision (eg, 95% confidence interval). Make clear which confounders were adjusted for	
		and why they were included	
		(b) Report category boundaries when continuous variables were categorized	13
		(<i>c</i>) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	14
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	14
Discussion			
Key results	18	Summarise key results with reference to study objectives	17
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision.	20
		Discuss both direction and magnitude of any potential bias	
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations,	18
1		multiplicity of analyses, results from similar studies, and other relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	18
Other informati	on		
Funding	22	Give the source of funding and the role of the funders for the present study and, if	21

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at http://www.strobe-statement.org.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

BMJ Open

Lipid Management in Ischemic Stroke or Transient Ischemic Attack in China: Result from China National Stroke Registry III

	1
Journal:	BMJ Open
Manuscript ID	bmjopen-2022-069465.R2
Article Type:	Original research
Date Submitted by the Author:	16-Jan-2023
Complete List of Authors:	Xu, Yuyuan; Beijing Tiantan Hospital, Chen, Weiqi; Beijing Tiantan Hospital Wang, Mengxing; Beijing Tiantan Hospital PAN, YUESONG; Beijing Tiantan Hospital, China National Clinical Research Center for Neurological Diseases Li, Zixiao; Beijing Tiantan Hospital, Neurology Liu, Liping; Beijing Tiantan Hospital, Neurology; China National Clinical Research Center for Neurological Diseases, Zhao, Xingquan; Beijing Tiantan Hospital, Neurology Wang, Yilong; Beijing Tiantan Hospital, Department of Neurology Li, Hao; Beijing Tiantan Hospital, Department of Neurology Li, Hao; Beijing Tiantan Hospital, China National Clinical Research Center for Neurological Diseases Meng, Xia; Beijing Tiantan Hospital, Department of Neurology; Capital Medical University
Primary Subject Heading :	Medical management
Secondary Subject Heading:	Neurology, Medical management
Keywords:	Neurology < INTERNAL MEDICINE, Lipid disorders < DIABETES & ENDOCRINOLOGY, Stroke medicine < INTERNAL MEDICINE, Stroke < NEUROLOGY

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Lipid Management in Ischemic Stroke or Transient Ischemic Attack in China: Result from China National Stroke Registry III

Yu-Yuan Xu, MD^{a, b}; Wei-Qi Chen, MD^{a, b}; Meng-Xing Wang, PhD^b; Yue-Song Pan, PhD^b; Zi-Xiao Li, MD^{a, b}; Li-Ping Liu, MD^{a, b}; Xing-Quan Zhao, MD^{a, b}; Yi-Long Wang, MD^{a, b}; Hao Li, PhD^b; Yong-Jun Wang, MD^{a, b, c, d}; Xia Meng, MD^{a, b}; on behalf of the CNSR-III Investigators

^a Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China

^b China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China

^c Advanced Innovation Center for Human Brain Protection, Capital Medical

University, Beijing, China

^d Research Unit of Artificial Intelligence in Cerebrovascular Disease, Chinese

Academy of Medical Sciences, 2019RU018

Running title: Lipid management in Ischemic Stroke or TIA

Correspondence to Dr. Xia Meng: No. 119 South 4th Ring West Road, Fengtai

District, Beijing 100070, China. Email: mengxia45@163.com. Phone: +86 10

59978245. Fax: +86 10 59973383.

Number of Tables: 7

Number of Figures: 1

stroke, second prevention

Word count: 3551

Keywords: low-density lipoprotein cholesterol, lipid-lowering treatment, ischemic

1		
2		
3		
4		
-		
5		
6		
7		
,		
8		
2 3 4 5 6 7 8 9		
10		
10		
11		
12		
13		
13		
14		
15		
16		
10		
17		
18		
19		
20		
20		
21		
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36		
25		
24		
25		
26		
20		
27		
28		
29		
30		
21		
31		
32		
33		
24		
54		
35		
36		
37		
38		
39		
40		
41		
42		
43		
44		
45		
46		
47		
48		
49		
50		
51		
52		
53		
54		
55		
56		
57		
58		
50		

Abstract

Background and purpose: Dyslipidaemia is a significant risk factor for ischemic stroke and transient ischemic attack (TIA). The aims of the study were to assess the management of low-density lipoprotein cholesterol (LDL-C) and the goal achievement, as well as to investigate the association between baseline LDL-C level, lipid-lowering treatment (LLT), and stroke recurrence in patients with ischemic stroke or TIA.

Methods: We derived data from the Third China National Stroke Registry (CNSR-III). The primary outcome was a new stroke, LDL-C goal (LDL-C<1.8mmol/L and LDL-C<1.4mmol/L, respectively) achievement rates, and LLT compliance within 3, 6, and 12 months. The associations among the baseline LDL-C level, LLT at discharge, and outcomes were also assessed.

Results: Among the 15,166 patients, over 90% of patients received LLT during hospitalization and 2 weeks after discharge; the LLT compliance was 84.5% at 3 months, 75.6% at 6 months, and 64.8% at 12 months. At 12 months, LDL-C goal achievement rate for 1.8mmol/L and 1.4mmol/L was 35.4% and 17.6%, respectively. LLT at discharge was associated with reduced risk of ischemic stroke recurrence (HR=0.687, 95% CI: 0.480-0.985, p=0.0411) at 3 months. The rate of LDL-C reduction from baseline to 3-month follow-up was not associated with a reduced risk of stroke recurrence or major adverse cardiovascular events (MACE) at 12 months. Patients with baseline LDL-C \leq 1.4mmol/L had a numerically lower risk of stroke, ischemic stroke and MACE at both 3 months and 12 months.

Conclusions: The LDL-C goal achievement rate has increased mildly in the stroke and TIA population in mainland China. Lowered baseline LDL-C level was significantly associated with a decreased short- and long-term risk of ischemic stroke among stroke and TIA patients. LDL-C<1.4mmol/L might be a safe standard for this population.

Strengths and limitations of this study

- This hospital-based study analyzed the low-density lipoprotein cholesterol (LDL-C) levels and lipid-lowering therapy (LLT) in patients with ischemic stroke (IS)/transient ischemic attack (TIA) in the general population of mainland China.
- 2. The study included the largest sample of IS/TIA patients and recorded detailed prognostic characteristics.
- The design of the cohort study did not allow for further detailed analysis of lipidlowering medication use, such as dose change and duration.
- 4. Some undetected confounding factors, including residual risk, were not able to be assessed in this study.

Introduction

 Low-density lipoprotein cholesterol (LDL-C) has been well established as an independent risk factor for ischemic stroke¹. Intensive lipid-lowering treatment (LLT) has been proven to reduce cardiovascular event recurrence in ischemic stroke (IS)/ transient ischemic attack (TIA) patients. The Stroke Prevention by Aggressive Reduction in Cholesterol Levels (SPARCL) study ² showed that intensive atorvastatin treatment for five years reduced the risk of stroke recurrence up to 16% (HR 0.84, 95% CI 0.71-0.99; P<0.03) in IS/TIA. Recently, Treat Stroke to Target (TST) study ³ also demonstrated that IS/TIA patients who had a target LDL-C level of less than 70 mg/dl (1.8mmol/L) had a lower risk of subsequent cardiovascular events than those who had a target range of 90 to 110 mg/dl (HR 0.78, 95% CI 0.61-0.98; P=0.04). Therefore, European Stroke Organisation (ESO) and American Stroke Association (ASA) both updated the IS/TIA second prevention guideline with a recommendation of LDL-C target goal to be less than 70mg/dl (1.8mmol/L)^{4,5}. However, there are still clinical questions not thoroughly investigated. Firstly, SPARCL and TST trials are randomized controlled trials conducted mainly in the

Caucasian population ^{2,6}, whereas studies focusing on the Asian population on lipid management in stroke patients are limited. Since there are more intracranial artery stenosis (ICAS) ^{7,8} and cerebral small vessel disease (CSVD) patients in Asia ^{9,10}, especially in east Asia, the applicability of the conclusions of these two trials to Asian people should be discreet. Secondly, there are inconsistencies and conflicts about whether the reduced LDL-C level, especially during the acute or subacute phase,

BMJ Open

could increase the risk of intracranial hemorrhage (ICH). In the SPARCL study, subgroup analysis indicated that atorvastatin treatment might increase the risk of ICH, which led to a big concern for statin usage during the acute phase of IS/TIA ¹¹. In contrast, the TST study showed that the incidence of ICH did not differ significantly between the lower- and higher-target groups ³. Thirdly, with emerging evidence from non-stain therapies such as IMPROVE-IT ¹², FOURIER ¹³, and ODYSSEY ¹⁴, a lower LDL-C target of less than 1.4mmol/L or even 1.0mmol/L has been recommended for adoption as international guidelines. However, the benefits of a lower LDL-C target lower than 1.8mmol/L have not been investigated.

The Third China National Stroke Registry (CNSR-III) is one of the world's most extensive IS/TIA cohort studies and it includes comprehensive medical histories, centralized the Trial of Org 10172 in Acute Stroke Treatment (TOAST) classification judication, and follow-up outcomes. We aimed to collect data from CNSR-III to investigate the China's current lipid management practices and the associations between LDL-C level, LLT, and stroke recurrence in ischemic stroke or TIA patients. **Methods**

Study design and participants

This study was based on the CNSR-III database. The CNSR-III is a nationwide clinical registry of ischemic stroke or transient ischemic attack (TIA) based on etiology, imaging, and biological markers in China from August 2015 to March 2018 ¹⁵. 201 participating hospitals were selected in China, and 15,166 patients were

BMJ Open

eligible and had complete information at baseline. The total 15,166 patients were included in the analysis. Among all the clinical centers included in CNSR-III, 169 centers voluntarily participated in the prespecified blood biomarker substudy, with all the patients at these centers participating in the biomarker substudy. Such patients provided a separate written informed consent form that included their consent for blood sample collection and further study of biomarkers. The study protocol of the CNSR-III was approved by the ethics committee at Beijing Tiantan Hospital (IRB approval number: KY2015-001-01) and all participating centres. Every participant provided written informed consent before participation.

To eligible for this second analysis research, patients had to meet the following criteria: (1) age 18 or older; (2) hospitalized with a primary diagnosis of acute ischemic stroke or transient ischemic attack; (3) direct hospital admission from a physician's clinic or an emergency department; and (4) informed consent provided by the patient or legally authorized representative. Patients with intracranial hemorrhage, subarachnoid hemorrhage, or undetermined stroke were not included in this study. This study was approved by ethics committee at Beijing Tiantan Hospital (KY2019-109-01).

Data Collection and Management

Patient information, including demographics, risk factors, comorbidities, medications, selected laboratory tests, and hospital-level characteristics, were collected systematically during hospitalization and at discharge by trained research coordinators

BMJ Open

at each participating hospital. National Institutes of Health Stroke Scale (NIHSS) score at admission, and ischemic stroke recurrence, composite vascular event, and modified Rankin Scale (mRS) at 3 months and 1 year after stroke onset were also collected.

Venous blood samples were collected from fasting patients within 24 hours from admission. Serum specimens were extracted, aliquoted, and transported through the cold chain to the central laboratory in Beijing Tiantan Hospital and stored at -80°C. LDL-C measurements were centrally and blindly assayed by enzymatic method on the Cobas 8000 analyzer c702 module (Roche Diagnostics, Mannheim, Germany).

Follow-Up and Clinical Outcome Evaluations

Patients were followed up through face-to-face interviews at 3 months and by telephone interviews at 6 and 12 months by trained research coordinators who followed a standardized interview protocol. Information collected at each follow-up included cardio- and cerebrovascular events, all causes of death, and medications use. Vascular events were confirmed with the treating hospital, and death was either confirmed based on a death certificate issued by the attended hospital or the local civil registry.

The primary outcome was a new stroke (defined as a new neurological deficit lasting more than 24 hours or re-hospitalization with a diagnosis of ischemic stroke, intracerebral hemorrhage, or subarachnoid hemorrhage), LDL-C goal (LDL-C<1.4mmol/L, and LDL-C<1.8mmol/L, respectively) achievement rates and LLT

compliance in China within 3, 6, and 12 months. The secondary outcomes included major adverse cardiovascular events (including stroke, myocardial infarction, or vascular death) and all caused death at 3 months and 12 months. All reported efficacy and safety outcomes were verified by a central independent

adjudication committee blinded to study treatment assignments and baseline LDL-C

level.

 Patients were categorized into four groups according to the baseline LDL-C levels and lipid-lowering treatment during hospitalization and after discharge: LDL-C ≤1.4mmol/L, 1.4mmol/L<LDL-C ≤1.8mmol/L, 1.8 mmol/L<LDL≤2.6mmol/L, LDL>2.6mmol/L.

LLT compliance was defined as the continuation of LLT medication from discharge to 3, 6, or 12 months after the onset of symptoms. Patients assigned to LLT at discharge but later discontinuing LLT at any follow-up point within 3, 6, or 12 months were considered "non-persistent". Patients were considered persistent if they discontinued one medication but replaced it with another statin medication that they continued taking through 3, 6, or 12 months after enrollment.

Statistical analysis

Baseline variables were presented as median with interquartile range (IQR) for continuous variables and percentages for categorical variables. To analyze the association of baseline LDL-C levels and outcomes, we only included those subjects who provided 3-month or 12-month bio-sample. Univariate and

BMJ Open

multivariate Cox proportional hazard regression models were used. The model included the following covariates: age, sex, education, current smoking, heavy drinking, medical history, stroke severity on the NIHSS, history of stroke, history of diabetes, and history of hypertension. Adjusted hazard ratios (HRs) with 95% confidence intervals (CIs) were calculated. The dose-response-relationship curves were also presented.

To analyze the effect of discharge LLT on outcomes, we excluded subjects who reached the end point (stroke recurrence or MACE, death, and loss to follow-up) during hospitalization. We performed a univariate model and multivariate analysis by adjusting for age, sex, education, current smoking, heavy drinking, medical history, stroke severity on the NIHSS, history of stroke, history of diabetes, and history of hypertension.

In addition, to analyze the association of 3-month LDL-C change with stroke recurrence and MACE within 12 months, we excluded subjects who reached the end point (stroke recurrence or MACE, death, and loss to follow-up) within 3 months. All statistical analyses in the study were performed by SAS 9.4 software. All statistical analysis adopted a two-sided test which was performed at a 5% significance level.

Patient and Public Involvement

This registry study was designed and conducted without patient and public involvement. Our results will be disseminated to the public through publication in this journal.

Results

Characteristics of study participants

From August 2015 to March 2018, a total of 15166 patients with acute stroke and TIA were recruited to the CNSR-III and entered our final analysis. The average age of patients was 62.2 ± 11.3 years, 31.7% of patients were women, 14,146 (93.3%) had an index event of stroke, and 1020 (6.7%) had a TIA ¹⁵.

Baseline LDL-C levels

There were 10,738 patients in LDL-C analysis set: 1,407 (13.1%), 1,636 (15.2%),

3,655 (34.0%), and 4,040 (37.6%) patients with the baseline LDL-C \leq 1.4mmol/L,

1.4–1.8mmol/L, 1.8–2.6mmol/L, \geq 2.6mmol/L, respectively (Table 1).

Table 1. Baseline Characteristics for the LDL-C analysis set

3						
4 5 6	Variables	LDL≤1.4mmol/L N=1407	1.4 < LDL≤1.8mmol/L N=1636	1.8 < LDL≤2.6mmol/L N=3655	LDL>2.6mmol/L N=4040	P Value*
7 3	Women, n (%)	378 (26.9)	439 (26.8)	1057 (28.9)	1517 (37.6)	< 0.001
	Mean age, years (SD)	60.8±11.9	62.4±11.3	62.2±11.3	62.8±11.1	< 0.001
)	Ethnicity (non-Han), n (%)	30 (2.1)	49 (3.0)	122 (3.3)	104 (2.6)	0.07
)	Current smoker, n (%)	435 (30.9)	525 (32.1)	1239 (33.9)	1198 (29.7)	< 0.001
 2	Heavy drinker, n (%)*	185 (13.2)	210 (12.8)	545 (14.9)	589 (14.6)	0.12
-	Triglycerides (IQR)	1.3 (0.9-1.9)	1.3 (1.0-1.8)	1.3 (1.0-1.8)	1.5 (1.1-2.0)	< 0.001
, 1	TC, mmol/L	2.7 (2.4-3.1)	3.2 (3.0-3.5)	3.8 (3.5-4.1)	4.9 (4.5-5.5)	< 0.001
	HDL-C, mmol/L	0.8 (0.7-1.0)	0.9 (0.8-1.1)	0.9 (0.8-1.1)	1.0 (0.8-1.2)	< 0.001
,	LDL-C, mmol/L	1.2 (1.0-1.3)	1.6 (1.5-1.7)	2.2 (2.0-2.4)	3.2 (2.9-3.8)	< 0.001
57 58	BMI	24.4 (22.5-26.4)	24.5 (22.7-26.6)	24.4 (22.5-26.4)	24.5 (22.7-26.7)	0.06
	Systolic pressure, mmHg	145.0 (132.5-160.0)	146.5 (133.0-161.0)	148.5 (135.0-163.5)	150.0 (136.0-166.5)	< 0.001
	Medical history, n (%) Ischemic stroke	369 (26.2)	429 (26.2)	715 (19.6)	748 (18.5)	< 0.001

2						
3	TIA	44 (3.1)	46 (2.8)	115 (3.6)	102 (2.5)	0.38
4	Coronary heart diseases	147 (10.5)	193 (11.8)	366 (10.0)	449 (11.1)	0.20
5	Atrial fibrillation	93 (6.6)	124 (7.6)	272 (7.4)	257 (6.4)	0.19
6 7	Hypertension	897 (63.8)	1045 (63.9)	2295 (62.8)	2516 (62.3)	0.62
, 8	Diabetes mellitus	386 (27.4)	394 (24.1)	824 (22.5)	960 (23.8)	0.004
9	Hypercholesterolemia	119 (8.5)	120 (7.3)	302 (8.3)	341 (8.4)	0.56
10 11	NIHSS at admission, median (IQR)	3.0 (1.0-6.0)	3.0 (1.0-6.0)	3.0 (1.0-6.0)	3.0 (1.0-6.0)	< 0.001
12	NIHSS 0-3	743 (52.8)	914 (55.9)	1974 (54.0)	2073 (51.3)	0.009
13	NIHSS≥4	664 (47.2)	722 (44.1)	1681 (46.0)	1967 (48.7)	
14 15	mRS (IQR)	0 (0-1.0)	0 (0-1.0)	0 (0-1.0)	0 (0-0)	< 0.001
15	Stroke subtype, n (%)					
17	LAA	303 (21.5)	390 (23.8)	933 (25.5)	1092 (27.0)	0.0095
18	CE	81 (5.8)	96 (5.9)	251 (6.9)	256 (6.3)	
19	SAO	312 (22.2)	359 (21.9)	740 (20.3)	819 (20.3)	
20	Other	21 (1.5)	16 (1.0)	38 (1.0)	47 (1.2)	
20	Unknown	690 (49.0)	775 (47.4)	1693 (46.3)	1826 (45.2)	
22 23	Prestroke antiplatelet therapy, n (%)	1357 (97.4)	1569 (97.1)	3504 (96.7)	3894 (97.0)	0.57
24	Prestroke LLT, n (%)	1359 (97.6)	1558 (96.4)	3498 (96.5)	3897 (97.1)	0.15
25	Statin, n (%)	1355 (97.3)	1556 (96.3)	3491 (96.3)	3887 (96.9)	0.27
26	TC: total chole	esterol. HDL-C: high-c	density lipoprotein ch	olesterol. LDL-C: low-	density lipoprotein	

TC: total cholesterol. HDL-C: high-density lipoprotein cholesterol. LDL-C: low-density lipoprotein cholesterol. BMI: body mass index. TIA: transient ischemic attack. NIHSS: National Institutes of Health Stroke Scale. mRS: modified Rankin Scale. LAA: large artery atherosclerosis. CE: cardiogenic embolism. SAO: small artery occlusion. LLT: lipid-lowering therapy.

Patients in the lower baseline LDL-C level group ($\leq 1.4 \text{ mmol/L}$) were more likely to

be younger (p<0.0001) and had a greater prevalence of cardiovascular risk factors

(previous stroke, hypertension, hypercholesterolemia, diabetes mellitus, and history of

stroke) (p<0.0001) and lower levels of triglycerides, total cholesterol and high-density

lipoprotein (HDL) (p<0.0001). About 97% of the patients had a history of antiplatelet

and lipid-lowering therapy, and the rates showed no difference among the four

baseline LDL-C groups.

Association between baseline LDL-C levels and outcomes at 3 months and 12

months

There were 656 (6.11%) new stroke occurrences at 3 months and 1037 (9.66%) at 12 months (**Table 2**).

Table 2. Association between baseline LDL-C levels and outcomes at 3 months

and 12 months

	Total	Events (n%)	HR (95% CI) Unadjusted	P value	HR (95% CI) Adjusted	P value
3 months		()	<u>,</u>		5	
Stroke recurrence						
LDL≤1.4mmol/L	1407	69 (4.9)	0.72 (0.55-0.94)	0.01	0.74 (0.57-0.97)	0.03
1.4 <ldl≤1.8mmol l<="" td=""><td>1636</td><td>95 (5.8)</td><td>0.85 (0.68-1.08)</td><td>0.18</td><td>0.89 (0.70-1.12)</td><td>0.32</td></ldl≤1.8mmol>	1636	95 (5.8)	0.85 (0.68-1.08)	0.18	0.89 (0.70-1.12)	0.32
1.8 <ldl≤2.6mmol l<="" td=""><td>3655</td><td>219 (6.0)</td><td>0.88 (0.74-1.05)</td><td>0.17</td><td>0.91 (0.76-1.08)</td><td>0.28</td></ldl≤2.6mmol>	3655	219 (6.0)	0.88 (0.74-1.05)	0.17	0.91 (0.76-1.08)	0.28
LDL>2.6mmol/L	4040	273 (6.8)	Reference	-	Reference	-
Ischemic stroke						
LDL≤1.4mmol/L	1407	65 (4.6)	0.72 (0.55-0.95)	0.02	0.74 (0.56-0.98)	0.03
1.4 <ldl≤1.8mmol l<="" td=""><td>1636</td><td>88 (5.4)</td><td>0.84 (0.66-1.07)</td><td>0.16</td><td>0.87 (0.68-1.11)</td><td>0.27</td></ldl≤1.8mmol>	1636	88 (5.4)	0.84 (0.66-1.07)	0.16	0.87 (0.68-1.11)	0.27
1.8 <ldl≤2.6mmol l<="" td=""><td>3655</td><td>201 (5.5)</td><td>0.86 (0.72-1.04)</td><td>0.11</td><td>0.89 (0.74-1.07)</td><td>0.22</td></ldl≤2.6mmol>	3655	201 (5.5)	0.86 (0.72-1.04)	0.11	0.89 (0.74-1.07)	0.22
LDL>2.6mmol/L	4040	257 (6.4)	Reference	-	Reference	-
Hemorrhagic stroke						
LDL≤1.4mmol/L	1407	4 (0.3)	0.52 (0.18-1.51)	0.23	0.55 (0.19-1.61)	0.28
1.4 <ldl≤1.8mmol l<="" td=""><td>1636</td><td>9 (0.6)</td><td>1.01 (0.46-2.19)</td><td>0.98</td><td>1.03 (0.47-2.26)</td><td>0.93</td></ldl≤1.8mmol>	1636	9 (0.6)	1.01 (0.46-2.19)	0.98	1.03 (0.47-2.26)	0.93
1.8 <ldl≤2.6mmol l<="" td=""><td>3655</td><td>20 (0.6)</td><td>1.00 (0.55-1.84)</td><td>0.99</td><td>0.93 (0.50-1.73)</td><td>0.82</td></ldl≤2.6mmol>	3655	20 (0.6)	1.00 (0.55-1.84)	0.99	0.93 (0.50-1.73)	0.82
LDL>2.6mmol/L	4040	22 (0.5)	Reference	-	Reference	-
MACE						
LDL≤1.4mmol/L	1407	71 (5.1)	0.72 (0.56-0.94)	0.01	0.75 (0.57-0.97)	0.03
1.4 <ldl≤1.8mmol l<="" td=""><td>1636</td><td>100 (6.1)</td><td>0.88 (0.70-1.10)</td><td>0.27</td><td>0.91 (0.72-1.15)</td><td>0.42</td></ldl≤1.8mmol>	1636	100 (6.1)	0.88 (0.70-1.10)	0.27	0.91 (0.72-1.15)	0.42
1.8 <ldl≤2.6mmol l<="" td=""><td>3655</td><td>231 (6.3)</td><td>0.91 (0.77-1.08)</td><td>0.29</td><td>0.93 (0.78-1.11)</td><td>0.43</td></ldl≤2.6mmol>	3655	231 (6.3)	0.91 (0.77-1.08)	0.29	0.93 (0.78-1.11)	0.43
LDL>2.6mmol/L	4040	279 (6.9)	Reference	-	Reference	-
12 months			6.			
Stroke recurrence						
LDL≤1.4mmol/L	1407	114 (8.1)	0.76 (0.62-0.93)	0.009	0.77 (0.62-0.95)	0.01
$1.4 \le LDL \le 1.8 mmol/L$	1636	158 (9.7)	0.91 (0.76-1.08)	0.30	0.92 (0.76-1.10)	0.36
1.8 <ldl≤2.6mmol l<="" td=""><td>3655</td><td>339 (9.7)</td><td>0.87 (0.76-1.01)</td><td>0.06</td><td>0.89 (0.77-1.03)</td><td>0.12</td></ldl≤2.6mmol>	3655	339 (9.7)	0.87 (0.76-1.01)	0.06	0.89 (0.77-1.03)	0.12
LDL>2.6mmol/L	4040	426 (10.5)	Reference	-	Reference	-
Ischemic stroke						
LDL≤1.4mmol/L	1407	102 (7.6)	0.72 (0.58-0.90)	0.004	0.73 (0.59-0.91)	0.00
$1.4 \leq LDL \leq 1.8 mmol/L$	1636	145 (8.9)	0.89 (0.73-1.07)	0.22	0.90 (0.74-1.09)	0.27
$1.8 \le LDL \le 2.6 mmol/L$	3655	304 (8.3)	0.83 (0.72-0.97)	0.02	0.86 (0.74-1.00)	0.04
LDL>2.6mmol/L	4040	400 (9.9)	Reference	-	Reference	-
Hemorrhagic stroke						
LDL≤1.4mmol/L	1407	12 (0.9)	0.96 (0.50-1.84)	0.89	0.97 (0.50-1.88)	0.93
$1.4 \le LDL \le 1.8 mmol/L$	1636	15 (0.9)	1.03 (0.56-1.87)	0.94	1.02 (0.56-1.88)	0.95
$1.8 \le LDL \le 2.6 mmol/L$	3655	37 (1.0)	1.13 (0.72-1.80)	0.59	1.10 (0.69-1.75)	0.69
LDL>2.6mmol/L	4040	36 (0.9)	Reference	-	Reference	-
MACE						
LDL≤1.4mmol/L	1407	119 (8.5)	0.76 (0.62-0.93)	0.008	0.77 (0.62-0.94)	0.01
$1.4 \le LDL \le 1.8 mmol/L$	1636	170 (10.4)	0.94 (0.79-1.12)	0.47	0.94 (0.79-1.13)	0.50
$1.8 \le LDL \le 2.6 mmol/L$	3655	363 (9.9)	0.90 (0.78-1.03)	0.13	0.91 (0.79-1.05)	0.20
LDL>2.6mmol/L	4040	444 (11.0)	Reference	-	Reference	-

LDL-C: low-density lipoprotein cholesterol. MACE: major adverse cardiovascular events.

Page 15 of 31

BMJ Open

Compared with patients with other LDL-C level subgroups, the patients with LDL-C ≤ 1.4 mmol/L had a numerically lower risk of stroke (HR=0.742, 95% CI: 0.568-0.970, p=0.0291), ischaemic stroke (HR=0.741, 95% CI: 0.562-0.976, p=0.0329) and MACE (HR=0.746, 95% CI: 0.573-0.972, p=0.0297) at 3 months. Similar results were found for the outcome of stroke (HR=0.767, 95% CI: 0.622-0.946, p=0.0131), ischaemic stroke (HR=0.731, 95% CI: 0.587-0.911, p=0.0052) and MACE (HR=0.766, 95% CI: 0.624-0.940, p=0.0106) at 12 months after the initial event. Lower baseline LDL-C level was not associated with an increased risk of hemorrhagic stroke at either 3 months or 12 months (**Table 2**). Using a Cox regression model with restricted cubic splines, a strong association was also found between baseline LDL-C level and risk of stroke, ischemic stroke, hemorrhagic stroke, and MACE (**Figure 1**).

Lipid-lowering management, LLT compliance, and association of discharge LLT and outcomes

LLT management and compliance of the included patients during hospitalization, at discharge, 3 months, 6 months, and 12 months after the initial event were shown in **Table 3**.

Table 3. Lipid-lowering Treatment (LLT) and the compliance of patients in

	Hospitalization	Discharge	3 months	6 months	12 months
Non LLT	547 (3.6)	1300 (8.6)	2590 (17.4)	3007 (22.4)	3754 (26.0)
LLT	14506 (96.4)	13831 (91.4)	12271 (82.6)	11726 (77.6)	10682 (74.0)
Compliance					
Non-Persistent	/	/	2147 (15.5)	3382 (24.5)	4863 (35.2)
Persistent	/	/	11684 (84.5)	10449 (75.6)	8968 (64.8)

Over 90% of patients received LLT during hospitalization and for 2 weeks after discharge. The LLT compliance was 84.5% at 3 months, 75.6% at 6 months, and 64.8% at 12 months. The drug regimens of LLT for the patients in CNSR-III at 3 months, 6 months, and 12 months were shown in **Table 4**.

Table 4. Lipid-lowering Treatment of the included patients in CNSR-III at 3-

Patients with statins, N (%) Treatment Hospitalization Discharge 3 months 6 months 12 months Atorvastatin 10527 (69.41) 9851 (64.95) 8656 (57.08) 8228 (54.25) 7470 (49.25) 8770 (89.03) 7442 (70.71) <40mg 8284 (95.7) 7963 (96.78) 7269 (97.35) ≥40mg 3083 (29.29) 1081 (10.97) 372 (4.3) 265 (3.22) 198 (2.65) 3395 (22.39) Rosuvastatin 2903 (19.14) 2779 (18.32) 3546 (23.38) 2489 (16.41) 2983 (87.86) <20mg 2876 (81.15) 2650 (91.38) 2536 (91.29) 2313 (92.93) 412 (12.14) ≥20mg 668 (18.85) 250 (8.62) 242 (8.71) 176 (7.07) Simvastatin 272 (1.79) 239 (1.58) 390 (2.57) 411 (2.71) 444 (2.93) Pravastatin 166 (1.09) 165 (1.09) 137 (0.9) 128 (0.84) 100 (0.66) 25 (0.16) 24 (0.16) 30 (0.2) lovastatin 33 (0.22) 33 (0.22) Fluvastatin 54 (0.36) 53 (0.35) 52 (0.34) 43 (0.28) 47 (0.31)

month, 6-month, 12-month follow-up (n=15166)

Compared with the non-discharge LLT group, LLT at discharge was associated with reduced risk of ischemic stroke (HR=0.65, 95% CI: 0.45-0.94, p=0.02) and stroke recurrence (HR=0.69, 95% CI: 0.48-0.99, p=0.04) at 3 months (**Table 5**).

70 (0.46)

64 (0.42)

61 (0.4)

78 (0.51)

Table 5. The association of Discharge Lipid Lowering Therapy (LLT) and

outcomes

Pravastatin

61 (0.40)

1 2 3

4 5 6

7 8 9

10 11

12 13 14

15 16

17 18 19

20

21

22

23

24

25

26

27

28

29

30

31

32

33 34

35 36

37 38 39

40 41

42 43 44

	Total	Events, (n%)	HR (95% CI) Unadjusted	P value	HR (95% CI) Adjusted	P value
3 months						
Stroke recurrence						
Discharge LLT	13248	269 (2.0%)	0.68(0.48-0.96)	0.03	0.69(0.48-0.99)	0.04
Non discharge LLT	1181	35 (3.0%)	Reference		Reference	
Ischemic stroke						
Discharge LLT	13263	245 (1.9%)	0.68(0.47-0.98)	0.04	0.65(0.45-0.94)	0.02
Non discharge LLT	1188	32 (2.7%)	Reference		Reference	
Hemorrhagic stroke						
Discharge LLT	13740	31 (0.2%)	0.71(0.25-2.01)	0.52	1.19(0.36-3.98)	0.78
Non discharge LLT	1266	4 (0.3%)	Reference		Reference	

MACE Discharge LLT	13248	299 (2.3%)	0.71(0.51-1.003)	0.052	0.74(0.52-1.04)	0.0
Non discharge LLT	1181	37 (3.1%)	Reference		Reference	
12 months						
Stroke recurrence						
Discharge LLT	13248	758 (5.7%)	0.88(0.7-1.12)	0.30	0.89(0.7-1.14)	0.3
Non discharge LLT	1181	75 (6.4%)	Reference		Reference	
Ischemic stroke						
Discharge LLT	13263	683 (5.2%)	0.87(0.68-1.11)	0.26	0.86(0.67-1.10)	0.2
Non discharge LLT	1188	69 (5.8%)	Reference		Reference	
Hemorrhagic stroke						
Discharge LLT	13740	86 (0.6%)	0.97(0.47-2.00)	0.94	1.23(0.56-2.69)	0.6
Non discharge LLT	1266	8 (0.6%)	Reference		Reference	
MACE						
Discharge LLT	13248	838 (6.3%)	0.94(0.75-1.19)	0.60	0.96(0.76-1.21)	0.7
Non discharge LLT	1181	78(6.6%)	Reference		Reference	

Patients who reached the end point (stroke recurrence or MACE, death, and loss to follow-up) during hospitalization were excluded.

LDL-C goal achievement and the association of LDL-C changes (from baseline

to 3 months) with outcomes at 12 months

The overall blood lipid levels at baseline and at 3-month, and 12-month follow-up were shown in **Table 6**. LDL-C goal of 1.8mmol/L was achieved by 28.3% of patients at baseline, 46.7% at 3 months, and 35.4% at 12 months; LDL-C goal of 1.4mmol/L was achieved by 13.1% of patients at baseline, 25.6% at 3 months, and 17.6% at 12 months.

Table 6. Blood Lipid Level of the included patients at baseline, 3 months and 1

year in CNSR-III

Lipids, mmol/L	Baseline	3M	12M
	N=10738	N=6034	N=4899
Median triglycerides (IQR), mmol/L	1.37(1.03-1.87)	1.32(0.98-1.81)	1.46(1.04-2.16)
Total cholesterol, mmol/L	3.97(3.31-4.72)	3.74(3.13-4.54)	3.92(3.25-4.76)
HDL-C, mmol/L	0.93(0.78-1.12)	1.02(0.86-1.21)	0.99(0.79-1.2)
LDL-C, mmol/L	2.31(1.73-2.97)	1.87(1.39-2.55)	2.14(1.57-2.87)
LDL <1.4mmol/L, n (%)	1407 (13.1)	1547 (25.6)	862 (17.6)
1.4 < LDL≤1.8mmol/L, n (%)	1636 (15.2)	1272 (21.1)	872 (17.8)
1.8 < LDL≤2.6mmol/L, n (%)	3655 (34.0)	1785 (29.6)	1533 (31.3)
LDL>2.6mmol/L, n (%)	4040 (37.6)	1430 (23.7)	1632 (33.3)

HDL-C: high-density lipoprotein cholesterol. LDL-C: low-density lipoprotein cholesterol.

We did not find any significant association between the LDL-C reduction rate from

baseline to 3-month follow-up and the risk of stroke and MACE at 12 months (Table

7).

Table 7. Association of LDL-C changes (from baseline to 3 months) with

outcomes at 12 months

Percentage of LDL level decrease (compared to baseline)	Total	Events, (n%)	HR (95% CI) unadjusted	P value	HR (95% CI) adjusted	P value
12 months		6				
Stroke recurrence*						
<30%, n (%)	3526	137 (3.9)	1.48 (0.92-2.39)	0.11	1.42 (0.87-2.30)	0.16
30-50%, n (%)	1146	45 (3.9)	1.50 (0.88-2.56)	0.14	1.44 (0.84-2.47)	0.19
>50%, n (%)	718	19 (2.7)	Reference		Reference	
MACE‡						
<30%, n (%)	3526	149 (4.2) 🧹	1.46 (0.92-2.20)	0.11	1.39 (0.88-2.21)	0.16
30-50%, n (%)	1146	47 (4.1)	1.41 (0.84-2.36)	0.19	1.36 (0.81-2.28)	0.24
>50%, n (%)	718	21 (2.9)	Reference		Reference	

* Patients with stroke recurrence, death, and loss to follow-up within 3 months were excluded.

[‡] Patients with MACE, death, and loss to follow-up within 3 months were excluded.

Discussion

This national hospital-based study described the current LDL-C level and LLT of IS/TIA patients in the real world. We described the LLT management and LDL-C goal achievement. We also found that a lowered baseline LDL-C level was associated with a decreased risk of new ischemic stroke and MACE at both 3 months and 12 months after the initial event, without an increased risk of intracranial hemorrhage. In addition, LLT at discharge was associated with a reduced risk of CV events at 3 and 12 months. Given the large sample size of LDL-C levels of IS/TIA patients and comprehensive prognostic characteristics recorded, these findings may have important clinical implications.

BMJ Open

Firstly, LDL-C of 1.4 mmol/l might be a reasonable target for the high-risk population. Our study indicated that the LDL \leq 1.4 mmol/L group, with the highest risk factors, had the lowest stroke and MACE rates at 3 and 12 months. The paradox of high risk of stroke with low LDL-C level could be due to the previous intensive LLT and rigid LDL-C control. It is consistent with the previous study that fixed-dose statin regimens are less effective than targeting LDL-C levels of 1.8 or 1.4 mmol/l when pre-treatment LDL-C levels exceed 4 mmol/L ¹⁶; and the target of 1.4 mmol/l recently advocated in particularly high-risk patients is most effective when pre-treatment LDL-C exceeds 3 mmol/l ¹⁶. In addition, 2019 ESC/EAS Guidelines for the management of dyslipidaemias set the most aggressive target of less than 1.4 mmol/L and a reduction of more than 50% in LDL-C ¹⁷.

Secondly, our findings suggested that the safety of the LDL-C \leq 1.4mmol/L at least in Chinese population, because this level was not associate with an increased risk of hemorrhagic stroke. Studies of LDL-C and ICH have reported conflicting results. In a twenty-year epidemiologic study, an excess risk of hemorrhagic stroke was observed in patients with uncontrolled hypertension and LDL-C <70 mg/dL (1.8mmol/L) ¹⁸. However, in a subgroup analysis of FOURIER trial ¹⁹, among patients with prior stroke, the risk of hemorrhagic stroke did not increase, even when the median LDL-C decreased from 2.4 mmol/L at randomization to 0.8 (0.5–1.2) mmol/L at 48 weeks in the evolocumab group. All stroke and ischemic stroke rates were reduced, and the rate of hemorrhagic stroke was not significantly changed. Meanwhile, in a systematic review and meta-analysis, the higher level of LDL-C tended to be associated with a

lower risk of hemorrhagic stroke ²⁰. Thus, our study indicated the efficacy and safety of the baseline LDL-C of <1.4 mmol/L in IS/TIA patients, providing evidence for the first and second prevention strategies.

Thirdly, we described the epidemiological characteristics of Chinese IS/TIA patients in relation to their LDL-C levels and LLT. Compared to the study conducted in 2013 ²¹, our study indicated some progress in blood lipid management in mainland China. Notably, about 97% of patients had LLT medication history prior to the entry into our study. Also, compared to the LLT rate of 79.6% in 2013, over 90% of patients in our cohort received LLT during hospitalization and at discharge; the LLT compliance was 84.5% at 3 months, 75.6% at 6 months, and 64.8% at 12 months. In addition, LDL-C goal achievement for 1.8mmol/L had improved mildly, from 27.4% to 35.4%, and LDL-C goal achievement for 1.4mmol/L was 17.6% at 12 months. The less than perfect LLT compliance and LDL-C control rate might be due to statin intolerance in Asian people, including statin-associated myopathy and hemorrhagic stroke ^{22,23}. An earlier meta-analysis indicated that statins increase the risk of hemorrhagic stroke in a medication dose-dependent and type of index brain vascular injury-dependent manner, while PCSK9 inhibitors do not increase hemorrhagic stroke risk ²⁴. Thus, statins, rather than low-level of LDL-C, might closely relate to the risk of hemorrhagic stroke. Accordingly, PCSK9 inhibitors might be a more promising lipidlowering medication class in patients with an elevated risk of hemorrhagic stroke. In addition, our analysis revealed a significant association between LLT at discharge and 3-month outcomes, indicating the importance of early LLT implementation.

BMJ Open

Fourthly, we did not observe the correlation between the 3-month LDL-C decrease amplitude and 12-month outcomes. To analyze the association of 3-month LDL-C change with 12-month outcomes, we excluded subjects who reached the end point within 3 months, which led to a reduction of our sample size and a loss of a considerable number of target events, for most stroke recurrences occurred within 3 months ²⁵. Another critical factor was that we could not adjust some risk factors in the model, such as IL-6 level or the evidence of relevant intracranial artery stenosis (ICAS), which were independent risk factors of the residual risk. Although substantially reduced by secondary prevention treatment, there was still 8.3% residual risk of 12-month recurrent stroke even in patients with persistent adherence to guideline-based secondary stroke prevention ²⁶.

Our study has several limitations. First, only LLT medication use at the follow-up time points was recorded, whereas additional details of use during the whole study, such as continuous use, intermittent use, and the dose changes were not subjected to specific analysis. Thus, lipid-lowering agents use at 3 months and 12 months provided only a partial picture of the course of medication during the study. Second, statin use before admission was not recorded in the study which may confound the results. Furthermore, details of medication use, such as class, dose, duration, and adherence of lipid-lowering agents, did not enter the regression model. Third, there could be some undetected confounding factors in addition to those regarded as the residual risk. Forth, the use of dual antiplatelet therapy may reduce the risk of a 3-month recurrence of stroke for more than half of the patients presented with an initial NIHSS score of

 \leq 3. Fifth, the study was conducted exclusively on Chinese patients. The finding in this study needs to be further validated in studies with a larger sample size and non-Asian populations.

Conclusions

The LDL-C goal achievement has increased mildly in the stroke and TIA population in mainland China, and its further improvement is still an essential task for secondary prevention of stroke. The lowered baseline LDL-C level was significantly associated with a decreased short-and long-term risk of ischemic stroke among stroke and TIA patients. LDL-C<1.4mmol/L could be a safe standard for this population.

Ethics Approval Statement

The study protocol of the CNSR-III was approved by the ethics committee at Beijing Tiantan Hospital (IRB approval number: KY2015-001-01) and all participating centers. Every participant provided written informed consent before participation.

Acknowledgement

We thank Dr. Feng Sheng for his important intellectual contributions to the article. We thank all participating hospitals, their physicians, and nurses. We appreciate all the patients who took part in the CNSR-III.

Competing Interests

The authors have no conflicts of interest to declare.

Funding Sources

This work was supported by the National Key R&D Program of China (No.

2018YFC1312903), National Natural Science Foundation of China (No. 81870905,

BMJ Open

82071295, 81801139), and Beijing Hospitals Authority Innovation Studio of Young Staff Funding Support (Code: 202113).

Contributorship statement

Drs. YY Xu and X Meng conceived and designed the study. Drs. X Meng and YJ Wang served as scientific advisors. Drs. X Meng, ZX Li, Hao Li, and YJ Wang critically reviewed the study proposal. Drs. X Meng, XQ Zhao, LP Liu, and YL Wang collected and assembled the data. Drs. MX Wang and YS Pan did statistical analyses. Drs. YY Xu and WQ Chen interpreted the data. Drs. YY Xu drafted the manuscript and did the language editing. Dr. X Meng is responsible for the overall content as guarantor. All the authors approved the final manuscript as submitted and agree to be accountable for all aspects of the work.

Data sharing statement

The datasets used in this study are not publicly available, but these can be provided on reasonable request after the approval.

Reference

- Wang Y-J, Li Z-X, Gu H-Q, Zhai Y, Jiang Y, Zhao X-Q, Wang Y-L, Yang X, Wang C-J, Meng X, et al. China Stroke Statistics 2019: A Report from the National Center for Healthcare Quality Management in Neurological Diseases, China National Clinical Research Center for Neurological Diseases, the Chinese Stroke Association, National Center for Chronic and Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention and Institute for Global Neuroscience and Stroke Collaborations. *Stroke Vasc. Neurol.* 2020;5:211–239.
- Amarenco P, Bogousslavsky J, Callahan A 3rd, Goldstein LB, Hennerici M, Rudolph AE, Sillesen H, Simunovic L, Szarek M, Welch KMA, et al. Highdose Atorvastatin after Stroke or Transient Ischemic Attack. *N. Engl. J. Med.* 2006;355:549–559.
- Amarenco P, Kim JS, Labreuche J, Charles H, Abtan J, Béjot Y, Cabrejo L, Cha J-K, Ducrocq G, Giroud M, et al. A Comparison of Two LDL Cholesterol Targets after Ischemic Stroke. *N. Engl. J. Med.* 2020;382:9.
- Klijn CJ, Paciaroni M, Berge E, Korompoki E, Kõrv J, Lal A, Putaala J, Werring DJ. Antithrombotic Treatment for Secondary Prevention of Stroke and Other Thromboembolic Events in Patients with Stroke or Transient Ischemic Attack and Non-valvular Atrial Fibrillation: A European Stroke Organisation guideline. *Eur. stroke J.* 2019;4:198–223.

BMJ Open

2		
3		
4	5.	Kleindorfer DO, Towfighi A, Chaturvedi S, Cockroft KM, Gutierrez J,
5		
6		
7		Lombardi-Hill D, Kamel H, Kernan WN, Kittner SJ, Leira EC, et al. 2021
8		
9		Guideline for the Prevention of Stroke in Patients with Stroke and Transient
10		Ourdenne for the revention of Stroke in rations with Stroke and Transfent
11		
12		Ischemic Attack: A Guideline from the American Heart Association/American
13		
14		
15		Stroke Association. Stroke. 2021;52:e364–e467.
16		
17		
18	6.	Amarenco P, Kim JS, Labreuche J, Giroud M, Lee BC, Mahagne MH,
19		
20		Nichochassian N. Simon T. Stac DC. Tauhaul DL at al. Treat Strake to Target
21		Nighoghossian N, Simon T, Steg PG, Touboul PJ, et al. Treat Stroke to Target
22		
23		Trial Design: First Trial Comparing Two LDL Targets in Patients with
24		
25		
26		Atherothrombotic Strokes. Eur. Stroke J. 2019;4:271–280.
27		
28		
	7.	Qureshi AI, Caplan LR. Intracranial Atherosclerosis. Lancet (London,
29		
30		
31		<i>England</i>). 2014;383:984–998.
32		
33		
34	8.	Wong LKS. Global Burden of Intracranial Atherosclerosis. Int. J. stroke Off. J.
35		
36		
37		Int. Stroke Soc. 2006;1:158–159.
38		
39		
40	9.	Mok V, Srikanth V, Xiong Y, Phan TG, Moran C, Chu S, Zhao Q, Chu WWC,
41		
42		Wang A. Hang Z. at al. Daga atheniaity and Comphusi Small Maggal Diagaga
43		Wong A, Hong Z, et al. Race-ethnicity and Cerebral Small Vessel Disease
44		
45		Comparison between Chinese and White Populations. Int. J. stroke Off. J. Int.
46		
47		
48		<i>Stroke Soc.</i> 2014;9 Suppl A1:36–42.
49		
50		
51	10.	Wolma J, Nederkoorn PJ, Goossens A, Vergouwen MDI, van Schaik IN,
52		
53		Wennesden M. Educisies - Di 1. C. (C. OTHED 1. C. 1.). Educisies - 1
54		Vermeulen M. Ethnicity a Risk factor? The Relation between Ethnicity and
55		
56		Large- and Small-vessel Disease in White People, Black People, and Asians
57		
58		
59		within a Hospital-based Population. Eur. J. Neurol. 2009;16:522-527.

 Collins R, Armitage J, Parish S, Sleight P, Peto R. Effects of Cholesterollowering with Simvastatin on Stroke and Other Major Vascular Events in 20536 people with cerebrovascular disease or other high-risk conditions. *Lancet (London, England)*. 2004;363:757–767.

- Oyama K, Giugliano RP, Blazing MA, Park J-G, Tershakovec AM, Sabatine MS, Cannon CP, Braunwald E. Baseline Low-Density Lipoprotein Cholesterol and Clinical Outcomes of Combining Ezetimibe with Statin Therapy in IMPROVE-IT. J. Am. Coll. Cardiol. 2021;78:1499–1507.
- Sabatine MS, Giugliano RP, Keech AC, Honarpour N, Wiviott SD, Murphy SA, Kuder JF, Wang H, Liu T, Wasserman SM, et al. Evolocumab and Clinical Outcomes in Patients with Cardiovascular Disease. *N. Engl. J. Med.* 2017;376:1713–1722.
- McKenney JM, Koren MJ, Kereiakes DJ, Hanotin C, Ferrand A-C, Stein EA. Safety and Efficacy of a Monoclonal Antibody to Proprotein Convertase Subtilisin/Kexin Type 9 Serine Protease, SAR236553/REGN727, in Patients with Primary Hypercholesterolemia Receiving Ongoing Stable Atorvastatin Therapy. J. Am. Coll. Cardiol. 2012;59:2344–2353.
- 15. Wang Y, Jing J, Meng X, Pan Y, Wang Y, Zhao X, Lin J, Li W, Jiang Y, Li Z, et al. The Third China National Stroke Registry (CNSR-III) for Patients with Acute Ischaemic Stroke or Transient Ischaemic Attack: Design, Rationale and Baseline Patient Characteristics. *Stroke Vasc. Neurol.* 2019;4:158–164.

16	Soran H, Adam S, Durrington PN. Optimising Treatment of Hyperlipidaemia:
10.	sorum 11, 7 Adum 5, Durini Stori 114. Optimising Treatment of Hypernplatennu.
	Quantitative Evaluation of UK, USA and European Guidelines Taking Account
	of Both LDL Cholesterol Levels and Cardiovascular Disease Risk.
	Atherosclerosis. 2018;278:135–142.
	Ameroscierosis. 2018,278.155–142.
17	(EAS) TTF for the management of dyslipidaemias of the ES of C (ESC) and
17.	(EAS) IT for the management of dyshpidaennas of the ES of C (ESC) and
	EAS. 2019 ESC/EAS Guidelines for the Management of Dyslipidaemias: Lipid
	Modification to Reduce Cardiovascular Risk. Atherosclerosis. 2019;290:140-
	205
	205.
10	Zhang Y. Liu I. Wang M. Oi Y. Sun I. Liu I. Wang Y. Hao Y. Li Y. Zhau M.
18.	Zhang X, Liu J, Wang M, Qi Y, Sun J, Liu J, Wang Y, Hao Y, Li Y, Zhou M,
	et al. Twenty-year Epidemiologic Study on LDL-C Levels in Relation to the
	Risks of Atherosclerotic Event, Hemorrhagic Stroke, and Cancer Death among
	Risks of Muleroselerotie Event, Hemorningle Stroke, and Caneer Death among
	Young and Middle-aged Population in China. J. Clin. Lipidol. 2018;12:1179-
	1189.e4.
19.	Giugliano RP, Pedersen TR, Saver JL, Sever PS, Keech AC, Bohula EA,
	Murphy SA, Wasserman SM, Honarpour N, Wang H, et al. Stroke Prevention
	Walphy Sri, Wasselman Swi, Honarpour IV, Wang II, et al. Subke Hevenhon
	with the PCSK9 (Proprotein Convertase Subtilisin-Kexin Type 9) Inhibitor
	Evolocumab Added to Statin in High-Risk Patients With Stable
	č
	Atherosclerosis. Stroke. 2020;51:1546–1554.
	Allelosciciosis. <i>Siloke</i> . 2020, <i>3</i> 1.1340–1334.
20	Wang X, Dong Y, Qi X, Huang C, Hou L. Cholesterol Levels and Risk of
<i>2</i> 0.	Thung 23, Doing 1, X123, Huang C, Hou D. Choresteloi Levels and Risk of
	Hemorrhagic Stroke: a Systematic Review and Meta-analysis. Stroke.
	2013;44:1833–1839.
	 16. 17. 18. 19.

21.	Wang C-J, Wang Y-L, Li Z-X, Wang Y-J. The Management of LDL
	Cholesterol and Predictors of Goal Achievement in Stroke Patients in China: A
	Cross-Sectional Study. CNS Neurosci. Ther. 2016;22:577-583.
22.	Tomlinson B, Chan P, Liu Z-M. Statin Responses in Chinese Patients. J.
	Atheroscler. Thromb. 2018;25:199–202.
23.	Tomlinson B, Chan P, Liu Z-M. Statin Intolerance-An Asian Perspective. J.
	Atheroscler. Thromb. 2020;27:485–488.
24.	Sanz-Cuesta BE, Saver JL. Lipid-Lowering Therapy and Hemorrhagic Stroke
	Risk: Comparative Meta-Analysis of Statins and PCSK9 Inhibitors. Stroke.
	2021;52:3142–3150.
25.	Coull AJ, Lovett JK, Rothwell PM. Population Based Study of Early Risk of
	Stroke after Transient Ischaemic Attack or Minor Stroke: Implications for
	Public Education and Organisation of Services. BMJ. 2004;328:326.
26.	Pan Y, Li Z, Li J, Jin A, Lin J, Jing J, Li H, Meng X, Wang Y, Wang Y.
	Residual Risk and Its Risk Factors for Ischemic Stroke with Adherence to
	Guideline-Based Secondary Stroke Prevention. J. stroke. 2021;23:51-60.

BMJ Open

Figure 1. Dose-response-relationship curves

Adjusted odds ratio of events and MACE at 3 months and 12 months according to LDL-C at baseline in patients. (a) stroke at 3 months; (b) ischemic stroke at 3 months; (c) hemorrhagic stroke at 3 months; (d) MACE at 3 months; (e) stroke at 12 months; (f) ischemic stroke at 12 months; (g) hemorrhagic stroke at 12 months; (h) MACE at 12 months. The full line indicates the adjusted hazard ratio and the dashed lines the 95% confidence interval bands. Reference is LDL-C >2.6mmol/L. Data were fitted using a logistic regression model of restricted cubic spline with three knots (the 5th, 50th, 90th percentiles) for LDL-C level, adjusting for potential covariates.

3 months

(b) Isc

2.5

1.5

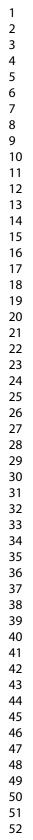
(d) MACE at 3 months

LDL-C, mmol/L

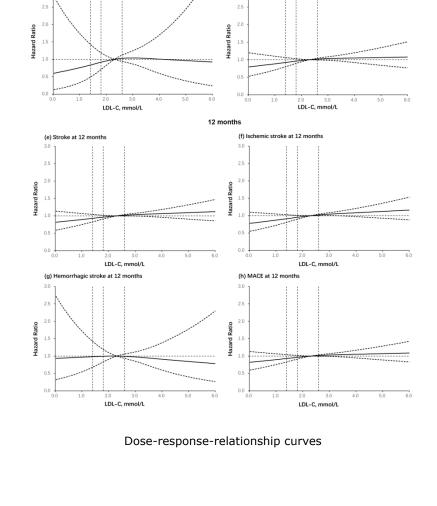
Hazard Ratio

4.0

LDL-C, mmol/L


(c) Hemorrhagic stroke at 3 months

(a) Stroke at 3 mont


2.5

3.0

Hazard Ratio

56 57

STROBE Statement—Checklist of items that should be included in reports of cohort studies

	Item No	Recommendation	Page No
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the	1
		abstract	
		(b) Provide in the abstract an informative and balanced summary of what was	3
		done and what was found	
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being	5
		reported	
Objectives	3	State specific objectives, including any prespecified hypotheses	6
Methods			-
Study design	4	Present key elements of study design early in the paper	7
Setting	5	Describe the setting, locations, and relevant dates, including periods of	8
		recruitment, exposure, follow-up, and data collection	
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of	7
		participants. Describe methods of follow-up	
		(b) For matched studies, give matching criteria and number of exposed and	N/A
		unexposed	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and	8
		effect modifiers. Give diagnostic criteria, if applicable	
Data sources/	8*	For each variable of interest, give sources of data and details of methods of	8
measurement		assessment (measurement). Describe comparability of assessment methods if	
		there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	9
Study size	10	Explain how the study size was arrived at	8
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable,	10
		describe which groupings were chosen and why	
Statistical methods	12	(a) Describe all statistical methods, including those used to control for	10
		confounding	
		(b) Describe any methods used to examine subgroups and interactions	10
		(c) Explain how missing data were addressed	10
		(d) If applicable, explain how loss to follow-up was addressed	11
		(e) Describe any sensitivity analyses	N/A
Results			
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially	11
	15	eligible, examined for eligibility, confirmed eligible, included in the study,	
		completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	N/A
		(c) Consider use of a flow diagram	N/A
			11
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic clinical social)	
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders	
Descriptive data	14*	and information on exposures and potential confounders	
Descriptive data	14*		N/A

Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their	13
		precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	13
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	14
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	
Discussion			
Key results	18	Summarise key results with reference to study objectives	17
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision.	20
		Discuss both direction and magnitude of any potential bias	
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations,	18
		multiplicity of analyses, results from similar studies, and other relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	18
Other informati	on		
Funding	22	Give the source of funding and the role of the funders for the present study and, if	21
		applicable, for the original study on which the present article is based	

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at http://www.strobe-statement.org.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml