

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Determinants of childhood vaccination among children aged 12–23 months in Ethiopia: A multilevel analysis using 2019 Ethiopia mini demographic and health survey

Journal:	BMJ Open
Manuscript ID	bmjopen-2022-069278
Article Type:	Original research
Date Submitted by the Author:	15-Oct-2022
Complete List of Authors:	Sako, Sewunet; Arba Minch University, Department of Health Informatics Gilano, Girma; Arba Minch University, Department of Health Informatics Samuel, Hailegebreal; Arba Minch University,
Keywords:	Community child health < PAEDIATRICS, PREVENTIVE MEDICINE, PUBLIC HEALTH

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

1		
2 3 4	1	Determinants of childhood vaccination among children aged 12–23 months in Ethiopia: A
5 6	2	multilevel analysis using 2019 Ethiopia mini demographic and health survey
/ 8 9	3	
10 11 12	4	Sewunet Sako ^{1*} , Girma Gilano ¹ and Samuel Hailegebreal ¹
13 14	5	
15 16	5	
17 18 10	6	1. Department of Health Informatics, School of Public Health, College of Medicine and Health
19 20 21	7	Sciences, Arba Minch University, Arba Minch, Ethiopia
22 23 24	8	
25 26 27 28 29 30	9	* <u>zesew1lalem@gmail.com</u> – (SS)
	10	
31 32 33	11	P.O. Box 21
34 35 36	12	Word count: 4276
37 38 39 40 41 42		
43 44 45 46 47		
48 49 50 51		
52 53 54 55 56 57		
58 59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
10	
17	
10	
20	
20	
21	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
3/ 20	
38 20	
27 70	
-+0 ⊿1	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
bU	

13	Abstract
14	Objective: vaccination is a highly cost-effective critical element than any other healthcare service
15	in reaching larger population globally. Due to different reasons, we are facing new emergence and
16	resurgence of vaccine preventable diseases currently. Thus, study was aimed at identifying current
17	prevalence and associated factors in Ethiopia.
18	Design: Community based cross-sectional study
19	Setting: We used data from 2019 Ethiopia Mini Demographic and Health Survey (EMDHS). The
20	survey included all the nine regional states and two city administrations of Ethiopia.
21	Participants: A weighted sample of 1,008 children 12-23 months of age was included in the
22	analysis.
23	Main outcome measures: Multilevel proportional odds model was fitted to identify determinants
24	of childhood vaccination status. In the final model, variables with p-value of less than 5% and an
24 25	of childhood vaccination status. In the final model, variables with p-value of less than 5% and an adjusted odds ratio with a 95% CI reported.
24 25 26	of childhood vaccination status. In the final model, variables with p-value of less than 5% and an adjusted odds ratio with a 95% CI reported. Result: The full childhood vaccination coverage of Ethiopia was 39.09% (95% CI: 36.06%,
24 25 26 27	of childhood vaccination status. In the final model, variables with p-value of less than 5% and an adjusted odds ratio with a 95% CI reported. Result: The full childhood vaccination coverage of Ethiopia was 39.09% (95% CI: 36.06%, 42.28). Maternal education, being in union, keeping vaccination cards, children received Vitamin
24 25 26 27 28	of childhood vaccination status. In the final model, variables with p-value of less than 5% and an adjusted odds ratio with a 95% CI reported. Result: The full childhood vaccination coverage of Ethiopia was 39.09% (95% CI: 36.06%, 42.28). Maternal education, being in union, keeping vaccination cards, children received Vitamin A ₁ , living in Afar, Somali, Gambela, Harari, Dire Dawa regions, and rural residents were factors
24 25 26 27 28 29	of childhood vaccination status. In the final model, variables with p-value of less than 5% and an adjusted odds ratio with a 95% CI reported. Result: The full childhood vaccination coverage of Ethiopia was 39.09% (95% CI: 36.06%, 42.28). Maternal education, being in union, keeping vaccination cards, children received Vitamin A ₁ , living in Afar, Somali, Gambela, Harari, Dire Dawa regions, and rural residents were factors significantly associated with childhood vaccination.
24 25 26 27 28 29 30	of childhood vaccination status. In the final model, variables with p-value of less than 5% and an adjusted odds ratio with a 95% CI reported. Result: The full childhood vaccination coverage of Ethiopia was 39.09% (95% CI: 36.06%, 42.28). Maternal education, being in union, keeping vaccination cards, children received Vitamin A ₁ , living in Afar, Somali, Gambela, Harari, Dire Dawa regions, and rural residents were factors significantly associated with childhood vaccination. Conclusion: The coverage of full childhood vaccination in Ethiopia was low remained unchanged
24 25 26 27 28 29 30 31	of childhood vaccination status. In the final model, variables with p-value of less than 5% and an adjusted odds ratio with a 95% CI reported. Result: The full childhood vaccination coverage of Ethiopia was 39.09% (95% CI: 36.06%, 42.28). Maternal education, being in union, keeping vaccination cards, children received Vitamin A ₁ , living in Afar, Somali, Gambela, Harari, Dire Dawa regions, and rural residents were factors significantly associated with childhood vaccination. Conclusion: The coverage of full childhood vaccination in Ethiopia was low remained unchanged since 2016. The study identified both the individual- and community-level factors affected the
24 25 26 27 28 29 30 31 32	of childhood vaccination status. In the final model, variables with p-value of less than 5% and an adjusted odds ratio with a 95% CI reported. Result: The full childhood vaccination coverage of Ethiopia was 39.09% (95% CI: 36.06%, 42.28). Maternal education, being in union, keeping vaccination cards, children received Vitamin A ₁ , living in Afar, Somali, Gambela, Harari, Dire Dawa regions, and rural residents were factors significantly associated with childhood vaccination. Conclusion: The coverage of full childhood vaccination in Ethiopia was low remained unchanged since 2016. The study identified both the individual- and community-level factors affected the vaccination status. Accordingly, public health intervention targeted to these identified factors can

34 Keywords: full vaccination; multilevel; ordinal, 12-23 months children; Ethiopia

2 3 4 5	35
6 7	36
8 9	37
10 11 12	38
12 13 14	39
15 16	40
17 18	41
19 20 21	42
22 23 24 25	43
26 27	44
28 29 30	
31 32	
33 34	
35 36 27	
37 38 30	
40 41	
41	
43 44 45	
45 46	
47 48	
49 50	
51 52	
53 54	
55	
56 57	
58 59	

1

Strengths and limitations of this study 35

- This study used most recent nationwide secondary data that shows proportion of EPI • coverage among children aged 12-23 months in Ethiopia.
 - Data of 1,008 children was extracted from the 2019 Ethiopia mini demographic and health survey (EMDHS) dataset for this analysis.
- We used multilevel proportional odds model to overcome the hierarchical nature of • , n in. EMDHS data and to identify both individual and community-level factors of EPI.
 - Recall bias is the most relevant limitation of the study. •

Page 5 of 31

BMJ Open

45 Introduction

According to the United Nations Children Fund (UNICEF), vaccination is a dynamic constituent of frontline health care to access larger population compared to any health or social activities by reducing global annual death by significant proportion (1-4). It save lives and protects peoples' health, improves countries' productivity and resilience, and helps to ensure a safer and healthier world(5,6). Vaccine preventable diseases become the big burden in war affected parts of the world and underdeveloped countries like Ethiopia(7); despite the existence of highly cost-effective vaccines on global markets(8). The global inequality health care distribution forced many low and middle income countries to live under the bundle of pestilent cumulative old health problems(9). Regardless of advancement and attainments of immunization, new emergence and resurgence of vaccine preventable diseases become very common. There are still people who deprived of accessing immunization in some countries which are becoming the reason for of vaccine preventable diseases at large-scale as the disparities honestly admitted by World Health Organization (WHO) and other studies 2018(10–12). This fact is also true in Ethiopia where studies described that educated and rich people get their children vaccinated by nearly 30% to 31% in the country (13). Due to this fact, globally, an estimated 6.6 million children still die every single year and half of the deaths would have been prevented by vaccination(14).

As Africa is of the regions severely affected by global imbalanced immunization resources, the overview of the proportion of the fully immunization become the apparent reflection of the fact (1,15). Some evidences indicated that global vaccine coverage is decreasing in some countries and at global level(16). The study summarized the Demographic Health Surveys (DHS) of Sub-Saharan countries showed that the coverage was limited to 59.40% in 2021(17). In Mogadishu full immunization coverage was 45.2% and (41.4%) in 2020 and 2021 respectively(18,19). In Togo

the full immunization coverage was 69.3% in Lome district in 2019(20). In Ethiopia a study in Southeast Ethiopia showed that full immunization coverage was 76.8%(21); however, the most recent pooled prevalence of vaccination amongst 12–23 month old children in the country was 47% in 2020(22). EDHS 2016 demonstrated that coverage of full vaccination was 38.3%(23). The magnitude of full vaccination increased from 14.3% in 2000 to 38.5% in 2016 from other study(24). All evidence indicates the most recent coverage of full vaccination is not adequate as per early increase referenced.

There are a number of factors that are superimposed the argument that resources disparities might be the only cause of poor coverage. A systematic review conducted in Sub-Saharan countries showed lack of knowledge of immunization, distance to access point, financial deprivation, lack of partners support, and distrust in vaccines and immunization programs were the barrier to utilization(25). The absence of immunization card, respondents' sex, level of education, marital status, and organization of health system has been mentioned in another study(20). A study included larger sub Saharan countries showed maternal education, health facility delivery, fathers secondary education and above, ANC visits, PNC visit, wealth index, media exposure, and distance to health facility affected full vaccination coverage(17). In Ethiopia, from previous four EDHS, postnatal check-up, awareness, regional difference, educational status, residence, and women wealth index influenced full vaccination(13.22,26). From other study antenatal care visit, higher level of maternal education, mothers' good knowledge on immunization, short distance to health facility, and being born in health institutions determined complete immunization of a child(27).

In summary, evidences of poor complete immunization varied from vaccination resourcelimitation to the individual and community constraining factors. The initial hope of eradicating

BMJ Open

91 vaccine preventable diseases become just a hope and the current reports showed coverage 92 dwindling again. Despite those mentioned factors, researching for new events leading to decreased 93 coverage which become an issue because of emerging and remerging vaccine preventable 94 outbreaks deserve further country level analysis. Therefore, this study aimed discovering further 95 prevalence and associated factors to assist in policy improvements.

- 96 Methods
- 97 Study design

This study used the 2019 cross-sectional data of Ethiopian mini demographic and health survey
(EMDHS). The survey dataset used in this analysis was obtained from demographic and health
survey website (http://dhsprogram.com/data/) after getting permission to access the data. The mini
survey was conducted in March 2019 to June 2019 for the second time in Ethiopia. The Ethiopian
Public Health Institute (EPHI) in collaboration with Central Statistical Agency (CSA) and Federal
Ministry of Health (FMOH) implemented a nationally representative household survey.

Participants

The 2019 EMDHS used the sampling frame created for the upcoming Ethiopia population and housing census list of 149,093 enumeration areas (EA). Participants of the study were selected through a stratified two-stage cluster sampling technique. Initially, each region of the country was stratified into urban and rural areas. Probability proportional to EA size was used to select 305 EAs (93 in urban and 212 in rural areas). In the second stage, lists of households were used as a sampling frame to select 30 households per cluster by equal probability systematic selection technique. Eligible women for the interview were all women aged 15-49 and residents of the selected households. Accordingly, 8,885 women were interviewed out of 9,012 eligible women

2	
3	
4	
5	
6	
7	
/	
8	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
18	
10	
20	
20	
21	
22	
23	
24	
25	
25	
20	
27	
28	
29	
30	
31	
27	
22	
33	
34	
35	
36	
37	
38	
20	
39	
40	
41	
42	
43	
44	
45	
45	
46	
47	
48	
49	
50	
51	
51	
52	
53	
54	
55	
56	
57	
57	
58	
E 0	

60

1

identified for interviews, giving a response rate of 98.6%. All living children age 12–23 months at
the time of the survey were the source population of the study. The details of the survey methods
and procedures are available in the 2019 Ethiopia Mini Demographic and Health Survey report
(28).

117 Eligibility criteria

All children born in the 2 years preceding the survey were included in the analysis. However,
children who were not alive at the time of the survey were excluded from this study. Accordingly,
data of 1,008 children who had born in the last 2 years and surviving were extracted from the 2019
EMDHS datasets for this analysis.

122 Study setting

The EMDHS survey included all the nine regions and two city administrations of the country.
 Ethiopia is the second most populous country from Africa and located in the horn of Africa.

125 Measurements of variables of the Study

126 **Dependent variable**

127 Child vaccination status was the outcome variable of the study. The outcome variable was ordered
 128 into three categories: not vaccinated, partially vaccinated and fully vaccinated.

Fully vaccinated: is a child that has received one dose of Bacille Calmette-Guerin (BCG), three doses of pentavalent, three doses of polio, two doses of Rota, three doses of pneumococcal conjugate vaccine (PCV), and one dose of measles (MCV1).

132 **Partially vaccinated**: is a child who had missed at least one or more of the thirteen vaccines/doses.

133 Not vaccinated: is a child that has not received any vaccine at all.

Page 9 of 31

BMJ Open

The interviewers of the 2019 EMDHS obtained information on vaccination coverage from written vaccination cards (infant immunization card and other health cards), from mothers' verbal reports, and from health facility records. They request mothers who born child in the three preceding years of the survey to show the infant immunization card or health card. Subsequently, they copy the dates of each vaccination given in the corresponding questionnaire. Similarly, they ask mother who did not kept the cards to recall whether the child received that specific vaccination and the number of doses that the child received. In addition, to complement these data (information collected based on the mother's recall) the field supervisor collect complementary vaccination records from health facility for a child who visited a health facility and missed vaccination data.

143 Independent variables

In this study, we considered both individual and community-level independent variables. The individual-level variables included were maternal age, maternal educational level, religion, marital status, relationship to household head, sex of household head, wealth index, number of antenatal care (ANC) visits, place of delivery, utilized postnatal care, presence of vaccination document, birth order number, preceding birth interval, sex of child, received vitamin A1, total children ever born, and number of under five children in household. While region, type of place of residence, community women education, community poverty, and community ANC utilization were community-level factors of the study. Region is a grouping of the first administrative level of Ethiopia. During the survey period, there were 9 regions and 2 city administrations in the country namely, Tigray, Amhara, Afar, Oromia, Somali, Benishangul-Gumuz, South nations nationalities and people's region (SNNPR), Gambela, Harari, and two city administrations (Addis Ababa and Dire Dawa). Moreover, community women education, community poverty and community ANC utilization were community-level variables derived by aggregating individual-level factors. They

were categorized as "low" or "high" based on the median value since the EMDHS were notnormally distributed.

159 Data processing and statistical analysis

The data were cleaned, re-coded and analyzed using STATA/SE version 14.0. Descriptive statistics were used to summarize both the individual- and community-level variables. Sample weight was applied to manage for sampling errors and non-responses. The hierarchical nature of the DHS data (or sampling methods DHS apply) violates the assumption of independence or lack of correlation of the residuals. In the DHS survey, observations are interdependent as participants nested in the same cluster are more likely to function in the same way than participants nested in different clusters in terms of the outcome of interest. As a result, we used a two-level multilevel proportional odds model since a single-level traditional statistical model might not be adequate to control for the clustering effect. Moreover, we used multilevel proportional odds model to consider the natural ordering of the response variable (not vaccinated, partially vaccinated and fully vaccinated). Accordingly, four consecutive models were built to identify determinants of child vaccination in Ethiopia. We first fitted the null model or the intercept only model. Then, model 1 was fitted with the individual-level variables only that were initially significant at p-value of <0.25. Similarly, model 2 (with only community-level factors) was constructed. Finally, model 3 or the mixed-effects model was fitted with both individual- and community-level factors. The intra-class correlation coefficient (ICC) was used to determine the clustering effect or community variation and it was calculated using the following formula.

 $177 \qquad \text{ICC} = \frac{V_A}{V_A + \frac{\pi^2}{3}}$

 Page 11 of 31

BMJ Open

Where: V_A is community level variance and $\frac{\pi^2}{3}$ is individual level variance, which is equal to 3.29. On the other hand, Proportional Change in Variance (PCV), Median Odds Ratio (MOR), and Deviance were checked by using the following formulas to determine the fitness of the model. PCV = $\frac{V_0 - V_i}{V_0}$. Where: V_0 is variance in the null model and V_i is variance in the consecutive models. MOR = $e^{0.95V_i}$ where: V_i indicates that cluster variance. The model with the lowest deviance (Model III) was selected as the best-fitted model. Furthermore, the proportional odds assumption that states the effect of each factor is assumed to be equal across the outcome categories was examined by score test. Variance Inflation Factor (VIF) was tested to assess the presence of multicollinearity among the independent variables and the mean VIF was found to be 1.60, indicating absence of multicollinearity (min 1.03 and max 2.76). In bivariable analysis, variables with p-value less than 0.25 were considered as candidate variables for the multivariable multilevel proportional odds analysis. Finally, in the multivariable analysis variables with p-value less than 5% and adjusted proportional odds ratio (APOR) with the 95% confidence interval were reported as statistically significant variables with child vaccination in Ethiopia.

192 Patient and public involvement

193 Patients and/or the public were not involved in the design, or conduct, or reporting, or194 dissemination plans of this research.

195 Result

196 Individual and community-level characteristics of mothers and children

197 The current study included 1,008 mothers who have children aged 12-23 months. Out of the total 198 respondents, more than half (52.78%) were in the range of 25-34, nearly half (48.91%) did not 199 attended education, and almost one-third (32.14%) were Orthodox religion followers. In this study,

four out of ten mothers (39.98%) were from high income households and the majorities (94.05%) were currently in union. Among the participants, less than half (44.15%) were practiced home delivery, nearly a quarter (24.31%) had no ANC visit, and almost one-tenth (13.99%) received PNC service. Majority of the mothers (71.73%) kept immunization document and 88.1% of the interviewed mothers have less than or equal to 2 under five children in their households. From the total number of children, half (50.30%) were males, 22.72% were first-born, and 59.33% were received the most recent vitamin A1. Three-fourth of respondents (73.51%) was from rural areas and 12.6% were from Oromia region of the country (Table 1).

Table 1: Individual and community-level characteristics of mothers of children aged 12-23 months in Ethiopia, 2019

Variables	Frequency (n)	Percentage (%)
Maternal age	· Z.	
15-24	298	29.56
25-34	532	52.78
35-49	178	17.66
Maternal education	4	2/.
No education	493	48.91
Primary	342	33.93
Secondary	99	9.82
Higher	74	7.34
Marital status		
Not in union	60	5.95

Page 13 of 31

BMJ Open

	In union	948	94.05
Religion			
	Orthodox	324	32.14
	Protestant	177	17.56
	Muslim	481	47.72
	Others	26	2.58
Relation	ship to household head		
	Household head	167	16.57
	Wife or husband	730	72.42
	Others	111	11.01
Sex of ho	ousehold head	6	
	Male	797	79.07
	Female	211	20.93
Wealth i	ndex	2	
	Poor	469	46.53
	Middle	136	13.49
	Rich	403	39.98
Number	of ANC visits		
	None	245	24.31
	1-3 times	313	31.05
	4 and above	450	44.64
Place of	delivery		
	Ш	115	44.15

Health facility	563	55.85
PNC service		
No	836	86.01
Yes	136	13.99
Sex of child		
Male	507	50.30
Female	501	49.70
Birth order number		
1 st born	229	22.72
2 nd to 3 rd	372	36.90
4 th to 5 th	204	20.24
6 th and above	203	20.14
Presence of vaccination document	10	
No	285	28.27
Yes	723	71.73
Preceding birth order		5
< 24 months	186	18.45
24-48	357	35.42
48 and above	465	46.13
Received Vitamin A1		
No	410	40.67
Yes	598	59.33
Total children ever horn		

	1-3 children	598	59.33
	4-6 children	278	27.58
	7 and above	132	13.10
Number of	f <5 children in household		
	≤ 2	888	88.10
	> 2	120	11.90
Region			
	Tigray	93	9.23
	Amhara	111	11.01
	Afar	99	9.82
	Oromia	127	12.60
	Somali	85	8.43
	Benishabgul	83	8.23
	SNNPR	116	11.51
	Gambela	77	7.64
	Harari	73	7.24
	Addis Ababa	64	6.35
	Dire Dawa	80	7.94
Type of pla	ace of residence		
	Urban	267	26.49
	Rural	741	73.51
Communit	y women education		
	Low	468	46.43

High	540	53.57
Community poverty		
Low	495	49.11
High	513	50.89
Community ANC utilization		
Low	468	46.43
High	540	53.57

210 Childhood vaccination status in Ethiopia

The full vaccination coverage among children aged 12-23 months in Ethiopia was 39.09% (95% CI: 36.06%, 42.28) (Fig. 1). On the other hand, two in ten children (22.32%) of 12-23 months have not received any vaccination during three years before the 2019 survey period. Among the total children of 12-23 months included in the study, 70.24% received BCG, 57.84% received the third dose of pentavalent, 55.75% received the third dose of polio, 60.62% received the second dose of rotavirus vaccine, 55.16% received the third dose of PCV, and 57.04% received the first dose of measles vaccination (Fig. 2).

218 Factors affecting child vaccination in Ethiopia

219 The fixed effect analysis result

The multivariable analysis showed that maternal educational level, maternal age, marital status, presence of vaccination document, received Vitamin A₁, region, place of residence, and community women education were significantly associated variables with childhood vaccination. Children who were born from mothers who attended primary, secondary, and higher schools were 2.2 [AOR=2.16; 95% CI: 1.43-3.26], 2 [AOR=2.02; 95% CI: 1.07-3.79], and 2.7 [AOR=2.67; 95% Page 17 of 31

BMJ Open

	225	CI: 1.25-5.71] respectively times more likely to be partially or fully vaccinated as compared to
	226	children whose mothers have no education. The odds to be partially or fully vaccinated was 1.8
	227	[AOR=1.79; 95% CI: 1.08-2.99] times higher among children whose mothers were in the age range
)	228	of 35-49 as compared to those children whose mothers were in the age range of 15-19. Children
<u>2</u> 3	229	whose mothers were currently in union were 2.2 [AOR=2.21; 95% CI: 1.06-4.58] times more
F 5	230	likely to be partially or fully vaccinated than their counterparts. Children whose mothers kept
) 7 }	231	vaccination cards were 26 [AOR=26.18; 95% CI: 15.75-43.53] times more likely to be partially or
)	232	fully vaccinated as compared to those children whose mothers did not kept vaccination cards.
2	233	Compared with children who have not received Vitamin A_1 (the most recent), the likelihood to be
5 - :	234	partially or fully vaccinated was 4 [AOR=4.14; 95% CI: 2.9-5.9] times higher for children who
, 5 ,	235	received Vitamin A ₁ . Children from Afar [AOR=0.14; 95% CI: 0.04-0.45], Somali [AOR=0.19;
3)	236	95% CI: 0.06-0.60], Gambela [AOR=0.22; 95% CI: 0.06-0.77], Harari [AOR=0.14; 95% CI: 0.04-
)	237	0.52], and Dire Dawa [AOR=0.23; 95% CI: 0.06-0.79] regions were less likely to be partially or
- 3 4	238	fully vaccinated as compared to those children from Tigray region. Children living in rural areas
5	239	were 47% [AOR=0.53; 95% CI: 0.30-0.93] less likely to be partially or fully vaccinated than
7 3	240	children living in urban areas of the country. Children in the community with high level of maternal
,)	241	education had 47% [AOR=0.53; 95% CI: 0.29-0.97] lower odds of partially or fully vaccinated as
<u>2</u> 3	242	compared to children in the community with low maternal education (Table 2).
ŀ		

Table 2: Multivariable multilevel ordinal logistic regression analysis of individual and community-level determinants of child vaccination in Ethiopia, 2019

J		Null	Mode1 I	Mode1 II	Mode1 III
<u>}</u>	Variables	Mode1	AOR (95% CI)	AOR (95% CI)	AOR (95% CI)
				()	
		For peer review only -	http://bmiopen.bmi.com/s	ite/about/guidelines.xhtml	

Maternal ed	ucational level		
	No education	1	1
	Primary	1.97 (1.33, 2.93)**	2.16 (1.43, 3.26)***
	Secondary	1.80 (0.97, 3.33)	2.02 (1.07, 3.79)*
	Higher	2.85 (1.35, 6.02)	2.67 (1.25, 5.71)*
Maternal ag	e		
	15-24	1	1
	25-34	1.13 (0.78, 1.63)	1.15 (0.79, 1.66)
	35-49	1.81 (1.09, 3.02)*	1.79 (1.08, 2.99)*
Religion		- 0	
	Orthodox	1	1
	Protestant	0.46 (0.27, 0.77)**	0.69 (0.36, 1.30)
	Muslim	0.71 (0.47, 1.09)	1.28 (0.73, 2.24)
	Other	0.39 (0.14, 1.22)	0.56 (0.18, 1.68)
Marital statu	18		
	Not in union	1	1
	In union	1.84 (0.89, 3.80)	2.21 (1.06, 4.58)*
Relationship	to HH head		
Household head Wife or husband Others		1	1
		0.79 (0.50, 1.23)	0.72 (0.46, 1.14)
		0.67 (0.36, 1.27)	0.62 (0.33, 1.17)
Household v	wealth index		
	Poor	1	1

	Middle	0.83 (0.51, 1.35)	0.77 (0.47, 1.29)
	Rich	1.28 (0.83, 1.97)	1.05 (0.63, 1.74)
Number of A	NC visits		
	None	1	1
	1-3	0.97 (0.61, 1.53)	0.99 (0.63, 1.58)
	4 and above	1.40 (0.86, 2.29)	1.27 (0.77, 2.09)
Place of deliv	very		
	Home	1	1
	Health facility	1.22 (0.82, 1.83)	1.11 (0.74, 1.66)
PNC utilized		(No.	
	No	1	1
	Yes	1.04 (0.67, 1.63)	1.05 (0.67, 1.65)
Immunizatio	n document		
	Available	1	1
	Not available	27.32 (16.44,45.41)***	26.18(15.75,43.53)**
Preceding bi	rth interval	0	
	< 24 months	1	1
	24-48 months	1.07 (0.69, 1.65)	1.04 (0.67, 1.62)
	48 and above	1.05 (0.67, 1.65)	1.06 (0.67, 1.67)
Received Vit	amin A ₁		
	No	1	1
	Yes	4.32 (3.04, 6.15)***	4.14 (2.9, 5.9)***
Number of <	5 children		

Page 20 of 31

BMJ Open

dren	0.62 (0.	36, 1.07)	1 0.08 (0.03, 0.23)*** 0.59 (0.24, 1.48)	0.68 (0.39, 1.16) 1 0.14 (0.04, 0.45)**
			1 0.08 (0.03, 0.23)*** 0.59 (0.24, 1.48)	1 0.14 (0.04, 0.45)**
			1 0.08 (0.03, 0.23)*** 0.59 (0.24, 1.48)	1 0.14 (0.04, 0.45)**
			0.08 (0.03, 0.23)*** 0.59 (0.24, 1.48)	0.14 (0.04, 0.45)**
			0.59 (0.24, 1.48)	
			(, , ,	0.5 (0.22, 1.13)
			0.21 (0.09, 0.48)***	0.45 (0.18, 1.09)
			0.08 (0.03, 0.22)***	0.19 (0.06, 0.60)**
			1.13 (0.37, 3.40)	0.74 (0.25, 2.22)
			0.19 (0.08, 0.45)***	0.48 (0.19, 1.17)
			0.38 (0.12, 1.22)	0.22 (0.06, 0.77)*
			0.43 (0.12, 1.48)	0.14 (0.04, 0.52)**
			• 1.27 (0.39, 4.14)	1.14 (0.37, 3.47)
			0.78 (0.23, 2.62)	0.23 (0.06. 0.79)*
ence			2	
			1	1
			0.25 (0.14, 0.44)***	0.53 (0.30, 0.93)*
lucation				
			1	1
			1.04 (0.56, 1.94)	0.53 (0.29, 0.97)*
			1	1
			0.98 (0.55, 1.77)	1.11 (0.62, 2.00)
	lence	lence	lence	0.38 (0.12, 1.22) 0.43 (0.12, 1.48) 1.27 (0.39, 4.14) 0.78 (0.23, 2.62) lence 1 0.25 (0.14, 0.44)**** ducation 1 1.04 (0.56, 1.94) 1 0.98 (0.55, 1.77)

60

BMJ Open

0011111	unity AIVC utilization				
	Low	1	1		
	High	1.81 (0.83, 3.96)	0.87 (0.41, 1.83)		
245	Key $* = p < 0.05$, $* = p < 0.01$, $* = p < 0.00$)1			
246	The random effect analysis result				
247	Table 3 presents the random effect analysis	result of childhood vaccination statu	us in Ethiopia. The		
248	appropriateness of application of multilevel analysis and the presence of significant variations of				
249	childhood vaccination status between clusters (the clustering effect) was justified by the ICC of				
250	Null model (48.19%). The value of ICC decreased from 48.19% in the null model to 14.55% in				
251	the final model showing the effect of clu	stering was more or less controlle	ed. In addition, as		
252	depicted in the table below the largest PC	V of final model (81.70%) indicate	es the goodness of		
253	model fitness. In another words, the final model (Model 3) has the highest capacity than model I				
254	or model II alone to explain the variations	in childhood vaccination status. On	top of that, Model		
255	III was the best explanatory model able to	explain the variation in childhood	vaccination status		
256	between the clusters since the value of devia	ance observed in the final model wa	s smallest than the		
257	remaining models (Table 3).				

Parameters	Null Model	Model I	Model II	Model III
Community level Variance (SE)	3.06	0.76	1.21	0.56
PCV (%)	Reference	75.16%	60.46%	81.70%
ICC (%)	48.19%	18.77%	26.89%	14.55%

MOR	5.31	2.29	2.84	2.03
Log-likelihood	-988.74	-684.36	-919.88	-667.78
Deviance	1,977.48	1,368.72	1,839.76	1,335.56
AIC	1983.49	1418.72	1873.77	1413.56
BIC	1998.24	1540.70	1957.34	1603.86

Discussion

From this analysis, complete immunization in Ethiopia was 39.08%. Compared to other studies in the country, it is less than 76.8% in South East (21), 47% pooled prevalence(22), and 67% in 2016 from other study(29). It is also less than 59.40% summarized Sub-Saharan coverage(17), 69.21% in East Africa(29), 45.2% in Mogadishu (18), and 69.3% in Togo in 2019(20). It is 38.3% from 2016 EDHS which is in the confidence interval. This indicates that the current prevalence of full immunization unchanged over time. The reasons might be political instabilities in the country in the last five years, while it might also be due to the increased inequalities health service access regardless of increased population in these years because of less resource development. Un-education (48.91%) of mothers is also decades old persistent problem; however, it was still improved from 67% in 2015(26). It is also better than regional recent figure (Sub-Saharan countries)(17). Although there are some improvements from previous, there is an ample of gaps from expected standard which might indicate efforts short of effectiveness. Poverty, which is another old problem, is also persisted as only 39.98% mothers were from high income families. From other study, 36.6% mothers were from wealthy families (26). Despite the issue with full vaccination, other socioeconomic factors showed some improvements over the last few years; however, their effect might be insignificant to influence vaccination due to the unstable market inflation that might be cancelling its development.

Page 23 of 31

BMJ Open

The evidence from the current study also showed, maternal education had positive association with higher level complete immunization category which is also similar from other studies(17,24,26). The consistence might indicate that education is an independent predictor of complete immunization which needs undivided attention. Education is evidenced by individually and community level influences. Increased maternal age puts mothers in the higher level of full immunization category. Other studies also showed higher age has association with full immunization(3,17). This might indicate maturity is an important factor in caring for own child, which might also indicate early marriage, child bearing at younger age, and age at first birth needs adequate consideration in birth planning. Children whose mothers remained in union had higher tendency to be in higher category of full immunization. From previous studies, there are consistent findings(17,18). This might be an indication that disrupted family might be tight in self-survival activities than looking after their children and so that staying in union should be encouraged. Mothers who keep evidence of vaccination tend to be in higher category of immunization coverage. This is also true for some studies(18,19,26). This means, women who keeps children evidence of vaccination might have indeed great regards for full immunization while carelessness might start from poor evidence keeping. Children who received Vitamin A_1 had higher chance of completing full vaccination. The fact that vitamin A supplied towards the end of most vaccine might raise to this association (12). This might be another persist issue we never eased in previous efforts as per evidence from this study and could be set as an objective to attain other sub-objectives. Ethiopia further classified in city administrations, agrarian, and pastoralist regions. Pastoralists regions like Afar and Somali in relation with agrarian but semi pastoralist regions like Gambela, Benishangul Gumuz and Harari had higher tendency of failing to low category of full immunization. All other country level data analysis indicated similar facts(26). This is also

confirmed by other studies that compared developed and underdeveloped regions(24,26). The issue here is very apparent that attention deprived regions should be the next intervention areas. This problem is relatively similar between the rural and urban place of residence. Other studies also laud that inequalities between rural and urban residence need careful considerations(13). This might be apparently due to access, awareness, and availability. This study provided fabulous information for the scientific community; however, it should advisable to use it in recalling secondary data, disproportional nature of the data, and cross sectional nature of the data. Authors followed standards of data handling as per guidelines of DHS, weighted data, and performed explicit analysis described under method section to relax possible limitations.

310 Conclusion

Although full immunization increased from EDHS 2000 to 2016, the current analysis of EMDHS result showed it was indeed remained unchanged. The analysis identified many factors that might be contributed for the no changed. Maternal educational level, maternal age, marital status, presence of vaccination document, received Vitamin A₁, region, place of residence, and community women education were some of the contributors. Analyzing associated factors showed some of the factors are old enough causing the problem for decades. Even though the political situation in the country might also contributed to the persistency of these factors, it is advisable that accessibility, awareness, available coupled with maternal education and poverty especially family and maternal capacity remained critical and need all round efforts like further government commitment, dedicated international supports, and peace and security can override the problem.

Abbreviation/Acronyms: Demographic Health Survey (DHS); Ethiopian Demographic Health
Survey (EDHS); Ethiopian Mini-Demographic Health Survey(EMDHS); World Health
Organization (WHO); United Nations Children's Fund (UNICEF); Adjusted Odds Ratio (AOR);

Page 25 of 31

1 2

BMJ Open

2 2	
J ∧	
- -	
5	
7	
/ Q	
0 0	
10	
11	
12	
12	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	

59

60

Antenatal Care (ANC); Postnatal Care (PNC); Pneumococcal Conjugate Vaccine (PCV); and Measles Containing Vaccine (MCV); Bacille Calmette-Guerin (BCG); South Nations Nationalities and Peoples Region (SNNPR); Intra-class Correlation Coefficient (ICC); Median Odds Ratio (MOR), Confidence Interval (CI)

328 **Declarations**

329 Ethics approval and consent to participate

330 This study used secondary data from demographic and health survey data files. Initially, the MEASURE DHS team was formally requested to access the datasets by completing the online 331 request form on their website (www.dhsprogram.com). Accordingly, permission to access the data 332 333 and the letter of authorization was obtained from ICF international. Therefore, for this study consent to participate is not applicable. We kept all data confidential, and no effort was made to 334 identify households or individuals. The Ethiopian Health Nutrition and Research Institute 335 (EHNRI) Review Board and the National Research Ethics Review Committee (NRERC) at the 336 Ministry of Science and Technology of Ethiopia, approved EMDHS 2019. The authors also 337 confirm that all methods were carried out in accordance with relevant guidelines and regulations. 338

- 339 **Consent for publication**
- 340 Not applicable

341 Availability of data and materials

The survey dataset used in this analysis are third party data from the demographic and health survey website (<u>www.dhsprogram.com</u>) and permission to access the data is granted only for registered DHS data user.

345 Competing interests

2
3
4
5
5
6
7
8
9
10
11
11
12
13
14
15
16
17
10
18
19
20
21
22
22
23
24
25
26
27
28
20
29
30
31
32
33
34
35
22
30
37
38
39
40
41
יד עע
42
43
44
45
46
47
12
40
49
50
51
52
53
51
54 55
22

60

346 The authors have declared that no competing interest existed.

347 Funding

1

348 The authors received no specific funding for this work.

349 Authors' contribution

350 SS has obtained and analyzed the EMDHS data. SS, GG, SH were equally involved in the 351 conception of the study, interpreted the results, drafted and critically revised the manuscript. All

authors have read and approved the final version of the manuscript.

353 Acknowledgments

354 The authors are grateful to Measure DHS, ICF International Rockville, Maryland, USA for

allowing us to use the 2019 EMDHS data.

1 2 3 4 5	357	References					
6 7	358	1.	WHO vaccine-preventable diseases : monitoring system . 2020 global summary.				
8 9 10	359		2022;2020:2–3.				
11 12	360	2.	Chepkurui V, Amponsah-dacosta E, Haddison EC. Characterization of National				
13 14 15	361		Immunization Programs in the Context of Public Health Emergencies : A Case Study of				
16 17 18	362		13 Countries in the WHO Africa Region. Front public Heal. 2021;9(September):1–12.				
19 20	363	3.	South Africa : WHO and UNICEF estimates of immunization coverage : 2016 revision				
21 22	364		South Africa : WHO and UNICEF estimates of immunization coverage : 2016 revision.				
23 24 25	365		2018;1–18.				
26 27 28	366	4.	WHO. Immunization coverage. 2022;(July 2021):3–7.				
29 30 21	367	5.	Patel MK, Goodson JL, Alexander JP Jr., et al. Progress Toward Regional Measles				
31 32 33	368		Elimination — Worldwide, 2000–2019. MMWR Morb Mortal Wkly Rep 2020;69:1700–				
34 35 36	369		1705. Poliomyelitis. World Health Organization; 2019.				
37 38	370	6.	World Health Organization [WHO]. Counting the impact of vaccines. 2021;(April):2017-				
39 40	371		9. Available from: https://www.who.int/news-room/feature-stories/detail/counting-the-				
41 42 43	372		impact-of-vaccines				
44 45 46	373	7.	Ghendon Y. Vaccine preventable viral diseases in developing countries. World J				
40 47 48	374		Microbiol Biotechnol. 1991 Mar;7(2):115-20. doi: 10.1007/BF00328980. PMID:				
49 50 51	375		24424922.				
52 53	376	8.	Brenzel L, Wolfson LJ, Fox-Rushby J, et al. Vaccine-preventable Diseases. In: Jamison				
54 55 56 57 58	377		DT, Breman JG, Measham AR, et al., editors. Disease Control Priorities in Developing				
59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml				

1 2			
2 3 4 5	378		Countries. 2nd edition. Washington (DC): The International Bank for Reconstruction a.
6 7	379	9.	Rodrigues CMC, Plotkin SA. Impact of Vaccines; Health, Economic and Social
8 9	380		Perspectives. Front Microbiol. 2020;11(July).
10 11 12 13	381	10.	WHO. Organisation Mondiale Vaccine-Preventable Diseases And Immunization. 2021;71.
14 15	382	11.	Raslan R, El Sayegh S, Chams S, Chams N, Leone A, Hajj Hussein I. Re-Emerging
16 17 18	383		Vaccine-Preventable Diseases in War-Affected Peoples of the Eastern Mediterranean
18 19 20	384		Region—An Update. Front Public Heal. 2017;5(October):1-8.
21 22 23	385	12.	WHO. Global Immunization News (GIN). 2017;(January).
24 25 26	386	13.	Shibre G, Zegeye B, Idriss-wheeler D, Yaya S. Inequalities in measles immunization
27 28	387		coverage in Ethiopia : a cross-sectional analysis of demographic and health surveys 2000
29 30 31	388		– 2016. BMC Infect Dis. 2020;20:1–12.
32 33	389	14.	Greenwood B. 2014 The contribution of vaccination to global health: past, present and
34 35 36	390		future. Phil. Trans. R. Soc. B. 2014; 369: 20130433.
37 38	391		http://dx.doi.org/10.1098/rstb.2013.0433.
39 40 41	392	15.	Ethiopia : WHO and UNICEF estimates of immunization coverage : 2019 revision
42 43	393		Ethiopia : WHO and UNICEF estimates of immunization coverage : 2019 revision.
44 45 46	394		2021;1–28.
47 48	395	16.	Figueiredo A De, Were F. Local trends in immunisation coverage across Africa. Lancet
49 50 51	396		[Internet]. 2019;393(10183):1779-81. Available from: http://dx.doi.org/10.1016/S0140-
52 53	397		6736(19)30702-0
54 55 56 57 58	398	17.	Fenta SM, Biresaw HB, Fentaw KD. Determinants of full childhood immunization among
59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 29 of 31

1 2			
- 3 4	399		children aged 12 – 23 months in sub-Saharan Africa : a multilevel analysis using
5 6 7	400		Demographic and Health Survey Data. Trop Med Health. 2021;49:29.
8 9	401	18.	Mohamud MHT, Magan MA, Mohamed LM, Mohamud MA, Muse AA. Barriers for full
10 11 12	402		immunization coverage among under 5 years children in Mogadishu, Somalia. J Fam
13 14 15	403		Med Prim Care. 2020;9(6):2664–9.
16 17	404	19.	Yadita ZS, Ayehubizu LM (2021) Full immunization coverage and associated factors
18 19	405		among children aged 12–23 months in Somali Region, Eastern Ethiopia. PLoS ONE.2021
20 21	406		16(12): e0260258. https://doi.org/10.1371/journal. pone.0260258. Available from:
22 23 24	407		http://dx.doi.org/10.1371/journal.pone.0260258
25 26 27	408	20.	Zida-Compaore WIC, Ekouevi DK, Gbeasor-Komlanvi FA, Sewu EK, Blatome T,
28 29	409		Gbadoe AD, et al. Immunization coverage and factors associated with incomplete
30 31	410		vaccination in children aged 12 to 59 months in health structures in Lomé. BMC Res
32 33 34	411		Notes [Internet]. 2019;12(1):1-7. Available from: https://doi.org/10.1186/s13104-019-
35 36 37	412		4115-5
37 38 39	413	21.	Legesse E, Dechasa W. An assessment of child immunization coverage and its
40 41 42	414		determinants in Sinana District, Southeast. BMC Pediatr [Internet]. 2015;15:1-14.
43 44	415	22.	Nour TY, Farah AM, Ali OM, Abate KH. Immunization coverage in Ethiopia among 12 -
45 46	416		23 month old children : systematic review and meta-analysis. BMC Public Health
47 48 49	417		[Internet]. 2020;20:1–12. Available from: https://doi.org/10.1186/s12889-020-09118-1
50 51 52	418	23.	Tamirat KS, Sisay MM. Full immunization coverage and its associated factors among
53 54	419		children aged 12 – 23 months in Ethiopia : further analysis from the 2016 Ethiopia
55 56 57	420		demographic and health survey. BMC Public Health. 2019;19:1–7.
58 59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1

2			
3 4	421	24.	Wondimu A, Cao Q, Asuman D, Almansa J, Postma MJ. Understanding the Improvement
5 6	422		in Full Childhood Vaccination Coverage in Ethiopia Using Oaxaca – Blinder
7 8 9	423		Decomposition Analysis. vaccines. 2020;8:1–11.
10 11 12	424	25.	Bangura JB, Xiao S, Qiu D, Ouyang F, Chen L. Barriers to childhood immunization in
13 14 15	425		sub- Saharan Africa : A systematic review. 2020;20:1108.
16 17	426	26.	Lakew Y, Bekele A, Biadgilign S. Factors influencing full immunization coverage among
18 19	427		12 - 23 months of age children in Ethiopia : evidence from the national demographic and
20 21 22	428		health survey in 2011. BMC Public Health. 2015;15:1–8.
23 24 25	429	27.	Girmay A, Dadi AF. Full Immunization Coverage and Associated Factors among Children
25 26 27	430		Aged 12-23 Months in a Hard-to-Reach Areas of Ethiopia. hindawi. 2019;2019:8.
28 29 30	431	28.	Ethiopian Public Health Institute (EPHI) and ICF. 2019. Mini Demographic and Health
31 32 33	432		Survey 2019: key Indicators. Rockville, Maryland, USA: EPHI and ICF. 2019. 35 p.
34 35	433	29.	Gelaye SS, Yenit MK, Baraki AG. Rural Vaccination Coverage Among Children Aged
36 37 29	434		12–23 Months Was Higher Than the Urban Counterparts: A Comparative Cross-Sectional
39 40	435		Study in Pawi District, Ethiopia. Pediatr Heal Med Ther. 2021;Volume 12:119–27.
41 42 43	436		
44 45 46	437		
47 48 49	438		
50 51 52	439		
53 54 55 56 57	440		
59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Fig. 1: Vaccination status of children aged 12-23 months in Ethiopia, 2019

.onth. Fig. 2: Percentage of children aged 12-23 months who received a particular vaccine in

Ethiopia, 2019

BMJ Open

Determinants of childhood vaccination among children aged 12–23 months in Ethiopia: A community-based crosssectional study

Journal:	BMJ Open
Manuscript ID	bmjopen-2022-069278.R1
Article Type:	Original research
Date Submitted by the Author:	23-Jan-2023
Complete List of Authors:	Sako, Sewunet; Arba Minch University, College of Medicine and Health Sciences, School of Public Health, Department of Health Informatics, Arba Minch, Ethiopia Gilano, Girma; Arba Minch University, College of Medicine and Health Sciences, School of Public Health, Department of Health Informatics, Arba Minch, Ethiopia Samuel, Hailegebreal; Arba Minch University, College of Medicine and Health Sciences, School of Public Health, Department of Health Informatics, Arba Minch, Ethiopia
Primary Subject Heading :	Public health
Secondary Subject Heading:	Health services research
Keywords:	Community child health < PAEDIATRICS, PREVENTIVE MEDICINE, PUBLIC HEALTH

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni
2	
3	
4	
5	
6	
7	
, 0	
0	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
10	
יקו רר	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
22	
22	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
<u>1</u> 5	
40 17	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
50	
20	
59	
60	

1	Determinants of childhood vaccination among children aged 12–23 months in Ethiopia: A
2	community-based cross-sectional study
3	
4	Sewunet Sako ^{1*} , Girma Gilano ¹ and Samuel Hailegebreal ¹
5	
6	1. Department of Health Informatics, School of Public Health, College of Medicine and Health
7	Sciences, Arba Minch University, Arba Minch, Ethiopia
8	
9	* <u>zesew1lalem@gmail.com</u> – (SS)
10	
11	P.O. Box 21
12	Word count: 4276

58 59

60

BMJ Open

2 3 4 5	13	Abstract
6 7	14	Objective: Childhood vaccination is a cost-effective essential service to reach larger population
8 9 10	15	globally. Due to unclear reasons, new emergence and resurgence of vaccine preventable diseases
11 12	16	gets increase. Thus, the aim of this study is to identify prevalence and determinants of childhood
13 14 15	17	vaccination in Ethiopia.
16 17	18	Design: Community based cross-sectional study
18 19 20	19	Setting: We used data from 2019 Ethiopia Mini Demographic and Health Survey (EMDHS). The
21 22	20	survey included all the nine regional states and two city administrations of Ethiopia.
23 24 25	21	Participants: A weighted sample of 1,008 children 12-23 months of age was included in the
26 27	22	analysis.
28 29 30	23	Main outcome measures: Multilevel proportional odds model was fitted to identify determinants
31 32	24	of childhood vaccination status. In the final model, variables with p-value of less than 5% and an
33 34 35	25	adjusted odds ratio with a 95% CI reported.
36 37	26	Result: The full childhood vaccination coverage of Ethiopia was 39.09% (95% CI: 36.06%,
38 39 40	27	42.28). Mothers attended primary [AOR=2.16; 95% CI: 1.43-3.26], secondary [AOR=2.02; 95%
41 42	28	CI: 1.07-3.79], and higher schools [AOR=2.67; 95% CI: 1.25-5.71], being in union [AOR=2.21;
43 44 45	29	95% CI: 1.06-4.58], kept vaccination cards [AOR=26.18; 95% CI: 15.75-43.53], children received
45 46 47	30	Vitamin A ₁ [AOR=4.14; 95% CI: 2.9-5.9], living in Afar [AOR=0.14; 95% CI: 0.04-0.45], Somali
48 49	31	[AOR=0.19; 95% CI: 0.06-0.60], Gambela [AOR=0.22; 95% CI: 0.06-0.77], Harari [AOR=0.14;
50 51 52	32	95% CI: 0.04-0.52], Dire Dawa [AOR=0.23; 95% CI: 0.06-0.79] regions, and rural residents
53 54 55 56 57	33	[AOR=0.53; 95% CI: 0.30-0.93] were factors significantly associated with childhood vaccination.

1 2		
2 3 4	34	Conclusion: The coverage of full childhood vaccination in Ethiopia was low remained unchanged
5 6	35	since 2016. The study identified both the individual- and community-level factors affected the
7 8 9	36	vaccination status. Accordingly, public health intervention targeted to these identified factors can
10 11	37	increase childhood full vaccination status.
12 13 14	38	Keywords: full vaccination; multilevel; ordinal, 12-23 months' children; Ethiopia
15 16 17	39	Strengths and limitations of this study
18 19	40	• This study used most recent nationwide secondary data that shows proportion of EPI
20 21 22	41	coverage among children aged 12–23 months in Ethiopia.
23 24	42	• Data of 1,008 children was extracted from the 2019 Ethiopia mini demographic and health
25 26 27	43	survey (EMDHS) dataset for this analysis.
28 29	44	• We used multilevel proportional odds model to overcome the hierarchical nature of
30 31	45	EMDHS data and to identify both individual and community-level factors of EPI.
32 33 34	46	• Establishing temporal relationship of causation between childhood vaccination and its
35 36	47	determinants was impossible due to the nature of the study design used for the survey.
37 38 39	48	Recall bias is the most relevant limitation of the study.
40 41 42	49	
42 43 44	50	
45 46		
47 48 40		
50 51		
52 53		
54 55		
56 57		
58 59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

51 Introduction

According to the United Nations Children Fund (UNICEF), immunizations is a dynamic constituent of frontline health care to access larger populations. Compared to any other health or social activities, immunization reduces global annual death by significant proportion(1–4). It saves lives and protects people's health, improves countries' productivity and resilience, and helps to ensure a safer and healthier world(5,6).

According to the Ethiopian Ministry of Health, a child takes OPV₀ and BCG at Birth. At six weeks after birth, a child takes OPV1(oral polio vaccine), Pentavalent1(DPT+HepB+HIb), Pneumococcall, and Rotavirus1. Then 10 weeks after birth the child takes OPV2, and Pentavalent2, Pneumococcal2, and Rota2. The child takes OPV3, Pentavalent3, Pneumococcal3, Inactivated polio vaccine (IPV) at 14th weeks. Other vaccines such as Measles Containing Vaccine (MCV1) at 9th month and MCV2 at 15th month and human papilloma virus (HPV) at 14th years for girls are given. However, this study only considers vaccines between 1 to 2 years. All vaccines are equally important(7). Currently, Ethiopia do not provide Rubella, Mumps and chickenpox vaccines to immunize children. Depending on the amount of immunity or protection after receiving a dose, a child may require more than one dose for some vaccine(8). Additionally, more than one dose is needed to build high enough immunity to prevent disease and boost immunity that fades over time(9). For vaccines that do not initiate full protection at first introduction, additional dose of vaccine usually repeated (10). However, this does not mean one vaccine is better than the other is or more important than another since it depends on the nature of the disease.

Globally, about 6.6 million children die every year and half of the deaths would have been
prevented by vaccination(11). The global inequality in health care distribution force many low and
middle income countries to live under the bundle of pestilent cumulative old health problems(12).

Africa is among the regions severely affected by globally imbalanced immunization resources distribution. Vaccine preventable diseases become the big burden in war affected parts of the world and underdeveloped countries like Ethiopia(13). Despite the existence of highly cost-effective vaccines on global markets, situations such as war, displacements, under vaccination, and poor access to vaccine contributes to the prevalence of vaccine preventable disease(14). The proportion of the full immunization reflects how resources distribution caused the imbalance in childhood vaccination(1,15).

Regardless of advancement and attainments of immunization, newly emerging vaccine preventable diseases become still common in Africa(16). There are people who deprived of accessing immunization in some countries and becoming the reason for the prevalence of vaccine preventable diseases as admitted by World Health Organization (WHO) and other studies(17–19). In Ethiopia a study has described that educated (30%) and rich (31%) people better vaccinate their children(20).

Some evidences indicated that global vaccine coverage is decreasing(21). A study summarized the Demographic Health Surveys (DHS) of Sub-Saharan African countries showed that the full vaccination coverage was 59.40% in 2021(22). In Mogadishu, full immunization was 45.2% and 41.4% in 2020 and 2021 respectively (22–24). In Togo, the full immunization coverage was 69.3% in Lome district in 2019(25). In Ethiopia, the full immunization coverage is 76.81% in the Southeast region(26); however, the pooled prevalence amongst 12–23 month old children in Ethiopia is 47%(27). EMDHS 2019 demonstrated that coverage of full vaccination was 44(28)%. The magnitude of full vaccination was increased from 14.3% in 2000 to 44% in 2019(29). From this, we understand that the coverage of full vaccination is not adequate.

Page 7 of 37

BMJ Open

Many factors that support the argument of resource disparities as a reason for low coverage in some countries. A systematic review conducted in Sub-Saharan African countries showed that lack of knowledge of immunization knowledge, distance to access point, financial deprivation, lack of partners support, and distrust in vaccines and immunization programs were the barrier(30). The absence of immunization card, respondents' sex, level of education, marital status, and organization of health system are mentioned in another study(25). A study included many sub Saharan African countries showed that maternal education, health facility delivery, fathers secondary education and above, ANC visits, PNC visit, wealth index, media exposure, and distance to health facility affected the vaccination coverage(22). In Ethiopia, from previous four EDHS, postnatal check-up, maternal awareness, regional difference (economic, education and life style), educational status, residence, and women wealth index have been influenced vaccination(20,27,31). From another study antenatal care visit, higher level of maternal education, good knowledge of immunization, short distance to health facility, and institutional delivery were the determinants of childhood immunization(32).

Different small scale and large scale (national level) studies have been done to identify the determinants of childhood vaccination in the country. However, majority of the studies conducted did not examined natural ordering of child's vaccination status as fully, partially, or not vaccinated at all. Hence, we used multilevel proportional odds model which overcomes the hierarchal nature of the DHS data and considers natural ordering of the outcome variable. In addition, the coverage of full vaccination still remains far behind the national health sector transformation plan II of Ethiopia (75% by 2024/25)(33), showing the need for further study. Therefore, this study aimed determining prevalence of childhood vaccination coverage and its determinants to assist in policy improvements.

119 Methods

120 Study design

This study used the 2019 cross-sectional data of Ethiopian mini demographic and health survey (EMDHS). We obtained the dataset from demographic and health survey website (http://dhsprogram.com/data/) after getting permission to access. The mini survey was conducted in March 2019 to June 2019 for the second time in Ethiopia. The Ethiopian Public Health Institute (EPHI) in collaboration with Central Statistical Agency (CSA) and Federal Ministry of Health (FMOH) implemented a nationally representative household survey.

127 Study setting

128 The EMDHS survey included all the nine regions and two city administrations of the country.129 Ethiopia is the second most populous country from Africa and located in the horn of Africa.

130 Participants

The 2019 EMDHS used the sampling frame created for the upcoming Ethiopia population and housing census list of 149,093 enumeration areas (EA). Participants of the study were selected through a stratified two-stage cluster sampling technique. Initially, they stratified each region in the country into urban and rural areas. Probability proportional to EA size was used to select 305 EAs (93 in urban and 212 in rural areas). In the second stage, lists of households were used as a sampling frame to select 30 households per cluster by equal probability systematic selection technique. Eligible participants for the interview were all women aged 15-49 years and who were the residents of the selected households. Accordingly, 8,885 women were interviewed out of 9,012 eligible women, giving a response rate of 98.6%. All living children age 12–23 months at the time

BMJ Open

1 2		
2 3 4	140	of the survey were the source population of the study. The details of the survey methods and
5 6 7	141	procedures are available in the 2019 EMDHS report (29).
8 9	142	Eligibility criteria
10 11	143	All children born in the 2 years preceding the survey were included in the analysis. However,
12 13 14	144	children who were not alive at the time of the survey were excluded from this study. Accordingly,
15 16	145	data of 1,008 children who had born in the last 2 years and surviving were extracted from the 2019
17 18	146	EMDHS datasets for this analysis (Fig. 1).
19 20 21 22	147	Measurements of variables of the Study
23 24	148	Dependent variable
25 26	149	Child vaccination status was the outcome variable of the study. We categorized the outcome
27 28 29	150	variable as not vaccinated, partially vaccinated and fully vaccinated.
30 31	151	Fully vaccinated: is a child that has received one dose of Bacille Calmette-Guerin (BCG), three
32 33	152	doses of pentavalent, three doses of polio, two doses of Rota, three doses of pneumococcal
34 35 36	153	conjugate vaccine (PCV), and one dose of measles (MCV1).
37 38 39	154	Partially vaccinated : is a child who had missed at least one or more of the thirteen vaccines/doses.
40 41	155	Not vaccinated: is a child that has not received any vaccine at all.
42 43 44	156	The interviewers of the 2019 EMDHS obtained information on vaccination coverage from written
45 46	157	vaccination cards (infant immunization card and other health cards), from mothers' verbal reports,
47 48	158	and from health facility records. They request mothers who born child in the three preceding years
49 50 51	159	of the survey to show the infant immunization card or health card. Subsequently, they copy the
52 53	160	dates of each vaccination given in the corresponding questionnaire. Similarly, they ask mother
54 55 56 57 58 59	161	who did not kept the cards to recall whether the child received that specific vaccination and the

number of doses that the child received. In addition, to complement these data (information collected based on the mother's recall) the field supervisor collects complementary vaccination records from health facility for a child who visited a health facility and missed vaccination data. Finally, a Health Facility Questionnaire was used to record vaccination information for all children without a vaccination card seen during the mother's interview; however, we dropped records with the missing data.

168 Independent variables

In this study, we considered both individual and community-level variables. The individual-level variables included are maternal age, maternal educational level, religion, marital status, relationship to household head, sex of the household head, wealth index, number of antenatal care (ANC) visits, place of delivery, utilized postnatal care, presence of vaccination document, birth order number, preceding birth interval, sex of child, vitamin A1, total children ever born, and number of under five children in household. Region, type of place of residence, community women education, community poverty, and community ANC utilization are community-level factors of the study. Region is a grouping of the first administrative level of Ethiopia. During the survey period, there were 9 regions and 2 city administrations in the country namely, Tigray, Amhara, Afar, Oromia, Somali, Benishangul-Gumuz, South nations nationalities and people's region (SNNPR), Gambela, Harari, and two city administrations (Addis Ababa and Dire Dawa). Moreover, community women education, community poverty and community ANC utilization were community-level variables derived by aggregating individual-level factors. They were categorized as "low" or "high" based on the median value since the EMDHS were not normally distributed.

Page 11 of 37

BMJ Open

Information regarding the wealth index is derived from data collected in the Household Questionnaire. The questionnaire includes queries concerning the household's ownership of several consumer items such as television and car; dwelling characteristics such as flooring material; type of drinking water source; toilet facilities; and other characteristics related to wealth status. Each household asset for which information is collected is assigned a weight or factor score generated through principal components analysis (PCA). The resulting asset scores are standardized about a standard normal distribution with a mean of zero and a standard deviation of one. These standardized scores then used to create the breakpoints that define wealth quintiles as Lowest, Second, Middle, Fourth, and Highest(34). Here, we further categorized the wealth index into poor (lowest plus poor), average (middle), and rich (rich plus highest).

194 Data processing and statistical analysis

The data were cleaned, re-coded and analyzed using STATA/SE version 14.0. We used numbers, mean, percentage or proportions to describe both the individual- and community-level variables. We used sample weight to manage sampling errors and non-responses. The hierarchical nature of the DHS data (DHS sampling methods) violates the assumption of independence or lack of correlation of the residuals. In the DHS survey, observations are interdependent as participants nested in the same cluster may behave in the same way and differ to other clusters in terms of the outcome of interest, consequently, we used a two-level multilevel proportional odds model, as single-level traditional statistical model might not be adequate to control for the clustering effect. Moreover, we used multilevel proportional odds model to consider the natural ordering of the response variable (not vaccinated, partially vaccinated and fully vaccinated). Accordingly, we built four consecutive models to identify determinants of child vaccination in Ethiopia. We first fitted the null model or the intercept only model. Then, model 1 was fitted with the individual-level

variables. Similarly, we fitted model 2 (with community-level factors). Finally, model 3 or the
mixed-effects model was fitted with both individual- and community-level factors. The intra-class
correlation coefficient (ICC) was used to determine the clustering effect or community variation
and it was calculated using the following formula.

 $211 \qquad \text{ICC} = \frac{V_A}{V_A + \frac{\pi^2}{3}}$

Where: V_A is community level variance and $\frac{\pi^2}{3} = 3.29$ is individual level variance. On the other hand, we checked Proportional Change in Variance (PCV), Median Odds Ratio (MOR), and Deviance by using the following formulas to determine the fitness of the model. PCV = $\frac{V_0 - V_i}{V_0}$. Where: V_0 is a variance in the null model and V_i is a variance in the consecutive models. MOR = $e^{0.95V_i}$ where: V_i indicates that cluster variance. The last model showed the lowest deviance (Model III) and become the best-fitted model. Furthermore, we examined the proportional odds assumption that assume the equal effect of each factor across the outcome categories by score test. We checked Variance Inflation Factor (VIF) and found 1.60 to assess the presence of multicollinearity. The finding is in the acceptable range. In bi-variable analysis, we kept variables with p-value less than 0.25 for the multivariable multilevel proportional odds analysis. Finally, in the multivariable analysis, we reported variables with p-value less than 5%, adjusted proportional odds ratio (APOR) and 95% confidence interval.

224 Patient and public involvement

Patients and/or the public were not involved in the design, or conduct, or reporting, ordissemination plans of this research.

Result

228	Individual an	d community-l	evel charact	teristics of 1	mothers and	children
-----	---------------	---------------	--------------	----------------	-------------	----------

The current study included 1,008 mothers who have children aged 12-23 months. Out of the total respondents, more than half (52.78%) were in the age range of 25-34 years, nearly half (48.91%) have not attended education, and almost one-third (32.14%) were Orthodox religion followers. Four out of ten mothers (39.98%) were from high income households and the majorities (94.05%) were currently in union. Among the participants, less than half (44.15%) were practiced home delivery, nearly a quarter (24.31%) had no ANC visit, and almost one-tenth (13.99%) received PNC service. Majority of the mothers (71.73%) kept immunization document and 88.1% of the interviewed mothers have less than or equal to two under five children in their households. From the total number of children, half (50.30%) were males, 22.72% were first-born, and 59.33% were received the most recent vitamin A1. Three-fourth of respondents (73.51%) was from rural areas and 12.6% were from Oromia region of the country (Table 1).

Table 1: Individual and community-level characteristics of mothers of children aged 12-23
months in Ethiopia, 2019 (n=1008)

Variables	Frequenc	y (n) Percentage (%)
Maternal age		7/
15-24	298	29.56
25-34	532	52.78
35-49	178	17.66
Maternal education		
No education	493	48.91
Primary	342	33.93

Secondary	99	9.82	
Higher	74	7.34	
Marital status			
Not in union	60	5.95	
In union	948	94.05	
Religion			
Orthodox	324	32.14	
Protestant	177	17.56	
Muslim	481	47.72	
Others	26	2.58	
Relationship to household head			
Household head	167	16.57	
Wife or husband	730	72.42	
Others	111	11.01	
Sex of household head	7		
Male	797	79.07	
Female	211	20.93	
Wealth index			
Poor	469	46 53	
Middle	126	12.40	
Mildale	130	13.49	
Rich	403	39.98	
Number of ANC visits			
None	245	24 31	

	1-3 times	313	31.05
	4 and above	450	44.64
Place of del	ivery		
	Home	445	44.15
	Health facility	563	55.85
PNC servic	e		
	No	836	86.01
	Yes	136	13.99
Sex of child			
	Male	507	50.30
	Female	501	49.70
Birth order	number	Ċ,	
	1 st born	229	22.72
	2 nd to 3 rd	372	36.90
	4 th to 5 th	204	20.24
	6 th and above	203	20.14
Presence of	vaccination document		
	No	285	28.27
	Yes	723	71.73
Preceding b	oirth order		
	< 24 months	186	18.45
	24-48	357	35.42

1	
2	
3	
4	
5 6	
7	
8	
9	
10	
11	
13	
14	
15	
16	
1/	
19	
20	
21	
22	
23 24	
25	
26	
27	
28	
29	
31	
32	
33	
34	
35	
37	
38	
39	
40	
41 42	
43	
44	
45	
46	
4/ 10	
40 49	
50	
51	
52	
53 E /	
55	
56	
57	
58	
59	
υu	

Received Vitamin A1		
No	410	40.67
Yes	598	59.33
Total children ever born		
1-3 children	598	59.33
4-6 children	278	27.58
7 and above	132	13.10
Number of <5 children in household		
≤ 2	888	88.10
>2	120	11.90
Region	6	
Tigray	93	9.23
Amhara	111	11.01
Afar	99	9.82
Oromia	127	12.60
Somali	85	8.43
Benishabgul	83	8.23
SNNPR	116	11.51
Gambela	77	7.64
Harari	73	7.24
Addis Ababa	64	6.35
Dire Dawa	80	7.94
Type of place of residence		

Urban	267	26.49
Rural	741	73.51
Community women education		
Low	468	46.43
High	540	53.57
Community poverty		
Low	495	49.11
High	513	50.89
Community ANC utilization		
Low	468	46.43
High	540	53.57

242 Childhood vaccination status in Ethiopia

The full vaccination coverage among children aged 12-23 months in Ethiopia was 39.09% (95% CI: 36.06%, 42.28) (Fig. 2). On the other hand, two in ten children (22.32%) of 12-23 months' age have not received any vaccination in three years before the 2019 survey period. Among the children of 12-23 months' age included in the study, 70.24% received BCG, 57.84% received the third dose of pentavalent, 55.75% received the third dose of polio, 60.62% received the second dose of rotavirus vaccine, 55.16% received the third dose of PCV, and 57.04% received the first dose of measles vaccination (Fig. 3).

250 Factors affecting child vaccination in Ethiopia

251 The fixed effect analysis result

252	The multivariable analysis showed that maternal educational level of mothers, maternal age,
253	marital status, presence of vaccination document, received Vitamin A1, region, and place of
254	residence, were significantly associated with childhood vaccination. Children whose mothers
255	attended primary, secondary, and higher education have 2.2 [AOR=2.16; 95% CI: 1.43-3.26], 2
256	[AOR=2.02; 95% CI: 1.07-3.79], and 2.7 [AOR=2.67; 95% CI: 1.25-5.71] times higher partial or
257	full vaccination respectively compared to born to mothers with no education. The odds of partial
258	or full vaccination was 1.8 [AOR=1.79; 95% CI: 1.08-2.99] times higher among children whose
259	mothers are in the age range of 35-49 compared to 15-19 age group. Mothers who are currently in
260	union have 2.2 [AOR=2.21; 95% CI: 1.06-4.58] times more likely to vaccinate their children either
261	partially or fully. keeping vaccination cards was 26 [AOR=26.18; 95% CI: 15.75-43.53] times
262	more likely associated with partial or full vaccination compared to not keeping vaccination cards.
263	Children who have received Vitamin A1 have higher likelihood of partial or full vaccination
264	[AOR=4.14; 95% CI: 2.9-5.9]. Children from Afar [AOR=0.14; 95% CI: 0.04-0.45], Somali
265	[AOR=0.19; 95% CI: 0.06-0.60], Gambela [AOR=0.22; 95% CI: 0.06-0.77], Harari [AOR=0.14;
266	95% CI: 0.04-0.52], and Dire Dawa [AOR=0.23; 95% CI: 0.06-0.79] regions have less partial or
267	full vaccination compared to the Tigray region children. Children living in rural areas have 47%
268	[AOR=0.53; 95% CI: 0.30-0.93] reduced partial or full vaccination than children living in urban
269	areas of the country (Table 2).

Table 2: Multivariable multilevel ordinal logistic regression analysis of individual and community-level determinants of child vaccination in Ethiopia, 2019

	Null	Mode1 I	Mode1 II	Mode1 III
Variables	Mode1	AOR (95% CI)	AOR (95% CI)	AOR (95% CI)

1 2			
² ³ ⁴ Maternal edu	icational level		
5			
6 7	No education	1	1
8			
9	Primarv	1.97 (1.33, 2.93)**	2.16 (1.43, 3.26)***
10			2.10 (1.10, 0.20)
11	~ .		
12	Secondary	1.80 (0.97, 3.33)	2.02 (1.07, 3.79)*
14			
15	Higher	2.85 (1.35, 6.02)	2.67 (1.25, 5.71)*
16			
1/ 18 Matannal age			
19			
20			
21	15-24	1	1
22			
24	25-34	1 13 (0 78 1 63)	1 15 (0 79 1 66)
25	20 0 1	1.15 (0.76, 1.65)	1.10 (0.79, 1.00)
26			
27	35-49	1.81 (1.09, 3.02)*	1.79 (1.08, 2.99)*
28 29			
30 Religion			
31			
32			1
33	Orthodox		1
35			
36	Protestant	0.46 (0.27, 0.77)**	0.69 (0.36, 1.30)
37			
38	Muslim	0.71 (0.47, 1.09)	1 28 (0 73 2 24)
40		0.71 (0.47, 1.07)	1.20(0.75, 2.24)
41	Other		
42		0.39 (0.14, 1.22)	0.56 (0.18, 1.68)
43			
44 45 Marital statu	8		
46			
47	XT / • •	1	1
48	Not in union	1	1
49 50			
50	In union	1.84 (0.89, 3.80)	2.21 (1.06, 4.58)*
52			
53 - Deletionshin	to UU hood		
54 relationship	w nn heau		
56			
57			
58			
59	Earpaarkaulaura	nly_http://bmionon.hmi.com/sita/ahaut/suidalizes.yht	ml
60	For peer review o	niy - mtp://bmjopen.bmj.com/site/about/guidelihes.xht	1111

1			
2			
4	Household head	1	1
5			
6	Wife or husband	0.79 (0.50, 1.23)	0.72 (0.46, 1.14)
7			
8			
9 10	Others	0.67 (0.36, 1.27)	0.62 (0.33, 1.17)
11			
¹² House	hold wealth index		
13			
14 15	D	1	1
16	Poor	1	1
17			
18	Middle	0.83 (0.51, 1.35)	0.77 (0.47, 1.29)
19			
20	D: 1		
21 22	Rich	1.28 (0.83, 1.97)	1.05 (0.63, 1.74)
23			
24Numb	er of ANC visits		
25			
26	NT		1
27	None	1	1
29			
30	1-3	0.97 (0.61, 1.53)	0.99 (0.63, 1.58)
31			
32	4 1 1		1 27 (0 77 2 00)
33 24	4 and above	1.40 (0.86, 2.29)	1.27 (0.77, 2.09)
35			
36Place	of delivery		
37	-		
38	Hama		1
39 40	Home	1	1
40			
42	Health facility	1.22 (0.82, 1.83)	1.11 (0.74, 1.66)
43			
44 45 PNC 1	utilizad		
451 NC 1	nnizeu		
47			
48	No	1	1
49			
50	Vas	1.04 (0.67, 1.63)	1.05 (0.67, 1.65)
51	105	1.04 (0.07, 1.05)	1.05 (0.07, 1.05)
52 53			
₅₄ Immu	nization document		
55			
56			
5/ 58			
59			
60	For peer re	view only - http://bmjopen.bmj.com/site/abou	t/guidelines.xhtml

2 3	Available	1		1
4		-		-
5				
6	Not available	27.32 (16.44,45.41)***		26.18(15.75,43.53)***
/				
о 9 р				
⁹ Prece	ding birth interval			
11				
12	< 24 months	1		1
13		1		1
14				
15	24-48 months	1.07 (0.69, 1.65)		1.04 (0.67, 1.62)
16				
17				
18	48 and above	1.05 (0.67, 1.65)		1.06 (0.67, 1.67)
19				
20 21 D •	1 7 7 4			
² Kecer	ved vitamin A_1			
22				
24	No	1		1
25				1
26				
27	Yes	4.32 (3.04, 6.15)***		4.14 (2.9, 5.9)***
28				
29				
30Numb	oer of < 5 children			
31				
32	< 2 abilduar			1
33 24	≤ 2 children	1		1
34				
36	>2 children	0.62 (0.36, 1.07)		0 68 (0 39 1 16)
37		0.02 (0.50, 1.07)		0.00 (0.09, 1.10)
38				
39Regio	n			
40				
41				
42	Tigray			1
43				
44	Afor		0 00 (0 02 0 22)***	0 14 (0 04 0 45)**
45 46	Alai		0.08 (0.03, 0.23)	$0.14(0.04, 0.43)^{++}$
40 47				
48	Amhara		0.59 (0.24, 1.48)	0.5 (0.22, 1.13)
49			(,)	
50				
51	Oromia		0.21 (0.09, 0.48)***	0.45 (0.18, 1.09)
52				
53	Samali		0 00 (0 02 0 22)***	0 10 (0 06 0 60)**
54	Soman		0.08 (0.03, 0.22)***	0.19 (0.00, 0.00)**
55				
56 57				
57 58				
50 50				
60	For peer review of	only - http://bmjopen.bmj.com	/site/about/guidelines.xht	ml
	•		-	

2					
3 4	В	enishangul	1.13 (0.37, 3.40)	0.74 (0.25, 2.22)	
5					
6 7	S	NNPR	0.19 (0.08, 0.45)***	0.48 (0.19, 1.17)	
8 9 10	G	ambella	0.38 (0.12, 1.22)	0.22 (0.06, 0.77)*	
11					
12 13	Н	arari	0.43 (0.12, 1.48)	0.14 (0.04, 0.52)**	
14 15 16	А	ddis Ababa	1.27 (0.39, 4.14) 1.14 (0.37)		
17 18 19	D	ire Dawa	0.78 (0.23, 2.62)	0.23 (0.06. 0.79)*	
20					
21 Ty 22	pe of j	place of residence			
23 24 25		Urban	1	1	
26 27 28		Rural	0.25 (0.14, 0.44)***	0.53 (0.30, 0.93)*	
29					
30 C (ommur	nity women			
31 22 -					
$^{32}_{33}$ ed	ucatio	n	1	1	
34				1	
35		Low			
36		2011	1.04 (0.56, 1.94)	0.75 (0.51, 1.10)*	
37					
38 39 40		High			
41 42	272	Key * = p < 0.05, * = p < 0.01, * = p < 0.001			
43 44 45	273	The random effect analysis result			
46 47 48	274	Table 3 presents the random effect analysis result of child	dhood vaccination statu	s in Ethiopia. The	
49 50	275	appropriateness of application of multilevel analysis and	the presence of signif	icant variations of	
51 52 53	276	childhood vaccination status between clusters (the cluster	ering effect) was justif	ied by the ICC of	
54 55 56 57	277	Null model (48.19%). The value of ICC decreased from	48.19% in the null m	odel to 14.55% in	
58 59 60		For peer review only - http://bmjopen.bmj.com	/site/about/guidelines.xht	ml	

the final model showing how the effect of clustering changed. In addition, as depicted in the table below the largest PCV of the final model (81.70%) indicates the goodness of model fitness. The final model (Model 3) has the highest capacity than model I or model II alone to explain the variations in childhood vaccination status. On top of that, Model III is the best explanatory model to show the variation in the childhood vaccination. The deviance observed in the final model was smaller than that of other models (Table 3).

Table 3: Random effects analysis and model fit statistics of child vaccination in Ethiopia,

285	

Parameters	Null Model	Model I	Model II	Model III
Community level Variance (SE)	3.06	0.76	1.21	0.56
PCV (%)	Reference	75.16%	60.46%	81.70%
ICC (%)	48.19%	18.77%	26.89%	14.55%
MOR	5.31	2.29	2.84	2.03
Log-likelihood	-988.74	-684.36	-919.88	-667.78
Deviance	1,977.48	1,368.72	1,839.76	1,335.56
AIC	1983.49	1418.72	1873.77	1413.56
BIC	1998.24	1540.70	1957.34	1603.86

286 Discussion

In Ethiopia, full vaccination was 39.08%. Compared to other studies in the country, it is less than that of South East Ethiopia 76.8%(26), country-level pooled prevalence (47%)(27), and 67% in 289 2016 from other study(35). It is also less than 59.40% Sub-Saharan vaccination coverage(22), 69.21% East Africa(35), 45.2% Mogadishu (23), and 69.3% in Togo coverage(25). It is in the

same confidence intervals as 38.3% of 2016 EDHS. This indicates that the current prevalence of full vaccination was unchanged since 2016. The reasons might be the political instabilities in the country for the last five years. Dropout rate (18.8%) may also negatively affected childhood vaccination coverage of the country. The inequalities to access health services regardless of increased population in those years might be another reason. Lack of maternal education (48.91%) also affected vaccination coverage undesirably; however, it was 67% in 2015(31). It is also better than the Sub-Saharan African countries average(22). This shows that although there are some improvements, the deviation from standard is big. Only 39.98% of mothers were from higher income families. The finding is consistent with 36.6% coverage from other study(31). Among the associated factors, maternal education had positive association with higher full or

partial vaccination, which is also similar to findings from other studies(22,31,36). The consistence might indicate that education is an independent predictor of full or partial Ffivaccination, which needs focused attention. Increased maternal age puts mothers in the higher level of full immunization category. Other studies also showed that higher age has association with full immunization(3,22). This might indicate that maternal maturity is an important factor for higher childhood vaccination in contrast to the early marriage. This means child bearing at younger age, and age at first birth needs adequate attention. Children whose mothers remained in union had higher tendency to be in higher category of full vaccination. From previous studies, there are consistent findings(22,23). This might be an indication that disrupted families might endanger children's life and so that family union should be promoted. Mothers who keep evidence of vaccination tend to be in higher category of vaccination coverage. This is also true for some studies(23.24,31). This means, women who keeps children evidence of vaccination might have indeed great regards for full immunization while carelessness might start from poor evidence

Page 25 of 37

BMJ Open

keeping. Children who received Vitamin A_1 had higher chance of being vaccination category. The fact that vitamin A is schedule towards the end of most immunization program might raise to this association (19). This might be another persist issue we never eased in previous efforts as per evidence from this study and could be set as an objective to attain other sub-objectives. Ethiopia further classified in city administrations, agrarian, and pastoralist regions. Pastoralists regions such as Afar and Somali and semi pastoralist regions such as Gambela, Benishangul Gumuz and Harari had higher tendency of failing into low category of full immunization. This is also reported by other studies (31). This is also confirmed by other studies that compared developed and underdeveloped regions in Ethiopia(31,36). This apparently shows that attention deprived regions should be the next intervention areas. This problem is relatively similar between the rural and urban place of residences. Other studies also laud that inequalities between rural and urban residence need careful considerations(20). This might be apparently due to access, awareness, and availability of resources.

Besides the positive information, this study has also some limitations such as missing data in some records, the disproportion of sample in each region, secondary source data, and time-lapse between data collection and this analysis. When observable evidence of vaccination is not available, data collectors asked mothers orally and that may cause some recall and social desirability bias. However, a Health Facility Questionnaire was used to record vaccination information for all children without a vaccination card seen during the mother's interview(34). Moreover, we are unable to include some relevant variables like psychosocial variables of parents, vaccine hesitancy and other related variables since this study used a secondary data of a national survey. The authors followed international protocols of DHS data process and analyses, weighted data, carefully interpreted finding within the period, and included complete records.

337 Conclusion

> Although full vaccination increased from EDHS 2000 to 2016, the current analysis of EMDHS 2019 result showed that it was remained unchanged. Our analysis identified many factors that might be contributed for the absence of changes. Maternal educational level, maternal age, marital status, presence of vaccination document, received Vitamin A₁, region, and place of residence, were some of the contributors. Analyzing associated factors showed some of the factors are old enough causing the problem for decades. Even though the political situation in the country might also contributed to the persistency of these factors, it is advisable to work on accessibility, awareness, and available are vital. Maternal education and poverty especially family and maternal capacity remained critical and need all round efforts such as further government commitment, dedicated international supports, and peace and security can override the problem.

Abbreviation/Acronyms: Demographic Health Survey (DHS); Ethiopian Demographic Health
Survey (EDHS); Ethiopian Mini-Demographic Health Survey(EMDHS); World Health
Organization (WHO); United Nations Children's Fund (UNICEF); Adjusted Odds Ratio (AOR);
Antenatal Care (ANC); Postnatal Care (PNC); Pneumococcal Conjugate Vaccine (PCV); and
Measles Containing Vaccine (MCV); Bacille Calmette-Guerin (BCG); South Nations
Nationalities and Peoples Region (SNNPR); Intra-class Correlation Coefficient (ICC); Median
Odds Ratio (MOR), Confidence Interval (CI)

355 Declarations

356 Ethics approval and consent to participate

357 This study used secondary data from demographic and health survey data files. Initially, the358 MEASURE DHS team was formally requested to access the datasets by completing the online

BMJ Open

2	
3	
Δ	
-	
د ح	
6	
7	
8	
9	
10	
11	
17	
12	
13	
14	
15	
16	
17	
18	
10	
ער הכ	
20	
21	
22	
23	
24	
25	
26	
27	
27 20	
28	
29	
30	
31	
32	
33	
34	
25	
22	
36	
37	
38	
39	
40	
41	
יי. 42	
12	
-+⊃ ∧ ∧	
44	
45	
46	
47	
48	
49	
50	
51	
51	
52	
53	
54	
55	
56	
57	
58	
59	

60

request form on their website (www.dhsprogram.com). Accordingly, permission to access the data and the letter of authorization was obtained from ICF international. Therefore, for this study consent to participate is not applicable. We kept all data confidential, and no effort was made to identify households or individuals. The Ethiopian Health Nutrition and Research Institute (EHNRI) Review Board and the National Research Ethics Review Committee (NRERC) at the Ministry of Science and Technology of Ethiopia, approved EMDHS 2019. The authors also confirm that all methods were carried out in accordance with relevant guidelines and regulations.

- **366 Consent for publication**
- 367 Not applicable

368 Availability of data and materials

The survey dataset used in this analysis are third party data from the demographic and health survey website (<u>www.dhsprogram.com</u>) and permission to access the data is granted only for registered DHS data user.

⁴ 372 **Competing interests**

373 The authors have declared that no competing interest existed.

⁾ 374 **Funding**

375 The authors received no specific funding for this work.

⁴ 376 **Authors' contribution**

377 SS has obtained and analyzed the EMDHS data. SS, GG, SH were equally involved in the
378 conception of the study, interpreted the results, drafted and critically revised the manuscript. All
379 authors have read and approved the final version of the manuscript.

380 Acknowledgments

The authors are grateful to Measure DHS, ICF International Rockville, Maryland, USA for
allowing us to use the 2019 EMDHS data.

totoeet euien ont

1 2 3	384	Refe	rences
4 5			
6 7	385	1.	WHO vaccine-preventable diseases : monitoring system . 2020 global summary.
8 9 10	386		2022;2020:2–3.
11 12	387	2.	Chepkurui V, Amponsah-dacosta E, Haddison EC. Characterization of National
13 14 15	388		Immunization Programs in the Context of Public Health Emergencies : A Case Study of
16 17	389		13 Countries in the WHO Africa Region. Front public Heal. 2021;9(September):1–12.
18 19 20	390	3.	South Africa : WHO and UNICEF estimates of immunization coverage : 2016 revision
21 22	391		South Africa : WHO and UNICEF estimates of immunization coverage : 2016 revision.
23 24 25	392		2018;1–18.
26 27 28	393	4.	WHO. Immunization coverage. 2022;(July 2021):3-7.
29 30	394	5.	Patel MK, Goodson JL, Alexander JP Jr., et al. Progress Toward Regional Measles
31 32	395		Elimination — Worldwide, 2000–2019. MMWR Morb Mortal Wkly Rep 2020;69:1700–
33 34 35	396		1705. Poliomyelitis. World Health Organization; 2019.
36 37 38	397	6.	World Health Organization [WHO]. Counting the impact of vaccines. 2021;(April):2017–
39 40 41	398		9.
42 43	399	7.	FMOH. Expanded Program on Immunization (EPI). 2022. p. 1–4.
44 45 46	400	8.	Klein S. Why Some Vaccines Require More Than One Dose. 2015. p. 1–3.
47 48 49	401	9.	WHO. Why Immunizing Children Matters. 2017. p. 1–3.
50 51 52	402	10.	Children's hospital of Philadelphia. Did You Know: Some Reasons Vaccines Are Given
53 54 55 56	403		in Multiple Doses. 2014.
57 58 59			
60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

3 4	404	11.	Greenwood B. 2014 The contribution of vaccination to global health: past, present and
5 6	405		future. Phil. Trans. R. Soc. B. 2014; 369: 20130433.
7 8 9 10 11 12	406		http://dx.doi.org/10.1098/rstb.2013.0433.
	407	12.	Rodrigues CMC, Plotkin SA. Impact of Vaccines; Health, Economic and Social
13 14	408		Perspectives. Front Microbiol. 2020;11(July).
15 16 17	409	13.	Ghendon Y. Vaccine preventable viral diseases in developing countries. World J
18 19	410		Microbiol Biotechnol. 1991 Mar;7(2):115-20. doi: 10.1007/BF00328980. PMID:
20 21 22	411		24424922.
23 24 25	412	14.	Brenzel L, Wolfson LJ, Fox-Rushby J, et al. Vaccine-preventable Diseases. In: Jamison
25 26 27	413		DT, Breman JG, Measham AR, et al., editors. Disease Control Priorities in Developing
27 28 29 30 31 32 33 34 35 36 37	414		Countries. 2nd edition. Washington (DC): The International Bank for Reconstruction a.
	415	15.	Ethiopia : WHO and UNICEF estimates of immunization coverage : 2019 revision
	416		Ethiopia : WHO and UNICEF estimates of immunization coverage : 2019 revision.
	417		2021;1–28.
38 39	418	16.	WHO. Immunization WHO Regional Office for Africa. :199–207. Available from:
40 41 42	419		https://www.afro.who.int/health-topics/immunization
43 44 45	420	17.	WHO. Organisation Mondiale Vaccine-Preventable Diseases And Immunization. 2021;71.
46 47 48 49 50	421	18.	Raslan R, El Sayegh S, Chams S, Chams N, Leone A, Hajj Hussein I. Re-Emerging
	422		Vaccine-Preventable Diseases in War-Affected Peoples of the Eastern Mediterranean
51 52 53	423		Region—An Update. Front Public Heal. 2017;5(October):1-8.
55 54 55 56 57	424	19.	WHO. Global Immunization News (GIN). 2017;(January).
58 59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 31 of 37

1

BMJ Open

2 3	125	20	Shihre G. Zegeve B. Idriss-wheeler D. Vava S. Inequalities in measles immunization
4 5	425	20.	Sinore O, Zegeye D, Iuriss-wheeler D, Taya S. mequanties in measues ininiumzation
6 7 8 9 10 11 12 13 14 15 16 17 18	426		coverage in Ethiopia : a cross-sectional analysis of demographic and health surveys 2000
	427		– 2016. BMC Infect Dis. 2020;20:1–12.
	428	21.	Figueiredo A De, Were F. Local trends in immunisation coverage across Africa. Lancet.
	429		2019;393(10183):1779–81.
	430	22.	Fenta SM, Biresaw HB, Fentaw KD. Determinants of full childhood immunization among
18 19	431		children aged 12 – 23 months in sub-Saharan Africa : a multilevel analysis using
20 21 22	432		Demographic and Health Survey Data. Trop Med Health. 2021;49:29.
23 24	433	23.	Mohamud MHT, Magan MA, Mohamed LM, Mohamud MA, Muse AA. Barriers for full
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40	434		immunization coverage among under 5 years children in Mogadishu , Somalia. J Fam
	435		Med Prim Care. 2020;9(6):2664–9.
	436	24.	Yadita ZS, Ayehubizu LM (2021) Full immunization coverage and associated factors
	437		among children aged 12–23 months in Somali Region, Eastern Ethiopia. PLoS ONE.2021
	438		16(12): e0260258. https://doi.org/10.1371/journal. pone.0260258.
	439	25.	Zida-Compaore WIC, Ekouevi DK, Gbeasor-Komlanvi FA, Sewu EK, Blatome T,
41 42	440		Gbadoe AD, et al. Immunization coverage and factors associated with incomplete
42 43 44 45 46 47 48 49	441		vaccination in children aged 12 to 59 months in health structures in Lomé. BMC Res
	442		Notes. 2019;12(1):1–7.
	443	26.	Legesse E, Dechasa W. An assessment of child immunization coverage and its
50 51 52	444		determinants in Sinana District, Southeast. ??? [Internet]. 2015;1-14. Available from: ???
53 54 55 56 57	445	27.	Nour TY, Farah AM, Ali OM, Abate KH. Immunization coverage in Ethiopia among 12 –
58 59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 32 of 37

1 2			
- 3 4 5	446		23 month old children : systematic review and meta-analysis. 2020;1–12.
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29	447	28.	Ethiopian Public Health Institute (EPHI) [Ethiopia] and ICF. 2021. Ethiopia Mini
	448		Demographic and Health Survey 2019: Final Report. Rockville, Maryland, USA: EPHI
	449		and ICF. Vailable from: https://dhsprogram.com/pubs/pdf/FR363/FR363.pdf.
	450	29.	Ethiopian Public Health Institute (EPHI) and ICF. 2019. Mini Demographic and Health
16 17 18	451		Survey 2019: key Indicators. Rockville, Maryland, USA: EPHI and ICF. 2019. 35 p.
19 20	452	30.	Bangura JB, Xiao S, Qiu D, Ouyang F, Chen L. Barriers to childhood immunization in
1 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 14 15 16 17 8 9 21 22 32 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 3 4 5 6 7 8 9 0 11 2 2 3 4 5 6 7 8 9 0 11 2 2 3 4 5 6 7 8 9 0 11 2 2 3 4 5 6 7 8 9 0 1 2 2 3 3 4 5 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	453		sub- Saharan Africa : A systematic review. 2020;20:1108.
	454	31.	Lakew Y, Bekele A, Biadgilign S. Factors influencing full immunization coverage among
	455		12 – 23 months of age children in Ethiopia : evidence from the national demographic and
	456		health survey in 2011. BMC Public Health. 2015;15:1–8.
31 32 33	457	32.	Girmay A, Dadi AF. Full Immunization Coverage and Associated Factors among Children
34 35 36	458		Aged 12-23 Months in a Hard-to-Reach Areas of Ethiopia. hindawi. 2019;2019:8.
37 38	459	33.	Ministry of Health-Ethiopia. Health Sector Transformation Plan II (HSTP) (2021-2025).
39 40 41	460		2021.
42 43	461	34.	Ethiopian Public Health Institute (EPHI) [Ethiopia] and ICFICF. (2019). Ethiopia Mini
44 45 46	462		Demographic and Health Survey: Key Indicators. Rockville, Maryland, USA: EPHI and
46 47 48 49 50 51 52 53 54 55 56 57 57	463		ICF.
	464	35.	Gelaye SS, Yenit MK, Baraki AG. Rural Vaccination Coverage Among Children Aged
	465		12–23 Months Was Higher Than the Urban Counterparts: A Comparative Cross-Sectional
	466		Study in Pawi District, Ethiopia. Pediatr Heal Med Ther. 2021;Volume 12:119–27.
59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2			
2 3 4	467	36.	Wondimu A, Cao Q, Asuman D, Almansa J, Postma MJ. Understanding the Improvement
5 6	468		in Full Childhood Vaccination Coverage in Ethiopia Using Oaxaca – Blinder
/ 8 9	469		Decomposition Analysis. 2020;1–11.
10 11 12	470		
13 14 15	471		
16 17 18	472		
19 20 21	473		
22 23 24	474		
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 9 40 41 42 34 45 46 47 48 9 50 51 52 53 45 56 57 58 59 60	475		
			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Fig. 1: Eligibility assessment for childhood vaccination coverage among children aged 12-23 month's in Ethiopia, 2019

Fig. 2: Vaccination status of children aged 12-23 months in Ethiopia, 2019

.onth. Fig. 3: Percentage of children aged 12-23 months who received a particular vaccine in

Ethiopia, 2019

STROBE Stater	<u>nent</u>	<u>Checklist of items that should be included in reports of cross-sectional stud</u>	<u>ies</u>	
	Item No	Recommendation	Reported on page #	
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	1	
		(b) Provide in the abstract an informative and balanced summary of what was done	2	
		and what was found		
Introduction				
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	4-6	
Objectives	3	State specific objectives, including any prespecified hypotheses	6	
Methods				
Study design	4	Present key elements of study design early in the paper	7	
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment,	7	
		exposure, follow-up, and data collection		
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of	7	
		participants		
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect	8-10	
		modifiers. Give diagnostic criteria, if applicable		
Data sources/	8*	For each variable of interest, give sources of data and details of methods of	8-9	
measurement		assessment (measurement). Describe comparability of assessment methods if there		
		is more than one group		
Bias	9	Describe any efforts to address potential sources of bias	-	
Study size	10	Explain how the study size was arrived at	8	
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable,	10-11	
		describe which groupings were chosen and why		
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	NA	
		(b) Describe any methods used to examine subgroups and interactions	NA	
		(c) Explain how missing data were addressed	-	
		(d) If applicable, describe analytical methods taking account of sampling strategy	NA	
		(<u>e</u>) Describe any sensitivity analyses	NA	
Results				
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially	NA	
		eligible, examined for eligibility, confirmed eligible, included in the study,		
		completing follow-up, and analysed		
		(b) Give reasons for non-participation at each stage	NA	
		(c) Consider use of a flow diagram	NA	
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and	12-16	
		information on exposures and potential confounders		
		(b) Indicate number of participants with missing data for each variable of interest	NA	
Outcome data	15*	Report numbers of outcome events or summary measures	16	
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and	16-21	
		their precision (eg, 95% confidence interval). Make clear which confounders were		
		adjusted for and why they were included		
		(b) Report category boundaries when continuous variables were categorized	NA	
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a	NA	
		meaningful time period		
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and	NA	
Jscussion Provide the source of the study objectives Provide the study objectives Prov				
---	------------------------------	----	--	-------
Image: sensitivity analyses Image: sensitivity analyses Key results 18 Summarise key results with reference to study objectives 22 Limitations 19 Discuss limitations of the study, taking into account sources of potential bias or an imprict to and magnitude of any potential bias or multiplicity of analyses, results from similar studies, and other relevant evidence 23-24 Generalisability 21 Discuss the generalisability (external validity) of the study results 22-24 Other information Pinneting				
Secursion Summarise key results with reference to study objectives 22 Limitations 19 Discuss limitations of the study, taking into account sources of potential bias or 24 Interpretation 20 Give a cautious overall interpretation of results considering objectives. Imitiations, multiplicity of analyses, results from similar studies, and other relevant evidence 23-24 Generalisability 21 Discuss the generalisability (external validity) of the study results 22-24 Other information 20 Give the source of funding and the role of the funders for the present study and, if 26 Plunding 22 Give the original study on which the present article is based 26		1	consitivity analyses	
JBSCUSSION 18 Summarise key results with reference to study objectives 22 Limitations 19 Discuss binitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias 24 Interpretation 20 Give a cautious overall interpretation of results considering objectives, limitations, and there relevant evidence 23.24 Generalisability 21 Discuss both direction and magnitude of any potential bias 22.324 Generalisability 21 Discuss the generalisability (external validity) of the study results 22.24 Dher information			sensitivity analyses	
Key results 18 Summarise key results with reference to study objectives 22 Limitations 19 Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias or imprecision. Discuss both direction of results considering objectives, limitations, 23-24 Interpretation 20 Give a cautious overall interpretation of results considering objectives, limitations, 23-24 Generalisability 21 Discuss the generalisability (external validity) of the study results 22-24 Other information 10 10 10 10 10 Yuber information 12 Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based 26	Discussion V and page 14a	10	Summerica have not the with an famou on the study, ships times	22
Limitations 19 Discuss infinitations of the study, taking into account sources of potential bias Interpretation 20 Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence 23-24 Generalisability 21 Discuss the generalisability (external validity) of the study results 22-24 Wher information 1 1 1 1 Funding 22 Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based 26	Limitations	18	Discuss limitations of the study, taking into account sources of notantial higs or	22
Interpretation Production of a second interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence 23-24 Generalisability 21 Discuss the generalisability (external validity) of the study results 22-24 Interpretation Tesuity of analyses, results from similar studies, and other relevant evidence 22-24 Generalisability 21 Discuss the generalisability (external validity) of the study results 22-24 Interpretation Tesuity of analyses, results from similar studies, and other relevant evidence 22-24 Interpretation Tesuity of analyses, results from similar studies, and other relevant evidence 22-24 Interpretation Tesuity of analyses, results from similar studies, and other relevant evidence 22-24 Interpretation Tesuity of analyses, results from similar studies, and other relevant evidence 22-24 Interpretation Tesuity of analyses, results from similar studies, and other relevant evidence 22-24 Interpretation Tesuity of analyses, results from similar studies, and other relevant evidence 22-24 Interpretation Tesuity of analyses, results from similar studies, and other relevant evidence 22-24 Interpretatinget Te	Limitations	19	Discuss limitations of the study, taking into account sources of potential bias of impracision. Discuss both direction and magnitude of any potential bias	24
Interpretation 20 Orce a cataloa orcena interpretation or results from similar studies, and other relevant evidence 20-24 Generalisability 21 Discuss the generalisability (external validity) of the study results 22-24 Deter information Funding 22 Give the source of funding and the role of the funders for the present study and, if 26 Punding 22 Give the source of funding and the role of the funders for the present study and, if 26 applicable, for the original study on which the present article is based 26	Interpretation	20	Give a cautious overall interpretation of results considering objectives limitations	23_24
Generalisability 21 Discuss the generalisability (external validity) of the study results 22-24 24 Uter information	Interpretation	20	multiplicity of analyses results from similar studies and other relevant evidence	23-24
There information Image: Constraint of the problem of the funders for the present study and, if applicable, for the original study on which the present article is based 26	Generalisability	21	Discuss the generalisability (external validity) of the study results	22-24
Funding 22 Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based 26	Other information			
applicable, for the original study on which the present article is based	Funding	22	Give the source of funding and the role of the funders for the present study and if	26
	1 41141118		applicable for the original study on which the present article is based	

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

Determinants of childhood vaccination among children aged 12–23 months in Ethiopia: A community-based crosssectional study

Journal:	BMJ Open
Manuscript ID	bmjopen-2022-069278.R2
Article Type:	Original research
Date Submitted by the Author:	15-Feb-2023
Complete List of Authors:	Sako, Sewunet; Arba Minch University, College of Medicine and Health Sciences, School of Public Health, Department of Health Informatics, Arba Minch, Ethiopia Gilano, Girma; Arba Minch University, College of Medicine and Health Sciences, School of Public Health, Department of Health Informatics, Arba Minch, Ethiopia Samuel, Hailegebreal; Arba Minch University, College of Medicine and Health Sciences, School of Public Health, Department of Health Informatics, Arba Minch, Ethiopia
Primary Subject Heading :	Public health
Secondary Subject Heading:	Health services research
Keywords:	Community child health < PAEDIATRICS, PREVENTIVE MEDICINE, PUBLIC HEALTH

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2	
3	
4	
5	
6	
7	
, 8	
0	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
10	
20	
20 21	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
37	
22	
22	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
<u>1</u> 5	
40 17	
4/	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
59, 58	
50	
29	
60	

1	Determinants of childhood vaccination among children aged 12–23 months in Ethiopia: A
2	community-based cross-sectional study
3	
4	Sewunet Sako ^{1*} , Girma Gilano ¹ and Samuel Hailegebreal ¹
5	
6	1. Department of Health Informatics, School of Public Health, College of Medicine and Health
7	Sciences, Arba Minch University, Arba Minch, Ethiopia
8	
9	* <u>zesew1lalem@gmail.com</u> – (SS)
10	
11	P.O. Box 21
12	Word count: 4276

BMJ Open

2 3 4	13	Abstract
5 6 7	14	Objective: Childhood vaccination is a cost-effective essential service to reach larger population
8 9 10	15	globally. Due to unclear reasons, new emergence and resurgence of vaccine preventable diseases
10 11 12	16	gets increase. Thus, the aim of this study is to identify prevalence and determinants of childhood
13 14 15	17	vaccination in Ethiopia.
15 16 17	18	Design: Community based cross-sectional study
18 19 20	19	Setting: We used data from 2019 Ethiopia Mini Demographic and Health Survey (EMDHS). The
21 22	20	survey included all the nine regional states and two city administrations of Ethiopia.
23 24 25	21	Participants: A weighted sample of 1,008 children 12-23 months of age was included in the
26 27	22	analysis.
28 29 30	23	Main outcome measures: Multilevel proportional odds model was fitted to identify determinants
31 32	24	of childhood vaccination status. In the final model, variables with p-value of less than 5% and an
33 34 35	25	adjusted odds ratio with a 95% CI reported.
36 37	26	Result: The full childhood vaccination coverage of Ethiopia was 39.09% (95% CI: 36.06%,
38 39 40	27	42.28). Mothers attended primary [AOR=2.16; 95% CI: 1.43-3.26], secondary [AOR=2.02; 95%
41 42	28	CI: 1.07-3.79], and higher schools [AOR=2.67; 95% CI: 1.25-5.71], being in union [AOR=2.21;
43 44	29	95% CI: 1.06-4.58], kept vaccination cards [AOR=26.18; 95% CI: 15.75-43.53], children received
45 46 47	30	Vitamin A ₁ [AOR=4.14; 95% CI: 2.9-5.9], living in Afar [AOR=0.14; 95% CI: 0.04-0.45], Somali
48 49	31	[AOR=0.19; 95% CI: 0.06-0.60], Gambela [AOR=0.22; 95% CI: 0.06-0.77], Harari [AOR=0.14;
50 51	32	95% CI: 0.04-0.52], Dire Dawa [AOR=0.23; 95% CI: 0.06-0.79] regions, and rural residents
52 53 54 55 56 57	33	[AOR=0.53; 95% CI: 0.30-0.93] were factors significantly associated with childhood vaccination.

59 60

2	
3	
1	
4	
5	
6	
7	
8	
õ	
2	
10	
11	
12	
13	
14	
15	
15	
16	
17	
18	
19	
20	
21	
22	
25	
∠_) ^ 4	
24	
25	
26	
27	
28	
29	
20	
20	
31	
32	
33	
34	
35	
36	
20	
3/	
38	
39	
40	
41	
42	
12	
44	
45	
46	
47	
48	
49	
50	
50	
51	
52	
53	
54	
55	
56	
50	
57	
58	
59	

60

1

34 Conclusion: The coverage of full childhood vaccination in Ethiopia was low remained unchanged since 2016. The study identified both the individual- and community-level factors affected the 35 vaccination status. Accordingly, public health intervention targeted to these identified factors can 36 increase childhood full vaccination status. 37 Keywords: full vaccination; multilevel; ordinal, 12-23 months' children; Ethiopia 38 Strengths and limitations of this study 39 This study used most recent nationwide secondary data that shows proportion of EPI 40 coverage among children aged 12–23 months in Ethiopia. 41 • We used multilevel proportional odds model to overcome the hierarchical nature of 42 EMDHS data and to identify both individual and community-level factors of EPI. 43 This study did not include some important variables like psychosocial variables of parents. 44 vaccine hesitancy and other related variables since the study used secondary data of a 45 national survey. 46 Establishing temporal relationship of causation between childhood vaccination and its 47 • 48 determinants was impossible due to the nature of the study design used for the survey. Recall bias is the most relevant limitation of the study. 49 • 50 51

BMJ Open

Introduction

According to the United Nations Children Fund (UNICEF), immunizations is a dynamic constituent of frontline health care to access larger populations. Compared to any other health or social activities, immunization reduces global annual death by significant proportion(1–4). It saves lives and protects people's health, improves countries' productivity and resilience, and helps to ensure a safer and healthier world(5,6).

According to the Ethiopian Ministry of Health, a child takes OPV₀ and BCG at Birth. At six weeks after birth, a child takes OPV1(oral polio vaccine), Pentavalent1(DPT+HepB+HIb), Pneumococcall, and Rotavirus1. Then 10 weeks after birth the child takes OPV2, and Pentavalent2, Pneumococcal2, and Rota2. The child takes OPV3, Pentavalent3, Pneumococcal3, Inactivated polio vaccine (IPV) at 14th weeks. Other vaccines such as Measles Containing Vaccine (MCV1) at 9th month and MCV2 at 15th month and human papilloma virus (HPV) at 14th years for girls are given. However, this study only considers vaccines between 1 to 2 years. All vaccines are equally important(7). Currently, Ethiopia do not provide Rubella, Mumps and chickenpox vaccines to immunize children. Depending on the amount of immunity or protection after receiving a dose, a child may require more than one dose for some vaccine(8). Additionally, more than one dose is needed to build high enough immunity to prevent disease and boost immunity that fades over time(9). For vaccines that do not initiate full protection at first introduction, additional dose of vaccine usually repeated (10). However, this does not mean one vaccine is better than the other is or more important than another since it depends on the nature of the disease.

Globally, about 6.6 million children die every year and half of the deaths would have been
prevented by vaccination(11). The global inequality in health care distribution force many low and
middle income countries to live under the bundle of pestilent cumulative old health problems(12).

Africa is among the regions severely affected by globally imbalanced immunization resources distribution. Vaccine preventable diseases become the big burden in war affected parts of the world and underdeveloped countries like Ethiopia(13). Despite the existence of highly cost-effective vaccines on global markets, situations such as war, displacements, under vaccination, and poor access to vaccine contributes to the prevalence of vaccine preventable disease(14). The proportion of the full immunization reflects how resources distribution caused the imbalance in childhood vaccination(1,15).

Regardless of advancement and attainments of immunization, newly emerging vaccine preventable
diseases become still common in Africa(16). There are people who deprived of accessing
immunization in some countries and becoming the reason for the prevalence of vaccine
preventable diseases as admitted by World Health Organization (WHO) and other studies(17–19).
In Ethiopia a study has described that educated (30%) and rich (31%) people better vaccinate their
children(20).

Some evidences indicated that global vaccine coverage is decreasing(21). A study summarized the Demographic Health Surveys (DHS) of Sub-Saharan African countries showed that the full vaccination coverage was 59.40% in 2021(22). In Mogadishu, full immunization was 45.2% and 41.4% in 2020 and 2021 respectively (22–24). In Togo, the full immunization coverage was 69.3% in Lome district in 2019(25). In Ethiopia, the full immunization coverage is 76.81% in the Southeast region(26); however, the pooled prevalence amongst 12–23 month old children in Ethiopia is 47%(27). EMDHS 2019 demonstrated that coverage of full vaccination was 44(28)%. The magnitude of full vaccination was increased from 14.3% in 2000 to 44% in 2019(29). From this, we understand that the coverage of full vaccination is not adequate.

Page 7 of 35

BMJ Open

Many factors that support the argument of resource disparities as a reason for low coverage in some countries. A systematic review conducted in Sub-Saharan African countries showed that lack of knowledge of immunization knowledge, distance to access point, financial deprivation, lack of partners support, and distrust in vaccines and immunization programs were the barrier(30). The absence of immunization card, respondents' sex, level of education, marital status, and organization of health system are mentioned in another study(25). A study included many sub Saharan African countries showed that maternal education, health facility delivery, fathers secondary education and above, ANC visits, PNC visit, wealth index, media exposure, and distance to health facility affected the vaccination coverage(22). In Ethiopia, from previous four EDHS, postnatal check-up, maternal awareness, regional difference (economic, education and life style), educational status, residence, and women wealth index have been influenced vaccination(20,27,31). From another study antenatal care visit, higher level of maternal education, good knowledge of immunization, short distance to health facility, and institutional delivery were the determinants of childhood immunization(32).

Different small scale and large scale (national level) studies have been done to identify the determinants of childhood vaccination in the country. However, majority of the studies conducted did not examined natural ordering of child's vaccination status as fully, partially, or not vaccinated at all. Hence, we used multilevel proportional odds model which overcomes the hierarchal nature of the DHS data and considers natural ordering of the outcome variable. In addition, the coverage of full vaccination still remains far behind the national health sector transformation plan II of Ethiopia (75% by 2024/25)(33), showing the need for further study. Therefore, this study aimed determining prevalence of childhood vaccination coverage and its determinants to assist in policy improvements.

120 Methods

121 Study design

This study used the 2019 cross-sectional data of Ethiopian mini demographic and health survey (EMDHS). We obtained the dataset from demographic and health survey website (http://dhsprogram.com/data/) after getting permission to access. The mini survey was conducted in March 2019 to June 2019 for the second time in Ethiopia. The Ethiopian Public Health Institute (EPHI) in collaboration with Central Statistical Agency (CSA) and Federal Ministry of Health (FMOH) implemented a nationally representative household survey.

128 Study setting

129 The EMDHS survey included all the nine regions and two city administrations of the country.130 Ethiopia is the second most populous country from Africa and located in the horn of Africa.

131 Participants

The 2019 EMDHS used the sampling frame created for the upcoming Ethiopia population and housing census list of 149,093 enumeration areas (EA). Participants of the study were selected through a stratified two-stage cluster sampling technique. Initially, they stratified each region in the country into urban and rural areas. Probability proportional to EA size was used to select 305 EAs (93 in urban and 212 in rural areas). In the second stage, lists of households were used as a sampling frame to select 30 households per cluster by equal probability systematic selection technique. Eligible participants for the interview were all women aged 15-49 years and who were the residents of the selected households. Accordingly, 8,885 women were interviewed out of 9,012 eligible women, giving a response rate of 98.6%. All living children age 12–23 months at the time

BMJ Open

1 2									
3 4	141	of the survey were the source population of the study. The details of the survey methods and							
5 6 7	142	procedures are available in the 2019 EMDHS report (29).							
8 9	143	Eligibility criteria							
10 11 12	144	All children born in the 2 years preceding the survey were included in the analysis. However,							
13 14	145	children who were not alive at the time of the survey were excluded from this study. Accordingly,							
15 16	146	data of 1,008 children who had born in the last 2 years and surviving were extracted from the 2019							
17 18	147	EMDHS datasets for this analysis (Fig. 1).							
19 20 21	148	Measurements of variables of the Study							
22 23 24	149	Dependent variable							
25 26	150	Child vaccination status was the outcome variable of the study. We categorized the outcome							
27 28 20	151	variable as not vaccinated, partially vaccinated and fully vaccinated.							
29 30 31	152	Fully vaccinated: is a child that has received one dose of Bacille Calmette-Guerin (BCG), three							
32 33	153	doses of pentavalent, three doses of polio, two doses of Rota, three doses of pneumococcal							
34 35 26	154	conjugate vaccine (PCV), and one dose of measles (MCV1).							
37 38 39	155	Partially vaccinated: is a child who had missed at least one or more of the thirteen vaccines/doses.							
40 41	156	Not vaccinated: is a child that has not received any vaccine at all.							
42 43 44	157	The interviewers of the 2019 EMDHS obtained information on vaccination coverage from written							
45 46	158	vaccination cards (infant immunization card and other health cards), from mothers' verbal reports,							
47 48	159	and from health facility records. They request mothers who born child in the three preceding years							
49 50 51	160	of the survey to show the infant immunization card or health card. Subsequently, they copy the							
52 53	161	dates of each vaccination given in the corresponding questionnaire. Similarly, they ask mother							
54 55 56 57 58 59	162	who did not kept the cards to recall whether the child received that specific vaccination and the							

number of doses that the child received. In addition, to complement these data (information collected based on the mother's recall) the field supervisor collects complementary vaccination records from health facility for a child who visited a health facility and missed vaccination data. Finally, a Health Facility Questionnaire was used to record vaccination information for all children without a vaccination card seen during the mother's interview; however, we dropped records with the missing data.

169 Independent variables

In this study, we considered both individual and community-level variables. The individual-level variables included are maternal age, maternal educational level, religion, marital status, relationship to household head, sex of the household head, wealth index, number of antenatal care (ANC) visits, place of delivery, utilized postnatal care, presence of vaccination document, birth order number, preceding birth interval, sex of child, vitamin A1, total children ever born, and number of under five children in household. Region, type of place of residence, community women education, community poverty, and community ANC utilization are community-level factors of the study. Region is a grouping of the first administrative level of Ethiopia. During the survey period, there were 9 regions and 2 city administrations in the country namely, Tigray, Amhara, Afar, Oromia, Somali, Benishangul-Gumuz, South nations nationalities and people's region (SNNPR), Gambela, Harari, and two city administrations (Addis Ababa and Dire Dawa). Moreover, community women education, community poverty and community ANC utilization were community-level variables derived by aggregating individual-level factors. They were categorized as "low" or "high" based on the median value since the EMDHS were not normally distributed.

Page 11 of 35

BMJ Open

Information regarding the wealth index is derived from data collected in the Household Questionnaire. The questionnaire includes queries concerning the household's ownership of several consumer items such as television and car; dwelling characteristics such as flooring material; type of drinking water source; toilet facilities; and other characteristics related to wealth status. Each household asset for which information is collected is assigned a weight or factor score generated through principal components analysis (PCA). The resulting asset scores are standardized about a standard normal distribution with a mean of zero and a standard deviation of one. These standardized scores then used to create the breakpoints that define wealth quintiles as Lowest, Second, Middle, Fourth, and Highest(34). Here, we further categorized the wealth index into poor (lowest plus poor), average (middle), and rich (rich plus highest).

195 Data processing and statistical analysis

The data were cleaned, re-coded and analyzed using STATA/SE version 14.0. We used numbers, mean, percentage or proportions to describe both the individual- and community-level variables. We used sample weight to manage sampling errors and non-responses. The hierarchical nature of the DHS data (DHS sampling methods) violates the assumption of independence or lack of correlation of the residuals. In the DHS survey, observations are interdependent as participants nested in the same cluster may behave in the same way and differ to other clusters in terms of the outcome of interest, consequently, we used a two-level multilevel proportional odds model, as single-level traditional statistical model might not be adequate to control for the clustering effect. Moreover, we used multilevel proportional odds model to consider the natural ordering of the response variable (not vaccinated, partially vaccinated and fully vaccinated). Accordingly, we built four consecutive models to identify determinants of child vaccination in Ethiopia. We first fitted the null model or the intercept only model. Then, model 1 was fitted with the individual-level

variables. Similarly, we fitted model 2 (with community-level factors). Finally, model 3 or the
mixed-effects model was fitted with both individual- and community-level factors. The intra-class
correlation coefficient (ICC) was used to determine the clustering effect or community variation
and it was calculated using the following formula.

212 ICC = $\frac{V_A}{V_A + \frac{\pi^2}{3}}$

Where: V_A is community level variance and $\frac{\pi^2}{3} = 3.29$ is individual level variance. On the other hand, we checked Proportional Change in Variance (PCV), Median Odds Ratio (MOR), and Deviance by using the following formulas to determine the fitness of the model. PCV = $\frac{V_0 - V_i}{V_0}$. Where: V_0 is a variance in the null model and V_i is a variance in the consecutive models. MOR = $e^{0.95V_i}$ where: V_i indicates that cluster variance. The last model showed the lowest deviance (Model III) and become the best-fitted model. Furthermore, we examined the proportional odds assumption that assume the equal effect of each factor across the outcome categories by score test. We checked Variance Inflation Factor (VIF) and found 1.60 to assess the presence of multicollinearity. The finding is in the acceptable range. In bi-variable analysis, we kept variables with p-value less than 0.25 for the multivariable multilevel proportional odds analysis. Finally, in the multivariable analysis, we reported variables with p-value less than 5%, adjusted proportional odds ratio (APOR) and 95% confidence interval.

225 Patient and public involvement

Patients and/or the public were not involved in the design, or conduct, or reporting, ordissemination plans of this research.

Result

1	
2	
3	
4	
-T 5	
5	
6	
7	
8	
9	
10	
11	
10	
12	
13	
14	
15	
16	
17	
18	
10	
17	
20	
21	
22	
23	
24	
25	
26	
20	
27	
28	
29	
30	
31	
32	
33	
24	
54	
35	
36	
37	
38	
39	
40	
_ 1 0	
41	
42	
43	
44	
45	
46	
Δ7	
лл ЛО	
40	
49	
50	
51	
52	
53	
54	
55	
22	
56	
57	
58	
58 59	

229 Socio-demographic characteristics of mothers and children

The current study included 1,008 mothers who have children aged 12-23 months. Out of the total respondents, more than half (52.78%) were in the age range of 25-34 years, nearly half (48.91%) have not attended education, and almost one-third (32.14%) were Orthodox religion followers. Four out of ten mothers (39.98%) were from high income households and the majorities (94.05%) were currently in union (Table 1).

Table 1: Socio-demographic characteristics of mothers of children aged 12-23 months in

236 Ethiopia, 2019 (n=1008)

Variables	Frequency (n)	Percentage (%)
Maternal age		
15-24	298	29.56
25-34	 532	52.78
35-49	 178	17.66
Maternal education	4	
No education	493	48.91
Primary	342	33.93
Secondary	99	9.82
Higher	 74	7.34
Marital status		
Not in union	60	5.95
In union	948	94.05
Religion		

	Orthodox	324	32.14
	Protestant	177	17.56
	Muslim	481	47.72
	Others	26	2.58
Wealth ind	ex		
	Poor	469	46.53
	Middle	136	13.49
	Rich	403	39.98
Region	2		
	Tigray	93	9.23
	Amhara	111	11.01
	Afar	99	9.82
	Oromia	127	12.60
	Somali	85	8.43
	Benishabgul	83	8.23
	SNNPR	116	11.51
	Gambela	77	7.64
	Harari	73	7.24
	Addis Ababa	64	6.35
	Dire Dawa	80	7.94
Type of pla	ace of residence		
	Urban	267	26.49
	Rural	741	73.51

237

Community women education					
468	46.43				
540	53.57				
495	49.11				
513	50.89				
468	46.43				
540	53.57				
-	468 540 495 513 468 540				

238 Healthcare service utilization related characteristics of mothers

Among the participants, less than half (44.15%) were practiced home delivery, nearly a quarter (24.31%) had no ANC visit, and almost one-tenth (13.99%) received PNC service. Majority of the mothers (71.73%) kept immunization document and 88.1% of the interviewed mothers have less than or equal to two under five children in their households. From the total number of children, half (50.30%) were males, 22.72% were first-born, and 59.33% were received the most recent vitamin A1. Three-fourth of respondents (73.51%) was from rural areas and 12.6% were from Oromia region of the country (Table 2).

Table 2: Healthcare service utilization related characteristics of mothers with children aged 12–23 months in Ethiopia, 2019 (n=1008)

None	245	24.31
------	-----	-------

	1-3 times	313	31.05
	4 and above	450	44.64
Place of delive	ery		
	Home	445	44.15
	Health facility	563	55.85
PNC service			
	No	836	86.01
	Yes	136	13.99
Sex of child	0		
	Male	507	50.30
	Female	501	49.70
Birth order n	umber	0,	
	1 st born	229	22.72
	2 nd to 3 rd	372	36.90
	4 th to 5 th	204	20.24
	6 th and above	203	20.14
Presence of va	accination document		
	No	285	28.27
	Yes	723	71.73
Preceding bir	th order		
	< 24 months	186	18.45
	24-48	357	35.42
	48 and above	465	46.13

Page 17 of 3	5	BMJ Open		
1 2				
3	Received Vitamin A1			
5 6	No	410	40.67	
/ 8 9	Yes	598	59.33	
10 11	Total children ever born			
12 13	1-3 children	598	59.33	
14 15 16	4-6 children	278	27.58	
17 18	7 and above	132	13.10	
19 20	Number of <5 children in household			
21 22 23	≤ 2	888	88.10	
24 25	> 2	120	11.90	
26 27 248		6		
28 29 30 249	Childhood vaccination status in Ethior	oia		
31 32 250	The full vaccination coverage among chi	ildren aged 12-23 m	onths in Ethiopia was 39 0	9% (95%
33 34 251	CI: 36 06% 42 28) (Fig. 2) On the other	hand two in ten chile	iren (22.32%) of 12-23 m	onths' ag
35 36 27 252	have not received any vaccination in the	pree years before th	e 2019 survey period A	mong th
37 252 38 30 252	children of 12-23 months' age included i	n the study 70.24%	received BCG 57.84% rec	peived th
40 41 254	third dogs of pentavolant 55 75% receiv	ad the third does of	nalia 60.620/ reasived th	
42 43	daga of rotavirus vaccina, 55,16% receiv	ad the third does of	polio, 00.0278 received in	d the fire
44 ²⁵⁵ 45	dose of notavirus vaccine, 55.16% receiv		PCV, and 37.04% receive	a the ms
46 250 47 48	dose of measies vaccination (Fig. 3).			
49 257 50	Factors affecting child vaccination in H	Ethiopia		
51 52 258	The fixed effect analysis result			
53 54 55				
56 57				
58 59				
60	For peer review only - http://l	omjopen.bmj.com/site/a	bout/guidelines.xhtml	

259	The multivariable analysis showed that maternal educational level of mothers, maternal age,
260	marital status, presence of vaccination document, received Vitamin A1, region, and place of
261	residence, were significantly associated with childhood vaccination. Children whose mothers
262	attended primary, secondary, and higher education have 2.2 [AOR=2.16; 95% CI: 1.43-3.26], 2
263	[AOR=2.02; 95% CI: 1.07-3.79], and 2.7 [AOR=2.67; 95% CI: 1.25-5.71] times higher partial or
264	full vaccination respectively compared to born to mothers with no education. The odds of partial
265	or full vaccination was 1.8 [AOR=1.79; 95% CI: 1.08-2.99] times higher among children whose
266	mothers are in the age range of 35-49 compared to 15-19 age group. Mothers who are currently in
267	union have 2.2 [AOR=2.21; 95% CI: 1.06-4.58] times more likely to vaccinate their children either
268	partially or fully. keeping vaccination cards was 26 [AOR=26.18; 95% CI: 15.75-43.53] times
269	more likely associated with partial or full vaccination compared to not keeping vaccination cards.
270	Children who have received Vitamin A ₁ have higher likelihood of partial or full vaccination
271	[AOR=4.14; 95% CI: 2.9-5.9]. Children from Afar [AOR=0.14; 95% CI: 0.04-0.45], Somali
272	[AOR=0.19; 95% CI: 0.06-0.60], Gambela [AOR=0.22; 95% CI: 0.06-0.77], Harari [AOR=0.14;
273	95% CI: 0.04-0.52], and Dire Dawa [AOR=0.23; 95% CI: 0.06-0.79] regions have less partial or
274	full vaccination compared to the Tigray region children. Children living in rural areas have 47%
275	[AOR=0.53; 95% CI: 0.30-0.93] reduced partial or full vaccination than children living in urban
276	areas of the country (Table 3).

Table 3: Multivariable multilevel ordinal logistic regression analysis of individual and community-level determinants of child vaccination in Ethiopia, 2019

50		Null	Model I	Model II	Model III
51		1 (un	MOUCH I		
53	Variables	Mode1	AOR (95% CI)	AOR (95% CI)	AOR (95% CI)
54					
55					
56					
57					
58					
59					
60		For peer review onl	y - http://bmjopen.bmj.con	n/site/about/guidelines.xhtml	

1				
² ³ ⁴ Maternal educ	cational level			
5 6	No education	1	1	
7 8	Primary	1.97 (1.33, 2.93)**	2.16 (1.43, 3.26)***	
10 11	Secondary	1.80 (0.97, 3.33)	2.02 (1.07, 3.79)*	
12 13	Higher	2.85 (1.35, 6.02)	2.67 (1.25, 5.71)*	
15 Maternal age				
16 17 18	15-24	1	1	
19 20	25-34	1.13 (0.78, 1.63)	1.15 (0.79, 1.66)	
21 22 23	35-49	1.81 (1.09, 3.02)*	1.79 (1.08, 2.99)*	
²⁴ Religion				
25 26 27	Orthodox	1	1	
28 29 30	Protestant	0.46 (0.27, 0.77)**	0.69 (0.36, 1.30)	
31 32	Muslim	0.71 (0.47, 1.09)	1.28 (0.73, 2.24)	
33 34	Other	0.39 (0.14, 1.22)	0.56 (0.18, 1.68)	
35 36 Marital status				
37 38 39	Not in union	1	1	
40 41	In union	1.84 (0.89, 3.80)	2.21 (1.06, 4.58)*	
42 43 Immunization	document			
44	Available	1	1	
45 46	Available	1	1	
47 48	Not available	27.32 (16.44,45.41)***	26.18(15.75,43.53)***	
⁴⁹ ₅₀ Received Vita	min A ₁			
51 52	No	1	1	
54 55	Yes	4.32 (3.04, 6.15)***	4.14 (2.9, 5.9)***	
56 57 58 59 60	For peer review or	nly - http://bmjopen.bmj.com/site/about/guidelines.xhtr	nl	

1 2				
$\frac{3}{4}$ R	egion			
5 6 7	Т	igray	1	1
7 8 9	А	far	0.08 (0.03, 0.23)***	0.14 (0.04, 0.45)**
10 11	А	mhara	0.59 (0.24, 1.48)	0.5 (0.22, 1.13)
12 13	0	Promia	0.21 (0.09, 0.48)***	0.45 (0.18, 1.09)
14 15	S	omali	0.08 (0.03, 0.22)***	0.19 (0.06, 0.60)**
16 17 18	В	enishangul	1.13 (0.37, 3.40)	0.74 (0.25, 2.22)
19 20	S	NNPR	0.19 (0.08, 0.45)***	0.48 (0.19, 1.17)
21 22	G	ambella	0.38 (0.12, 1.22)	0.22 (0.06, 0.77)*
23 24 25	Н	larari	0.43 (0.12, 1.48)	0.14 (0.04, 0.52)**
25 26 27	А	ddis Ababa	1.27 (0.39, 4.14)	1.14 (0.37, 3.47)
28 29	D	vire Dawa	0.78 (0.23, 2.62)	0.23 (0.06. 0.79)*
3 <u>0</u> 31 T	ype of	place of residence		
32 33 34		Urban	1	1
35 36		Rural	0.25 (0.14, 0.44)***	0.53 (0.30, 0.93)*
3 <u>7</u> 38 C	ommu	nity women	0	
39 40 e 0 41	lucatio	n	1	1
42 43		Low	1.04 (0.56, 1.94)	0.75 (0.51, 1.10)*
44 45 46		High		
47 48	279	Key * = $p < 0.05$, * = $p < 0.01$, * = $p < 0.001$		
49 50 51	280	The random effect analysis result		
52 53	281	Table 3 presents the random effect analysis result of child	lhood vaccination statu	is in Ethiopia. The
55 56 57	282	appropriateness of application of multilevel analysis and	the presence of signif	icant variations of
58 59 60		For peer review only - http://bmjopen.bmj.com/	/site/about/guidelines.xht	ml

BMJ Open

childhood vaccination status between clusters (the clustering effect) was justified by the ICC of Null model (48.19%). The value of ICC decreased from 48.19% in the null model to 14.55% in the final model showing how the effect of clustering changed. In addition, as depicted in the table below the largest PCV of the final model (81.70%) indicates the goodness of model fitness. The final model (Model 3) has the highest capacity than model I or model II alone to explain the variations in childhood vaccination status. On top of that, Model III is the best explanatory model to show the variation in the childhood vaccination. The deviance observed in the final model was smaller than that of other models (Table 4).

Table 4: Random effects analysis and model fit statistics of child vaccination in Ethiopia,
2019

Parameters	Null Model	Model I	Model II	Model III
Community level Variance (SE)	3.06	0.76	1.21	0.56
PCV (%)	Reference	75.16%	60.46%	81.70%
ICC (%)	48.19%	18.77%	26.89%	14.55%
MOR	5.31	2.29	2.84	2.03
Log-likelihood	-988.74	-684.36	-919.88	-667.78
Deviance	1,977.48	1,368.72	1,839.76	1,335.56
AIC	1983.49	1418.72	1873.77	1413.56
BIC	1998.24	1540.70	1957.34	1603.86

293 Discussion

In Ethiopia, full vaccination was 39.08%. Compared to other studies in the country, it is less than that of South East Ethiopia 76.8%(26), country-level pooled prevalence (47%)(27), and 67% in

2016 from other study(35). It is also less than 59.40% Sub-Saharan vaccination coverage(22), 69.21% East Africa(35), 45.2% Mogadishu (23), and 69.3% in Togo coverage(25). It is in the same confidence intervals as 38.3% of 2016 EDHS. This indicates that the current prevalence of full vaccination was unchanged since 2016. The reasons might be the political instabilities in the country for the last five years. Dropout rate (18.8%) may also negatively affected childhood vaccination coverage of the country. The inequalities to access health services regardless of increased population in those years might be another reason. Lack of maternal education (48.91%) also affected vaccination coverage undesirably; however, it was 67% in 2015(31). It is also better than the Sub-Saharan African countries average(22). This shows that although there are some improvements, the deviation from standard is big. Only 39.98% of mothers were from higher income families. The finding is consistent with 36.6% coverage from other study(31).

Among the associated factors, maternal education had positive association with higher full or partial vaccination, which is also similar to findings from other studies(22,31,36). The consistence might indicate that education is an independent predictor of full or partial Ffivaccination, which needs focused attention. Increased maternal age puts mothers in the higher level of full immunization category. Other studies also showed that higher age has association with full immunization(3,22). This might indicate that maternal maturity is an important factor for higher childhood vaccination in contrast to the early marriage. This means child bearing at younger age, and age at first birth needs adequate attention. Children whose mothers remained in union had higher tendency to be in higher category of full vaccination. From previous studies, there are consistent findings(22,23). This might be an indication that disrupted families might endanger children's life and so that family union should be promoted. Mothers who keep evidence of vaccination tend to be in higher category of vaccination coverage. This is also true for some

Page 23 of 35

BMJ Open

studies(23,24,31). This means, women who keeps children evidence of vaccination might have indeed great regards for full immunization while carelessness might start from poor evidence keeping. Children who received Vitamin A₁ had higher chance of being vaccination category. The fact that vitamin A is schedule towards the end of most immunization program might raise to this association (19). This might be another persist issue we never eased in previous efforts as per evidence from this study and could be set as an objective to attain other sub-objectives. Ethiopia further classified in city administrations, agrarian, and pastoralist regions. Pastoralists regions such as Afar and Somali and semi pastoralist regions such as Gambela, Benishangul Gumuz and Harari had higher tendency of failing into low category of full immunization. This is also reported by other studies (31). This is also confirmed by other studies that compared developed and underdeveloped regions in Ethiopia (31, 36). This apparently shows that attention deprived regions should be the next intervention areas. This problem is relatively similar between the rural and urban place of residences. Other studies also laud that inequalities between rural and urban residence need careful considerations(20). This might be apparently due to access, awareness, and availability of resources.

Besides the positive information, this study has also some limitations such as missing data in some records, the disproportion of sample in each region, secondary source data, and time-lapse between data collection and this analysis. When observable evidence of vaccination is not available, data collectors asked mothers orally and that may cause some recall and social desirability bias. However, a Health Facility Questionnaire was used to record vaccination information for all children without a vaccination card seen during the mother's interview(34). Moreover, we are unable to include some relevant variables like psychosocial variables of parents, vaccine hesitancy and other related variables since this study used a secondary data of a national survey. The authors

followed international protocols of DHS data process and analyses, weighted data, carefullyinterpreted finding within the period, and included complete records.

344 Conclusion

Although full vaccination increased from EDHS 2000 to 2016, the current analysis of EMDHS 2019 result showed that it was remained unchanged. Our analysis identified many factors that might be contributed for the absence of changes. Maternal educational level, maternal age, marital status, presence of vaccination document, received Vitamin A₁, region, and place of residence, were some of the contributors. Analyzing associated factors showed some of the factors are old enough causing the problem for decades. Even though the political situation in the country might also contributed to the persistency of these factors, it is advisable to work on accessibility, awareness, and available are vital. Maternal education and poverty especially family and maternal capacity remained critical and need all round efforts such as further government commitment, dedicated international supports, and peace and security can override the problem.

Abbreviation/Acronyms: Demographic Health Survey (DHS); Ethiopian Demographic Health Survey (EDHS); Ethiopian Mini-Demographic Health Survey(EMDHS); World Health Organization (WHO); United Nations Children's Fund (UNICEF); Adjusted Odds Ratio (AOR); Antenatal Care (ANC); Postnatal Care (PNC); Pneumococcal Conjugate Vaccine (PCV); and Measles Containing Vaccine (MCV); Bacille Calmette-Guerin (BCG); South Nations Nationalities and Peoples Region (SNNPR); Intra-class Correlation Coefficient (ICC); Median Odds Ratio (MOR), Confidence Interval (CI)

Declarations

Ethics approval and consent to participate

BMJ Open

This study used secondary data from demographic and health survey data files. Initially, the MEASURE DHS team was formally requested to access the datasets by completing the online request form on their website (www.dhsprogram.com). Accordingly, permission to access the data and the letter of authorization was obtained from ICF international. Therefore, for this study consent to participate is not applicable. We kept all data confidential, and no effort was made to identify households or individuals. The Ethiopian Health Nutrition and Research Institute (EHNRI) Review Board and the National Research Ethics Review Committee (NRERC) at the Ministry of Science and Technology of Ethiopia, approved EMDHS 2019. The authors also confirm that all methods were carried out in accordance with relevant guidelines and regulations.

Consent for publication

374 Not applicable

375 Availability of data and materials

The survey dataset used in this analysis are third party data from the demographic and health
survey website (<u>www.dhsprogram.com</u>) and permission to access the data is granted only for
registered DHS data user.

Competing interests

380 The authors have declared that no competing interest existed.

381 Funding

5 382 The authors received no specific funding for this work.

9 383 Authors' contribution

384 SS has obtained and analyzed the EMDHS data. SS, GG, SH were equally involved in the 385 conception of the study, interpreted the results, drafted and critically revised the manuscript. All 386 authors have read and approved the final version of the manuscript.

387 Acknowledgments

The authors are grateful to Measure DHS, ICF International Rockville, Maryland, USA for allowing us to use the 2019 EMDHS data.

to peet terien ont

1							
2 3 4	391	Refe	rences				
5 6 7	392	1.	WHO vaccine-preventable diseases : monitoring system . 2020 global summary.				
8 9	393		2022;2020:2–3.				
10 11 12	394	2.	Chepkurui V, Amponsah-dacosta E, Haddison EC. Characterization of National				
13 14	395		Immunization Programs in the Context of Public Health Emergencies : A Case Study of				
15 16 17	396		13 Countries in the WHO Africa Region. Front public Heal. 2021;9(September):1–12.				
18 19 20	397	3.	South Africa : WHO and UNICEF estimates of immunization coverage : 2016 revision				
20 21 22	398		South Africa : WHO and UNICEF estimates of immunization coverage : 2016 revision.				
23 24 25	399		2018;1–18.				
26 27 28	400	4.	WHO. Immunization coverage. 2022;(July 2021):3-7.				
28 29 30	401	5.	Patel MK, Goodson JL, Alexander JP Jr., et al. Progress Toward Regional Measles				
31 32	402		Elimination — Worldwide, 2000–2019. MMWR Morb Mortal Wkly Rep 2020;69:1700–				
33 34 35	403		1705. Poliomyelitis. World Health Organization; 2019.				
36 37 38	404	6.	World Health Organization [WHO]. Counting the impact of vaccines. 2021;(April):2017-				
39 40	405		9.				
41 42 43	406	7.	FMOH. Expanded Program on Immunization (EPI). 2022. p. 1–4.				
44 45 46	407	8.	Klein S. Why Some Vaccines Require More Than One Dose. 2015. p. 1–3.				
47 48 49	408	9.	WHO. Why Immunizing Children Matters. 2017. p. 1–3.				
50 51 52	409	10.	Children's hospital of Philadelphia. Did You Know: Some Reasons Vaccines Are Given				
53 54 55 56 57	410		in Multiple Doses. 2014.				
58 59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml				

3 4	411	11.	Greenwood B. 2014 The contribution of vaccination to global health: past, present and
5 6	412		future. Phil. Trans. R. Soc. B. 2014; 369: 20130433.
7 8 9	413		http://dx.doi.org/10.1098/rstb.2013.0433.
10 11 12	414	12.	Rodrigues CMC, Plotkin SA. Impact of Vaccines; Health, Economic and Social
13 14	415		Perspectives. Front Microbiol. 2020;11(July).
15 16 17	416	13.	Ghendon Y. Vaccine preventable viral diseases in developing countries. World J
18 19	417		Microbiol Biotechnol. 1991 Mar;7(2):115-20. doi: 10.1007/BF00328980. PMID:
20 21 22	418		24424922.
23 24 25	419	14.	Brenzel L, Wolfson LJ, Fox-Rushby J, et al. Vaccine-preventable Diseases. In: Jamison
25 26 27	420		DT, Breman JG, Measham AR, et al., editors. Disease Control Priorities in Developing
28 29 20	421		Countries. 2nd edition. Washington (DC): The International Bank for Reconstruction a.
30 31 32	422	15.	Ethiopia : WHO and UNICEF estimates of immunization coverage : 2019 revision
33 34	423		Ethiopia : WHO and UNICEF estimates of immunization coverage : 2019 revision.
35 36 37	424		2021;1–28.
38 39	425	16.	WHO. Immunization WHO Regional Office for Africa. :199–207. Available from:
40 41 42	426		https://www.afro.who.int/health-topics/immunization
43 44 45	427	17.	WHO. Organisation Mondiale Vaccine-Preventable Diseases And Immunization. 2021;71.
46 47 48	428	18.	Raslan R, El Sayegh S, Chams S, Chams N, Leone A, Hajj Hussein I. Re-Emerging
49 50	429		Vaccine-Preventable Diseases in War-Affected Peoples of the Eastern Mediterranean
51 52 53	430		Region—An Update. Front Public Heal. 2017;5(October):1-8.
54 55 56 57	431	19.	WHO. Global Immunization News (GIN). 2017;(January).
58 59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 29 of 35

1

BMJ Open

2			
3 4	432	20.	Shibre G, Zegeye B, Idriss-wheeler D, Yaya S. Inequalities in measles immunization
5 6	433		coverage in Ethiopia : a cross-sectional analysis of demographic and health surveys 2000
7 8 9	434		– 2016. BMC Infect Dis. 2020;20:1–12.
10 11 12	435	21.	Figueiredo A De, Were F. Local trends in immunisation coverage across Africa. Lancet.
13 14 15	436		2019;393(10183):1779–81.
16 17	437	22.	Fenta SM, Biresaw HB, Fentaw KD. Determinants of full childhood immunization among
18 19	438		children aged 12 – 23 months in sub-Saharan Africa : a multilevel analysis using
20 21 22	439		Demographic and Health Survey Data. Trop Med Health. 2021;49:29.
23 24	440	23.	Mohamud MHT, Magan MA, Mohamed LM, Mohamud MA, Muse AA. Barriers for full
25 26 27	441		immunization coverage among under 5 years children in Mogadishu, Somalia. J Fam
28 29	442		Med Prim Care. 2020;9(6):2664–9.
30 31 32	443	24.	Yadita ZS, Ayehubizu LM (2021) Full immunization coverage and associated factors
33 34	444		among children aged 12–23 months in Somali Region, Eastern Ethiopia. PLoS ONE.2021
35 36 37	445		16(12): e0260258. https://doi.org/10.1371/journal. pone.0260258.
38 39	446	25.	Zida-Compaore WIC, Ekouevi DK, Gbeasor-Komlanvi FA, Sewu EK, Blatome T,
40 41 42	447		Gbadoe AD, et al. Immunization coverage and factors associated with incomplete
43 44	448		vaccination in children aged 12 to 59 months in health structures in Lomé. BMC Res
45 46 47	449		Notes. 2019;12(1):1–7.
48 49 50	450	26.	Legesse E, Dechasa W. An assessment of child immunization coverage and its
50 51 52	451		determinants in Sinana District, Southeast. ??? [Internet]. 2015;1-14. Available from: ???
53 54 55 56 57	452	27.	Nour TY, Farah AM, Ali OM, Abate KH. Immunization coverage in Ethiopia among 12 –
58 59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 30 of 35

1 2			
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 9 20 21 22 32 4 25 26 27 28 29 30 132 33 4 5 36 37 8 9 40 41 42 34 45 6 7 8 9 10 11 22 23 45 6 7 8 9 10 11 22 23 24 5 6 7 8 9 10 11 22 23 24 5 6 7 8 9 10 11 22 23 24 5 6 7 8 9 10 11 22 23 24 5 6 7 8 9 10 11 22 23 24 5 6 7 8 9 10 11 22 23 24 5 6 7 8 9 10 11 22 23 24 5 6 7 8 9 30 1 22 23 24 5 6 7 8 9 30 1 22 23 24 5 26 27 28 9 30 1 22 23 24 5 26 27 28 29 30 1 22 23 24 5 26 27 28 29 30 1 22 33 34 35 36 37 8 9 40 41 22 23 24 5 26 27 28 29 30 1 22 33 34 35 36 37 38 9 40 41 42 33 44 5 36 37 38 9 40 41 42 33 34 35 36 37 38 9 40 41 42 33 34 35 36 37 38 9 40 41 42 33 34 35 36 37 38 37 38 37 37 37 37 37 37 37 37 37 37 37 37 37	453		23 month old children : systematic review and meta-analysis. 2020;1–12.
	454	28.	Ethiopian Public Health Institute (EPHI) [Ethiopia] and ICF. 2021. Ethiopia Mini
	455		Demographic and Health Survey 2019: Final Report. Rockville, Maryland, USA: EPHI
	456		and ICF. Vailable from: https://dhsprogram.com/pubs/pdf/FR363/FR363.pdf.
	457	29.	Ethiopian Public Health Institute (EPHI) and ICF. 2019. Mini Demographic and Health
	458		Survey 2019: key Indicators. Rockville, Maryland, USA: EPHI and ICF. 2019. 35 p.
	459	30.	Bangura JB, Xiao S, Qiu D, Ouyang F, Chen L. Barriers to childhood immunization in
	460		sub- Saharan Africa : A systematic review. 2020;20:1108.
	461	31.	Lakew Y, Bekele A, Biadgilign S. Factors influencing full immunization coverage among
	462		12 – 23 months of age children in Ethiopia : evidence from the national demographic and
	463		health survey in 2011. BMC Public Health. 2015;15:1–8.
	464	32.	Girmay A, Dadi AF. Full Immunization Coverage and Associated Factors among Children
	465		Aged 12-23 Months in a Hard-to-Reach Areas of Ethiopia. hindawi. 2019;2019:8.
	466	33.	Ministry of Health-Ethiopia. Health Sector Transformation Plan II (HSTP) (2021-2025).
	467		2021.
	468	34.	Ethiopian Public Health Institute (EPHI) [Ethiopia] and ICFICF. (2019). Ethiopia Mini
	469		Demographic and Health Survey: Key Indicators. Rockville, Maryland, USA: EPHI and
40 47 48 49	470		ICF.
50 51	471	35.	Gelaye SS, Yenit MK, Baraki AG. Rural Vaccination Coverage Among Children Aged
52 53 54 55 56 57	472		12–23 Months Was Higher Than the Urban Counterparts: A Comparative Cross-Sectional
	473		Study in Pawi District, Ethiopia. Pediatr Heal Med Ther. 2021;Volume 12:119–27.
59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2			
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	474	36.	Wondimu A, Cao Q, Asuman D, Almansa J, Postma MJ. Understanding the Improvement
	475		in Full Childhood Vaccination Coverage in Ethiopia Using Oaxaca – Blinder
	476		Decomposition Analysis. 2020;1–11.
	477		
	478		
	479		
	480		
	481		
25 26	482		
27 28 29 30 31 32 33 34 35 36 37 38 40 41 42 43 44 50 51 53 54 55 56 57 58 59	483		
60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Fig. 1: Eligibility assessment for childhood vaccination coverage among children aged 12-23 month's in Ethiopia, 2019

Fig. 2: Vaccination status of children aged 12-23 months in Ethiopia, 2019

.onth. Fig. 3: Percentage of children aged 12-23 months who received a particular vaccine in

Ethiopia, 2019

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
STROBE Statement—Checklist of items that should be included in reports of cross-sectional studies						
	Item No	Recommendation	Reported on page #			
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	1			
		(b) Provide in the abstract an informative and balanced summary of what was done	2			
		and what was found				
Introduction						
Background/rationale	2 Explain the scientific background and rationale for the investigation being reported		4-6			
Objectives	3	State specific objectives, including any prespecified hypotheses				
Methods						
Study design 4 Present key elements of study design early in the paper		7				
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment,	7			
		exposure, follow-up, and data collection				
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of	7			
1		participants				
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect	8-10			
		modifiers. Give diagnostic criteria, if applicable				
Data sources/	8*	For each variable of interest, give sources of data and details of methods of	8-9			
measurement		assessment (measurement). Describe comparability of assessment methods if there				
		is more than one group				
Bias	9	Describe any efforts to address potential sources of bias				
Study size	10	Explain how the study size was arrived at	8			
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable,	10-11			
		describe which groupings were chosen and why				
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	NA			
		(b) Describe any methods used to examine subgroups and interactions	NA			
		(c) Explain how missing data were addressed	-			
		(d) If applicable, describe analytical methods taking account of sampling strategy	NA			
		(<u>e</u>) Describe any sensitivity analyses	NA			
Results						
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially	NA			
		eligible, examined for eligibility, confirmed eligible, included in the study,				
		completing follow-up, and analysed				
		(b) Give reasons for non-participation at each stage	NA			
		(c) Consider use of a flow diagram	NA			
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and	12-16			
		information on exposures and potential confounders				
		(b) Indicate number of participants with missing data for each variable of interest	NA			
Outcome data	15*	Report numbers of outcome events or summary measures				
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and	16-21			
		their precision (eg, 95% confidence interval). Make clear which confounders were				
		adjusted for and why they were included				
		(b) Report category boundaries when continuous variables were categorized	NA			
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a	NA			
		meaningful time period				
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and	NA			

			Page 3		
		sensitivity analyses			
		sensitivity analyses			
Discussion					
Key results	Summarise key results with reference to study objectives	22			
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or	24		
		Imprecision. Discuss both direction and magnitude of any potential bias			
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations,	23-24		
~	multiplicity of analyses, results from similar studies, and other relevant evidence				
Generalisability	21	Discuss the generalisability (external validity) of the study results	22-24		
Other information		Τ			
Funding	22	Give the source of funding and the role of the funders for the present study and, if	26		
		applicable, for the original study on which the present article is based			

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml