Supplemental Materials

Molecular mechanism of biased signaling at the kappa opioid receptor

Amal EI Daibani^{1,2}, Joseph M. Paggi³, Kuglae Kim^{4,5}, Yianni D. Laloudakis³, Petr Popov⁶, Sarah M. Bernhard^{1,2}, Brian E. Krumm⁴, Reid H.J. Olsen⁴, Jeffrey Diberto⁴, F. Ivy Carroll⁷, Vsevolod Katritch⁸, Bernhard Wunsch⁹, Ron O. Dror^{3,10*}, Tao Che^{1,2*}

¹Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, USA

²Center for Clinical Pharmacology, University of Health Sciences & Pharmacy at St. Louis and Washington University School of Medicine, Saint Louis, MO, USA

³Department of Computer Science, Stanford University, Stanford, CA, USA

⁴Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, USA

⁵Present address: Department of Pharmacy, Yonsei University, Incheon, 21983, Republic of Korea

⁶iMolecule, Skolkovo Institute of Science and Technology, Moscow, Russia

⁷Research Triangle Institute, P.O. Box 12194, Research Triangle Park, NC 27709, USA

⁸Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA

⁹Institut für Pharmazeutische und Medizinische Chemie, Universität Münster, Corrensstraße 48,

48149, Münster, Germany

¹⁰Departments of Molecular and Cellular Physiology and of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA

Supplementary Information

Supplemental Figure 1. **a**. Size-exclusion chromatography of KOR WT and computationdesigned mutants. **b**. Thermostability of KOR mutants compared with the wild type. **c**. The thermostabilized mutation S324^{7.47}C does not significantly change the function of nalfurafine. Data are expressed as the mean \pm SEM of three independent experiments (n = 3 experiments each done in duplicate). **d**. 2Fo-Fc and Fo-Fc map of nalfurafine in the binding pocket of KOR. **e**. The binding affinity of nalfurafine in the presence of Nb39 or Gi1. **f** and **g**. The effect of D138^{3.32}A on the functional activity of nalfurafine in G protein-mediated cAMP inhibition assay and Tango arrestin recruitment assay. Data are expressed as the mean \pm SEM of three independent experiments (n = 3 experiments each done in duplicate). Values in each plot were summarized in Supplemental Table 3.

Supplemental Figure 2. **a**. The extracellular loop 2 (EL2) adopts different orientation between nalfurafine and the antagonist JDTic. **b**. The binding pocket of JDTic-bound KOR. **c**. The binding pocket of MP1104-bound KOR. **d**. The binding pocket of nalfurafine-bound KOR. **e**. The EL2 "lid" residues do not significantly affect the functional activity of nalfurafine. **f**. The EL2 "lid" residues accelerate the dissociation of nalfurafine from KOR. **g** and **h**. The effect of G319^{7.42}L and Y320^{7.43}L on the functional activity of nalfurafine in G protein-mediated cAMP inhibition assay and Tango arrestin recruitment assay. Data are expressed as the mean \pm SEM of three independent experiments (n = 3 experiments each done in duplicate). Values in each plot were summarized in Supplemental Table 4.

Supplemental Figure 3. **a**. The W287^{6.48} adopts different positions upon the agonist nalfurafine and the antagonist JDTic binding. **b**. The effect of W287^{6.48}A on the nalfurafine-mediated G protein activation and arrestin recruitment. Data are expressed as the mean \pm SEM of three independent experiments (n = 3 experiments each done in duplicate). **c**. The furan ring of nalfurafine forms hydrophobic interactions with the 'triad' residues F114^{2.59}/W124^{ECL1}/V134^{3.28}. **d**. The effects of mutations in the triad pocket, F114^{2.59}L, W124^{ECL1}L or V134^{3.28}A, on the functional activity of nalfurafine in G protein-mediated cAMP inhibition assay and Tango arrestin recruitment assay. Data are expressed as the mean \pm SEM of three independent experiments (n = 3 experiments each done in duplicate). Values in each plot were summarized in Supplemental Table 5.

Supplemental Figure 4. a. G protein-biased activity (nalfurafine) and arrestin-biased activity (WMS-X600) confirmed by secondary BRET assays. **b**. Average ligand and binding pocket conformations in MD simulations. In cyan, the simulation frame where the ligand and binding site are most similar (lowest RMSD) to their average coordinates across all MD simulations with the indicated ligand bound. In magenta: the crystallographic pose of nalfurafine and the docked poses for U50,488 and WMS-X600, which were used to initiate the simulations. **c**. Differential effects of binding pocket residue Q115^{2.60} mutation on the functional activity of nalfurafine and WMS-X600. **d**. Differential effects of binding pocket residue K227^{5.39}A mutation on the functional activity of nalfurafine and WMS-X600. Data are expressed as the mean \pm SEM of three independent experiments (n = 3 experiments each done in duplicate). **e**. Disruption of the K227^{5.39}– E297^{6.58} salt bridge results in an increased distance between the extracellular ends of TM5 and TM6 (measured as distance between the CAs of E297^{6.58} and F225^{5.37}). Values in each plot were summarized in Supplemental Table 7.

Supplemental Figure 5. Interaction with the 'toggle switch' residue W287^{6.48} displays ligandspecific effects in signaling. **a.** Comparison of the vertical displacement of the CZ atom of W287^{6.48} for the three ligands. **b.** Ligand-specific vertical displacement of W287^{6.48}. **c.** The vertical displacement of W287^{6.48} is coupled to the rotation of TM7 through the N322^{7.45} side chain. **d** and **e.** W287^{6.48} poses different effects on WMS-X600 (**d**) and U50,488 (**e**) mediated G protein or arrestin signaling. Data are expressed as the mean \pm SEM of three independent experiments (n = 3 experiments each done in duplicate). Values in each plot were summarized in Supplemental Table 8.

Supplemental Figure 6. a. MD simulation convergence analysis. Each of the left and right columns are analogous to Figure 4. The left column uses only the simulation frames from 1.5 µs to 2.25 µs and the right column uses only simulation frames from 2.25 µs to 3.0 µs. Note that our simulations are 3.0 µs, and we drop the first 1.5 µs to allow the simulations to converge, so this corresponds to the first and second half of the frames shown in Figure 4. The similar populations of each state in either time split suggests that the populations would not change significantly if the simulations were extended. b. The G protein-biased KOR agonist, 6'-GNTI, likely has a similar effect on K227^{5.39} and induces a similar conformational state as nalfurafine does. а

 $1.50 \ \mu s \le time < 2.25 \ \mu s$

 $2.25 \ \mu s \le time < 3.00 \ \mu s$

Supplemental Figure 7. Effects of indicated residues on the KOR-G protein subtype interactions. Data are expressed as the mean \pm SEM of three independent experiments (n = 3 experiments each done in duplicate). Values in each plot were summarized in Supplemental Table 10-11.

Supplemental Figure 8. Effects of indicated residues on the KOR-G protein subtype interactions (Con't). Data are expressed as the mean \pm SEM of three independent experiments (n = 3 experiments each done in duplicate). Expression of KOR mutants were also quantitated by single-point radioligand binding assays. ³H-Diprenorphine was used at 5 nM. Values in each plot were summarized in Supplemental Table 10-11.

Supplemental Figure 9. Compatibility of the occluded state with arrestin and G protein coupling. Renderings of models of the KOR occluded state and arrestin or G protein complex modeled based on experimentally determined structures of (a) M2– β -arrestin 1 (PDB: 6U1N), (b) NTSR1– β -arrestin 1 (PDB: 6UP7), and (c) MOR–Gi1 (PDB: 6DDF). Models were generated by aligning an occluded state structure of KOR from a simulation frame to the receptor present in the indicated experimentally determined structure using PyMOL and then deleting the receptor from the experimentally determined complex structure.

 β -arrestin 1 from complex with M2

KOR occluded state β-arrestin 1 from complex with NTSR1

Supplemental Tables

Structure	BRIL-KOR-Nalfurafine-Nb39
Data Collection	APS, GMCA/CAT 23ID-B/D, 1.033 Å, 10-µm microfocus beam
Crystals	23
Resolution (Å)	38.38-3.30 (3.56-3.30)
Space group	P22 ₁ 2 ₁
Complexes/ASU	2
Unit cell dimensions <i>a</i> , <i>b</i> , <i>c</i> (Å)	70.3 76.4 161.7
α, β, γ (°)	90.0 90.0 90.0
No. total reflections	40,881 (1,594)
No. unique reflections	10,443 (640)
Multiplicity	6.4 (4.4)
Completeness (%)	94.5 (88.7)
Mean I/ $\sigma(I)$	5.2 (0.8)
R_{merge} (%)	18.2 (146.5)
$CC_{1/2}$ (%)	99.4 (49.6)
Refinement Statistics	
Resolution used in refinement (Å)	38.26-3.30 (3.21-3.10)
No. reflections used in refinement	12,421 (1,106)
No. reflections used for R-free	1,244 (107)
R-work (%)	27.5 (40.1)
R-free (%)	32.6 (46.7)
Number of atoms	3,393
KOR	2,136
Nb39	743
BRIL	479
Nalfurafine	35
Overall B-factors (Å ²)	122.7
KOR	108.1
Nb39	137.9
BRIL	165.6
Nalfurafine	101.7
Model Statistics	
RMSD Bond (Å)	0.011
RMSD Bond (°)	1.36
Ramachandran Favored (%) ^a	95.1
Ramachandran Allowed (%) ^a	4.9
Ramachandran Outliers (%) ^a	0.0
Rotamer outliers (%) ^a	0.0
Molprobity score ^a	2.13
Highest-resolution shell is shown	in parentheses.

Supplemental Table 1. Data Collection and Refinement Statistics.

^aAs defined in MolProbity.

Supplemental Table 2 (related to Figure 1). Summary of potency and efficacy values reported in Figure 1. Potency (Log EC50, M) and efficacy (% reference receptor maximal response) are derived from simultaneous fitting of all biological replicates (n=3 experiments each done in duplicate).

Receptor	$pK_i \pm SEM$ (radioligand binding), M
KOR	6.86 ± 0.12
DOR	9.37 ± 0.07
MOR	7.88 ± 0.07
NOP	N.A.

N.A. no activity

Receptor	$pEC_{50} \pm SEM$ (BRET-Gi1 protein activation), M
KOR	10.19 ± 0.08
DOR	7.13 ± 0.24
MOR	8.29 ± 0.18
NOP	N.A.

N.A. no activity

Supplemental Table 3 (Related to Supplemental Figure 1). Summary of potency and efficacy values reported in Supplemental Figure 1. Potency (Log EC50, M) and efficacy (% reference receptor maximal response) are derived from simultaneous fitting of all biological replicates (n = 3 experiments each done in duplicate).

Mutations	cAMP inhibition		
withations	$pEC_{50} \pm SEM, M$	$E_{max}\% \pm SEM$	
KOR WT	11.71 ± 0.07	100 ± 2	
KOR S324 ^{7.47} C	11.09 ± 0.06	99 ± 2	

Receptor	$pK_i \pm SEM$ (radioligand binding), M
KOR	8.63 ± 0.05
KOR + Gil	9.54 ± 0.04
KOR + Nb39	10.22 ± 0.03

Nalfurafina	cAMP inhibition		Arrestin recruitment	
Natiuranne	$pEC_{50} \pm SEM, M$	$E_{max}\% \pm SEM$	$pEC_{50} \pm SEM, M$	$E_{max}\% \pm SEM$
KOR WT	11.65 ± 0.09	100 ± 3	9.95 ± 0.22	100 ± 5
KOR D138 ^{3.32} A	7.84 ± 0.10	102 ± 4	6.55 ± 0.11	102 ± 7

Supplemental Table 4 (Related to Supplemental Figure 2). Summary of potency and efficacy values reported in Supplemental Figure 2. Potency (Log EC50, M) and efficacy (% reference receptor maximal response) are derived from simultaneous fitting of all biological replicates (n = 3 experiments each done in duplicate).

Nalfurafina	cAMP inhibition		
Natiuratilie	$pEC_{50} \pm SEM, M$	$E_{max}\% \pm SEM$	
KOR WT	11.71 ± 0.07	100 ± 2	
KOR E209 ^{ECL2} A	11.84 ± 0.08	100 ± 2	
KOR S211 ^{ECL2} A	11.64 ± 0.09	107 ± 2	

Nalfurafina	cAMP inhibition		Arrestin recruitment	
Natiuratilie	$pEC_{50} \pm SEM, M$	$E_{max}\% \pm SEM$	$pEC_{50} \pm SEM, M$	$E_{max}\% \pm SEM$
KOR WT	11.71 ± 0.06	100 ± 3	9.95 ± 0.22	100 ± 5
KOR G319 ^{7.42} L	9.12 ± 0.12	103 ± 4	7.43 ± 0.31	2.6 ± 1.2
KOR Y320 ^{7.73} L	9.99 ± 0.06	105 ± 2	7.11 ± 0.25	66 ± 7

Supplemental Table 5 (Related to Supplemental Figure 3). Summary of potency and efficacy values reported in Supplemental Figure 3. Potency (Log EC50, M) and efficacy (% reference receptor maximal response) are derived from simultaneous fitting of all biological replicates (n = 3 experiments each done in duplicate).

Nalfurafina	cAMP inhibition		Arrestin recruitment	
Inallulallite	$pEC_{50} \pm SEM, M$	$E_{max}\% \pm SEM$	$pEC_{50} \pm SEM, M$	$E_{max}\% \pm SEM$
KOR WT	11.32 ± 0.20	94 ± 2	9.85 ± 0.23	92 ± 5
KOR W287 ^{6.48} A	10.98 ± 0.24	98 ± 4	7.82 ± 0.18	85 ± 7

Nalfunafina	cAMP inhibition		Arrestin recruitment	
Nationalitie	$pEC_{50} \pm SEM, M$	$E_{max}\% \pm SEM$	$pEC_{50} \pm SEM, M$	$E_{max}\% \pm SEM$
KOR WT	11.57 ± 0.11	100 ± 3	9.95 ± 0.22	100 ± 5
KOR F114 ^{2.59} L	9.68 ± 0.14	97 ± 4	7.85 ± 0.60	17 ± 3
KOR W124 ^{ECL1} L	9.29 ± 0.14	98 ± 3	7.64 ± 0.78	26 ± 4
KOR V134 ^{3.28} A	10.47 ± 0.17	93 ± 3	6.62 ± 0.12	76 ± 6

Supplemental Table 6 (related to Figure 3). Summary of potency and efficacy values reported in Figure 3. Potency (Log EC50, M) and efficacy (% reference receptor maximal response) are derived from simultaneous fitting of all biological replicates (n=3 experiments each done in duplicate).

Licond	cAMP inhibition		Arrestin recruitment	
Liganu	$pEC_{50} \pm SEM, M$	$E_{max}\% \pm SEM$	$pEC_{50} \pm SEM, M$	$E_{max}\% \pm SEM$
Nalfurafine	11.52 ± 0.50	99 ± 2	9.55 ± 0.19	87 ± 4
U50,488	9.78 ± 0.12	99 ± 3	7.96 ± 0.51	100 ± 6
WMS-X600	9.98 ± 0.25	95 ± 3	9.33 ± 0.16	96 ± 5

Supplemental Table 7 (Related to Supplemental Figure 4). Summary of potency and efficacy values reported in Supplemental Figure 4. Potency (Log EC50, M) and efficacy (% reference receptor maximal response) are derived from simultaneous fitting of all biological replicates (n = 3 experiments each done in duplicate).

Licond	BRET-Gi1		BRET-βArrestin2	
Liganu	$pEC_{50} \pm SEM, M$	$E_{max}\% \pm SEM$	$pEC_{50} \pm SEM, M$	$E_{max}\% \pm SEM$
Nalfurafine	10.31 ± 0.36	85 ± 7	8.59 ± 0.23	100 ± 4
U50,488	8.74 ± 0.26	98 ± 8	6.79 ± 0.13	71 ± 5
WMS-X600	8.85 ± 0.35	84 ± 8	7.51 ± 0.17	102 ± 6

		cAMP in	hibition	Arrestin recruitment			
Ligand	Mutations	$pEC_{50}\pm$	$E_{max}\% \pm$	$pEC_{50}\pm$	$E_{max}\% \pm$		
		SEM, M	SEM	SEM, M	SEM		
Nalfurafine	KOR WT	11.59 ± 0.07	100 ± 2	9.91 ± 0.21	100 ± 5		
	KOR Q115 ^{2.60} N	10.41 ± 0.09	98 ± 3	8.47 ± 0.14	98 ± 3		
WMS-X600	KOR WT	9.99 ± 0.14	96 ± 3	9.43 ± 0.16	110 ± 4		
	KOR Q115 ^{2.60} N	11.16 ± 0.05	103 ± 1	10.11 ± 0.17	110 ± 6		

Ligand		cAMP in	nhibition	Arrestin recruitment			
	Mutations	$pEC_{50}\pm$	$E_{max}\% \pm$	$pEC_{50} \pm SEM$,	$E_{max}\% \pm$		
		SEM, M	SEM	М	SEM		
Nalfunafina	KOR WT	11.59 ± 0.07	100 ± 2	9.91 ± 0.21	88 ± 4		
Nalturaline	KOR K227 ^{5.39} A	12.28 ± 0.09	100 ± 3	9.10 ± 0.14	89 ± 3		

Supplemental Table 8 (related to Supplemental Figure 5). Summary of potency and efficacy values reported in Supplemental Figure 5. Potency (Log EC50, M) and efficacy (% reference receptor maximal response) are derived from simultaneous fitting of all biological replicates (n = 3 experiments each done in duplicate).

WMS-X600	cAMP inh	nibition	Arrestin recruitment			
	$pEC_{50} \pm SEM, M$	$E_{max}\% \pm SEM$	$pEC_{50} \pm SEM, M$	$E_{max}\% \pm SEM$		
KOR WT	9.88 ± 0.12	92 ± 4	9.29 ± 0.14	92 ± 5		
KOR W287 ^{6.48} A	6.96 ± 0.04	98 ± 5	6.52 ± 0.13	108 ± 7		

1150 499	cAMP inf	nibition	Arrestin recruitment			
030,488	$pEC_{50} \pm SEM, M$	$E_{max}\% \pm SEM$	$pEC_{50} \pm SEM, M$	$E_{max}\% \pm SEM$		
KOR WT	9.48 ± 0.20	92 ± 4	7.36 ± 0.12	88 ± 6		
KOR W287 ^{6.48} A	6.78 ± 0.31	98 ± 5	6.42 ± 0.23	96 ± 9		

Supplemental Table 9 (related to Figure 5a). Summary of potency and efficacy values reported in Figure 3. Potency (Log EC50, M) and efficacy (% reference receptor maximal response) are derived from simultaneous fitting of all biological replicates (n = 3 experiments each done in duplicate).

Drug		Gai1	Gai2	Gai3	GαoA	GaoB	GαZ	GaGust	β-	β-
E.C.		0.07	0.50	0.51	0.07	0.10	0.50		Arresun1	Arresun2
	$pEC_{50}\pm$	8.97	8.73	8.71	9.06	9.12	9.53	$7.22 \pm$	6.31 ±	$6.86 \pm$
	SEM,	±	±	±	±	±	±	0.28	0.07	0.10
1150 488	М	0.09	0.22	0.11	0.16	0.11	0.21	0.20	0.07	0.10
0.50,400	Emax%	99.98	99.04	99.96	99.98	100.0	100.2	00.60 ±	100.0 ±	00.00 +
	\pm SEM	±	±	±	±	±	±	99.09 ±	$100.0 \pm$	99.99 ±
		2.42	5.70	2.79	4.30	2.69	4.65	11.80	5.07	4.33
	$pEC_{50}\pm$	10.26	10.17	10.17	10.26	10.63	11.04	8 11 +	8.61⊥	8 06 ±
	SEM,	±	±	±	±	±	±	$0.44 \pm$	$0.01 \pm$	0.14
N-166	М	0.07	0.11	0.09	0.14	0.11	0.13	0.21	0.20	
Nalturatine	Emax%	101.1	101.3	100.1	98.74	99.79	96.68	(5.57)	52.06 ± 2.89	07.20
	\pm SEM	±	±	±	±	±	±	$65.5 / \pm$		$0/.39 \pm$
		1.35	2.76	2.01	2.47	1.83	2.20	3.99		3.61
	$pEC_{50}\pm$	9.55	9.19	9.19	9.29	9.72	10.01	0.21	7 28 1	8.05 ±
	SEM,	±	±	±	±	±	±	$8.31 \pm$	$7.28 \pm$	
WAR VOO	М	0.08	0.13	0.07	0.10	0.08	0.14	0.24	0.08	0.10
WWS-A000	Emax%	101.3	99.35	99.22	99.81	99.18	07.70	02.50	02.8	100.1
	\pm SEM	±	±	±	±	±	97.70	93.39±	$93.8 \pm$	$108.1 \pm$
		2.02	3.47	1.94	2.56	1.93	± 3.2	/.13	4.90	4.70
	$pEC_{50}\pm$	9.71	9.70	9.50	9.71	10.01	10.13			0.72
(2 CNTI	SEM,	±	±	±	±	±	±	N.A.	N.A.	$9.72 \pm$
	М	0.08	0.15	0.13	0.13	0.07	0.15			0.32
0 -0N11	Emax%	82.61	73.62	76.36	79.00	86.65	87.90			15.02
	\pm SEM	±	±	±	±	±	±	N.A.	N.A.	13.02 ± 1.56
		1.62	2.48	2.49	2.51	1.66	2.88			1.30

N.A. no activity

Nalfurafine	pEC ₅₀ ± SEM, M																	
in KOR	Gα	i1	Gαi	2	Gαi	3	Gαo	A	Gαo	в	Gα	Z	GαG	ust	β-Arre	stin1	β-Arre	stin2
mutation		FC		FC		FC		FC		FC		FC		FC		FC		FC
KOR WT	10.26 ±	1	10.17 ± 0.11	1	10.17 ± 0.09	1	10.26 ± 0.14	1	10.63 ± 0.11	1	11.04 ± 0.13	1	8.44 ±	1	8.61 ±	1	8.96 ±	1
T94 ^{2.39} V	0.07 9.69 ± 0.12	4	9.99± 0.11	2	9.90± 0.12	2	10.30 ± 0.09	1	10.01 ± 0.11	4	10.28 ± 0.11	6	0.21 8.03 ±	3	0.20 8.12 ±	3	0.14 8.85 ±	1
D105 ^{2.50} A	0.12 8.12 ± 0.22	138	7.80 ± 0.21	234	8.57 ± 0.25	40	8.22 ± 0.16	110	8.79 ± 0.17	69	8.36 ± 0.19	479	7.63 ± 0.29	6	0.34 7.10 ± 0.30	32	7.06 ± 0.25	79
F114 ^{2.59} L	8.71 ± 0.23	35	8.91 ± 0.20	18	8.47 ± 0.22	50	$\begin{array}{c} 8.66 \pm \\ 0.18 \end{array}$	40	8.90 ± 0.17	54	9.31 ± 0.24	54	7.96 ± 0.25	3	6.39 ± 0.20	166	6.32 ± 0.23	437
Q115 ^{2.60} N	9.51 ± 0.19	6	8.79 ± 0.21	24	$\begin{array}{c} 9.31 \pm \\ 0.15 \end{array}$	7	$\begin{array}{c} 8.88 \pm \\ 0.28 \end{array}$	24	9.51 ± 0.19	13	$\begin{array}{c} 9.45 \pm \\ 0.16 \end{array}$	39	8.31 ± 0.32	1	7.99 ± 0.31	4	8.04 ± 0.21	8
Y139 ^{3.33} L	9.65 ± 0.23	4	$\begin{array}{c} 10.15 \\ \pm \ 0.15 \end{array}$	1	$\begin{array}{c} 9.63 \pm \\ 0.14 \end{array}$	3	$\begin{array}{c} 9.80 \pm \\ 0.09 \end{array}$	3	$\begin{array}{c} 10.07 \\ \pm \ 0.13 \end{array}$	4	$\begin{array}{c} 10.48 \\ \pm \ 0.13 \end{array}$	4	7.70 ± 0.35	5	8.06 ± 0.18	4	8.22 ± 0.16	5
N141 ^{3.35} A	9.30 ± 0.15	9	9.30± 0.14	7	$\begin{array}{c} 9.19 \pm \\ 0.13 \end{array}$	10	9.32 ± 0.15	9	9.01 ± 0.15	42	9.07 ± 0.16	93	8.05 ± 0.22	2	7.89 ± 0.23	5	8.23 ± 0.24	5
D155 ^{3.49} A	7.19 ± 0.32	1175	8.87± 0.20	20	$\begin{array}{c} 9.19 \pm \\ 0.28 \end{array}$	10	$\begin{array}{c} 9.33 \pm \\ 0.18 \end{array}$	9	9.10 ± 0.18	34	9.61 ± 0.17	27	8.32 ± 0.21	1	7.57 ± 0.23	11	7.77 ± 0.23	15
R170 ^{ICL2} A	8.44 ± 0.22	66	$\begin{array}{c} 8.55 \pm \\ 0.25 \end{array}$	42	$\begin{array}{c} 8.52 \pm \\ 0.28 \end{array}$	45	9.51 ± 0.16	6	9.74 ± 0.16	8	9.94 ± 0.14	13	8.47 ± 0.33	1	6.49 ± 0.28	132	7.02 ± 0.21	87
K200 ^{ECL2} A	9.68 ± 0.20	4	$\begin{array}{c} 9.87 \pm \\ 0.18 \end{array}$	2	$\begin{array}{c} 9.66 \pm \\ 0.18 \end{array}$	3	9.34 ± 0.20	8	9.59 ± 0.20	11	$\begin{array}{c} 10.07 \\ \pm \ 0.18 \end{array}$	9	8.90 ± 0.33	3	7.79 ± 0.25	7	6.99 ± 0.28	93
K227 ^{5.39} A	10.12 ± 0.12	1	$\begin{array}{c} 10.22 \\ \pm \ 0.11 \end{array}$	1	$\begin{array}{c} 10.46 \\ \pm \ 0.16 \end{array}$	2	$\begin{array}{c} 10.52 \\ \pm \ 0.14 \end{array}$	1	$\begin{array}{c} 10.36 \\ \pm \ 0.14 \end{array}$	2	$\begin{array}{c} 10.54 \\ \pm \ 0.13 \end{array}$	3	8.83 ± 0.19	2	8.42 ± 0.22	2	8.35 ± 0.19	4
L253 ^{5.65} A	8.48 ± 0.19	60	$\begin{array}{c} 8.23 \pm \\ 0.16 \end{array}$	87	$\begin{array}{c} 8.27 \pm \\ 0.17 \end{array}$	79	$\begin{array}{c} 8.67 \pm \\ 0.15 \end{array}$	39	8.67 ± 0.17	91	$\begin{array}{c} 9.22 \pm \\ 0.13 \end{array}$	66	8.44 ± 0.29	1	7.96 ± 0.23	4	8.60 ± 0.19	2
R257 ^{ICL3} A	8.18 ± 0.13	120	$\begin{array}{c} 8.01 \pm \\ 0.13 \end{array}$	145	$\begin{array}{c} 7.90 \pm \\ 0.12 \end{array}$	186	9.11 ± 0.12	14	9.23 ± 0.13	25	9.11 ± 0.13	85	8.68 ± 0.22	2	7.37 ± 0.17	17	7.62 ± 0.27	22
D266 ^{6.27} A	8.74 ± 0.13	33	$\begin{array}{c} 8.13 \pm \\ 0.13 \end{array}$	110	$\begin{array}{c} 8.31 \pm \\ 0.16 \end{array}$	72	$\begin{array}{c} 8.14 \pm \\ 0.13 \end{array}$	132	$\begin{array}{c} 8.34 \pm \\ 0.16 \end{array}$	195	7.94 ± 0.12	1259	7.84 ± 0.26	4	6.42 ± 0.21	155	6.44 ± 0.20	331
R271 ^{6.32} A	8.77 ± 0.13	33	$\begin{array}{c} 8.16 \pm \\ 0.14 \end{array}$	112	$\begin{array}{c} 8.35 \pm \\ 0.17 \end{array}$	74	8.16± 0.13	135	$\begin{array}{c} 8.38 \pm \\ 0.15 \end{array}$	195	8.49 ± 0.11	398	8.15 ± 0.36	2	6.75 ± 0.29	71	6.69 ± 0.18	178
R274 ^{6.35} A	8.18 ± 0.16	120	$\begin{array}{c} 8.16 \pm \\ 0.16 \end{array}$	102	$\begin{array}{c} 8.18 \pm \\ 0.15 \end{array}$	98	$\begin{array}{c} 7.58 \pm \\ 0.17 \end{array}$	479	7.87 ± 0.14	575	$\begin{array}{c} 8.05 \pm \\ 0.15 \end{array}$	977	7.84 ± 0.14	4	8.07 ± 0.21	3	8.73 ± 0.22	2
F283 ^{6.44} A	8.72 ± 0.14	35	$\begin{array}{c} 9.34 \pm \\ 0.11 \end{array}$	7	$\begin{array}{c} 9.02 \pm \\ 0.16 \end{array}$	14	9.16± 0.11	13	9.13 ± 0.11	32	9.40 ± 0.10	44	6.79 ± 0.11	45	6.72 ± 0.17	78	6.97 ± 0.16	98
E297 ^{6.58} A	10.20 ± 0.11	1	$\begin{array}{c} 10.41 \\ \pm \ 0.11 \end{array}$	2	$\begin{array}{c} 9.98 \pm \\ 0.12 \end{array}$	2	$\begin{array}{c} 10.47 \\ \pm \ 0.14 \end{array}$	2	10.64 ± 0.12	1	$\begin{array}{c} 10.96 \\ \pm \ 0.11 \end{array}$	1	8.78 ± 0.18	2	7.12 ± 0.17	31	7.18 ± 0.17	60
G319 ^{7.42} L	9.09 ± 0.14	15	$\begin{array}{c} 8.94 \pm \\ 0.15 \end{array}$	17	$\begin{array}{c} 9.06 \pm \\ 0.17 \end{array}$	13	$\begin{array}{c} 8.95 \pm \\ 0.14 \end{array}$	20	$\begin{array}{c} 9.62 \pm \\ 0.18 \end{array}$	10	$\begin{array}{c} 8.83 \pm \\ 0.16 \end{array}$	162	8.61 ± 0.23	1	6.95 ± 0.28	46	6.98 ± 0.24	95
Y320 ^{7.43} L	7.82 ± 0.18	275	7.90 ± 0.15	186	7.80 ± 0.20	234	$\begin{array}{c} 7.60 \pm \\ 0.19 \end{array}$	457	8.16 ± 0.22	295	8.43 ± 0.14	407	8.45 ± 0.28	1	6.78 ± 0.28	68	7.08 ± 0.25	76
N322 ^{7.45} A	7.93 ± 0.20	214	7.92 ± 0.24	178	8.26 ± 0.19	81	8.26 ± 0.17	100	7.82 ± 0.21	646	7.94 ± 0.20	1259	8.59 ± 0.19	1	8.27 ± 0.23	2	8.33 ± 0.25	4
N326 ^{7.49} A	9.32 ± 0.15	9	9.76±0.16	3	9.61 ± 0.11	4	9.65 ± 0.13	4	9.31 ± 0.14	21	9.20 ± 0.13	69	8.58 ± 0.32	1	7.63 ± 0.37	10	8.16 ± 0.27	6
D334 ^{8.47} A	9.56 ± 0.20	5	7.74 ± 0.21	269	9.50 ± 0.12	5	$\begin{array}{c} 9.00 \pm \\ 0.18 \end{array}$	18	9.11 ± 0.24	33	8.99 ± 0.15	112	7.39 ± 0.15	11	8.23 ± 0.25	2	7.95 ± 0.33	10

Supplemental Table 10 (Potency related to Figure 5b). FC: Fold change compared to wild type.

Nalfurafine	$E_{max}\% \pm SEM$											
in KOR								ß-	ß-			
mutation	Gail	Gai2	Gai3	GαoA	GαoΒ	GαZ	GαGust	Arrestin1	Arrestin2			
KOD WT	$100 \pm$	$101 \pm$	$99.93 \pm$	$98.31 \pm$	$99.55 \pm$	$96.48 \pm$	$65.57 \pm$	$52.03 \pm$	$87.39\pm$			
KOK WI	3.24	2.92	2.37	3.11	1.99	2.47	3.99	2.94	3.61			
T042.39V	$99.23 \pm$	$95.8\pm$	98.21 ±	$99.67 \pm$	$100.5 \pm$	$102 \pm$	$73.58 \pm$	$73.23 \pm$	87.51 ±			
194 V	3.20	3.11	3.14	3.03	2.62	3.02	4.22	6.19	5.03			
D1052.50	$94.34 \pm$	$96.07 \pm$	$81.72 \pm$	$102.5 \pm$	91.01 ±	$102.8 \pm$	$70.15 \pm$	91.64 ±	$95.38 \pm$			
D105 A	5.36	5.72	4.87	5.10	4.55	5.07	5.77	9.45	9.42			
E114 ^{2.59}	$65.55 \pm$	$56.89 \pm$	$60.33 \pm$	$67.41 \pm$	$77.46 \pm$	$85.56 \pm$	$60.6 \pm$	$33.89\pm$	$48.7 \pm$			
F114 L	3.91	3.65	3.97	3.81	3.74	3.49	4.59	9.96	10.22			
0115 ^{2.60} N	$77.33 \pm$	$59.98 \pm$	$78.71 \pm$	$65.77 \pm$	$80.49 \pm$	$78.65 \pm$	$62.9 \pm$	$62.25 \pm$	$67.02 \pm$			
QIIS N	3.76	4.08	3.80	4.01	3.77	3.72	4.80	6.61	6.68			
V1203.331	$96.72 \pm$	$101.7 \pm$	$95.97 \pm$	$101.9 \pm$	$102.4 \pm$	$102.8 \pm$	55.31 ±	92.81 ±	$113.3 \pm$			
¥139 L	3.66	3.49	3.69	3.62	3.50	3.29	6.35	6.53	6.40			
N1 41 3.35 A	$100.9 \pm$	$103.1 \pm$	$107.4 \pm$	$101.1 \pm$	$98.71 \pm$	$98.3 \pm$	79.1 ±	$91.26 \pm$	$90.62 \pm$			
N141 A	3.98	4.04	4.10	4.03	4.17	4.18	5.00	7.09	6.65			
D1==3.49	$79.07 \pm$	$82.03 \pm$	$77.84 \pm$	$95.68 \pm$	$99.05 \pm$	$92.73 \pm$	$91.82 \pm$	$86.45 \pm$	$90.18 \pm$			
D155 A	6.38	4.00	4.04	3.84	3.97	3.62	4.58	6.93	6.73			
D170ICL2	$58.67 \pm$	$57.62 \pm$	$60.3 \pm$	$86.94 \pm$	$87.79 \pm$	$95.95 \pm$	$77.48 \pm$	$81.8 \pm$	100.4 ± 0.6			
R170 ¹⁰²² A	4.37	4.12	4.30	4.00	3.81	3.82	4.54	10.44	100.4 ± 8.6			
IZ200ECL2	$96.13 \pm$	$103.7 \pm$	$93.07 \pm$	$91.42 \pm$	$98.32 \pm$	$108.3 \pm$	$75.72 \pm$	$81.34 \pm$	83.17 ±			
K200 ^{LCL2} A	5.54	5.37	5.46	5.72	5.59	5.30	6.34	10.47	12.86			
1200=5.39	$102.2 \pm$	$100.6 \pm$	$105.6 \pm$	$107.3 \pm$	$94.35 \pm$	$102.2 \pm$	85.50	$77.46 \pm$	97.55 ±			
K227 ⁻⁰⁰⁷ A	3.22	3.16	3.10	3.20	3.17	3.12	± 4.01	5.85	5.96			
T 2525.65	$106.1 \pm$	$104.6 \pm$	$104.4 \pm$	109 ±	$106.8 \pm$	$111.9 \pm$	$61.36 \pm$	$94.50 \pm$	$107.40 \pm$			
L253 A	4.2	4.20	4.30	3.80	3.80	3.60	4.02	6.19	5.40			
DoggICL3	$99.49 \pm$	103.5±	$100 \pm$	$102.2 \pm$	$99.60 \pm$	101.6 ±	$53.79 \pm$	103.2 ±	103.2 ±			
R25/11-1A	3.87	4.04	4.08	3.32	3.31	3.39	3.91	6.52	6.02			
D2 <i>cc</i> 6 .27 .	106 ±	107.3 ±	105.2 ±	107.6 ±	$102.4 \pm$	111.7 ±	$62.59 \pm$	101.5 ±	101.3 ±			
D266°12'A	3.80	4.20	4.30	4.30	4.18	4.30	4.53	9.54	9.39			
D051 6.32	105 ±	$106.4 \pm$	103.3 ±	$106.7 \pm$	$101.5 \pm$	$110.2 \pm$	$56.9 \pm$	100.9 ±	101 . 0.00			
$R2/1^{0.02}A$	3.70	4.20	4.20	4.20	4.12	4.00	4.24	8.05	101 ± 8.20			
D0746354	$100.1 \pm$	102	$98.85 \pm$	$99.55 \pm$	$101.2 \pm$	99.13	$81.96 \pm$	$78.68 \pm$	$83.35 \pm$			
$R2/4^{\circ,\circ,\circ}A$	4.05	±4.03	3.93	4.64	4.19	± 4.01	4.08	6.01	4.94			
E202 6.44	77.61 ±	$79.03 \pm$	$74.75 \pm$	$89.50 \pm$	$91.02 \pm$	106 ±	$100.2 \pm$	$100.2 \pm$	$100.2 \pm$			
F283***A	3.32	3.30	3.23	3.09	3.10	3.00	5.19	7.42	6.90			
E2076.58	$102.4 \pm$	$106.5 \pm$	$100.2 \pm$	$98.88 \pm$	$103 \pm$	103.1 ±	$73.14 \pm$	$100.6 \pm$	$100.7 \pm$			
E297 A	2.80	2.80	2.83	2.80	2.70	2.60	3.44	6.72	6.68			
C2107.42	$115.7 \pm$	$116.3 \pm$	$105.5 \pm$	$101.1 \pm$	$108.3 \pm$	$114.8 \pm$	$80.92 \pm$	$60.42 \pm$	$70.99 \pm$			
G319 L	5.00	5.10	5.10	5.05	4.70	5.20	5.98	13.31	11.83			
V2207.43	$76.32 \pm$	$89.34\pm$	$66.88 \pm$	$75.75 \pm$	$75.99\pm$	$93.72\pm$	$80.02 \pm$	$83.58 \pm$	$65.94 \pm$			
¥320 ^{ma} L	5.02	4.92	5.05	5.28	4.86	4.43	4.94	9.96	9.47			
7.45	$78.39\pm$	$77.25 \pm$	$95.77 \pm$	$91.34 \pm$	87.11±	$81.81 \pm$	96.59 ±	101.3 ±	$87.09 \pm$			
N322 ⁷¹⁶ A	4.48	4.67	4.40	4.28	4.80	4.55	4.21	6.13	5.91			
N22 (7 49)	$107.8 \pm$	101 ±	$106.2 \pm$	$102.6 \pm$	93.63 ±	$96.86 \pm$	49.16 ±	65.16±	85.75 ±			
N326'." A	3.40	3.19	3.20	3.19	3.31	3.36	3.77	6.76	5.71			
D 22 4 ⁸ 47 ·	77.45 ±	$86.08 \pm$	101 ±	96.92 ±	91.10 ±	99.23 ±	100.1 ±	71.06 ±	$78.02 \pm$			
$D334^{0.47}A$	3.23	4.41	3.16	3.62	3.75	3.52	4.86	5.64	6.04			

Supplemental Table 11 (Efficacy related to Figure 5b) (Con't).