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Supplementary Fig. 1. Timeline for the development of mHealth platforms 

with representative technological achievements and applications. HSV denotes 

Hue, Saturation, Value respectively, and μPADs denotes microfluidic paper-based 

analytical devices. (figures adapted with permission from ref. 1-12 ).  

 

 

 

Imaging 

modalities 
Advantages Disadvantages Resolution FOV 

Lens-free imaging 

2,13–24    

Compact hardware 

structure suitable for 

mHealth platforms 

Replacement of the 

smartphone camera; 

Requiring image 

reconstruction for clear 

results 

0.5 ~ 2 μm 4.04 ~ 23.8 mm2 

Bright field lens-

based imaging 

1,5,25–32 

Direct morphological 

observation of tiny 

objects followed by 

analysis with algorithm 

such as CNN 

Trade-off between 

resolution and FOV; 

Distortion around the 

edges of the images due 

to the curved nature of 

the spherical lens. 

1.2 ~ 6.5 μm 0.0225 ~ 12.64 mm2 

Fluorescence 

imaging 3,12,27,33–39 

Relatively high 

specificity and large 

FOV 

Pretreatment of samples; 

Unable to observe the 

morphological structure 

of tiny objects 

1.7 ~ 20 μm 0.5 ~ 81 mm2 

Supplementary Table 1. Comparison of smartphone-based imaging modalities. 

 



 

Machine 

intelligence 
Algorithms Tasks Advantages Disadvantages 

General image 

processing 

algorithm 

Counting algorithm; 

Lens-free image 

reconstruction 

algorithm; Colorimetric 

algorithm; Locating 

algorithm; 

Fluorescence intensity 

detection algorithm 

Enhancement; 

Reconstruction; 

Denoising; 

Locating; 

Colorimetry 

Simple and convenient; 

Low computing power 

requirements; Minimal 

data training 

requirements 

Low robustness; Low 

accuracy under non-

specific conditions 

Traditional 

machine learning 

algorithm 

Least-Squares SVM; 

Random Forest; 

Bootstrap aggregating 

Classification; 

Denoising 

 

Interpretable; Low data 

volume requirements 

Manual feature 

extraction; Low accuracy 

in comparison to deep 

learning 

Deep learning 

algorithm 

CNN (MobileNet, U-

Net, Inception, 

Xception, ResNet); 

GAN 

Classification; 

Segmentation; 

Regression; 

Enhancement; 

Locating 

Relatively high accuracy; 

Automatic feature 

extraction 

Large data volume 

requirements; Large 

computing power 

requirements; Weak 

interpretability 

Supplementary Table 2. Comparison of different types of algorithms in mHealth 

platforms. 

 

 

 

 

 

 

 

 

 

 



Imaging 

modalities 
Device components Algorithms Applications 

Lens-free imaging 

2,13–24    
CMOS 2,13,17; LED 2,13,17 

Holographic reconstruction 

algorithm 2; Pixel super-

resolution algorithm 13; 

Counting algorithm 17 

Cell counting 2,13; 

Parasite detection 2,13; 

Virus detection 17 

Bright field lens-

based imaging 

1,5,25–32 

External lens 1,3,9,26,40; 

Motors 5,9,41; LED 1,5,9,26,40; 

Pump 42–45; Diffuser ; 

MCU 5,9 

MobileNet 9; U-Net 40; 

Inception 10,46,47; Xception 

48,49; ResNet 50  

Cell counting 7,51; 

Parasite detection 52–56; 

Ovulation detection 9; 

Sickle-cell anemia 

diagnosis 40 

Fluorescence 

imaging 12,27,33–39 

External lens; Filters; 

LED; Heat sink; Laser 

module; Dichroic mirror 

 

Bootstrap aggregating 57,58; 

SVM 46,58,59; KNN 59; Random 

forest 59,60; Counting algorithm 

57  

Cell counting 12,33,40; 

Parasite detection 34,57; 

Virus detection 61; 

Protein detection 27 

Supplementary Table 3. Linkages of imaging modalities, device components, 

algorithms, and applications. 
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