
S1 Appendix: Agent-based model

Demographics. We sample agent demographics corresponding to the region of
Montréal using the census data from Statistics Canada [1]. Specifically, we consider age
distribution, statistics on house sizes ranging from 1 to 5, distribution of individual age
living alone, and for house sizes ranging from 2 to 5 distribution of the following
dwelling characteristics - (a) couple with x kids, (b) single parent with x kids, and (c)
random allocation, where x represents number of kids required to complete the house
size1. Finally, we also consider senior residencies where a proportion of agents above age
65 live. We inform this proportion from the census data as well2.

The prevalence of selected medical conditions considered as risk factors for
COVID-19 disease and severe disease progression were derived from nationally
representative surveys and medical surveillance programs in Canada. The following
conditions were considered, each with corresponding data sources: heart disease [2–5],
stroke [4], asthma [3,4], chronic obstructive pulmonary disease (COPD) [3–5],
cancer [3,4,6], diabetes [3–5,7], obesity [3–5,8,9], chronic kidney disease (CKD) [3–5,10],
immuno-suppressed conditions [4] and smoking [11,12]. Sex- and age-specific (according
to ten year intervals) prevalence estimates were used where data was available.
Estimates of age-stratified asymptomatic proportion were obtained from [13].

Mobility. Given an agent population with a designated housing and a workplace
(schools for younger population), we assign a mobility schedule to each agent which
takes them from one location to another. We use miscellaneous locations to emulate
random and relatively shorter interactions typical of dynamics at stores, parks, or gyms.
Out of the three broad types of locations, agents spend the majority of their time at
their house and workplace. The scheduler is designed to respect constraints, such as,
agents younger than 15 years of age are never alone at home, or schedules are
dynamically altered to cancel an activity in the event of sickness. We used Statistics
Canada data to derive the amount of time spent in each activity and the frequency at
which they occur (e.g., every three days). Note that due to the complexities involved in
modeling the public transport systems (e.g., large-scale routing and scheduling), our
current model lacks such sophistication and, therefore, only accounts for infections
happening at locations rather than in the transits.

While the presence of agents at house, workplace, and school is deterministic, to
schedule activities like going to cafes, grocery stores, or gyms (collectively termed as
random locations) we resorted to probabilistic sampling. Specifically, we used the data
for Canada-wide population from Statista and Statscan to inform number of days in
which humans are likely to repeat their visit to these random locations. This resulted in
mean daily contacts per age group at various locations shown in Figure 1.

Contact Patterns. We implement age-stratified contact sampling. Specifically, for
each agent we draw number of contacts as per the location-specific age-stratified
number of contacts obtained from the contact matrices. We consider the age groups of 5
years. The contact matrices are derived by projecting empirically derived matrix for
Canada [16] on the region of Montréal using demographic standardization [17] and
further adjustment to the reported regional mean contacts El (see Table 1). Thus, a
cell i, j in the matrix denote mean daily contacts made by the agents in age group i
with agents in age group j. We use a negative binomial distribution [18] to draw the

1We refer the reader to https://github.com/mila-iqia/COVI-AgentSim/blob/master/src/

covid19sim/configs/simulation/region/montreal.yaml for a fully referenced source of the above
parameters.

2https://www12.statcan.gc.ca/census-recensement/2016/dp-pd/covid19/table2-eng.cfm?geo=

A0002&S=1&O=A
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Fig 1. Simulated mean daily contacts on weekdays and weekends broken down by age
groups. Agent activities are scheduled such that the mean number of contacts on work
and non-work days follow surveyed data as reported in [14,15]
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number of contacts with mean as inferred from the contact matrix and the probability
of success as 0.5. Further, we use these matrices to infer probability of interaction with
other agents in each age group, thereby, implementing location dependent assortativity
in interactions.

The simulated contact patterns with no infections are shown in Figure 2 for overall
contacts aggregated across all types of locations. These were obtained by aggregating
contacts across 6 simulations with no initial infections, thereby resulting in
pre-pandemic contact patterns.

Fig 2. Contact Matrices for all locations: Overall simulated contact pattern (left)
yield a similar pattern to empirically derived matrix (right).

Similarly, Figure 3 shows simulated contact patterns for contacts at houses. As a
result of housing allocation discussed above, we make two observations (a) there is an
oversampling of contacts towards the older age groups: It is because older agents
grouped in collectives like senior residencies are modelled explicitly. This choice was
motivated from [19] which suggests inclusion of collectives in proper response to the
COVID-19 pandemic, (b) a slight discrepancy we observe in the intensity of the main
diagonal is due to insufficient social gatherings at households.

Further, Figure 4 shows contact patterns for contacts at schools and workplaces,
while the Figure 5 shows contact patterns for contacts at miscellaneous locations.
Finally, Figure 6 shows the distribution of mean daily contacts across a population of
10000 agents in a typical simulation without any infection. As expected, we see the
presence of agents who sample disproportionately more number of contacts than the
average population.

Behavior modification in intermediate behavior levels Table 1 summarizes the
location dependent reduction factor αl for various levels. For the sake of simplicity, we
restrict agent behavior levels to one of the top four levels at any point in time. Our
choice of using four recommendation levels is motivated by the four-tier measures
adopted by Quebec’s government3, though the method is compatible with any number
of recommendation levels.

We scale the age-stratified contact matrices with the reduction factor corresponding
to the agent’s behavior level. Note that in non-PCT scenarios, agents are either in level
1 or level 4. PCT, on the other hand, puts each agent in one of the four levels, based on
their estimated risk of infectiousness, mimicking the effect of cautionary behavior

3https://www.quebec.ca/en/health/health-issues/a-z/2019-coronavirus/
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Fig 3. Contact Matrices for House: Housing allocation of agents is calibrated to
yield a contact pattern (left) similar to the empirically derived household contact
matrices (right). We explicitly model older adults living in assisted care resulting in
oversampling of contacts in that age group.

Fig 4. Contact Matrices for School (top) and Workplaces (bottom):
Simulated contact pattern at schools (left) yield a similar pattern to empirically derived
matrix (right).
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Fig 5. Contact Matrices for “other” locations: Simulated contact pattern at
”Other” locations (left) yield a similar pattern to empirically derived matrix (right).
Agents spend relatively shorter duration of time at these locations as compared to house
or workplaces. Examples of such locations include parks, restaurants, and grocery
stores. We observe a slight oversampling of such contacts due to improper estimates of
time spent at such activities.

Fig 6. Distribution of daily contacts: The simulation was run with 10000 agents
over a period of 30 days with no infection. As an emerging behavior, we observe the
agents which sample too many contacts as compared to the average number of contacts
(12.62).
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Table 1. Daily pre-confinement mean contacts El, and reduction factor αl

per location type.

Location El Level 1 αl Level 2 αl Level 3 αl Level 4 αl

Household 2.7 0.0675 0.135 0.27 1
Workplace 10 0.18 0.36 0.72 1
School 6 0.18 0.36 0.72 1
Other 3.1 0.1125 0.225 0.45 1

This table shows for each location l the pre-confinement mean number of daily contacts El and the reduction factor for the
number of contacts used in the simulator. Note that the factor for level 3 is based on data collected in the Region of
Montréal [20]

reinforcement via recommendations as experimented by [21]. The resulting
pre-pandemic contact patterns are compared to the empirically derived matrices in the
supplement. The mean number of contacts, sampled by age group, location type, and
day of the week, demonstrate similar trends as reported in the BBC Pandemic
Project [14], a recent POLYMOD matrix-based study conducted using smartphone apps.

User compliance to the recommendations is unarguably the most important factor
determining the effectiveness of any contact tracing method. For the sake of simplicity,
in our simulations, varying levels of behavior restrictions are modeled by a fractional
reduction relative to the pre-pandemic number of contacts. However, in its real-life
implementation, the app would recommend personalized behaviours (e.g. “avoid public
transportation”). These need to be deemed acceptable by app users to achieve high
adherence and actualize such reduction in contacts. We direct the readers to the
guidelines in [22] for designing such recommendations in close collaboration with
user-behavior researchers.

COVID-19 Transmission Model The transmission probability is modeled
according to [23], in which the likelihood of transmission is proportional to
age-dependent susceptibility (Sa) of the susceptible agent at age a. The probability of
transmission also depends on a location-dependent multiplicative factor Bn (for location
n), a symptom status (asymptomatic, mild, severe) dependent ratio (As) of the
infectious agent, and Effective Viral Load, a surrogate for the cumulative viral load
(EV L), transmitted from the infectious agent for the duration of exposure time (δt). A
multiplicative factor (r) is finally used to calibrate the reproductive number of the
infection spread. The formula for the transmission model is presented in Equation 1 and
Equation 2 below.

λ(δt, Sa, As, n) =
rSaAsBn

Ī

∫
δt

EVL, (1)

P (δt, Sa, As, n) = 1− e−λ(δt,Sa,As,n), (2)

where P (δt, Sa, As, n) is the probability of the contagion event. The values for the
above constants are directly used from the open source code4 of [23] .

Effective Viral Load We sample parameters for a piece-wise linear model of what
we call effective viral load (EVL)5. The attributes of EVL are sampled for each

4https://github.com/BDI-pathogens/OpenABM-Covid19/blob/master/documentation/

parameters/infection_parameters.md
5Viral load is the number of actual viral RNA in a person; we model a number between 0-1 which

could be converted to an actual viral load via multiplying by the maximum amount of viral RNA
detectable by a given test.
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individual separately. Figure ?? shows a typical shape of EVL motivated from the
results in [24], and the attributes’ mean and standard deviation follow from [25–27].
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Fig 7. Schematic showing the viral load curve, and associated phases of symptoms with
severity indicators: infectiousness onset occurs on average 2.5 days after exposure, viral
load peaks 0.7 days before symptom onset, which occurs an average of 5 incubation
days after exposure [25]. Symptoms are most severe after viral load peak and symptom
onset, when the virus has had time to infect many cells. Recovery takes on average 14
days from symptom onset. We use a truncated normal distribution to sample the
parameters with the above specified mean values.

Figure 8 is the mean of sampled effective viral load curve. We integrate over
individual viral load curve to determine the likelihood of transmission λ(δt, Sa, As, n) as
described in Equation 1.

Real-time Polymerase Chain Reaction (RT-PCR) Testing We model the
number of available tests as a scarce resource with a fixed number of tests available on
any given day, with a delay of two days between testing and when the agent receives the
result. These choices are motivated by the challenges in obtaining COVID-19 diagnosis
at the pandemic’s onset in March 2020. We use a triaging mechanism for tests; an agent
experiencing severe symptoms is prioritized over the agents estimated to be in level 4 by
a tracing app. Because of diagnostic testing’s known performance challenges, a
SARS-CoV-2 infection phase-dependent false-negative rate is applied for the RT-PCR
results [28].

When an agent gets an RT-PCR test, the agent, as well as other household members,
are put into level 4 either (1) until the time of the result (two days) for a negative test
result; or (2) for 14 days from the day of the test result for a positive result. An agent
with an app can choose to report their test result triggering a notification to their
digital contacts. In BCT, such a traced contact and its household members are
automatically quarantined for 14 days unless they test negative. To achieve a similar
effect of household quarantining in PCT, we require agents to assume the residents’
maximum behavior level.

Imperfect agent behavior We use the dropout probabilities as used by [23], such
that an agent recommended to quarantine will be 0.01 likely to dropout to the level 1
and sample contacts as per that level. Further, the simulator does not assume all
personal information (i.e., age, sex, and pre-existing conditions) will be entered or
logged correctly when downloading an app. Instead, the simulator assumes a 70%
likelihood that the agent will log their characteristics correctly. Also, an agent is
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Fig 8. Mean ± 95% C.I of sampled effective viral load of 40 agents.

assumed to be 80% likely to report their RT-PCR test results if they receive a positive
test. Imperfect self-reporting of daily symptoms is modeled via two parameters (i)
drop-in - the probability of falsely reporting symptoms (to account for malicious
behavior), and (ii) dropout - the probability of not reporting a symptom.

App adoption To distribute apps throughout our simulated population, we use an
age-dependent distribution across smartphone owners. We use an age-based breakdown
of smartphone users as in [23], and use an UPTAKE parameter to vary the
population-level adoption rate.

Digital Communication PCT sends risk messages assuming the COVI network
communication protocol [22]. This protocol is designed to conform to strict privacy
constraints in the following manner: (a) to prevent identification of users, a unique key
is exchanged every time two users are within 2 meters of each other for at least 15
minutes; the unique key is then used as a communication channel to exchange risk
messages in the future, and (b) risk messages can only carry N bits, constraining their
values to one of 2N values, dramatically reducing the likelihood of de-anonymization. In
our experiments, we use N = 4 meaning that apps can send risk messages containing a
non-negative integer less than 16. As the risk messages form both the input as well as
the output of the predictor, we note that the proposed tracing framework is implicitly
recursive (i.e. infectiousness of a user is indirectly influenced by all other users in the
network).
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