# Supplementary figures







22 Supplementary Fig. S2. Scanning electron microscopy (SEM) observation of the mature pistils, anthers and

23 pollen grains in WT and *des1*. Comparisons of SEM observations in WT (A, C, E, G, I, L) and *des1* (B, D, F, H, J,

24 K, M, N) mature pistils (A, B), anthers (C, D), anther epidermis (E, F), anther inner surfaces (G, H), pollen grains,

- 25 (I, J, K), and pollen exine (L, M, N). Scale bars represent 1 mm in (A-D), 10 μm in (E, F), 100 μm in the enlarged
- 26 of (E, F), 5 μm in (G, H, L, M, N), 1 μm in the enlarged of (G, H, L, M, N), and 20 μm in (I, J, K).
- 27



29 Supplementary Fig. S3. Statistical data of the seed-setting rate of the reciprocal crosses. Data are Means  $\pm$  SD

- 30 from 3 replicates with > 40 emasculated spikelets per replicate, and different letters indicate significant differences
- 31 as determined by Duncan's test (P < 0.05).
- 32



33

34 Supplementary Fig. S4. Paraffin section analysis of the embryo sac development in WT and des1. (A-E) Images 35 of embryo sacs in WT at megasporocyte stage (A), dyad (B), tetrad (C), functional megaspore formation stage (D) 36 and mature embryo sac stage (E), respectively. (F-H) Images of embryo sacs in des1 at megasporocyte formation 37 stage (F), tetrad (G) and functional megaspore formation stage (H), respectively. Part (I) shows that the so-called 38 functional megaspore degenerated along with the other three megaspores in des1. Part (J) shows no embryo sac 39 formation in des1. MMC, megaspore mother cell; DM, degenerated megaspore; FM, functional megaspore; A, 40 antipodal cell; P, polar nucleus; E, egg cell; NFM, non-functional megaspore; NR, nucellar remnants. Bars = 50 41 μm.





43 Supplementary Fig. S5. Microscopic observations of mature embryo sacs observations in ZH8015 and F<sub>1</sub> plants.
44 (A) The normal embryo sac at maturity. (B) The degenerated embryo sac at maturity. (C) Statistical analysis of
45 normal mature embryo sac formation in ZH8015 and F<sub>1</sub> plants. A, antipodal cell; P, polar nucleus; E, egg cell; S,
46 synergid cell. Scale bars represent 50 μm. (Ovule number: ZH8015: 169; F<sub>1</sub>: 179).
47



49 Supplementary Fig. S6. In vitro pollen germination assay. (A, B) Germination of WT and *des1* pollen grains *in*50 *vitro*. Scale bars represent 10 μm. (C) Percentage of WT and *des1* pollen grain germination *in vitro*. Data are
51 means ± SD (n = 3). Arrows indicate the pollen grains that do not germinate *in vitro*.



54 Supplementary Fig. S7. Pollen germination on the stigma and pollen tube growth in WT and *des1*. (A, B) Aniline
55 blue staining of pollen germination on the stigma at 2 h after pollination in WT (A) and *des1* (B). (C, D) Aniline
56 blue staining of pollen tube growth in the ovule at 2 h after pollination in WT (C) and *des1* (D). Scale bars

57 represent 100 μm.



#### 58

Supplementary Fig. S8. Male gametogenesis in WT and *des1* shown by aceto-carmine and DAPI staining. (A-N)
The process of microspore development in WT (A-G) and *des1* (H-N) shown by aceto-carmine staining. (O, P)
The process of microspore development in WT (O) and *des1* (P) shown by DAPI staining. Arrows indicate the
aborted microspores. (A, H) The pollen mother cell differentiation stage; (B, I) the dyad stage; (C, J) the tetrad
stage; (D, K) the early microspore stage; (E, L) the uninucleate stage; (F, M) the bicellular stage; (G, N) the mature
pollen stage; (O, P) the tricellular stage. S, sperm nuclei; V, vegetative nuclei. Scale bars represent 10 µm in (A-P).





Supplementary Fig. S9. Transverse section observations of WT and *des1* anthers at various developmental stages.
Transverse section of WT (A-D), (I-L) and *des1* (E-H), (M-P) anthers. The transverse sections (A-P) were stained
with 0.25% toluidine blue. (A, E) Microspore mother cell stage; (B, F) the PMC pre-meiosis stage; (C, G) the dyad
stage; (D, H) the tetrad stage; (I, M) the early microspore stage; (J, N) the vacuolated microspore stage; (K, O) the
bicellular pollen stage; (L, P) the mature pollen stage. MMC, microspore mother cell; PMC, pollen mother cell; T,
tapetum; ML, middle layer; En, endothecium; E, epidermis; MC, meiotic cell; Dy, dyad cell; Tds, tetrads; Msp,
microspore parietal cell; Bp, bicellular pollen; Mp, mature pollen. Scale bars represent 25 µm in A-P.



73

Supplementary Fig. S10. Transmission electron microscopy (TEM) observations of mature anthers in WT and
 *des1*. Comparisons of TEM observations in the mature WT (A-C) and *des1* (D-F) pollen (A, D), pollen wall (B, E),

- 76 and tapetum (C, F). St, Starch granules; Fl, Foot layer; Ba, Baculum; Te, Tectum; Ub, Ubisch body; T, tapetum.
- 77 Scale bars represent 5 μm in (A, D), and 1 μm in (B, C, E, F).



78

79 Supplementary Fig. S11. The anthers and pollen grains of WT, *des1*, and *OsDES1*-over-expression plants. (A, B)

- 80 Comparison of the spikelets (A) and anthers (B) in WT, *des1*, and OE-1 plants. The palea and lemma were
- 81 removed for observation. (C-E) I<sub>2</sub>-KI staining of pollen grains in WT, *des1*, and OE-1. (F) Statistical analysis of
- 82 pollen viability in WT, des1, and OE-1 plants. (G, H) Relative gene expression analysis in WT, des1, and
- 83 over-expression plants. Data are means  $\pm$  SD (n = 3). Different letters indicate significant differences as
- determined by Duncan's test (P < 0.05). Scale bars represent 0.25 cm in (A), 0.125 cm in (B), and 25  $\mu$ m in (C-E).







- 89 Scale bar represents 1.25 mm. (C) Pistils of NIP and *ko-3*. Scale bar represents 1.25 mm. (D, E) I<sub>2</sub>-KI staining of
- 90 pollen grains from NIP and *ko-3* plants. Scale bars represent 25  $\mu$ m. (F) Statistical analysis of the percentage of 91 viable pollen in NIP and *ko-3* plants. Data are means  $\pm$ SD (*n* = 3).
- 92



94 Supplementary Fig. S13. Subcellular localization of the △OsDES1-GFP and NEMP-GFP fusion proteins. A.
95 Subcellular localization of the △OsDES1-GFP in *N. benthamiana* leaf epidermal cells and rice protoplasts.
96 △OsDES1 represents the mutant OsDES1 protein. B. Subcellular localization of the NEMP-GFP in *N. benthamiana* leaf epidermal cells and rice protoplasts. Nuclear envelop membrane protein (NEMP) domain was
98 located at amino acid residues 157-403. The Ghd7-CFP fusion protein was used as the nuclear marker. The plasma
99 membrane was stained with FM4-64. Scale bars represent 50 µm and 5 µm.



Supplementary Fig. S14. *In situ* analysis of *OsDES1* expression in longitudinal sections of the embryo sacs. (A)
 Megasporocyte stage. (B) Tetrad. (C) Functional megaspore formation stage. (D) Mature embryo sac stage. (E)
 Negative controls with the sense probe of the embryo sac at maturity. MMC, megaspore mother cell; Te, Tetrad;
 FM, functional megaspore; A, antipodal cell; S, synergid cell; E, egg cell. Scale bar represents 100 µm.



**Supplementary Fig. S15.** Cytokinin determination and cytokinin-related genes expression. (A) Statistical analysis of cytokinin contents. (B) and (C) *LOG* expression levels of the pistils of WT and *des1* at maturity. The *UBQ* and *Actin* gene were used as the inter controls, respectively. (D-G) Relative expression levels of cytokinin signal transduction-related genes between the pistils of WT and *des1* at maturity. The *UBQ* and *Actin* gene were used as the inter controls, respectively. Data are the means  $\pm$  SD of three independent biological replicates. Asterisks indicate a significant difference by Student's *t*-test (\* *P* < 0.05, \*\* *P* < 0.01).

### **112** Supplementary tables



in WT and *des1*.

105

| Line                    | WT  | des1 |
|-------------------------|-----|------|
| Total                   | 44  | 51   |
| Ovules with pollen tube | 37  | 41   |
| Percent                 | 84% | 80%  |

115 Observation of pollen tube growth was defined as when at least one pollen tube in the ovule reached the micropyle

**116** at 2 h.

117 Supplementary Table S2. Oligonucleotide primers used in this study.

| Primer | Primer sequences (5'-3') | Purpose      |
|--------|--------------------------|--------------|
| 3-24-F | GCAACCCTTTCTTCCTCCTC     | <b>T</b> ine |
| 3-24-R | CCAAGGAGAGCGCACTAGC      | Fine mapping |

| X55-F          | AAGATTGAAGAAGCGGTCAAGC                               |                              |
|----------------|------------------------------------------------------|------------------------------|
| X55-R          | GCTTGCATGCATAGATTTCTCC                               |                              |
| H2-F           | CCTTGCTTCCCACCTTGA                                   |                              |
| H2-R           | TTGGTATTGCCGTTGCTT                                   |                              |
| H35-F          | CGAATAGGAACCGAGACT                                   |                              |
| H35-R          | TAAGGACGTGGGAGAGAG                                   |                              |
| H58-F          | ACCACCATACAGCACAGC                                   |                              |
| H58-R          | CATCACAAGTAGCAAGCC                                   |                              |
| H30-F          | CTGCCCTGGATACGTTAT                                   |                              |
| H30-R          | CCCTCGTGCTACTTTGAC                                   |                              |
| 3-31-F         | ACTAGAGCACCCTCGCTGAG                                 |                              |
| 3-31-R         | CTCAGCCACCCCATCAAC                                   |                              |
| OsDES1-SeqF    | AGGTGTATTCCTTCTCGTAAGTGTGA                           |                              |
| OsDES1-SeqR    | GGATCATAACTGCAGAAATAATCAAG                           | Sequencing for mutation site |
| OsDES1GBD-1F   | TTCTGCACTAGGTACCTGCAGATGCCACCACTCCACCGCCG            | 0                            |
| OsDES1GBD-1R   | TCTTAGAATTCCCGGGGATCCTTAAAACAGTCCGAACAAACGTTTC       | Overexpression               |
| 1132-OsDES1-F  | TCCCCCGGGCTGCAGGAATTCATGCCACCACTCCACCGC              |                              |
| 1132-OsDES1-R  | GGTACCGGGCCCCCCTCGAGAAACAGTCCGAACAAACGTTTCC          |                              |
| 1132-△OsDES1-F | TCCCCCGGGCTGCAGGAATTCATGCCACCACTCCACCGC              |                              |
| 1132-△OsDES1-R | GGTACCGGGCCCCCCTCGAGGGCTCCAGCTAAGATCACACTTAC         | Subcellular localization     |
| 1132NEMPGFP-F  | TCCCCCGGGCTGCAGGAATTCGGAGGAAGAGTTCTTGCTTCACA         |                              |
| 1132NEMPGFP-R  | GGTACCGGGCCCCCCTCGAGTTGAGACAATGTCTTCCTTGACCG         |                              |
| LOG-AD-F       | GTTCCAGATTACGCTGGATCCATGGCAATGGAGGCTGCG              |                              |
| LOG-AD-R       | TTGATACCACTGCTTGGATCCTCAGGATGAGGTGATCCTGGTC          | ¥ 1.1.1                      |
| OsDES1-BD-F    | CAAAATATCTGCAATGGCCATTACGGCCATGCCACCACTCCACCGC       | reast two hybrid             |
| OsDES1-BD-R    | CGAATTCCTGCAGATGGCCGAGGCGGCCCCAAACAGTCCGAACAAACGTTTC |                              |
| GFP-OsDES1-F   | GATGAACTATACAAAGGCGCGCCAATGCCACCACTCCACCGC           |                              |
| GFP-OsDES1-R   | CGATCGGGGAAATTCGAGCTCTTAAAACAGTCCGAACAAACGTTTCC      | Co ID                        |
| Myc-LOG-F      | AGAGGACTTGAATTCGGTACCCATGGCAATGGAGGCTGCG             | C0-IF                        |
| Myc-LOG-R      | GTCCTAGGCTACGTAGGATCCTCAGGATGAGGTGATCCTGGTC          |                              |
| nLUC-OsDES1-F  | GAGCTCGGTACCCGGGGATCCATGCCACCACTCCACCGC              |                              |
| nLUC-OsDES1-R  | GCGTACGAGATCTGGTCGACAAACAGTCCGAACAAACGTTTCC          | Luciferase complementation   |
| cLUC-LOG-F     | GGGGCGGTACCCGGGGATCCATGGCAATGGAGGCTGCG               | imaging assay                |
| cLUC-LOG-R     | CGAAAGCTCTGCAGGTCGACTCAGGATGAGGTGATCCTGGTC           |                              |
| GUS-1F         | CAGTGAATTCGATAATAATTCGGCCCAGGC                       | CUS                          |
| GUS-1R         | CGATCCATGGCGCGGCGGCGATTGAGGGAT                       | 003                          |
| OsDES1-ZF      | AGCTATGAAACAACTGGTCTCA                               |                              |
| OsDES1-ZR      | CAGCTTAAAACAGTCCGAACAA                               |                              |
| LOG-F:         | TCCTAGGCAGCTATAGTAGTAGG                              |                              |
| LOG-R:         | TGTAAGATTGTTGTTCCGTTCG                               | qRT-PCR                      |
| OsHK1-F        | GATGTACTTGATCGGGCTAAGA                               |                              |
| OsHK1-R        | ATCACATCATCCATGAGAGACC                               |                              |
| OsHK2-F        | CATTTGAGGATTTCACGGCTAG                               |                              |
| OsHK2-R        | CTTTTGCTCAAACAACTCCCTT                               |                              |

| OHISSERATAGCCATCCATTICGCTTTCOHISSERCIGCIGTIACACCAAGAGATAAOHISSERCIGCIGTIACACCAAGAGATCGOHIPEGACAGGATCATCAAGAGATCGOHIPEGACAGGATCATCAAGAGATCGOHIPEGIGAAGAACACTIGCATCAGTOHIPEGIGAGGAACACTIGCATCAGGOHIPEGACAGCAACTATATGCAGCOHIPEGACAGCACCACTCATTCTCAGCOHIPEGACAGCACCACTCATTCTCAGCOHIPEGACAGCACCACTCATTCTCAGCOHIPEGACAGCACCACTGCTCTGTGTTCOHIPEGACAGCACCCCTGGCATAATCACOHIPEGACAGCACCCCTGGCAAAACGOHIPEGCCTCTCACTGCCATACCACOHIPEGCCTCTGCTGGGAAAACGORRIPEGTCATGCCTGCGGAAACGORRIPEGTACATGCTCCTGCCTACAAGGORRIPEGTACACTGTGCCTGAGTACCCCTGORRIPEGTACACTGGCACACTCTGCORRIPEGTACACTGGCACACTCTGCORRIPEGTACACTGGCACGTCCAGGORRIPEGTACCCCTGCTGCAGAGACCCCGGORRIPEGTGCTGTGCACAGTCCCAGGORRIPEGGTGCCTGCTCCAGGAGACCACAGGTGORRIPEGGTGCTGTGCACGCCCAGGORRIPEGGCGCGTTGCACCCAGGGORRIPEGGCGCGTTGCACCAGGGORRIPEGGCGCGTTGCACCCAGGGORRIPEGGCGCGTTGCACCCAGGORRIPEGGCGCGTTGCACCCAGGORRIPEGGCGCGTTGCACCCCAGGORRIPEGGCGCGTTGCACCCCAGGORRIPEGGCGCGTTGCACCCCAGGORRIPEGGCGCGTTGCACCCCCGCAGORRIPEGGCGCGTTGCACCCCCGCAGORRIPEGGCGCGTTGCACCCCCGCAGORRIPEGGCGCCCTGGCGGCGTTCACUBQAGG                                                                                                                                                                                                                    | OsHK3-F    | GTTTCATGGACATACAGATGCC |                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------------------|------------------------------|
| OHIKHFCTGCTGTACACAAGAGAGTAAOHIKHFGACAGGATCATCAAGAGAGTGGOHIPI-FGACAGGATCATCAAGGAGGTGGOHIPI-FGACAGGATCATCAAGGAGGTGGOHIP2-FGTGAAGAACACTTGCATCAGTOHIP2-FGTGAAGAACACTTGCATCAGGOHIP2-FGACGAGATACATATATGCAAGGOHIP3-FGAGTGGGATACATATATGCAGCOHIP3-FGAGTGGGATACATATATGCAGCOHIP3-FGAAGAGGCATCATTATTGCAGCOHIP3-FGAAGAGGGCGTGTGTGOHIP3-FGAAGAGGGCGTGTGTGOHIP3-FGAAGAGGGCGTGTGTGOHIP3-FGTGATGCCTCGGGAAACGOKRI-FGTCATGCCTCGGCATAACCAOKRI-FGTCATGCCTCGGCAAACGOKRI-FGTCATGCCTGCTGTGTGTCOKRI-FGTCATGCCTGCTGCTGCAGGAACCGOKRI-FGTCATGCCTGCTGCTGCAGGCCOKRI-FGTGACAGAGGCTTGGGTAGCCOKRI-FGTGTGCACGGGTAGGCCOKRI-FGTGTGCACGTGCTGCGGGATGCOKRI-FGTGTGCACGTGCTGCGGGGTGGCOKRI-FGTGTGCACGTGCTGCGGGGTGGGOKRI-FGTGTGCACGTGCCACGGGOKRI-FGTGTGCACGTGCCAGGGOKRI-FGGCGCGTGGGGGTATGAOKRI-FGCGCCGGGGGGTATGAOKRI-FGCGCCGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG                                                                                                                                                                                                                                                                                                                                                                                                                                       | OsHK3-R    | ATAGCCATCCATTTCGCTTTTC |                              |
| OHK44RCTCTCATCAGATCGCATCCTCOHHP1-FGACAGGATCATCAACGAGCGOHHP1-RCCTTTGAGCTGATGAACGAGGGOHHP2-RGTGAAGAACACTTGCATTCAGTOHHP2-RCACCAAATCCAAAGTCTTGAGGOHHP2-RCACCAAATCCAAAGTCATCATGAGGOHHP2-RCACTGGGATACATATGCAGCOHHP4-FCACTGGGATACATATGCAGCOHHP4-FCAATGGAGCAGCTGTTCAOHHP4-FCAATGGAGCAGCTGTTCAOHHP4-FGAGATGGATCCATCGGAAGACGOHHP4-FGAGATGGATCCATGGAGAACGOHHP4-FGTCTGGAGCAGCTGTTCAOHHP4-FGTCTGGAGCAGCGTTTCAOHHP4-FGTCTGGAGCAGCGTTTCAOHHP4-FGTCTGGAGGAGCAGCGTTTCAOHHP4-FGTCTGGAGGAGCAGCGTTCACCAAGOHHP4-FGTCTGGCTGGCGAAACGOHHP4-FGTCTGGCTGGCGAGACGCOHHP4-FGTCTGGCTGGCGAGACGCOHHP4-FGTCTGGCTGCCTGCCCACAGGOHHP4-FGTCTGTGCTGGCCGCTTCCCOHHP4-FGTGTGCCCTTCCTCTGTTCTTOHHP4-FGTGTGCCACTGGCGTCCAGGOHHP4-FGTGTGCCACTGCGCGTCCATOHHP4-FGCTCCTGGCGGTACATOHHP4-FGCTCCTGGCGGTACATOHHP4-FGCTCCTGGCGGTACATOHHP4-FGCTCCTGGCGGTACATOHHP4-FGCTCCTGGCGGTACATUHQ4-FGCCCCTGGCGGTACATUHQ4-FGCCCCTGTGCCGCTCCATCAHF4-FGGCTCCCATTCCCACAGCOHF4-FGGCTCCCATTCCCACGGTACATUHQ4-FGCCCCTGGCGTACATUHQ4-FGGCTCCTGGCGCTCCATCAHF4-FGGCTCCCGATTCCCCACGAHF4-FGGCTCCCAGGTCCCTCAGAHF4-FGG                                                                                                                                                                                                                    | OsHK4-F    | CTGCTGTACACCAAGAGAGTAA |                              |
| OsHP1-FGACAGGATCATCAACGAGATCGOsHP1-RCCTITGACCTGATGAACGTAGGOsHP2-FGTGAAGACACTTGCATTCAGTOsHP2-RCACCAAATCCAAAGTCTTGAGGOsHP3-RGACATGCATCATATTCACCOsHP4-FCAATGCATCATCATTCTCATCCOsHP4-FCAATGCATCACTGCTGTGTCAOsHP5-FGAAGAAGGCAGCTGTTCTAOsHP5-FGAAGAAGGCCTGGCATACACCOsHP5-FGAAGAATGCATCCAAAGCOsHP5-FGTCATGCTCGGAAAACGOsHP4-RCCTTGCTTGAGCTCAGCTTACOsHP5-FGTCATGCTCGGAAAACGOsHP5-FGTCATGCTCGGAAAACGOsHP5-FGTCATGCTCGCAAACCOsHP6-FCTCAAGACTCGTCCTCACAAGOsHP6-FGTCATGCTCGCTACCAAGOsHP6-FGTCATGCCTCTCCTCTGTTCTOsHR9-FAACATATCTGGTCAAGCCOsHR9-FGTGCACTGCTCCTCTCTGTTCTOsHR9-FGTGCACTGCCTCCTCTGTTCTOsHR9-FGTGCACTGCCTTCCTCTGTGTCTOsHR9-FGTGCACTGCCTCCTCCTGGGCTCCAGGOsHR9-FGTGCCCCTTCCTCTCCTGTGTCTOsHR9-FGTGCCCCTTCCTCTCCTGGGCTCCAGOsHR9-FGTGCCCCTTCCCTCACAGOsHR9-FGTGCCCCTCGCGGTACATOsHR9-FGTGCCCCCTCGCGGTACATOsHR9-FGCTCCTGCGCGTACATOsHR9-FGCTCCTGCGCGTACATOsHR9-FGCTCCTGCGCGTACATOsHR9-FGCTCCTGCGCGTACATOsHR9-FGCTCCTGCGCGTACATOsHR9-FGCTCCTGCGCGGTACATOsHR9-FGCTCCTGCGCGGTACATOsHR9-FGCTCCTGCGCGGTACATOsHR9-FGCTCCTGCGCGGTACATOsHR9-FGCTCCTGCCGCGCGTACATO                                                                                                                                                                                                           | OsHK4-R    | CTCTCATTCAGATCGCATCCTC |                              |
| OMPPLRCCTTTGAGCTGATGAACGTAGGOMP2-RGTGAAGAACACTTGCATTCAGTOMP2-RCACCAAATCCAAAGTCTTAGGOMP3-FAGGTGGGATACATATATGCAGCOMP3-RGACATGCACTCATTCTTCATCCOMP4-FCAATGAAAGGCAGCTGTTCTAOMP5-FGAAGAAGGATGCTCCTGTGTTCOMP5-FGAAGAATGCATGCATCATATCACOMP5-FGAAGAATGCGTCCCTGTGTCOMP5-FGAAGAATGCTCCTCGTGTTCOMP5-FGAAGAATGCTCCCTCGTGATACCOMP5-FGTCATGCTGCGGAAAACGOMP5-FGTCATGCTGCGGAAACGOMP5-FGTCATGCTGCGGAAACGOMP5-FGTCATGCTGCGGAAACGOMP5-FGTCATGCTGCGGAAACGOMP5-FGTCATGCTGCGGAAACGOMP5-FGTCATGCTGCGGAAACGOMP5-FGTCATGCTGCTGCTACCAGGOMR1-FGTCATGCTGTGCTGCTACCAGGOMR4-FGTCTGCTGCTGCTACCAGGOMR8-FGTCTGCCTGCCGTACCAGTOMR9-RAAAGAAGAGGTCTTGAGTAGCCOMR9-RGATACTGGGTAAGTCCTCAGGGATCOMR1-FGGTGCGCATCCTGCGGGATCOMR1-FGGTGCTGCAAGTACCCGGGGOMR1-FGGTGCTGCAAGCCCCAGGOMR2-FGGGAGAGAAAGACTCTGGATGCOMR2-FGCGCAGTGCACTCCCGGCATCATUBQ-FGCTCCTGTGCCGTTCATUBQ-FGCGCCATGTGACCCCCAGGActin-FGGGTCCCATCCAGCACCCCGGCAActin-FGGGTCCCATCCAGCACCCCGGCAActin-FGGGTCCCATCCGGCATCCAGActin-FGGGTCCCATCCGGCAGTCCAGCACCCGGAGActin-FGGGTCCCATCCGGCAGTCCAGCACCCGGAGActin-FGGGTCCCATCCGCATCCGGCATCCAGCACCCCGGCATCACACCACGCGCATCCAGCACCCCGAGCACCACGCG                                                                                                                                                              | OsHP1-F    | GACAGGATCATCAACGAGATCG |                              |
| 0.5HP2-FGTGAAGAACACTTGCATTCAGT0.5HP2-RCACCAAATCCAAAGTCTTGAGG0.5HP3-RGGACGGGATACATATATGCAGC0.6HP3-RGACATGCACTCATTCTTCATCC0.6HP4-FCAATGAAAGGCAGCTGTTCTA0.6HP4-FGAAGAAGGATGCTCTGTGTTC0.6HP3-RCTCTGCACTTCACTTCTGGAAGAAC0.6HP3-RCTTGAGCTCACTGCATAACAC0.6HP3-RCTTGAGCTCACTGCATAACAC0.6HP3-RCTTGAGCTCACTGCATAACAC0.6HP3-RCTTGAGCTCACTGCATAACAC0.6HP3-RCTTGTGTGCTGGGAAAACG0.6HR4-FCTCTGCTTGCAGGATCATACCTG0.6HR4-FCTCTGTGTGCTGCAGCTTAC0.6HR4-FCTCTGTGGCGGATACATACCTG0.6HR9-RAACATATCTGTGCTACCTGCTACCTGC0.6HR9-RGTGCTGCTGCTCTCTCTGTGTTT0.6HR9-RGATAACTGGGTAAGTCCTCACGTGC0.6HR9-RGATAACTGGGTAAGTCCTCACGAG0.6HR9-RGTCTGCACATGCACGTGGATTC0.6HR9-RGATAACTGGGTAAGTCCTCAGGAG0.6HR9-FGTGTGGCACTGTCACAGTGGATTC0.6HR9-FGTGTGGCACTGTCACAGGAG0.6HR9-FGTGTGGCACTGCACGGGATCCAGGAG0.6HR9-FGGTGCTGCAAGTACCCGGGAGCAC0.6HR9-FGGTGCTGCAAGTCCTCAGAGAC0.6HR9-FGGTGCTGCCATCCTCAGAGAC0.6HR9-FGGTGCTGCGTACCAGGGAGAC0.6HR9-FGGTGCTGCGTACCAG0.6HR9-FGGTGCTGCGTACCAG0.6HR9-FGGTGCTGGTGGCATCAT0.6HR9-FGGTGCTGGTGCCATCCAGAC0.6HR9-FGGTGCTGGTGCCATCCAGAGAC0.6HR9-FGGTGCTGGTGCCATCCAGAC0.6HR9-FGGTGCTGGTGGCCATCCAGAC0.6HR9-FGGTGCTGGTGCCATCCAGAC <t< td=""><td>OsHP1-R</td><td>CCTTTGAGCTGATGAACGTAGG</td><td></td></t<>                                                                       | OsHP1-R    | CCTTTGAGCTGATGAACGTAGG |                              |
| 0.5HP2-R       CACCAAAGCCATCATATAGCAGC         0.5HP3-F       AGGTGGGATACATATAGCAGC         0.5HP3-F       GACATGCACTCATTCTACTCC         0.5HP4-F       CAATGAAAGCAGCTGTTCTA         0.5HP4-F       CAATGAAAGGCAGCTGTTCTA         0.5HP4-F       CAATGAAAGGCAGCTGTTCTA         0.5HP4-R       CCTCTCACTTTCTGGAAGGAT         0.5HP5-F       GAAGAATGAGTGCTCGGTATACC         0.5HP5-R       CTTGAGCTCACTGGAAAACG         0.5RR1-F       GTCATGTCGTCGGAAAACG         0.5RR4-F       CTCTGAGCAGGATCATACCCTG         0.5RR4-F       CTCTGAGCAGGATCATACCCTG         0.5RR4-F       CTCTTGAGCAGGATCTGGCTAGCCTGG         0.5RR9-F       AAAGAAGAGGTCTTGAGTAGCC         0.5RR9-F       CACTATCTGGCAACTCCTGGGATTC         0.5RR10-F       GTGCTCTGCACTTCTCTCTGTTCTT         0.5RR10-F       GTGCTTGCAACTCTCCACAG         0.5RR10-F       GTGCTCTGCAACTCCTCAGGATC         0.5RR10-F       GTCTTGCAACTTCTCCACACT         0.5RR10-F       GTCTTGCAACTGCTCCAGGA         0.5RR10-F       GGTCCTGGGGGATACAT         0.5RR10-F       GCTCCTGGGGGGATCAT         0.5RR10-F       GCTCCTGGGGGGATCAT         0.5RR10-F       GCTCCTGGGGGGATCAT         0.5RR20-F       GCGGCAGTGGACAAAGACTGGTGAGA <td< td=""><td>OsHP2-F</td><td>GTGAAGAACACTTGCATTCAGT</td><td></td></td<> | OsHP2-F    | GTGAAGAACACTTGCATTCAGT |                              |
| OMPP-FAGGTGGGATACATATATGGAGCOMPP-RGACATGCACTCATTCTACTCOMPP-RCAATGAAAGGAGCTGTTCTAOMPP-RCCTCTTCACTTTCTGGAAGGATOMPP-RGAGAAGGATGCTCTGTGTCOMPP-RGTCATGGCTGCGGAAAACGOMPP-RGTCATGGCTGCGGAAAACGOMRRI-FGTCATGTCGTCGGAAAACGOMRRI-FCCTTGAGCAGACTCACTGGCTACCAAGOMRRI-FCTCTAGAGAGGCTTTACOMRRI-FGTCATGTGTCGCGAGATACCCTGOMRRI-FGTCATGTGTCGCGAGACACCTGOMRRI-FGTGAGCCCTTCCTCTGTTCTOMRRI-FGTGAGCCCTTCCTCTGTTCTOMRRI-FGTGCTGGCGGGATCAAGCCCTGGOMRRI-FGTGCTCGCGGTGAGGCCOMRRI-FGTGCTCTCCTCCTCTGTTCTTOMRRI-FGTGCTCGCGGGAACGCCCAGGOMRRI-FGTGCTCTGCAACTTCCCAACACOMRRI-FGTGCTCTGGCAACTCCTCAGGGATCOMRRI-FGGTCCTGGGGGATCATOMRRI-FGGTCCTGGGGGATCATOMRRI-FGGTCCTGGGGGATCATOMRRI-FGGTCCTGGGGGGATCATOMRRI-FGGTCCTGGGGGGATCATOMRRI-FGGCCCCGGGGGGATCATOMRRI-FGGCCCCGGGGGGTATCATOMRRI-FGGCCCCGGGGGGATCATOMRRI-FGGCCCCGGGGGATCATOMRRI-FGGCCCCGGGGGCATCAGOMRRI-FGGCCCCGGGGGATCATOMRRI-FGGCCCCGGGGGATCATOMRRI-FGGCCCCGGGGGATCATOMRRI-FGGCCCCGGGGGATCATOMRRI-FGGCCCCGGGGGGATCATOMRRI-FGGGCCCCGGGCATCCAGAMRAAAGAGAGGCCCCCGGCAAMRAGGGCCCCGATTCCGCCAGCAMIN-FGGGCCCCGATTCCCGGC                                                                                                                                                                                                                    | OsHP2-R    | CACCAAATCCAAAGTCTTGAGG |                              |
| OMPPARGACATGCACTCATTCTTCATCCOMPPAFCAATGAAAGGCAGCTGTTCTAOMPPAFCCTCTTCACTTTCTGGAAGGATOMPPARCCTCTCACTTCACTGCTGGTCOMPPARCTTGAGCTCACTGCATAATCACOMRFAFGTCATGCTGCGGAAAAGGOMRFAFCTCTGCTTTGAAGAGGCTTTACOMRFAFCTCTGAGCAGACTGTCCTACCAAGOMRFAFCTCTGAGCAGACTGTCCTACCAAGOMRFAFCTCTGTGGGGAGAGCCOMRFAFGTCATGTGGTGGGAGCCOMRFAFGTAGCCTCTTCCTTGGTTGCOMRFARGAGAGAGGTCTTGAGTAGCCOMRFARCGTGGCGTTGACGTGGGATCOMRFARGATAACTGGGTAAGCCOMRFARGTTCTTGCAACTTCCACAGOMRFARGTTCTTGCAACTTCCAGGATCOMRRIAFGTTCTTGCAACTGTCAGGGATCOMRRIAFGTTCTTGCAACTTCTCACAGGOMRRIAFGGGCCCTGGGGTATCATUNOFGCGCAGTTGACGCGCGTATCATUNOFGCTCCTGTGCGGTATCATUNOFGGCCCTGTGCCGTACCAGAtin-FTGCTATGTACGCGCGCGTATCATINODESI-FGGGTCCCGGATGCAGAGAINDUSESI-KAGACTGCCTAGAGGGGGCGINDUSESI-KAGACTGCCTAGAGGGGGCG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | OsHP3-F    | AGGTGGGATACATATATGCAGC |                              |
| OdiPP4FCAATGAAAGGCAGCTGTTCTAOdiPP4RCCTCTTCACTTTCTGGAAGGATOdiPP5FGAAGAATGAGTGCTCTGTGTTCOdiPP5RCTTGAGCTCACTGCATAATCACOdiRP5RGTCATGCTGCGGAAAACGOkR14CCTTGCTTTGAAGAGGCTTTACOkR814CCTTGCTTGCAGCAGATCATACCAGOkR847CTCTGAGCAGATCATACCTGOkR848CTCTTGAGCAGATCATACCTGOkR847GTCATGTGTGTGGTGAGCTTGCOkR848CTCTTGAGCAGATCATACCTGOkR847GTAGCTCTTCCTGTGTCTOkR848GTAGCTCTTCCTGTGTCTTOkR848GATAACTAGTGGTAGCCOkR8497GATAACTGGGTAGCCCOkR8498GATAACTGGGTAGCCCAGGOkR8498GTCTTGCAAGTCCAGGGOkR8498GTCTGTGCAAGTCCAGGGOkR8498GTCTGTGCAAGTCCAGGGGOkR8498GTCTGTGCAAGTCCAGGGGOkR8498GCTCCGGGGGTACATUBQFGGCCCGTGGCGGTACATUBQFGGCCCTGTGCCGCCATCAGAtin-FGGCTCCTGATGCCCCTCGGAGAtin-FGGGTCCTGATTCCGGATGMODES1-FGGGTCCCGGTAGGAGGMDODES1-RAGACTGCCTAGAGAGGTGTGGCG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | OsHP3-R    | GACATGCACTCATTCTTCATCC |                              |
| OklP4-RCCTCTTCACTTTCTGGAAGGATOklP4-FGAAGAATGAGTGCTCTGTGTTCOklP5-FGAAGAATGAGTGCTCTGGTACACOkR1-FGTCATGTCGTCGGAAAAGGOkR1-RCCTTGCTTGAAGAGGCTTACOkR4-FCTCTAGAGACTCGTCCTACCAAGOkR4-FCTCTTGAGCAGATCATACCCTGOkR9-FAACATATCTGTGCTAGCTAGCOkR9-FAACATATCTGTGCTAGTAGCCOkR8-RGTAGCCTCTTCCTTGTTTTOkR8-RGATACTGGTGAGATCCOkR8-FCGTTGACATGTACAGTGGATCOkR8-FGATACTGGGTAAGTCCTCAGGOkR8-FGGTGCTCTTGAGTAGCCOkR8-FGGTGCTCTGCAACTTCCAACGTGOkR8-FGGTGCTCGTGAGGTGGATCOkR8-FGGTGCTCGTGAGGTGGATCAOkR8-FGGGAGAGAAAGACTGTGATGAOkR8-FGGTCCTGGGGGGTACATOkR8-FGGTCCTGGGGGGTACATOkR8-FGGTCATGTACAGCCCTAGOkR8-FGGGTCATGTACCACCCTGGCAOkR8-FGGGTCCTGGTGACATCCAGOkR8-FGGGTCCTGGTACATOkR8-FGGGTCCTCGATTCCGCATCAGOkR8-FGGGTCCTCGATTCCGGATGOkR8-FGGGTCCTCGATTCCGGATGActin-FGGGTCCTCGATTCCGGATGActin-FGGGTCCTCGATTCCGGATGActin-FGGGTCCTCGATTCCGGATGActin-FGGGTCCTCGATTCCGGATGActin-FGGGTCCTCGATTCCGGATGActin-FGGGTCCTCGATTCCGGATGActin-FGGGTCCTCGATTCCGGATGActin-FGGGTCCTCGATTCCGGATGActin-FGGGTCCTCGATTCCGGATGActin-FGGGTCCTCGATTCCGGATGActin-FGACTCCGCATACGAGGTCCTCGTCAActin-F                                                                                                                                                                                                                | OsHP4-F    | CAATTGAAAGGCAGCTGTTCTA |                              |
| OAHP5-FGAAGAATGAGTGCTCTGTGTTCOsHP5-RCTTGAGCTCACTGCATAATCACOsR1-FGTCATGTCGTCGGAAAACGOsR4-FCCTGCGTTGAAGAGGCTTTACOsR8-RCTCTGAGAACTCGTCCTACCAAGOsR8-RCTCTGAGCAGATCATACCCTGOsR8-RAACATATCTGTGCTAGCTAGCAOsR8-RGTAGCCTCTTCGTTGTTOsR8-RGAGACAGGTCTTGAGTAGCCOsR8-RGAGACACTGGTCACAGGGATCOsR8-RGATAACTGGGTAGTCCTCAGGOsR8-RGATAACTGGGTAGTCCTCAGGOsR81-FCGTTGCACTTCCTCTGTGTCTOsR81-FGGTGCTCTGACATGTGAGTAGCCOsR81-FGTCTTGCAACTTCCAACGTGOsR81-FGGTGCTCGTGAGCTGGATGOsR81-FGGTCTTGCAACTTCCTAACACTOsR81-FGGGAGAGACAAAGACTGTGATGAOsR81-FGGGTCCTGGACGGTACATUBQ-FGGGCAGTGACAAGGCCTAGVBQ-FGGCTCTGTACAGCCCTAGActin-FTGCTATGTACGCGCATCCAGActin-FGGGTCCTCGATTCCGGAGGNATGAGTAACCACCGCTCGTCATACCGAATTCCCCATCCGGAGNADDESI-FGGGTCCTCGATTCCGGAGGNADDESI-FAGACTCCCTAAGAGTGTGCGC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | OsHP4-R    | CCTCTTCACTTTCTGGAAGGAT |                              |
| bMP5-RCTTGAGCTCACTGCATAATCACbMR1-FGTCATGTCGTCGGAAAACGbMR1-RCCTTGCTTGAAGAGGCTTACbMR4-FCTCAAGAACTCGTCCTACCAAGbMR4-RCTCTTGAGCAGATCATACCCTGbMR9-FAACATATCTGTGCTAGCTTGCbMR9-FAACATATCTGTGCTAGCTTGCbMR9-FGTAGCCTCTTCGTGTTGTbKR10-FGTAGCCTCTTCGTGTGTGbKR10-FGTAGCTCTTGAGCAGATCbKR10-FGTTCTGCAATGTAGGGATCbKR10-FGTTCTGCAATGTAGGGATCbKR10-FGTTCTTGCAACTTCTAGGAGbKR10-FGGTCTTGCAACTTCTAGGAGbKR10-FGGTCTTGCAACTTCTAACACAbKR10-FGGTCTCTGTGATAGTCCTAGGbKR10-FGGTCTCTGCAACTTCTAACACAbKR20-FGGAGAGACAAAGACTGTGATGAbKR20-FGCTCCGTGCGCGTATCATbKR20-FGCGCAGTTGACAGCCCTAGbKR20-FGGGCAGTGACACCCCCTAGbKR20-FGGGCAGTGACACCCCCTAGbKR20-FGGGCAGTGACACCCCCTAGbKR20-FGGGCAGTGACACCCCCTAGbKR20-FGGGCAGTGACACCCCCTAGbKR20-FGGGCCCTGGCGGTATCATbK0-FGGGCCCTGGCGGTATCATbK0-FGGGTCTCGATTCCCGATGbK10-FGGGTCTCGATTCCGGATGbK10-FGGGTCTCGATTCCGGATGbK10-FGGGTCTCGATTCCGGATGbK10-FGGGTCTCGATTCCGGATGbK10-FGGGTCTCGATTCCGGATGbK10-FGGGTCTCGATTCCGGATGbK10-FGGGTCTCGATTCCGGATGbK10-FGGGTCCCGATTCCGATGbK10-FGGGTCCCGATTCCGATGbK10-FGGGTCCCGATTCCGATGbK10-FGGGTCCCGATTCCGATG                                                                                                                                                                                                                    | OsHP5-F    | GAAGAATGAGTGCTCTGTGTTC |                              |
| ORR1-FGTCATGTCGTCGGAAAAGGOKR1-RCCTTGCTTGAAGAGGCTTTACOKR4-FCTCAAGAACTCGTCCTACCAAGOKR4-RCTCTTGAGCAGATCATACCCTGOKR9-FAACATATCTGTGCTAGCTAGCCOKR10FGTAGCTCTTCCTTCGTTCTTOKR10FGTAGCTCTTCCTTCGTGTCTTOKR10-RGATAACTGGGTAAGTCCOKR10-RGATAACTGGGTAAGTCCOKR10-RGATAACTGGGTAAGTCCTAGGOKR10-FGTTCTTGCAACTGTCAAGTGGATCOKR10-FGTTCTTGCAACTGGTAAGTCCTAGGOKR10-FGGTCCTGCTTAAGAAGCAGTGGATCOKR10-FGGTCCTGCGTAAGTCCTAAGGOKR10-FGGTCCTGCGGGTATCATOKR20-FGGGAGACAAAGACTGTGATGAUBQ-FGGCCCGTGGCGGTATCATUBQ-RCGGCAGTTGACGCCCTAGActin-FTGCTATGTACGTCGCCATCCAGActin-FGGGTCCTCGATTCCGGATGINODES1-FGGGTCCTCAAGAGGTGTGCGINODES1-RAGACTCGCTAAGAGTGTGGCG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | OsHP5-R    | CTTGAGCTCACTGCATAATCAC |                              |
| ORR1-RCCTTGCTTTGAAGAGGCTTTACOKR4-FCTCAAGAACTCGTCCTACCAAGOKR4-RCTCTTGAGCAGATCATACCCTGOKR9-FAACATATCTGTGCTAGCTTGCOKR9-RAAAGAAGAGGTCTTGAGTAGCCOKR10-FGTAGCCTCTTCCTTCTGTTCTTOKR10-RCGTTGACATGTACAGTGGATCCOKR10-RGATAACTGGGTAAGTCCCAGGOKR10-RGATAACTGGGTAAGTCCCAGGOKR10-RGATAACTGGGTAAGTCCTAGGOKR10-RGATAACTGGGTAAGTCCCAGGOKR10-RGTTCTTGCAACTTCCAACCATOKR10-RGTTCTTGCAACTTCCAACCATOKR20-FGGGAGAGACAAAGACTGTGATGAOKR20-FGGGCAGTTGACAGCCCTAGUBQ-FCGGCCGTGGCGGTATCATUBQ-RCGGCAGTTGACAGCCCTAGActin-FTGCTXTGTACTGCCATCCAGActin-RAATGAGTAACCACGCTCCGTCAIDOJES1-RGACTCCCTAGAGTGTCGCATIDOJES1-RACMAGACTCCCTAAGAGTGTGCGC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | OsRR1-F    | GTCATGTCGTCGGAAAACG    |                              |
| ORR4-F     CTCAAGAACTCGTCCTACCAAG       OxR8-F     CTCTTGAGCAGATCATACCCTG       OxR8-F     AACATATCTGTGCTAGCTTTGC       OxR8-P     AAAGAAGAGGTCTTGAGTAGCC       OxR8-P.R     AAAGAAGAGGTCTTGAGTAGCC       OxR810-F     GTAGCCTCTTCCTTCTGTTCTT       OxR81-F     CGTTGACATGTACAGTGGATCC       OxR81-F     CGTTGACATGTACAGTGGATTC       OxR81-F     CGTTGACATGTACAGTGGATTC       OxR81-F     GTTCTTGCAACTCTCAACCAT       OxR81-F     GTTCTTGCAACTCTCAACCAGTG       OxR81-F     GTTCTTGCAACTCTCCAACAGTG       OxR820-F     GGAGAGACAAAGACTGTGATGA       OxR820-F     GGGCAGTTGACAGCCCTAAG       UBQ-F     CGGCAGTTGACGTCCCATAG       UBQ-R     CGGCAGTTGACGTCCCATGG       Actin-F     TGCTATGTACGTCGCCATCCAG       Actin-F     GGGTCCTGATTTCCGGATG       NDADES1-F     GGGTCCTGATTTCCGGATG       NDADES1-R     AGACTCGCTAAGAGTGTGCG                                                                                                                                                                                                                                                                                                                                                                                                                       | OsRR1-R    | CCTTGCTTTGAAGAGGCTTTAC |                              |
| ORR4-RCTCTTGAGCAGATCATACCCTGOsR9-FAACATATCTGTGCTAGCTTGCOsR9-RAAAGAAGAGGTCTTGAGTAGCCOsR10-FGTAGCCTCTTCCTTGTTCTTOsR10-RAAAGAAGAGGGTCTTGAGTAGCCOsR16-FCGTTGACATGTACAGTGGATTCOsR16-RGATAACTGGGTAAGTCCTCAGGOsR19-RGTTCTTGCAACTTCTAAGAAOsR819-RGTTCTTGCAACTGGATAGCOsR819-RGTTCTTGCAACTTCTCAACATOsR819-RGTCCTGTGCTAAGAACCAGGTGOsR820-FGGAGAGACAAAAGACTGTGATGAUBQ-FGCTCCGTGGCGGTATCATUBQ-RCGGCAGTTGACAGCCCTAGActin-FTGCTATGTACGTCCCATCCAGActin-RAATGAGTAACCACGCTCGTCAInOSDES1-FGGGTCCTCGATTCCGCAAGGNA in silu hybridization                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | OsRR4-F    | CTCAAGAACTCGTCCTACCAAG |                              |
| ORR9-FAACATATCTGTGCTAGCTTTGCOsRR9-RAAAGAAGAGGTCTTGAGTAGCCOsRR10-FGTAGCCTCTTCCTTCTGTTCTTOsRR10-RAAAGAAGAGGTCTTGAGTAGCCOsRR16-FCGTTGACATGTACAGTGGATTCOsRR19-FGTTCTTGCAACTCTCAACCATOsRR19-FGTTCTTGCAACTTCTAACAACOsRR19-RTCTGTCTTAAGAACACCAGGTGOsRR20-RGGAGAGACAAAGACTGTGATGAUBQ-FGCTCCGTGGCGGTATCATUBQ-RCGGCAGTTGACAGCCCTAGActin-FTGCTATGTACGCCCATCCAGActin-RAATGAGTAACCACGCTCGTCAInosDES1-FGGGTCCTCGATTCCGGATGInosDES1-RAGACTCCCTAAGAAGTGTGCG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | OsRR4-R    | CTCTTGAGCAGATCATACCCTG |                              |
| ORR9-RAAAGAAGAGGTCTTGAGTAGCCOsRR10-FGTAGCCTCTTCCTTCTGTTCTTOsRR10-RAAAGAAGAGGTCTTGAGTAGCCOsRR16-FCGTTGACATGTACAGTGGATTCOsRR16-RGATAACTGGGTAAGTCCTCAGGOsRR19-FGTTCTTGCAACTTCTCAACCATOsRR20-FGGGAGAGACAAAGACTGTGATGAUBQ-FGCTCCGTGGCGGTATCATUBQ-RCGGCAGTTGACAGCCCTAGActin-FTGCTATGTACGTCGCCATCCAGActin-RAATGAGTAACCACGCTCCGTCAInosDES1-FGGGTCCTCGATTTCCGGATGINOSDES1-RAGACTCGCTAAGAGTGTGCG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | OsRR9-F    | AACATATCTGTGCTAGCTTTGC |                              |
| OsRR10-FGTAGCCTCTTCCTTCTGTTCTTOsRR10-RAAAGAAGAGGTCTTGAGTAGCCOsRR16-FCGTTGACATGTACAGTGGATTCOsRR16-RGATAACTGGGTAAGTCCTCAGGOsRR19-FGTTCTTGCAACTTCTCAACCATOsRR20-FGGAGAGACAAAGACTGTGATGAUBQ-FGCTCCGTGGCGGTATCATUBQ-RCGGCAGTTGACAGCCCTAGActin-FTGCTATGTACGCCATCCGTCAInosDES1-FGGGTCCTCGATTCCGGATGInosDES1-RAGACTCGCTAGGAGTGTGCCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | OsRR9-R    | AAAGAAGAGGTCTTGAGTAGCC |                              |
| OsRR10-RAAAGAAGAGGTCTTGAGTAGCCOsRR16-FCGTTGACATGTACAGTGGATTCOsRR16-RGATAACTGGGTAAGTCCTCAGGOsRR19-FGTTCTTGCAACTTCTCAACCATOsRR19-RTCTGTCTTAAGAACACCAGGTGOsR20-FGGAGAGACAAAGACTGTGATGAUBQ-FGCTCCGTGGCGGTATCATUBQ-FCGGCAGTTGACGCCCTAGActin-FTGCTATGTACGTCGCCATCCAGActin-FGGGTCCTCGATTTCCGGATGIDSDES1-FGGGTCCTCGATTTCCGGATGNDADES1-RAGACTCGCTAGAGGTGTGCG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | OsRR10-F   | GTAGCCTCTTCCTTCTGTTCTT |                              |
| OsRR 16-FCGTTGACATGTACAGTGGATTCOsRR 16-RGATAACTGGGTAAGTCCTCAGGOsRR 19-FGTTCTTGCAACTTCTCAACCATOsRR 19-RTCTGTCTTAAGAACACCAGGTGOsRR 20-FGGAGAGACAAAGACTGTGATGAUBQ-FGCTCCGTGGCGGTATCATUBQ-RCGGCAGTTGACAGCCCTAGActin-FTGCTATGTACGTCGCCATCCAGActin-RAATGAGTAACCACGCTCCGTAGIOSDES1-FGGGTCCTCGATTCCGGATGRNA <i>in sinu</i> hybridization                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | OsRR10-R   | AAAGAAGAGGTCTTGAGTAGCC |                              |
| OsRR 16-RGATAACTGGGTAAGTCCTCAGGOsRR 19-FGTTCTTGCAACTTCTCAACCATOsRR 19-RTCTGTCTTAAGAACACCAGGTGOsRR 20-FGGAGAGACAAAGACTGTGATGAOsRR 20-RTACCGAACTTCCTCCTAACAACUBQ-FGCTCCGTGGCGGTATCATUBQ-RCGGCAGTTGACAGCCCTAGActin-FTGCTATGTACGTCGCCATCCAGActin-RAATGAGTAACCACGCTCCGTCAIDOsDES1-FGGGTCCTCGATTTCCGGATGRNA in situ hybridizationAGACTCGCTAAGAGTGGCCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | OsRR16-F   | CGTTGACATGTACAGTGGATTC |                              |
| OsRR 19-F     GTTCTTGCAACTTCTCAACCAT       OsRR 19-R     TCTGTCTTAAGAACACCAGGTG       OsRR 20-F     GGAGAGACAAAGACTGTGATGA       OsRR 20-R     TACCGAACTTCCTCCTAACAAC       UBQ-F     GCTCCGTGGCGGTATCAT       UBQ-R     CGGCAGTTGACAGCCCTAG       Actin-F     TGCTATGTACGTCGCCATCCAG       Actin-R     AATGAGTAACCACGCTCCGTCA       InOsDES1-F     GGGTCCTCGATTCCGGATG       InOsDES1-R     AGACTCGCTAAGAGTGTGCG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | OsRR16-R   | GATAACTGGGTAAGTCCTCAGG |                              |
| OsRR 19-R     TCTGTCTTAAGAACACCAGGTG       OsRR 20-F     GGAGAGACAAAGACTGTGATGA       OsRR 20-R     TACCGAACTTCCTCCTAACAAC       UBQ-F     GCTCCGTGGCGGTATCAT       UBQ-R     CGGCAGTTGACAGCCCTAG       Actin-F     TGCTATGTACGTCGCCATCCAG       Actin-R     AATGAGTAACCACGCTCCGTCA       InOsDES1-F     GGGTCCTCGATTTCCGGATG       RNA in situ hybridization     AGACTCGCTAAGAGTGTGCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | OsRR19-F   | GTTCTTGCAACTTCTCAACCAT |                              |
| OsRR20-F     GGAGAGACAAAGACTGTGATGA       OsRR20-R     TACCGAACTTCCTCCTAACAAC       UBQ-F     GCTCCGTGGCGGTATCAT       UBQ-R     CGGCAGTTGACAGCCCTAG       Actin-F     TGCTATGTACGTCGCCATCCAG       Actin-R     AATGAGTAACCACGCTCCGTCA       InOsDES1-F     GGGTCCTCGATTCCGGATG       InOsDES1-R     AGACTCGCTAAGAGTGTGCG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | OsRR19-R   | TCTGTCTTAAGAACACCAGGTG |                              |
| OsRR20-R     TACCGAACTTCCTCCTAACAAC       UBQ-F     GCTCCGTGGCGGTATCAT       UBQ-R     CGGCAGTTGACAGCCCTAG       Actin-F     TGCTATGTACGTCGCCATCCAG       Actin-R     AATGAGTAACCACGCTCCGTCA       InOsDES1-F     GGGTCCTCGATTTCCGGATG       InOsDES1-R     AGACTCGCTAAGAGTGTGCG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | OsRR20-F   | GGAGAGACAAAGACTGTGATGA |                              |
| UBQ-F     GCTCCGTGGCGGTATCAT       UBQ-R     CGGCAGTTGACAGCCCTAG       Actin-F     TGCTATGTACGTCGCCATCCAG       Actin-R     AATGAGTAACCACGCTCCGTCA       InOsDES1-F     GGGTCCTCGATTTCCGGATG       InOsDES1-R     AGACTCGCTAAGAGTGTGCG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | OsRR20-R   | TACCGAACTTCCTCCTAACAAC |                              |
| UBQ-R     CGGCAGTTGACAGCCCTAG       Actin-F     TGCTATGTACGTCGCCATCCAG       Actin-R     AATGAGTAACCACGCTCCGTCA       InOsDES1-F     GGGTCCTCGATTTCCGGATG       InOsDES1-R     AGACTCGCTAAGAGTGTGCG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | UBQ-F      | GCTCCGTGGCGGTATCAT     |                              |
| Actin-F     TGCTATGTACGTCGCCATCCAG       Actin-R     AATGAGTAACCACGCTCCGTCA       InOsDES1-F     GGGTCCTCGATTTCCGGATG       InOsDES1-R     AGACTCGCTAAGAGTGTGCG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | UBQ-R      | CGGCAGTTGACAGCCCTAG    |                              |
| Actin-R     AATGAGTAACCACGCTCCGTCA       InOsDES1-F     GGGTCCTCGATTTCCGGATG       InOsDES1-R     AGACTCGCTAAGAGTGTGCG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Actin-F    | TGCTATGTACGTCGCCATCCAG |                              |
| InOsDES1-F GGGTCCTCGATTTCCGGATG RNA in situ hybridization InOsDES1-R AGACTCGCTAAGAGTGTGCG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Actin-R    | AATGAGTAACCACGCTCCGTCA |                              |
| InosDES1-R AGACTCGCTAAGAGTGTGCG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | InOsDES1-F | GGGTCCTCGATTTCCGGATG   | RNA in situ hybridization    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | InOsDES1-R | AGACTCGCTAAGAGTGTGCG   | KINFY III SIUU HYDHOLZAIIOII |