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Supplementary Methods 

Preparation of single-cell suspensions  

Briefly, the biopsies were first washed with phosphate-buffered saline (PBS), 

mechanically dissociated with a scalpel into small pieces (approximately 1mm3) on ice, then 

enzymatically dissociated with human-tumor dissociation kit (Miltenyi) for 30-45 min (30 min 

for tumor area, and 45 min for normal and dysplasia area) in the shaker at 37℃ . After 

dissociation, cells were neutralized with PBS, sieved through a 70 µm cell strainer (BD falcon), 

and centrifuged at 400g for 5 min. Then, the cell pellet was re-suspended in 1 mL of ice cold 

red blood cell lysis buffer (Miltenyi) at 4℃ for 5 min to remove red blood cells. Cells were 

then filtered using a 35-µm nylon mesh (BD falcon) after washing with PBS. Next, the single 

cells were stained with AO/PI for viability assessment with the Countstar Fluorescence Cell 

Analyzer.  

Single-cell Sequencing 

The scRNA-seq libraries were constructed with the 10x Genomics Chromium Controller 

Instrument and Chromium Single Cell 3’ V3.1 Reagent Kits (10x Genomics, Pleasanton, CA) 

according to the manufacturer’s instructions. Briefly, cells were loaded with a concentration 

about 1000 cells/µL into the microfluidic chips for generating single-cell Gel bead-in 

emulsions (GEM). The barcoded-cDNA in the GEM was then purified and amplified with the 

RT step. Next, the amplified barcoded cDNA was fragmented, A-tailed, ligated with adaptors 

and index PCR amplified for generating libraries. Followed by the standard process for library 

construction, the final libraries were then quantified with the Qubit High Sensitivity DNA assay 

(Thermo Fisher Scientific). The size distribution was determined with a High Sensitivity DNA 
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chip on a Bioanalyzer 2200 (Agilent). Sequencing of the libraries were done on an Illumina 

NovaSeq 6000 sequencer (Illumina, San Diego, CA) with a 150 bp paired-end run. 

Staining and imaging on Visium Spatial slides 

The section slides of all the biopsies were incubated 1 min at 37℃ followed by fixation 

in methanol at -20℃ for 30 min. Upon H&E staining, slides were incubated in hematoxylin for 

7 min, Bluing Buffer for 2 min and eosin for 1 min. Afterwards, slides were washed with DNase 

and RNase free water before imaging with the microscope (Pannoramic MIDI, 3DHISTECH). 

Tissue permeabilization and spatial transcriptomic sequencing 

In order to acquire the optimal permeabilization time, we have done pre-permeabilization 

on 4 sections among these 8 sections (2 sections for one slide). Tissue Optimization Slides & 

Reagent Kits (10x Genomics) were used for pre-permeabilization. Sections were permeabilized 

in Permeabilization Enzyme for 3 min, 6 min, 12 min, 18 min, 24 min and 30 min before the 

Fluorescent RT Master Mix was added. Then, the sections were incubated in Tissue Removal 

Mix for 60 min at 56℃ for tissue removal. The best permeabilization time was selected based 

on the fluorescent strength. For formal experiments, permeabilization and spatial 

transcriptomic sequencing were performed using Visium Spatial Gene Expression Slides & 

Reagent Kits. The stained slides were incubated in RT Master Mix for 45 min at 53 ℃ for 

reserve transcription after permeabilization for 24 min. Followed by the standard process for 

library construction, the final libraries were then quantified and sequenced with similar process 

in scRNA-seq. 
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ScRNA-seq and ST Statistical Analysis 

ScRNA-seq and ST data analysis was performed by NovelBio Co., Ltd. with NovelBrain 

Cloud Analysis Platform (www.novelbrain.com). The sequencing results were filtered with 

FASTP for filtering the adaptor sequence and removing low-quality reads 1. Then the feature-

barcode matrices were obtained by aligning reads to the human genome (GRCh38) with 

CellRanger v3.1.0 for scRNA-seq and SpaceRanger v1.1.0 for ST analyses. 

ScRNA-seq Data Visualization 

Based on the mapped barcoded reads per cell in each sample, we applied the down sample 

analysis among samples to achieve the aggregated matrix. Criteria for cell quality filtering: 

over 200 genes expressed in a cell + mitochondria UMI rate below 20%. Mitochondria genes 

were then removed in the expression table. Then, single-cell expression table was acquired 

according to the UMI counts of each sample and percent of mitochondria rate. To obtain the 

scaled data, the following cell normalization and regression were then done with Seurat 

package (version: 3.1.4, https://satijalab.org/seurat/) based on the expression table. Top 2000 

high variable genes were then used for PCA construction. TSNE and UMAP were then 

constructed with top 10 principal components of PCAs. The unsupervised cell cluster results 

were done with graph-based cluster method, and the marker genes and DEGs were calculated 

by FindAllMarkers function with Wilcox rank sum test algorithm under following criteria:1. 

lnFC > 0.25; 2. P-value<0.05; 3. min.pct>0.1.  

For detailed cell subtype identification, the single-cell data within major cell types were 

selected for re-TSNE analysis, and the following graph-based clustering and marker analysis. 
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ST Data Visualization 

Spot normalization and regression was done with Seurat package (version: 3.2, 

https://satijalab.org/seurat/). PCA and tSNE protocols were similar to scRNA-seq analyses. 

Spatial feature expression plots were generated with the SpatialFeaturePlot function in Seurat 

(version 3.1.4) and the STUtility R package (version 1.0.0). 

Pseudo-time analysis 

Single-cell trajectories analysis was conducted with Monocle2 (http://cole-trapnell-

lab.github.io/monocle-release) using DDR-Tree and default parameter. Before Monocle 

analysis, we select marker genes of the Seurat clustering result and raw expression counts of 

the cell passed filtering.  

RNA velocity 

RNA Velocity analysis was conducted by the scVelo (Version 0.2.3) method in the ScanPy 

Python package with default parameters for inferring the cell dynamics 2. 

SCENIC analysis 

We applied the single-cell regulatory network inference and clustering (pySCENIC, 

v0.9.5) workflow with the 20-thousand motifs database for RcisTarget and GRNboost to 

evaluate transcription factor regulation strength 3. 

CNV estimation 

Endothelial, fibroblast and macrophage cells were used as reference to identify somatic 

CNVs with the R package inferCNV (v0.8.2) 4. We scored the extent of CNV signal in each 
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cell and defined it as “the mean of squares of CNV values” across the genome. Putative 

malignant cells were then defined with criterion: CNV signal above 0.05 and CNV correlation 

above 0.5. The corresponding genes in these CNV variable regions were inferred with 

inferCNV (1.12.0) and HMM models.  

Cell communication analysis 

We conducted cell communication analyses based on the CellPhoneDB 5, a public 

repository of ligands, receptors and their interactions, to enable a systematic prediction of cell-

cell communication molecules. Membrane proteins, secreted and peripheral proteins were 

annotated. Significant mean and cell communication significance (P-value<0.05) were 

calculated based on the interaction and the normalized cell matrix achieved by Seurat 

Normalization. All the interaction pairs that we listed in the manuscript were all of significance. 

Cell type scoring  

To analyze the distribution of cell types in N, DN and T areas of the biopsy sections, we 

scored the cell type enrichment in each spot with a signature-based strategy. First, we selected 

several uniquely-expressed marker genes as the signature genes with FindAllMarkers function. 

Next, GSVA (1.32.0) was used to assign signature score estimates to individual spots 6. Taking 

advantage of these scores, relative enrichment degree of different cell types could then be 

compared. 

QuSAGE analysis (Gene Enrichment Analysis) 

QuSAGE (2.16.1) analysis was performed to evaluate the activation features of a given 

gene set such as pathway activation 7. QuSAGE accounts for inter-gene correlations using the 
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Variance Inflation Factor technique. 

Gene set enrichment analysis 

Gene set enrichment analysis (GSEA) using Gene Ontology (GO) annotations was 

performed to elucidate the biological implications of marker genes and differentially expressed 

genes 8. GO annotations and gene sets information were downloaded from GSEA website 

(https://www.gsea-msigdb.org/gsea/msigdb/genesets.jsp) 9,10. Fisher’s exact test was applied to 

identify the significance and false discovery rate (FDR) was calculated to correct the P-values 

due to multiple tests. GSEA analysis in Figure 1f was performed using Metascape 

(http://metascape.org) 11,12 and the P-values were derived from a hypergeometric test and 

Benjamini–Hochberg correction was used to adjust the P-values for identifying the 

significantly enriched GO terms. 

Correlation heatmap analysis  

The correlation analysis was performed in main cell types and epithelial subclusters of 

diverse initiation stage using (pheatmap) with a calculation of “Pearson correlation”. By doing 

so, cells were then distributed close by their correlations among each subclusters. We classified 

all these subclusters of N, DN and T stages into 4 clusters. Cluster 1, common genes among 

these stages; Cluster 2, higher expression in N and DN stages; Cluster 3-1 and 3-2, genes that 

were higher expression in DN and T stages; Cluster 4, genes with higher expression in T. The 

marker genes of each cluster were selected based on the co-expression of these genes between 

the correlation results and the heatmap results. All the markers were then confirmed with ST 

feature plots. 
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Supplementary Figures 

 

Supplementary Fig. S1 
Supplementary Fig. S1.  Spatial feature plots and transcriptome data analysis.  

(a) Spatial feature plots of ST samples. (b) Spatial feature plots of the numbers of expressed transcripts 

(nUMIs) and genes (nGene). (c) Score of the number of expressed genes (n Feature_Spatial) for each 
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ST sample. (d) Correlation heat map of major cell types which were identified in scRNA-seq with ST 

data using Pearson correlation matrix at N regions (left); DN regions (middle) and T regions (right). 

The numbers in the heatmap represented correlation index. (e) Cluster–cluster heat map of gene-

expression data for markers of identified cell types across all samples of scRNA-seq using Pearson 

correlation matrix. Darker colors correspond to higher correlation.  
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Supplementary Fig. S2 

Supplementary Fig. S2.  InferCNV and pathway analyses in epithelial cell subtype.  

(a) Heatmap shows large-scale CNVs for individual cells (rows) from patient 2 and patient 9, which 

were done with “inferCNV” package. Red: amplifications; blue: deletions. Endothelial and 
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pericytes/SMCs as normal cells as a reference. (b) The table illustrated recurrent CNVs in regions with 

well-recognized cancer driver and tumor suppressor genes, using scRNA-seq data analyzed by the 

“inferCNV” package and “HMM models”. (c) Characterization of mismatch repair and glycolysis 

process with ST feature plots from P6 (top). Changes of the two pathways’ activities along with tumor 

initiation process in patients of ST (bottom). Each dot indicated the median of the pathway activity in 

the corresponding region. (d) Characterization of OSCC initiation process with ST feature plots from 

P7, showing cancer-related pathways. (e) Dot plot of selected 8 marker genes as a whole (an 8-gene set) 

which were previously reported to be potentially associated with OSCC initiation. (f) Comparison of 

the expression levels of the 8 initiation-associated gene sets between normal and tumor tissues with 

TCGA_HCC cohort data, which were done on GEPIA2 website. One-way ANOVA tests were used to 

analyze the significance of their differences. *P<0.05. (g) Kaplan–Meier survival curve for patients of 

TCGA_HCC cohort, grouped by higher and lower expression of the 8 initiation-associated gene sets, 

which were done with GEPIA2 website. Log-rank statistics were used to compare overall survival.  
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Supplementary Fig. S3 

Supplementary Fig. S3.  Identification and characterization of initiation-associated genes and 

pathways.  

(a) Representative IHC staining results of TFAP2A in patients (left). Scale bar: 100 µm. Statistical 

analysis showing the percentage of TFAP2A positive cells in each region (right). A two-tailed paired 

Student’s t-test for the P-values. **P< 0.01. (b) The expression levels of initiation-associated genes 

were down-regulated in siTFAP2A group. **P< 0.01; ***P< 0.001. (c) Comparison of the expression 

levels of LY6K between normal and tumor tissues with TCGA_HCC cohort data, which were done on 

GEPIA2 website. One-way ANOVA tests were used to analyze the significance of their differences. 

*P<0.05. (d) Spatial feature plots of LY6K in tissue sections of P2 and P6. (e) Representative IHC (top) 

staining of LY6K and the corresponding H&E result (bottom) in different initiation stages of a patient. 

Scale bar: 100 µm. (f) Representative immunofluorescent (IF) staining of LY6K in OLK (left) and 

OSCC organoids (right). Scale bar: 10 µm. (g) The gene expression levels of LY6K in siLY6K and 
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siNC group. Data presented as the mean ± s.d. A two-tailed unpaired Student’s t-test for the P-values. 

***P<0.001. NC, control group. (h) The expression levels of initiation-associated genes were down-

regulated in siLY6K group. A two-tailed unpaired Student’s t-test for the P-values. *P< 0.05; **P< 

0.01; ***P< 0.001. 
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Supplementary Fig. S4 

Supplementary Fig. S4.  Characteristics of identified Mesen_CAFs and Infla_CAFs by scRNA-

seq.  

(a) UMAP feature plots showing expression distribution of Mesen_CAF marker WNT5A and 

Infla_CAF marker IGF1 in single fibroblast cell. (b) Heatmap of genes with differential expression 

(rows) between Mesen_CAF and Infla_CAF subclusters. (c) Statistics showing 2 fibroblast 

subpopulations in each initiation stage with scRNA-seq data. (d) Comparison of the expression levels 
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of identified fibroblast subcluster markers (Mesen_CAF marker: left; Infla_CAF marker: right) between 

fibroblasts and other types of cells with scRNA-seq data. Two-sided Wilcoxon rank sum tests were 

used to analyze the significance of their differences. ***P<0.001. (e) Spatial feature plots for 

Mesen_CAF marker (COL1A1+ & WNT5A+), myeloid cell marker (LYZ+) and T cell marker 

(CD3D+). Red dots indicated coexpression. (f) CellphoneDB analysis of inferred interactions between 

Mesen_CAFs and immune cell subclusters. Dotplots showing the significance (−log10 P-value) and 

strength (mean value) of specific interactions. Mean and significance (P-value<0.05) were calculated 

based on the interaction and the normalized cell matrix achieved by Seurat Normalization. 
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Supplementary Fig. S5 

Supplementary Fig. S5.  Cell proportion and functional characterization of myeloid cells 

subpopulations with scRNA-seq data.  
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(a) UMAP feature plots showing expression distribution of myeloid subcluster markers. (b) Bubble 

heatmap showing expression levels of selected signature genes in identified myeloid subclusters. Dot 

size indicates fraction of expressing cells, colored based on normalized expression levels. (c) Violin 

plots showing expression levels of macrophage markers across different myeloid cell types from 

scRNA-seq data. (d) Cell numbers and proportions of monocytes and macrophages in patients of OSCC 

initiation by scRNA-seq data. (left) presented with single patient; (right) presented as a whole. (e) 

Heatmap showing the activity of TFs in each myeloid subpopulation. The TF activity is scored with 

SCENIC package. (f) Cell proportions of Mono_INHBA in diverse initiation stages by scRNA-seq data. 

(g) mIHC staining of Mono_INHBA marker (CD68+ & PD-L1+) and CD8_Tex marker (CD8+ & 

PDCD1+) in the DN stages of patients, scale bars: 200 µm (top). H&E staining of DN stages of patients, 

scale bars: 500 µm (bottom). (h) Statistical analysis showing distances between Mono_INHBA and 

CD8_Tex cells. Note that the distances between over 90 % of Mono_INHBA and CD8_Tex cells were 

within 40 µm. (i) Pearson correlation plot showing significant positive correlation of WNT5A 

expression in Mesen_CAF to INHBA expression in Mono_INHBA. Cor.test() was used for conducting 

correlation and the statistical analyses. (j) Expression levels of initiation-associated genes upon THBS1 

(1µg/mL) treatment in OLK organoids for 10 days. A two-tailed unpaired Student’s t-test for the P-

values. *P< 0.05. **P< 0.01. ***P< 0.001. (k) Kaplan–Meier survival curve for patients of 

TCGA_HNSCC cohort, grouped by higher and lower expression of INHBA, which were done with 

GEPIA2 website. Log-rank statistics were used to compare overall survival.  
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Supplementary Fig. S6 

Supplementary Fig. S6.  Characterization of cluster 2-Mesen_CAF and Macro_ APOE / NRG1 

subclusters with scRNA-seq and ST data.  

(a) UMAP representation of fibroblasts. Note that Cluster 2-Mesen_CAF were circled with red color. 

(b) Enriched GO terms for Cluster 2-Mesen_CAFs. Fisher’s exact test was applied to identify the 

significance and FDR was used to correct the P-values. (c) Spatial feature plots of Cluster 2-

Mesen_CAF markers (POSTN, IGFBP3) in tissue sections of P1. (d) Enriched hallmark gene sets in 

each myeloid subpopulation done with QuSAGE. (e) Heatmap showing expression levels of selected 

markers of M1, M2 and TRMs in each myeloid subpopulation. (f) Potential Trajectory of differentiation 

from monocyte into Tumor-associated macrophages inferred by analysis with Monocle 2 (top). 
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Trajectory with arrows predicting the directions of certain monocytes and macrophages properties 

annotated with the signatures. RNA velocities represented by arrows overlaid on the UMAP plots 

showing the transition potential of myeloid subclusters (bottom). Each dot for a single cell.  
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Supplementary Fig. S7 

Supplementary Fig. S7.  Profiling of CD8+ and CD4+ T cell subpopulations with scRNA-seq 

data.  
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(a-b) UMAP representation of single T cells colored by subclusters (left, a), CD8A and CD4 expression 

levels (right, b). (c) Bar plots of T cell subpopulations in each scRNA-seq sample (left) and the 

corresponding number of cells, UMIs and genes in each group (right). (d) Bubble heatmap showing 

expression levels of selected signature genes in different CD8+ T cell subpopulations. Dot size indicated 

fraction of expressing cells, colored based on normalized expression levels. (e) Cell proportions of 

CD8+T cells in patients of diverse initiation stages by scRNA-seq data. (f) Bubble heatmap showing 

expression levels of selected signature genes in different CD4+ T cell subpopulations. Dot size indicated 

fraction of expressing cells, colored based on normalized expression levels. (g) Cell proportions of 

CD4+T cells in patients of diverse initiation stages by scRNA-seq data. Heatmap showing the activity 

of TFs in each T cell subpopulations. The TF activity was scored using SCENIC analyses. (h) UMAP 

representation of single CD4+Treg cells colored by identified cell types. (i) Heatmap showing 

expression of marker genes in different Treg subpopulations.  
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Supplementary Fig. S8 

Supplementary Fig. S8.  Enriched hallmark genes in TNFRSF4+Tregs and their correlations to 

other cell subclusters.  

(a) Violin plots displaying expression levels of selected markers for inhibitory receptor, co-stimulatory 

molecules, naive or Treg cell markers in each T cell subpopulation. (b) The quantitation of CD68+ & 

APOE+ (left) and OX40+ & FOXP3+ (right) cell fractions in each group were provided (right). (n=3 

groups). (c) Comparison of the expression levels of TNFRSF4+Treg, Cluster2-Mesen_CAF and 
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Macro_APOE/NRG1 markers between normal and tumor tissues with TCGA_HNSCC cohort data, 

which were done on GEPIA2 website. (d) Pearson Correlation maps showing the correlations between 

Cluster 2-Mesen_CAF and Macro_APOE/NRG1 (left); Macro_APOE/NRG1 and TNFRSF4+Tregs 

(middle); Cluster 2-Mesen_CAF and TNFRSF4+Tregs (right) with TCGA_HNSCC cohort data, which 

were done on GEPIA2 website.  
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Supplementary Fig. S9 

Supplementary Fig. S9.  Specific cellular interactions during OSCC initiation.  

(a) Violin plots of TGFB1 and VEGFA expressing levels in major cell subtypes by scRNA-seq. (b) 

Interaction maps (Top) and Statistic results (Bottom) showing VEGFA-KDR/FLT1 /NRP1/NRP2 

interactions among diverse cell types. (c) ST feature plots showing expression of TGFB in different 

distributions. (d) Interaction maps showing TGFB-TGFBRs interactions among diverse cell types (top). 

Statistic results of percentage plots (bottom) among TGFB-TGFBRs in 5 representative spatial feature 
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maps. (e) Dotplots showing the significance (−log10 P-value) and strength (mean value) of predicted 

interactions between the upper layer of epithelium and lower layer of epithelium at N and DN stages. 

Significant mean and significance (P-value<0.05) were calculated based on the interaction and the 

normalized cell matrix achieved by Seurat Normalization. (f) Model of the cross-compartment ligand-

receptor interactions mainly shown in terms of CAFs (left); Myeloid cells (Middle) and T cells (Right), 

which were supported by significant interactions inferred by CellphoneDB and the cell subclusters 

identified with scRNA-seq. 
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Supplementary Table Legends 

Table S1 Patient and sample information 

Table S2 Statistics for evaluating the quality of scRNA-seq (10x Genomics) 

Table S3 Statistics for evaluating the quality of ST (10x Genomics) 

Table S4 Statistics for cell numbers of each cluster in patients with scRNA-seq (related to Fig. 1f) 

Table S5 Chosen marker genes for scoring cell type and subclusters in a cell type with a ST feature 

(marker genes were selected based on scRNA-seq data, related to Fig. 1g and Fig. 5e) 

Table S6 Cell numbers in each cell type of different disease stages for scRNA-seq (related to Fig. 1d-f) 

Table S7 Signature genes chosen for analyses on Gepia2 website (relates to Fig. S8c-d) 

Table S8 Information of antibodies, primers for Real-time PCR, siRNA and reagents including 

chemicals, peptides and recombinant proteins 


