SUPPORTING INFORMATION

Molecular signatures of the Eagle effect induced by the artificial siderophore conjugate LP-600 in *E. coli*

Yi-Hui Lai,¹ Raimo Franke,¹ Lukas Pinkert,¹ Heike Overwin¹ and Mark Brönstrup^{1,2,3*}

¹ Department of Chemical Biology Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany

² German Center for Infection Research (DZIF), Site Hannover-Braunschweig, 38124 Braunschweig, Germany

³ Center of Biomolecular Drug Research (BMWZ), Leibniz University, 30159 Hannover, Germany

* mark.broenstrup@helmholtz-hzi.de

Table of Contents

Figure S1. Role of iron uptake for the antibacterial activity of LP-600 against <i>E. coli</i>
Figure S2. Multidimensional scaling (MDS) analysis of <i>E. coli</i> metabolomes recorded by UPLC-
ESI-QToF4
Figure S3. Functional enrichment analysis for differentially expressed genes shared between
LH0.5 and LH1 comparisons5
Figure S4. Networks of selected functional enrichment with significantly up-regulated (A) and
down-regulated (B) genes in the exponential growth phase (LH0.5)6
Figure S57
Figure S6. Antibacterial activity of LP-600 against <i>E. coli</i> in the presence of polyamines8
Table S1. Top 100 differentially regulated pathways.
Table S2. List of primers for lambda red-mediated gene deletion. 11
Table S3. List of primers for colony PCR. 12
Table S4. List of parameters applied in Metaboscape13
Table S5. Correlation of OD and CFUs16

Figure S1. Role of iron uptake for the antibacterial activity of LP-600 against *E. coli*. (A) *E. coli* BW25113 was treated with LP-600 with iron-depleted or standard Mueller Hinton broth (MHB) for 24 hours, followed by OD_{600} measurement. Strains deficient of genes *fepA*, *cirA*, and *fiu* (B), or *fepB*, *fepD*, and *tolC* (C) were treated with LP-600 for 24 hours in iron-depleted MHB, followed by OD_{600} measurements. Representative results of n = 3.

Figure S2. Multidimensional scaling (MDS) analysis of *E. coli* metabolomes recorded by UPLC-ESI-QToF. (A-C) C18 or HILIC columns were used for analyte separations in positive or negative mode. Results obtained with a C18 column in positive mode are depicted in Figure 3. The cultures were treated with DMSO (Ctrl), low and high-concentrations of LP-600 during the mid-exponential phase ($OD_{600} = 0.5$) or stationary phase ($OD_{600} = 1.0$). Log-CPM (log counts per million) values among samples were applied in MDS analysis with the R package limma to project Euclidean distances between samples to x- and y-axis.

Figure S3. Functional enrichment analysis for differentially expressed genes shared between LH0.5 and LH1 comparisons. Networks of functionally enriched terms associated with significantly regulated genes under both LH0.5 and LH1 conditions are displayed. Each node represents an enrichment category and is labeled with its correlating annotation. The line between two nodes represents genes overlapping among them. The overall number of categories is 22.

Figure S41. Networks of selected functional enrichment with significantly up-regulated (A) and downregulated (B) genes in the exponential growth phase (LH0.5). Each node represents an enrichment category and is labeled with the annotation. The line between two nodes represents genes overlapping in two nodes. LH0.5: Comparison of high-concentration over low-concentration treatment with LP-600 at $OD_{600} = 0.5$.

Figure S5. Networks of selected functional enrichment with significantly regulated genes in the stationary phase (LH1). Functional enrichment of networks with differentially expressed genes in LH1. Each node represents an enrichment category and is labeled with the annotation. The line between two nodes represents genes overlapping in two nodes. Nodes and clusters are labeled in dark green for terms with up-regulation genes, whereas light green represents a term with down-regulated genes.

Figure S6. Antibacterial activity of LP-600 against *E. coli* in the presence of polyamines. (A-B) *E. coli* BW25113 was treated with LP-600 (A) or ampicillin (B) with iron-depleted MHB for 24 hours in the presence of 1 mM cadaverine or spermidine, followed by OD_{600} measurement. (C) Antibacterial activity of cadaverine or spermidine against *E. coli*. Representative results of n = 3.

	D		D		D		D
	Р		Р		Р		Р
	PS		PS		PS		PS
Pathway	*	Pathway	*	Pathway	*	Pathway	*
	9.		6.	Mixed acid	5.		4.
Cadaverine biosynthesis	0	Glycerol degradation V	4	fermentation	4	L-cysteine biosynthesis I	8
Biotin biosynthesis from				Superpathway of			
8-amino-7-	8.		6.	thiamine diphosphate	5.		4.
oxononanoate I	9	Enterobactin biosynthesis	3	biosynthesis I	4	Glyoxylate cycle	8
				L-cysteine biosynthesis			
Lipoate biosynthesis	8.	Heme- biosynthesis II	6.	VII (from sulfo-L-	5.	CDP-diacylglycerol	4.
and incorporation II	7	(oxygen-independent)	3	cysteine)	3	biosynthesis I	8
4-amino-2-methyl-5-							
diphosphomethylpyrimi	8.	Methylphosphonate	6.	Hydrogen to fumarate	5.		4.
dine biosynthesis I	7	degradation I	3	electron transfer	3	2-methylcitrate cycle I	8
Lipoate biosynthesis	8.		6.		5.	Fatty acid β-oxidation I	4.
and incorporation I	7	Ethanol degradation I	2	Citrate degradation	3	(generic)	8
Hydrogen to					_	Thiazole component of	
trimethylamine N-oxide	8.		6.		5.	thiamine diphosphate	4.
electron transfer	6	L-threonine degradation II	2	Biotin biosynthesis I	2	biosynthesis l	8
				Superpathway of	-		
Giutathionyispermidine	8.	2,3-dinydroxybenzoate	6.	metnyigiyoxai	5.	Superpathway of arginine and	4.
biosynthesis	0	biosynthesis	0	degradation	2	Cincernate and 2	8
				Supernethursu of home		Cinnamate and 3-	
Arconato datovification		NADH to dimothyl	6	biosynthesis from	E	degradation to 2	
Alseliate detoxification	0.	sulfavida electron transfor	0.)).)	budrowypontadionoato	4.
					2	nydroxypentadienoate	•
NADH to							
trimethylamine-ovide	7	decarboxylase/agmatinase	5	(Aminomethyl)nhosnho	5	Nitrate reduction III	1
electron transfer	ο	nathway	2. 8	nate degradation	1	(dissimilatory)	7
Supernathway of L-		patriway)	0		1	(dissimilatory)	<u> </u>
aspartate and L-	7		5	Molyhdonterin	5	Supernathway of glyoxylate	4
asparagine biosynthesis	7.	Putrescine biosynthesis I	8	biosynthesis	1	bypass and TCA	7
Superpathway of L-	7.		5.	3-dehvdroquinate	5.	Formate to nitrite electron	4.
asparagine biosynthesis	7	Glutathione biosynthesis	7	biosynthesis I	1	transfer	7
	·	Superpathway of purine		Pyruvate	-		·
L-asparagine	7.	deoxyribonucleosides	5.	decarboxylation to	5.		4.
degradation I	7	degradation	7	acetyl coa I	1	TCA cycle I (prokaryotic)	7
		5		Formate to dimethyl			
β-alanine	7.	Nitrate reduction VIII	5.	sulfoxide electron	5.	Superpathway of polyamine	4.
biosynthesis III	7	(dissimilatory)	7	transfer	1	biosynthesis I	7
· · ·				2-oxoglutarate			
L-asparagine	7.	Nitrate reduction viiib	5.	decarboxylation to	5.	L-arginine degradation II (AST	4.
biosynthesis I	7	(dissimilatory)	7	succinyl-coa	0	pathway)	6
L-asparagine	7.	Glutathione-glutaredoxin	5.	L-threonine	5.	2-carboxy-1,4-naphthoquinol	4.
biosynthesis II	7	redox reactions	7	degradation I	0	biosynthesis	5
	7.	Superpathway of acetate	5.	Ethanolamine	5.	NAD de novo biosynthesis I	4.
L-aspartate biosynthesis	7	utilization and formation	6	utilization	0	(from aspartate)	5
						NADH to cytochrome	
L-glutamate	7.	Fatty acid biosynthesis	5.	Acyl carrier protein	5.	<i>bd</i> oxidase electron	4.
degradation II	7	initiation (type II)	5	metabolism	0	transfer I	5
				Acetate and ATP		NADH to cytochrome	
Arginine dependent	7.		5.	formation from acetyl-	4.	<i>bd</i> oxidase electron	4.
acid resistance	6	D-malate degradation	5	coa I	9	transfer II	5

Table S1. Top 100 differentially regulated pathways.

Formate to		UDP-α-D-					
trimethylamine-oxide	7.	glucuronate biosynthesis	5.		4.	D-gulosides conversion to D-	4.
electron transfer	3	(from UDP-glucose)	5	Oleate β-oxidation	9	glucosides	5
Hydrogen to dimethyl				Acetoacetate			
sulfoxide electron	6.	NAD phosphorylation and	5.	degradation (to acetyl	4.		4.
transfer	8	dephosphorylation	5	coa)	9	L-phenylalanine biosynthesis I	5
Acetate conversion to	6.	Ethylene glycol	5.	Fatty acid biosynthesis	4.	Adenosine ribonucleotides	4.
acetyl-coa	8	degradation	5	initiation II	9	<i>de novo</i> biosynthesis	5
Purine						Superpathway of glycolysis,	
deoxyribonucleosides	6.		5.	L-threonine	4.	pyruvate dehydrogenase, TCA,	4.
degradation I	7	D-sorbitol degradation II	5	degradation IV	9	and glyoxylate bypass	5
				Glycolate and			
Methylglyoxal	6.		5.	glyoxylate degradation	4.	Superpathway of glycol	4.
degradation I	5	Mannitol degradation I	5	II	9	metabolism and degradation	5
Formaldehyde							
oxidation II				Superpathway of fatty			
(glutathione-	6.	L-lactaldehyde degradation	5.	acid biosynthesis	4.		4.
dependent)	5	(anaerobic)	5	initiation (E. coli)	8	L-homoserine biosynthesis	4
Aminopropylcadaverine	6.		5.	L-arginine biosynthesis I	4.	Superpathway of L-threonine	4.
biosynthesis	4	L-galactonate degradation	5	(via L-ornithine)	8	biosynthesis	4

*DPPS: Differential Pathway Perturbation Score.

Primer	Sequence
fepA-K-F	CCGCATCCGGCATGAACGACGCGCACTTTGTCAACAATCTGACGTTAGCAGTGTAGGCTGGAGCTGCTTC
fepA-K-R	CGACCATGCCCGACAGTTGCAATTCGTGGCAAAAATGCAGGAATAAAACAATGGGAATTAGCCATGGTCC
K-fepB-F	CGCAGGTGACAGCGTCCGACAGTTAATGCTTAAAACAGCGCCTTAAGCCTGTGTAGGCTGGAGCTGCTTC
K-fepB-R	AATTTGTCATTACGCCCTTAACCTTATTAATAACAGGAAGCTGATTTGTGATGGGAATTAGCCATGGTCC
K-fepD-F	GGTGATGAGTAATCGGCGAGAGACGTAAATCATGCACCACCTCGCGTTTTGTGTAGGCTGGAGCTGCTTC
K-fepD-R	AAATAAGATCGATAACGATAATTAATTTCATTATCATGGAAGTTCGTATGATGGGAATTAGCCATGGTCC
K-fecD-F	ACCGTCAGATTTTCAGTTCGTAAAGTCATTTATCGCATTCTCACAAGCAAG
K-fecD-R	GCGCTGATTGGCAGCCCTTGCTTTGTCTGGCTTGTGAGGAGGCGAGGATGATGGGAATTAGCCATGGTCC
K-cirA-F	GCAGTATTTACTGAAGTGAAAGTCCGCCCGTCGCCGGGCATCTTCTCAGTGTAGGCTGGAGCTGCTTC
K-cirA-R	TGTGAGCGATAACCCATTTTATTTTCGTAGTTACCTCATGGAGATATGGAATGGGAATTAGCCATGGTCC
K-fiu-F	GTACATCATACAATTTCTCCAAAAAGTGGGGCCTGCGCCCCACATCTGAAGTGTAGGCTGGAGCTGCTTC
K-fiu-R	TTTCTCGTGGCAGTGAAAATTTCAACATATAAGAAAAAGTCACCTGCAAAATGGGAATTAGCCATGGTCC

 Table S2. List of primers for lambda red-mediated gene deletion.

 Table S3. List of primers for colony PCR.

Primer	Sequence
fepA-C-F	CCGCATCCGG CATGAACGAC GCGCA
fepA-C-R	CGACCATGCCCGACAGTTGCAATTC
C-fepB-F	CGCAGGTGACAGCGTCCGACAGTTA
C-fepB-R	AATTTGTCATTACGCCCTTAACCTT
C-fepD-F	GGTGATGAGTAATCGGCGAGAGACG
C-fepD-R	AAATAAGATCGATAACGATAATTAA
C-cirA-F	GCAGTATTTA CTGAAGTGAA AGTCC
C-cirA-R	TGTGAGCGATAACCCATTTTATTTT
C-fiu-F	GTACATCATA CAATTTCTCC AAAAA
C-fiu-R	TTTCTCGTGGCAGTGAAAATTTCA

Table S4. List of parameters applied in Metaboscape.

Parameters	Positive	Negative
ferraWorkflow_minCorrelation	0.8	0.8
ferraWorkflow_lockMass	622.0290	556.0020
ferraWorkflow_GroupFeatures_rtDelta	10	10
ferraWorkflow_chargeMax	3	3
ferraWorkflow_rtMaxInSeconds	1680	1680
ferraWorkflow_ForeachAnalysisMsms_MsmsExtractionWorkflow_	average	average
ConsolidateMsmsPeaklists_method		
msmsExtractionCompassResult_fillNonDeconvolutedValue	0	0
ferraWorkflow_substanceClass	small molecules	small
		molecules
ferraWorkflow_rtMinInSeconds	12	12
ferraWorkflow_ForeachAnalysis_FeatureFinder_ClusterDeisotopin	FWHM	FWHM
g		
featureIntervalMethod		
ferraWorkflow_seedIntensityThreshold	500	500
ferraWorkflow_enableLockMass	true	true
ferraWorkflow_useIsotopePatternCoverage	false	false
ferraWorkflow_ForeachAnalysisMsms_MsmsExtractionWorkflow_	0.005	0.005
MsmsDeisotoping_relativeAbundanceThreshold		
ferraWorkflow_targetedExtractionMinClusterSize	3	3
ferraWorkflow_maxClusterOverlap	0.1	0.1
ferraWorkflow_ForeachAnalysisMsms_MsmsExtractionWorkflow_	true	true

ConsolidateMsmsPeaklists_groupByCollisionEnergy		
ferraWorkflow_mzMin	75	75
ferraWorkflow_ForeachAnalysis_FeatureFinder_ClusterDeisotopin	2	2
g		
areaCalculationScale		
ferraWorkflow_minExistFraction	0.55	0.55
ferraWorkflow_CreateRecursiveTargets_threshold	3	3
ferraWorkflow_ForeachAnalysisMsms_MsmsExtraction	true	true
Workflow_MsmsDeisotoping_proteomics		
msmsExtractionCompassResult_fillStrategy	topN	topN
ferraWorkflow_uffMinSeedClusterSize	7	7
ferraWorkflow_maxIsotopePatternError	0.2	0.2
ferraWorkflow_CreateBatchFeatures_minGroupSize	3	3
ferraWorkflow_minCorrelatedFraction	0.55	0.55
ferraWorkflow_mzMax	1000	1000
ferraWorkflow_areaIntensity	false	false
ferraWorkflow_enableMsmsExtraction	true	true
ferraWorkflow_minNumClusters	1	1
ferraWorkflow_uffMinClusterSize	2	2
processingWorkflowId	Ferra3d	Ferra3d
polarity	positive	negative
Deconvolution.eicCorrelation	0.8	0.8
Persist Only ConsensusIsotope Pattern	false	false
Deconvolution.primarylon	[M+H]+	[M-H]-

Deconvolution.seedIons	[M+Na]+,	[M+Cl]-
	[M+K]+	
Deconvolution.commonlons	[M-H2O+H]+,	[M-H-H2O]-
	[2M+H]+,	
	[M+NH4]+, [M-	
	CO2+H]+	
Sample Group Filter Type	percentage	percentage
Sample Group Presence Filter Value	100	100
Nupf Time Stamp	1.60215E+12	1.6E+12
Nupf Workflow Version	3.4	3.4

conc. [µg/ml]	OD _{600nm}	CFU/well	Pearson's r
64	0.1447	2.20E+08	0.96
64	0.1575	2.00E+08	
64	0.0928	5.74E+07	
32	0.2286	6.49E+08	0.93
32	0.2001	2.57E+08	
32	0.1713	1.87E+08	
16	0.0221	5.27E+07	1.00
16	0.0385	4.41E+07	
16	0.2114	4.50E+08	
8	0.0023	1.00E+01	0.95
8	0.001	0.00E+00	
8	0.0014	0.00E+00	
4	0.0127	9.90E+07	0.99
4	0.1591	5.13E+08	
4	-0.0013	1.00E+01	
2	0.2149	3.50E+08	1.00
2	0.0014	9.50E+01	
2	0.0019	3.75E+01	
1	0.1543	2.17E+08	0.98
1	0.1647	4.27E+08	
1	0.1509	2.02E+08	
0.5	0.2137	5.24E+08	0.99
0.5	0.1544	2.12E+08	
0.5	0.1549	1.55E+08	
0.25	0.2745	7.24E+08	0.91
0.25	0.1998	4.75E+08	
0.25	0.1944	2.50E+08	

 Table S5.
 Correlation of OD and CFUs

Overall Pearson's r = 0.87