7-N-Substituted-3-Oxadiazole Quinolones with Potent

Antimalarial Activity Target the Cytochrome bc1 Complex

William Nguyen,^{a,b,#} Madeline G. Dans,^{a,b,#} Iain Currie,^{a,b} Jon Kyle Awalt,^{a,b} Brodie L.
Bailey,^{a,b} Chris Lumb,^a Anna Ngo,^a Paola Favuzza,^{a,b} Josephine Palandri,^{a,b} Saishyam Ramesh,^c Jocelyn Penington,^{a,b} Kate E. Jarman,^{a,b} Partha Mukherjee,^d Arnish Chakraborty,^d Alexander G. Maier,^c Giel G. van Dooren,^c Tony Papenfuss,^{a,b} Sergio Wittlin,^{e,f} Alisje Churchyard,^g Jake Baum,^{g,h} Elizabeth A. Winzeler,ⁱ Delphine Baud,^j Stephen Brand,^j Paul F. Jackson,^k Alan F. Cowman,^{a,b} and Brad E. Sleebs.^{a,b,*}

^a The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia.

^b Department of Medical Biology, The University of Melbourne, Parkville 3010, Australia.

^c Research School of Biology, The Australian National University, Canberra 2600, Australia.

^d TCG Lifesciences, Kolkata, West Bengal, 700091, India.

^e Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123 Allschwil, Switzerland.

^f University of Basel, 4003 Basel, Switzerland.

^g Department of Life Sciences, Imperial College London, South Kensington, SW7 2AZ UK.

^h School of Biomedical Sciences, University of New South Wales, Sydney, 2031, Australia.

ⁱ School of Medicine, University of California San Diego, 9500 Gilman Drive 0760, La Jolla,

CA, 92093, USA

^j Medicines for Malaria Venture, Geneva 1215, Switzerland.

^k Global Public Health, Janssen R&D LLC, La Jolla 92121, USA.

* Correspondence to: Brad E. Sleebs The Walter and Eliza Hall Institute of Medical Research 1G Royal Parade, Parkville 3052, Victoria, Australia Email: <u>sleebs@wehi.edu.au</u>

[#] These authors contributed equally.

Index

Page

S3-S4	Schemes S1-5	Synthetic pathways for specific analogues and intermediate
S5	Figure S1	P. falciparum 3D7 asexual dose response curves
S6	Figure S2	Biological repeats for asexual stage of arrest microscopy
S7	Figure S3	Modelling on cyt b
S8	Figure S4	SNP in cyt b gene from 41 resistant parasites
S9	Figure S5	P. falciparum ScDHODH and SB1-A6 dose response curves
S10	Figure S6	P. falciparum NF54 gamete dose response curves
S11	Figure S7	Mouse model and plasma bioanalysis data
S12	Table S1	SNPs from whole genome sequencing of 41 resistant parasites
S13	Table S2	Activity of compounds against 41 resistant parasites
S14	Table S3	Activity of compounds against drug resistant parasites
S15	Table S4	Activity of compounds against drug resistant parasites
S16 - S30		¹ H NMR for final compounds
S31 – S36		HPLC traces for final compounds
S37		References

Scheme S1. Synthesis of 18. *Reagents and conditions:* (a) 37% HCl, 20 °C (b) Br₂, AcOH, 20 °C; (c) 3-pyridylboronic acid, K₂CO₃, Pd(PPh₃)₄, 1,4-dioxane/H₂O (6:1), 100 °C.

Scheme S2. Synthesis of 20. *Reagents and conditions:* (a) 1-methylpyrazole-5-boronic acid pinacol ester, K₂CO₃, Pd(PPh₃)₄, 1,4-dioxane/H₂O (6:1), 100 °C.

Scheme S3. Synthesis of 21. Reagents and conditions: (a) H₂SO₄, EtOH, 78 °C.

Scheme S4. Synthesis of 22, 23 and 24. Reagents and conditions: (a) substituted amine, 20 °C.

Scheme S5. Synthesis of 26 and 27. *Reagents and conditions:* (a) substituted secondary amine, HATU, DIPEA, DMF, 20 °C.

Figure S1. *P. falciparum* 3D7 asexual LDH dose response curves of representative compounds. EC₅₀ data represents means and SDs for four or more technical replicates measuring LDH activity of *P. falciparum* 3D7 parasites following exposure to compounds in 10-point dilution series for 72 h.

Figure S2. Giemsa stained microscopy images showing the asexual stage of arrest treated with ATQ (**3**), **17** and **41** at different time points to support representative images shown in Figure 2B.

Figure S3. A. A homology model of *P. falciparum* cyt *b* showing mutations found in **41**, ELQ300 and ATQ *P. falciparum* resistant strains is shown in Figure 3 and Table 5 respectively. The homology model of *P. falciparum* cyt *b* was created from *Gallus gallus* cyt *bc*₁ (PDB: 3H1I).¹ TM90-C2B strain cyt *b* Y268S Q₀ site mutation is shown in magenta; Dd2 strain cyt *b* I22L Q_i site mutant is shown in orange; 3D7 **41** resistant strain cyt *b* V259L Q₀ site mutation is shown in cyan. Heme molecules are shown in grey. The relative position of **41** (blue) is predicted by docking to the Q₀ site, while ATQ (green) and ubiquinol (pink) in the Q₀ site, and ELQ300 (brown), ubiquinone (yellow) in the Q_i site were overlayed using previous structural data.^{2, 3} **B.** Q₀ site of cyt *b* showing the interaction of **41** with Rieske protein (salmon) and the proximity to Fe-S cluster (orange/yellow).

Figure S4. Non-synonymous single nucleotide polymorphism identified in cyt b (PF3D7_MIT02300) from compound 41 resistant parasite populations r1, r2 and r3 (samples in duplicate).

Figure S5. Dose response curves represent averages and SDs of 3 independent experiments against the Pf SB1-A6 strain with a CNV (~2-fold) and a C276F mutation in DHODH or Pf Dd2 expressing ScDHODH over 72 h measuring SYBR green by FACS.

Figure S6. *P. falciparum* NF54 DFGA dose response curves from a 20-pt dilution series of compounds 17 and 21. Data represents means and SD of 4 technical replicates.

Figure S7. A. Evaluation of **17** in a *P. berghei* 4 day mouse model. *P. berghei ANKA* parasites expressing GFP were injected into the tail vein to infect mice on day 0. Compound **17** was administered q.d. at 20 mg/kg by p.o. 2 h after infection (day 0) and then on days 1, 2, and 3. Parasitemia was measured by flow cytometry on days 2, 3 and 4. unpaired t test (vs vehicle), P values. **B.** Plasma concentration of **17** after dose 1 in the *P. berghei* mouse model.

Chromosome	Pos	Base Change	AA change	AA pos in transcript	transcript ID
Pf3D7_02_v3 a	110010	A->C	F->V	155	PF3D7_0202100.1
Pf3D7_10_v3 ^b	1436924	T->G	D->E	203	PF3D7_1036400.1
Pf3D7_10_v3	1436954	A->G	Synonymous	213	PF3D7_1036400.1
Pf3D7_10_v3	1437149	G->A	Synonymous	278	PF3D7_1036400.1
Pf3D7_10_v3	1437158	A->G	Synonymous	281	PF3D7_1036400.1
Pf3D7_10_v3	1437287	T->A	Synonymous	324	PF3D7_1036400.1
Pf3D7_10_v3	1437302	G->A	Synonymous	329	PF3D7_1036400.1
Pf3D7_10_v3	1437305	A->G	Synonymous	330	PF3D7_1036400.1
Pf3D7_10_v3	1437307	A->G	E->G	331	PF3D7_1036400.1
Pf3D7_10_v3	1437321	T->C	Synonymous	336	PF3D7_1036400.1
Pf3D7_10_v3	1437456	C->A	Q->K	381	PF3D7_1036400.1
Pf3D7_10_v3	1437695	T->A	Synonymous	460	PF3D7_1036400.1
Pf3D7_10_v3	1437701	A->G	Synonymous	462	PF3D7_1036400.1
Pf3D7_14_v3	3000703	T->C	Synonymous	551	PF3D7_1473700.1
Pf3D7_14_v3	3000763	C->T	Synonymous	531	PF3D7_1473700.1
Pf3D7_MIT_v3	4266	G->C	V->L	259	PF3D7_MIT02300.1

Table S1. Non-synonymous and synonymous single nucleotide polymorphisms identified fromcompound 41 resistant genomes.

^a Pf3D7_02_v3:110010 is a miscall due to a deletion.

^b Pf3D7_10_v3:1436924 is present in the WT parent at 29%.

Table S2. EC₅₀ values (nM) of **17**, **41**, ATQ and ELQ300 against **41** resistant populations (with a V259L cyt b Q₀ site mutation). EC₅₀ values represent an average of 3 experiments using the LDH assay (Figure 3).

compound	3D7	41 r#1	41 r#2	41 r#3
41	32.1	809	733	896
	(21.5-47.1)	(593-1234)	(533-1171)	(701-1131)
17	7.622	369	248	235
	(4.0-10.7)	(282-491)	(213-289)	(204-272)
ATQ	1.6	13.0	11.9	13.7
	(1.1-2.1)	(10.9-15.5)	(9.6-14.6)	(11.2-16.6)
ELQ-300	17.8	13.0	12.3	12.4
	(14.8-21.1)	(10.9-15.5)	(10.3-14.6)	(10.3-14.8)

^a EC₅₀ values (95% confidence intervals) from 3 biological replicates (nM).

Cmpd	Pf Dd2 EC ₅₀	Pf cytBC1 mutant strains EC50 µM				
Cinpu	μM ^a	TM90-C2B ^a	Dd2 ^{cyt} b (I22L) a			
17	0.010	1.91	0.006			
17	0.008	1.29	0.007			
21	0.062	0.051	0.051			
21	0.048	0.030	0.030			
41	0.005	0.177	0.003			
41	0.003	0.206	0.002			
43	0.017	0.069	0.014			
45	0.013	0.042	0.009			
АТО	0.001	6.46	0.005			
AIQ	0.001	4.35	0.005			
EL 0300	0.027		0.194			
ELQJUU	0.014	-	0.157			
DSM265	0.028	-	0.008			
DSW1203	0.020		0.008			

Table S3. Evaluation of selected compounds against *P. falciparum* asexual parasites resistant to mitochondria targeted drugs.

^a Activity values against the Pf Dd2 parental line, Pf TM90-C2B strain with a Y268S mutation in the Q_0 site of cyt *b* or Pf Dd2 strain with an I22L mutation in the Q_i site cyt *b* using a ³Hhypoxanthine 72 h assay. EC₅₀ values are an average of two experiments. Average data is shown in Table 4.

		Pf multidrug resistant strains. EC50 µM ^a							
Cmnd	Dd2	Dd2	Dd2	Dd2	Dd2				
Cinpu	EC50 µM ^a	CARL	DHODH	eEF2	PI4K	K1	NF54	RF12	7G8
		(11139K)	(C276F)	(Y86N)	(\$743T)				
17	0.011	0.009	0.018	0.008	0.011	0.013	0.019	0.007	0.008
	0.009	0.010	0.013	0.008	0.011	0.007	0.006	0.005	0.010
21	0.062	0.014	-	0.016	0.023	0.016	0.041	0.014	0.036
	0.048	0.029		0.020	0.031	0.033	0.047	0.023	0.040
41	0.004	0.004	0.006	0.002	0.005	0.006	0.006	0.002	0.003
	0.004	0.004	0.003	0.003	0.005	0.004	0.003	0.001	0.002
43	0.017	0.005	-	0.004	0.009	0.009	0.008	0.004	0.015
	0.014	0.009		0.008	0.010	0.021	0.028	0.006	0.010
KAF156	0.008	1.36	-	-	-	-	-	-	-
	0.008	1.69							
DSM265	0.027	-	0.576		-	-	-	-	-
	0.020		0.362	-					
DDD 107498	0.001			0.859					
	0.022	-	-	0.842	-	-	-	-	-
MMV	0.009				0.117	-	-	-	-
048	0.022	-	-	-	0.116				

Table S4. Activity of selected compounds against drug resistant P. falciparum strains.

^a EC₅₀ data represents means for each ³H-hypoxanthine experiment using a selection of drug resistant *P. falciparum* strains following exposure to compounds in 10-point dilution series for 72 h. Average data is shown in Table 5.

¹H NMR spectra for final compounds

Compound 16

HPLC traces for final compounds

Compound 16

Compound 17

Compound 18

Compound 22

Compound 25

Compound 28

Compound 29

Compound 30

S33

Compound 32

Compound 34

Compound 39

Compound 43

References

1. Zhang, Z.; Huang, L.; Shulmeister, V. M.; Chi, Y. I.; Kim, K. K.; Hung, L. W.; Crofts, A. R.; Berry, E. A.; Kim, S. H., Electron transfer by domain movement in cytochrome bc1. *Nature* **1998**, *392* (6677), 677-84.

2. Birth, D.; Kao, W.-C.; Hunte, C., Structural analysis of atovaquone-inhibited cytochrome bc1 complex reveals the molecular basis of antimalarial drug action. *Nat. Commun.* **2014**, *5* (1), 4029.

 Capper, M. J.; O'Neill, P. M.; Fisher, N.; Strange, R. W.; Moss, D.; Ward, S. A.; Berry, N. G.; Lawrenson, A. S.; Hasnain, S. S.; Biagini, G. A.; Antonyuk, S. V., Antimalarial 4(1H)-pyridones bind to the Qi site of cytochrome bc1. *Proc. Natl. Acad. Sci. U.S.A.* 2015, *112* (3), 755-760.