Supporting Information: Fluorescent Lipo-beads for the Sensitive Detection of Phospholipase A₂ and Its Inhibitors

Shahriare Hossain, Kalika R. Pai, and Menake E. Piyasena*

Department of Chemistry, New Mexico Institute of Mining and Technology

801, Leroy Place, Socorro, NM 87801

(1). Figure S1: Chemical structures of a). Rhodamine PE (RPE) b). DMPC c). DMPG

d). Varespladib and e). Quercetin.

(2). Figure S2: Long-term storage stability of different lipo-beads at 5°C

(3). Figure S3: The stability of different lipo-beads after exposure to synthetic urine for 30 minutes

(4). Figure S4: The effect of Ca^{2+} on the stability of the supported lipid membrane. The test was performed on lipo-beads comprised of a). 100% DMPC b). 20% DMPG & 80% DMPC.

(5). Figure S5: PLA₂ activity on 20:80 DMPG:DMPC coated fluorescein encapsulated beads at

18°C (gel phase) and 30°C (liquid phase). The final PLA₂ and Ca²⁺ concentrations were 4.10 μ M

and 0.01 mM respectively. The high fluorescence intensity of particles suggests that the enzyme

is not active as in other lipid composition, at this concentration of Ca²⁺

(6) Figure S6: The effect of quercetin on DMPC lipo-beads. Quercetin disrupts lipid bilayers instead of inhibiting the PLA₂ activity.

(7) Figure S7: PLA₂ inhibition by ANXA3 for 20:80 DMPG:DMPC lipo-beads. The percent PLA₂ activity is reduced approximately by 50% due to inhibition.

(8) Table S1: The EC₅₀ and the PLA_2 concentrations needed for 25% decrease of the fluorescence intensity.

Figure S1: Chemical structures of a). Rhodamine PE (RPE) b). DMPC c). DMPG d). Varespladib and e). Quercetin.

Figure S2: Long-term storage stability of different lipo-beads at 5°C

Figure S3: The stability of different lipo-beads after exposure to synthetic urine for 30 minutes

Figure S4: The effect of Ca²⁺ on the stability of the supported lipid membrane. The test was performed on lipo-beads comprised of a). 100% DMPC b). 20% DMPG & 80% DMPC

Figure S5: PLA₂ activity on 20:80 DMPG:DMPC coated fluorescein encapsulated beads at 18°C (gel phase) and 30°C (liquid phase). The final PLA₂ and Ca²⁺ concentrations were 4.10 μ M and 0.01 mM respectively. The high fluorescence intensity of particles suggests that the enzyme is not active as in other lipid composition, at this concentration of Ca²⁺

Figure S6: Effect of quercetin on DMPC lipo-beads. Quercetin disrupts lipid bilayers instead of inhibiting the PLA₂ activity.

Figure S7: PLA_2 inhibition by ANXA3 for 20:80 DMPG:DMPC lipo-beads. The percent PLA_2 activity is reduced approximately by 50% due to inhibition.

Lipo-bead	EC ₅₀ (nM)	25% Decrease (nM)
DMPC	278	92
PC	197	90
20:80 DMPG: DMPC	112	88
100:1 DMPC:RPE	89	48
85:15:5 DMPC:DMPG:RPE	15	6

Table S1: The EC_{50} and the PLA_2 concentrations needed for 25% decrease of the fluorescence intensity.