1 The first-in-class ERK inhibitor ulixertinib shows promising activity in MAPK-

2 driven pediatric low-grade glioma models

- 3 Romain Sigaud *, Lisa Rösch *, Charlotte Gatzweiler *, Julia Benzel *, Laura von
- 4 Soosten *, Heike Peterziel, Florian Selt, Sara Najafi, Simay Ayhan, Xenia F. Gerloff,
- 5 Nina Hofmann, Isabel Büdenbender, Lukas Schmitt, Kathrin I. Foerster, Jürgen
- 6 Burhenne, Walter E. Haefeli, Andrey Korshunov, Felix Sahm, Cornelis M. van
- 7 Tilburg, David T.W. Jones, Stefan M. Pfister, Deborah Knoerzer, Brent L. Kreider,
- 8 Max Sauter *, Kristian W. Pajtler *, Marc Zuckermann *, Ina Oehme *, Olaf Witt *, Till
- 9 Milde *
- 10 Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany (R.S., L.R.,
- 11 C.G., J.B., L.vS., H.P., F.S., S.N., S.A., X.F.G., N.H., I.B., L.S., C.M.vT., D.T.W.J.,
- 12 S.M.P., K.W.P., M.Z., I.O., O.W., T.M.); Clinical Cooperation Unit Pediatric
- 13 Oncology, German Cancer Research Center (DKFZ) and German Consortium for
- Translational Cancer Research (DKTK), Heidelberg, Germany (R.S., L.R., C.G., H.P.,
 F.S., S.N., S.A., X.F.G., I.B., C.M.vT., I.O., O.W., T.M.); Faculty of Biosciences,
- 16 Heidelberg University, Heidelberg, Germany (L.R., J.B., L.vS., S.A.); Faculty of
- 17 Medicine, Heidelberg University, Heidelberg, Germany (C.G.); Division of Pediatric
- 18 Neurooncology, German Cancer Consortium (DKTK), German Cancer Research
- 19 Center (DKFZ), Heidelberg, Germany (J.B., S.M.P., K.W.P.); Preclinical Modeling
- 20 Group, German Cancer Research Center (DKFZ), Heidelberg, Germany (L.vS., N.H.,
- 21 M.Z.); Division of Pediatric Glioma Research, German Cancer Research Center
- 22 (DKFZ), Heidelberg, Germany (L.vS., D.T.W.J.); KiTZ Clinical Trial Unit, Department
- of Pediatric Oncology, Hematology, Immunology and Pulmonology, Heidelberg
 University Hospital, Heidelberg, Germany (F.S., S.N., S.A., X.F.G., C.M.vT., S.M.P.,
- 24 Oniversity Hospital, Heidelberg, Germany (F.S., S.N., S.A., X.F.G., C.M.VI., S.N.
 25 K.W.P., O.W., T.M.); Pediatric Soft Tissue Sarcoma Research Group, German
- 26 Cancer Research Center (DKFZ), Heidelberg, Germany (L.S.); Department of Clinical
- 27 Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital,
- Heidelberg, Germany (K.I.F., J.B., W.E.H., M.S.); Department of Neuropathology,
- 29 Heidelberg University Hospital, Heidelberg, Germany (A.K.; F.S.); Clinical
- 30 Cooperation Unit Neuropathology, German Consortium for Translational Cancer
- 31 Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- 32 (A.K., F.S.); BioMed Valley Discoveries Inc., Kansas City, Missouri (D.K., B.K.).
- 33
- 34 *shared first or last authors
- 35

SUPPLEMENTARY MATERIALS

37

38 Supplementary Methods

39 Cell culture

- 40 Cell lines were authenticated using Multiplex Cell Authentication,¹ and purity was
- 41 validated using the Multiplex cell Contamination Test,² both performed by
- 42 Multiplexion (Heidelberg, Germany).

43 Drug treatments in vitro

- 44 All three cell lines were seeded at the same time (for seeding densities, see
- 45 Supplementary Table S1), left for five days to allow the repression of the SV40 Large
- 46 T antigen in the DKFZ-BT66_OFF cells, and subsequently treated with the indicated
- 47 drugs (see Supplementary Table S8) using a D300e Digital Dispenser (Tecan Life
- 48 Sciences). 1/2 Log distribution was used to cover a range of concentrations from
- 49 10 µM to 1 nM. Each condition was done in technical duplicates for three
- 50 independent biological replicates. Raw values were normalized to their corresponding
- 51 death control (250 nM STS for metabolic activity; 10 µM trametinib for MAPK reporter
- 52 assay) and healthy control (DMSO), and used to calculate IC₅₀. Normalized data was
- 53 plotted onto a 4-parameter dose response model

54 High content microscopy (HCM)

- 55 For BT40 the nuclear stain Hoechst33342 was used to define whole nuclei and
- 56 fragmented nuclei as readouts of total cell number and dead cells respectively.
- 57 TMRE stains active mitochondria and was thus used to define viable cells, while the
- 58 staining of active caspases with CellEvent Caspase3/7 detected apoptotic cells.
- 59 For DKFZ-BT66 the total cell number was determined equivalently to BT40. DRAQ7
- 60 is a nuclear stain, which cannot pass the cell membrane of living cells. Thus, dead
- 61 cells with damaged membranes were determined as the ratio of DRAQ7 positive cells

- 62 to Hoechst3342 positive cells. Finally, cell size was determined as area of the live-
- 63 cell stain calceinAM and expressed as change from DMSO.
- 64 All readouts were normalized to healthy control (DMSO) and death control (1000 nM
- 65 staurosporine).
- 66 For Cell Prolifer pipelines details, see Supplementary Table S9.

67 Synergy analysis

68 For a given readout, when the dimensional change upon single treatment was 69 concordant with an inhibitory effect for both combined drugs, synergy was calculated 70 with the Loewe model. When the dimensional change upon single treatment was 71 opposite to an inhibitory effect for one of the combined drugs, and if drug 72 independence could be assumed, synergy was calculated with the Bliss 73 independence model. When the dimensional change upon single treatment was 74 absent for one of the combined drugs, synergy was calculated with the highest single 75 agent (HSA) model. When the dimensional change upon single treatment was opposite to an inhibitory effect for both combined drugs, synergy calculation was not 76 77 applied. See Supplementary Figure S21 for details on what synergy model was used 78 in which readout/cell line.

79 *In vitro* on-target activity validation

Samples were washed twice with ice-cold PBS. For Western blot, cell were lysed in a
lysis buffer containing 62.5 mM Tris/HCI (Carl Roth, cat. no. 9090.2) pH 6.8, 2% SDS
(Carl Roth, cat. no. 2326.1), 10% glycerol (Sigma-Aldrich, cat. no. 33226), 1 mM dTT
(AppliChem, cat. no. A1101), phosphatase inhibitor (PhosphoSTOP, Merck, cat. no.
4906837001), protease inhibitor (cOmplete [™] Protease Inhibitor Cocktail, Merck, cat.
no. 11697498001). For reverse-phase protein array, cell were lysed in a lysis buffer

86 containing 45% 2xSDS, 45%T-PER (Thermo Scientific, cat. no. 78510), 10% TCEP 87 (Thermo Scientific, cat. no. 77720)). For immunoprecipitation, cells were lysed in a lysis buffer containing 300 mM Tris/HCI (Carl Roth, cat. no. 9090.2), 120 mM NaCI 88 89 (ThermoFisher Scientific, BP358-1), 10% glycerol (Sigma-Aldrich, cat. no. 33226), 2 mM EDTA (GERBU Biotechnik GmbH, 1034), 2 mM KCI (Carl Roth, 6781.1), 90 1% Triton X-100 (AppliChem, A4975.0500), protease inhibitor (cOmplete[™] Protease 91 92 Inhibitor Cocktail, Merck, cat. no. 11697498001). Antibodies were crosslinked to Dynabeads[™] using freshly dissolved 20 mM dimethyl-pimelimidate (DMP) in 0.2 M 93 94 triethanolamine buffer.

95 Zebrafish embryo toxicity assay, xenotransplantation, and treatment

96 Zebrafish toxicity assay

97 Zebrafish embryos were treated 48 hours post fertilization (hpf) in 48-well plates (cat. 98 no. 351178, Corning) containing E3 buffer supplemented with 0.2nM 1-phenyl-2thiourea (PTU buffer) and increasing concentrations as indicated. As determined by 99 100 us and others^{29,36,37}, effective concentrations usually are up to 10-to 20-fold higher in 101 the zebrafish embryo xenograft model than in cell culture studies. Thus, drugs in 102 concentrations 10 times higher than the corresponding *in vitro* metabolic IC₅₀ rounded 103 to the closest power of ten were applied to the embryo-containing buffer solution 104 (e.g.: IC_{50} Ulixertinib = 62nM; closest power of 10 = 100nM; 10-fold = 1 μ M). During 105 treatment (48 hpf - 120 hpf) the embryos were kept at 34°C. Imaging was performed 106 at 72 hpf and 120 hpf using a stereo microscope (Leica). Zebrafish embryos were 107 assessed for signs of toxicity (morphological changes, death, reaction to outside 108 stimuli). A maximum tolerated dose (MTD) was determined as the highest tested 109 concentration without manifestations of toxicity.

111 Zebrafish embryos xenografts imaging

112 After transplantation, zebrafish embryos were distributed in 48-well plates containing 113 1-phenyl-2-thiourea (PTU) buffer and kept at 34 °C. 24 h post injection (hpi), embryos 114 were treated for 48h with drugs diluted in PTU buffer, as indicated. Imaging was done 115 at 24 hpi and 72 hpi. Zebrafish embryos were anesthetized with tricaine (MS-222, 116 Ethyl 3-aminobenzoate methanesulfonate, 0.02% (w/v), Sigma-Aldrich) and either 117 transferred (one embryo/well) to Hashimoto 96-well zebrafish imaging plates 118 (Funakoshi Co., Ltd., Tokyo, Japan) for imaging with the ImageXpress Micro 119 Confocal High Content Microscope (Molecular Devices) at a temperature of 32-120 34 °C, or put into chambered coverslips (ibidi, Martinsried, Germany) for imaging with 121 the Zeiss LSM 710 confocal microscope (Zeiss, Oberkochen, Germany) equipped 122 with the 10×/0.3 EC Plan-Neofluar and 20×/0.8 Plan-Apochromat objectives, Argon 123 514 nm laser line for Dil, standard PMT for fluorescence detection and T-PMT for 124 transmitted light controlled by ZEN software (Zeiss). A Cy3-channel was used for the 125 detection of RFP.

126

127 Zebrafish embryos treatment

Treatment response of tumor growth was captured by tumor volume change from baseline (day one to day three post-implantation). To determine tumor progression, we used an in-house macro for FIJI software, as described previously.³ Best response was evaluated according to Response Evaluation Criteria in Solid Tumors (RECIST) 1.1 adopted for zebrafish tumors:³ progressive disease (PD), at least a 20% increase in tumor volume; partial response (PR), at least a 30% decrease in tumor volume. A PD/PR ratio was used to assess treatment's efficacy.

135 **BT40 xenograft mouse model, treatment, and imaging**

136 Drugs and solvents were used as indicated in Supplementary Table S10.

137 Pharmacokinetic study

138 After three weeks, mice were randomly split into two cohorts based on weight and 139 ranked luciferase signal. The time window was covered by seven groups (four dosed mice per group) with four blood collection time points per group, due to blood volume 140 141 restrictions for sampling within 24 h. Full blood samples were transferred into EDTA 142 tubes (cat. no. 77003, KABE) and centrifuged at 3,000x g for 10 min to generate 143 plasma samples, which were stored at -80 °C until analysis. For brain tissue 144 determinations, tissue samples were harvested as indicated, and stored at -80 °C 145 until analysis. Brain tissue samples were homogenized using a Bead Ruptor 4 146 homogenizer (Omni International Inc) in acetonitrile (ACN)/water (1/19, v/v) + 0.5% 147 triton X and 0.1% formic acid (FA) (100 mg brain tissue/mL) in 2.0 mL tubes containing ~25 glass beads (0.75-1 mm; cat. no. A554.1,Carl Roth GmbH) for 2 × 148

149 1 min.

150 Ulixertinib and navitoclax bioanalysis

151 UPLC-MS/MS quantification assay

152 Microdialysate, plasma, and brain tissue concentrations were measured using a

153 validated ultra-performance liquid chromatography – tandem mass spectrometry

154 (UPLC-MS/MS) quantification assay following the pertinent guidelines of the US FDA

- and EMA.^{4,5} Each of four performed validation runs included blank and internal
- 156 standard controls, seven calibration samples (two-fold), and four quality control
- 157 concentrations (six-fold). The assays fully complied with the applicable
- 158 recommendations of the US FDA and EMA on bioanalytical method validation.
- 159 Ulixertinib quantification

160 Optimized MS/MS parameters for the detection of ulixertinib can be found in 161 Supplementary Table S11. The calibrated range for ulixertinib quantification was 1 -162 1,000 ng/mL (corresponding to 10 – 10,000 ng/g for brain tissue), which was 163 additionally extended to $0.1 - 100 \,\mu g/mL$, all showing linear regression coefficients > 164 0.99. Overall accuracies (inter- and intraday) were 87.0 to 109.3% with 165 corresponding precision < 6.7%. A Xevo-TQ-S tandem mass spectrometer (Waters, 166 Milford, MA, USA) coupled to an I-class UPLC (Waters) and equipped with heated 167 electrospray ionization source was used for quantification with selected reaction 168 monitoring using collision-induced dissociation with argon in the positive ion mode. 169 Chromatographic separation was performed on a BEH C18 column (50 x 2.1 mm; 170 1.7 μ m; Waters) with a gradient from 5 to 95% acetonitrile (ACN) + 0.1% FA in 1.5 171 min (corresponding decrease of aqueous eluent: 19/1 H2O/ACN + 0.1% FA) at a flow 172 rate of 0.5 mL/min. Microsamples (25 µL) were spiked with internal standard 173 (Ulixertinib-D6) and 200 µL of borate buffer (pH 9). Ulixertinib was extracted with 1 174 mL of tert-butyl methyl ether. After evaporation of 200 µL of the ether phase, extracts 175 were dissolved in 400 µL ACN/H2O (1/3) + 0.1% formic acid and 5 µL were injected 176 for analysis.

177 <u>Navitoclax quantification</u>

178 Optimized MS/MS parameters for the detection of navitoclax can be found in

179 Supplementary Table S12. The calibrated range was 0.05 – 50 ng/mL

180 (corresponding to 0.5 – 500 ng/g for tumor tissue), all showing linear regression

181 coefficients > 0.99. Overall accuracies (inter- and intraday) were 94.7 to 110.8% with

- 182 corresponding precision < 9.8 %. A Xevo-TQ-XS tandem mass spectrometer
- 183 (Waters, Milford, MA, USA) coupled to an Acquity classic UPLC (Waters) and
- 184 equipped with heated electrospray ionization source was used for quantification with

185 selected reaction monitoring using collision-induced dissociation with argon in the 186 positive ion mode. Chromatographic separation was performed on a BEH C18 187 Peptide column 300 Å (50 × 2.1 mm; 1.7 µm; Waters) with a gradient from 20 to 95% ACN + 0.1% FA in 1.9 min (corresponding decrease of aqueous eluent: 19/1 188 189 H2O/ACN + 0.1% FA) at a flow rate of 0.5 mL/min. Samples (100 µL) were spiked 190 with internal standard (venetoclax) and extracted by protein precipitation using 300 191 µL of ACN. After partial evaporation of the separated supernatant and addition of 50 192 μ L of H2O + 0.1% formic acid, 20 μ L were injected for UPLC-MS/MS analysis. 193 194 Sample preparation for ulixertinib on-target analysis in vivo (DUSP6 Western blot) 195 Tissue samples were weighed, resuspended in 1:10 w/v lysis buffer (49% SDS 196 buffer, 50% T-PER buffer, 10mM DTT, phosphatase inhibitor (PhosphoSTOP, Merck, 197 cat. no. 4906837001), protease inhibitor (cOmplete™ Protease Inhibitor Cocktail, 198 Merck, cat. no. 11697498001)) and disrupted using a benchtop tissue homogenizer. 199 The resulting lysates were centrifuged at 10,000 x g for 5 minutes and the 200 supernatant was collected. The protein concentration of each lysate was determined 201 using the Pierce[™] BCA Protein Assay kit (ThermoFisher Scientific, cat. no. 23227) 202 for subsequent Western blot analysis.

203 In vivo preclinical study

After two weeks of tumor development, animals were distributed into six treatment groups (n=8 per group) based on their ranked luciferase signal according to the following pattern: "ABCDEFFEDCBAA...". Ulixertinib (75 mg/kg) and the vehicle were administered via oral gavage every 12 h. Navitoclax (100 mg/kg) was administered via oral gavage every 24 h. Vinblastine (0.5 mg/kg) was injected intraperitoneally

209 every 72 h. During the treatment period, animals were weighed every second day

and tumor development was monitored twice per week by bioluminescence imaging.

211 Statistical analysis and graphical representations

212 IC50 calculation was performed using GraphPad Prism 5 software (Version 5.01,

213 GraphPad Software Inc., San Diego, USA). RStudio (R Version 1.4.1103) was used

for calculation of ANOVA followed by Tukey's honest significant test. Synergy scores

215 were computed using the online platform SynergyFinderPlus

216 (https://synergyfinder.org/)32 (matrix design), and the R package drugCombo 1.1.1

217 (ray design). Consensus rankings were generated with the R package challengeR37

218 using average ranks. Quantification of Western blot bands was conducted using

219 ImageJ (version 1.53e, Wayne Rasband and co., NIH). Calibration curves for the

220 ulixertinib bioanalysis were determined with 1/x2 weighted linear regression using

221 peak area ratios of the analyte to IS, using the software TargetLynx (V4.2, Waters,

222 Milford, USA). Plasma pharmacokinetics were determined with the software Kinetica

223 (v 5.0, Thermo Fisher Scientific, Philadelphia, USA). Bioluminescence measurments

were analyzed with the LivingImage software (v4.5.2, Caliper Life Sciences,

225 Massachusetts, USA).Survival curves were generated in R using the survminer

package. Significance between survival curves were calculated using the log-rank

test in GraphPad Prism 8 software (Version 8.0.2.263, GraphPad Software Inc., San

228 Diego, USA).

230 Supplementary Figures

232 Supplementary Fig. S1: Reverse-phase protein array (RPPA) quality

233 control

231

A, Heatmap depicting the coefficient of variation (CV) obtained in the reverse-phase

235 protein array (RPPA) data across biological replicates. Green indicates low variance

- 236 (CV < 1), red indicates high variance (CV > 1). Red dotted square indicates markers
- that didn't pass the threshold and were excluded. B, Heatmap depicting
- 238 phosphoprotein fold change in the indicated control cell lines upon treatment with a
- 239 MAPK stimulator relative to solvent control. Red indicates an increased fold change,
- 240 while blue indicates a decreased fold change. Red dotted rectangle indicates
- 241 markers that showed discrepancy and were excluded. Depicted are data from three
- biological replicates.

Supplementary Fig. S2 A- Metabolic activity

244

245 Supplementary Fig. S2: IC50 of ulixertinib's combination partners

A, Metabolic activity IC₅₀ (CellTiter-Glo®) measured in BT40, DKFZ-BT66_ON, and

247 DKFZ-BT66_OFF cells. B, MAPK reporter IC₅₀ measured in BT40, DKFZ-BT66_ON,

248 and DKFZ-BT66_OFF cells. Each dot represents the mean of three independent

biological replicates. Error bars depict the standard deviation. Published

250 pharmacokinetic data (Cmax and Ctrough, when available), zebrafish embryo

251 maximum tolerated dose (MTD), and concentrations used in the synergy analysis are

Ulixertinib (nM)

254 Supplementary Fig. S3: Heatmap of metabolic activity inhibition in the in

255 vitro synergy screen

256 Heatmap depicting the percentage of inhibition of metabolic activity relative to DMSO

- 257 control in BT40, DKFZ-BT66_ON, and DKFZ-BT66_OFF cells upon combinational
- treatment of ulixertinib with each combination partner. In the matrix design, each drug
- 259 was combined using two-fold increment concentration ranges, centered on the
- 260 corresponding drug's IC50. In the ray design, concentrations were calculated based
- on each drug's IC₅₀, as described previously (31). Increased inhibition is depicted
- with red colors, while increased metabolic activity is depicted with blue colors.
- 263 Depicted are data from three biological replicates.

0.35 0.5 0.65 Ray

0.2

0.8

Supplementary Fig. S4

264

0.2 0.35 0.5 0.65 0.8 Ray

B - DKFZ-BT66_ON - Metabolic activity

C - DKFZ-BT66_OFF – Metabolic activity

267 Supplementary Fig. S4: Synergy results for the matrix and ray designs

268 using metabolic activity

269 Synergy maps depicting synergy score across all concentrations tested in the matrix 270 design. Scores above 10 indicate synergy, while scores below -10 indicate 271 antagonism. Dot plots (only where the Loewe model was applied) depict ray synergy 272 scores and bars represent the 95% CI. Scores below 0.9 indicate synergy, scores 273 above 1.1 indicate buffering antagonism, scores above 2 indicate antagonism. 274 Response-curves (only where Bliss independence was applied) depict the expected 275 effect based on the Bliss independence formula (orange curve) and actual measures 276 (green curve). The excess over Bliss score is depicted. Scores above 0 indicate 277 synergy, scores below 0 indicate antagonism. A, Synergy data obtained with 278 metabolic activity in BT40 cells. B, Synergy data obtained in DKFZ-BT66 ON cells. 279 C, Synergy data obtained in DKFZ-BT66_OFF cells. Depicted are data from three

280 biological replicates.

Supplementary Fig. S5: Heatmap of MAPK activity (reporter) inhibition in the *in vitro* synergy screen

Heatmap depicting the percentage of inhibition of MAPK pathway activity (assessed 285 286 by MAPK reporter assay) relative to DMSO control in BT40, DKFZ-BT66 ON, and 287 DKFZ-BT66_OFF cells upon combinational treatment with ulixertinib and each 288 combination partner. In the matrix design, each drug was combined using two-fold 289 increment concentration ranges, centered on the corresponding drug's IC50. In the 290 ray design, concentrations were calculated based on each drug's IC₅₀, as described 291 previously (31). Increased inhibition is depicted with red colors, while increased 292 metabolic activity is depicted with blue colors. Depicted are data from three biological 293 replicates.

294

Antagonism Additivity

Synergy

295 Supplementary Fig. S6: Synergy results for the matrix and ray designs

296 using the MAPK reporter assay

- 297 Synergy maps depicting synergy scores across all concentrations tested in the matrix
- 298 design. Scores above 10 indicate synergy, while scores below -10 indicate
- antagonism. Dot plots depict ray synergy scores and bars represent the 95% CI.
- 300 Scores below 0.9 indicate synergy, scores above 1.1 indicate buffering antagonism,
- 301 scores above 2 indicate antagonism. Depicted are data from three biological
- 302 replicates.

304

305 Supplementary Fig. S7: Consensus ranking of combination partners in

306 the in vitro screen (metabolic activity and MAPK reporter assay)

- 307 Circular heatmap summarizing the individual drug's performance per drug class,
- 308 following consensus ranking across synergy metrics. The ranking was calculated for
- 309 the DKFZ-BT66_OFF, DKFZ-BT66_ON, and BT40 (designated by A, B, and C
- 310 respectively), and for each readout (outermost red rings = metabolic activity;
- 311 innermost blue rings = MAPK reporter assay). NA, not applicable due to readout
- 312 inconsistency. ND, not determined.

314 Supplementary Fig. S8: Ulixertinib on-target activity in vitro via RPPA

315 and Western blot

316 A. Heatmap depicting phosphoprotein fold changes of selected markers upon 317 treatment in RPPA. Fold change relative to DMSO is shown, with red colors 318 indicating an increased phosphorylation, and blue colors indicating decreased 319 phosphorylation. Red dotted rectangle (cluster 1) highlights the cluster of samples 320 with an increased phosphorylation upon treatment; blue dotted rectangle (cluster 2) 321 highlights the cluster of samples with a decreased phosphorylation upon treatment. 322 B, C, and D, Western blot analysis of DUSP6 in BT40 (B), DKFZ-BT66 ON (C), and 323 DKFZ-BT66 OFF (D), treated with varying concentrations of ulixertinib ($2x IC_{50}$, 324 1x IC_{50} , 0.5x IC_{50}) and a fixed concentration (IC_{50}) of the combination partner. Are 325 depicted: quantification (n = 3 biological replicates) of all treatment conditions relative 326 to the DMSO control; individual quantification for each classes of combination 327 partners, depicting DUSP6 quantification relative to DUSP6 levels in the 328 corresponding combination partner single treatment; estimation of the expected effect 329 based on the Bliss independence formula compared to the observed effect. Depicted are data from three biological replicates. Significant differences are indicated as *, P 330 331 < 0.05; **, P < 0.01; ***, P < 0.001 (ANOVA followed Tukey's honest significant test).

KIAA1549:BRAF fusion DKFZ-BT66_OFF (senescent)

333 Supplementary Fig. S9: Navitoclax on-target activity in vitro via

334 immunoprecipitation

- BT40, DKFZ-BT66_ON and DKFZ-BT66_OFF cells were treated for 4 h with the
- 336 corresponding navitoclax IC₅₀, 1 µM navitoclax or DMSO before lysis. Interaction of
- 337 pro-apoptotic BAK with anti-apoptotic Bcl-xL was assessed by immunoprecipitation
- 338 with a Bcl-xL specific antibody. Are depicted one representative experiment for each
- cell line. Is also shown Western blot quantification of 3 independent biological
- 340 replicates. The left pane shows BAK and Bcl-xL normalized to the loading control
- 341 GAPDH, and normalized to DMSO. The right pane shows BAK/Bcl-xL ratio, and
- 342 normalized to DMSO. Significant differences are indicated as *, P < 0.05; **, P <
- 343 0.01; ***, P < 0.001 (ANOVA followed Tukey's honest significant test).

Supplementary Fig. S10

В

345 Supplementary Fig. S10: High content microscope images and analysis 346 in BT40 cells

347 A, BT40 cells were treated for 72 h. Each drug was combined using concentration 348 ranges following a 1/2 Log distribution and centered around the corresponding drug's 349 metabolic IC_{50} rounded to the closest power of 10 (10 nM or 100 nM, as indicated): 350 0, 10, 31.6, 100, 316, 1000 nM ulixertinib (Ulix) alone or in combination with 0, 0.31, 351 1, 3.16, 10, 31.6, 1000 nM trametinib (Tram), 0, 10, 31.6, 100, 316, 1000 nM 352 binimetinib (Bini), 0, 10, 31.6, 100, 316, 1000 nM selumetinib (Selu), 0, 3,16, 10, 353 31.6, 100, 316 nM navitoclax (Navi), 0, 10, 31.6, 100, 316, 1000 nM venetoclax 354 (Vene) or 0, 10, 31.6, 100, 316, 1000 nM vinblastine (Vinb). A staurosporine (STS) 355 concentration curve (0, 0.1, 1, 10, 100, 1000 nM) was added as death control. The 356 following readouts were evaluated: percent cell number, percent viable cells, percent 357 dead cells (evaluated by fragmented nuclei) and percent apoptotic cells. All BT40 358 readouts are normalized to DMSO and 1000 nM STS. B, BT40 cells were treated 359 with DMSO, 1000 nM ulixertinib, 316 nM navitoclax and their combination for 72 h. 360 Treatments are indicated by the colored border. The cells were stained with 361 Hoechst33342 (blue), TMRE (red), and CellEvent Caspase3/7 stain (green). The 362 scale bar represents 50 µm. Depicted are data from at least three biological 363 replicates.

364

367

368 Supplementary Fig. S11: Synergy analysis of high content microscopy

369 data in BT40 cells

- 370 Synergy analysis was calculated with <u>www.synergyfinder.org</u> using the data
- 371 presented in Supplementary Fig. S10A. Synergy models used are described in the

- 372 methods section. The following readouts were evaluated: (A) Cell number, (B) viable
- 373 cells, (C) dead cells (evaluated by fragmented nuclei), and (D) apoptotic cells.

375 Supplementary Fig. S12: High content microscope images and analysis

376 in DKFZ-BT66 cells

377 A, DKFZ-BT66 ON and DKFZ-BT66 OFF cells were treated for 72 h. Each drug was 378 combined using concentration ranges following a 1/2 Log distribution and centered 379 around the corresponding drug's metabolic IC_{50} rounded to the closest power of 10 380 (10 nM or 100 nM, as indicated): 0, 10, 31.6, 100, 316, 1000 nM ulixertinib (Ulix) 381 alone or in combination with 0, 0.31, 1, 3.16, 10, 31.6, 1000 nM trametinib (Tram), 0, 382 10, 31.6, 100, 316, 1000 nM binimetinib (Bini), 0, 10, 31.6, 100, 316, 1000 nM 383 selumetinib (Selu), 0, 3,16, 10, 31.6, 100, 316 nM navitoclax (Navi), 0, 10, 31.6, 100, 384 316, 1000 nM venetoclax (Vene) or 0, 10, 31.6, 100, 316, 1000 nM vinblastine 385 (Vinb). A staurosporine (STS) concentration curve (0, 0.1, 1, 10, 100, 1000 nM) was 386 added as death control. For DKFZ-BT66 the readouts used were in percent: cell 387 number (normalized to DMSO and 1000 nM staurosporine), change in cell size 388 (normalized to DMSO), and dead cells (evaluated as percent of DRAQ7 positive 389 nuclei). B-C, DKFZ-BT66 were treated for with DMSO, 1000 nM ulixertinib, 1000 nM 390 binimetinib, and their combination for 72 h. Treatments are indicated by the colored 391 border. The cells were stained with Hoechst33342 (blue), calceinAM (green), and 392 DRAQ7 (red). The scale bar represents 50 µm. Depicted are data from at least three 393 biological replicates.

A - DKFZ-BT66-ON - Cell number

B - DKFZ-BT66-OFF - Cell number

Trametinib	Binimetinib	Selumetinib		
Not Applicable	Not Applicable	Not Applicable		
Navitoclax Mean: -11.17 (p = 1.46e-02) 100 100 100 100 100 100 100 10	Venetoclax Mean: -20.79 (p = 5.14e-05) 1000 1	Vinblastine Mean18.34 (p = 4.02e-04)		

D - DKFZ-BT66-OFF - Cell size

397 Supplementary Fig. S13: Synergy analysis of high content microscopy

398 data in DKFZ-BT66 cells

- 399 Synergy analysis was calculated with <u>www.synergyfinder.org</u> using the data
- 400 presented in Supplementary Fig. S12A. Synergy models used are described in the
- 401 methods section. The readouts used were: (A-B) cell number, (C-D) change in cell

- 402 size, and (E-F) dead cells (evaluated as percent of DRAQ7 positive nuclei). Synergy
- 403 scores for cell number and cell size could not be calculated for trametinib,
- 404 binimetinib, and selumetinib in both DKFZ-BT66 cell lines.

405

Supplementary Fig. S14

406 **Supplementary Fig. S14: Consensus ranking of combination partners in**

407 the high content microscopy in vitro screen

- 408 Circular heatmap summarizing the individual drug's performance per drug class,
- 409 following consensus ranking across synergy metrics. The ranking was calculated for
- 410 the DKFZ-BT66_OFF, DKFZ-BT66_ON, and BT40 models (respectively designated
- 411 by A, B, and C) and for each HCM readout (from outermost rings to innermost rings:
- 412 cell number, dead cells, viable cells, cell size, and apoptotic cells).

Supplementary Fig. S15

414 Supplementary Fig. S15: pLGG cell lines transplantation in zebrqfish

415 embryo in vivo

- 416 Exemplary pictures of pLGG cell line transplantation in zebrafish embryos. Are shown
- 417 picture from one representative embryo transplanted with BT40, BT66_ON, or DKFZ-
- 418 BT66_OFF, after 1 day (baseline) and 3 days (endpoint) of treatment as indicated.
- 419 The scale bar represents 100 μm.

422 Supplementary Fig. S16: Zebrafish embryo validation of ulixertinib's

423 combination partners

- 424 Waterfall plots showing the change from baseline (in %) for tumor volume upon
- 425 treatment for each individual tested zebrafish embryo with A) BT40, (B) DKFZ-
- 426 BT66_ON, or (C) DKFZ-BT66_OFF xenografts. Drugs were applied to the embryo-
- 427 surrounding buffer solution in the following concentrations: ulixertinib (1 μM),
- 428 binimetinib (2 μM), and navitoclax (5 μM). PD, progressive disease; SD, stable
- 429 disease; PR, partial response. n = 4 23 embryos/group.

431

432 Supplementary Fig. S17: Relative weight development as surrogate for in

433 vivo toxicity during ulixertinib treatment in the pharmacokinetic study.

434 A, BT40-PDX mice were treated with ulixertinib (p.o. 80 mg/kg, 2x/day for five days,

- 435 n=28) and relative weight development was monitored for the treatment period.
- 436 Different colors represent individual mice. Exclusion criterion of a maximal weight
- 437 loss of 20% is indicated as red line. B, Relative weight development was plotted after
- 438 calculating the average difference of animal's weight before the dosing and at the
- 439 end of treatment. Initial weight is indicated by the red dashed line. Mean (red cross) ±
- 440 S.D. (red line) are highlighted.

442 Supplementary Fig. S18: Ulixertinib on-target activity in vivo.

443 Western blot analysis of the DUSP6 and HSP90 proteins in tissue samples from both

444 cohorts and both tissues (healthy and tumor). Depicted blots represent data from a

single mouse per time point. Western blot quantification is shown (blue bars),

- 446 depicting DUSP6 signal normalized to its corresponding HSP90, and normalized to
- the DMSO control.

448

449

450 Supplementary Fig. S19: Bioluminescence signals representing tumor

451 volumes in PDX mice

452 Tumor volumes according to bioluminescence measurements from individual animals

453 during treatments as indicated (n=8 mice per group). Luciferase signal were

- 454 measured in photons/sec/cm²/steradian over the entire treatment- and observation-
- 455 period. Ultimately censored animals are not depicted.

457 Supplementary Fig. S20: Mouse weight development during the

458 preclinical in vivo study

- 459 Weights of animals clustered by treatment as indicated (n=8 mice per group).
- 460 Ultimately censored animals are not depicted.

	BT	40	DKFZ-E	BT66-ON	DKFZ-B	T66-OFF]	
	Matrix	Ray	Matrix	Ray	Matrix	Ray		
	Ulixertinib	Ulixertinib	Ulixertinib	Ulixertinib	Ulixertinib	Ulixertinib		
Trametinib							-	
Binimetinib							/let:	
Selumetinib							abo	
A-1331852							olic	
Navitociax							ac	
Vinblastino							tivit	
Carbonlatin							- t	
Trametinih							2	
Binimetinib							1AF	
Selumetinib							Ř	
A-1331852							rep	
Navitoclax							Î Î	
Venetoclax							l er	
Vinblastine							SSE	
Carboplatin							ay	
Trametinib								
Binimetinib								
Selumetinib							ĕ	
A-1331852							_ ۲	
Navitoclax							l m	
Venetoclax) er	C
Vinblastine								Synergy
Carboplatin								models
Trametinib								Loewe
Binimetinib							<	Bliss
Selumetinib							lab	HSA
A-1331652								
Venetoclax							cell	
Vinblastine							s l	
Carboplatin								
Trametinib								
Binimetinib							1	
Selumetinib								
A-1331852							ad	
Navitoclax							Ce Ce	
Venetoclax								
Vinblastine								
Carboplatin								
Trametinib								
Binimetinib							Ą	
Selumetinib							j õp	
A-1331852							l <u>t</u>	
Navitociax								
Vinblastino						+		
Carbonlatin								
Trametinih								
Binimetinib							1	
Selumetinib								
A-1331852							l e∥	
Navitoclax							Siz	
Venetoclax							l le	
Vinblastine								
Carboplatin								

462 Supplementary Fig. S21: Summary of the synergy models used in vitro

- 463 Summary of all synergy models (Loewe, Bliss, Highest single agent HSA) used per
- 464 cell line, per combination, per readout, in the *in vitro* screen and in the high content
- 465 microscopy validation. NA, not applicable due to readout inconsistency. ND, not
- 466 determined.

468 Supplementary Tables

469 **Supplementary Table S1: Seeding densities for in vitro assays**

Cell line	Experiment type	Plate type	Seeding densities (cells/well)
BT40	Metabolic activity measurement	384-well	300
DKFZ-BT66_ON	Metabolic activity measurement	384-well	300
DKFZ-BT66_OFF	Metabolic activity measurement	384-well	4 800
BT40-pDIPZ	MAPK reporter activity measurment	384-well	3 000
DKFZ-BT66_ON-pDIPZ	MAPK reporter activity measurment	384-well	1 500
DKFZ-BT66_OFF-pDIPZ	MAPK reporter activity measurment	384-well	6 000
BT40	High-content microscopy measurments	384-well	500
DKFZ-BT66_ON	High-content microscopy measurments	384-well	1 000
DKFZ-BT66_OFF	High-content microscopy measurments	384-well	8 000
BT40	On-target activity measurement (WB/RPPA)	6-well	500 000
DKFZ-BT66_ON	On-target activity measurement (WB/RPPA)	6-well	500 000
DKFZ-BT66_OFF	On-target activity measurment (WB/RPPA)	6-well	1 000 000
BT40	On-target activity measurement (IP)	10 cm dish	5 000 000
DKFZ-BT66_ON	On-target activity measurement (IP)	10 cm dish	3 000 000
DKFZ-BT66_OFF	On-target activity measurment (IP)	10 cm dish	5 000 000

470

472 Supplementary Table S2: Markers conditions for high content

473 microscopy analysis

Cell line	Marker	Supplier	Cat. No.	Concentration
BT40	Hoechst33342	ThermoFisher Scientific	H3570	10 µg/ml
BT40	TMRE	Abcam	ab113852	1 µM
BT40	CellEvent Caspase3/7	ThermoFisher Scientific	C10723	8 µM
DKFZ-BT66	Hoechst33342	ThermoFisher Scientific	H3570	10 µg/ml
DKFZ-BT66	CalceinAM	ThermoFisher Scientific	65-0853-39	1.25 µM
DKFZ-BT66	DRAQ7	ThermoFisher Scientific	D15106	0.6 µM

474

476 Supplementary Table S3: In vitro synergy screens datasets

477 (See Excel file)

478 Supplementary Table S4: Antibodies used for WB, IP and RPPA analyses

Antibody	Species	Clonality	Supplier	Cat. No.	Dilution	Application
DUSP6	Rabbit	Poly- clonal	Cell Signaling	50945	1:1000	<i>In vitro</i> validation
DUSP6	Mouse	Mono- clonal	Santa Cruz	sc- 377070	1:1000	<i>In vivo</i> validation
GAPDH	Mouse	Mono- clonal	Merck	MAB374	1:1000	<i>In vitro</i> & <i>in</i> <i>vivo</i> validation
BCL-XL	Rabbit	Mono- clonal	Abcam	ab32370	5µg	Immuno- precipitation
BAK	Rabbit	Mono- clonal	Abcam	ab32371	1:1000	Immuno- precipitation

479

481 Supplementary Table S5: Antibodies used for RPPA and RPPA analyses

Protein name	MW (kDa)	Function	Cascade position
MEK1/2 S217.S221	45	MEK1/2 is activated by a wide variety of growth factors and cytokines and also by membrane depolarization and calcium influx *S298 phosphorylated by PAK1, facilitates signal transduction from Raf to MEK1 and Erk2 *T386 ERK-mediated phosphorylation, interferes with PAK phosphorylation of MEK1 *S217/S221 phosphorylation and activation by RAF	Upstream activator
ERK1/2 T202.Y204	42, 44	Kinases involved in proliferation, differentiation, motility, and death => phosphorylated and activated by MEK1/1	Target
p90RSK T359.S363	90	Widely expressed Ser/Thr kinases, activated by MAPK pathway *T359/S363 phosphorylated by ERK1/2 and ERK5	Cytosolic target
p90RSK S380	90	Widely expressed Ser/Thr kinases, activated by MAPK pathway *S380 docking site for the constitutively active Ser/Thr kinase PDK1, which in turn phosphorylates p90RSK at Ser221 within the N-terminal kinase domain activation loop, resulting in full enzymatic activation of p90RSK	Cytosolic target
RSK3 T356.S360	90	Widely expressed Ser/Thr kinases, activated by MAPK pathway	Cytosolic target
STAT3 Y705	79,86	Signaling molecule for many cytokines and growth factor receptors; activated in a number of human tumors and possesses oncogenic potential and anti-apoptotic activities *Y727 regulates transcriptional activity through MAPK or mTOR pathways	Cytosolic target
Bim S69	26	Pro-apoptotic protein belonging to the BH3- only group of Bcl-2 family; induces apoptosis by binding to and antagonizing anti-apoptotic members of the Bcl-2 family	Cytosolic target
MSK1 S360	90	Mitogen and stress activated protein kinase => phosphorylation and activation by Erk, p38 MAPK in response to growth factors and cellular stress, respectively	Nuclear target
Elk-1 S383	62	Transcription factor => direct target of the MAPK pathway, phosphorylated and activated by ERK1/2	Nuclear target

CREB S133	43	Transcription factor that activates target genes through cAMP response elements, promoting neuronal survival, precursor proliferation, neurite outgrowth, and neuronal differentiation => phosphorylated and activated by Erk, p90RSK, MSK, CaMKIV, and MAPKAPK-2	Nuclear target
c-Myc S62	62	Transcriptional regulators; proliferation, differentiation and apoptosis => Phosphorylation controls proteasomal- dependent degradation. Mitogens, mitosis, or cellular stress induce phosphorylation at Ser62, which serves as a priming site for GSK-3 phosphorylation of Thr58	Nuclear target
DUSP6	44	Downstream effectors of Erk-MAPK pathways; invovled in Erk negative feedback loop	Downstream target
Beta actin	45	Loading control	Loading control

- 484 Supplementary Table S6: Clinically achievable concentrations, metabolic
- 485 and MAPK activity IC50, zebrafish embryos tested concentrations, and
- 486 **MTDs**

	Clinic	al data	BT4(0	DKFZ-BT(36_ON	DKFZ-BT6	6_OFF	Zebrafi	sh embry	SO,
	Cmax (nM)	Ctrough (nM)	Metabolic IC50 (nM)	MAPK IC50 (nM)	Metabolic IC50 (nM)	MAPK IC50 (nM)	Metabolic IC50 (nM)	MAPK IC50 (nM)	Concentration range tested (nM)	MTD (Mn)	(Mn)
Ulixertinib _{6,adult}	4 892.3	3 461.6	62.7	12.7	NA	8.5	NA	8.0	1 - 50 000	2 500	25 000
Trametinib 7, ped.	19.2	3.6	2.2	0.3	NA	2.1	NA	0.5	0.1 - 50 000	100	1 000
Selumetinib ^{8, ped.}	1 296.0	ŊŊ	259.3	6.1	NA	164.1	NA	13.0	5 - 2 500	> 2 500	> 2 500
Binimetinib 9, adult	619.0	136.0	200.2	4.5	NA	88.0	NA	9.2	5 - 5 000	> 5 000	> 5 000
A-1331852	DN	DN	112.3	NA	7.4	NA	1.6	NA	ΠN	DN	ΟN
Navitoclax 10,adult+ped	994.2	400.0	462.2	NA	324.9	NA	37.2	NA	1 - 50 000	10 000	50 000
Venetoclax 10,adult+ped	1 612.1	725.4	NA	NA	2 991.0	NA	2 460.0	NA	0.1 - 10 000	10 000	>10 000
Vinblastine	30.8	ΟN	2.9	NA	5.2	NA	6 591.0	NA	5 - 65 000	5 000	25 000 000*
Carboplatin	58 989.9	ΟN	62 593.0	NA	88 652.0	NA	97 169.0	NA	DN	DN	ΟN
NA: Not applica) ND: Not determi	ble ined									* slight toxi lethal	city, not

488 Supplementary Table S7: Navitoclax concentrations *in vivo* in PDX-BT40

	Animal ID	Treatment group	Navitoclax concentration [ng/g]
	#1	Navitoclax monotherapy	3930
	#3	Navitoclax monotherapy	232
	#4	Navitoclax monotherapy	99
	#5	Navitoclax monotherapy	1980
	#6	Navitoclax monotherapy	1910
	#7	Navitoclax monotherapy	118
	#9	Ulixertinib + navitoclax combination	1960
	#10Ulixertinib + navitoclax combination#11Ulixertinib + navitoclax combination#13Ulixertinib + navitoclax combination		146
			111
			191
	#15	Ulixertinib + navitoclax combination	3.7
	#16	Ulixertinib + navitoclax combination	25

489 tumor tissue as measured by UPLC-MS/MS

490 In green are concentrations higher than the effective concentration; in red concentrations

491 lower than the effective concentration (effective concentration: *in vitro* metabolic activity IC_{50}

492 in BT40 = 462.2 nM = 0.45 μ g/mL).

Drug name	Supplier	Cat. No.	Stock concentration (mM)	Class	Solvent	Storage
Ulixertinib	BioMed Valley Discoveries	AN	50	ERK inhibitor	DMSO	-80°C
Trametinib	Selleckchem	S2673	10	MEK inhibitor	DMSO	-80°C
Selumetinib	Selleckchem	S1008	10	MEK inhibitor	DMSO	-80°C
Binimetinib	Selleckchem	S7007	10	MEK inhibitor	DMSO	-80°C
Navitoclax	Selleckchem	S1001	50	Senolytic	DMSO	-80°C
Venetoclax	Selleckchem	S8048	10	Senolytic	DMSO	-80°C
A-1331852	Selleckchem	S7801	10	Senolytic	DMSO	-80°C
Vinblastine	MedChemExpress	HY-13780	10	SOC chemotherapy	DMSO	Room temperature under nitrogen atmosphere
Carboplatin	Pharmacy of the university hospital of Heidelberg	AN	25	SOC chemotherapy	Saline solution	4°C (away from light)
Staurosporine	TargetMol	T16680	10	Protein kinase inhibitor (death control)	DMSO	-80°C

Supplementary Table S8: Drugs conditions for *in vitro* assays

N-O-D-22-00296R1

496 Supplementary Table S9: CellProlifer pipelines for high content

497 microscopy analysis

498 (See Excel file)

500 Supplementary Table S10: Drugs and solvents used in BT40-PDX mouse

501 model in vivo

Drugs	Concentration (mg/kg)	Solvent	Cat. No.	Supplier
Ulixertinib	75-80	1% CMC	NA	BioMed Valley Discoveries
Navitoclax ¹³	100	10% Ethanol 30% Polyethylen- glycol 400 60% Phosal 50	201970	MedKoo Biosciences
Vinblastine ¹⁴	0.5	0.9% NaCl	S4505	Selleckchem

502

Solvents	Cat. No.	Supplier
Carboxymethylcellulose (CMC sodium - medium viscosity)	C4888	Sigma- Aldrich
Ethanol	32205	Sigma- Aldrich
Polyethylenglycol 400	0144.1	Carl Roth
Phosal 50	368315	Lipoid
NaCl	2350748	B.Braun

503

- 505 Supplementary Table S11: Optimized MS/MS parameters for the
- 506 detection of ulixertinib using heated electrospray ionization and selected
- 507 reaction monitoring in the positive ion mode

Parameter	Value
Capillary voltage [kV]	1
Cone voltage [V]	50
Source temperature [°C]	150
Desolvation temperature [°C]	500
Cone gas (N2) flow [L/h]	150
Desolvation gas (N2) flow [L/h]	1000
Ulixertinib mass transition $[m/z]$	433.2 à 262.1
D7-ulixertinib mass transition $[m/z]$	439.2 à 268.1
Collision gas (Ar) flow [mL/min]	0.15
Collision energy [V]	16

- 509 Supplementary Table S12: Optimized MS/MS parameters for the
- 510 detection of navitoclax using heated electrospray ionization and selected
- 511 reaction monitoring in the positive ion mode

Parameter	Value
Capillary voltage [kV]	1.2
Cone voltage [V]	20
Source temperature [°C]	150
Desolvation temperature [°C]	600
Cone gas (N2) flow [L/h]	150
Desolvation gas (N2) flow [L/h]	1000
Navitoclax mass transition [<i>m/z</i>]	487.5 à 742.0
Venetoclax mass transition $[m/z]$	434.8 à 636.2
Collision gas (Ar) flow [mL/min]	0.15
Collision energy [V]	14

513 **Supplementary References** 514 1. Castro F, Dirks WG, Fähnrich S, Hotz-Wagenblatt A, Pawlita M, Schmitt M. 515 High-throughput SNP-based authentication of human cell lines. Int J Cancer. 516 2013;132(2):308. doi:10.1002/IJC.27675 517 2. Schmitt M, Pawlita M. High-throughput detection and multiplex identification of cell contaminations. Nucleic Acids Res. 2009;37(18):e119. 518 519 doi:10.1093/NAR/GKP581 520 Wrobel JK, Najafi S, Ayhan S, et al. Rapid In Vivo Validation of HDAC Inhibitor-3. 521 Based Treatments in Neuroblastoma Zebrafish Xenografts. *Pharmaceuticals*. 522 2020;13(11):1-20. doi:10.3390/PH13110345 523 4. Committee for Medicinal Products for Human Use, European Medicines 524 Agency, Guideline on validation of bioanalytical methods 525 EMEA/CHMP/EWP/192217/2009. Published 2009. Available at 526 http://www.ema.europa.eu/docs/en GB/document library/Scientific guideline/2 527 011/08/WC500109686.pdf. Accessed November 2021. 528 5. US Department of Health and Human Services, Food and Drug Administration, 529 Guidance for Industry, Bioanalytical Method Validation. Published 2018.

- 530 Available at
- 531 http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformati
 532 on/Guidances/ucm070107.pdf. Accessed November 2021.
- 533 6. Sullivan RJ, Infante JR, Janku F, et al. First-in-Class ERK1/2 Inhibitor
- 534 Ulixertinib (BVD-523) in Patients with MAPK Mutant Advanced Solid Tumors:
- 535 Results of a Phase I Dose-Escalation and Expansion Study. *Cancer Discov*.
- 536 2018;8(2):184-195. doi:10.1158/2159-8290.CD-17-1119

- 537 7. Cox DS, Allred A, Zhou Y, et al. Relative bioavailability of pediatric oral solution
 538 and tablet formulations of trametinib in adult patients with solid tumors. *Clin*539 *Pharmacol Drug Dev.* 2015;4(4):287-294. doi:10.1002/CPDD.152
- 540 8. Fangusaro J, Onar-Thomas A, Poussaint T, et al. Selumetinib in Children with
- 541 BRAF-Aberrant or Neurofibromatosis type 1-Associated Recurrent, Refractory
- 542 or Progressive Low-Grade Glioma: a Multi-Center Phase II Trial. Lancet Oncol.
- 543 2019;20(7):1011. doi:10.1016/S1470-2045(19)30277-3
- 544 9. Bendell JC, Javle M, Bekaii-Saab TS, et al. A phase 1 dose-escalation and
- 545 expansion study of binimetinib (MEK162), a potent and selective oral MEK1/2
- 546 inhibitor. *Br J Cancer* 2017 1165. 2017;116(5):575-583.
- 547 doi:10.1038/bjc.2017.10
- 548 10. Pullarkat VA, Lacayo NJ, Jabbour E, et al. Venetoclax and navitoclax in
- 549 combination with chemotherapy in patients with relapsed or refractory acute
- 550 lymphoblastic leukemia and lymphoblastic lymphoma. *Cancer Discov*.
- 551 2021;11(6):1440-1453. doi:10.1158/2159-8290.CD-20-
- 552 1465/333563/AM/VENETOCLAX-AND-NAVITOCLAX-IN-COMBINATION-
- 553 WITH
- 11. Stempak D, Gammon J, Halton J, Moghrabi A, Koren G, Baruchel S. A pilot
- 555 pharmacokinetic and antiangiogenic biomarker study of celecoxib and low-dose
- 556 metronomic vinblastine or cyclophosphamide in pediatric recurrent solid
- 557 tumors. *J Pediatr Hematol Oncol.* 2006;28(11):720-728.
- 558 doi:10.1097/01.MPH.0000243657.64056.C3
- 559 12. Riccardi R, Riccardi A, Lasorella A, et al. Clinical pharmacokinetics of
- 560 carboplatin in children. *Cancer Chemother Pharmacol* 1994 336.

- 561 1994;33(6):477-483. doi:10.1007/BF00686504
- 562 13. Tse C, Shoemaker AR, Adickes J, et al. ABT-263: A Potent and Orally
- 563 Bioavailable Bcl-2 Family Inhibitor. *Cancer Res.* 2008;68(9):3421-3428.

564 doi:10.1158/0008-5472.CAN-07-5836

- 565 14. Klement G, Baruchel S, Rak J, et al. Continuous low-dose therapy with
- 566 vinblastine and VEGF receptor-2 antibody induces sustained tumor regression
- 567 without overt toxicity. *J Clin Invest*. 2000;105(8):R15. doi:10.1172/JCI8829