

Supporting Information for

Elucidation of a dynamic interplay between a beta-2 adrenergic receptor, its agonist and stimulatory G protein

Yanxiao Han^a, John R. D. Dawson^{a,b} , Kevin R. DeMarco^a , Kyle C. Rouen^{a,b} , Slava Bekker^{a,c} , Vladimir Yarov-Yarovoy^{a,d} , Colleen E. Clancy^{a,e} , Yang K. Xiang^{e,f} , and Igor Vorobyov^{a,e,1}

aDepartment of Physiology and Membrane Biology, University of California, Davis, CA 95616; **Biophysics Graduate Group, University of California, Davis, CA 95616;** ^cDepartment of Science and Engineering, American River College, Sacramento, CA 95841; ^dDepartment of Anesthesiology and Pain Medicine, University of California, Davis, CA 95616; ^eDepartment of Pharmacology, University of California, Davis, CA 95616; ^fVA Northern California Health Care System, Mather, CA 95655.

¹To whom correspondence may be addressed. Email: **[ivorobyov@ucdavis.edu.](mailto:ivorobyov@ucdavis.edu)**

This PDF file includes:

Tables S1 to S5 Figures S1 to S14 Table S1. Molecular systems simulated, their simulation times (in ns or μ s), average boost potentials (Δ*V*) and standard deviations (std) in kcal/mol for GaMD runs. All simulation systems were first subject to 90 ns long equilibration (eq) MD runs after which microsecond-long unbiased Anton 2 MD or enhanced sampling GaMD simulations commenced. See main text "*Materials and Methods*" section for more details.

Table S2. MM-PBSA interaction free energies (ΔG) between NE(+) and β_2 AR or β_2 AR – G_s (in kcal/mol) along with their standard errors of mean (SEM) computed using block averages, enthalpic (Δ*H*) and entropic (-*T*Δ*S*) components. Calculations were based on GaMD trajectories (600 ns each). See "*Materials and Methods*" section of the main text for a description of the reweighting procedure.

Table S3. Amino acid residue (AA) contact information between different components of G_s and β2AR proteins from Anton 2 MD runs of β2AR – Gs – NE(+) system. Close contacts are defined as AAs within 3 Å of each other. The stable contacts are defined as AA interacting more than 50% of the simulation time. The average percentage interaction time was calculated by averaging the interaction times of the stable AA contacts in the third column.

Table S4. Pearson correlation coefficients (*r)* calculated for any two MD simulation averaged geometric criteria characterized in main-text Figure 4 based on Anton 2 MD runs of $β₂AR - G_s -$ NE(+) system: $A - G_s \alpha$ A161 to E299 distance, $B -$ angle between two vectors of G_sαAH and G_sαRas domains, $C - G_s \alpha A H$ and G_sαRas interdomain distance, $D - \beta_2 AR$ NpxxY to G_sα $\alpha 5$ distance, $E - \beta_2 AR$ to $G_s \alpha \alpha 5$ distance, $F - G_s \alpha \alpha 1$ to $\alpha 5$ distance.

Table S5. MM-PBSA interaction free energies (Δ*G*) between β2AR and G^s (in kcal/mol), along with their standard errors of mean (SEM) computed using block averages, enthalpic (Δ*H*) and entropic (-*T*Δ*S*) components based on GaMD trajectories (600 ns each). See the "*Materials and Methods*" section of the main text for a description of the reweighting procedure.

Fig. S1. (A) Clustering for binding poses of NE(+) in β2AR Anton 2 run, percentage of pose numbers out of all poses in each cluster is shown on top of each bar. **(B**) Clustering for binding poses of NE(+) in β2AR-Gs (Four Anton 2 runs combined), percentage of pose numbers out of all poses in each cluster is shown on top of each bar. **(C)** Representative binding poses found for β2AR, the coloring of molecules matches the histogram in (A), the white molecule corresponding to cluster 2 in (A). **(D**) Representative binding poses for β2AR-Gs, the coloring of molecules matches the histogram in (B), the red molecule with thin bonds corresponds to cluster 2.

Fig. S2. RMSD time series of **(A**) NE(+) in different Anton 2 runs, trajectories were aligned to the β2AR without loops with the first frame as reference; **(B**) β2AR in different Anton 2 runs, trajectories were aligned to β2AR with the first frame as reference; **(C)** G^s in different Anton 2 runs, trajectories were aligned to G_s with the first frame as reference; **(D)** β₂AR-G_s complex in different Anton 2 runs, trajectories were aligned to $β₂AR-G_s$ with the first frame as reference.

Fig. S3. (A) Clustering for binding poses of NE(+) in β2AR GaMD runs, percentage of pose numbers out of all poses in each cluster is shown on top of each bar. **(B**) Clustering for binding poses of NE(+) in β2AR-Gs GaMD runs, percentage of pose numbers out of all poses in each cluster is shown on top of each bar. **(C)** Representative binding poses found for β2AR, the coloring of molecules matches the histogram in (A), the white molecule corresponds to cluster 2 in (A). **(D)** Representative binding poses for β2AR-Gs, the coloring of molecules matches the histogram in (B), the pink molecule corresponds to cluster 2.

Fig. S4. **(A)** Time series of center-to-center distance between NE(+) and β2AR geometric centers based on GaMD simulations; **(B)** Representative binding poses of NE(+) from β2AR-GaMD-run1 (NE(+) colors correspond to those in panel A); **(C)** Representative binding poses of NE(+) from $\beta_2AR-G_s-GaMD-run3$ (NE(+) colors correspond to those in panel A).

Fig. S5. All-atom Anton 2 MD simulations of the active state of the human β2AR-G^s complex with NE(+) bound. **(A)** run 3 with the inset at the bottom. **(B)** run 4 with the inset at the bottom. Final structures from 5 μ s long unbiased MD simulation runs on Anton 2. Individual protein chains / subunits are shown in the ribbon representation using different colors and labeled. $G_s\alpha \alpha 5$ helix and β_2AR intracellular loop 3 (ICL3) are shown as yellow and dark gray. G_s α -helical domain residue A161 and Ras-like domain residue E299 are shown as blue and green balls, and distances between them are shown by light-blue dashed arrows.

Fig. S6. All-atom GaMD simulations of the active state of the human β_2AR-G_s complex with NE(+) bound. **(A)** GaMD run 1 with the inset at the bottom. **(B)** GaMD run 2 with the inset at the bottom. **(C)** GaMD run 3 with the inset at the bottom. Final protein structures from 600-ns long GaMD simulation runs are shown. Individual protein chains / subunits are shown in the ribbon representation using different colors and labeled. $G_s \alpha \alpha 5$ helix and β₂AR intracellular loop 3 (ICL3) are shown as yellow and dark gray. $G_{s\alpha}$ α -helical domain residue A161 and Ras-like domain residue E299 are shown in blue and green balls, and distances between them are shown by lightblue dashed arrows.

Fig. S7. Time series of geometric criteria from all-atom Anton 2 MD simulations of β₂AR-G_s-NE(+) system: **(A)** Gsα A161 to E299 distance indicating protein conformational changes (opening or closing); **(B)** angle between two vectors found in GsαAH and GsαRas domains indicating the relative orientation of two domains. Vector 1 goes through GsαAH and A161 centers, vector 2 goes through GsαRas and E299 centers (see main-text Figure 4C); **(C)** distance between GsαAH and GsαRas domains; **(D)** distance between NPxxY (on the TM7 of β2AR) and Gsα α5 helix indicating possible partial β2AR-G^s dissociation; **(E)** distance between β2AR and Gsα α5 indicating possible partial β2AR-G^s dissociation; **(F**) Gsα α1 to α5 distance indicating relative movement of α1 and α5 helices. (The geometric centers were used for the distance and angle measurements.)

Fig. S8. RMSD time series from all-atom Anton 2 MD simulations of β2AR-Gs-NE(+) system: **(A)** G_sαAH domain C_α atoms aligned with respect to β₂AR; (B) G_sαRas domain C_α atoms aligned with respect to β2AR; **(C)** GsαAH domain C^α atoms aligned with respect to its initial structure; **(D)** G_s αRas domain C_α atoms aligned with respect to its initial structure.

Fig. S9. Pearson correlation coefficients (Corr. Coeff) *r* as a function of lag time calculated for Gsα α1 - α5 distance vs. β2AR - Gsα α5 distance (blue) and Gsα A161 - E299 distance vs. β2AR - Gsα α5 distance (red). These data are based on all-atom Anton 2 MD simulations of β_2 AR-G_s-NE(+) system.

Fig. S10. Time series of geometric criteria from all-atom GaMD simulations of β2AR-Gs-NE(+) system: **(A)** Gsα A161 to E299 distance indicating protein conformational changes (opening or closing); **(B)** Angle between two vectors found in GsαAH and GsαRas domains indicating the relative orientation between the two domains. Vector 1 goes through $G_s \alpha AH$ and A161 centers, vector 2 goes through GsαRas and E299 centers (see main text Fig. 4C); **(C)** Distance between GsαAH and GsαRas domains; **(D)** Distance between NPxxY (on the TM7 of β2AR) and Gsα α5 indicating possible partial β2AR-G^s dissociation; **(E)** Distance between β2AR and Gsα α5 indicating possible partial β2AR-G^s dissociation; **(F)** Distance between Gsα α1 and α5 indicating relative movement of helices α1 and α5. (The geometric centers were used for the distance and angle measurements.)

Fig. S11. 2D potential of mean force (PMF) or free energy profiles (in kcal/mol) based on Gsα conformation and its possible partial dissociation from β_2AR from all-atom GaMD simulations of the active state of the human β2AR-G^s complexes with bound NE(+): **(A)** A161 to E299 distance indicating Gsα open or closed conformation is shown as *X*-axis. Distance between Gsα α5 and β2AR indicating possible partial β2AR-G^s dissociation is shown as *Y*-axis. **(B)** Gsα α1 to α5 distance is shown as *X*- axis. Distance between α5 and β2AR indicating possible partial β2AR-G^s dissociation is shown as *Y*-axis. **(C)** Distance between GsαAH and GsαRas is set as *X*-axis. Distance between Gsα α5 and β2AR indicating possible partial β2AR-G^s dissociation is shown as *Y*-axis. **(D)** Angle between two vectors, one from G_sαAH and the other from G_sαRas, is set as X-axis (shown in Figure 4C). Distance between α5 and β₂AR indicating possible partial β₂AR-G_s dissociation is shown as *Y*-axis. **(E)** Distance between Gsα A161 and E299 is shown as *X*-axis. β2AR NPxxY to Gsα α5 distance is shown as *Y*-axis. **(F)** Distance between GsαAH and GsαRas is set as *X*-axis. Distance between Gsα α5 and α1 is shown as *Y*-axis. **(G)** Angle between two vectors, one from GsαAH and the other from GsαRas (shown in Figure 4C), is set as *X*-axis. Distance between G^s α5 and α1 is shown as *Y*-axis. All data are from GaMD simulations. (The geometric centers were used for the distance and angle measurements.)

Fig. S12. 2D potential of mean force (PMF) or free energy profiles (in kcal/mol) from all-atom Anton 2 MD simulations of the active state of the human β2AR-G^s complexes with bound NE(+) . **(A)** Distance between Gsα A161 and E299 is shown as *X*-axis. β2AR NPxxY to Gsα α5 distance is shown as *Y*-axis. **(B)** Distance between GsαAH and GsαRas is set as *X*-axis. Distance between Gsα α5 and α1 is shown as *Y*-axis. **(C)** Angle between two vectors, one from GsαAH and the other from GsαRas, is set as *X*-axis. Distance between Gsα α5 helix and α1 helix is shown as *Y*-axis. **(D**) Angle between two vectors, one from G_s αAH domain and the other from G_s αRas domain, is set as *X*-axis; distance between Gsα α5 and β2AR is shown as *Y*-axis. **(E)** Distance between GsαAH and GsαRas domains is set as *X*-axis; distance between α5 and β2AR is shown as *Y*-axis. (The geometric centers were used for the distance and angle measurements.)

Fig. S13. Time series of the number of amino acid residues (AAs) in the binding interface between β_2 AR and G_s from all-atom Anton 2 MD simulations of β_2 AR-G_s-NE(+) system. The AAs in the binding interface were defined as those within 3 Å of either β2AR or Gs.

Fig. S14. (A) Scatter plot of MM-PBSA binding energies between NE(+) and β_2 AR with their centerto-center distances in β2AR only system. **(B)** Scatter plot of MM-PBSA binding energies between NE(+) and β2AR with their center-to-center distances in β2AR-G^s system. **(C)** Scatter plot of MM-PBSA binding energies between NE(+) and β2AR with RMSDs of NE(+) in β2AR only system. **(D)** Scatter plot of MM-PBSA binding energies between NE(+) and β_2 AR with RMSDs of NE(+) in β2AR-G^s system. **(E)** 2D PMF based on RMSD of NE(+) and center-to-center distance between NE(+) and β2AR captured in the β2AR only system. **(F)** 2D PMF based on RMSD of NE(+) and center-to-center distance between NE(+) and $β₂AR$ captured in the $β₂AR-G_s$ systems. All plots are based on Anton 2 simulations, the vertical red dashed line in panels A and B indicates the initial center-to-center distance between NE(+) and $β₂AR.$ (The geometric centers were used for the distance measurements.)