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S1. METHODS

A. Cytosim simulations

We perform simulations using Cytosim [1]. We make modifications to the Cytosim source code pertaining to
simulation data output to access quantities which are not output by the built-in report functions. Source code for
these modifications is available upon request. This modified version of Cytosim used for all simulations was compiled
into a Singularity container [2], which is also available upon request. All simulations are in 2D without periodic
boundary conditions and we tabulate all simulation parameters in the SI (Sec. S4).

The persistence length Lp of the filaments is related to the filament rigidity through rigidity = kBTLp, where
kB is the Boltzmann constant and T is the temperature. At the temperature in our simulations (kBT = 1), the
persistence length is 0.1 µm, which indicates that the filaments of length 0.25 µm are semi-flexible in nature. Refer to
Table S2 in Sec. S4 for detailed simulation parameters.

B. Filament orientations in asters and bundles

Fig. S1 demonstrates the orientations of filaments in the structures observed during simulations at various values
of motor stiffness k. Lower values of k (top frames) correspond to asters, where filaments are radially distributed and
point towards the center of the structure. Larger values of k (bottom right frame) results in bunle-like structures with
anti-parallel orientation of the filaments along its long axis.
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Figure S1: Filament orientations at various values of k.

C. Radius of gyration of filament clusters

We calculate the radius of gyration Rg(v0, k) of the actin structures in the unbiased simulations. First, we use
motor connectivity to identify filaments that belong to the largest cluster as reported by Cytosim. We calculated the
radius of gyration of the largest cluster as

Rg(v0, k) =

√√√√ 1

N

N∑
i=1

r2i (S1)

where ri is distance between the center of mass of filament i and the center of mass of the largest cluster. For each
combination of v0 and k, we perform 500 independent unbiased simulations of 100 s each, and compute Rg(v0, k) from
the last frame of these trajectories, as well as its error bar.
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The radius of gyration as a function of motor rigidity k exhibits the same behavior for various values of v0.

Figure S2: Rg as a function of cluster size for unloaded speeds v0 = 0.8 (gray), 1.0 (magenta) and 1.2 (green). k
values are listed inside the symbols.

D. Computing rate of work of motors

The rate of work is calculated from the output data generated by Cytosim. We extract the force exerted by each
doubly-bound motor and the direction of movement of each motor head, and calculate the magnitude of velocity of
each motor head according to the force-velocity relationship (??). The rate of work ẇ for each motor head is then
calculated using ??. Note that each motor force is always pointing from the motor head to the center of the motor.
The values of ⟨ẇ⟩ in ??(b) are time averages of the total ẇ performed by all doubly-bound motors in the system. We
run 100 independent 100 s trajectories for each parameter combination, and take the ẇ average over the last 30 s of
each trajectory.

E. Trajectory biasing through the cloning algorithm

Trajectory biasing, the primary technique in our work, is based on the theory of large deviations. Observables for a
system will exhibit some average value (taken over some time period τ) for an ensemble of trajectories. In this case, a
single trajectory is a sequence of states for a system of filaments and motors which evolve according to the dynamics
defined by the Cytosim simulation engine. Occasionally, a single trajectory may exhibit a value for an observable
that is very far from the ensemble average. Large deviations theory provides an estimate of the probability of the
rare event that the observable will take on a value that is significantly different from the average [3]. For the sake of
brevity, we bypass much of the mathematical description of the theory of large deviations in favor of describing how
we apply this theory in the context of our work. For a more rigorous description of the mathematics, refer to the
references cited herein.

An established approach to “amplify” the occurrence of rare events [4] is through controlling the probabilities of
deviations of some observable A from its ensemble average Ā via a biasing field. In our case, the biasing field is
denoted by α, and the observable A is 1

τ

∫ τ
0
ẇ dt. The bias is applied by modifying the probability of each trajectory

with an exponential term:

Pα ∝ P0 exp[−ατA] = P0 exp

[
−α

∫ τ

0

ẇ dt

]
. (S2)

As a result, we are able to more effectively generate rare trajectories which correspond to large fluctuations in the
value of ẇ from the average. Moreover, we can draw a quantitative connection between the strength of the bias that
we apply, α, and the resulting arrangement of filaments. As discussed in [4], it is reasonable to consider a scenario in
which changes in the probabilities of rare events are a result of some external or internal driving force.

We use the cloning algorithm to perform importance sampling on trajectories obtained from the Cytosim sim-
ulations. The cloning algorithm procedure follows closely the one described in Ref. [3]. To briefly summarize the
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procedure, the native Cytosim code was used to create multiple clones. These are propagated for a time period τ , cho-
sen to be longer than the autocorrelation time of the system (calculated using the statsmodel.tsa.stattools Python
package [5]). Depending on the calculated values of ẇ of individual trajectories, clones are either “killed” or allowed to
“proliferate” and are duplicated to replace the eliminated clones. Cytosim is then used to propagate the equations of
motion for time τ , and the process is repeated. In other words, in order to perform the biasing simulations and extract
the large deviation statistics, we integrated the cloning algorithm with the Cytosim package. The source code for our
implementation the cloning algorithm can be found at https://github.com/alamda/cytosim-cloning-algorithm.

F. Distribution of sin θ

We define an order parameter sin θ to quantify the relative alignment of neighboring filaments, where θ is the angle
between filament pairs in the largest cluster. We first find the number of filament neighbours for each filament within
a distance cutoff of d = 0.25 µm (equal to the length of a single filament), where the distance between a filament
pair is computed as the distance between the two positive ends of the filaments. If a filament has more than n = 40
neighbours, we consider it to be a part of the largest cluster. We then compute sin θ of the center filament with respect
to its 40 closest neighbours, and the average sin θ is taken over these 40 filament pairs for each center filament. The
sin θ distribution is generated from the sin θ values for every filament belonging to a cluster.
Reference curves for v0 = {0.8, 1.0, 1.2} µms−1 are generated from the last frame of 500 independent trajectories,

each 100 s long. The sin θ distributions from cloning simulations are generated from the last snapshot of each surviving
clones at the end of each iteration, starting from the 6th iteration (thus discarding the first 150 s of each cloning
trajectory). If the surviving clone is copied n times at the end of the iteration, the statistics of structure from its last
frame is also copied n times when generating the sin θ histogram.
The sin θ histogram is related to the radius of gyration Rg, but not equivalent. P (sin θ) provides a better description

of the statistics of structure of the assemblies. We compare the radius of gyration Rg and the average of sin θ for
various motor rigidity k (Fig. S3). Rg increases almost linearly with increasing k as the bundles become longer. ⟨sin θ⟩
decreases with increasing k because the filaments are more aligned in the bundles. ⟨sin θ⟩ has better resolution when
the transition between aster to bundle occurs near k = 3. Therefore, we use Rg for the phase diagram and focus on
P (sin θ) for analyzing the structures when the biasing is applied.
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Figure S3: Rg and ⟨sin θ⟩ for various motor rigidity k with v0 = 1.2.

G. Extracting keff from biased simulations

We use the order parameter statistics in the biased dynamics Pα(sin θ) to characterize the assembly structure
obtained as a result of dynamical bias. The value of the effective rigidity keff corresponding to each biasing factor α is
extracted with the following procedure. We measure P (sin θ) in the unbiased dynamics for a set of k values between
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k0 − 0.5 and k0 +0.5 with an increment of 0.05, where k0 is the rigidity value used in the biased dynamics. Then, we
compute the Kullback-Leilbler divergence between Pα(sin θ) and each of the reference distributions P (sin θ), defined
as

DKL(Pα||P ) =
∑
sin θ

Pα(sin θ) log
Pα(sin θ)

P (sin θ)
. (S3)

It measures the difference between the statistics of structures from the biased and unbiased dynamics. The reference
distribution with k that gives the minimum value of relative entropy leads to keff = k. We generate five independent
sets of reference curves P (sin θ) for each combination of v0 and k0. Each reference curve is generated by analyzing
the structures from 100 independent trajectories and each of the trajectories runs for 3000 s. We compute keff using
each set of these reference curves and the error bars of keff from these five sets (??(e)).

S2. HYDRODYNAMIC MODEL AND MEAN-FIELD TREATMENT OF DYNAMICAL BIAS

A. A minimal hydrodynamic model of the actomyosin system

In order to investigate how trajectory biasing might renormalize material properties, we consider a minimal hydro-
dynamic model of the actomyosin system governed by the equations in Ref. [6]:

∂tρ = −∇ · [v0ρn⃗−D∇ρ], (S4)

∂tn⃗ = K1∇2n⃗+K2∇[∇ · n⃗] + ξ∇[ρ] + αn⃗− β|n⃗|2n⃗, (S5)

where ρ is the density of the actin filaments, and n⃗ is a polar field which represents the orientation of the filaments.
The effects due to motor activity are implicitly accounted for in this minimal model. Equation S4 captures the changes
to filament density (ρ) due to advection and diffusion. Equation S5 characterizes the time-dependent behavior of the
filament director field (n⃗). K1 and K2 terms capture the nematic behavior of the filaments, whereas the α and β terms
control the order-disorder transition of the system. The ξ term accounts for the reorientation of n⃗ along gradients of
ρ, thus capturing the non-equilibrium effects due to motor activity. In particular, as detailed in Ref. [6], we expect
ξ to be inversely correlated to the motor rigidity. The parameter α is expected to be positively correlated with the
rigidity of the motor and its ability to crosslink actin filaments. These minimal equations of motion can be used to
recover many of the biophysically observed configurations, such as asters and bundle like objects.

The transition from an isotropic phase to an aster like phase is particularly amenable to analytical treatment.
Indeed, performing linear stability analysis on Eq. (S4) and Eq. (S5), and keeping track of the fastest growing mode
following the procedure detailed in Ref. [7], we can reformulate the equations for ρ, v0, ξ, and α: ρ = ρ0 + ϵρ1,

v0 = v
(0)
0 + ϵv1, ξ = ξ0 + ϵξ1, α = α0 + ϵα1, where ϵ≪ 1. The parameters v

(0)
0 , ξ0, and α0 denote the values at which

the homogeneous phase first becomes unstable, given by D + ξ0v
(0)
0 /α0 = 0, and ρ0 is the density of the actin in the

homogeneous phase. The effective dynamics for ρ1 is the given by

∂tρ1 = b∇2ρ1 − c∇(ρ1∇ρ1)− λ∇4ρ1 ≡ ∇2

(
δF

δρ1

)
, (S6)

where b ≡ v10ρ0ξ0/α0 and c ≡ v0ξ0/α0 depend on motor properties properties ξ, v0, α. In other words, the evolution
of the density field can be described using an effective free energy F that can be written as

F =

∫
dr⃗

[
f(ρ) +

λ

2
(∇ρ)2

]
, f(ρ) =

b

2
ρ2 − c

3!
ρ3. (S7)

This effective free energetic landscape permits multiple metastable solutions depending on the value of ξ. While our
analytical arguments only lead to quadratic and cubic terms in the effective free energy landscape, packing constraints
can be expected to lead to a quartic term with a positive coefficient. Similarly, reflecting a finite chemical potential,
we may also expect linear term in the effective free energy landscape.
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B. Mean-field treatment of dynamical bias

Inspired by the result presented in Eq. S7, we use a similar form of the free energy to evaluate the effect of
a dynamical bias on the phenomenological constants a, b, c, and d and any corresponding material properties. We
examine a phenomenological model by writing down the dynamics of a structural order parameter ψ. We consider that
the landscape describing the statistics of this order parameter has a Landau-like form [3], that under the appropriate
conditions permits two metastable solutions: F(ψ) = −aψ + bψ2 − cψ3 + dψ4, with {a, b, c, d} as phenomenological
parameters. Even for systems with underlying non-equilibrium dynamics, such a landscape can be obtained for the
dynamics of reduced order parameters, where first order transitions can be accessed by modulating the minimum
of the landscape [7]. The parameter controlling such a transition is meant to capture the behavior observed in our
system where tuning the rigidity k results in a structural transition from isotropic phase to asters.
Within such a framework, we consider that the dynamics of the structural order parameter ψ reads

ψ̇ = −∂ψF(ψ) +
√
2Dζ, (S8)

where ζ is Gaussian white noise with zero mean and D is the noise strength. At leading order in D, the Onsager-
Machlup action A which determines the path probability P ∼ e−A/D of the dynamics of ψ [3] reads,

A =
1

4

∫ t

0

(ψ̇ + ∂ψF(ψ))2 ds. (S9)

If we apply a bias on a function of the order parameter ψ, which we define as g(ψ), the action Aα associated with
this biased dynamics is given by

Aα =
1

4

∫ t

0

(ψ̇ + ∂ψF(ψ))2 ds−
∫ t

0

(αg(ψ) + Φ(α)) ds, (S10)

where Φ(α) is the scaled cumulant generating function, Φ(α) = limt→∞
D
t ln⟨exp(α/D)

∫ t
0
g(ψ) ds⟩. At small D, this term

can be written as Φ(α) = − 1
4 minψ[∂ψF(ψ)2 − 4αg(ψ)] [3]. We introduce the action Aeff for the effective dynamics as

Aeff =
1

4

∫ t

0

(ψ̇ + ∂ψFeff(ψ))
2 ds. (S11)

The corresponding effective free energy landscape then can be written as

∂ψFeff(ψ) = σ(ψ)
√
∂ψF(ψ)2 − 4[αg(ψ) + Φ(α)], (S12)

where σ = 1 for ψ < ψ̄ (σ = −1 otherwise), and at small D, ψ̄ can be determined as ψ̄ = argminψ[∂ψF(ψ)2 −
4αg(ψ)] [3, 8]. Note that Aeff in Eq. (S11) coincides with Aα in Eq. (S10) up to a boundary term that is irrelevant
for the trajectory weights. If we consider g(ψ) = 0.1ψ and take a free energy F with a global minimum at ψ > 0,
we can generate the corresponding modified free energy Feff(ψ) that changes minimum for α > 0 through numerical
means. Fig. S4 shows the effective free energy landscape when various biasing α are applied. We fit the effective free
energy Feff(ψ) to extract the effective phenomenological parameters beff and ceff, and find that applying the biasing
leads to changes in the quadratic and cubic terms of the effective free energy. The associated probability distribution
P (ψ), proportional to e−Feff(ψ)/D up to normalization factor, is shown in Fig. ??(d) in the main text. This simple
perturbative analysis reveals that the structural transition in the effective free energy landscape is obtained by tuning
α (Table S1).

Table S1: Renormalized phenomenological parameters at various α

α beff ceff

0 -1 -0.033
0.005 -0.96 -0.003
0.1 -0.91 0.046
0.3 -0.84 0.108
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asterbundle

Figure S4: Free energy landscapes obtained by biasing the dynamics with respect to ψ. The original free energy has
the form F(ψ) = −aψ + bψ2 − cψ3 + dψ4. Values of α: α = 0 (unbiased dynamics, blue), 0.005 (green), 0.1 (orange)

and 0.3 (purple). Other parameters are a = 4d = −b = −30c = 1.

S3. DERIVATION OF THE TWO-STATE MODEL AND PREDICTION OF keff

A. Model description

The minimal two-state model is intended to capture the effect of an applied bias on the probabilities of aster and
bundle states. We characterize the two states through the order parameter P (sin θ) and the average values of the
rate of work ⟨ẇ⟩, both of which exhibit a dependence on k. These values serve as inputs to the two-state model to
construct a curve predicting the relationship between the strength of the applied bias α and keff.

For an unbiased system, we describe the dynamics through the master equation Ṗ = WP , where P is a vector
containing the original probabilities of the two states {Paster, Pbundle}, and the transition rate matrix W is given in
equation (??). We assign relative energies ε{aster, bundle} to each state in order to evaluate the transition rates between
asters and bundles (Rab = A exp[−βεbundle] and Rba = A exp[−βεaster]). For convenience, we work in units where
A = 1, β = 1/(kBT ) = 1, and we set εbundle = 0.

When biasing is applied to trajectory probabilities, the new transition rate matrix W (α) takes the form shown
in equation (??). There it is clear that the biasing factor alters the transition rates between the two states by an
amount proportional to the biasing strength and the rate of work of each state. Using values extracted from unbiased
simulations (ε{a,b} and ẇ{a,b}), we can then calculate an effective energy for each state (equation ??, Section S3B). By

relating the energy levels ε{a,b} and ε
(α)
{a,b} to their respective probability distributions P{a,b} and P

(α)
{a,b} (equation (??)),

the two-state model illustrates the effect of an applied bias on the dynamics, and therefore the structural configuration
of the system.

The biased transition rate matrixW (α) is also known as a “tilted” matrix, and is constructed based on the principles
of the theory of large deviations [9, 10]. The cumulant generating function is obtained by taking the logarithm of
the largest eigenvalue of W (α). By construction, W (α) is not normalized, otherwise the eigenvalue (and thus the
cumulant generating funciton) would be zero, which would be inconsistent with the presence of a bias.

Figure S5 illustrates the two state model.

B. Derivation of the left eigenvector of Eq. 7

We define the left eigenvector of W (α) as
[
a 1

]
:
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Figure S5: Schematic of the two state model. Blue curve is the free energy of the original dynamics, red curve is the
free energy in the presence of trajectory biasing.

[
a 1

]
W (α) =

[
a 1

] [−Rab + αẇaster Rba
Rab −Rba + αẇbundle

]
= ϵ

[
a 1

]
, (S13)

where ϵ is the corresponding eigenvalue. The transition rates can be computed from the energies of aster εaster and
bundle εbundle, i.e., Rab = A exp[−βεbundle] and Rba = A exp[−βεaster]. We select A = 1 and kBT = 1 and set
εbundle = 0 for convenience. Hence, the matrix above becomes

[
a 1

]
W (α) =

[
a 1

] [−1 + αẇaster Rba
1 −Rba + αẇbundle

]
= ϵ

[
a 1

]
, (S14)

We solve Eq. (S14) and find that ln a can be expressed in terms of α, ẇaster and Rba as

a =
(Rba − 1) + α∆ẇ +

√
(Rba − 1 + α∆ẇ)2 + 4Rba
2Rba

≈
(Rba − 1) + α∆ẇ +

√
(Rba + 1 + Rba−1

Rba+1α∆ẇ)
2

2Rba
+O(α2)

≈1 +
α∆ẇ

1 +Rba
+O(α2),

(S15)

where ∆ẇ = ẇaster − ẇbundle, and ẇaster and ẇbundle are the rate of work for aster state and bundle state as defined
in Eq. 2 (main text). According to Doob theorem [11], the left eigenvector of W (α) contains the information of the
correction to the energy landscape of εaster.

ε
(α)
aster ≈ εaster − ln a ≈ εaster − ln

(
1 +

α∆ẇ

1 +Rba
+O(α2)

)
≈ εaster −

α∆ẇ

1 +Rba
+O(α2). (S16)

Eq. (S16) is the same as Eq. 7 in the main text. Since ∆ẇ > 0 as shown in Fig. 1(c), Eq. (S16) indicates that
applying a positive α lowers the energy of aster state (Fig. 2(e)).

C. keff predicted by the two-state model

We use Eq. 7 derived above to predict keff from the two-state model. We first build a relation between εaster and
k using the metric sin θ. We carry out unbiased simulations for the full range of the motor rigidities k and calculate
their corresponding distribution P (sin θ). We then compute the probability of aster Paster at each k with the following
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expression

Paster =

∫ 1

0.6

P (sin θ) d sin θ. (S17)

The quantity Paster is then used to estimate the energy of aster for each k using

εaster = − ln
Paster

1− Paster
. (S18)

Eq. (S18) enables us to construct a reference curve of εaster as a function of motor rigidity k for each unloaded velocity
v0. As we have shown in the biased simulations of Cytosim, applying an α bias is equivalent to tuning k. In principle,
we can then connect α with the effective rigidity keff through the relation

ε
(α)
aster(k) = εaster(keff). (S19)

To estimate ε
(α)
aster(k) for each biasing parameter α, we need the additional relation in Eq. (S16). Here, we assume

further that ∆ẇ is proportional to the slope of the ⟨ẇ⟩ versus k curve (Fig. S6), as numerically evaluated from the
unbiased dynamics of Cytosim. This procedure allows us to extract an analytic relation between α and keff for each
unloaded velocity v0, as plotted in Fig. 2(e) of the main text.
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Figure S6: ∆ẇ at v0 = 0.8, 1.0, 1.2 µms−1 for motor rigidity k in increments of 0.1.
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S4. CYTOSIM SIMULATION PARAMETERS

Parameter name Parameter value Units
time step 0.001 s
viscosity 0.001 pN s µm−2

temperature (kBT ) 1 pN µm
simulation box size 5× 5 µm2

filament rigidity 0.1 pN µm2

filament segmentation 0.1 µm
filament length 0.25 µm

number of filaments 200 —
filament confinement 1 pNµm−1

myosin binding rate 10 s−1

myosin binding range 0.1 µm
myosin unbinding rate 1 s−1

myosin unbinding force 10 pN
myosin activity move (towards actin + end)

myosin stall force (f0) 10 pN
myosin unloaded speed (v0) 0.8, 1.0, 1.2 µms−1

myosin stiffness (k) 0–10 pNµm−1

myosin rest length 0 µm
number of myosin motors 1000 —

rate of work ẇ — pN µms−1

biasing parameter α — pN−1 µm−1

Table S2: Simulation parameters.
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S5. CHARACTERIZING THE STRUCTURE OF ACTIN ASTER AND BUNDLE

Fig. S7 illustrates the time-dependent behavior of Rg and cluster size for different combinations of k and v0. Plots
contain points only for structures of at least 40 filaments in size. Plots for v0 = 1.8 are not shown due to the absence
of large clusters. Values of Rg and cluster size both reach steady states on the timescales of our simulations.
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Figure S7: Characterization of steady-state structures. Radius of gyration (top row) and cluster size (bottom row)
over time using various values of k for (a) v0 = 0.2 and (b)v0 = 1.2. Only data points corresponding to clusters with

more than 40 filaments are shown. For all simulations, the isotropic phase was the starting configuration.
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S6. CLONING QUALITY

To qualify the effectiveness of the cloning algorithm, we examine the cloning statistics. This analysis is done by
calculating the number of times that the most viable clone is copied among all cloning copies and normalizing that
number by the total number of clones Nc. The goal is to avoid a single clone dominating the trajectory space at any
given iteration. Satisfactory cloning statistics will yield values close to 0, whereas values close to 1 indicate that the
trajectory space sampling is inadequate. Stronger biasing requires larger numbers of clones, as the fluctuations which
are to be picked and cloned by large biasing factors are more rare. We determine that the acceptable cloning statistics
for α = ±0.05,±0.1,±0.2,±0.3 and ±0.4 can be achieved using Nc = 480, 480, 1440, 19200 and 19200, respectively.
The cloning quality plots in Fig. S8 indicate that the cloning statistics remain away from 1 for |α| ≤ 0.3.
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Figure S8: Cloning quality plots.
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