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Supplemental Figure 1. Neuronal HLH-30/TFEB does not regulate normal lifespan.

Lifespan analyses of hlh-30(tm1978) mutants (non-transgenic (non-Tg) siblings and hih-
30(tm1978)) rescued with (a to ¢) extrachromosomal (Tg, transgenic) and (d and e) integrated
arrays driving HLH-30/TFEB expression in neurons on OP50 at 25°C. Animals were developed at
20°C and shifted to 25°C on OP50 from day 1 of adulthood. Data are representatives of (a) 4 , (b
and c) single, and (d and e) 3 independent replicates, and comparisons were made by Mantel-Cox
log-rank. Further details about lifespan analyses are provided in Supplemental Table 1. (f) Relative
hlh-30 expression levels of wildtype and independently-derived lines 1 and 2 of neuronal HLH-30/
TFEB rescued animals which respectively exhibited absence and presence of lifespan extension in
comparison to hlh-30(tm1978) mutants. Animals were developed at 20°C to day 1 of adulthood on
OP50. Data is representative of 3 independent replicates and comparisons were made by Kruskal-

Wallis (expression normalized to wildtype and presented as mean * S.D; n.s, p=0.05; **, p<0.01)
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Supplemental Figure 2. Neuronal HLH-30/TFEB regulates longevity.

(a and b) Lifespan analyses of daf-2(e1370), daf-2(e1370);hlh-30(tm1978), and neuronal HLH-
30/TFEB rescued daf-2(e1370);hlh-30(tm1978) animals fed OP50 at 25°C. Animals were
developed at 20°C and shifted to 25°C on OP50 from day 1 of adulthood. Data are representatives
of 3 independent replicates, and comparisons were made by Mantel-Cox log-rank. Further details
about lifespan analyses are provided in Supplemental Table 2. (c) Relative hlh-30 expression
levels of wildtype, daf-2(e1370), and independently-derived lines 1 and 2 of neuronal HLH-
30/TFEB rescued daf-2(e1370);hlh-30(tm1978) animals developed at 20°C to day 1 of adulthood
on OP50. Data is representative of 3 independent replicates and comparisons were made by one-
way ANOVA (expression normalized to daf-2(e1370) and presented as mean = S.D; n.s, p=0.05;
e p<0.0001).



Supplemental Figure 3
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Supplemental Figure 3. Neuronal HLH-30/TFEB mediates thermoresistance in normal but
not longevity-promoting conditions.

(a) hlh-30(tm1978) mutants ubiquitously rescued with HLH-30::GFP were developed at 20°C to day
1 of adulthood and imaged at 20°C and after 3 hours of heat stress at 37°C. Arrowheads indicate
intestinal nuclear enrichment of HLH-30::GFP. (b) hlh-30(tm1978) mutants neuronally rescued with
HLH-30::GFP were developed at 20°C to day 1 of adulthood and imaged for head neurons at 20°C
and after 3 hours of heat stress at 37°C. Neuronal nuclei are indicated by red arrows in enlarged
images on the right. Scale bars = 20 yM. Survival analyses of neuronal HLH-30/TFEB rescued
animals in comparison to their (¢ and d) wildtype and h/h-30(tm1978) and (e and f) daf-2(e1370
and daf-2(e1370);hlh-30(tm1978) controls at 37°C heat stress. (g) Survival analyses of neuronal
HLH-30/TFEB overexpressing (OE) animals in comparison to their wildtype controls at 37°C heat
stress. Animals were developed at 20°C and shifted to heat stress at 37°C on day 1 of adulthood.
Data are representatives of (c and d) single experiments and (e to g) 2 independent replicates and
comparisons were made by Mantel-Cox log-rank (n = 90-100/strain; n.s, p=0.05; *, p<0.05; in
comparison to (¢ and d) hlh-30(tm1978), (e and f) daf-2(e1370);hlh-30(tm1978)) or (g) wildtype

animals.
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Supplemental Figure 4. Heat stress-induced transcriptional changes in wildtype,
hlh-30(tm1978), and neuronal HLH-30/TFEB rescued animals.
(a) Volcano plots indicating the upregulation of heat stress-induced heat shock protein (hsp) genes in
wildtype, h/h-30(tm1978), and neuronal HLH-30/TFEB rescued animals from 37°C (heat
stress) in comparison to 20°C (control conditions). Horizontal dotted line indicates adjusted p-
value <0.05. Vertical dotted lines indicate >1.0 and <1.0 Log, fold change. (b) Heat map showing
the regularized log transformed gene counts clustering (rlog) of animals within 20°C (control) and
37°C (heat stress) conditions regardless of genotypes, and the upregulation of significant (adjusted
p-value <0.05, Log, fold change >1) hsp genes in heat stressed groups. (c¢) Gene set enrichment
analysis plots of the top 15 most significantly-enriched Gene Ontology Biological Processes terms
(g <0.05) from wildtype, hlh-30(tm1978), and neuronal HLH-30/TFEB rescued animals at 37°C (heat
stress) in comparison to 20°C (control conditions). Negative and positive normalized enrichment
scores (NES) indicate respective down- and upregulation of enriched processes with heat
stress. Animals from 4 independent replicates were developed at 20°C to day 1 of adulthood and
harvested for RNA after 3 hrs of further growth at 20°C or 37°C.
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Supplemental Figure 5. Analysis of heat stress-induced autophagy-related changes and
downregulated differentially expressed genes.

(@) Gene set enrichment analysis plots of Gene Ontology Biological Processes terms related to
autophagy from wildtype, h/h-30(tm1978), and neuronal HLH-30/TFEB rescued animals at 37°C (heat
stress) in comparison to 20°C (control conditions). Note that although negative and positive normalized
enrichment scores (NES) indicate respective down- and upregulation of indicated autophagic
processes, none of these were significantly enriched with heat stress exposure across genotypes

(g 20.05). (b) Genes downregulated by 37°C (heat stress) in comparison to 20°C (control conditions)
for each genotype were overlapped to extract significant heat stress-specific differentially expressed
genes (adjusted p-value <0.05) unique to or more downregulated (Log, fold change (LogFC) thresholds
applied as indicated) in wildtype and neuronal HLH-30/TFEB rescued animals than h/h-30(tm1978)
mutants. Animals from 4 independent replicates were developed at 20°C to day 1 of adulthood and

harvested for RNA after 3 hrs of further growth at 20°C (control conditions) or 37°C (heat stress).
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Supplemental Figure 6. Mitochondrial fragmentation is mechanistically important for
thermoresistance.

(a) Representative images of muscle mitochondrial morphology with the body wall muscle
mitochondrial reporter (Mito::GFP) in wildtype animals fed control RNAi (L4440) or RNAi against drp-1
or eat-3 at 20°C (control conditions) or after 5 hrs heat stress at 37°C heat stress, and (b)
corresponding analysis of mitochondrial connectivity after heat stress. Data are representatives of 3
independent replicates (n = 30, number of ROIs = 118 - 193) and comparisons were made by Mann-
Whitney for each mitochondrial feature (presented as mean = S.D; n.s, p=0.05; *, p<0.05; **, p<0.01;
*** p<0.001). Survival analyses of neuronal HLH-30/TFEB animals fed control RNAi (L4440) or RNAI
against (c) drp-1 and eat-3, or (d) fis-1, fis-2, mff-1, and mff-2 at 37°C heat stress. Data are
representatives of 2 independent replicates (a, n = 90/RNAi; b, n = 84 - 87/RNAIi) and comparisons
were made by Mantel-Cox log-rank (*, p<0.05; in comparison to control RNAI). All animals were
developed at 20°C to the L4 larval stage on OP50, transferred onto bacteria expressing RNAI for 48

hrs, and exposed to 37°C heat stress for (a and b) 5 hrs or (c and d) until death.
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Supplemental Figure 7. Neuronal HLH-30/TFEB mediates thermoresistance through
WO06A11.1-dependent peripheral mitochondrial fragmentation.

(a) Survival analyses of wildtype, hlh-30(tm1978), and neuronal HLH-30/TFEB rescued animals fed
control RNAI (L4440, solid lines) or RNAi against W06A11.1 (dotted lines) at 37°C heat stress.
Animals developed at 20°C to day 1 of adulthood on OP50 were transferred onto bacteria
expressing RNAI, grown at 25°C for 48 hr, and exposed to 37°C heat stress until death. Data is
representative of 2 independent replicates (n = 83 — 99/RNAi/strain) and comparisons were made
by Mantel-Cox log-rank (n.s, p=0.05; *, p<0.05; in comparison to control RNAI). (b to d) Analysis of
mitochondrial connectivity in the absence and presence of WO6A11.1(tm4056) loss of function after
37°C heat stress for 3 hrs in (b) wildtype, (¢) h/h-30(tm1978) loss of function mutants, and (d)
neuronal HLH-30/TFEB rescued animals developed at 20°C to day 1 of adulthood. Data are
representatives of 3 independent replicates (per strain; n = 30, number of ROIs = 88 — 171) and
comparisons were made by Mann-Whitney for each mitochondrial feature (presented as mean
S.D; n.s, p=0.05; *, p<0.05; **, p<0.01; ***, p<0.001; ****, p<0.0001).
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Supplemental Figure 8. WO06A11.1 mediates thermoresistance through mitochondrial
fragmentation.

(@) hlih-30(tm1978) mutants overexpressing extrachromosomal WO06A11.1::DsRed at 20°C (control
conditions) and after 37°C heat stress for 5 hrs. Scale bars = 100 yM, images in left column; scale
bars = 20 yM, enlarged insets of head regions (I and II). (b) Survival analyses of wildtype, with
wildtype animals overexpressing extrachromosomal W06A11.1::DsRed (W06A11.1 OE (Tg)) and their
non-transgenic (non-Tg) siblings at 37°C heat stress. Data is from an independent replicate and
comparisons were made by Mantel-Cox log-rank (n = 60/strain; *, p<0.05; comparison of wildtype and
WO06A11.1 OE (non-Tg) animals to WO06A11.1 OE (Tg)). (c) Representative images of muscle
mitochondrial morphology with the body wall muscle mitochondrial reporter (Mito::GFP) in W06A11.1
OE Tg and non-Tg siblings at 20°C. (d) Analysis of mitochondrial connectivity in W06A11.1 OE Tg and
non-Tg siblings at 20°C. Data are representatives of 2 independent replicates (per strain; n = 30,
number of ROIs = 157 — 167) and comparisons were made by Mann-Whitney for each mitochondrial
feature (presented as mean * S.D; n.s, p=0.05; ****, p<0.0001). All animals were developed at 20°C to
day 1 of adulthood and where indicated, were further exposed to 37°C heat stress for (a) 5 hrs, (b)

until death, or (c and d) 3 hrs.
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Supplemental Figure 9. Neuronal HLH-30/TFEB does not mediate mitochondrial
fragmentation-dependent thermoresistance through dense core vesicle (DCV) release.

(a) Survival analyses of wildtype, hlh-30(tm1978), and neuronal HLH-30/TFEB rescued animals in
the absence (solid lines) and presence (dotted lines) of unc-31(e928) loss of function at 37°C heat
stress. Animals were developed at 20°C to day 1 of adulthood and exposed to 37°C heat stress
until death. Data is representative of 3 — 4 independent replicates and comparisons were made by
Mantel-Cox log-rank (n = 113 — 169/strain; *, p<0.05; comparisons of unc-31(e928) to control per
genotype). (b to d) Analysis of mitochondrial connectivity in the absence and presence of unc-
31(€928) loss of function in (b) wildtype, (¢) h/h-30(tm1978), and (d) neuronal HLH-30/TFEB
rescued animals developed at 20°C to day 1 of adulthood after 37°C heat stress for 3 hrs. Data are
representatives of 3 independent replicates (per strain; n = 30, number of ROIs= 75 — 92) and
comparisons were made by Mann-Whitney for each mitochondrial feature (presented as mean *
S.D; n.s, p=0.05).



Supplemental Figure 10

hlh-30(tm1978) Neuronal HLH-30 rescue

Wildtype

n.s

dekkk

eeessessces

Fkkk

8 °© g 8 8 8 ©° 8 § 8 & 2 °
” N -~ ~ (zwm) abesanod eupuoys0)n
sjuiod uonounp #
* *
i i :
~ - " — - i
s199lqO # (w) ybua) 30efqo sjuiod uonouny # (zw) aBeIaA0D BLIPUCYIOI
mi
3
: _::. Il
]
c * m
8 B8 8 B g © T 8 g w0 ¥y No g o g g o g ¢ g g © o
® N « N (zwi) abeIdaA0D elPUOYI0)IN

(w) yybus 308lqo

m«m_oa :,m_uucsq. #

® unc-13(e1091)

® Control



Supplemental Figure 10. Defective neurotransmission increases heat stress-induced
mitochondria fragmentation in h/h-30(tm1978) mutants.

Analysis of mitochondrial connectivity in the absence and presence of unc-13(e1091) loss of
function in (a) wildtype, (b) hlh-30(tm1978), and (c¢) neuronal HLH-30/TFEB rescued animals
developed at 20°C to day 1 of adulthood after 37°C heat stress for 3 hrs. Data are representatives
of 3 - 5 independent replicates (per strain; n = 30 - 50; number of ROIs = 87 — 196) and
comparisons were made by Mann-Whitney for each mitochondrial feature (presented as mean *
S.D; n.s, p=0.05; ¥, p<0.05; ***, p<0.001; ****, p<0.0001).
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Supplemental Figure 11. WO06A11.1 mediates peripheral mitochondrial fragmentation by
regulating neurotransmission.

Comparison of mitochondrial connectivity between WO06A11.1(tm4056) and WO06A11.1(tm4056),unc-
13(e1091) animals developed at 20°C to day 1 of adulthood after 37°C heat stress for 3 hrs. Data are
representatives of 2 - 3 independent replicates (per strain; n = 30; number of ROIs = 107 — 161) and
comparisons were made by Mann-Whitney for each mitochondrial feature (presented as mean + S.D;
n.s, p=0.05; *, p<0.05; **, p<0.01; ***, p<0.001; ****, p<0.0001).



Supplemental Table 1

N2 hlh-30(tm1978) Neuronal HLH-30 rescue strains
Mean . Mean % Difference to . Mean % Difference to
LS EO Strain LS EO N2 Strain LS EO hih-30(tm1978) p Value
9.02 68 LRL81 6.9 83 -23.53 LRL81 7.34 68 6.42% 0.0012
(Non Tg) (Tg)

12.99 47 ('\E(F:rL]STlg) 9.57 74 -26.33% L?I_L:)l 10.16 73 6.17% 0.0070

10.79 93 (I\II_SrI;S'I'lg) 9.58 98 -11.21% L?I_Lgs)l 10.14 86 5.85% <0.0001 Sla

9.48 74 ([L-ztg'ﬁg) 8.44 92 -0.10% L?I_Lgs)l 8.96 71 6.16% 0.0086

9.02 57 (l\ll-gris'l'zg) 6.86 88 -23.95% L?rl'gs)z 7.32 65 6.70% 0.0027 S1b

9.02 57 LRL83 6.94 84 -23.05% LRL83 7.12 71 2.65% 0.0736 Slc

(Non Tg) (Tg)

12.99 47 * LRL31 9.46 59 -27.17% LBLMG 9.71 77 2.64% 03818
(Line 1)

10.79 93 LRL31 9.32 93 -13.62% LBLMG 9.29 89 -0.32% 0.4978 1b
(Line 1)

9.48 74 LRL31 7.7 88 -18.78% (I.Srl;?lﬁ) 7.91 86 2.73% 0.2631

12.99 47 * LRL31 9.46 59 -27.17% ;'3:2427) 10.36 62 9.51% <0.0001

10.79 93 LRL31 9.32 93 -13.62% :'3;1427) 9.98 77 7.02% <0.0001 S1d
LRL147

9.48 74 LRL31 7.7 88 -18.78% (Line 2) 8.7 75 12.99% < 0.0001

12.99 47 * LRL31 9.46 59 -27.17% :'3;2438) 9.49 48 * 0.32% 0.9957
LRL148

10.79 93 LRL31 9.32 93 -13.62% (Line 3) 8.93 82 -4.18% 0.0424 Sle
LRL148

9.48 74 LRL31 7.7 88 -18.78% (Line 3) 7.56 75 -1.82% 0.5542

Supplemental Table 1. Lifespan analyses of neuronal HLH-30/TFEB rescued animals in

hlh-30(tm1878) background. Animals were raised at 20°C and grown at 25°C on OP50. Where indicated

(*), low number of events observed (EO, <50) were due largely due to censoring of animals which were

more susceptible to internal progeny hatching at 25°C. Statistical analyses: Mantel-Cox log-rank; Mean

LS: Mean Lifespan. Refer to Supplemental Table 4 for additional strain information.




Supplemental Table 2

daf-2(e1370)Ill hﬁ{;g;::'yi;i)g)ll’v Neuronal HLH-30 rescue strains

ven | go | Men oy BEICRCRN o | Vom0 [t
hih-30(tm1978)

31.52 95 15.28 69 -51.52% :3;2617) 18.8 70 23.04% <0.0001

28.35 72 13.06 50 -53.93% :3;2617) 22.07 70 68.98% <0.0001 )4

33.67 80 13.26 61 -60.62% :'3;2617) 20.91 73 57.69% <0.0001

31.52 95 15.28 69 -51.52% :'3;2628) 19.35 84 26.64% <0.0001

28.35 72 13.06 50 -53.93% ("Sr'f; 19.71 66 50.92% <0.0001 | S2a

33.67 80 13.26 61 -60.62% (LSEG;) 23.08 65 74.06% <0.0001

31.52 95 15.28 69 -51.52% :'3:2639) 18.07 61 18.26% 0.0009

28.35 72 13.06 50 -53.93% ("S:;zsgg) 19.69 52 52.35% <0.0001 | S2b

33.67 80 13.26 61 -60.62% :'3;2639) 19.16 39 * 44.40% <0.0001

Supplemental Table 2. Lifespan analyses of neuronal h/h-30 rescued animals in daf-2(e1370);hlh-
30(tm1978) background. Animals were raised at 20°C and grown at 25°C on OP50. Where indicated (*),
low number of events observed (EO, <50) were due largely due to censoring of animals which were more
susceptible to internal progeny hatching at 25°C. Statistical analyses: Mantel-Cox log-rank; Mean LS:

Mean Lifespan. Refer to Supplemental Table 4 for additional strain information.



Supplemental Table 3

Control RNAi daf-16 RNAi
Strain Mean EO % Difference to p Mean % Difference to Fioure #
LS daf-2(e1370)ilI  Value |G daf-2(e1370)III &

daf-2(e1370)lI 22.96 67 21.87 93

daf-2(e1379)lll; "
hih-30(tm1978)IV 12.47 36 45.69 <0.0001| 14.58 90 33.33 <0.0001
Neuronal HLH-30 *

rescue (LRL167) 18.18 43 -20.82 0.0133 | 14.66 83 -32.97 < 0.0001

daf-2(e1370)ll 31.24 82 20.16 74

daf-2(e1379)lli; "
hih-30(tm1978)IV 15.05 37 51.82 <0.0001| 15.02 61 25.5 < 0.0001 1d
Neuronal HLH-30 * .

rescue (LRL167) 25.19 43 19.37 0.0019 145 | 46 28.08 < 0.0001

daf-2(e1370)iI 27.27 61 15.90 61

daf-2(e1379)lli; "
hih-30(tm1978)IV 13.09 20 52 <0.0001| 12.86 60 19.11 <0.0001
Neuronal HLH-30 *

rescue (LRL167) 18.54 40 -32.01 <0.0001| 12.92 57 -18.74 < 0.0001

Supplemental Table 3. Lifespan analyses of neuronal h/h-30 rescued animals in

daf-2(e1370);hlh-30(tm1978) background on daf-16 RNAIi. Animals developed at 20°C on OP50
were transferred on day 1 of adulthood onto bacteria expressing RNAi and grown at 25°C. Where
indicated (*), low number of events observed (EO, <50) were largely due to censoring of animals
which were more susceptible to internal progeny hatching at 25°C. Statistical analyses: Mantel-Cox

log-rank; Mean LS: Mean Lifespan. Refer to Supplemental Table 4 for additional strain information.



Supplemental Table 4

Published strains used in this study
Strain Name Genotype Strain Origin
N2-CK Wildtype Hansen Lab
CF1041 daf-2 (e1370)ll1 Hansen Lab
FX1978 hlh-30(tm1978)IV National BioSource Project
FX4056 WO06A11.1(tm4056)I1 National BioSource Project
CF1038 daf-16(mu86)! Caenorhabditis Genetics Center (CGC)
SD1347 cls4251 [(pSAK2) myo-3p::GFP::LacZ::NLS + (pSAK4) myo-3p::mitochondrial GFP + Caenorhabditis Genetics Center (CGC)
dpy-20(+)]I
RW1596 myo-3(st386)V; stEx30 (myo-3p::GFP::myo-3 + rol-6(su1006)) Caenorhabditis Genetics Center (CGC)
CB1091 unc-13(e1091)! Caenorhabditis Genetics Center (CGC)
DA509 unc-31(e928)IvV Caenorhabditis Genetics Center (CGC)
New strains used in this study
Strain Name Genotype Comments
LRL31 hlh-30(tm1978)IV FX1978, 4X backcrossed to N2-CK
LRL46 daf-2(e1370)Ill; hlh-30(tm1978)IV LRL31 x CF1041
LRL72 hlh-30(tm1978)IV; Refer to Methods for strain
lIcEx31 (pLP11/hlh-30p::hlh-30::GFP::unc-54 3’UTR + pLP24/unc-122p::RFP) generation
LRLS1 hlh-30(tm1978)IV; Line 1; Refer to Methods for strain
IIcEx33(pLP27/rab-3p::hlh-30::GFP::3XFLAG::rab-3 3'UTR + pLP24/unc-122p::RFP) generation
LRLS2 hlh-30(tm1978)IV; Line 2; Refer to Methods for strain
IIcEx34(pLP27/rab-3p::hlh-30::GFP::3XFLAG::rab-3 3'UTR + pLP24/unc-122p::RFP) generation
LRLS3 hlh-30(tm1978)IV; Line 3; Refer to Methods for strain
lIcEx35(pLP27/rab-3p::hlh-30::GFP::3XFLAG::rab-3 3'UTR + pLP24/unc-122p::RFP) generation
LRL130 hlh-30(tm1978)IV; daf-16(mu86)! LRL31 x CF1038
LRL136 licis2(pLP27/rab-3p::hlh-30::GFP::3XFLAG::rab-3 3'UTR + pLP24/unc-122p::RFP) Refer to Methods for strain
p p-: . ” - P p-: generation; 10X backcrossed to N2-CK
, . Refer to Methods for strain
LRL137 llcls3(pLP27/rab-3p::hlh-30::GFP::3XFLAG::rab-3 3’UTR + pLP24/unc-122p::RFP) generation; 10X backcrossed to N2-CK
, . Refer to Methods for strain
LRL138 llcls4 (pLP27/rab-3p::hlh-30::GFP::3XFLAG::rab-3 3'UTR + pLP24/unc-122p::RFP) generation; 10X backcrossed to N2-CK
hih-30 (tm1978)IV; .
S llcis2(pLP27/rab-3p::hlh-30::GFP::3XFLAG::rab-3 3'UTR + pLP24/unc-122p::RFP) LRL31 X LRL136 (Line 1)
hlh-30 (tm1978)IV; .
SRRy licis3(pLP27/rab-3p::hIh-30::GFP::3XFLAG :rab-3 3'UTR + pLP24/unc-122p::RFP) LRL31 X LRL137 (Line 2)
hlh-30 (tm1978)IV; .
LRSS llcis4(pLP27/rab-3p::hIh-30::GFP::3XFLAG::rab-3 3'UTR + pLP24/unc-122p::RFP) LRL31 X LRL138 (Line 3)
daf-2(e1370); hih-30 (tm1978)IV: ‘
LRL146 X LRL46 (Line 1
LRL167 licls2(pLP27/rab-3p::hih-30::GFP::3XFLAG::rab-3 3'UTR + pLP24/unc-122p::RFP) (Line 1)
daf-2(e1370); hih-30 (tm1978)IV: ‘
LRL147 X LRL46 (Line 2
LRL168 licls3(pLP27/rab-3p::hih-30::GFP::3XFLAG::rab-3 3'UTR + pLP24/unc-122p::RFP) (Line 2)
daf-2(e1370); hih-30 (tm1978)IV; .
LRL148 X LRL46 (Line 3
LRL169 licis4(pLP27/rab-3p::hlh-30::GFP::3XFLAG::rab-3 3'UTR + pLP24/unc-122p::RFP) (Line 3)
hih-30(tm1978)IV; daf-16(mu86)I;
LRL147 x LRL130
LRL196 licls3(pLP27/rab-3p::hlh-30::GFP::3XFLAG::rab-3 3'UTR + pLP24/unc-122p::RFP) X
LRL200 cls4251 [(pSAK2) myo—3p::GFP::LacZ.;I}\,I_L;O-I(--F();;.ISAK4) myo-3p::mitochondrial GFP + $D1347, 4X backcrossed to N2-CK
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Supplemental Table 4 (continued)

New strains used in this study
Strain Name Genotype Comments
hlh-30 (tm1978)IV; cls4251 [(pSAK2) myo-3p::GFP::LacZ::NLS + (pSAK4) myo-
LRL31 x LRL200
LRL201 3p::mitochondrial GFP + dpy-20(+)]! X
LRL204 myo-3(st386)V; stEx30 (myo-3p::GFP::myo-3 + rol-6(su1006)) RW1596, 4X backcrossed to N2-CK
LRL207 WO06A11.1(tm4056)!! FX4056, 4X backcrossed to N2-CK
LRL208 hlh-30(tm1978)IV; myo-3(st386)V; stEx30 (myo-3p::GFP::myo-3 + rol-6(su1006)) LRL31 x LRL204
hlh-30 (tm1978)IV; licls3(pLP27/rab-3p::hlh-30::GFP::3XFLAG::rab-3 3'UTR +
LRL212 pLP24/unc-122p::RFP); cls4251 [(pSAK2) myo-3p::GFP::LacZ::NLS + (pSAK4) myo- LRL147 x LRL201
3p::mitochondrial GFP + dpy-20(+)]!
LRL216 hlh-30(tm1978)IV; W06A11.1(tm4056)I! LRL31 x LRL207
hih-30 (tm1978)IV: licis3(pLP27/rab-3p::hih-30::GFP::3XFLAG::rab-3 3'UTR +
LRL217 pLP24/unc-122p::RFP); myo-3(st386)V; stEx30 (myo-3p::GFP::myo-3 + rol-6(su1006)) LRL147x LRL208
hIh-30(tm1978)IV; WO6A11.1(tm4056)l;
e llcis3(pLP27/rab-3p::hlh-30::GFP::3XFLAG::rab-3 3'UTR + pLP24/unc-122p::RFP) LRL147x LRL216
LRL219 unc-13(e1091)! CB1091, 4X backcrossed to N2-CK
LRL220 unc-31(e928)IV DAS509, 4X backcrossed to N2-CK
LRL222 hlh-30(tm1978)IV; unc-13(e1091)! LRL31 x LRL219
unc-13(e1091)I; cls4251 [(pSAK2) myo-3p::GFP::LacZ::NLS + (pSAK4) myo-
LRL200 x LRL219
LRL223 3p::mitochondrial GFP + dpy-20(+)]! X
LRL227 hlh-30 (tm1978)IV; licls3(pLP27/rab-3p::hlh-30::GFP::3XFLAG::rab-3 3'UTR + LRL147 x LRL222
pLP24/unc-122p::RFP); unc-13(e1091)!
unc-31(e928)1V; cls4251 [(pSAK2) myo-3p::GFP::LacZ::NLS + (pSAK4) myo-
LRL200 x LRL220
LRL228 3p::mitochondrial GFP + dpy-20(+)]! X
LRL229 hih-30(tm1978)IV; unc-31(e928)IV LRL31 x LRL220
hlh-30 (tm1978)IV; licls3(pLP27/rab-3p::hlh-30::GFP::3XFLAG::rab-3 3'UTR +
LRL147 x LRL229
LRL230 pLP24/unc-122p::RFP); unc-31(e928)IV X
hlh-30 (tm1978)IV; cls4251 [(pSAK2) myo-3p::GFP::LacZ::NLS + (pSAK4) myo-
LRL201 x LRL216
it 3p::mitochondrial GFP + dpy-20(+)]l; WO6A11.1(tm4056)Il X
hlh-30 (tm1978)IV; licls3(pLP27/rab-3p::hlh-30::GFP::3XFLAG::rab-3 3'UTR +
LRL232 pLP24/unc-122p::RFP); cls4251 [(pSAK2) myo-3p::GFP::LacZ::NLS + (pSAK4) myo- LRL212 x LRL218
3p::mitochondrial GFP + dpy-20(+)]l; WO6A11.1(tm4056)Il
hlh-30 (tm1978)IV; licls3(pLP27/rab-3p::hlh-30::GFP::3XFLAG::rab-3 3'UTR +
LRL238 pLP24/unc-122p::RFP); cls4251 [(pSAK2) myo-3p::GFP::LacZ::NLS + (pSAK4) myo- LRL212 x LRL230
3p::mitochondrial GFP + dpy-20(+)]l; unc-31(e928)IV
WO06A11.1(tm4056)ll; cls4251 [(pSAK2) myo-3p::GFP::LacZ::NLS + (pSAK4) myo-
LRL200 x LRL207
LRL239 3p::mitochondrial GFP + dpy-20(+)]I X
hih-30 (tm1978)IV; licls3(pLP27/rab-3p::hlh-30::GFP::3XFLAG::rab-3 3'UTR +
LRL240 pLP24/unc-122p::RFP); cls4251 [(pSAK2) myo-3p::GFP::LacZ::NLS + (pSAK4) myo- LRL212 x LRL227
3p::mitochondrial GFP + dpy-20(+)]l; unc-13(e1091)!
hlh-30 (tm1978)1V; cls4251 [(pSAK2) myo-3p::GFP::LacZ::NLS + (pSAK4) myo-
LRL201 x LRL229
LRL241 3p::mitochondrial GFP + dpy-20(+)]l; unc-31(e928)IV X
hlh-30 (tm1978)1V; cls4251 [(pSAK2) myo-3p::GFP::LacZ::NLS + (pSAK4) myo-
LRL201 x LRL222
LRL242 3p::mitochondrial GFP + dpy-20(+)]l; unc-13(e1091)! X

Supplemental Table 4. Strains used in the study




Supplemental Table 4 (continued)

New strains used in this study
Strain Name Genotype Comments
LRL244 IIcEx61 (pLP30/WO6A11.1p::WO6A11.1::DsRed + pLP7/myo-2p::GFP) Line 1; Refer to Methods for strain
generatlon
LRL245 IIcEX62 (pLP30/WO6A11.1p::WO6A11.1::DsRed + pLP7/myo-2p::GFP) Line 2; Refer to Methods for strain
generatlon
WO06A11.1(tm4056)Il; unc-13(e1091)I; cls4251 [(pSAK2) myo-3p::GFP::LacZ::NLS +
LRL207 x LRL223
LRL247 (pSAK4) myo-3p::mitochondrial GFP + dpy-20(+)]! X
llcEx61 (pLP30/W06A11.1p::W06A11.1::DsRed + pLP7/myo-2p::GFP); cIs4251 [(pSAK2)
LRL200 x LRL244
LRL248 myo-3p::GFP::LacZ::NLS + (pSAK4) myo-3p::mitochondrial GFP + dpy-20(+)]! X
EB5E WO06A11.1(tm4056)ll; lIcEx61 (pLPsoélg{gg?;)l.1p::W06A11.1::DsRed + pLP7/myo- LRL207 x LRL244

Supplemental Table 4. Strains used in the study




Supplemental Table 5

Primers used for cloning

Primer | Direction Sequence (5’ to 3’) Purpose
LC127 Forward GGTGGTGGTACCATGGCCGGCGATTATAAGGA Cloning of 3xFLAG-tag from pLP15 (Addgene plasmid
#55180) with 5’ Kpnl and 3’ EcoRl sites, for insertion into

LC128 Reverse GGTGGTGAATTCTTAACCGGTCTTGTCGTCATCG Kpnl/EcoRI-digested pLP9 (Addgene plasmid #1497).

LC154 Forward TCAGGAGGACCCTTGGAGGGTACGGTACCATGGCCGATGAC | Cloning of hlh-30 coding sequence from C. elegans cDNA

with 5" Kpnl and 3’ Nael sites, for insertion into

LC155 Reverse | TCATGATCCTTATAATCGCCCGAAAAGTCCATGTGATAATGACC | Kpnl/Nael-digested pLP16 (pPD95.81_3XFLAG) vector.

LC184 Forward GCCCGAAAAGTCCATGTGATAATG Cloning of pPD95.81_hlh-30::3xFLAG, for insertion of

LC186/187-amplified GFP sequence between hlh-30 and
LC185 Reverse GATTATAAGGATCATGATGGTG 3xFLAG sequences via HiFi cloning.
LC186 . 4 | CATTATCACATGGACTTTTCGGGCTCGGGCTCGATGAGTAAAGG Cloning of GFP sequence from pLP19 (plasmid #836 (h/h-
orwar AGAAGAAC 17p::GFP) from Dr. Andrew Dillin, UC Berkeley), for
insertion between h/h-30 and 3xFLAG sequences of
CACCATCATGATCCTTATAATCCGAGCCCGAGCCTTTGTATAGTT | LC184/185-amplified pPD95.81_hlh-30::3xFLAG vector via
LC187 Reverse -
CATCCATGCCATG HiFi cloning.
LC143 Forward GGTGGTGCATGCGATCTTCAGATGGGAGCAGTG Cloning of rab-3 promoter from pLP17 (plasmid #462 (rab-
3p::sid-1) from Dr. Andrew Dillin, UC Berkeley) with 5’ Sphl
and 3’ Kpnl sites, for insertion into Sphl/Kpnl-digested

LC188 Reverse GGTGGTGGTACCCTGAAAATAGGGCTACTGTAG pPD95.81_h/h-30.’.’GFP.‘.’3XFLAG vector.

LC225 Forward GCGGCCCCTATTATTTTTGACACC Cloning of pLP21 (pPD95.81_rab-3p::hlh-30::3xFLAG) vector,

for replacement of unc-54 3’UTR sequence with LC227/228-

LC226 Reverse CACAAGTATTGATGAGCACGATGC amplified rab-3 3’UTR sequence via HiFi cloning.

LC227 Forward | GGTGTCAAAAATAATAGGGGCCGCGAAGCTCGAAGCGAATCC Cloning of rab-3 3°UTR from C. elegans gDNA, for
replacement of unc-54 3’UTR sequence in LC225/226-
amplified pPD95.81_rab-3p::hlh-30::3xFLAG vector via

LC228 Reverse GCATCGTGCTCATCAATACTTGTGCAGACCTCTGGAACTCTTC HiFi cloning.

LC341 Forward ATGGTGCGCTCCTCCAAGAAC Cloning of pLP26 (p62p::p62::dsRED) vector for the
replacement of p62p::p62 sequences with LC345/346-
amplified W06A11.1 coding and LC353/354-amplified

LC342 Reverse GTTAGCGTATCCATCGTTGTGAGTG WO06A11.1 promoter sequences via HiFi cIoning.

LC345 Forward ATGATCCGGCCATTACCATTTCTTC Cloning of W06A11.1 coding sequence from C. elegans
cDNA for the replacement of p62p::p62 sequences in

LC346 Reverse | GTTCTTGGAGGAGCGCACCATCGAGCCCGAGCCGAGCAAACGA LC341/342-amplified pLP26 (p62p::p62::dsRED) vector via

AGAATTGAGATGAC HiFi cloning.
Lc353 Forward | CACTCACAACGATGGATACGCTAACGAGAGCGGAAGACGATTT | (5ning of WOGA11.1 promoter sequence from C. elegans
TGGAGATAGACAGTG gDNA for the replacement of p62p::p62 sequences in
GAAATGGTAATGGCCGGATCATAATGTGTGCTCTGTGATGTAA | LC341/342-amplified pLP26 (p62p::p62::dsRED) vector via
LC354 Reverse CTGGC HiFi cloning.

Supplemental Table 5. Primers used in this study




Supplemental Table 5 (continued)

Primers used for genotyping

Primer | Direction Sequence (5’ to 3’) Purpose

LC106 Forward CAGATCCTCCTCCTACTTTCC
Genotyping of hlh-30(tm1978) deletion.

WT = 1273 bp, hih-30(tm1978) = 563 bp

LC80 Reverse CTAGCCGATCCGACCGAGAA
LC203 Forward GCGTACTCCTCATCCAGCGATC
Amplification of gDNA region with
daf-2(e1370) point mutation (726 bp)
LC204 Reverse CCATCGAGATCTCGCCGC
LC199 Forward GAATCCGTATTCCGACGTTC Confirmation of daf-z(e1370) mutat!on in LC203/204
amplicons by sequencing
LC231 Forward CACTGTCTACCTCTCCTCCTG

Genotyping of daf-16(mu86) deletion.
LC232 Reverse GCGTCAGTTCCGATCTGATATGAAC LC231/232 = WT (693 bp), LC231/233 = daf-16(mu86);
based on thermocycling conditions used in this study

LC233 Reverse CGTTATCAAATGCTCCTTGCATTGAATC
LC294 Forward GCCCAACATCTTCCCAAGCATG Amplification of gDNA region with
unc-13(e1091) point mutation (328 bp) and allele

LC295 Reverse CTCTTCCTGTCCTTCTTCGTAGCC confirmation by sequencing with LC294
LC296 Forward AACCAAGACGACCGATCAGT

Genotyping of W06A11.1(tm4056) deletion.

WT = 780 bp, WO06A11.1(tm4056) = 494 bp
LC297 Reverse GGCGCACGAACACACGCATA
LC312 Forward GCCACAGGTCAAGCCTATAA

Genotyping of unc-31(e928) deletion.

WT = 1197 bp, unc-31(e928) = no product

LC313 Reverse TGAGCCGGACTAACATCAATAC

Primers used for qPCR

Primer | Direction Sequence (5’ to 3’) Purpose
LL7 Forward
TGGAACTCTGGAGTCACACC For comparing expression levels of the housekeeping gene,
ama-1. Used for normalization.
LL8 Reverse CATCCTCCTTCATTGAACGG
LL9 Forward
CTGCTGGACAGGAAGATTACG For comparing expression levels of the housekeeping gene,
cdc-42. Used for normalization.
LL10 Reverse CTCGGACATTCTCGAATGAAG
LL11 Forward
GTTCCCGTGTTCATCACTCAT For comparing expression levels of the housekeeping gene,
pmp-3. Used for normalization.
LL12 Reverse ACACCGTCGAGAAGCTGTAGA
LL624 Forward CCGACGAGTTCGATCGAC
For comparing hlh-30 expression levels
LL626 Reverse GTCGGCGTTCAATCATATTGTG

Supplemental Table 5. Primers used in this study
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