

Supplemental Figure 1. Neuronal HLH-30/TFEB does not regulate normal lifespan.

Lifespan analyses of *hlh-30(tm1978)* mutants (non-transgenic (non-Tg) siblings and *hlh-30(tm1978)*) rescued with (**a to c**) extrachromosomal (Tg, transgenic) and (**d and e**) integrated arrays driving HLH-30/TFEB expression in neurons on OP50 at 25°C. Animals were developed at 20°C and shifted to 25°C on OP50 from day 1 of adulthood. Data are representatives of (**a**) 4 , (**b** and **c**) single, and (**d** and **e**) 3 independent replicates, and comparisons were made by Mantel-Cox log-rank. Further details about lifespan analyses are provided in Supplemental Table 1. (**f**) Relative *hlh-30* expression levels of wildtype and independently-derived lines 1 and 2 of neuronal HLH-30/TFEB rescued animals which respectively exhibited absence and presence of lifespan extension in comparison to *hlh-30(tm1978)* mutants. Animals were developed at 20°C to day 1 of adulthood on OP50. Data is representative of 3 independent replicates and comparisons were made by Kruskal-Wallis (expression normalized to wildtype and presented as mean \pm S.D; n.s, *p*≥0.05; **, *p*<0.01)

Supplemental Figure 2. Neuronal HLH-30/TFEB regulates longevity.

(a and b) Lifespan analyses of daf-2(e1370), daf-2(e1370);hlh-30(tm1978), and neuronal HLH-30/TFEB rescued daf-2(e1370);hlh-30(tm1978) animals fed OP50 at 25°C. Animals were developed at 20°C and shifted to 25°C on OP50 from day 1 of adulthood. Data are representatives of 3 independent replicates, and comparisons were made by Mantel-Cox log-rank. Further details about lifespan analyses are provided in Supplemental Table 2. (c) Relative hlh-30 expression levels of wildtype, daf-2(e1370), and independently-derived lines 1 and 2 of neuronal HLH-30/TFEB rescued daf-2(e1370);hlh-30(tm1978) animals developed at 20°C to day 1 of adulthood on OP50. Data is representative of 3 independent replicates and comparisons were made by oneway ANOVA (expression normalized to daf-2(e1370) and presented as mean \pm S.D; n.s, $p \ge 0.05$; ****, p < 0.0001).

С

e

g

1

Hours of heat stress (37C)

Supplemental Figure 3. Neuronal HLH-30/TFEB mediates thermoresistance in normal but not longevity-promoting conditions.

(a) *hlh-30(tm1978)* mutants ubiquitously rescued with HLH-30::GFP were developed at 20°C to day 1 of adulthood and imaged at 20°C and after 3 hours of heat stress at 37°C. Arrowheads indicate intestinal nuclear enrichment of HLH-30::GFP. (b) *hlh-30(tm1978)* mutants neuronally rescued with HLH-30::GFP were developed at 20°C to day 1 of adulthood and imaged for head neurons at 20°C and after 3 hours of heat stress at 37°C. Neuronal nuclei are indicated by red arrows in enlarged images on the right. Scale bars = 20 μ M. Survival analyses of neuronal HLH-30/TFEB rescued animals in comparison to their (c and d) wildtype and *hlh-30(tm1978)* and (e and f) *daf-2(e1370)* and *daf-2(e1370);hlh-30(tm1978)* controls at 37°C heat stress. (g) Survival analyses of neuronal HLH-30/TFEB overexpressing (OE) animals in comparison to their wildtype controls at 37°C heat stress. Animals were developed at 20°C and shifted to heat stress at 37°C on day 1 of adulthood. Data are representatives of (c and d) single experiments and (e to g) 2 independent replicates and comparisons were made by Mantel-Cox log-rank (*n* = 90-100/strain; n.s, *p*≥0.05; *, *p*<0.05; in comparison to (c and d) *hlh-30(tm1978)*, (e and f) *daf-2(e1370);hlh-30(tm1978)*) or (g) wildtype animals.

hlh-30(tm1978) (37°C vs 20°C)

Neuronal HLH-30 rescue (37°C vs 20°C)

 Not Significantly changed
Upregulated Downregulated

Condition

Control (20°C)

15

10

b

Wildtype (37°C vs 20°C) Top 15 terms (q-value <0.05)

hlh-30(tm1978) (37°C vs 20°C)

Neuronal HLH-30 rescue (37°C vs 20°C)

Normalized Enrichment Score (NES)

Supplemental Figure 4. Heat stress-induced transcriptional wildtype, changes in hlh-30(tm1978), and neuronal HLH-30/TFEB rescued animals. (a) Volcano plots indicating the upregulation of heat stress-induced heat shock protein (hsp) genes in wildtype, hlh-30(tm1978), and neuronal HLH-30/TFEB rescued animals from 37°C (heat stress) in comparison to 20°C (control conditions). Horizontal dotted line indicates adjusted pvalue <0.05. Vertical dotted lines indicate >1.0 and <1.0 Log₂ fold change. (b) Heat map showing the regularized log transformed gene counts clustering (rlog) of animals within 20°C (control) and 37°C (heat stress) conditions regardless of genotypes, and the upregulation of significant (adjusted p-value <0.05, Log₂ fold change >1) hsp genes in heat stressed groups. (c) Gene set enrichment analysis plots of the top 15 most significantly-enriched Gene Ontology Biological Processes terms (q <0.05) from wildtype, hlh-30(tm1978), and neuronal HLH-30/TFEB rescued animals at 37°C (heat stress) in comparison to 20°C (control conditions). Negative and positive normalized enrichment scores (NES) indicate respective down- and upregulation of enriched processes with heat stress. Animals from 4 independent replicates were developed at 20°C to day 1 of adulthood and harvested for RNA after 3 hrs of further growth at 20°C or 37°C.

Wildtype (37°C vs 20°C)

Count

100

200

300

FDR q-value

0.2

0.4

0.6

0.8

Normalized Enrichment Score (NES)

Regulation of autophagy of mitochondrion Negative regulation of autophagosome assembly Negative regulation of autophagy Negative regulation of macroautophagy Chaperone mediated autophagy Regulation of autophagy of mitochondrion in response to mitochondrial depolarization Positive regulation of autophagy Process utilizing autophagic mechanism Positive regulation of macroautophagy

Normalized Enrichment Score (NES)

Supplemental Figure 5. Analysis of heat stress-induced autophagy-related changes and downregulated differentially expressed genes.

(a) Gene set enrichment analysis plots of Gene Ontology Biological Processes terms related to autophagy from wildtype, *hlh-30(tm1978)*, and neuronal HLH-30/TFEB rescued animals at 37°C (heat stress) in comparison to 20°C (control conditions). Note that although negative and positive normalized enrichment scores (NES) indicate respective down- and upregulation of indicated autophagic processes, none of these were significantly enriched with heat stress exposure across genotypes ($q \ge 0.05$). (b) Genes downregulated by 37°C (heat stress) in comparison to 20°C (control conditions) for each genotype were overlapped to extract significant heat stress-specific differentially expressed genes (adjusted *p*-value <0.05) unique to or more downregulated (Log₂ fold change (LogFC) thresholds applied as indicated) in wildtype and neuronal HLH-30/TFEB rescued animals than *hlh-30(tm1978)* mutants. Animals from 4 independent replicates were developed at 20°C to day 1 of adulthood and harvested for RNA after 3 hrs of further growth at 20°C (control conditions) or 37°C (heat stress).

Supplemental Figure 6. Mitochondrial fragmentation is mechanistically important for thermoresistance.

(a) Representative images of muscle mitochondrial morphology with the body wall muscle mitochondrial reporter (Mito::GFP) in wildtype animals fed control RNAi (*L4440*) or RNAi against *drp-1* or *eat-3* at 20°C (control conditions) or after 5 hrs heat stress at 37°C heat stress, and (b) corresponding analysis of mitochondrial connectivity after heat stress. Data are representatives of 3 independent replicates (n = 30, number of ROIs = 118 - 193) and comparisons were made by Mann-Whitney for each mitochondrial feature (presented as mean ± S.D; n.s, $p \ge 0.05$; *, p < 0.05; **, p < 0.01; ***, p < 0.001). Survival analyses of neuronal HLH-30/TFEB animals fed control RNAi (*L4440*) or RNAi against (c) *drp-1* and *eat-3*, or (d) *fis-1*, *fis-2*, *mff-1*, and *mff-2* at 37°C heat stress. Data are representatives of 2 independent replicates (a, n = 90/RNAi; b, n = 84 - 87/RNAi) and comparisons were made by Mantel-Cox log-rank (*, p < 0.05; in comparison to control RNAi). All animals were developed at 20°C to the L4 larval stage on OP50, transferred onto bacteria expressing RNAi for 48 hrs, and exposed to 37°C heat stress for (**a and b**) 5 hrs or (**c and d**) until death.

• Control • W06A11.1(tm4056)

Supplemental Figure 7. Neuronal HLH-30/TFEB mediates thermoresistance through W06A11.1-dependent peripheral mitochondrial fragmentation.

(a) Survival analyses of wildtype, *hlh-30(tm1978)*, and neuronal HLH-30/TFEB rescued animals fed control RNAi (*L4440*, solid lines) or RNAi against *W06A11.1* (dotted lines) at 37°C heat stress. Animals developed at 20°C to day 1 of adulthood on OP50 were transferred onto bacteria expressing RNAi, grown at 25°C for 48 hr, and exposed to 37°C heat stress until death. Data is representative of 2 independent replicates (n = 83 - 99/RNAi/strain) and comparisons were made by Mantel-Cox log-rank (n.s, $p \ge 0.05$; *, p < 0.05; in comparison to control RNAi). (**b to d**) Analysis of mitochondrial connectivity in the absence and presence of *W06A11.1(tm4056)* loss of function after 37°C heat stress for 3 hrs in (**b**) wildtype, (**c**) *hlh-30(tm1978)* loss of function mutants, and (**d**) neuronal HLH-30/TFEB rescued animals developed at 20°C to day 1 of adulthood. Data are representatives of 3 independent replicates (per strain; n = 30, number of ROIs = 88 – 171) and comparisons were made by Mann-Whitney for each mitochondrial feature (presented as mean ± S.D; n.s, $p \ge 0.05$; *, p < 0.01; ***, p < 0.001; ****, p < 0.001).

● *W06A11.1* OE (non-Tg)

W06A11.1 OE (Tg)

Supplemental Figure 8. W06A11.1 mediates thermoresistance through mitochondrial fragmentation.

(a) *hlh-30(tm1978)* mutants overexpressing extrachromosomal W06A11.1::DsRed at 20°C (control conditions) and after 37°C heat stress for 5 hrs. Scale bars = 100 µM, images in left column; scale bars = 20 µM, enlarged insets of head regions (I and II). (b) Survival analyses of wildtype, with wildtype animals overexpressing extrachromosomal W06A11.1::DsRed (*W06A11.1* OE (*Tg*)) and their non-transgenic (non-Tg) siblings at 37°C heat stress. Data is from an independent replicate and comparisons were made by Mantel-Cox log-rank (n = 60/strain; *, p<0.05; comparison of wildtype and *W06A11.1* OE (non-Tg) animals to *W06A11.1* OE (Tg)). (c) Representative images of muscle mitochondrial morphology with the body wall muscle mitochondrial reporter (Mito::GFP) in *W06A11.1* OE Tg and non-Tg siblings at 20°C. (d) Analysis of mitochondrial connectivity in *W06A11.1* OE Tg and non-Tg siblings at 20°C. Data are representatives of 2 independent replicates (per strain; n = 30, number of ROIs = 157 – 167) and comparisons were made by Mann-Whitney for each mitochondrial feature (presented as mean ± S.D; n.s, p≥0.05; ****, p<0.0001). All animals were developed at 20°C to day 1 of adulthood and where indicated, were further exposed to 37°C heat stress for (a) 5 hrs, (b) until death, or (c and d) 3 hrs.

Supplemental Figure 9. Neuronal HLH-30/TFEB does not mediate mitochondrial fragmentation-dependent thermoresistance through dense core vesicle (DCV) release.

(a) Survival analyses of wildtype, *hlh-30(tm1978)*, and neuronal HLH-30/TFEB rescued animals in the absence (solid lines) and presence (dotted lines) of *unc-31(e928)* loss of function at 37°C heat stress. Animals were developed at 20°C to day 1 of adulthood and exposed to 37°C heat stress until death. Data is representative of 3 - 4 independent replicates and comparisons were made by Mantel-Cox log-rank (n = 113 - 169/strain; *, p < 0.05; comparisons of *unc-31(e928)* to control per genotype). (b to d) Analysis of mitochondrial connectivity in the absence and presence of *unc-31(e928)* loss of function in (b) wildtype, (c) *hlh-30(tm1978)*, and (d) neuronal HLH-30/TFEB rescued animals developed at 20°C to day 1 of adulthood after 37°C heat stress for 3 hrs. Data are representatives of 3 independent replicates (per strain; n = 30, number of ROIs= 75 – 92) and comparisons were made by Mann-Whitney for each mitochondrial feature (presented as mean ± S.D; n.s, $p \ge 0.05$).

• Control • *unc-13(e1091)*

Supplemental Figure 10. Defective neurotransmission increases heat stress-induced mitochondria fragmentation in *hlh-30(tm1978)* mutants.

Analysis of mitochondrial connectivity in the absence and presence of *unc-13(e1091)* loss of function in **(a)** wildtype, **(b)** *hlh-30(tm1978)*, and **(c)** neuronal HLH-30/TFEB rescued animals developed at 20°C to day 1 of adulthood after 37°C heat stress for 3 hrs. Data are representatives of 3 - 5 independent replicates (per strain; n = 30 - 50; number of ROIs = 87 - 196) and comparisons were made by Mann-Whitney for each mitochondrial feature (presented as mean ± S.D; n.s, $p \ge 0.05$; *, p < 0.05; ***, p < 0.001; ****, p < 0.001).

• W06A11.1(tm4056)

• W06A11.1(tm4056);unc-13(e1091)

Supplemental Figure 11. W06A11.1 mediates peripheral mitochondrial fragmentation by regulating neurotransmission.

Comparison of mitochondrial connectivity between *W06A11.1(tm4056)* and *W06A11.1(tm4056);unc-13(e1091)* animals developed at 20°C to day 1 of adulthood after 37°C heat stress for 3 hrs. Data are representatives of 2 - 3 independent replicates (per strain; n = 30; number of ROIs = 107 – 161) and comparisons were made by Mann-Whitney for each mitochondrial feature (presented as mean ± S.D; n.s, $p \ge 0.05$; *, p < 0.05; *, p < 0.01; ***, p < 0.001; ****, p < 0.001).

N2			hlh	-30(tm1	978)	Neuronal HLH-30 rescue strains					
Mean LS	EO	Strain	Mean LS	EO	% Difference to N2	Strain	Mean LS	EO	% Difference to hlh-30(tm1978)	p Value	Figure #
9.02	68	LRL81 (Non Tg)	6.9	83	-23.53	LRL81 (Tg)	7.34	68	6.42%	0.0012	
12.99	47	LRL81 (Non Tg)	9.57	74	-26.33%	LRL81 (Tg)	10.16	73	6.17%	0.0070	
10.79	93	LRL81 (Non Tg)	9.58	98	-11.21%	LRL81 (Tg)	10.14	86	5.85%	< 0.0001	S1a
9.48	74	LRL81 (Non Tg)	8.44	92	-0.10%	LRL81 (Tg)	8.96	71	6.16%	0.0086	
9.02	57	LRL82 (Non Tg)	6.86	88	-23.95%	LRL82 (Tg)	7.32	65	6.70%	0.0027	S1b
9.02	57	LRL83 (Non Tg)	6.94	84	-23.05%	LRL83 (Tg)	7.12	71	2.65%	0.0736	S1c
12.99	47 *	LRL31	9.46	59	-27.17%	LRL146 (Line 1)	9.71	77	2.64%	0.3818	
10.79	93	LRL31	9.32	93	-13.62%	LRL146 (Line 1)	9.29	89	-0.32%	0.4978	1b
9.48	74	LRL31	7.7	88	-18.78%	LRL146 (Line 1)	7.91	86	2.73%	0.2631	
12.99	47 *	LRL31	9.46	59	-27.17%	LRL147 (Line 2)	10.36	62	9.51%	< 0.0001	
10.79	93	LRL31	9.32	93	-13.62%	LRL147 (Line 2)	9.98	77	7.02%	< 0.0001	S1d
9.48	74	LRL31	7.7	88	-18.78%	LRL147 (Line 2)	8.7	75	12.99%	< 0.0001	
12.99	47 *	LRL31	9.46	59	-27.17%	LRL148 (Line 3)	9.49	48 *	0.32%	0.9957	
10.79	93	LRL31	9.32	93	-13.62%	LRL148 (Line 3)	8.93	82	-4.18%	0.0424	S1e
9.48	74	LRL31	7.7	88	-18.78%	LRL148 (Line 3)	7.56	75	-1.82%	0.5542	

Supplemental Table 1. Lifespan analyses of neuronal HLH-30/TFEB rescued animals in *hlh-30(tm1878)* background. Animals were raised at 20°C and grown at 25°C on OP50. Where indicated (*), low number of events observed (EO, <50) were due largely due to censoring of animals which were more susceptible to internal progeny hatching at 25°C. Statistical analyses: Mantel-Cox log-rank; Mean LS: Mean Lifespan. Refer to Supplemental Table 4 for additional strain information.

daf-2(e1370)III		daf-2(e1379)III; hlh-30(tm1978)IV			Neuronal HLH-30 rescue strains					
Mean LS	EO	Mean LS	EO	% Difference to <i>daf-2(e1370)III</i>	Strain	Mean LS	EO	% Difference to daf-2(e1370)III; hlh-30(tm1978)	p Value	Figure #
31.52	95	15.28	69	-51.52%	LRL167 (Line 1)	18.8	70	23.04%	< 0.0001	
28.35	72	13.06	50	-53.93%	LRL167 (Line 1)	22.07	70	68.98%	< 0.0001	1c
33.67	80	13.26	61	-60.62%	LRL167 (Line 1)	20.91	73	57.69%	< 0.0001	
31.52	95	15.28	69	-51.52%	LRL168 (Line 2)	19.35	84	26.64%	< 0.0001	
28.35	72	13.06	50	-53.93%	LRL168 (Line 2)	19.71	66	50.92%	< 0.0001	S2a
33.67	80	13.26	61	-60.62%	LRL168 (Line 2)	23.08	65	74.06%	< 0.0001	
31.52	95	15.28	69	-51.52%	LRL169 (Line 3)	18.07	61	18.26%	0.0009	
28.35	72	13.06	50	-53.93%	LRL169 (Line 3)	19.69	52	52.35%	< 0.0001	S2b
33.67	80	13.26	61	-60.62%	LRL169 (Line 3)	19.16	39 *	44.40%	< 0.0001	

Supplemental Table 2. Lifespan analyses of neuronal *hlh-30* rescued animals in *daf-2(e1370);hlh-30(tm1978)* background. Animals were raised at 20°C and grown at 25°C on OP50. Where indicated (*), low number of events observed (EO, <50) were due largely due to censoring of animals which were more susceptible to internal progeny hatching at 25°C. Statistical analyses: Mantel-Cox log-rank; Mean LS: Mean Lifespan. Refer to Supplemental Table 4 for additional strain information.

		Control RNAi		daf-16 RNAi					
Strain	Mean LS	EO	% Difference to daf-2(e1370)III	<i>p</i> Value	Mean LS	EO	% Difference to daf-2(e1370)III	<i>p</i> Value	Figure #
daf-2(e1370)	22.96	67			21.87	93			
daf-2(e1379)III; hlh-30(tm1978)IV	12.47	36 *	-45.69	< 0.0001	14.58	90	-33.33	< 0.0001	
Neuronal HLH-30 rescue (LRL167)	18.18	43 *	-20.82	0.0133	14.66	83	-32.97	< 0.0001	
daf-2(e1370)	31.24	82			20.16	74			
daf-2(e1379)III; hlh-30(tm1978)IV	15.05	37 *	-51.82	< 0.0001	15.02	61	-25.5	< 0.0001	1d
Neuronal HLH-30 rescue (LRL167)	25.19	43 *	-19.37	0.0019	14.5	46 *	-28.08	< 0.0001	
daf-2(e1370)III	27.27	61			15.90	61			
daf-2(e1379)III; hlh-30(tm1978)IV	13.09	20 *	-52	< 0.0001	12.86	60	-19.11	< 0.0001	
Neuronal HLH-30 rescue (LRL167)	18.54	40 *	-32.01	< 0.0001	12.92	57	-18.74	< 0.0001	

Supplemental Table 3. Lifespan analyses of neuronal hlh-30 rescued animals in

daf-2(e1370);hlh-30(tm1978) background on *daf-16* RNAi. Animals developed at 20°C on OP50 were transferred on day 1 of adulthood onto bacteria expressing RNAi and grown at 25°C. Where indicated (*), low number of events observed (EO, <50) were largely due to censoring of animals which were more susceptible to internal progeny hatching at 25°C. Statistical analyses: Mantel-Cox log-rank; Mean LS: Mean Lifespan. Refer to Supplemental Table 4 for additional strain information.

Published strains used in this study							
Strain Name	Genotype	Strain Origin					
N2-CK	Wildtype	Hansen Lab					
CF1041	daf-2 (e1370)III	Hansen Lab					
FX1978	hlh-30(tm1978)IV	National BioSource Project					
FX4056	W06A11.1(tm4056)II	National BioSource Project					
CF1038	daf-16(mu86)I	Caenorhabditis Genetics Center (CGC)					
SD1347	cls4251 [(pSAK2) myo-3p::GFP::LacZ::NLS + (pSAK4) myo-3p::mitochondrial GFP + dpy-20(+)]I	Caenorhabditis Genetics Center (CGC)					
RW1596	myo-3(st386)V;	Caenorhabditis Genetics Center (CGC)					
CB1091	unc-13(e1091)I	Caenorhabditis Genetics Center (CGC)					
DA509	unc-31(e928)/V	Caenorhabditis Genetics Center (CGC)					
New strains	used in this study						
Strain Name	Genotype	Comments					
LRL31	hlh-30(tm1978)IV	FX1978, 4X backcrossed to N2-CK					
LRL46	daf-2(e1370)III; hlh-30(tm1978)IV	LRL31 x CF1041					
LRL72	hlh-30(tm1978)IV; //cFx31 (nl P11/blb-30n::blb-30::GEP::unc-54 3/LITR + nl P24/unc-122n::REP)	Refer to Methods for strain generation					
	hlh-30(tm1978)IV;	Line 1: Refer to Methods for strain					
LRL81	llcEx33(pLP27/rab-3p::hlh-30::GFP::3XFLAG::rab-3 3'UTR + pLP24/unc-122p::RFP)	generation					
LRL82	hlh-30(tm1978)IV; llcEx34(pLP27/rab-3p::hlh-30::GFP::3XFLAG::rab-3 3'UTR + pLP24/unc-122p::RFP)	Line 2; Refer to Methods for strain generation					
LRL83	hlh-30(tm1978)IV; llcEx35(pLP27/rab-3p::hlh-30::GFP::3XFLAG::rab-3 3'UTR + pLP24/unc-122p::RFP)	Line 3; Refer to Methods for strain generation					
LRL130	hlh-30(tm1978)IV; daf-16(mu86)I	LRL31 x CF1038					
LRL136	llcls2(pLP27/rab-3p::hlh-30::GFP::3XFLAG::rab-3 3'UTR + pLP24/unc-122p::RFP)	Refer to Methods for strain generation; 10X backcrossed to N2-CK					
LRL137	llcls3(pLP27/rab-3p::hlh-30::GFP::3XFLAG::rab-3 3′UTR + pLP24/unc-122p::RFP)	Refer to Methods for strain generation; 10X backcrossed to N2-CK					
LRL138	llcls4 (pLP27/rab-3p::hlh-30::GFP::3XFLAG::rab-3 3'UTR + pLP24/unc-122p::RFP)	Refer to Methods for strain generation; 10X backcrossed to N2-CK					
LRL146	hlh-30 (tm1978)IV; llcls2(pLP27/rab-3p::hlh-30::GFP::3XFLAG::rab-3 3'UTR + pLP24/unc-122p::RFP)	LRL31 X LRL136 (Line 1)					
LRL147	hlh-30 (tm1978)IV; llcls3(pLP27/rab-3p::hlh-30::GFP::3XFLAG::rab-3 3'UTR + pLP24/unc-122p::RFP)	LRL31 X LRL137 (Line 2)					
LRL148	hlh-30 (tm1978)IV; llcls4(pLP27/rab-3p::hlh-30::GFP::3XFLAG::rab-3 3'UTR + pLP24/unc-122p::RFP)	LRL31 X LRL138 (Line 3)					
LRL167	daf-2(e1370); hlh-30 (tm1978)IV; llcls2(pLP27/rab-3p::hlh-30::GFP::3XFLAG::rab-3 3'UTR + pLP24/unc-122p::RFP)	LRL146 X LRL46 (Line 1)					
LRL168	daf-2(e1370); hlh-30 (tm1978)IV; llcls3(pLP27/rab-3p::hlh-30::GFP::3XFLAG::rab-3 3'UTR + pLP24/unc-122p::RFP)	LRL147 X LRL46 (Line 2)					
LRL169	daf-2(e1370); hlh-30 (tm1978)IV; llcls4(pLP27/rab-3p::hlh-30::GFP::3XFLAG::rab-3 3'UTR + pLP24/unc-122p::RFP)	LRL148 X LRL46 (Line 3)					
LRL196	hlh-30(tm1978)IV; daf-16(mu86)I; llcls3(pLP27/rab-3p::hlh-30::GFP::3XFLAG::rab-3 3'UTR + pLP24/unc-122p::RFP)	LRL147 x LRL130					
LRL200	cls4251 [(pSAK2) myo-3p::GFP::LacZ::NLS + (pSAK4) myo-3p::mitochondrial GFP + dpy-20(+)]l	SD1347, 4X backcrossed to N2-CK					

Supplemental Table 4. Strains used in the study

Supplemental Table 4 (continued)

New strains used in this study						
Strain Name	Genotype	Comments				
LRL201	hlh-30 (tm1978)IV; cls4251 [(pSAK2) myo-3p::GFP::LacZ::NLS + (pSAK4) myo- 3p::mitochondrial GFP + dpy-20(+)]I	LRL31 x LRL200				
LRL204	myo-3(st386)V; stEx30 (myo-3p::GFP::myo-3 + rol-6(su1006))	RW1596, 4X backcrossed to N2-CK				
LRL207	W06A11.1(tm4056)II	FX4056, 4X backcrossed to N2-CK				
LRL208	hlh-30(tm1978)IV;	LRL31 x LRL204				
LRL212	hlh-30 (tm1978)IV; llcIs3(pLP27/rab-3p::hlh-30::GFP::3XFLAG::rab-3 3'UTR + pLP24/unc-122p::RFP); cls4251 [(pSAK2) myo-3p::GFP::LacZ::NLS + (pSAK4) myo- 3p::mitochondrial GFP + dpy-20(+)]I	LRL147 x LRL201				
LRL216	hlh-30(tm1978)IV; W06A11.1(tm4056)II	LRL31 x LRL207				
LRL217	hlh-30 (tm1978)IV; llcIs3(pLP27/rab-3p::hlh-30::GFP::3XFLAG::rab-3 3'UTR + pLP24/unc-122p::RFP); myo-3(st386)V; stEx30 (myo-3p::GFP::myo-3 + rol-6(su1006))	LRL147 x LRL208				
LRL218	hlh-30(tm1978)IV; W06A11.1(tm4056)II ; llcls3(pLP27/rab-3p::hlh-30::GFP::3XFLAG::rab-3 3'UTR + pLP24/unc-122p::RFP)	LRL147 x LRL216				
LRL219	unc-13(e1091)I	CB1091, 4X backcrossed to N2-CK				
LRL220	unc-31(e928)IV	DA509, 4X backcrossed to N2-CK				
LRL222	hlh-30(tm1978)IV; unc-13(e1091)I	LRL31 x LRL219				
LRL223	unc-13(e1091)I; cls4251 [(pSAK2) myo-3p::GFP::LacZ::NLS + (pSAK4) myo- 3p::mitochondrial GFP + dpy-20(+)]I	LRL200 x LRL219				
LRL227	hlh-30 (tm1978)IV; llcls3(pLP27/rab-3p::hlh-30::GFP::3XFLAG::rab-3 3'UTR + pLP24/unc-122p::RFP); unc-13(e1091)I	LRL147 x LRL222				
LRL228	unc-31(e928)IV; cls4251 [(pSAK2) myo-3p::GFP::LacZ::NLS + (pSAK4) myo- 3p::mitochondrial GFP + dpy-20(+)]I	LRL200 x LRL220				
LRL229	hlh-30(tm1978)IV; unc-31(e928)IV	LRL31 x LRL220				
LRL230	hlh-30 (tm1978)IV; llcls3(pLP27/rab-3p::hlh-30::GFP::3XFLAG::rab-3 3'UTR + pLP24/unc-122p::RFP); unc-31(e928)IV	LRL147 x LRL229				
LRL231	hlh-30 (tm1978)IV; cls4251 [(pSAK2) myo-3p::GFP::LacZ::NLS + (pSAK4) myo- 3p::mitochondrial GFP + dpy-20(+)]I; W06A11.1(tm4056)II	LRL201 x LRL216				
LRL232	hlh-30 (tm1978)IV; llcIs3(pLP27/rab-3p::hlh-30::GFP::3XFLAG::rab-3 3'UTR + pLP24/unc-122p::RFP); cls4251 [(pSAK2) myo-3p::GFP::LacZ::NLS + (pSAK4) myo- 3p::mitochondrial GFP + dpy-20(+)]I; W06A11.1(tm4056)II	LRL212 x LRL218				
LRL238	hlh-30 (tm1978)IV; IlcIs3(pLP27/rab-3p::hlh-30::GFP::3XFLAG::rab-3 3'UTR + pLP24/unc-122p::RFP); cls4251 [(pSAK2) myo-3p::GFP::LacZ::NLS + (pSAK4) myo- 3p::mitochondrial GFP + dpy-20(+)]I; unc-31(e928)IV	LRL212 x LRL230				
LRL239	W06A11.1(tm4056)II; cIs4251 [(pSAK2) myo-3p::GFP::LacZ::NLS + (pSAK4) myo- 3p::mitochondrial GFP + dpy-20(+)]I	LRL200 x LRL207				
LRL240	hlh-30 (tm1978)IV; llcIs3(pLP27/rab-3p::hlh-30::GFP::3XFLAG::rab-3 3'UTR + pLP24/unc-122p::RFP); cls4251 [(pSAK2) myo-3p::GFP::LacZ::NLS + (pSAK4) myo- 3p::mitochondrial GFP + dpy-20(+)]I; unc-13(e1091)I	LRL212 x LRL227				
LRL241	hlh-30 (tm1978)IV; cls4251 [(pSAK2) myo-3p::GFP::LacZ::NLS + (pSAK4) myo- 3p::mitochondrial GFP + dpy-20(+)]I; unc-31(e928)IV	LRL201 x LRL229				
LRL242	hlh-30 (tm1978)IV; cls4251 [(pSAK2) myo-3p::GFP::LacZ::NLS + (pSAK4) myo- 3p::mitochondrial GFP + dpy-20(+)]I; unc-13(e1091)I	LRL201 x LRL222				

Supplemental Table 4. Strains used in the study

Supplemental Table 4 (continued)

New strains used in this study							
Strain Name	Genotype	Comments					
LRL244	llcEx61 (pLP30/W06A11.1p::W06A11.1::DsRed + pLP7/myo-2p::GFP)	Line 1; Refer to Methods for strain generation					
LRL245	llcEx62 (pLP30/W06A11.1p::W06A11.1::DsRed + pLP7/myo-2p::GFP)	Line 2; Refer to Methods for strain generation					
LRL247	W06A11.1(tm4056)II; unc-13(e1091)I; cls4251 [(pSAK2) myo-3p::GFP::LacZ::NLS + (pSAK4) myo-3p::mitochondrial GFP + dpy-20(+)]I	LRL207 x LRL223					
LRL248	<pre>IlcEx61 (pLP30/W06A11.1p::W06A11.1::DsRed + pLP7/myo-2p::GFP); cls4251 [(pSAK2) myo-3p::GFP::LacZ::NLS + (pSAK4) myo-3p::mitochondrial GFP + dpy-20(+)]I</pre>	LRL200 x LRL244					
LRL253	W06A11.1(tm4056)II;	LRL207 x LRL244					

Supplemental Table 4. Strains used in the study

Primers used for cloning						
Primer	Direction	Sequence (5' to 3')	Purpose			
LC127	Forward	GGTGGTGGTACCATGGCCGGCGATTATAAGGA	Cloning of 3xFLAG-tag from pLP15 (Addgene plasmid			
LC128	Reverse	GGTGGTGAATTCTTAACCGGTCTTGTCGTCATCG	Kpnl/EcoRI-digested pLP9 (Addgene plasmid #1497).			
LC154	Forward	TCAGGAGGACCCTTGGAGGGTACGGTACCATGGCCGATGAC	Cloning of <i>hlh-30</i> coding sequence from <i>C. elegans</i> cDNA			
LC155	Reverse	TCATGATCCTTATAATCGCCCGAAAAGTCCATGTGATAATGACC	Kpnl/Nael-digested pLP16 (pPD95.81_ <i>3XFLAG)</i> vector.			
LC184	Forward	GCCCGAAAAGTCCATGTGATAATG	Cloning of pPD95.81_ <i>hlh-30::3xFLAG</i> , for insertion of			
LC185	Reverse	GATTATAAGGATCATGATGGTG	3xFLAG sequences via HiFi cloning.			
LC186	Forward	CATTATCACATGGACTTTTCGGGCTCGGGCTCGATGAGTAAAGG AGAAGAAC	Cloning of <i>GFP</i> sequence from pLP19 (plasmid #836 (<i>hlh-17p::GFP</i>) from Dr. Andrew Dillin, UC Berkeley), for			
LC187	Reverse	CACCATCATGATCCTTATAATCCGAGCCCGAGCCTTTGTATAGTT CATCCATGCCATG	LC184/185-amplified pPD95.81_ <i>hlh-30::3xFLAG</i> vector via HiFi cloning.			
LC143	Forward	GGTGGTGCATGCGATCTTCAGATGGGAGCAGTG	Cloning of <i>rab-3</i> promoter from pLP17 (plasmid #462 (<i>rab-3p::sid-1</i>) from Dr. Andrew Dillin, UC Berkeley) with 5' SphI			
LC188	Reverse	GGTGGTGGTACCCTGAAAATAGGGCTACTGTAG	and 3' Kpnl sites, for insertion into Sphl/Kpnl-digested pPD95.81_ <i>hlh-30::GFP::3xFLAG</i> vector.			
LC225	Forward	GCGGCCCCTATTATTTTTGACACC	Cloning of pLP21 (pPD95.81_ <i>rab-3p::hlh-30::3xFLAG</i>) vector,			
LC226	Reverse	CACAAGTATTGATGAGCACGATGC	amplified <i>rab-3 3'UTR</i> sequence via HiFi cloning.			
LC227	Forward	GGTGTCAAAAATAATAGGGGCCGCGAAGCTCGAAGCGAATCC	Cloning of <i>rab-3 3'UTR</i> from <i>C. elegans</i> gDNA, for replacement of <i>unc-54</i> 3'UTR sequence in LC225/226-			
LC228	Reverse	GCATCGTGCTCATCAATACTTGTGCAGACCTCTGGAACTCTTC	amplified pPD95.81_ <i>rab-3p::hlh-30::3xFLAG</i> vector via HiFi cloning.			
LC341	Forward	ATGGTGCGCTCCTCCAAGAAC	Cloning of pLP26 (<i>p62p::p62::dsRED</i>) vector for the replacement of <i>p62p::p62</i> sequences with LC345/346-			
LC342	Reverse	GTTAGCGTATCCATCGTTGTGAGTG	amplified <i>W06A11.1</i> coding and LC353/354-amplified <i>W06A11.1</i> promoter sequences via HiFi cloning.			
LC345	Forward	ATGATCCGGCCATTACCATTTCTTC	Cloning of <i>W06A11.1</i> coding sequence from <i>C. elegans</i> cDNA for the replacement of <i>p62p::p62</i> sequences in			
LC346	Reverse	GTTCTTGGAGGAGCGCACCATCGAGCCCGAGCCGAGCAAACGA AGAATTGAGATGAC	LC341/342-amplified pLP26 (<i>p62p::p62::dsRED</i>) vector via HiFi cloning.			
LC353	Forward	CACTCACAACGATGGATACGCTAACGAGAGCGGAAGACGATTT TGGAGATAGACAGTG	Cloning of <i>W06A11.1</i> promoter sequence from <i>C. elegans</i> gDNA for the replacement of <i>p62p::p62</i> sequences in			
LC354	Reverse	GAAATGGTAATGGCCGGATCATAATGTGTGCTCTGTGATGTAA CTGGC	LC341/342-amplified pLP26 (<i>p62p::p62::dsRED</i>) vector via HiFi cloning.			

Supplemental Table 5. Primers used in this study

Supplemental Table 5 (continued)

Primers used for genotyping						
Primer	Direction	Sequence (5' to 3')	Purpose			
LC106	Forward	CAGATCCTCCTCCTACTTTCC	Genotyping of <i>hlh-30(tm1978)</i> deletion.			
LC80	Reverse	CTAGCCGATCCGACCGAGAA	WT = 1273 bp, <i>hlh-30(tm1978)</i> = 563 bp			
LC203	Forward	GCGTACTCCTCATCCAGCGATC	Amplification of gDNA region with			
LC204	Reverse	CCATCGAGATCTCGCCGC	<i>daf-2(e1370)</i> point mutation (726 bp)			
LC199	Forward	GAATCCGTATTCCGACGTTC	Confirmation of <i>daf-2(e1370)</i> mutation in LC203/204 amplicons by sequencing			
LC231	Forward	CACTGTCTACCTCTCCTCG				
LC232	Reverse	GCGTCAGTTCCGATCTGATATGAAC	Genotyping of <i>daf-16(mu86)</i> deletion. LC231/232 = WT (693 bp), LC231/233 = <i>daf-16(mu86)</i> ; based on thermocycling conditions used in this study.			
LC233	Reverse	CGTTATCAAATGCTCCTTGCATTGAATC				
LC294	Forward	GCCCAACATCTTCCCAAGCATG	Amplification of gDNA region with			
LC295	Reverse	CTCTTCCTGTCCTTCTTCGTAGCC	confirmation by sequencing with LC294			
LC296	Forward	AACCAAGACGACCGATCAGT	Genotyping of <i>W06A11.1(tm4056)</i> deletion.			
LC297	Reverse	GGCGCACGAACACACGCATA	WT = 780 bp <i>, W06A11.1(tm4056)</i> = 494 bp			
LC312	Forward	GCCACAGGTCAAGCCTATAA	Genotyping of <i>unc-31(e928)</i> deletion.			
LC313	Reverse	TGAGCCGGACTAACATCAATAC	WT = 1197 bp <i>, unc-31(e928)</i> = no product			
		Primers used for qP0	CR			
Primer	Direction	Sequence (5' to 3')	Purpose			
LL7	Forward	TGGAACTCTGGAGTCACACC	For comparing expression levels of the housekeeping gene,			
LL8	Reverse	CATCCTCCTTCATTGAACGG	ama-1. Used for normalization.			
LL9	Forward	CTGCTGGACAGGAAGATTACG	For comparing expression levels of the housekeeping gene,			
LL10	Reverse	CTCGGACATTCTCGAATGAAG	<i>cdc-42</i> . Used for normalization.			
LL11	Forward	GTTCCCGTGTTCATCACTCAT	For comparing expression levels of the housekeeping gene,			
LL12	Reverse	ACACCGTCGAGAAGCTGTAGA	pmp-3. Used for normalization.			
LL624	Forward	CCGACGAGTTCGATCGAC	For comparing blb 20 overcosion lovels			
LL626	Reverse	GTCGGCGTTCAATCATATTGTG	For comparing <i>hlh-30</i> expression levels			