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Figure S1: Correlation of S0, diagnosed from EF (SdEF) and from SIF (SdSIF). Metrics of the
correlation are given by text annotation on top of the figures (RMSE is the root mean square
error). The dotted black line indicates the 1:1 line.
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Figure S2: Fraction of grid cells where a flattening relationship between EF and CWD was
detected (see Methods), in savannahs and outside (a) and depending on the irrigated area
fraction (b). ‘Savannah’ is taken as ‘Woody Savannah’ from MODIS MCD12C1 for year 2010
Friedl and Sulla-Menashe (2015). The fraction of irrigated areas is from Siebert et al. (2005),
taken as actually irrigated areas as a fraction of land area.
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Figure S3: Correlation of SdEF (a) and SdSIF (b) with SCWDX80. Metrics of the correlation are
given by text annotation on top of the figures (RMSE is the root mean square error). The
dashed black line indicates the 1:1 line.

Figure S4: Location and biome type of sites where rooting depth data is provided and used
here for comparison against zCWDX80. Biome classification was done based on Olson et al.
(2001).
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S1 Estimating return periods

Underlying the estimates of SCWDX80 is the assumption that plant rooting strategies
are reflected by CWD extremes with a return period T = 80 years. We analysed
the sensitivity of our estimates of CWD extremes to different choices of the extreme
event return interval T and how the different SCWDXT compare to SdSIF and SdEF.
As described in the main text, we found a clear tendency towards higher T emerges
with an increasing gridcell average forest cover fraction (Extended Data Fig. 4d)
and a tendency, albeit a weaker one, towards higher T in areas of subsurface water
convergence (measured by a high Compound Topograhy index, CTI).

In regions with a high forest cover fraction, S0 appears to be adapted to 500-year
and even rarer CWD events, while other regions are associated with lower values of
T . In other words, vegetation activity declines when plants experience a CWD ex-
treme that occurs with an expected return period, related to the life form of dominant
plants. S0 appears to be adapted to 500-year and even rarer events in regions with
a high forest cover fraction, but to lower T outside. A return period on the order of
multiple centuries is consistent with the typical lifetime of trees Brienen et al. (2020)
and suggests that optimal plant adaptation of life history strategies to a stochastic
environment may be understood as being governed by frequencies of climate extremes
in relation to the lifetime of affected organisms. Interestingly, substantial variations
in T remain even within land cover types (e.g., the boreal forests of Russia). This
variation may be related to the large-scale topographical setting and the tendency
towards shallow groundwater table depths, as measured by the CTI (Marthews et al.
(2015), Extended Data Fig. 4c). In such areas, vegetation appears to sustain particu-
larly rare CWD extremes (diagnosed here from its low sensitivity to CWD during the
observation period), possibly enabled by roots’ access to a relatively shallow saturated
zone.
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S2 Testing the method for diagnosing S0

To test the ability of our method to reliably diagnose the true S0 from EF and the
SIF, normalised by the shortwave radiation, we performed model simulations and
“reverse engineered” S0, prescribed to the model. For this, we used SPLASH Davis
et al. (2017), a relatively simple model for the surface water and energy exchanges
across the globe, requiring minimal inputs to be specified, and implemented as part of
the rsofun R package Stocker et al. (2021). The model simulates potential ET (PET)
as a function of net radiation and the energy demand for vaporization based on the
Priestly-Taylor Priestley and Taylor (1972). Actual ET (AET) is simulated as the
minimum of the “demand” from PET and the “supply”, which is a function of water
availability across the rooting zone. The water balance is simulated with infiltration
of liquid water given by precipitation plus snow melt, and runoff is generated when
a single rooting zone water storage capacity is saturated. This corresponds to a
“bucket-model” approach and relies on the depth of the bucket, reflecting S0, to be
specified a priori.

Three sets of point-scale model simulations were performed with forcings reflecting
the climate at the locations (N=1705) where rooting depth observations were given
as used in the main text of the present study. In the first two sets of simulations, S0

(bucket depth) was prescribed to 100 and 200 mm, respectively. In the third set of
simulations, S0 was prescribed to the value diagnosed from SdEF. Together, this allows
us to test how accurate the method is in diagnosing S0 from the relationship of the
evaporative fraction (EF) and the cumulative water deficit (CWD), and to evaluate
whether the reliability of the method is subject to the hydroclimate at different sites
and thus to the magnitude of water deficits. Diagnosing the real effective S0 from
remote sensing observations is additionally subject to uncertainty in estimates of ET,
P , etc. Diagnosing it from the model output allows us to test the method without
confounding effects by uncertain data. However, it should be noted that simulated
relationships are idealized and thus likely simpler to diagnose by our method than
real relationships.

Fig. S5 demonstrates that our method for diagnosing S0 yields accurate estimates
of the (prescribed) true S0. The accuracy is high both under a setup where the true
S0 is relatively small (100 mm) or large (200, see Fig. S5a), and performs reliably
across a large range of prescribed S0 and climates, capturing 88% of the prescribed
(true) variation in S0 across globally distributed sites (Fig. S5b). The method yields
accurate estimates also under conditions where the true S0 is large in comparison
to typical annual maximum CWD (see, e.g., ‘Tundra’, ‘Boreal Forests/Taiga’, or
‘Tropical Subtropical Moist Forests for simulations with prescribed S0 of 200 mm in
Fig. S5c).
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Figure S5: Method evaluation for diagnosing S0 for three sets of site-level simulations, where
S0 was prescribed to 100 mm and 200 mm (a, c), and to the value diagnosed based on the
evaporative fraction (SdEF) at site locations for which rooting depth observations were used in
the present study (b). The distrribution of values is given in (a) by violin plots. Numbers of data
points per bin are given above violin plots. The dotted black line in (b) indicates the 1:1 line.
Boxes in (c) represent the interquartile ranges of the values (Q25, Q75), and whiskers cover
Q25 − 1.5(Q75 −Q25) to Q75 +1.5(Q75 −Q25). Numbers of data points per bin are given next
to boxes.
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S3 Evaluating ET datasets

Unbiased estimates of ET during rain-free periods are essential for implying root-
ing depth following the method employed here. Various global ET data products
are available. The widely-used Priestly-Taylor (PT) model uses net radiation for
estimating the energy supply available for evapotranspiration. Additional empirical
scalars have to be applied to reduce ET estimates under water-limited conditions.
The Penman-Monteith (PM) model is conceptually related to the PT model, but
explicitly resolves effects of atmospheric dryness (vapour pressure deficit) and mul-
tiple conductance terms that control ET. As for the PT model, water stress effects
have to be factored in additionally, commonly by reducing the surface conductance
to transpiration.

The challenge with both PT and PM models is that water stress factors themselves
rely, either directly or indirectly, on assumptions regarding plant rooting depth and
are thus not suitable for use with the methods applied here. They would introduce
circular reasoning and the implied rooting depth would directly reflect the assump-
tions regarding rooting depth or sensitivity of conductance to water stress, introduced
in the PT and PM models themselves. Moreover, if rooting depth assumptions (and
thus assumptions of effective S0) are inaccurate, respective ET estimates should ex-
hibit a systematic bias related to the severity of water stress. A potential solution to
this problem is to rely on ET products that make no a priori assumptions regarding
rooting depth. Thermal infrared (TIR) -based methods rely primarily on land sur-
face and air properties for estimating ET. However, previous studies found generally
larger scatter in TIR-based ET estimates. For the present analysis, it’s particularly
important that estimates exhibit no systematic bias and that the bias is not related
to the duration of rain-free periods and the severity of water stress. Therefore, we
first tested a set of ET-based datasets with global coverage, before using the data for
the present analysis.

We evaluated the bias of modelled versus observed ET, measured with the eddy
covariance technique. The data were provided through the FLUXNET 2015 Tier
1 dataset Pastorello et al. (2021). To focus the evaluation on model performance
under water stress, we subset the data to sites and periods where clear effects of
water stress on photosynthetic light use efficiency have been identified Stocker et al.
(2018). Data were aligned by the onset of periods with apparent water stress effects
(droughts) to determine the “day into drought” (dday). Data were then normalised
to pre-drought levels, separately for each site, and aggregated across drought events
and years. Finally, we calculated quantiles of the normalised, aggregated bias versus
dday.

Fig. S6 reveals that indeed, although exhibiting less scatter before, the PT and
PM-based algorithms perform less reliably than the TIR-based algorithm during rain-
free periods. ALEXI-TIR provides accurate estimates of ET with no systematic bias
related to the duration of droughts and the severity of water stress, and provides a
robust observation of surface water loss. Since ALEXI-TIR makes no assumptions
regarding rooting depth or effective S0, and in view of its robust performance under
water-stressed conditions, we apply this data product for all analyses shown here.
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ALEXI

Figure S6: Bias of modelled versus observed ET based on four different algorithms applied
to remote sensing data, and evaluated with observations from ecosystem flux measurements
(FLUXNET Eddy covariance) collected during periods of drought. The black lines indicate the
median bias for each day into the drought (‘dday’), derived from multiple drought events and
sites. The shaded area expands from the 33 to the 66 percentile, the red line is a LOESS
smoothing line based on the median.
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Figure S7: Cumulative water deficit (CWD) time series for three example gridcells (a, b, c;
indicated on the map). Time series of CWD are given by the red line. Black dots indicate
maximum CWD values for each calendar year, as used for the extreme value analysis and
estimating magnitudes of extreme events. The grey bands indicate periods of continuously
increasing CWD, referred to as CWD events. Panel (c) shows an example in which a CWD is
not fully compensated by the wet season in year 2012.
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Figure S8: Visualisation of method to infer S0 from the relationship of the evaporative frac-
tion (EF) and the cumulative water deficit (CWD), yielding SdEF. Examples are given for four
gridcells, where SdEF could not be determined (a, site at -95.0833◦E, 18.5833◦N), where a flat-
tening relationship was detected around a CWD as illustrated by the vertical blue line (b, site at
117.176◦E, -32.9998◦N), and where SdEF was determined (c, site at -106.6469◦E, 35.3985◦N;
d, site at -120.9669◦E, 38.4314◦N) as illustrated by the vertical red line.



REFERENCES 10

References

Brienen, R. J. W., Caldwell, L., Duchesne, L., Voelker, S., Barichivich, J., Baliva, M.,
Ceccantini, G., Di Filippo, A., Helama, S., Locosselli, G. M., Lopez, L., Piovesan,
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