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Figure S1 related to Figure 1 – Comparing label-free probability maps using reflectance data obtained using 488 nm or 638 
nm laser excitation. The choice of excitation wavelength for generating the reflectance signal has minimal influence on the 
probability maps obtained from the network (left versus middle; difference shown right). The user can therefore reasonably use 
whatever is available on their individual microscope. For some applications, choosing a longer excitation wavelength may reduce 
fluorophore photobleaching / improve tissue penetrance and reflectance recovery - for instance, during 3-D Z-stack imaging in thicker 
tissue specimens.  



Figure S2 related to Figure 1 – Number of first-encoder filters and encoder depth optimisation to define the best performing 2-
D Unet model. Bars represent normalised training time whilst circles indicate label-free cell segmentation accuracies (assessed by 
Jaccard index). The best performing model used an encoder depth of 4 with 64 filters at the level of the first encoder (indicated, **). Of 
note, using 32 filters instead of 64 can achieve a training speed up of ~50% for a negligible (~1%) decrease in segmentation accuracy 
(indicated, *). Increasing the encoder depth to 5 did not further improve cell segmentation accuracies (bottom row).   

** * 



Figure S3 related to Figure 1 – Spectral bandwidth saving achieved by the label-free cell segmentation strategy. a, Emission 
spectra for Hoechst 33342 and AlexaFluor 647 as might typically be used to delineate cell nuclei and cell cytoskeletons when carrying 
out fluorescence-based cell segmentation. b, Harnessing reflectance information, the label-free cell segmentation method described 
here removes the need for these fluorescence stains leaving the spectrum entirely open for sensitive experimental measurements 
with single-cell quantification. 



Figure S4 related to Figure 2 – Label-free cell segmentation of confocal microscopy image-data collected from formalin-fixed, 
paraffin embedded tissue sections. a, In frozen cryostat sections, f-actin staining using phalloidin conjugates clearly delineates cell 
outlines providing ground truth to enable the presented label-free cell segmentation approach. b, In contrast, in formalin-fixed paraffin 
embedded (FFPE) tissue sections, phalloidin staining fails because solvent exposure during the fixation and paraffin embedding 
process degrades the actin cytoskeleton. c, Demonstrated here using murine Peyer’s patch tissue sections, successful ground truth 
labelling can be restored in the FFPE section-type by switching to cell membrane (i.e., phospholipid) staining using wheat germ 
agglutinin (WGA) fluorescence conjugates. d/e Comparison of the reflectance signal from the frozen and FFPE section-types. 
Cytoskeletal degradation appears to change the reflectance images observed from the FFPE tissue: the faint trace of the cell outlines 
visible in the frozen sections is no longer apparent and instead the intracellular regions appear to exhibit the highest reflectance signal. 
f-h Despite this, a relationship between the reflectance signal and a WGA-delineated ground truth is still determinable by the neural 
network allowing (g/h) successful label-free cell segmentation direct from the reflectance signal. h, Intersection over union (IOU) score 
distribution comparing a (f) hand-drawn segmentation and the (g) automated, label-free cell segmentation outcome. An IOU score of 1 
represents a perfect, per-pixel overlap between the hand-drawn and automated cell segmentations. Within the comparison presented 
here, scores ≥ 0.6 are seen to represent a good match, approaching the limits of hand-drawing accuracy. By harnessing ground truth 
from other fluorescence labels, the label-free strategy can operate in both FFPE and frozen tissue-types. Given that tissue archiving in 
FFPE format is commonplace worldwide, this finding dramatically increases the application domain of the presented label-free cell 
segmentation strategy. Scale bars: a/b = 20 microns; c/d = 100 microns; e/f = 75 microns; g/h = 50 microns. 



Figure S5 related to Figure 4 – Assessing 3-D label-free cell segmentation accuracies using mouse Peyer’s patch tissue. a, 
Hand-drawn cell segmentations performed using the nuclei/actin fluorescence information for Z-planes (a) 57 in the XY dimension (d) 
512 in ZY dimension and (g) 512 in the XZ dimension (unseen test image-data is 512x512x114 (X,Y,Z)). b/e/h, Automated cell 
segmentations for the same image-regions as (a/d/g) but achieved label-free direct from the reflectance signal. c/f/i, Cell-object 
intersection-over-union score distributions comparing – cell-object by cell-object – the (a/d/g) hand-drawn segmentations against the 
(b/e/h) automated, label-free cell segmentations. An IOU score of 1 represents perfect, per-pixel overlap between the hand-drawn and 
automated cell segmentations. Within the comparison presented here, scores ≥ 0.6 are seen to represent a good match, approaching 
the limits of hand-drawing accuracy. Encouragingly, the 3-D approach outperformed the segmentation accuracies achieved in 2-D 
(shown, Figure 2). Scale bars equal 20 microns. 



Figure S6 related to Figure 4 – Fluorescence versus label-free nuclei predictions at Z-depths of ~10 and ~90 microns. Using 
reflectance information from a 638 nm excitation laser, the 3-D network is able to consistently recover nuclear information long after 
the blue nuclear stain (Hoechst 33342) has decayed from multiple scattering effects (bottom right versus middle right). The resultant 
pixel intensity histograms from the probability map images are extremely stable (bottom right). This is advantageous for achieving 
consistent, depth-invariant 3-D cell segmentation in thick tissue specimens. 



Table S1 related to Star Methods – Antibody and Image Information Table 
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a, Once the fluorescence imaging sequences are set up, a new track for reflectance is added to the sequential scan. b, The desired 
excitation laser for reflectance imaging is selected (here, 561 nm). The choice of laser is not particularly important, but use of longer 
wavelengths may reduce fluorophore photobleaching and improve penetrance / recovery in thicker specimens (shown, Figures S1/S6). c, A 
photomultiplier detector (here Ch1) is turned on and the range set to approximately +/- 3 nm either side of the excitation wavelength (here 
558 – 564 nm was entered, but the software rounds to display ~ 557 – 566 nm). d, The tick-box allowing reflected light to pass to the detector 
is turned on. e, The T80/R20 beam splitter is chosen (this indicates a transmission/reflection ratio of 80:20). f, A low laser excitation power 
(here, 1%) is entered. N.B., use of a reflectance light path with high laser excitation power may damage the camera, so care should be taken 
here. The pinhole is set to ~ 1 airy unit, yielding an optical section of around ~ 1 micron with a high numerical aperture 40X or 63X objective. 
g, Running in ‘live mode’, the gain is slowly increased until the reflectance signal occupies approximately 80% of the range histogram 
(indicated, green box). Compressing the histogram in the range indicated yields a typical ‘view’ of the reflectance signal from a lymphoid 
tissue specimen (on display in the main image window). 

a. 

b. 
f. 
g. 
h. 

c. 

d. 
e. 

Setting up sequential reflectance imaging using a standard Zeiss LSM780 confocal microscope.  
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a, Once the fluorescence imaging sequence(s) are set up, a new track for reflectance is added to the sequential scan (here, ‘Seq 4’). b, The 
desired excitation laser for reflectance imaging is turned on (here, 488 nm). The choice of laser is not particularly important, but use of longer 
wavelengths may reduce fluorophore photobleaching and improve penetrance / recovery in thicker specimens (shown, Figures S1/S6). A 
low laser excitation power (e.g., 1%) is also specified at this step. N.B., Use of a reflectance light path with high laser excitation powers could 
damage the camera, so care should be taken at this step. c, An appropriate beam splitter is chosen for the excitation line, or, the ‘Autoselect’ 
checkbox can be ticked to set this automatically. d, A photomultiplier detector (here PMT1) is turned on and the range set to approximately 
+/- 3 nm either side of the excitation wavelength (i.e., here, 485-491 nm). e, Running in ‘live mode’, the gain is slowly increased until the 
reflectance signal occupies approximately 80% of the available intensity range. The main window shows a typical ‘view’ of the reflectance 
signal from a lymphoid tissue specimen under this setup. 

a. 

b. 

d. 

c. 

e. 

Setting up sequential reflectance imaging using a standard Leica SP8 confocal microscope.  
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Once fluorescence excitation and collection are configured, (a) any remaining laser line can be used for reflectance imaging (e.g., here, the 
488 nm line is used). The choice of laser is not particularly important, but use of longer wavelengths may reduce fluorophore photobleaching 
and improve penetrance / recovery in thicker specimens (shown, Figures S1/S6). A low laser excitation power (e.g., 1%) should also be 
specified here. Reflectance imaging with high laser excitation powers could damage the camera, so care should be taken at this step. b, An 
appropriate beam splitter for the excitation lasers is chosen, or the ‘Autoselect’ checkbox ticked to enable automatic setting. c, A free detector 
(here PMT2) is turned on and the range set to approximately +/- 3 nm either side of the excitation wavelength (i.e., 485-491 nm). d, Running 
in ‘live mode’, the gain is slowly increased until the reflectance signal occupies approximately 80% of the available intensity range. The top-
right image in the main window shows a typical ‘view’ of the reflectance signal from a lymphoid tissue specimen under this setup. This 
approach allows reflectance data to be concomitantly collected alongside fluorescence without adding the additional run-time of further 
sequences. N.B., It is worth noting that in a similar way, a laser that is already being used for fluorescence excitation may also be used to 
obtain reflectance data (exemplified page below). For example, here, PMT2 could be moved up to collect reflectance from the 638 nm laser in 
the range 635-641 nm. Doing this has the advantage of reducing the photon budget for the sample. However, it also necessitates that enough 
excitation power is being used to obtain a good reflectance signal, and that a free detector can be moved within the necessary detection 
range. This is not always compatible with optimal fluorescence imaging – hence the setup shown here. 

a. 

b. 

c. d. 

Setting up simultaneous reflectance and fluorescence imaging using a standard Leica SP8 confocal microscope.  
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Once fluorescence excitation and collection are configured, (a) any remaining detector can be used to simultaneously collect the reflectance 
signal from one of the excitation lasers being used to stimulate fluorescence (e.g., here, ‘PMT2’ is used to collect reflectance from the 638 nm 
laser line (b) – which is also being used to excite AlexaFluor 647). This is achieved by placing the detector approximately +/- 3 nm either side 
of the excitation wavelength (i.e., 635-641 nm). c, Running in ‘live mode’, the gain is slowly increased until the reflectance signal occupies 
approximately 80% of the available intensity range. The top-right image in the main window shows a typical ‘view’ of the reflectance signal 
from a lymphoid tissue specimen under this setup. Simultaneous reflectance imaging has the advantage of reducing the photon budget for the 
sample, as the reflectance information is effectively recovered for ‘free’ by harnessing scatter from a laser that is already in use. However, this 
setup also necessitates that enough excitation power is available to obtain a good reflectance signal, and that a free detector can be moved 
into the necessary detection range. To achieve this here without saturating the AlexaFluor 647 signal (shown bottom-left in the main image 
window) the AlexaFluor647 detection range was narrowed (d) to ~ 700-750 nm. Where this setup cannot be accommodated one of the other 
options that instead use a dedicated laser for reflectance imaging should be utilised (shown, three above pages). 

a. 

b. c. 

d. 

Setting up ‘free’ reflectance imaging alongside fluorescence collection using a standard Leica SP8 confocal 
microscope.  
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2-D Unet architecture schematic. The network uses an input layer for the reflectance data of 256x256x1 (x, y, channels). The best 
performing three-class Unet architecture uses an encoder depth of 4 with 64 filters at the level of the first encoder (shown, Figure S2). 
The network uses complete up-convolutional expansion to yield outputted probability maps that are identically sized to the input layer. 
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3-D Unet architecture schematic. The network uses an input layer for the reflectance data of 64x64x64x1 (x, y, z, channels). The 
three-class Unet architecture uses an encoder depth of 4 with 64 filters at the level of the first encoder. The network uses complete 
up-convolutional expansion to yield outputted probability maps that are identically sized to the input layer. 
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2-D Cell Profiler image analysis pipelines. This section presents screenshots of a CellProfiler image analysis pipeline used to achieve 
label-free cell segmentation in 2-D from the Unet network outputs, and to measure the intensity and size/shape features of identified cell-
objects. To use the image analysis pipeline with new image data, the ‘IdentifyPrimaryObjects’ module simply needs adjusting so that the 
‘typical diameter of objects’ size-range matches the pixel scaling of the new images. For newcomers to CellProfiler, we recommend 
downloading the image-data and pipeline from BioStudies database https://www.ebi.ac.uk/biostudies/ under accession number S-
BSST742. This enables the pipeline to be run with the data described in the manuscript and allows the user to see how each module 
works.  
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3-D CellProfiler pipeline. This section presents screenshots of a CellProfiler image analysis pipeline used to achieve label-free cell 
segmentation in 3-D from the Unet network outputs and to measure the intensity and size/shape features of identified cell-objects. To use 
the image analysis pipeline with new image data, the ‘IdentifyPrimaryObjects’ module simply needs adjusting so that the ‘typical diameter 
of objects’ size-range matches the pixel scaling of the new images. For newcomers to CellProfiler, we recommend downloading the image-
data and pipeline from BioStudies database https://www.ebi.ac.uk/biostudies/ under accession number S-BSST742. This enables the 
pipeline to be run with the data described in the manuscript and allows the user to see how each module works.  
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