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MOTIVATION Across the biomedical sciences, there is an urgent need to move beyond qualitative imaging
to quantitative, cell-based reporting of tissue microscopy data. Typically, cell segmentation requires fluo-
rescent labeling of nucleus and cytoplasm, which limits the spectral bandwidth available for other reporter
molecules. However, recent advances in deep-learning algorithms have transformed automated image
classification, and this raises the possibility of proceeding with reduced image information. Here, we
show that 2D and 3D cell segmentation of lymphoid tissues can be freely established from the reflected
laser excitation light always present during routine confocal microscopy using entirely standard equipment.
SUMMARY
Unlocking and quantifying fundamental biological processes through tissue microscopy requires accurate,
in situ segmentation of all cells imaged. Currently, achieving this is complex and requires exogenous fluo-
rescent labels that occupy significant spectral bandwidth, increasing the duration and complexity of imag-
ing experiments while limiting the number of channels remaining to address the study’s objectives. We
demonstrate that the excitation light reflected during routine confocal microscopy contains sufficient infor-
mation to achieve accurate, label-free cell segmentation in 2D and 3D. This is achieved using a simple con-
volutional neural network trained to predict the probability that reflected light pixels belong to either nucleus,
cytoskeleton, or background classifications.We demonstrate the approach across diverse lymphoid tissues
and provide video tutorials demonstrating deployment in Python andMATLAB or via standalone software for
Windows.
INTRODUCTION

The analysis of tissues using fluorescence labeling and confocal

microscopy represents a mainstay biomedical technique that is

usedworldwide to understand the biology of cells in situ.1–5 How-

ever, despite the accessibility of confocalmicroscopy and its abil-

ity to provide sensitive, quantifiable data with subcellular resolu-

tion in both 2D and 3D, the number of channels that can be

successfully imaged is often limited in practice.2,6Moving beyond

qualitative observations to cell-based quantifications for every

cell in a tissue specimen requires fluorescent staining (e.g., nuclei,

cell membrane, or cluster of differentiation [CD] markers) to

enable cell segmentation.2–5 However, these stains occupy chan-

nels that are often needed to fully address the bioclinical ques-

tion.2,3,5 At the same time, as the number of fluorescence chan-

nels increases, so does the complexity, time requirement, and

potential for channel cross-talk.5,7 Correcting this complicates
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analysis and downstream data processing, increasing the exper-

tise required and the risk of error.3,5,7,8

Recognizing these complexities in addition to the need to avoid

phototoxicity and temporal errors during live-cell experiments

withmonolayer cells in vitro, microscopy techniques that harness

endogenous contrast (i.e., label free) have been developed (e.g.,

phase/differential interference contrast, etc.).8–11 However, a

recognized difficulty for subsequent, cell-based image analysis

is that label-free cell segmentation accuracy decreases as cul-

tures become confluent and cell-to-cell contact is estab-

lished.9,10 In this regard, tissue environments are inherently com-

plex and challenging as they are almost entirely comprised of

contacting cells in 3D, layer-upon-layer arrangements.2,3,5

An often overlooked capability of nearly all laser scanning

confocal microscopes is the ability to capture reflected laser

excitation light. Importantly, unlike transmitted light, this label-

free signal is filtered by the confocal aperture enabling capture
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as 3D ‘‘z stacks’’ of optically isolated sections that can be simul-

taneously acquired alongside fluorescence information.7,8 Using

diverse lymphoid tissues as an exemplar, here we demonstrate

how this signal can be harnessed to provide accurate, label-

free cell segmentation in 2D and 3D. We show the approach

can be deployed in conjunction with the user-friendly, open-

source CellProfiler software,12 enabling single-cell data extrac-

tion for image-based cell profiling in addition to reproducible

workflow dissemination. The approach provides every cell and

nearest-cell neighbor relationship in situ with high precision,

leaving a spectrally unencumbered landscape for subsequent

interrogation. To support uptake, we provide extensive video tu-

torials and data, demonstrating deployment using Python,

MATLAB, or standalone software for Windows.

RESULTS

Figure 1 shows our strategy usingmouse splenic tissue. Training

data, exemplifying the cellular structure of the tissue, are

collected from parallel tissue sections using simple, antibody-

independent fluorescent staining for cell nuclei and cytoskeletal

F-actin (Figures 1A and 1B). During imaging, both fluorescence

data and the backscattered reflectance signal from one of the

excitation lasers are captured (Figures 1C and 1D; reflectance

imaging setup shown in Method S1; laser invariance demon-

strated in Figure S1). From these training data, ground-truth

pixel-classification labels representing ‘‘background,’’ ‘‘nuclei,’’

and ‘‘cytoskeleton’’ classes are easily assembled by binary

thresholding the training slide’s fluorescence information (Fig-

ure 1E). These labels are then used to train a simple U-Net neural

network13 (Method S1; Figure S2) to output the probability that

pixels in the reflectance image belong to each of the classifica-

tions (demonstrated usingMATLAB, Python, or standaloneWin-

dows software; Method S1). Because of pixel-wise averaging of

any error in the binary representations of staining used as the

ground truth, the probability maps outputted by the network

exhibit smooth intensity gradients that flow between classifica-

tions (Figure 1F). The nature of these images enables them to

serve directly as inputs for segmentation of individual cell ob-

jects (Figures 1G and 1H; Video S1). This process can be

achieved using the user-friendly CellProfiler software,12

providing a flexible and accessible route to bioimage analysis,

feature extraction, and reproducible workflow dissemination.

After training, subsequent experimental samples only require

the reflectance image to obtain the cell segmentation, leaving

the fluorescence spectrum entirely available (Figure S3) for

any form of spectral interrogation or combination of fluorescent

markers (Figure 1H).

To probe the accuracy of the cell segmentation achieved

while exploring the compatibility of the approach with different

tissue types, we moved on to tissue sections from intestinal

Peyer’s patches (Figure 2A), which are key players in the orches-

tration of mucosal and systemic antibody responses for the mi-

crobiome, food, and oral vaccines. To do this, the cell segmen-

tation achieved in CellProfiler using either the fluorescence

information (Figure 2B) or the label-free probability maps from

the reflectance data (Figure 2C) was compared against the re-

sults of careful manual annotation (Figure 2A) using the intersec-
2 Cell Reports Methods 3, 100398, February 27, 2023
tion-over-union (IOU) metric. The label-free approach outper-

formed (Figures 2D–2F) the results obtainable direct from the

fluorescence information (median IOU 0.72 versus 0.61, respec-

tively) while additionally saving two channels.

Using a parallel tissue section to Figure 2 (i.e., with cell segmen-

tation accuracy established), we next considered the ability of the

approach to simplify image-based cell profiling. As such, we repli-

cated a recently published experiment2 that had previously

required dedicated nuclei and actin fluorescent stains to achieve

accurate single-cell and nearest-cell-neighbor measurements.

Mouse Peyer’s patch tissue sections were dual immunolabeled

for CD11c (identifying mononuclear phagocytes, typically anti-

gen-presenting cells) and for CD3 as a pan T lymphocyte marker.

Alongside this, using tissue-matched serial sections, secondary-

only controls, isotype controls, and fluorescence-minus-one con-

trols were prepared to inform on background, non-specific anti-

body binding and fluorescence cross-talk, respectively (see

STAR Methods). In half of the previously required imaging time,

each tissue section was tile scanned for fluorescence information

with concomitant collection of reflected light. Figure 3A exem-

plifies the outcome, with a region of interest placed around the

lymphoid tissue. Guided by the control data, CD11c+ and CD3+

cell populations were built using single-cell fluorescence mea-

surements and simple, flow cytometry-type gating (Figures 3B–

3E). As found previously,2 a second sequential gate on the area

occupied by fluorescence within each cell (Figures 3C and 3E)

helped to reduce ‘‘bystander-positive’’ events caused by the sur-

face-located fluorescence spanning segmented cell outlines into

immediately adjacent cell objects (Figure 3F). From this simplified

experiment—now using just two labels instead of the four previ-

ously required—diverse information regarding cell location,

expression, and nearest-cell-neighbor relationships was obtain-

able (Figures 3G–3L). Interestingly, a population of highly juxta-

posed, CD11c-CD3 neighboring cells that still identified positive

for both markers after bystander removal were identifiable, sug-

gesting a high likelihood of cell-cell interaction (Figure 3G). Visu-

ally intuitive cell expression maps for CD11c and CD3 could

also be assembled (Figures 3H and 3I). Use of the label-free

approach also enabled identification and segmentation of all of

the unlabeled (i.e., CD11c–/CD3–) cells, which, in the Peyer’s

patch environment, predominantly represent B lymphocytes.14

Hence, the spatial distribution of antigen-presenting cell

(APC)-T, APC-B, and T-B lymphocytes that were within interac-

tive distances of one another as nearest-cell neighbors could

also be isolated and mapped from the label-free objects (Fig-

ure 3J–3L). In this regard, comparing Figures 3J and 3K, a pre-

dominance of APC-B interactions, as opposed to APC-T interac-

tions, were observed within the immunoactive subepithelial dome

region of the tissue.15

In addition to frozen samples, tissue specimens are also

commonly archived in formalin-fixed paraffin-embedded (FFPE)

format. As a final 2D experiment, we therefore considered if the

approach was transferable to this section type. Of note, F-actin

staining using phalloidin conjugates is known to fail in FFPE sec-

tions because the actin cytoskeleton is degraded by solvent ex-

posures incurred during FFPE processing.2 The cell outline

ground-truth fluorescence labeling on the training slidewas there-

fore switched to cell membrane (i.e., phospholipid) staining using



Figure 1. Label-free cell segmentation of tissue microscopy image data collected by routine confocal microscopy

(A–D) Image data (here, mouse splenic tissue) for initial network training are obtained from serial tissue sections stained for (A) nuclei (Hoechst 33342) and

(B) cytoskeletal f-actin (phalloidin-AlexaFluor 647) while simultaneously collecting (C and D) reflected laser excitation light by detector placement close (± 5 nm) to

the excitation wavelength.

(E) Binary pixel-classification labels representing ‘‘background,’’ ‘‘nuclei,’’ and ‘‘cytoskeleton’’ classes are created by thresholding the fluorescence data.

(F) A neural network using a simple U-Net architecture is trained to output the probability that pixels in the reflectance image belong to each of these classes.

(A)–(F) show zoomed insets of the exact same image region. Comparing across these insets, the outputted probability maps (F) exhibit consistent intensities

across each image field, with clear gradients that flow between the individual classifications. This enables easy, consistent instance segmentations of individual

cell objects using routine watershed approaches.

(G and H) For subsequent slides, nuclei and actin stains are no longer required as the cell segmentation is achieved direct from the reflectance information via the

probability map images. This establishes the cell segmentation while leaving the entire detection spectrum free for fluorescence-based analyses. For example,

(H) shows the approach operating with CD3-eFluor450, CD4-PE, and CD11c-eFluor660 immunofluorescence conjugates utilizing the spectral bandwidth pre-

viously occupied by the nuclei (Hoechst 33342) and actin (phalloidin-AlexaFluor 647) stains. The label-free cell segmentation is overlaid.

(H) Insets demonstrate successful label-free cell segmentation of both CD marker-stained and entirely unstained cells in both red (green inset) and white (gray

inset) pulp tissue regions.

(A–H) Main image scale bars: 250 mm, and inset image scale bars: 10 mm.
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Figure 2. Assessing cell segmentation accuracies using mouse Peyer’s patch tissue

(A) Hand-drawn cell segmentation performed using nuclei/actin fluorescence information for the tissue region indicated by the yellow box in the wider, tile-

scanned image.

(B and C) Automated cell instance segmentations for the same image-region as (A) using either (B) the raw nuclei and actin fluorescence data or (C) the label-free

probability maps obtained from the neural network using reflectance alone as input (image data from this tissue section were unseen during training).

(D and E) Cell-object intersection-over-union (IOU) score distributions comparing the hand-drawn cell segmentations shown in (A) against the automated cell

segmentations shown in (B and C) using either (D) fluorescence or (E) label-free information.

(F) Example hand-drawn versus label-free cell segmentation comparisons and IOU scores.

The positions of each cell in the source images are shown by the cell-object numberings in (A), (C), and (F). An IOU score of 1 represents perfect per-pixel overlap

between hand-drawn and automated cell segmentations. (F) Within the comparison presented here, scores R0.6 are seen to represent a good match, ap-

proaching the limit of hand-drawing accuracy given the relatively low resolution of the source image data. (A–C) Scale bars, 100 mm. (F) Scale bar, 10 mm.
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fluorescently conjugated wheat germ agglutinin (WGA). Despite a

notably different reflectance signal (presumably due to cytoskel-

etal degradation), a segmentable relationship between the reflec-

tance information and theWGAstainingwas learnable (FigureS4).

Encouragingly, similar IOU scores (FFPE median score = 0.74)

were attainable to those achieved using frozen sections (0.72)

(Figures S4 and 2). In this way, segmentations based on training

exemplifications from a different fluorescence label unlocked

this important section type to the label-free technique.

With the capability of our approach established in 2D, we

moved forward to 3D imaging with the goal of retrieving entirely

label-free segmentations for all cells in imaged volumes (Fig-

ure 4). Previously, T cell clustering in secondary lymphoid tissues

(lymph nodes) and the role that FOXP3+ regulatory T cells play in

suppressing potentially autoreactive T cells were demonstrated

using 3D imaging and the ‘‘histocytometry’’ approach.4 In that

work, segmentations were achieved for cells expressing a fluo-

rescent marker—but not for unlabeled cells. Here, a simple

extension to a 3-D U-Net architecture (Method S1) enabled the

generation of probability maps from z stacked reflectance infor-

mation that were easily segmentable into 3D cell objects using

CellProfiler 4 (Figures 4A–4H). As before, cell segmentation ac-
4 Cell Reports Methods 3, 100398, February 27, 2023
curacies in the xy, zy, and xz dimensions were assessed against

manual annotations using the IOU approach (Figure S5). Encour-

agingly, use of a 3D network leveraging data across multiple z

planes simultaneously improved the segmentation accuracies

(median IOU scores xy = 0.84, zy = 0.74, xz = 0.78) achievable

relative to the 2D network results (xy = 0.72) (Figures S5 and 2).

To test the ability of the approach to retrieve single-cell and

nearest-neighbor relationships in 3D, immunofluorescence

data for FOXP3 or isotype control were collected (Figure 4I). As

in 2D, flow cytometry-type gating established the FOXP3+ cell

population in situ (Figures 4J–4L). FOXP3+ cells were, indeed,

isolatable as cell populations of independent events (Figure 4M),

and harnessing the segmentation information of the unlabeled

cells further allowed 3D identification and visualization of all

nearest-cell neighbors with interactive potential (Figure 4N). In

this way, individual cells, with or without ‘‘touching’’ nearest-

cell neighbors, could be isolated and examined as independent

populations in a manner similar to imaging flow cytometry,16,17

with the additional ability to rotate, cut away, and consider ob-

jects and their contents from any angle (Figure 4M). Moreover,

with tissue-relevant localization retained, the full in vivo cell-cell

environment incorporating all nearest neighbors in 3D was



Figure 3. Label-free cell segmentation enables image-based cell profiling

(A) Tile-scanned mouse Peyer’s patch tissue section imaged for reflectance in addition to immunofluorescence markers for CD11c (i.e., mononuclear phagocyte

antigen-presenting cells) and CD3 (T lymphocytes). The yellow region of interest (ROI) represents the lymphoid tissue upon which the label-free cell segmentation

approach was deployed (�16,000 cells). Outside of the ROI, the reflectance image is seen to still provide interpretable histological context.

(B–E) Flow cytometry-type gating to establish CD3+ and CD11c+ cell populations informed by secondary only, fluorescence-minus-one (fmo) and isotype single-

cell fluorescence distributions obtained from label-free cell object data collected from adjacent, serial tissue sections. Due to the dense cellular packing of

lymphoid tissue, (C and E) second sequential gates on the fluorescence area occupied per cell object helped to reduce (F) bystander-positive events caused by

fluorescence overlap into neighboring cells.

(G) Cell map view showing the gated cell populations in situ using flood filling of label-free cell-objects. Juxtaposed CD11c-CD3 neighboring cells that still

identified positive for both CD markers after bystander removal are shown in white.

(H and I) CD11c and CD3 expression maps with cell objects shaded into four levels (dim, low, intermediate, high) according to each segmented cell’s level of

immunofluorescence.

(J–L) Nearest-cell-neighbor maps simplifying the view shown in (A) to only show touching groups of cell objects according the combinations (J) CD11c+-CD3+

(i.e., APC-T), (K) CD11c+-CD3-/CD11c� (i.e., APC-B), and (L) CD3+-CD3�/CD11c� (i.e., T-B). In this way, the views give a sense of key cell types within interactive

distances of one another. The dashed line in (J) and (K) indicates the subepithelial dome tissue region.

Scale bars: 500 mm.
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revealed (Figures 4L–4N). The approach was tested with tissue

sections up to �100 mm in thickness. At this depth, the fluores-

cence from typical blue nuclear labels (e.g., Hoechst 33342 or

DAPI) is attenuated by the tissue thickness and cannot serve

as an input for accurate segmentation, whereas the label-free

strategy still operated effectively (Figure S6).
DISCUSSION

There is a growing need for accessible means to obtain in situ,

single-cell information from tissue images across the bioclinical

sciences. A major barrier is the relatively few channels, for sepa-

rate biomarkers, that conventional microscopy allows for
Cell Reports Methods 3, 100398, February 27, 2023 5



Figure 4. 3D label-free cell segmentation of tissue microscopy image data collected by routine confocal microscopy

(A–H) Stepwise exemplification of the 3D strategy using z stack image data of mouse mesenteric lymph node tissue. Outcomes at each step are displayed by (A,

C, and G) orthoslice and (B, D, and H) 3D volumetric projection views, with the latter cut away to better display outcomes along the z dimension.

(A and B) 3D reflectance signal.

(legend continued on next page)
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experimentation (often %6 in practice). This becomes com-

poundedwhen two of these channels are required to achieve ac-

curate cell segmentation. Imaging mass spectrometry systems,

which are capable of resolving many metal-conjugated anti-

bodies, may partially obviate these issues, but instrumentation

is not widely available. In practice, to move bioclinical research

beyond ‘‘representative image’’ reporting, 2D and 3D cell-based

quantitation of tissues with standard confocal microscopy

equipment must become routine, and the workflow from image

data to cell features must be disseminable.2,4,5

Previously, fluorescence image restoration18 and virtual

in vitro cell labeling7,8 have been demonstrated as powerful ap-

plications of fluorescence image reconstruction by deep

learning. In their seminal paper, using a custom-built multimodal

reflectance microscope, Cheng et al. also showed that fluores-

cent stain predictions from reflected light information could be

used to achieve 2D segmentation of monolayer cells in culture.

Notably, however, ex vivo tissue microscopy offers a very

different challenge to cell microscopy. Tissue is made up of mul-

tiple different cell types and extracellular features in dense, layer-

upon-layer arrangements in a way that is not present in vitro. The

image information is also fundamentally different due to the his-

tological preparation steps (fixation, embedding, and sectioning)

that are different or not required for cultured cells. Here, we

recognized that during confocal imaging with entirely standard

equipment, there is always freely available ‘‘byproduct’’ re-

flected light. Our work now shows that this carries sufficient in-

formation, with sufficient penetration, to establish accurate 2D

and 3D segmentations of cells in tissues. To do this, we use clas-

sification and probability mapping—as opposed to regression-

based fluorescent stain predictions—as intensity uniformity

across the outputted probability maps is advantageous to the

cell segmentation task. Moreover, we provide the software,

data, and video tutorials necessary to remove the programming

barrier to access, making this accessible for everyone. Because

generalizability is essential to the practical utility of any method,

we carefully demonstrate our approach using data from two

different confocal microscopes across 403 and 633 objective

lenses in three different tissues using reflectance from three

different laser lines across four image resolutions (from 3.5 to

8.3 pixels per mm). We also demonstrate the compatibility of

the approach with both frozen and FFPE tissue section types.

An important aspect of the presented method is that it allows

the assembly of large amounts of sample-matched training data

without the need of cell annotation. This enables conventional

U-Net models to be trained with bespoke exemplifications of
(C–F) Label-free probability maps outputted from a 3DU-Net neural network (C an

for the cytoskeleton compared with (F) fluorescent cytoskeletal F-actin staining.

(G and H) 3D label-free cell segmentation results where (repeated) filled colors re

(I–N) Validation of the 3D label-free approach using tissue sections immunolabelle

(J and K) Flow cytometry-type gating using cell-object fluorescence distribution

formation.

(L) 3D projection of the label-free cell segmentation results. On the left, gated FO

events (red) and their touching nearest-cell neighbors (cyan) are shown in situ. (M),

label-free segmentation. An intranuclear core of FOXP3 staining is visible surrou

(N) 3D projections of individual FOXP3+ cell objects and their touching nearest-c

(A, C, and G) Scale bars: 50 mm.
the task,13,18 maximizing performance while providing data at

a scale sufficient to avoid memorization and enable rigorous

cross-validation testing.19 These training data are prepared us-

ing antibody-independent affinity staining, enabling easy trans-

fer across species2 while minimizing pixel labeling errors through

avoidance of non-specific binding.7

In this way, the presented work enables amove beyond disag-

gregated flow cytometry measurements and qualitative micro-

scopy reporting by harnessing label-free information from every

cell in a tissue section such that cell content and in situ location

can be reported together. Detailed cell-cell interactions (nearest-

neighbor-type relationships) in complex tissue environments are

achievable and will provide the bridge between deep immuno-

logical knowledge of single cell types and macroscopic tissue

function. All data, code, and methodological steps are available

for download alongside detailed video tutorials demonstrating

deployment in Python, MATLAB, or provided standalone soft-

ware for Windows.

Limitations of the study
This technique relies on the existence of a relationship between

the reflectance signal and the fluorescence information used to

determine the ground truth.18,20 Moreover, this relationship

must describe the cellular structure in a manner that enables ac-

curate cell-object segmentations. Here, we demonstrate that la-

bel-free predictions of cytoskeletal or cell membrane structure

enable this from frozen and paraffin-embedded tissue sections

for diverse lymphoid tissues (spleen, Peyer’s patch, and mesen-

teric lymph node), where cell relationships are so important in es-

tablishing fundamental biology including responses to infection,

vaccination, and carcinogenesis. However, this approach may

not work in every tissue type as it is dependent upon the specific

structural morphology of cell and tissue and the resultant optical

scattering coefficients.
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Detailed methods are provided in the online version of this paper

and include the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY
d D

pre

d fo

s to

XP3

3D

nde

ell n
B Lead contact

B Materials availability

B Data and code availability

d EXPERIMENTAL MODEL AND SUBJECT DETAILS
) with insets demonstrating the (E) label-free probability map representation

sent individual cell objects.

r FOXP3 or matched isotype control with no nuclei or actin staining present.

establish FOXP3+ events from cell intensity and fluorescence volume in-

+ cells are identified using red surface overlays. On the right, both FOXP3+

projections of individual FOXP3+ cell objects cut out andmontaged from the
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eighbors cut out and montaged using the label-free cell segmentation.
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Antibodies

Rat anti-mouse CD3-EF450 Thermo Fisher Cat #48-0032-82

Rat anti-mouse CD4-PE Thermo Fisher Cat #12-0041-83

Hamster anti-mouse CD11c-EF660 Thermo Fisher Cat #50-0114-82

Rat anti-mouse FOXP3-EF660 Thermo Fisher Cat #50-5773-82

Rabbit anti-mouse CD3 Abcam Cat #AB5690

Hamster anti-mouse CD11c Abcam Cat #AB33483

Goat anti-Rabbit IgG (H + L) Alexa Fluor 568 Thermo Fisher Cat #A-11011

Goat anti-Hamster IgG (H + L) Alexa Fluor 488 Thermo Fisher Cat #A-11008

Biological samples

Frozen C57BL/6J mouse spleen sections This paper N/A

Frozen C57BL/6J mouse Peyer’s patch sections This paper N/A

Frozen C57BL/6J mouse mesenteric lymph

node sections

This paper N/A

Formalin-fixed paraffin embedded C57BL/6J

mouse Peyer’s patch sections

This paper N/A

Chemicals, peptides, and recombinant proteins

Hoescht 33,342 Thermo Fisher Cat #H3570

Phalloidin-AlexaFluor 647 Thermo Fisher Cat #A22287

Wheat germ agglutinin-AlexaFluor 555 Thermo Fisher Cat #W32464

Deposited data

Raw and analyzed microscopy data This paper https://www.ebi.ac.uk/biostudies/studies/

S-BSST742

Experimental models: Organisms/strains

Mouse: C57BL/6J Charles River Cat #027

Software and algorithms

MATLAB code This paper Method S1 or https://www.ebi.ac.uk/biostudies/

studies/S-BSST742

Python code This paper Method S1 or https://www.ebi.ac.uk/biostudies/

studies/S-BSST742

Standalone label free prediction software This paper https://www.ebi.ac.uk/biostudies/studies/

S-BSST742

MATLAB R2021a (or later) MathWorks https://uk.mathworks.com/products/new_

products/release2021a.html

Deep Learning Toolbox 14.3 MathWorks https://uk.mathworks.com/help/deeplearning/

Image Processing Toolbox 11.4 MathWorks https://uk.mathworks.com/products/image.html

Computer Vision Toolbox 10.1 MathWorks https://uk.mathworks.com/products/computer-

vision.html

Python 3.6 python.org https://www.python.org/downloads/release/

python-360/

tensorflowgpu 1.9.0 tensorflow.org https://pypi.org/project/tensorflow-gpu/1.9.0/

Keras 2.1.5 keras.io https://pypi.org/project/keras/2.1.5/

numpy 1.18.1 numpy.org https://pypi.org/project/numpy/1.18.1/

scipy 1.4.1 scipy.org https://pypi.org/project/scipy/1.4.1/

pandas 1.0.3 pandas.pydata.org https://pypi.org/project/pandas/1.0.3/
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scikit-learn 0.22.1 scikit-learn.org https://pypi.org/project/scikit-learn/0.21.1/

scikit-image 0.16.2 scikit-image.org https://pypi.org/project/scikit-image/0.16.2/

pillow 8.4.0 pillow.readthedocs.io https://pypi.org/project/Pillow/8.4.0/

ipython 7.13.0 ipython.org https://pypi.org/project/ipython/7.13.0/

opencv 4.2.0.34 opencv.org https://pypi.org/project/opencv-python/

4.2.0.34/

javabridge 1.0.19 pythonhosted.org https://pypi.org/project/javabridge/

bioformats 1.5.2 openmicroscopy.org https://pypi.org/project/python-bioformats/1.5.2/

matplotlib 3.3.4 matplotlib.org https://pypi.org/project/matplotlib/3.3.4/

H5py 2.10.0 h5py.org https://pypi.org/project/h5py/2.10.0/

Imageio 2.11.0 imageio.readthedocs.io https://pypi.org/project/imageio/2.11.0/

Java SE Development kit 11.0 oracle.com https://www.oracle.com/uk/java/technologies/

javase/jdk11-archive-downloads.html

CUDA Toolkit 9.0 developer.nvidia.com https://developer.nvidia.com/

cuda-90-download-archive

cuDNN 7.6.4 developer.nvidia.com https://developer.nvidia.com/cudnn

Cell Profiler 4.1.3 (or later) cellprofiler.org https://cellprofiler.org/releases

Vaa3D alleninstitute.org https://github.com/Vaa3D/release/releases/

Other

Zeiss LSM 780 confocal microscope Zeiss https://www.zeiss.com/microscopy/en/products/

light-microscopes/confocal-microscopes.html

Leica SP8 confocal microscope Leica Microsystems https://www.leica-microsystems.com/products/

confocal-microscopes/
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Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, John W.

Wills (jw2020@cam.ac.uk).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d Microscopy data are publically available as of the date of publication from the BioStudies database (https://www.ebi.ac.uk/

biostudies/) under accession number S-BSST742.

d All original code (in MATLAB and Python languages) is available in the Method S1 file. All code as well as the precompiled, Win-

dows software has also been deposited at the BioStudies database (https://www.ebi.ac.uk/biostudies/) under accession num-

ber S-BSST742 alongside screencast tutorial videos demonstrating deployment. These files are publicly available as of the

date of publication.

d Any additional information required to reanalyse the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Murine tissues
Spleen, ileum (containing Peyer’s patches) andmesenteric lymph node tissues were collected from healthy, male C57BL/6 mice (n =

4) (8-12 week-old) sacrificed by carbon dioxide asphyxiation. Tissues for cryosection analysis were snap-frozen in isopentane cooled

on dry ice before storage in liquid nitrogen until use. Tissues for FFPE processing were fixed in neutral buffered formalin (4 h) prior to

transfer to tissue cassettes. Samples were embedded in paraffin by dehydrating through an aqueous ethanol series (5min each 20%,

50% 70% (100% x2) v/v) followed by three changes of 100% xylene (30�C) then three changes of paraffin wax (62�C). All animal work

complied with the University of Cambridge Ethics Committee regulations and was performed under the Home Office Project License

numbers 80/2572 and P48B8DA35.
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METHOD DETAILS

Tissue sectioning
Frozen tissues were transferred into the cryostat chamber (- 15�C) and acclimatised for 30min. Samples were trimmed to remove any

excess fat, and transferred to cryomolds containing pre-chilled optimal cutting temperature compound (OCT) (#00411243, VWR).

Sections were cut at 25 or 100 micron thicknesses (for 2D or 3D imaging, respectively) and collected on Super-Frost Plus adhesion

treated slides (#J1800AMNT, Thermo) before resting at room temperature for 2 h prior to immunofluorescence labeling. Formalin-

fixed, paraffin embedded (FFPE) sections were cut at 5 mm thickness. FFPE sections were dewaxed by baking at 60�C for 1 h prior

to changing twice through xylene. Prior to fluorescence counterstaining, FFPE sections were rehydrated using a reverse ethanol se-

ries (100%, 70%, 50%, 10%; 5 min each) followed by immersion in water (1 min).

Immunofluorescence labeling
Tissue sections were ringed with hydrophobic barrier pen (Vector, #H-4000). Frozen sections were fixed using fresh 4% paraformal-

dehyde in 0.1 M PBS (pH 7.4) at room temperature for 10 or 20 min (25 mm or 100 mm sections, respectively). All subsequent steps

were carried out under gentle agitation on a rotating shaker. To facilitate antibody penetration, the frozen sections were permeabi-

lised for 2 or 4 h using 0.3% (v/v) Triton X-100 in 0.1 M PBS (pH 7.4) (25 mm or 100 mm sections, respectively). Sections were then

blocked using 25 mM TBS (pH 7.4) supplemented with 10% (v/v) goat serum (ThermoFisher, #16210064), 2% (w/v) BSA (BioSera,

#PM-T1726) and 20mMglycine for 2 h. Primary antibodies or isotype controls were prepared in block buffer and added at 150 mL per

section for 18–24 h at 4�C. All subsequent steps took place at room temperature. Sections were washed (3 3 3 min, TBS) prior to

incubation with secondary antibodies (when needed) diluted in block buffer for 4 or 8 h (see Table S1 for antibody concentrations,

fluorophores conjugations and manufacturer information) (25 mm or 100 mm sections, respectively). After washing (3 3 3 min,

TBS) frozen sections destined for the provision of training data underwent nuclear and f-actin counterstaining using 2 mg/mL Hoechst

33,342 (#H3570, Thermo) and 500 nM phalloidin-AlexaFluor 647 (#A22287, Thermo) in TBS for 1 h. The cellular structure of the FFPE

sections was counterstained by labeling cell membranes using 20 mg/mL wheat-germ agglutinin (WGA) conjugated with Alexa Fluor

555 (#W32464, Thermo). After counterstaining, all sections were washed for a final time (1 3 3 min, TBS) before mounting with #1.5

coverslips in Prolong Glass mountant (#P36980, Thermo).

Antibody controls
Three antibody controls commonly used by the flow cytometry community were measured in tissue-matched serial sections. Sec-

ondary-only controls received just the secondary antibody in absence of any primary antibody. Any signal in the collection channel for

this control thus represented endogenous tissue autofluorescence or contributions from the fluorophore-conjugated secondary anti-

body binding non-specifically in the tissue section. Fluorescence-minus-one (FMO) controls contained all of the fluorescent stains –

bar the one under quantification. Here, any signal in the collection channel was typically from ‘spill over’ from the other fluorophores

into this empty channel. Finally, ‘isotype controls’ switched out the primary antibody for an irrelevant antibody (i.e., raised against an

antigen not present in the sample) but otherwise identical (i.e. same isoclass) to the primary antibody. Here, non-specific binding of

this irrelevant primary antibody or capture by, e.g., Fc receptors led to signal in the collection channel, informing on the level of non-

specific binding.

Confocal microscopy
The label-free strategy was developed using image data collected from two commonplace (Leica SP8/Zeiss LSM780) laser scanning

confocal microscopy platforms. The SP8 was inverted configuration, whilst LSM780 was upright. No modifications from standard

were necessary to enable the presented approach. Detailed instructions for setting up reflected light collection are provided in

Method S1. Image data for the presented 2D analyses were collected using the SP8 via 40X/1.3 or 63X/1.4 oil immersion objectives.

Reflectance was collected from the 488 nm laser via detector placement +/� 3 nm either side of the excitation line (i.e., detection in

the range 485–491 nm). 3D data were collected using the LSM780 via the 40X/1.3 oil immersion objective. Reflectancewas collected

from the 561 nm laser via detector placement +/� 9 nm either side of the excitation line (i.e., 552-600 nm). Tilescans were conducted

with 10% edge overlap to facilitate registration. Details of the tissue specimen, image dimensions and pixel/voxel densities are pro-

vided for all image data in Table S1.

QUANTIFICATION AND STATISTICAL ANALYSIS

Label-free cell segmentation workflow
Neural network training data was collected from parallel tissue sections to those undergoing immunofluorescence labeling.

Training data was achieved by collecting fluorescence images for nuclei and cytoskeletal f-actin (frozen sections) or nuclei and

the cell membrane (FFPE sections) (fluorescence staining described above) alongside the ‘paired’ reflectance signal. Binary pixel

classification labels were assembled by thresholding the fluorescence information to create pixel label classes representing

‘nuclei’, ‘cytoskeleton’ and ‘background’ classifications. Because of the paired nature of the training and test image-data (i.e.,

collected using the same microscope settings) input reflectance data were rescaled in the zero-one interval with no contrast
e3 Cell Reports Methods 3, 100398, February 27, 2023
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adjustment prior to inputting into the 2D or 3D U-Nets (architectures shown, Method S1). Using cross-entropy loss, the networks

were then trained to output the probability that pixels in the reflectance image belonged to each of the classifications with the prob-

ability image from the loss function serving as the direct input for cell segmentation. Network training, optimisation and validation

testing was conducted using MATLAB R2021a and the Deep Learning, Image Processing and Computer Vision toolboxes

(described, Method S1). Scripts for running the 2D and 3D U-Nets were also written for Python 3 using keras/TensorFlow-gpu

1.9 (TensorFlow install guide and U-Net scripts described, Method S1). The probability map images outputted by the U-Net net-

works were segmented into 2D or 3D cell objects using marker-controlled watershed algorithms deployed in CellProfiler12 (version

4.1.3) (instructions for installing CellProfiler and running the 2D and 3D image analysis pipelines are provided in Method S1). In all

instances, neural networks were trained on data from one tissue section before validation testing using data collected from an

entirely different tissue section.

2D U-NET
Reflectance data were passed to the network as patches with dimensions 2563 2563 1 (x, y, channels) with augmentation by x/y

reflection and rotation. The three-class U-Net architecture used an encoder depth of 4 with 64 filters in the first layer (shown,

Method S1). Complete up-convolutional expansion was used to provide probability maps of the same size as the input images.

Training lasted for 50 epochs (frozen sections) or 150 epochs (FFPE sections) using a batch size of 12 with zero-center normal-

isation (demonstrated, Video S1). Training was optimised using stochastic gradient descent using cross-entropy loss. The initial

learning rate was 0.05, dropping every 10 epochs by 0.1 under momentum 0.9 and L2 regularisation 1x10�4. Patcheswere shuffled

every epoch.

3D U-NET
Reflectance data were patched through the network with input dimensions 64 3 64 3 64x1 (x, y, z, channels) and augmentation by

x/y reflection and rotation. The three-class U-NET architecture used an encoder depth of 4 with 64 filters in the first layer (shown,

Method S1). Complete up-convolutional expansion was used to output probability maps of the same dimensions as the source mi-

croscopy data. Training lasted for 150 epochs using a batch size of 8 with zero-center normalisation. Training was optimised under

ADAM using cross-entropy loss. The initial learning rate was 5x10�4, dropping every 5 epochs by 0.95 under L2 regularisation

1x10�4. Patches were shuffled every epoch.

2D/3D U-NET: Standalone windows software
The label-free prediction software (described, Method S1) for Windows was built in MATLAB R2021a using the MATLAB App

Designer andMATLABCompiler. This enables 2D/3-D U-NET training and deployment via a simple graphical user interface removing

the need for programming expertise.

Segmentation accuracy
Using the Jaccard index (intersection over union) approach, 2D and 3D label-free cell segmentation accuracies were assessed by

comparing pixel positions within automatically segmented cell objects against those inside manually-drawn cell outline annotations.

To assess the 3D segmentations, annotations of XY as well as ZY and XY dimensions were used to fully explore the validity of the

segmented cell objects along all three dimensions. The Jaccard index was calculated as:

JðA;MÞ =
jAXMj
jAWMj =

jAXMj
jAj+ jMj � jAXMj (Equation 1)

Where, J is the Jaccard distance for two sets containing pixel positions for the automated segmentation (A) and the manual anno-

tation (M) respectively. A score of 0 represents no overlap (i.e., false negative) whereas 1 represents exact pixel-for-pixel overlap. It is

acknowledged that this approach is a relatively harsh success measure and that a score of �0.7 indicates a good segmentation

result.13 This is due in-part to the inaccuracies that are inevitably present even in the human annotated data (e.g., due to outline

smoothing, ambiguity in determining the precise position of each cell’s boundary from the fluorescent staining information and avail-

able image resolution etc.).

Single-cell data extraction
After cell segmentation, subsequent CellProfiler modules enabled image preprocessing and cell feature extraction. 2D and 3D

CellProfiler workflows are demonstrated in the Method S1. Immunofluorescence channels were thresholded at the level required

to remove �95% of fluorescence in tissue-matched, secondary antibody-only control images.2 Fluorescence intensity values per

cell, alongside cell size and shape features were thenmeasured for all channels. Integration of binarized immunofluorescence images

was used to measure the fluorescence area/volume.

Image analysis and data visulisation
Following recommended best practice,21 cell-objects lying outside of the fifth or 95th percentiles by area (2D analyses) or volume (3D

analyses) were discarded. Nearest-cell neighbors to gated startpoint cells were identified using a spherical structuring element to
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dilate the startpoint cell’s boundary by 3 pixels before identifying neighboring objects subsequently eroded. Immunofluorescence

visualisations and gated cell-object surface overlays were created using the freely available Vaa3D software.22

ADDITIONAL RESOURCES

Image-data, code and screencast tutorials demonstrating deployment of the described label-free cell segmentation method using

MATLAB (R2021a, using Deep Learning, Image Processing and Computer Vision toolboxes), Python 3 (using keras/Tensorflow-

gpu 1.9) or via precompiled, standalone software for Windows are downloadable from the BioStudies database (https://www.ebi.

ac.uk/biostudies/) under accession number S-BSST742.
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Figure S1 related to Figure 1 – Comparing label-free probability maps using reflectance data obtained using 488 nm or 638 
nm laser excitation. The choice of excitation wavelength for generating the reflectance signal has minimal influence on the 
probability maps obtained from the network (left versus middle; difference shown right). The user can therefore reasonably use 
whatever is available on their individual microscope. For some applications, choosing a longer excitation wavelength may reduce 
fluorophore photobleaching / improve tissue penetrance and reflectance recovery - for instance, during 3-D Z-stack imaging in thicker 
tissue specimens.  



Figure S2 related to Figure 1 – Number of first-encoder filters and encoder depth optimisation to define the best performing 2-
D Unet model. Bars represent normalised training time whilst circles indicate label-free cell segmentation accuracies (assessed by 
Jaccard index). The best performing model used an encoder depth of 4 with 64 filters at the level of the first encoder (indicated, **). Of 
note, using 32 filters instead of 64 can achieve a training speed up of ~50% for a negligible (~1%) decrease in segmentation accuracy 
(indicated, *). Increasing the encoder depth to 5 did not further improve cell segmentation accuracies (bottom row).   

** * 



Figure S3 related to Figure 1 – Spectral bandwidth saving achieved by the label-free cell segmentation strategy. a, Emission 
spectra for Hoechst 33342 and AlexaFluor 647 as might typically be used to delineate cell nuclei and cell cytoskeletons when carrying 
out fluorescence-based cell segmentation. b, Harnessing reflectance information, the label-free cell segmentation method described 
here removes the need for these fluorescence stains leaving the spectrum entirely open for sensitive experimental measurements 
with single-cell quantification. 



Figure S4 related to Figure 2 – Label-free cell segmentation of confocal microscopy image-data collected from formalin-fixed, 
paraffin embedded tissue sections. a, In frozen cryostat sections, f-actin staining using phalloidin conjugates clearly delineates cell 
outlines providing ground truth to enable the presented label-free cell segmentation approach. b, In contrast, in formalin-fixed paraffin 
embedded (FFPE) tissue sections, phalloidin staining fails because solvent exposure during the fixation and paraffin embedding 
process degrades the actin cytoskeleton. c, Demonstrated here using murine Peyer’s patch tissue sections, successful ground truth 
labelling can be restored in the FFPE section-type by switching to cell membrane (i.e., phospholipid) staining using wheat germ 
agglutinin (WGA) fluorescence conjugates. d/e Comparison of the reflectance signal from the frozen and FFPE section-types. 
Cytoskeletal degradation appears to change the reflectance images observed from the FFPE tissue: the faint trace of the cell outlines 
visible in the frozen sections is no longer apparent and instead the intracellular regions appear to exhibit the highest reflectance signal. 
f-h Despite this, a relationship between the reflectance signal and a WGA-delineated ground truth is still determinable by the neural 
network allowing (g/h) successful label-free cell segmentation direct from the reflectance signal. h, Intersection over union (IOU) score 
distribution comparing a (f) hand-drawn segmentation and the (g) automated, label-free cell segmentation outcome. An IOU score of 1 
represents a perfect, per-pixel overlap between the hand-drawn and automated cell segmentations. Within the comparison presented 
here, scores ≥ 0.6 are seen to represent a good match, approaching the limits of hand-drawing accuracy. By harnessing ground truth 
from other fluorescence labels, the label-free strategy can operate in both FFPE and frozen tissue-types. Given that tissue archiving in 
FFPE format is commonplace worldwide, this finding dramatically increases the application domain of the presented label-free cell 
segmentation strategy. Scale bars: a/b = 20 microns; c/d = 100 microns; e/f = 75 microns; g/h = 50 microns. 



Figure S5 related to Figure 4 – Assessing 3-D label-free cell segmentation accuracies using mouse Peyer’s patch tissue. a, 
Hand-drawn cell segmentations performed using the nuclei/actin fluorescence information for Z-planes (a) 57 in the XY dimension (d) 
512 in ZY dimension and (g) 512 in the XZ dimension (unseen test image-data is 512x512x114 (X,Y,Z)). b/e/h, Automated cell 
segmentations for the same image-regions as (a/d/g) but achieved label-free direct from the reflectance signal. c/f/i, Cell-object 
intersection-over-union score distributions comparing – cell-object by cell-object – the (a/d/g) hand-drawn segmentations against the 
(b/e/h) automated, label-free cell segmentations. An IOU score of 1 represents perfect, per-pixel overlap between the hand-drawn and 
automated cell segmentations. Within the comparison presented here, scores ≥ 0.6 are seen to represent a good match, approaching 
the limits of hand-drawing accuracy. Encouragingly, the 3-D approach outperformed the segmentation accuracies achieved in 2-D 
(shown, Figure 2). Scale bars equal 20 microns. 



Figure S6 related to Figure 4 – Fluorescence versus label-free nuclei predictions at Z-depths of ~10 and ~90 microns. Using 
reflectance information from a 638 nm excitation laser, the 3-D network is able to consistently recover nuclear information long after 
the blue nuclear stain (Hoechst 33342) has decayed from multiple scattering effects (bottom right versus middle right). The resultant 
pixel intensity histograms from the probability map images are extremely stable (bottom right). This is advantageous for achieving 
consistent, depth-invariant 3-D cell segmentation in thick tissue specimens. 
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a, Once the fluorescence imaging sequences are set up, a new track for reflectance is added to the sequential scan. b, The desired 
excitation laser for reflectance imaging is selected (here, 561 nm). The choice of laser is not particularly important, but use of longer 
wavelengths may reduce fluorophore photobleaching and improve penetrance / recovery in thicker specimens (shown, Figures S1/S6). c, A 
photomultiplier detector (here Ch1) is turned on and the range set to approximately +/- 3 nm either side of the excitation wavelength (here 
558 – 564 nm was entered, but the software rounds to display ~ 557 – 566 nm). d, The tick-box allowing reflected light to pass to the detector 
is turned on. e, The T80/R20 beam splitter is chosen (this indicates a transmission/reflection ratio of 80:20). f, A low laser excitation power 
(here, 1%) is entered. N.B., use of a reflectance light path with high laser excitation power may damage the camera, so care should be taken 
here. The pinhole is set to ~ 1 airy unit, yielding an optical section of around ~ 1 micron with a high numerical aperture 40X or 63X objective. 
g, Running in ‘live mode’, the gain is slowly increased until the reflectance signal occupies approximately 80% of the range histogram 
(indicated, green box). Compressing the histogram in the range indicated yields a typical ‘view’ of the reflectance signal from a lymphoid 
tissue specimen (on display in the main image window). 

a. 

b. 
f. 
g. 
h. 

c. 

d. 
e. 

Setting up sequential reflectance imaging using a standard Zeiss LSM780 confocal microscope.  
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a, Once the fluorescence imaging sequence(s) are set up, a new track for reflectance is added to the sequential scan (here, ‘Seq 4’). b, The 
desired excitation laser for reflectance imaging is turned on (here, 488 nm). The choice of laser is not particularly important, but use of longer 
wavelengths may reduce fluorophore photobleaching and improve penetrance / recovery in thicker specimens (shown, Figures S1/S6). A 
low laser excitation power (e.g., 1%) is also specified at this step. N.B., Use of a reflectance light path with high laser excitation powers could 
damage the camera, so care should be taken at this step. c, An appropriate beam splitter is chosen for the excitation line, or, the ‘Autoselect’ 
checkbox can be ticked to set this automatically. d, A photomultiplier detector (here PMT1) is turned on and the range set to approximately 
+/- 3 nm either side of the excitation wavelength (i.e., here, 485-491 nm). e, Running in ‘live mode’, the gain is slowly increased until the 
reflectance signal occupies approximately 80% of the available intensity range. The main window shows a typical ‘view’ of the reflectance 
signal from a lymphoid tissue specimen under this setup. 

a. 

b. 

d. 

c. 

e. 

Setting up sequential reflectance imaging using a standard Leica SP8 confocal microscope.  
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Once fluorescence excitation and collection are configured, (a) any remaining laser line can be used for reflectance imaging (e.g., here, the 
488 nm line is used). The choice of laser is not particularly important, but use of longer wavelengths may reduce fluorophore photobleaching 
and improve penetrance / recovery in thicker specimens (shown, Figures S1/S6). A low laser excitation power (e.g., 1%) should also be 
specified here. Reflectance imaging with high laser excitation powers could damage the camera, so care should be taken at this step. b, An 
appropriate beam splitter for the excitation lasers is chosen, or the ‘Autoselect’ checkbox ticked to enable automatic setting. c, A free detector 
(here PMT2) is turned on and the range set to approximately +/- 3 nm either side of the excitation wavelength (i.e., 485-491 nm). d, Running 
in ‘live mode’, the gain is slowly increased until the reflectance signal occupies approximately 80% of the available intensity range. The top-
right image in the main window shows a typical ‘view’ of the reflectance signal from a lymphoid tissue specimen under this setup. This 
approach allows reflectance data to be concomitantly collected alongside fluorescence without adding the additional run-time of further 
sequences. N.B., It is worth noting that in a similar way, a laser that is already being used for fluorescence excitation may also be used to 
obtain reflectance data (exemplified page below). For example, here, PMT2 could be moved up to collect reflectance from the 638 nm laser in 
the range 635-641 nm. Doing this has the advantage of reducing the photon budget for the sample. However, it also necessitates that enough 
excitation power is being used to obtain a good reflectance signal, and that a free detector can be moved within the necessary detection 
range. This is not always compatible with optimal fluorescence imaging – hence the setup shown here. 

a. 

b. 

c. d. 

Setting up simultaneous reflectance and fluorescence imaging using a standard Leica SP8 confocal microscope.  
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Once fluorescence excitation and collection are configured, (a) any remaining detector can be used to simultaneously collect the reflectance 
signal from one of the excitation lasers being used to stimulate fluorescence (e.g., here, ‘PMT2’ is used to collect reflectance from the 638 nm 
laser line (b) – which is also being used to excite AlexaFluor 647). This is achieved by placing the detector approximately +/- 3 nm either side 
of the excitation wavelength (i.e., 635-641 nm). c, Running in ‘live mode’, the gain is slowly increased until the reflectance signal occupies 
approximately 80% of the available intensity range. The top-right image in the main window shows a typical ‘view’ of the reflectance signal 
from a lymphoid tissue specimen under this setup. Simultaneous reflectance imaging has the advantage of reducing the photon budget for the 
sample, as the reflectance information is effectively recovered for ‘free’ by harnessing scatter from a laser that is already in use. However, this 
setup also necessitates that enough excitation power is available to obtain a good reflectance signal, and that a free detector can be moved 
into the necessary detection range. To achieve this here without saturating the AlexaFluor 647 signal (shown bottom-left in the main image 
window) the AlexaFluor647 detection range was narrowed (d) to ~ 700-750 nm. Where this setup cannot be accommodated one of the other 
options that instead use a dedicated laser for reflectance imaging should be utilised (shown, three above pages). 

a. 

b. c. 

d. 

Setting up ‘free’ reflectance imaging alongside fluorescence collection using a standard Leica SP8 confocal 
microscope.  
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2-D Unet architecture schematic. The network uses an input layer for the reflectance data of 256x256x1 (x, y, channels). The best 
performing three-class Unet architecture uses an encoder depth of 4 with 64 filters at the level of the first encoder (shown, Figure S2). 
The network uses complete up-convolutional expansion to yield outputted probability maps that are identically sized to the input layer. 
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3-D Unet architecture schematic. The network uses an input layer for the reflectance data of 64x64x64x1 (x, y, z, channels). The 
three-class Unet architecture uses an encoder depth of 4 with 64 filters at the level of the first encoder. The network uses complete 
up-convolutional expansion to yield outputted probability maps that are identically sized to the input layer. 
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2-D Cell Profiler image analysis pipelines. This section presents screenshots of a CellProfiler image analysis pipeline used to achieve 
label-free cell segmentation in 2-D from the Unet network outputs, and to measure the intensity and size/shape features of identified cell-
objects. To use the image analysis pipeline with new image data, the ‘IdentifyPrimaryObjects’ module simply needs adjusting so that the 
‘typical diameter of objects’ size-range matches the pixel scaling of the new images. For newcomers to CellProfiler, we recommend 
downloading the image-data and pipeline from BioStudies database https://www.ebi.ac.uk/biostudies/ under accession number S-
BSST742. This enables the pipeline to be run with the data described in the manuscript and allows the user to see how each module 
works.  

90	



91	



92	



93	



94	



95	



96	



97	



98	



99	



100	



101	



102	



103	



104	



105	



106	



107	



108	



109	



110	



111	



112	



113	



114	



115	



116	



117	



118	



119	



3-D CellProfiler pipeline. This section presents screenshots of a CellProfiler image analysis pipeline used to achieve label-free cell 
segmentation in 3-D from the Unet network outputs and to measure the intensity and size/shape features of identified cell-objects. To use 
the image analysis pipeline with new image data, the ‘IdentifyPrimaryObjects’ module simply needs adjusting so that the ‘typical diameter 
of objects’ size-range matches the pixel scaling of the new images. For newcomers to CellProfiler, we recommend downloading the image-
data and pipeline from BioStudies database https://www.ebi.ac.uk/biostudies/ under accession number S-BSST742. This enables the 
pipeline to be run with the data described in the manuscript and allows the user to see how each module works.  
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