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MOTIVATION Organoids have become valuable models for understanding cellular and molecular mecha-
nisms in human development, including development of brains. However, whether developmental gene
expression programs are preserved between human organoids and brains, especially in specific cell types,
remains unclear. Importantly, there is a lack of effective computational approaches for comparative data
analyses between organoids and developing human brains. To address this, we developed a machine-
learning framework for comparative gene expression analysis of brains and organoids to identify conserved
and specific developmental trajectories as well as developmentally expressed genes and functions, espe-
cially at cellular resolution.
SUMMARY
Our machine-learning framework, brain and organoid manifold alignment (BOMA), first performs a global
alignment of developmental gene expression data between brains and organoids. It then applies manifold
learning to locally refine the alignment, revealing conserved and specific developmental trajectories across
brains and organoids. Using BOMA, we found that human cortical organoids better align with certain brain
cortical regions than with other non-cortical regions, implying organoid-preserved developmental gene
expression programs specific to brain regions. Additionally, our alignment of non-human primate and human
brains reveals highly conserved gene expression around birth. Also, we integrated and analyzed develop-
mental single-cell RNA sequencing (scRNA-seq) data of human brains and organoids, showing conserved
and specific cell trajectories and clusters. Further identification of expressed genes of such clusters and
enrichment analyses reveal brain- or organoid-specific developmental functions and pathways. Finally, we
experimentally validated important specific expressed genes through the use of immunofluorescence.
BOMA is open-source available as a web tool for community use.
INTRODUCTION

The development of human brains, especially during the early pe-

riods, remains poorly understood.1–3 Understanding how neural

stem cells differentiate into the myriad cell types that form the

brain, especially at the molecular level, such as gene expression

and its regulatory mechanisms, will shed light on the human brain

development and potentially further help understand the etiology
Cell Repo
This is an open access article under the CC BY-N
of neurodevelopmental diseases. Several large collaborative con-

sortia have been carried out to generate large-scale next-genera-

tion sequencingdata in humanbrains, aiming toprovide functional

genomic resources for understanding molecular mechanisms of

human brain and brain development. For example, BrainSpan4

collected�600 tissue samples from48postmortemhuman brains

ranging from prenatal to adult age groups andmeasured the tran-

scriptomic and epigenomic data across developmental stages
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and brain regions. PsychENCODE1,5 generated multi-omics data

for approximately 2,000 postmortembrains, aiming to understand

functional genomics and gene regulation in human adult brains

and neuropsychiatric disorders. These consortia provided valu-

able public resources to decipher the developmental functional

genomics and gene regulation in the human brain. However, the

postmortem brain samples serve only as snapshots of the brain

at different stages, whereas brain development is a dynamic pro-

cess that requires crosstalk among various genes, cell types,

brain regions, and environments.6

Because it is quite challenging to measure in vivo molecular

activities such as gene expression in human brains, animals

such as rodents and non-human primates (NHPs) have been

used asmodels for studying molecular mechanisms during brain

development. For example, Zhu et al.7 have thoroughly

compared the bulk RNA sequencing (RNA-seq) data of brain

development between humans and rhesusmacaques atmultiple

brain regions and time points. Particularly, they performed non-

negative matrix factorization to linearly factorize the gene

expression matrix into five biologically meaningful ‘‘transcrip-

tomic signatures,’’ which were then compared between humans

and NHPs. Such comparisons demonstrated the usefulness of

NHP models for studying brain development. However, their re-

sults also highlighted the divergence of molecular mechanisms

across species. This is also supported by previous studies that

noticed that using animals as models is insufficient because

brain maturation is specific to its developmental context,4,8

and human brains have specific developmental programs that

allow, for example, a dramatic size expansion when compared

with other primates.9

To solve these challenges, emerging 3D brain culture technol-

ogies, such as organoids, have been developed. These cultures

utilize embryonic stem cells (ESCs) or induced pluripotent stem

cells (iPSCs) and differentiate them into 3D human brain

models.10 An intriguing discovery is that iPSCs follow intrinsic

programs and extrinsic cues to form 3D forebrain organoids

(3DOs) that can be maintained for at least 40 weeks and even

over 2 years, with a transcriptomic signature corresponding to

‘‘birth’’ at �28 weeks of culture.11,12 Organoids as brain models,

although in their early developing stages, have already found

numerous medical applications. For example, Park et al. used

1,300 organoids to model the human brain and conducted

drug screening for Alzheimer’s disease.13 However, to what

extent the in-vitro-cultured organoids preserve the in vivo com-

plex dynamic process remains a question,14 with contradictory

conclusions that have been made by the community. For

example, Gordon et al.11 cultured organoids for up to 694 days

and used transition mapping (TMAP), a rank-rank hypergeomet-

ric test-based method, to map the organoids’ bulk RNA-seq da-

tasets with BrainSpan RNA-seq datasets and demonstrated that

organoid culture could reproduce several developmental mile-

stones of in vivo brain development even at mid- to late-fetal

stages. Velasco et al.15 performed single-cell RNA-seq

(scRNA-seq) on 166,242 cells isolated from 21 organoids and

showed that organoids can virtually indistinguishably reproduce

the cell diversity of the human cerebral cortex. On the other

hand, Pollen et al.9 compared human primary tissues versus hu-

man organoids using canonical correlation analysis (CCA)16 and
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co-clustering of the mixture cells from both origins. They found

that organoids maintained the composition of cell types but var-

ied in the cell percentages and concluded that using organoids

as brain models is promising, but the organoid protocols need

future improvements to better preserve the brain cell-type

fractions and cell functions.9,17 Bhaduri et al.18 compared sin-

gle-cell gene expression data of samples across different devel-

opmental periods and multiple cortical areas with organoids and

found that cellular stress pathways have been activated in orga-

noids, which impairs cell-type specification during organoid

development. All these studies highlight the promise of using or-

ganoids as models for brain developmental research; however,

until now, the fidelity of organoid models has still been under

debate. One of the attributed reasons is the lack of dedicated

computational approaches for integrative and comparative anal-

ysis of gene expression across developmental stages between

brains and organoids, especially for single-cell datasets.

In particular, the comparative analysis of developmental data

between brains and organoids can be viewed by machine

learning as an alignment problem across multiple datasets. For

instance, manifold alignment,19,20 a popular machine-learning

technique, projects samples from multiple datasets onto a com-

mon latent space via mapping manifolds across datasets, e.g.,

multi-omics datasets.21 The neighboring samples on the latent

space suggest that they can be aligned and thus share similar

features (or distant samples for unaligned). In general, manifold

alignment algorithms22 can be supervised or unsupervised de-

pending onwhether the sample correspondence is provided (su-

pervised) or not (unsupervised). A supervised approach needs

predefined correspondence between the samples across two

datasets.23 For example, ManiNetCluster24 embeds samples

into a latent manifold space and aligns them by minimizing the

overall distances between corresponding samples. An unsuper-

vised approach does not require correspondence; instead it

learns the correspondence across multiple datasets.25 For

example, MATCHER21 performs linear trajectory alignment

based on latent Gaussian process; MMD-MA26 maximizes

mean discrepancy on a kernel space; UnionCom27 uses matrix

optimization to match the distance matrices of each dataset;

and SCOT28 incorporates Gromov Wasserstein-based optimal

transport to align single-cell datasets. However, unsupervised

approaches, in general, automatically assume a shared underly-

ing structure among the aligned datasets,29 which might not al-

ways be true. Besides, none of these manifold alignment

methods considered prior time information across samples in

development that can likely help increase performance and

interpretability30 of the alignment. The developmental data for

brains or organoids typically provide prior time information on

developmental stages, e.g., postconceptional weeks (PCWs)

of developing brains and cultured days of organoids. Such prior

time information, though at low resolution, may help predict

initial correspondences globally across samples from different

datasets, in contrast to the fully unsupervised fashion. Building

on such initial correspondence, further manifold alignment can

then refine the alignment to reveal higher resolution and local

timing by the manifold shapes that have been widely used to un-

cover pseudo-timings.31 However, to the best of our knowledge,

manifold alignment has yet been applied for integrative and
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Figure 1. Brain and organoid manifold alignment (BOMA), a computational framework for comparative analyses of developmental gene

expression data between brains and organoids

(A) BOMA inputs multiple developmental gene expression datasets (genes by samples) from brains and organoids. The samples are ordered by prior timing

information in development.

(B) Step 1: global alignment to infer the correspondences of samples across the datasets at a coarse-grain level.

(C) Step 2: local alignment to refine the alignment and map samples onto a common manifold space.

(D) Clustering and functional analysis of aligned samples on the common space, e.g., brain-organoid conserved (square) or specific (circle and triangle) clusters

and developmental trajectories (black curves). Downstream analyses of those clusters can discover differentially expressed genes, enriched gene functions, and

associated phenotypes. GO, Gene Ontology.
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comparative analysis of brain and organoid data, especially for

development and single cells.

In this article, we developed a manifold-learning framework,

brain and organoid manifold alignment (BOMA), to align develop-

mental gene expression data across human brains and organo-

ids, aiming to better understand conserved and specific gene

expression and functions. In particular, BOMA adopts a semi-su-

pervisedmanifold alignmentmanner. That is, using prior timing in-

formation from datasets, we first perform a global alignment at a

coarse-grained level to generate a correspondencematrix among

samples. Next, using the correspondencematrix, we apply mani-

fold alignment approaches to locally refine the global alignment of

samples across datasets. The aligned samples finally reveal

developmental trajectories with higher resolution pseudo-timing

information. The aligned and unaligned samples aim to uncover

conserved and specific developmental trajectories across human

brains and organoids. We first demonstrated an application of

BOMA by aligning bulk RNA-seq gene expression datasets and

observed a similar developing trend as in the original respective

publications.11 By aligning organoids with different human brain

regions, we also found that organoids are more similar to certain

brain regions at specific time points. We also aligned the scRNA-

seq data of human versus chimpanzee organoids and observed a

delayed development of human organoids compared with chim-
panzee organoids. Finally, we compared recent time-series

scRNA-seq datasets between human brains and human organo-

ids in development. We found both common and uniquely ex-

pressed genes between the brains and organoids at resolutions

of cell types across developmental stages. Moreover, we exper-

imentally validated the expression of genes displaying differences

between brains and organoids in selected cell types. BOMA is

also available as an open-source web tool for community use.

RESULTS

BOMA framework for comparative analyses of gene
expression data between brains and organoids
As shown in Figure 1, BOMA inputs developmental gene expres-

sion matrices of the brain and organoid samples (e.g., tissues,

cells). First, it uses global alignment to align the samples and

initialize a sample-wise correspondencematrix at a coarse-grain

level (e.g., via manifold warping). Second, BOMA performs a

manifold alignment using the correspondence matrix as the

initial alignment. This step finds shared manifolds of the samples

and maps them onto a common manifold space. The manifold

shapes of the samples on the space are expected to uncover

various developmental trajectories, which can be either

conserved across brains and organoids (aligned samples) or
Cell Reports Methods 3, 100409, February 27, 2023 3
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be brain/organoid specific (unaligned samples). Finally, BOMA

clusters the samples on those trajectories and finds underlying

differentially expressed genes (DEGs), enriched gene functions,

and associated phenotypes for each cluster, providing a deeper

understanding of developmental functional genomics in brains

versus organoids. The full description of the BOMA model is

available in the STAR Methods.

To demonstrate BOMA as a framework for comparative anal-

ysis of brains and organoid development, we carried out several

experiments in the following sections. We first applied BOMA on

bulk RNA-seq datasets, including human brains, NHP brains,

and human organoids. We further demonstrated the utility of

BOMA in aligning scRNA-seq datasets, which includes single-

cell data integrated from multiple independent studies. We also

benchmark several state-of-the-art alignment tools using these

datasets.

Spatiotemporal conservation and divergence of gene
expression between organoid and brain regions
Recent landmark studies compared gene expression between

the human brain and organoid development.11 However, our un-

derstanding of where and when gene expression in various brain

regions is conserved or different from organoids is still unclear.

To this end, we applied BOMA to align developmental gene

expression data of human brains and organoids at the bulk tis-

sue level. The brain dataset includes brain tissue samples (data-

set 1, n = 460; Table S1) from 16 human brain regions (Table S2).

The organoid dataset includes organoids from a recently pub-

lished long-term-cultured ‘‘human cortical spheroid (hCS)’’ orga-

noid bulk RNA-seq dataset11 (n = 62, dataset 6).

Our alignment shows these brain and organoid samples

primarily follow a shared trajectory on the common space, indi-

cating potential conservation during their development (Fig-

ure 2A). In particular, as shown in Figure 2B, the organoid sam-

ples from 25 to 250 days were aligned with the brain tissue

samples at prenatal stages.11 At 300 days, the organoid samples

started to gain postnatal signatures, indicated by their high align-

ment scores with postnatal brain samples (Figure 2B). Also, or-

ganoids after 350 days were not well aligned with any brain

samples, which indicates that the late-stage organoids may

differ from postnatal brain development. This observation was

consistent with a recent comparison of brain and organoid

development.11

Furthermore, we also interrogated which human brain regions

aremost similar to organoids in development. To answer this, we

assessed the BOMA alignment of brain samples from each indi-

vidual region with the organoid samples (Figures S1A–S1C). As

expected, distinct alignment patterns were found for different

brain regions, with cortical areas aligning better with hCS orga-

noids than non-cortical brain regions during early developmental

stages up to 200 days (Figures 2C and 2D). At 200 days, the

alignment scores of cortical regions are significantly higher

than non-cortical regions (two-sided t test, p = 0.000696). To

find which genes are potentially driving the alignment, we

correlated individual gene expression with organoid pseudo-

time (z axis in Figure 2A) and identified 54 genes significantly

correlated with the pseudo-time as summarized in Figure S1D.

We also identified cortical (n = 51) and non-cortical marker genes
4 Cell Reports Methods 3, 100409, February 27, 2023
(n = 75) by finding significantly upregulated genes across the two

regions. Interestingly, many more genes upregulated during or-

ganoid development were also significantly highly expressed in

cortical areas compared with non-cortical regions (n = 9 versus

n = 1). Besides, we did not observe any significant overlap be-

tween the pseudo-time-correlated genes with the marker genes

of each individual cortical area (Figure S1D). However, our align-

ment shows that within the neocortex, several cortical areas like

the orbital prefrontal cortex (OFC), posterior inferior parietal cor-

tex, primary auditory cortex (AIC), and superior temporal cortex

(STC) may be better aligned with cortical organoids than other

cortical areas up to 100 days (two-sided t test, p = 0.00108;

Figures 2D and S1E). It is important to note that because several

brain regions did not have samples from stage 2, we removed

stage 2 from all the regions for the BOMA alignment. As a result,

organoids at 25 days cannot align well with any brain samples.

Therefore, these results suggest that cortical organoids specif-

ically preserve brain-regional development at certain stages

(i.e., spatiotemporal conservation) instead of mimicking the

whole brain development. Interestingly, they also suggest that

organoids are transcriptomically closer to certain neocortical

areas, particularly perisylvian and orbital frontal areas, than

they are to other neocortical areas.

Developmental gene expression discrepancies between
human and chimpanzee organoids
Wealso applied BOMA to align human andNHPbrains, revealing

their conserved developmental gene expression across species.

Specifically, we aligned rhesus macaque brain samples (n =

366)7 with human brain samples (n = 460) from BrainSpan using

BOMA. We found those samples were aligned most closely

around the time of birth (Figure S2A), indicating that brain gene

expression across two species becomes more similar at the

bulk tissue level perinatally.7

To deepen our understanding of the conservation and speci-

ficity of developmental gene expression at cellular resolution

across human and NHP organoids, we applied BOMA to devel-

opmental scRNA-seq data and aligned single cells of human

organoids (number of cells: n = 47,130, dataset 733) versus chim-

panzee organoids (n = 26,228, six time points, dataset 7). BOMA

alignment was performed on the pseudo-cells identified by a

similar approach as the study generated the datasets,33 aiming

to combat single-cell expression noises. Each pseudo-cell rep-

resents a group of cells with similar gene expression patterns.

In total, 938 human and 483 chimpanzee organoid pseudo-cells

were generated for BOMA. Our analysis shows that these

pseudo-cells from the two species organoids were aligned in

general to a common trajectory, which indicates cross-species

developmental similarity (Figure 3A). However, some discrep-

ancies could also be observed. First, compared with human

cells, chimpanzee cells were shifted toward a later time over

thematurational trajectory (toward the left in Figure 3A), suggest-

ing that chimpanzee organoids were developing faster than hu-

man organoids (Figure 3B). The observed protracted maturation

of human organoids is in line with the previous study33 and was

also observed in other cross-species comparison studies

on organoids34,35 as well as on 2D cultures.36,37 Second, we

noticed that two sets of chimpanzee cells (Chimpanzee_1 and
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Figure 2. Spatiotemporal conservation and divergence of gene expression between organoid and brain regions

(A) Aligned human brain4 and organoid11 samples on the common space from BOMA. Human brain samples are from BrainSpan and are colored orange by

developmental stages. The stages were described by Kang et al.32 and characterize the periods of embryo to develop into adulthood brains. Organoid samples

are colored blue by cultured days. t, time; PCW, postconception weeks; M, month; Y, year.

(B) Correlation plot shows the similarity (quantified as ‘‘local alignment score’’; STAR Methods) of aligned samples. Each dot is the averaged similarity across all

pairs of samples at the specific developmental time points. Both the color and the size of the dots represent the local alignment score.

(C) Pairwise local alignment scores between organoids with brain samples from the OFC and mediodorsal nucleus of thalmus (MD).

(D) Averaged BOMA alignment scores between organoids versus the 16 brain regions. To calculate the averaged alignment score, for each organoid sample, its

distance to the nearest sample from a certain brain region was used to calculate the local alignment score. The local alignment score was then weighted by the

global alignment score of each brain region (See STARMethods). The weighted alignment score of organoids from the same time point were averaged to show in

the heatmap. Brain regions abbreviations are listed in Table S2.
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Chimpanzee_2; Figure 3A, right panel) could not be well aligned

with any human cells. To understand the functional relevance of

these two sets of cells (Data S1), we first identified each cell set

by their coordinates.We then extracted upregulated genes using

Presto38,39 to compare cells from each set with all other. Finally,

functional enrichment analysis was performed using these genes

(Figure 3C). Genes upregulated in Chimpanzee_2 were mostly

enriched with brain developmental functions (false discovery

rate [FDR] <10e�5). For example, themost significantly enriched

term, ‘‘neuron projection morphogenesis,’’ is related to the

maturation of neurons and circuit assembly.40 These observa-

tions again indicate faster maturation of chimpanzee organoids.

On the other hand, upregulated genes in Chimpanzee_1 at early

time points (0 and 4 days) were enriched in cell division pro-

cesses (e.g., cell cycle, chromatin remodeling, etc.). These
genes suggest that Chimpanzee_1 is likely an intermediate cell

type between pluripotent stem cell and neural progenitor, as

these cells express genes associated with pluripotency (e.g.,

POU5F1, DSG2), early embryonic development and patterning

(e.g., NKX1-2, DSP, NR6A1, MGST1), neural tube development

(e.g., CTHRC1, PKDCC, PRTG), and brain development/neural

progenitors (e.g., TDGF1, TGFB2, PODXL, LIN28A, FOXH1,

FSTL1). They also express neuron-specific genes and neuron-

enriched genes (e.g., RIT2, DNMT3B, MAP1B). In support of

this, Kanton et al.’s33 original analysis of these data also indi-

cated the presence of neuroectoderm cells.

Therefore, our BOMAalignment revealed adevelopmental gene

expression similarity between human and chimpanzee organoids.

Our analysis also uncovered the cross-species discrepancy in

neural development and cellular functions. These results
Cell Reports Methods 3, 100409, February 27, 2023 5
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Figure 3. Developmental gene expression alignment between human and chimpanzee organoids

(A) The samples of human and chimpanzee organoid cells33 (visualized by pseudo-cells) in the common space after BOMA alignment. Human and chimpanzee

organoid cells were plotted separately for comparison. The dot colors represent the experimental time points. The dashed line in the left panel shows the direction

of the developing trajectory. Two chimpanzee organoid-specific clusters (Chimpanzee_1 and Chimpanzee_2) are highlighted in the right panel.

(B) Averaged pseudo-time between human and chimpanzee organoids. Pseudo-time is defined as the x axis coordinates in (A). Each dot represents the averaged

pseudo-time of samples at a certain time point (0–120 days).

(C) Functional enrichments of the chimpanzee organoid-specific cluster marker genes.
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demonstrate the capability of BOMA to compare emerging orga-

noid single-cell data and provide insights into underlying cellular

and molecular mechanisms driving neurodevelopment.

Cell-type-level conservation in development between
human brains and organoids derived from ESCs
To broaden BOMA applications to single-cell datasets of human

brains versus organoids, we first benchmarked BOMA on two

particular single-cell datasets. The comparison of human brains

and organoids, especially at the cell-type level, will greatly

advance our understanding of howwell in-vitro-cultured organo-

ids model the in vivo human brain. We first aligned single-cell

data from cortical regions of postmortem human brains (n =

4,261, dataset 3)41 with those of organoids differentiated from

a well-established human ESC line (H9, n = 11,048, dataset

7).33 This human brain dataset covers prenatal samples across
6 Cell Reports Methods 3, 100409, February 27, 2023
6–32 PCWs, while the organoid dataset includes organoids

from 0 days up to 4 months in vitro. Before performing the align-

ment, human brain pseudo-cells (n = 490) and organoid pseudo-

cells (n = 497) were generated from both datasets.

Our earlier analysis of bulk RNA-seq datasets (Figure 2B)

shows that organoids up to 4 months could be aligned across

prenatal developmental periods, indicating the developmental

time ranges of these two separate studies are comparable.

Thus, we aligned these two scRNA-seq datasets and identified

five cell clusters in the common space (STAR Methods). Each

cluster represents a group of cells that likely have similar func-

tions (Figure 4A). Interestingly, each individual cluster contains

cells from both brains and organoids, suggesting that the

in vitro organoids are likely composed of the major cell types

in the human brain. To understand functions underlying those

clusters, we calculated the cell types enriched in each cluster.
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Figure 4. Alignment of developmental gene expression between human brains and human ESC organoids

(A) The human brain41 and organoid33 cells (visualized by pseudo-cells) on the common space after BOMA alignment. Left: human brains. Right: human or-

ganoids. Aligned cells were grouped into 5 clusters.

(B) The associated cell types of each cluster from the enrichment analysis (hypergeometric test; STAR Methods). ComplexHeatmap42 was used to plot the

significance of associated cell types for each cluster. U, early time point cells of unknown cell types.41

(C) The associated developmental stages (time points) of cell clusters (hypergeometric test; STAR Methods). The stages were described by Kang et al.32 to

characterize the periods of human embryo to develop into adulthood brains. t, time; PCW, postconception weeks. Dots represent associations with Benjamini-

Hochberg (BH)-adjusted p values <0.05.
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For a given cluster, the enrichments were performed for the

cluster cells from brains and organoids separately, and we

observed that the enriched cell types in each cluster were

generally matched (Figure 4B). For instance, cluster 1 was

mainly enriched for early developing cells, such as radial glia

(RGs), and oligodendrocyte progenitor cells (OPCs); cluster 2

was associated with intermediate progenitor cells (IPCs) and

newborn excitatory neurons (nENs); cluster 3 was mainly map-
ped to excitatory neurons (ENs); cluster 4 was mainly mapped

to inhibitory neurons (INs); and cluster 5 was mainly mapped to

endothelial cells. The details of cell-type annotations can be

found in Table S3. It is worth pointing out that we only per-

formed coarse clustering to show the high-level correspon-

dence of cell types between aligned brains and organoids.

Further sub-clustering reveals more refined cell-type enrich-

ments of each sub-cluster (Figure S2B).
Cell Reports Methods 3, 100409, February 27, 2023 7
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Moreover, it is also important to look at matching develop-

mental timing between brains and organoids. Determining the

corresponding developmental periods during which cells are

generated and specified in organoids will greatly benefit the

design of culturing experiments. To address this, we identified

the associated developmental stages of each cluster by calcu-

lating the significance of cells overlapping between each stage

versus each cluster (STAR Methods). In general, we observed

that each cluster was associated with different developmental

stages (Figure 4C). Together with the fact that clusters are

composed by different cell types, this indicated the dynamic

maturation of cell types across development. Interestingly, we

observed that brain and organoid development follows a similar

pattern, which again supports the developmental conservation

between two datasets. However, discrepancies were observed

for cluster 5, which is significantly associated with microglia

and endothelial and mural cells in the brains, but with RGs in

the organoids (Figure 4B), reflecting the fact that these cell types

have distinct origins from neurons and glia in the brain. Also,

cluster 5 is associated with later developmental stages in brains

(>24 PCWs) but with earlier cultured time points in organoids

(<1 month; Figure 4C). This suggests that brain cells in this clus-

ter are more mature than organoid cells. This observation was

supported by BOMA-aligned cells on the common space in Fig-

ure 4A, where brain cells stretched longer in this cluster than or-

ganoid cells.

Besides, we tested robustness of BOMA using this dataset

(Figure 4). To do this, we challenged BOMA by intentionally add-

ing mismatched regional cells/cell types (red blood cells [RBCs])

(Figure S2C) or removing certain cell types (Figure S2D). Our re-

sults show that BOMA performs reasonably well under those

challenges in terms of preserving shared developmental trajec-

tory and identifying cell-type-specific branches.

Large-scale alignment of integrated datasets in human
brains and organoids derived from iPSCs
Brain organoids differentiated from iPSCs have been used exten-

sively tomodel human brain development and developmental dis-

orders.18,43,44 Here, we tested BOMA’s performance for aligning

large-scale datasets of human brains versus both iPSC- and

ESC-derived organoids. In particular, we integrated scRNA-seq

datasets frommultiple studies to align single cells of human brains

and human brain organoids (STAR Methods). The integrated

datasets have 57 human brain samples and 28 iPSC- or ESC-

derived organoids. The brain data contain 175,334 cells across

5.85–37 PCWs, while the organoid data contain 187,179 cells
Figure 5. Large-scale alignment of integrated scRNA-seq datasets in

Five scRNA-seq datasets of human brains18,41,45 and organoids18,44 were applie

(A) The human brain and organoid cells (visualized by pseudo-cells) on the comm

colored by given cell types from the datasets.

(B) Experimental time correspondence between aligned intermediate progenitor

samples.

(C) Inferred developmental trajectory for ENs based on their coordinates on the

(D) Trajectory segments versus prior development stages (experimental timepoint

due to the limited sample sizes. Mann-Kendall trend test for mean values of eac

(E) The enriched functions and pathways of genes significantly upregulated in orga

and organoids.
across 21–105cultured days. Similar to previous analyses, wefirst

clustered cells intopseudo-cells (1,018 in brains, 872 in organoids)

to removestochastic noise and, afterward, evaluated the batch ef-

fects across datasets. t-distributed stochastic neighbor embed-

ding (tSNE) plots show that minimum batch effects persist after

reducing cells to pseudo-cells (Figures S3A and S3B, top panels).

We then input pseudo-cells into BOMA for alignment. We found

that BOMA aligns the two large-scale integrated datasets reason-

ably well, showing aligned cell trajectories with similar cell-type

distributions between brain and organoid cells in the common

space (Figures 5A, S3A, and S3B, bottom panels). For instance,

OPCs were embedded in the middle, and ENs, INs, and RGs

were aligned in a separate branch, while IPCs spread across

both ENs and RG cell branches. Expectedly, even less batch ef-

fectswereobservedafterBOMAalignment (FiguresS3AandS3B).

Progenitor cells, such as IPCs, can divide and differentiate into

postmitotic ENs in the developing cerebral cortex. This suggests

that IPCs should align with neurons on the same maturational

trajectory. To test whether this is true, we compared the devel-

opmental distribution of cultured IPCs with aligned ENs and

RGs within organoid samples. Interestingly, we did observe a

time shift between IPCs with ENs (e.g., IPCs of 3 weeks can align

with ENs of 10weeks, IPCs of 8 or 10weeks can alignwith ENs of

15 weeks, etc.) but not between IPCs and RGs (Figure 5B). The

differences in alignment of IPCs with RGs versus ENs make

sense given the timing of the events of neuronal cortical develop-

ment. RGs divide asymmetrically to produce either two RGs or

one RGdaughter cell and one IPC. IPCs then undergo symmetric

divisions to produce postmitotic neurons that migrate to their

proper cortical layers.

Moreover, we benchmarked other state-of-the-art methods

and compared them with BOMA. Although Seurat16 (Fig-

ure S3C) and Liger46 (Figure S3D) can perform alignment at

the single-cell level, both failed to identify the developmental tra-

jectories. Several other manifold-based alignment methods

(UnionCom,27 SCOT,28 MMD-MA26) can map the pseudo-cells

into a manifold space, but the cell types were not embedded

closely (Figures S3E–S3G). MetaNeighbor,47 a correlation-

based method for characterizing cell-type replicability across

scRNA-seq datasets, had computational memory issues when

applied on all cells within this dataset and was unable to identify

cell-type replicability on a 10%sub-sampled dataset (Figure 3H).

In summary, BOMA outperforms other platforms in terms of both

finding aligned cell trajectories and discovering cell-type devel-

opmental conservation across large-scale human brain and or-

ganoid datasets.
human brains and organoids from multiple studies

d.

on space after BOMA alignment. Left: brains. Right: organoids. The dots are

cells (IPCs) versus excitatory neurons (ENs)/radial glia (RGs) within organoids

common space. Top: brains. Bottom: organoids.

s). Human brain cells from segments earlier than stage 6 were grouped together

h segment was used to test the trending significance.

noid ENs, genes upregulated in brain ENs, and genes expressed in both brains
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Brain-organoid aligned trajectory analysis reveals
conserved and distinct developmentally expressed
genes in specific cell types
Aligned cell trajectories by BOMAbetween human brains and or-

ganoids show developmental processes across various cell

types. To further understand the gene expression programs

driving cell-typematuration, we identifiedmaturation trajectories

based on the coordinates of cells corresponding to each cell

type in the common space, such as ENs (Figure 5C) and IPCs

(Figure S4A). Then, we identified the DEGs across the cell-type

trajectory between brains and organoids. The enrichment anal-

ysis of those DEGs revealed conserved and specific develop-

mental functions of the cell type across brains and organoids

(STAR Methods).

The cell-type trajectories revealed the pseudo-times of indi-

vidual cells during development (i.e., cell positions over the tra-

jectory), hypothetically providing higher timing resolution than

the prior timing information. By cutting the trajectory into seg-

ments and correlating them with the developing stages, we

found that the segments of such pseudo-times significantly

correlate with real developmental stages (Figures 5D for ENs

with adjusted p = 0.0275 in brains and p = 0.0002 in organoids,

and S4A for IPC trajectory), which suggests that this trajectory

(pseudo-time) captures the real developmental maturation of

cell types.

We then identified the DEGs for each segment along each cell

type’s trajectory (STAR Methods). We identified 549 organoid

and 310 brain upregulated genes that were differentially ex-

pressed within at least one segment of the EN’s trajectory

(Data S2). Functional enrichment of these DEGs showed that or-

ganoid upregulated genes were mapped to chemical stress

response, which is supported by a previous study18 (Figure 5E).

On the other hand, the brain upregulated genes were mapped to

brain development processes, as expected.

To validate the differential expression of some of these DEGs,

we performed immunofluorescence in the developing human

neocortex and human organoids at different stages of differenti-

ation (Figure S4B). We found that the expression changes of

important genes across stages (percentage of expressed cells)

are greatly consistent with our results. SATB2, encoding a tran-

scription factor defining cortical neuron projection identity,48 and

POU3F2, encoding a transcription factor important for primate

RG expansion and differentiation,49 displayed only low levels

of expression throughout the development period of the organo-

ids by BOMA and were identified as significantly upregulated in

excitatory cells of the human neocortex compared with human

organoids at late stages (�19 PCW) (Figures 6A and 6B;

Benjamini-Hochberg [BH]-adjusted Wilcoxon rank-sum test

p = 1e�2). Consistent with these results, immunofluorescent

staining followed by quantitative analyses of human organoids

across 8, 10.5, and 14 weeks of differentiation, corresponding

to segments 7, 8, and 9, respectively, showed only a small pro-

portion of SATB2+ (<1.5%; Figures 6C and S18B) or POU3F2+

(�3%; Figures 6F and S18C) cells, whereas immunofluorescent

staining of human tissue confirmed the enrichment of SATB2+

and POU3F2+ cells in the cortical plate at 19 PCWs compared

with organoids at 14 weeks (Figures 6D and 6E with t test,

p = 0.0038, and 6G and 6H with t test, p = 0.001). SATB2 and
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POU3F2 are expressed in excitatory upper layer cortical neurons

in both the human brain50,51 and cortical organoids,48,49,52 which

are formed after the appearance of deep-layer neurons that ex-

press markers such as TBR1 and BCL11B (also known as

CTIP2). At the ages examined, our organoids have predomi-

nantly TBR1+ or BCL11B+ cells in the region surrounding the

progenitor-rich (SOX2+) zone, indicating that at these stages,

deep-layer, but not superficial-layer, neurons have been formed

(Figure S4B, top panel). We expect that analysis of older orga-

noid datasets (greater than 15 weeks in vitro) using BOMAwould

show increased numbers of these two cell populations, as has

been shown by other studies using immunostaining52 or bulk

RNA-seq approaches.11

On the other hand, PSMB5, encoding a 20S proteasome sub-

unit, demonstrated consistent but slightly decreasing expression

across the maturation trajectories by BOMA (Figure 6A) and was

validated by immunostaining of human organoids (Figures 6I and

S18E;�10% of cells). Although PSMB5 exhibited higher expres-

sion than SATB2 or POU3F2 at earlier stages in both organoids

and brains, in later stages, it exhibited similar levels of expres-

sion to those genes only in the brain (Figures 6A and 6B). Consis-

tent with this trend, we saw similar proportions of cells that were

positive for SATB2, POU3F2, or PSMB5 in 19 PCW human

cortical plate by immunostaining (Figures 6D–6J). Significantly

more PSMB5+ cells were found to be enriched in human

neocortex (t test, p = 0.0011) but mostly in deep-layer and

sub-plate neurons (Figure 6K), suggesting that human organoids

may have a lower abundance of sub-plate neurons at this in vitro

stage. Another possibility is that while many cells in the organoid

express PSMB5 at the mRNA level, they do not express high

levels of PSMB5 protein or that the organoids used to generate

these datasets contained larger cortical plate regions and thus

higher proportions of PSMB5+ cells.

DISCUSSION

In this work, we present BOMA as a framework for comparative

analysis of gene expression between brains and organoids, with

an attempt to understand the genomic regulations during their

development. Our evaluation of BOMA on both bulk tissue and

single-cell datasets demonstrated its scalability. Spatiotemporal

and species-wise gene expression patterns have been observed

by our alignment. Genes differentially expressed across cell

types and developmental stages were also identified by our

scRNA-seq analysis. Although we only focused on comparing

RNA-seq datasets between brains and organoids, BOMA can

be easily applied to compare pairs of any samples (RNA-seq

or other modalities). Hence, we provide a web tool of BOMA

for general community use.

Compared with existing methodology for comparative anal-

ysis between scRNA-seq data, BOMA’s semi-supervised

approach performed better than the unsupervised methods as

suggested by our results. The global alignment step not only im-

proves the model interpretability but also improves BOMA’s ca-

pabilities to find aligned developmental trajectories. scRNA-seq

data are, in general, noisy and stochastic, and the pseudo-bulk

methodswe benchmarked demonstrated that these approaches

can diminish scRNA-seq noises as well as combat batch effects
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Figure 6. Experimental validation of developmental expression of predicted brain- and organoid-specific genes

(A and B) Developmental expression profiles of SATB2, POU3F2, and PSMB5mRNAs in human organoids (A) and human neocortex (B), determined by BOMA.

Time correspondence for each segment ID can be found in Figure 5D.

(C, F, and I) Immunostaining of cortical organoids (n = 3) revealed percentages of cells expressing SATB2 (C), POU3F2 (F), and PSMB5 (I) during thematuration at

8, 10.5, and 14 weeks.

(D, G, and J) Quantification of SATB2+, POU3F2+, and PSMB5+ cells showed significant enrichment for human cortical plate (PCW 19, correspond to segment 9)

compared with organoids (14 weeks, corresponding to segment 9). Differences between organoid and cortical plate were tested using unpaired t test with

Welch’s correction, p = 0.0038 for SATB2+ cells, p = 0.001 for POU3F2+ cells, and p = 0.0011 for PSMB5+ cells.

(E, H, and K) Representative images of organoid and human brain sections. Scale bar: 50 mm.
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across datasets. Future development of more accurate scRNA-

seq technologies will potentially improve the alignment. Also, the

scRNA-seq datasets were integrated from multiple published

studies, so the input of BOMA can be confounded by various

experimental factors, for instance sample-wise batch effects, or-

ganoid culturing periods, sample sizes, sample time, sequencing

depths, etc. As showed in the results, BOMA significantly

reduced these confounders and demonstrated superior
performance for integrative analysis of multiple studies. In addi-

tion, as a framework, BOMAcan easily incorporate other existing

alignment methods (e.g., manifold warping, CCA, etc.). BOMA’s

supervised manner allows the correspondences between

sample pairs to be incorporated into the alignment as prior

knowledge. For example, users can define any correspondence

information based on their own domain knowledge. Cell corre-

spondences generated by other alignment tools (e.g., Seurat,
Cell Reports Methods 3, 100409, February 27, 2023 11
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Liger, etc.) can also be incorporated as prior knowledge of

BOMA by defining the correspondence matrices. The experi-

ments of intentionally inserting mismatched brain regions and

cell types demonstrated the robustness of BOMA. However,

including RBCs does make alignment more challenging, with

fewer common trajectories observed between brains and orga-

noids (Figure S2C versus Figure 4A). One possible future solution

is to run BOMA multiple times. For example, we can first run

BOMA once to detect aligned/unaligned cells. Then, for aligned

cells, we can run BOMA again to discover shared developmental

trajectory. However, for unaligned cells, we can apply manifold

learning and dimensionality reduction technics (e.g., diffusion

map, etc.) to discover dataset-specific trajectories on the

reduced latent space. In terms of alignment metrics, we consid-

ered both the local distances and direction of global trajectories.

It is important to consider both since neither can capture the

alignment quality separately. However, our current way of

designing the global similarity is simply calculating the cosine

similarity between vectors of aligned trajectories. More complex

approaches (e.g., Procrustes analysis,53 etc.) considering the

shape of the aligned trajectories might be useful to better cap-

ture the global similarity.

Our manifold alignment analysis showed gene expression

similarities between organoids and brains, demonstrating the

viability of using organoids to understand human brain develop-

ment.15 However, differences were also observed in the compar-

ative analysis, which suggests that future protocol optimizations

are needed.9 Our data indicate that, compared with developing

brain tissue, organoids contain relatively fewer superficial-layer

neurons (SATB2+POU3F2+) and fewer PSMB5+ cells, which in

human tissue appear to enrich among deep-layer and sub-plate

neurons. Optimization of earlier organoid protocols has shown

that reducing oxidative stress within organoids by cutting or

slicing can improve long-term maintenance of neural progenitor

populations, leading to expansion of cortical plate-/sub-plate-

like regions, more distinct lamination, and increased abundance

of superficial layer neurons.54–56 Using BOMA to analyze future

scRNA-seq datasets from organoids generated using these

recently optimized protocols would provide better indication of

how similar organoids are to the developing human brain. Addi-

tionally, future analyses could compare datasets from organoids

generated using different protocols to determine whether certain

approaches better recapitulate specific features of brain devel-

opment, such as formation of long-range projections or more

abundant numbers of outer RGs. This information would allow

researchers to choose the organoid system best suited to their

research questions.

Previous studies have demonstrated the wide application of

organoids as experimental models for drug screening of dis-

eases.13,57,58 Other studies have also shown using patient-

derived organoid (PDO) platforms to improve preclinical drug

discovery in personalized medicine.59 Recent clinical trials are

moving toward cell therapy of diseases using lab-cultured orga-

noids.60–62 All these reports suggested unprecedented opportu-

nities for organoids in both lab research and clinical treatment.

Thus, we believe that BOMA, which allows a deeper understand-

ing of the gene regulatory mechanisms underlying the cultured

organoids, will benefit future clinical studies.
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Limitations of the study
Our evaluation of BOMAwas only based on limited samples from

limited cultured periods, with limited numbers of pseudo-cells.

Future studies using longer-cultured organoids and more sam-

ples are recommended for better comparative analysis between

brains and organoids.
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Human Organoid scRNA-seq dataset 2 Birey et al.44 GEO:GSE93811

Human Organoid scRNA-seq dataset 3 Bhaduri et al.18 https://organoidreportcard.cells.ucsc.edu

Data 1 This work Zenodo(https://doi.org/10.5281/zenodo.7236202)

Data 2 This work Zenodo(https://doi.org/10.5281/zenodo.7236202)

Data 3 This work Zenodo(https://doi.org/10.5281/zenodo.7236202)

Experimental models: Cell lines

Human iPSC WiCell Research Institute,

Madison, USA

WC031i-5907-6

Software and algorithms

Python (versions 3.7) Python https://www.python.org

R (version4.0) R https://www.r-project.org/

BOMA codes https://github.com/

daifengwanglab/BOMA

Zenodo(https://doi.org/10.5281/zenodo.7556083)
RESOURCE AVAILABILITY

Lead contact
Requests for further information should be directed to the lead contact, Daifeng Wang (daifeng.wang@wisc.edu).

Materials availability
This study did not generate new materials.

Data and code availability
d This paper analyzes existing and publicly available data. All the datasets used and generated in our study were deposited in

Zenodo (https://doi.org/10.5281/zenodo.7236202) and they are publicly available as of the date of publication. Datasets

include supplementary dataset 1–3 from this work.

d All original codes have been deposited in Zenodo (https://doi.org/10.5281/zenodo.7556083) and are also publicly available at

GitHub (https://github.com/daifengwanglab/BOMA). A web app of BOMA is available at http://daifengwanglab.org/

boma-webapp/.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human WC5907 iPSC line64 was maintained on mouse embryonic fibroblast feeder layers as described65 and differentiated into or-

ganoids as carried using a published protocol.66 Briefly, iPSCs were lifted using dispase (0.4 mgmL�1) and transferred to low attach-

ment flasks (Greiner Bio-One) in hESCmedia plus two SMAD inhibitors SB-431542 and LDN-193189 from days 0–5. Organoids were

then switched to neural medium plus growth factors EGF (20 ngmL�1; R&D Systems) and FGF2 (20 ngmL�1; WiCell) from days 6–24.

After 24 days, organoids were cultured in neural medium supplemented with growth factors BDNF (20 ng mL�1; Peprotech) and

GDNF (20 ng mL�1; Peprotech) until day 43 with media changes every 2-3days. Organoids were collected at 8, 10.5, and 14 weeks

of differentiation and fixed with 4% PFA overnight. They were then washed with PBS 3x for 15min, and transferred to a 30% sucrose

solution for 48hrs. Organoids were embedded in OCT and 30% sucrose (1:1) and stored in �80 freezer until analysis.

METHOD DETAILS

Brain-organoid manifold alignment (BOMA)
Emerging organoids have been widely used as models to mimic complex brain development. We developed BOMA pipeline to use

manifolds to align gene expression data between brain and organoid samples (e.g., tissues, cells) (Figure 1). Such brain-organoid

expression data alignment fromBOMA aims to uncover conserved (aligned) and specific (unaligned) developmental gene expression

patterns across brains and organoids. Our further downstream analyses of such expression patterns allow a deeper understanding of

developmental functional genomics at both tissue and cell-type levels, especially in organoids.

Suppose that we want to compare two developmental gene expression datasets (e.g., brains vs. organoids) matrices, X =

½x1; x2;.; xm�˛Rd3m and Y = ½y1; y;.; yn�˛Rd3n, where d is the number of genes, m and n are the number of samples within

each dataset, xi ˛Rd is a d-dimensional vector representing the expression levels of d genes in the ith sample in X, and yj ˛ Rd is

also a d-dimensional vector representing the expression levels of d genes in the jth sample in Y . The samples of {xi; i = 1; 2;.;

m} and {yj; j = 1; 2;.;n} are ordered by prior timing information if available. BOMA carries out the alignment by two major steps.

In Step 1, BOMA globally aligns brain and organoid samples, based on prior timing (or any sequential) information of samples.

Such prior timing information is typically at low resolution, e.g., only cultured days available for many cells in organoids. This global

alignment establishes the initial correspondence across brain and organoid samples. In Step 2, from such initial correspondence,

BOMA applies manifold learning to locally refine the alignment and co-embed brain and organoid samples onto a common manifold

space. The manifold shapes of the samples on the space are expected to uncover various developmental trajectories, which can be

either conserved across brains and organoids (aligned samples) or brain/organoid specific (unaligned samples). Furthermore, the

manifold shapes from the space are expected to form developmental trajectories, revealing potential pseudo times among samples.

Such pseudo times, at a refined high resolution, provide unobserved timing from prior information.

BOMAStep 1 - Global Alignment: This step aligns X and Y at a coarse-grained level and initializes the correspondencematrix (W)

for the next step. Primarily, we introduce two popular methods for global alignment.

1) Dynamic TimeWarping (DTW). DTW finds the optimal set(s) of aligned samples (p*) between X and Y by minimizing the sum of

distances between all aligned sample pairs:
p� = argminp˛Aðx;yÞ

 X
ði; jÞ˛p

d
�
xi; yj

�!

where dðxi; yjÞ is the distance between the ith and jth samples of X and Y, Aðx; yÞ is the set of all possible alignments between the two

datasets. Distance of the samples x and y used here is defined by dðx;yÞ = 1
1+corðx;yÞ, where corðx; yÞ is the Pearson Correlation.

Specifically, we used R package, dtw67 to perform the DTW alignment. In this work, we chose the constraint as ‘open begin and

end’, which means that two sequential datasets can be unaligned at the beginning and end. The aligned samples from DTW can be

used to initialize a corresponding matrix among samples, W, where Wij = 1 if samples xi; yj are aligned, and = 0 otherwise.

2) Correlation based kNNgraph: This method first calculates the Pearson Correlation of each sample pair and then constructs a

k-nearest neighbor graph (kNNgraph) by linking each sample with its k (a hyperparameter) most correlated neighbors in the

other dataset. The adjacency matrix of the constructed kNNgraph can thus be used as the correspondence matrix W.

In real application, if timing information is available, the global alignment of BOMA can be carried out by manifold warping or dy-

namic time warping as we demonstrated in aligning developmental bulk tissue data. However, if priori timing information is unavai-

lable, the global alignment step of BOMA can learn the correspondences across samples that can be used for the following local

alignment. To this end, the users can choose the correlation based kNNgraph. Besides the two methods mentioned above, this

step can also be accomplished by other methods, e.g., Liger,46 which uses Nonlinear Matrix Factorization(NMF) for single-cell align-

ment; Seurat,16 which aligns single cells by identifying anchor genes.
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BOMA Step 2 - Local Alignment: this step performs a manifold alignment of X and Y using the correspondence matrix (W) from

Step 1 as the initial alignment. Specifically, manifold alignment finds sharedmanifolds of samples fromX andY andmaps themonto a

common space. The proximate samples on this space suggest well aligned, whereas distant samples for unaligned. To this end, it

aims to find the functions fX
� and fY

� that minimize the following loss function to map the samples onto the common space:

fX
�; fY

� = argminfX ;fY
ð1 � lÞ

Xm
i = 1

Xn
j = 1

kfXðxiÞ � fY
�
yj
�k2

2
Wi; j + l

Xm
i = 1

Xm
j = 1

kfXðxiÞ � fXðxjÞk22Wi; j
X + l

Xn
i = 1

Xn
j = 1

kfY ðyiÞ � fY
�
yj
�k2

2
Wi; j

Y

whereWi;j is the correspondence between xi and yj fromStep 1. It can be weighted, or it can be binary (e.g. 0: aligned, 1: unaligned)

as in this work. WX andWY are two neighborhood similarity matrices, which were generated by kNNgraph. l is a scalar, which con-

stitutes the trade-off between the alignment across datasets and preserving manifolds within datasets. By default, we set l equals

0.5. Here, we use nonlinear manifold alignment (NMA) to solve the above optimization problem. NMA is non-parametric and directly

estimates the coordinates of samples on the common space from optimal alignment via eigen-decomposition.24 Also, we implement

NMA in this step using our previous method and tool, ManiNetCluster.24

After mapping samples onto the common manifold space by BOMA, we can simply calculate the Euclidean distances of samples

on the space, i.e., dij for Samples i and j. A local alignment score between samples i and j can be then defined bySij = 1
ð1+dijÞ. The high

alignment scores suggest a well aligned pair of samples. However, the local alignment score can only evaluate the local similarity

between a pair of aligned samples. When the time information is available, we want to ensure the two aligned trajectories evolve to-

ward the same direction across time. To capture the global similarity between two aligned datasets (e.g., brains and organoids), we

consider the direction of their aligned trajectories. This global similarity can be defined by the cosine of the angle between the two

aligned trajectories SG = A$B
kAkkBk, whereA andB are vectors that represent the directions of two aligned trajectories after BOMA align-

ment. kAk and kBk are the L2 norm of these two vectors. A higher value of SG means the two trajectories have more similar

directions with each other. In this work, when the time information is available (e.g., DTW), we define A and B as vectors pointing

from the earliest timepoint to the latest timepoint of the aligned samples. However, when the time information is not available

(e.g., correlation based kNNgraph for single-cell datasets alignment), we simply set SG = 1. Finally, we use SG as a weight factor

to adjust the loal similarity scoreSij, and define aBOMAalignment score (SA;where SA
ij = SG � Sij) to capture both the local and global

alignment similarity.

Gene expression datasets of brains and organoids
As summarized in Table S1, we collected recently published RNA-seq gene expression datasets for brains and organoids, covering

both bulk tissues and single cells across differential developmental stages.

Briefly, Dataset 14 contains bulk-tissue RNA-seq of 826 samples from 16 regions of human brains (n = 460) and 9 regions of RM

brains(n = 366) in Brainspan and PsychENCODE projects. Dataset 263 contains single-cell RNA-seq (scRNA-seq) of 40,000 cells from

human brain germinal zone and developing cortex regions between 17 and 18 PostconceptionalWeeks (PCWs). Dataset 341 contains

scRNA-seq data of 4,261 cells in human brains between 6 and 32 PCWs. Dataset 445 contains scRNA-seq data of 57,868 cells from

four human brain primary samples at different developmental stages between 16 and 24 PCWs. Dataset 518 includes scRNA-seq of

136,254 cells from human brain samples collected at 14,18,22 PCWs. Dataset 611 is from the cultured organoid samples and includes

bulk RNA-seq data of 62 samples from ten time points between 50 days to � two years. Dataset 733 contains scRNA-seq of 73,358

cells in organoids from human or chimpanzee between 0 days to four months. Dataset 844 contains scRNA-seq of 11,838 cells

from organoids cultured for 105 days. Dataset 918 contains scRNA-seq of 189,346 organoid cells of culturing time spanning

3–10 weeks.

Identification of human brain developmental genes
We identified a set of genes related to human brain development at both tissue- and cell-type levels, as input features for BOMA

alignment (Figure S5A). First, we used the bulk RNA-seq data in BrainSpan4 to predict co-expression genemodules within each brain

tissue (region) by WGCNA.68 We identified 1,191 co-expression gene modules in total. Genes from the same module are co-ex-

pressed at certain tissue across the development, suggesting that they are likely co-regulated and thus involved in similar biological

processes, so we term them as ‘development modules’. Second, we applied Scanpy69 on the single-cell RNA-seq dataset from Da-

taset 263 (Table S1) to identify developmental expressed genes at the cell-type level. Specifically, for each of 11 cell-types, we

compared this cell-type with all other cell-types and found cell-type differentially expressed genes (adjust p value <0.01 and log

fold change >1). After iterating through 11 cell-types, we identified 2,032 cell-type expressed genes in total. Third, we overlapped

each development module from a tissue-type with each cell-type expressed gene set and performed hypergeometric tests (R func-

tion phyper()) to determine the significance of the developmental gene overlaps between the tissue-type and the cell-type (tissue-

cell-type pair). We also adjusted the p values of tests using ‘Benjamini-Hochberg procedure (BH)’. We selected the overlapped genes

of tissue-cell-type pairs with adjusted p < 0.01 as significant overlapped gene sets. Finally, we obtained 1,533 genes as human brain

developmental genes (Data 3).
e3 Cell Reports Methods 3, 100409, February 27, 2023



Article
ll

OPEN ACCESS
scRNA-seq data pre-processing
We used Seurat16 to preprocess all applied scRNA-seq datasets. In particular, we removed the cells expressing less than 200 genes

and the genes expressed within less than 30 cells. The rest cells were filtered by mitochondrial genes to be less than 10. The pre-

processed datasets were then log2 transformed.

Compared to bulk RNA-seq, scRNA-seq is noisy with random effects. To address this, recent studies70,71 used pseudo-bulk

methods to aggregate single-cells across biological replicates and improved downstream differential expression gene analyses.

Therefore, we also applied the pseudo-bulk methods33,70,71 to create pseudo-cells from single cells. Specifically, we first grouped

single cells into cell clusters. Each cluster represents one pseudo cell, and its expression levels are the averaged gene expression

of cells within the cluster. This step can also balance the sample sizes across datasets, e.g., numbers of pseudo cells.

In particular, we benchmarked two major pseudo-bulk methods, PCA-based33 and Seurat, and found the one for each application

leading to a better BOMA alignment. The PCA based method calculated the principal components (PCs) of single cells, and then hi-

erarchically clustered (R function ‘hclust’) single-cells with the top 20 PCs to generate pseudo-cells, i.e., cell clusters. We used the

function FindClusters() in Seurat for clustering single-cells as Seurat-based method. We used the PCA-based method for the ana-

lyses in Figures 3 and 4, which were consistent with the paper generating the data.33 However, we benchmarked the latter method

and found it works better than the PCA-based method, so we used the Seurat-based method for the analysis in Figure 5.

To determine how the alignment is affected by the number of pseudo-cells, using the dataset of Figure 5, we tested different

numbers of pseudo-cells by adjusting the ‘resolution’ parameter in the Seurat FindClusters() function. In this way, we generated

pseudo-cells that varied from �1,000 to �10,000 (Figure S5B, top panel). To evaluate the alignment accuracy, within the aligned

common manifold space, we calculated the pairwise distances of pseudo-cells of the same cell-type. Specifically, the coordinates

of pseudo-cells were standardized per pseudo-cell, then distances between pseudo-cells of the same cell-type were averaged.

Interestingly, the experiment result shows BOMA is scalable to the number of pseudo-cells, with the pairwise distances not signif-

icantly affected (Figure S5B, bottom panel). Considering this characteristic, and in order to balance the number of pseudo-cells

across datasets, we set a lower resolution for datasets with more cells and set a higher resolution for datasets with fewer cells for

the later analysis (Table S1). In particular, for organoid data, we set the resolution values as 10 for Dataset 8 and 1 for Dataset 9;

for brain data, we set the resolution values as 10 for Dataset 3, 5 for Dataset 4 and 1 for Dataset 5.

Gene set enrichment analysis
We used Metascape72 to perform the gene set enrichment analysis. The enriched categories include KEGG pathways, Gene

Ontology (GO) terms, protein-protein interactions, and diseases (via DisGeNET). The false discovery rates (FDRs, q-values) were

used to quantify the enrichment significance.

Clustering BOMA-aligned samples and differentially expressed genes of clusters
We applied the Spectral clustering from Python package ‘sklearn’73 to cluster aligned samples on the common space, based on their

alignment scores. The number of clusters can be adjusted by tuning clustering parameters or by further sub-clustering on existing

coarse clusters (Figure S2B). We also identified differentially expressed genes (DEGs) of clusters. To this end, we used Presto38,39 to

perform the Wilcoxon rank-sum test and auROC analysis by comparing cells from each cluster with all others cells in the dataset.

Harmonization of cell types across datasets
Cell type namesmay vary across studies. For instance, cell types fromOrganoid Dataset 7 are broad and different frommany refined

types in human brain. To solve this, we reassigned the types of the cells in Dataset 7 using the human brain cell-types in Dataset 3 by

the ‘TransferData’ function in R package Seurat.16We alsomerged some sub-cell-types to their broader types, e.g., EN-PFC1 to EN-

PFC. Besides, even different studies for brains or organoids can have different sub-cell-types. To make cell types across these

studies comparable, we grouped annotated cell-types from each study into common major cell-types (Table S4) for downstream

comparative analyses. Also, for Dataset 8 without cell-type information, we annotated cell types using known cell-type marker

genes44 with Seurat.

Hypergeometric enrichment of cell-types and developmental time stages
For the cell clusters from BOMA applications to single cell data, we calculated their cell-type enrichments (or developmental time-

point enrichments), revealing possible cellular and developmental functions of the clusters. In particular, a hypergeometric test was

performed for such enrichment analysis, with the p values being calculated as:

Pðx > kÞ =
X
x > k

�
K
x

��
N�K
n� x

��
N
n

�
where N is the total number of cells, n is the total number of cells of a certain cell-type (or cells from a certain developmental time-

point), K is the number of cells in the cluster and k is the number of cluster cells of certain cell-type (time point) in the cluster. Finally,

we corrected the p values using BH method and selected p < 0.05 as a significant threshold for enrichments.
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Trajectory analysis for BOMA alignment
Since BOMA applies the manifolds to align single cells between brains and organoids, the manifold shapes from aligned cells are

expected to reveal potential developmental trajectories. To further identify such trajectories, we used SCORPIUS74 to infer the devel-

opmental trajectory for each cell-type on the common space. Primarily, for each cell-type, we input the 3D coordinates of its cells on

the common space from BOMA to the infer_trajectory() function of SCORPIUS (maximum iteration of 100) to output the trajectory. To

determine a root on the trajectory, we first cut the trajectory into 10 continuous segments. Each cell was assigned to the closest

segment based on the distance. Then a developmental time for each segment can be determined by averaging the prior times of

all cells in that segment. We then assign the segment with minimum averaged time as the root. Besides, for each cell type, we

also used FindMarkers() in Seurat16 to identify differentially expressed genes in the type’s cells of each segment, i.e., ‘‘Segment

cell-type DEGs’’ implying development-stage-specific gene expression patterns at the cell-type level. To allow gene expression

values to be comparable across datasets, the IntegrateData() function of Seurat was used to integrate datasets by identify a set

of anchor genes.

Experimental validation of genes in specific cell types and developmental stages
Fixed organoids were cryosectioned (17um) and stained with antibodies against proteins andmarkers of interest as described.66 Or-

ganoid sections were washedwith PBST (PBS containing 0.1%Triton X-100) and blocked in blocking buffer (10%normal goat serum

(Sigma-Aldrich) and 0.3% Triton X-100 in PBS) for 1 h at room temperature. Primary antibodies - anti-BRN2 (mouse, 1:500, Santa

Cruz, SC-393324), anti-PSMB5 (rabbit, 1:1000, Novus Bio, NBP-13820), or anti-SATB2 (mouse, 1:100, Gen Way, 20-372-60065),

anti-SOX2 (Mouse, 1:500, Abgent, Am2048a), anti-TBR1 (Rabbit, 1:1000, Abcam, Ab31940), or anti-CTIP2 (Rat, 1:500, Abcam,

ab18465) were diluted in blocking buffer and incubated with the organoid sections overnight at 4�C. Sections were then washed

4 3 5 min with PBST. Alexa Fluor secondary antibodies (Thermo Fisher Scientific) were diluted in blocking buffer and incubated

with organoid sections for 35 min at room temperature. Organoid sections were washed 4 3 5 min with PBST and counterstained

with DAPI. They were then washed 2 3 5 min with PBST. Sections were scanned and visualized using either a Nikon A1 confocal

microscope (Nikon) or an AxioImager Z2 ApTome microscope (Zeiss). The numbers of marker positive cells were quantified by un-

biased stereology using StereoInvestigator software (MicroBrightField, Inc) as described75 PCW 19 human neocortex was fixed in

10% neutral buffered formalin at 4�C for 72 h, cryoprotected with incubation in successive solutions of 10%, 20%, and 30% sucrose,

and stored in 30% sucrose +0.1% sodium azide. For validation experiments, PCW 19 human neocortex was embedded in Optimal

Cutting Temperature (OCT) compound, cryosectioned at 30um thickness, andmounted on TOMO adhesion slides (Matsunami Glass

USA #TOM-11/90). Sections were washed in PBS (23 15min) and incubated in blocking solution containing 5% (v/v) normal donkey

serum (Jackson ImmunoResearch Laboratories) and 0.3% (v/v) Triton X-100 in PBS for 30 min at room temperature. Primary anti-

bodies - anti-BRN2 (mouse, 1:500, Santa Cruz, SC-393324), anti-PSMB5 (rabbit, 1:1000, Novus Bio, NBP-13820) or anti-SATB2

(mouse,1:100, GenWay, 20-372-60065) were diluted in blocking solution and incubated with tissue sections for 24 h at 4�C. Sections
were washed with PBST (1X PBS +0.3% Triton X-100) prior to being incubated with the appropriate fluorophore-conjugated second-

ary antibodies (Jackson ImmunoResearch Labs) for 30min at room temperature. All secondary antibodies were raised in donkey and

diluted at 1:250 in blocking solution. Sections were washed with PBST (33 5min), treated with Autofluorescence Eliminator Reagent

(Millipore #2160) according to manufacturer instructions, and coverslipped with Vectashield Plus Antifade Mounting Medium (Vector

Laboratories #H-1000). Human neocortical samples were imaged on a Nikon A1 confocal microscope. z stack images taken at 203

magnification with a step size of 2um were imaged from n = 3 sections. CellProfiler software was utilized to quantify positive cells.

Difference significance between organoid and human cortical plate marker positive cell percentages was test by unpaired t-test with

Welch’s correction.

QUANTIFICATION AND STATISTICAL ANALYSIS

Hypergeometric test was used to identify human brain developmental genes and determine associated developmental stages of cell

clusters. P-values was adjusted by Benjamini-Hochberg method to keep the significance level <0.05. Wilcoxon rank-sum test and

auROC analysis were used to identify DEGs. Unpaired Student’s t test with Welch’s correction was used to report the P-value when

comparing differences between organoid and cortical plate. Two-side t-test was used for all the paired comparisons.
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Supplemental Items 

Supplemental Tables 

Table S1. Summary of transcriptome datasets included in this study. Related to Figures 2,3,4,5 
and STAR Methods 

ID 

Paper Time Range* 
Number 
of cells Source 

Sequencin
g 

technology Use in this work 
1 

Li et al. 2018 8PCW – 40 Y Bulk brain 

mRNA-seq ● Identify brain tissue-wise 
co-expression gene 
modules (development 
module) 

● Bulk RNA-seq alignment 
(Figure 1) 

2 Polioudaks, 
et al. 2019 17-18PCW 40,000 brain 

scRNA-seq Identify cell-type specific genes 
for brain development 

3 
Nowakowski
, et al. 2017 6PCW – 32PCW 4,261 brain 

scRNA-seq Human brain single-cell dataset 1 
for large dataset alignment (Figure 
5) 

4 
Trevino et 
al. 2021 

16PCW, 20PCW, 
21PCW, 24PCW 57,868 brain 

scRNA-seq Human brain single-cell dataset 2 
for large dataset alignment (Figure 
5) 

5 
Bhaduri et 
al. 2020 14PCW, 18PCW, 22PCW 136,254 brain 

scRNA-seq Human brain single-cell dataset 3 
for large dataset alignment (Figure 
5) 

6 
Gordon et 
al. 2021 

50D,75D,100D,150D,20
0D,250D,300D,350D,40
0D,600D Bulk organoid 

mRNA-seq 

Bulk RNA-seq alignment (Figure 1) 
7 

Kanton et al. 
2019 

0D, 4D, 10D, 15D, 1M, 
2M,4M 73,358 organoid 

scRNA-seq ● Cross-species single-cell 
alignment (Figure 3) 

● Organoid single-cell 
alignment in Figure 4;  

8 Birey et al. 
2017 105D 11,838 organoid 

scRNA-seq Organoid single-cell dataset 1 for 
large dataset alignment (Figure 5) 

9 Bhaduri et 
al. 2020 3W, 5W,8W,10W 189,346 organoid 

scRNA-seq Organoid single-cell dataset 2 for 
large dataset alignment (Figure 5) 

*Y: year; M: Month; W: week; D: day; PCW: Postconceptional Week 
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Table S2. Number of Gene Modules identified by WGCNA for each brain region. Related to 
Figure 2 and STAR Methods. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Brain region Name Number of Gene Modules 

A1C 
primary auditory(A1) 

cortex 33 
AMY amygdala 92 
CBC cerebella cortex 114 

DFC 
dorsolateral prefrontal 

cortex 96 
HIP Hippocampus 53 

IPC 
posterior inferior parietal 

cortex 68 
ITC inferior temporal cortex 37 

M1C primary motor(M1) cortex 17 

MD 
mediodorsal nucleus of 

the thalamus 54 
MFC medial prefrontal cortex 126 
OFC orbital prefrontal cortex 38 

S1C 
primary 

somatosensory(S1) cortex 99 
STC superior temporal cortex 95 
STR Stratum 44 
V1C primary visual(V1) cortex 109 

VFC 
ventrolateral prefrontal 

cortex 116 
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Table S3. Interpretation of cell-types annotated in Figure 4B. Related to Figure 4. 

Cluster Name  Cluster Interpretation (Nowakowski, et al., 2017) 
Astrocyte Astocyte 
Choroid Choroid 
Endothelial Endothelial 
EN-PFC Early and Late Born Excitatory Neuron PFC 
EN-V1 Early and Late Born Excitatory Neuron V1 
Glyc Glycolysis 
IN-CTX-CGE CGE/LGE-derived inhibitory neurons 
IN-CTX-MGE MGE-derived Ctx inhibitory neuron 
IN-STR Striatal neurons 
IPC-div Dividing Intermediate Progenitor Cells RG-like 
IPC-Nen Intermediate Progenitor Cells EN-like 
MGE-div dividing MGE Progenitors 
MGE-IPC MGE Progenitors 
MGE-RG MGE Radial Glia 1 
Microglia Micrgolia 
Mural Mural/Pericyte 
nEN Newborn Excitatory Neuron 
nIN MGE newborn neurons 
OPC Oligodendrocyte progenitor cell 
RG Radial Glia 
U Unknown early cells 

 

 

 

 

 

 

 

 

 

 

 



 4 

Table S4. Correspondence for sub-cell-types to be grouped into common major cell-types. 
Related to Figure 5. 

Sub cell-type Major cell-type 
Bhaduri et al. 2020 (organoid), Dataset 5   
Astrocyte Astro 
ExcitatoryNeuron EN 
InhibitoryNeuron IN 
IPC IPC 
Outlier,Unknown Unknown 
RadialGlia RG 
Nowakowski et al. 2017, Dataset 3   
Astrocyte Astro 
Choroid Choriod 
EN-PFC1,EN-PFC2,EN-PFC3,EN-V1-1,EN-V1-2,EN-V1-3,nEN-early1,nEN-early2,nEN-late EN 
IN-CTX-CGE1,IN-CTX-CGE2,IN-CTX-MGE1,IN-CTX-MGE2,IN-STR,nIN1,nIN2,nIN3,nIN4,nIN5 IN 
IPC-div1,IPC-div2,IPC-nEN1,IPC-nEN2,IPC-nEN3,MGE-IPC1,MGE-IPC2,MGE-IPC3 IPC 
MGE-RG1,MGE-RG2,oRG,RG-div1,RG-div2,RG-early,tRG,vRG RG 
Microglia Microglia 
Endothelial Endothelial 
Mural Mural 
OPC OPC 
Trevino et al. 2021, Dataset 4   
CGEIN,MGEIN IN 
earlyRG,lateRG,tRG RG 
EC Endothelial 
GluN1,GluN2,GluN3,GluN4,GluN5,GluN6,GluN7,GluN8 EN 
MG Microglia 
OPC_Oligo OPC 
Peric Mural 
Bhaduri et al. 2020 (brain), Dataset 9   
Endothelial Endothelial 
ExcitatoryNeuron EN 
InhibitoryNeuron IN 
IPC IPC 
RadialGlia RG 
Outlier,Red blood cells Unknown 
Mural Mural 
Microglia Microglia 
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Supplemental Figures 
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Figure S1. Alignment and scores between cortical organoids with all 16 brain regions across 
time. Related to Figure 2. A). Local alignment scores between organoids with 16 brain regions; 
B). 3D scatterplot of the alignment. Brain samples were colored red while organoids were 
colored blue. The color gradients represent the developing time, with the later time-point being 
darker colors. Blue/red curves link the averaged coordinates of each timepoint to represent the 
developing trajectory; C). Cosine similarity between trajectories of brains (stage 3-13) and 
organoids (day 75-300). D). Pseudotime-correlated genes potentially drive the alignment 
between brain regions and organoid in Figure 2. Organoids genes expression were correlated 
with the pseudotime (z-axis in Fig2A), genes with absolute Pearson correlation > 0.7 were 
shown in the heatmap. Brain cortical markers (N=51) and non-cortical markers (N=75) were 
identified by selecting genes significantly upregulated (log2FoldChange>0.7 and p-value<0.05) 
between stages 3-6. Similarly, individual cortical area markers (N=136) were identified by 
comparing each area with all the other cortical areas; E). Averaged local alignment scores 
between organoids versus the 11 cortical regions. S1C: primary somatosensory(S1) cortex; 
M1C: primary motor(M1) cortex; OFC: orbital prefrontal cortex; DFC: dorsolateral prefrontal 
cortex; MFC: medial prefrontal cortex; VFC: ventrolateral prefrontal cortex; STR: stratum; HIP: 
hippocampus; AMY: amygdala; IPC: posterior inferior parietal cortex; A1C: primary auditory(A1) 
cortex; V1C: primary visual(V1) cortex; STC: superior temporal cortex; ITC: inferior temporal 
cortex; MD: mediodorsal nucleus of the thalamus; CBC: cerebella cortex. 
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Figure S2. Evaluate and benchmark the robustness of BOMA. Related to Figure 3 and 4. A). 
Human VERSUS Macaque brain. The predicted developmental stages (Zhu Y. et.al., 2018) for 
Macaque brains was used for the comparative analysis; B).Subclusters of Cluster 1 in Figure 4. 
Each subcluster is specifically enriched with distinct cell-types. For example, subcluster2 is 
enriched with MGE and IPC; C). BOMA alignment with intentionally inserted mismatched region 
or cell-type in Figure 4. Top: BOMA alignment with intentionally added 6,676 Hippocampus (HIP) 
cells. HIP cells were equally split and inserted into brain cortical and organoid data. After 
rerunning the data processing and BOMA alignment, organoid cells were aligned with cortical 
cells but not hippocampal cells. Middle: BOMA alignment with intentionally added 2,170 red 
blood cells (RBCs). RBCs were equally split and inserted into brain cortical and organoid data in 
Figure 4. After rerunning the data processing and BOMA alignment, brain and organoid were 
aligned, while RBCs form a separate branch. Bottom: Alignment with RBCs only inserted to brain 
data. RBCs also form a separate developing branch in the manifold space. The Hippocampal cells 
and RBCs were obtained from (Bhaduri et al., 2020)18; D). BOMA alignment after intentionally 
leaving Excitatory Neurons (ExN) out from both Brain and Organoids in Figure 4. The same cell-
types from brain and organoid can be well aligned. 
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Figure S3. Benchmark BOMA using brain and organoid datasets integrated from multiple 
studies. Related to Figure 5. A,B). Minimum batch effects across merged organoid samples (A) 
and brain samples (B) were observed by tSNE and BOMA. Top left: tSNE analysis of pseudo-cells 
colored by the corresponding sample sources dataset. Top right: tSNE analysis of pseudo-cells 
colored by the corresponding cell-types. Bottom left: 3D scatterplot of pseudo-cells colored by 
sample sources after BOMA; Bottom right: 3D scatterplot of pseudo-cells colored by cell-types 
after BOMA; C). Human brain and organoid single-cells integrated by Seurat(C) and Liger(D). 
Left: UMAP colored by datasets. Right: UMAP colored by cell-types; E,F,G). Human brain and 
organoid pseudo-cells aligned by MMD-MA (E), SCOT (F) and Unioncom (G). Left: 3D scatter 
plots show the alignment results for 766 organoid pseudo-cells. Right: 3D scatter plots show the 
alignment results for 1,016 human brain pseudo-cells. The dots are colored by the cell-types. 
RG cells are marked in red, EN cells are marked in blue, IPC cells are marked in yellow, IN cells 
are marked in green and OPC cells are marked in pink; H). Cell-types similarity across scRNA-seq 
datsets quantified by MetaNeighbor. Heatmap generated by applying MetaNeighbor on 10% 
randomly sampled single-cells from integrated scRNA-seq dataset in Figure 5. The datasets are 
h1(human1, Nowakowski 2017), h2(human2, Trevino et al. 2021), h3(human3, Bhaduri et al. 
2020), o1(organoid1, Birey et al. 2017) and o2(organoid2, Bhaduri et al. 2020). 
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Figure S4. Trajectory analysis for Intermediate Progenitor Cells (IPCs) and experimental 
validation. Related to Figure 5 and 6. A). Trajectory analysis for IPCs. 3D scatter plot shows the 
inferred trajectory of IPC from the alignment. Organoid (top left) and brain (top right) cells are 
colored by pseudo-time along the trajectory. Blue means earlier while red means later. The 
trajectory was divided into 10 segments and correlated with experiment timepoints. The box plot 
(Bottom) shows the distribution of experimental time-points; B). Representative images of 
human cortical organoids immunostaining. Top: Image shows expressing progenitor cells positive 
for SOX2, deep layer cortical neurons positive for BCL11B and TBR1. Bottom: Immunostaining of 
different stages of differentiation in cortical organoids positive for SATB2, POU3F2 and PSMB5 
cells. Quantification is shown in Figures 6C, 6F, and 6I.  Scale bars, 50µm. 
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Figure S5. Selecting human brain developmental genes and the scalability of BOMA to the 
pseudo-cell numbers. Related to STAR Methods. A). Flowchart of selecting human brain 
developmental genes. BH adjusted P-value <0.01 was used as statistical significance threshold. 
B). BOMA is scalable to the number of pseudo-cells. Top: Number of pseudo-cells generated at 
different Seurat resolution; Bottom: Averaged pairwise distances between pseudo-cells of the 
same cell-type. 


	CRMETH100409_proof_v3i2.pdf
	BOMA, a machine-learning framework for comparative gene expression analysis across brains and organoids
	Introduction
	Results
	BOMA framework for comparative analyses of gene expression data between brains and organoids
	Spatiotemporal conservation and divergence of gene expression between organoid and brain regions
	Developmental gene expression discrepancies between human and chimpanzee organoids
	Cell-type-level conservation in development between human brains and organoids derived from ESCs
	Large-scale alignment of integrated datasets in human brains and organoids derived from iPSCs
	Brain-organoid aligned trajectory analysis reveals conserved and distinct developmentally expressed genes in specific cell  ...

	Discussion
	Limitations of the study

	Supplemental information
	Acknowledgments
	Author contributions
	Declaration of interests
	References
	STAR★Methods
	Key resources table
	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Experimental model and subject details
	Method details
	Brain-organoid manifold alignment (BOMA)
	Gene expression datasets of brains and organoids
	Identification of human brain developmental genes
	scRNA-seq data pre-processing
	Gene set enrichment analysis
	Clustering BOMA-aligned samples and differentially expressed genes of clusters
	Harmonization of cell types across datasets
	Hypergeometric enrichment of cell-types and developmental time stages
	Trajectory analysis for BOMA alignment
	Experimental validation of genes in specific cell types and developmental stages

	Quantification and statistical analysis




