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Analysis of Mount Sinai Crohn’s and Colitis Registry (MSCCR) Cohort:  

RNA extraction, alignment and QC: 

RNA-seq quality metrics:  Biopsy and Blood RNA was extracted and processed in randomly allocated 

batches as previously described 1, 2. Briefly, biopsy samples were randomized for extraction and 

sequencing within each batch for biopsy sampling region (small and large intestine), disease type (UC, CD 

and control) and inflammation status (inflamed vs uninflamed), with considerations for age, gender and 

ethnicity. Similarly, blood samples were randomized for extraction and sequencing within each batch for 

disease type with considerations for age, gender and ethnicity. Genetic principal components (PC’s) were 

computed using eigenstrat, v6.0.13 with available genotype information described previously4. Single 

nucleotide polymorphisms (SNPs) in the HLA region were removed first, then LD-redundant SNPs were 

pruned using plink 5 with the option '--indep-pairwise 50 5 0.8'. Demographic information associated with 

this cohort is summarized in Supplementary Table 1.  RNA was isolated from frozen tissue (in RNAlater) 

using Qiagen QIAsymphony RNA Kit (cat.# 931636) on the QIAsymphony.  RNA from whole blood collected 

in PAXgene tubes was isolated using QIAsymphony Blood PAXgene RNA kit (cat.# 762635).  In general, one 

microgram of total RNA was used for the preparation of the sequencing libraries using the RNA Tru Seq 

Kit (Illumina (Cat # RS-122-2001-48). Ribosomal RNA from biopsy tissue was depleted from total RNA using 

the Ribozero kit (Illumina Cat # MRZG12324), and globin RNA along with ribosomal RNA was depleted 

from total blood RNA using Globin zero gold rRNA removal kit (Illumina cat.#  GZG1224) to enrich poly-

adenylated coding RNA as well as non-coding RNA. The ribozero and globin zero RNA-Seq libraries were 

sequenced on the Illumina HiSeq 2500 platform using 100 bp single end protocol following manufacturer’s 

procedure. The RIN score had a mean of 8.7 (range: 6.1 to 10) and 8.7 (range: 6.5 to 10) for biopsy RNA-

seq and blood RNA-seq respectively.  The rRNA rate had a mean of 0.0145 (range: 0.001 to 0.2) and 0.005 

(range: 0.0009 to 0.05) for biopsy and blood RNA-seq respectively. 

Genomic alignment to GRCh37 of single-end RNA-seq reads was performed using 2-pass STAR6, 7. Default 

parameters for STAR were used, as were those for the quantification of aligned reads to GRCh37.75 gene 

features via featureCounts7. Multimapping reads were flagged and discarded. Raw count data was pre-

filtered to keep genes with CPM>0.5 in at least a third of the samples. After filtering, count data was 

normalized via the weighted trimmed mean of M-values8.  The quality metrics summary statistics and 

plots are shown in supplementary methods Figure 1. 
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RNA transcriptome modeling: 

PCA (main Figure 1b) revealed that region of biopsy was the largest factor contributing to variation in gene 

expression, followed by inflammation status, with disease sub-type (UC vs CD) showing very little 

separation. Variance partition analysis was also carried out as part of this analysis (Supplementary method 

Figure 2). It shows that region of the gut biopsied (variable = RegionRe in figure) had the largest variance, 

whereas tissue type (Inflamed/Non-Inflamed, variable = TypeRe) and disease subtype (variable= 

IBD_disease) were much smaller. For bMIS generation, biopsy data for patients with indeterminate IBD 

Supplementary Methods Figure 1: RNA sequencing associated QC metrics for the MSCCR biopsy (top 

figure) and blood (bottom figure) data.   

Supplementary Method Figure 2: PVCA analysis of various potential technical and 

biological sources of variation associated with the biopsy RNA seq dataset. 

Variables: resid = residual; typeRe (Inflamed vs uninflamed); 

Demographics_gender  (male vs female); IBD_disease (UC, CD or control); 

RegionRe (small versus large intestine regions); RQN.RIN (RNA quality number); 

Study_Eligibility_age… (Age at MSCCR study); Extraction… (Technical covariate for 

processing); PC1- PC5 (Principal components associated with ethnicity); GRID 
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disease were removed (n=13) and biopsies identified as inflamed in the healthy control group were also 

removed (n=7). For subsequent analysis, biopsies from pouch patients (n=18 unique) were also removed. 

The data are available on GEO (GEO accession: GSE186507 for blood and GSE193677 for biopsy). 

 

Generation of molecular inflammation scores (MIS) for biopsy (bMIS) and peripheral blood (cirMIS): 

bMIS (biopsy molecular inflammation score):  

Gene expression matrices from biopsy were generated from the count matrices using the voom 

transformation9 on the count matrix using the limma framework. Voom-transformed gene expression 

data was modelled using a mixed-effect models with ‘tissue type’ (i.e. endoscopically inflamed or non-

inflamed), ‘intestine biopsy region’ (ileum, colon, rectum etc) and ‘disease sub-type’ (Control, UC, CD) and 

its interactions as factors and a random factor for each patient, with technical (batch, RIN, rRNA rate, 

exonic rate) and relevant variables (age, gender, and genetic PC’s 1-5) as covariates. In the limma model, 

control samples were accounted for as a covariate as “IBD vs. Control” in the development of overall bMIS 

(i.e. bMIS IBD) and as “CD vs. Control” or “UC vs. Control” for subtype bMIS’s (bMIS CD or bMIS UC 

respectively). In this model differences between endoscopically inflamed and non-inflamed tissue were 

assessed for each intestinal region (7 possible including: rectum, sigmoid, left colon, transverse, right 

colon, cecum, ileum) and disease subtype, thus defining intestinal region- and disease subtype- specific 

inflammation signatures (Figure 1b-c). However, as we observed a strong correlation across the 

inflammation signatures, we generated a general IBD inflammation signature by fitting a model with tissue 

type, disease sub-type and intestine biopsy region (no interactions) and an inflammation signature for 

each disease subtype by including only an interaction term for tissue type by disease sub-type.  

From the IBD, or CD and UC subtype-specific inflammation gene signatures, we defined the markers of 

biopsy inflammation as genes differentially expressed (up-regulated genes only) between endoscopically 

inflamed and non-inflamed biopsies, at FDR<0.05 and fold change (FCH)>2 and the bMIS score was derived 

by using a gene-set variation analysis (GSVA10). The inflammation score was built as the average z-score 

derived from the expression (adjusted for technical covariates) of the differentially expressed genes 

(DEGs) normalized by the square root of the number of genes11.   As a result, each biopsy sample for the 

MSCCR cohort had a bMIS_IBD score as well as either a UC or CD disease sub-type specific score (bMIS_UC 

or bMIS_CD), depending on the patient’s disease sub-type diagnosis. This score is based on all the genes 

differentially expressed, as we aimed to quantify the overall level of molecular inflammation (ie 
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continuous score) and not to develop a predictor of endoscopic inflammation status (yes vs no). This 

rationale was also based on our experience in psoriasis where we developed a similar transcriptome 

scoring system12,13, 14. Alternative to this could be 1. to use a regularized regression, a popular machine 

learning algorithm to train a model that predicts the probability of a biopsy being inflamed or not or 2. 

use a regularized regression to identify a subset of predictive genes and then do GSVA. Neither of these 

approaches provided good validation results (data not shown), however, and our goal was a continuous 

measure applicable across different IBD cohorts. 

  

cirMIS: Blood gene expression data from 1030 patients for which gut biopsy transcriptome data was 

available, was used to identify genes whose expression in blood associated with the level of intestinal 

inflammation. To obtain a patient-level gut inflammation score, we took advantage of the fact that 

multiple gut regions per individual were sampled and summarized the patient’s individual bMIS scores 

into an intestinal-level (ileum-to-rectum) inflammation score (iMIS). We fit a mixed-effect model with 

tissue type and gut biopsy region as fixed effects and a random intercept and tissue type coefficient for 

each participant, with technical variables and covariates (age, gender, genetic PC’s #1-5) adjusted data:  

   bMISij = ao+a1Tij+ a2Rij+bi+b1iTij +eij.  

were Tij and Rij define the tissue type and gut biopsy region from the j biopsy of patient i. From this model 

the overall, region and tissue type independent scores in inflamed tissue were obtained as 

Score=bi+(a1+b1i)*XIi where XIi is 1 if a patient does have an inflamed biopsy or zero otherwise. 

The blood gene expression data was then modeled using a linear model with the continuous variables 

iMIS and technical covariates including imputed genetic PC’s (#1-5), age at endoscopy, sex, and IBD 

disease sub-type. iMIS-associated blood genes were selected if the iMIS slope was significantly different 

than zero with FDR<0.05 and |𝑠𝑙𝑜𝑝𝑒| ≥ 𝑙𝑜𝑔2(1.3)/𝛥, where Δ represents 1/3 of the range of iMIS in all 

participants, that induced an absolute FCH>1.3 in gene expression. Those genes were then used as the 

input to generate a circulating molecular score that reflects intestinal inflammation (cirMIS) as the GSVA 

score of the gene expression (adjusted by technical covariates) matrix  with U and D the set of 

genes positively and negatively associated respectively.  

Statistical modeling: 
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Statistical analysis was carried out using R language version R v4.0.515 and its available packages. Each MIS 

was modeled using linear models with relevant factors depending on the comparison. When data was 

paired, ie several biopsies were available for the same patient, or different time points, mixed-effect 

models were fitted including fixed factors and random intercept for each subject using the nlme package 

in R. Marginal means and hypothesis of interests were tested using the emmeans package capabilities.  

Logistic regression was used to evaluate the performance of iMIS, cirMIS, CRP and fecal calprotectin in 

classifying patients in endoscopic (SESCD<3 in CD patients or Mayo Score=0 in UC patients) or histological 

remission (GHAS score=0 in CD patients or Nancy score =0 in UC patients). AUC was calculated for each 

model from logistic regression and the AUC performance was compared by Delong’s method.   

Correlation of the endoscopic, histological, and clinical disease activity measures with the molecular 

scores was assessed using Spearman correlations, and Fisher’s Z test was used to compare the 

correlations.  
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