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S0.1 Derivations of the original six-variable (6V) model

According to the original framework of the 6V model [1)2], Rac and Rho exist in the form of either active/membrane-
bound state (i.e., RacGTP and RhoGTP) and inactive/cytosolic state (i.e., RacGDP and RhoGDP). It is hy-
pothesized that the active forms of these proteins mutually inhibit each other’s activation [3]; this latter feature
represents the key element of the original 6V model.

The connection between paxillin S273 phosphorylation and elevated Rac activity is both active PAK (i.e.,
RacGTP-bound PAK) and PIX. Active PAK phosphorylates paxillin, whereas PIX is a known RacGEF that
is bound to the adhesion as part of the GIT-PIX-PAK complex. As the level of S273-phosphorylated paxillin
(Pax,) increases, so does the binding of PIX to the adhesion. The increased GEF activity that results from PIX
accumulation causes a rise in the Rac activation rate.

To derive the equations that describe the dynamics of this system, we will follow the same steps outlined
in [2]. These equations are based on a set of reactions that are all listed in [2]

Crosstalk between the two proteins Rac and Rho (i.e., their mutual inhibition of each other) is modelled as a
cooperative reduction of their activation rate. In the case of Rac, its RacGEF-dependent activation is expressed
in terms of a decreasing Hill function that depends on the concentration of active Rho ([RhoGT P]), with a Hill
coefficient n and a half-maximal inhibition Lgp,, whereas Rac inactivation follows mass-action kinetics and is
dependent on RacGAP (assumed to be constant). Based on this, the equations governing the dynamics of active
and inactive Rac concentrations ([RacGT P] and [RacGDP)], respectively) are given by
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The dynamics of active and inactive Rho concentrations ([RhoGT P| and [RhoG D P], respectively) are mod-
elled similarly. In this case, the RhoGEF-dependent Rho activation is expressed in terms of a decreasing Hill
function that depends on the concentration of active Rac ([RacGT P]), with a Hill coefficient n and a half-maximal
inhibition LR, and its inactivation follows mass-action kinetics that is dependent on RhoGAP (assumed to be



constant). With this in mind, we obtain the following equations
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It is important to note that, since PIX is a RacGEF, the total RacGEF concentration ([RacGEF)) is given by

[RacGEF) = [RacGEF,)) + [PIX]+ |[GIT — PIX|+ [PIX — PAK|+ |GIT — PIX — PAK]
+[Pazx, — GIT — PIX — PAK| + [Pax, — GIT — PIX — PAK — RacGTP],

where [RacGEFy] is the concentration of basal level of RacGEF's (assumed to be constant).

The reactions governing the dynamics of paxillin include paxillin phosphorylation/dephosphorylation, and
binding/unbinding to/from the GIT-PIX-PAK complex. The phosphorylation of this protein is driven by active
PAK (i.e., RacGTP-bound PAK) and is expressed as a Hill function with a Hill coefficient n and half-maximum
activation Lpak, whereas its dephosphorylation follows mass-action kinetics and depends on the concentration
of the phosphatase PP2A (assumed to be constant). By letting [Pax,] and [Pazx] denote the concentrations
of phosphorylated and unphosphorylated paxillin, respectively, we obtain the following equations for these two
molecular species
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where B is paxillin maximum phosphorylation rate.
The equations governing the dynamics of all intermediates considered in this system are listed below (see [2]



for the whole list of chemical reactions that produce these equations)
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After setting these latter equations to steady state using quasi-steady-state approximation, the concentrations
of each intermediate can be expressed as a function of [RacGT P], [Pax,)|, [GIT], [PIX] and [PAK], where [GIT



and [PIX] are assumed to be constant. These steady state expressions are given by
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The expression for the steady state of [PAK] is derived from the total concentration of PAK (PAK;u;
assumed to be constant), as follows

[PAK,] = [PAK] + [PIX — PAK]| + [GIT — PIX — PAK]| + [Paz, — GIT — PIX — PAK] + [PAK — RacGTP)]
+ [PIX — PAK — RacGTP| + [Pax, — GIT — PIX — PAK — RacGTP].

[Paz, — GIT — PIX — PAK — RacGTP] = [GIT|[PIK]|[PAK][Pax,)[RacGTP).

Substituting the steady state concentrations of the various intermediates appearing in the latter equation, we
obtain
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where kg = :—9, kx = :—)_(, ko = :—? and o = Zf# These newly defined parameters represent the association
G X C PAK

constant for PIX — PAK binding (kx), the association constant for GIT — PIX binding (k¢), the association

constant for Pax, — GIT binding (k¢c) and the affinity constant for PAK — RacGT P binding (ag). Solving for

[PAK] and rearranging, we obtain
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This latter expression for [PAK] can be used to derive the ratio of [PAK]-to-[PAKyot] (denoted by K}) as
follows
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It follows that the scaled concentration of active PAK (donated by [PAK*]) is given by
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Since PIX is a known RacGEF, bound to the adhesion as part of the GIT-PIX-PAK complex, we can define
PIX-dependent Rac activation [} as follows
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where I}, is the PIX-mediated rate of Rac activation. Substituting the concentrations of each intermediate species
using their concentrations at steady state, we obtain
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[RacGT P]

Racooi] and ar = a[Ractet|, where [Ractot] is the total concentration of Rac

Letting Ix = I [PAK,t], R =
(assumed constant), we get
Ije = Ix(1 — K} (1 4+ agrR)).

To determine the expression level of unphosphorylated paxillin, P;, we first assume a constant total concen-
tration of paxillin ([Paxte]), which includes unphosphorylated and phosphorylated paxillin and any complexes
which contain them. Given this assumption, the concentration of unphosphorylated paxillin is

[Paz| = [Paziot] — [Paxy) — [Pax, — GIT — PIX — PAK)| — [Paxz, — GIT — PIX — PAK — RacGTP]
After substituting the steady state expressions for the intermediate complexes, we obtain
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Scaling the latter equation by [Paxs] and substituting the scaled variables P = Pazea]’ Pazio] give

P, =1— P(1 + kgkxkc[GIT|[PIX][PAK;o)| K (1 4+ agR).

Finally, scaling [RhoGT P] and [RhoGDP] by total Rho concentration ([Rhoi:] (assumed constant) and
_ [RacGDP]

letting p = % and p; = %, as well as scaling [RacGDP)] by [Raciot] and letting R, = TRaciod] » V€
obtain a scaled 6V model whose dynamics in the presence of diffusion is given by
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where D, (z = R, R;, p, pi, P, P;) is the diffusion coefficient of each molecular species and v = [f;{;g“z’]’}.
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Figure S1: Membrane bound scaled active Rac concentration in simulated CPM cells defines the shapes of
(a) inactive, (b) oscillating, and (c) directed cells. Simulations are shown at three different time points: 77 = 50,
Ty = 150 and T3 = 250 time-steps. Scaled active Rac concentration is colour-coded according to the colour-bar
to the right.



Parameter Description Value Unit References
Ir Basal Rac activation Rate 0.0035 s 1 11
OR Rac inactivation rate 0.025 st 11]
L, Rho-dependent half-maximum inhibition of Rac 0.34 unitless 1]
1, Basal Rho activation Rate 0.016 st 1]
0p Rho inactivation rate 0.016 st 11
Lgr Rac-dependent half-maximum inhibition of Rho 0.34 unitless 11
v Ratio of total PAK to total Rac 0.3 unitless 11
op Paxillin dephosphorylation rate 0.00041 571 1]
n Hill coefficient 4 unitless 11
ap Linearization coefficient in paxillin activation 2.7 unitless 1]
Lk Active PAK-dependent half-maximum activation of paxillin 5.77 unitless 11
Iy Additional Rac activation due to paxillin 0.009 st 1]
kg Association constant for GIT-PIX binding 5.71 st 1
[GIT] Concentration of GIT 0.11 uM 1
kx Association constant for PIX-PAK binding 41.7 s 1 1
[PIX] Concentration of PIX 0.069 uM 1
ke Association constant for Paz,-GIT binding 5 st 1
[Paxiot) Total concentration of paxillin 2.3 M 1
aR Affinity constant for PAK-RacGTP binding 15 unitless 1]
Dpr Diffusion coefficient of active Rac 0.0025 | pm?.s7! 11
Dp, Diffusion coefficient of inactive Rac 0.43 pm?2.s~1 1]
€ Time constant for B 0.01 s 1 Estimated
B, Resting state of B 10 unitless | Estimated
kp Recovery rate of B back to its resting state 0.04 unitless | Estimated
YR Strength of R feedback onto B 8.6956 571 Estimated
7, €B Parameters that guarantee the positivity of B 10%, 10~* | unitless | Estimated
€L, Time constant of kp 10=° 571 Estimated
YK Source term 0.15 unitless | Estimated

Table S1: Summary of parameter values.

Parameter Description Value References
Prorget Targeted perimeter 200 Estimated, [4]
Ap Weights describing membrane deformation resistance 0.002 | Estimated and fitted
Starget Targeted surface 1200 Estimated, [5]
As Weights describing membrane deformation resistance 0.0004 | Estimated and fitted
Adet Weights describing protrusive strength 2 Estimated and fitted
MCS Duration Ratio between Monte Carlo Step and simulation time 0.5
Temperature | Boltzmann probability to accept updates that increase energy | 0.12 Fitted
Yield Offset for Boltzmann probability distribution 0.1 Fitted, [6]
representing resistance to membrane deformations

Table S2: Summary of CPM parameter values.
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