

Supporting Information

for Adv. Sci., DOI 10.1002/advs.202205668

Chemotherapy-Induced Senescence Reprogramming Promotes Nasopharyngeal Carcinoma Metastasis by circRNA-Mediated PKR Activation

Qian Li, Yu-Heng Zhao, Cheng Xu, Ye-Lin Liang, Yin Zhao, Qing-Mei He, Jun-Yan Li, Kai-Lin Chen, Han Qiao, Na Liu, Jun Ma*, Lei Chen* and Ying-Qin Li*

Supplementary figure S1. CircWDR37 is a key regulator in NPC senescence and 2 metastasis. a) GSEA analysis of the microarray sequencing results of 24 paired 3 locoregionally advanced NPC tissues with and without distant metastasis. NES, 4 normalized enrichment score; FDR, false discovery rate. b) Venn diagram showed that 5 22 of the 137 differentially expressed genes between metastasis and non-metastasis 6 NPC tissues were senescence-associated genes identified in the CellAge database. c) 7 Unsupervised PCA plot analysis of 22 senescence-associated genes via unifrac distance 8 in indicated samples. d) RT-qPCR assay for the expression of circWDR37 and WDR37 9 10 mRNA in HK1 cells treated with the transcription inhibitor Actinomycin D (2 µg/ml) at the indicated time points. e) RT-qPCR analysis of GAPDH, WDR37 mRNA and 11 circWDR37 expression after RNase R treatment in S18 cells. f) RT-qPCR results for 12

circular and linear transcripts of WDR37 in HONE1, S18 and HK1 cells treated with 13 14 si-circWDR37 (oligonucleotides targeting the back-splice junction) or siSCR (control oligonucleotides with scramble sequence). g) Heat map of the differentially expressed 15 mRNA between three pairs of circWDR37 depleted S18 cells and scramble control 16 (|Fold Change| > 2 and q value < 0.05). h) GSEA analysis of the RNA-seq results of si-17 circWDR37 and siSCR transfected S18 cells. NES, normalized enrichment score; FDR, 18 false discovery rate. Mean $(n = 3) \pm s.d.$ (Data were analyzed by d) two-way ANOVA 19 20 with Bonferroni's post-hoc test, e) two-tailed Student's t-test) and f) one-way ANOVA with Dunnett's post-hoc test). P value < 0.05 indicates statistical significance. N.S 21 indicates no significant. 22

23

Supplementary figure S2. CircWDR37 deficiency limits chemotherapy-induced 24 senescent NPC cells from promoting metastasis in vitro. a) RT-qPCR results for circular 25 and linear transcripts of WDR37 in S26 cells transfected with circWDR37 26 27 overexpression plasmid or vector. b) Representative images and quantified results of the transwell migration and invasion assays in S26 cells transfected with circWDR37 28 29 overexpression plasmid or vector. c) Representative images and quantified results of SA- β -gal staining si-circWDR37 or siSCR transfected S18 and HK1 cells with cisplatin 30 or gemcitabine treated for 24h. Mean $(n = 3) \pm s.d.$ (Data were analyzed by a,b) two-31 tailed Student's t-test and c) one-way ANOVA with Dunnett's post-hoc test). P value < 32 33 0.05 indicates statistical significance. N.S indicates no significant. Scale bar, 200 µm.

34

Supplementary figure S3. CircWDR37 stimulates NF-κB-mediated chemotherapyinduced proinflammatory SASP genes transcription. a) GSEA analysis of the RNA-seq
results of si-circWDR37 and siSCR transfected S18 cells. b) RNA-seq results of mRNA
expression of the indicated NF-κB-targeted genes in circWDR37 knockdown S18 cells.
c) RT-qPCR results for the mRNA expression of the indicated NF-κB-targeted genes in
S18 and HK1 cells with circWDR37 knockdown. d) RT-qPCR results for the mRNA

expression of the indicated NF-kB-targeted genes, which had a different change in 41 direction in HONE1, S18 and HK1 cells with circWDR37 knockdown. e) RT-qPCR 42 results for the mRNA expression of the SASP component in si-circWDR37 or siSCR 43 44 transfected S18 and HK1 cells with cisplatin or gemcitabine treated for 24h. f) Western blots analysis of indicated proteins in S26 cells transfected with circWDR37 45 overexpression plasmid or control plasmid. g) Western blots analysis of the cytoplasmic 46 (cyto) and nuclear (neu) fractions of S26 cells transfected with circWDR37 47 overexpression plasmid or vector. Lamin B1 and a-tubulin were used as nuclear and 48 cytoplasmic markers, respectively. Mean $(n = 3) \pm s.d.$ (c-e) Data were analyzed by one-49 way ANOVA with Dunnett's post-hoc test). P value <0.05 indicates statistical 50 significance. N.S indicates no significant. 51

Supplementary figure S4. CircWDR37 induces PKR homodimerization and phosphorylation. a) Western blots analysis of the indicated proteins in cytoplasmic (cyto) and nuclear (neu) fractions of HK1 cells transfected with si-circWDR37 or siSCR. Lamin B1 and α -tubulin were used as nuclear and cytoplasmic markers, respectively. b) Fluorescence microscopy analysis of HK1 cells transfected with si-circWDR37 or siSCR, p65 nuclear fluorescence intensity was determined by ImageJ software. Nuclei were stained with DAPI (blue). Scale bar, 20 µm. c) Biotin-labeled in vitro transcripted

60 circWDR37 (sense) and corresponding complementary biotinylated RNA (antisense) were incubated with S18 total cell lysates for RNA pull down assays. The silver staining 61 showed the sense-specific band at about 68kDa (red arrow). d) Co-localization of 62 circWDR37 (red) with PKR proteins (green), respectively, in HK1 cells. Scale bar, 20 63 64 μm. e) Western blots analysis of the indicated proteins in HK1 cells treated with si-PKR or siSCR. f) Western blots analysis of the indicated proteins in cytoplasmic (cyto) and 65 nuclear (neu) fractions of S18 and HK1 cells transfected with si-PKR or siSCR. Lamin 66 B1 and α -tubulin were used as nuclear and cytoplasmic markers, respectively. g) 67 Fluorescence microscopy analysis of S18 and HK1 cells transfected with si-PKR or 68 siSCR, p65 nuclear fluorescence intensity was determined by ImageJ software. Nuclei 69 were stained with DAPI (blue). Scale bar, 20 µm. h) Western blots analysis of total PKR 70 and phosphorylated PKR (p-PKR-T446, p-PKR-T451) in S26 cells transfected with 71 circWDR37 overexpression plasmid or vector. (b,g) Data were analyzed by one-way 72 ANOVA with Scheffe's post-hoc test). P value <0.05 indicates statistical significance. 73

74

Supplementary figure S5. CircWDR37 promotes the binding of PKR to IKKβ and 75 facilitates the interaction of PKR with I κ B α thus releasing p65 from inhibitory I κ B α . a) 76 Biotin-labeled in vitro transcripted circWDR37 (sense) and corresponding 77 complementary biotinylated RNA (antisense) were incubated with HONE1 and S18 78 total cell lysates for RNA pull down assays, the precipitates and whole-cell lysates were 79 then analyzed by western blots with indicated antibodies. b) PKR kinase activity on 80 eIF2α and IKKβ were determined with an in vitro kinase assay, GST-PKR, GST-eIF2α 81 and was GST-IKKB were in vitro purified. c) Lysates from HEK293T cells co-82 transfected with plasmids expressing PKR-Flag, along with IkBa-myc were 83 immunoprecipitated with an anti-Flag antibody, the precipitates and whole-cell lysates 84 were then analysed by western blots with indicated antibodies. d) Lysates from 85 HEK293T cells co-transfected with PKR-Flag and IκBα-myc along with circWDR37 86 87 or control plasmid were immunoprecipitated with anti-Flag antibody, the precipitates and whole-cell lysates were then analysed by western blots with indicated antibodies. 88

Supplementary figure S6. PKR is a functional mediator of circWDR37. a,b) 90 Representative images and quantified results of the transwell migration and invasion 91 92 assays in HONE1 (a) and S18 (b) cells transfected with si-PKR or siSCR. Scale bar, 93 100 μ m. c) Representative images and quantified results of SA- β -gal staining si-PKR or siSCR transfected S18 cells with cisplatin or gemcitabine treatment. Scale bar, 200 94 μ m. Mean (n = 3) \pm s.d. (a-c) Data were analyzed by one-way ANOVA with Dunnett's 95 post-hoc test). P value < 0.05 indicates statistical significance. N.S indicates no 96 significant. 97

Supplementary figure S7. Migration and invasion abilities of S18 cells with circWDR37 stable knockdown. a) RT-qPCR results for circular and linear transcripts of WDR37 in S18 cells with sh-circWDR37 stable expression or its scramble control. b) Representative images of the transwell migration and invasion assays in S18 cells with sh-circWDR37 stable expression or its scramble control. Scale bar, 200 μ m. (a) Data were analyzed by two-tailed Student's t-test). *P* value <0.05 indicates statistical significance. N.S indicates no significant.

My

GAPDH

124 Supplementary figure S8. Full unedited gels for all figures (continued).

Num	AccID	circBase ID	ratio(circRNA	algorithm
ber			/linear)	
1	chr10_1142186_113	hsa_circ_0000206	0.817483225	find_circ,CIRI,circR
	0343_+11843-			NA_finder,circexplo
2	chr5_38530768_385	hsa_circ_0072309	0.742648174	find_circ,CIRI,circF
	235217247-LIFR			NA_finder,circexplo
3	chr17_81006661_81	hsa_circ_0000819	0.732376141	find_circ,CIRI,circF
	006347314-			NA_finder,circexplo
4	chr8_131414216_13	hsa_circ_0003691	0.718631125	find_circ,CIRI,circF
	137026343953-			NA_finder,circexplo
5	chr3_196534785_19	hsa_circ_0003036	0.71154252	find_circ,CIRI,circI
	6533450_+1335-			NA_finder,circexplo
6	chr11_122647918_1	hsa_circ_0003391	0.704525435	find_circ,CIRI,circI
	22646927_+991-			NA_finder,circexplo
7	chr2_36669878_366	hsa_circ_0002346	0.695870364	find_circ,CIRI,circI
	23757_+46121-			NA_finder,circexplo
8	chr9_134526336_13	hsa_circ_0089254	0.684453123	find_circ,CIRI,circl
	45186267710-			NA_finder,circexpl
9	chr12_111856681_1	hsa_circ_0006741	0.680562502	find_circ,CIRI,circl
	11855923_+758-			NA_finder,circexpl
10	chr15_71447271_71	hsa_circ_0005203	0.662019093	find_circ,CIRI,circl
	433788_+13483-			NA_finder,circexpl
11	chr1_167944253_16	hsa_circ_0009109	0.660022996	find_circ,CIRI,circl
	7935867_+8386-			NA_finder,circexpl
12	chr7_100454798_10	hsa_circ_0007639	0.654949866	find_circ,CIRI,circl
	0454490_+308-			NA_finder,circexpl
13	chr7_1938026_1937	hsa_circ_0079135	0.644007367	find_circ,CIRI,circl
	836190-MAD1L1			NA_finder,circexpl
14	chr10_49618211_49	hsa_circ_0002968	0.641119508	find_circ,CIRI,circl
	609655_+8556-			NA_finder,circexplo
15	chr4_89400658_893	hsa_circ_0070421	0.640744622	find_circ,CIRI,circl
	96992_+3666-			NA_finder,circexpl
16	chr6_24418806_244	hsa_circ_0075835	0.634776589	find_circ,CIRI,circl
	16625_+2181-			NA_finder,circexplo
17	chr19_46879831_46	hsa_circ_0003356	0.630428141	find_circ,CIRI,circI
	878861_+970-			NA_finder,circexplo
18	chr1_46295253_462	hsa_circ_0012277	0.629631836	find_circ,CIRI,circH
	90105_+5148-			NA_finder,circexplo
19	chr12_29911710_29	hsa_circ_0025767	0.610061196	find_circ,CIRI,circl
	9045997111-			NA_finder,circexplo
20	chr20_60922084_60	hsa_circ_0061099	0.596578291	find_circ,CIRI,circF
	920874 -1210-			NA_finder,circexplo

Supplementary Table S1. The CSCD database information of the 40 circRNAs validated via 4 different algorithms

21	chr11_103158334_1	hsa_circ_0006960	0.593295168	find_circ,CIRI,circR
	03151077_+7257-			NA_finder,circexplor
22	chr1_98165103_981	hsa_circ_0004161	0.577576234	find_circ,CIRI,circR
	4465120452-			NA_finder,circexplor
23	chr13_114277601_1	hsa_circ_0031038	0.57559983	find_circ,CIRI,circR
	14265311_+12290-			NA_finder,circexplor
24	chr11_981299_9770	hsa_circ_0020740	0.571244543	find_circ,CIRI,circR
	95_+4204-AP2A2			NA_finder,circexplor
25	chr9_135527879_13	hsa_circ_0089294	0.557402854	find_circ,CIRI,circR
	551739110488-			NA_finder,circexplor
26	chr2_36623930_366	hsa_circ_0002017	0.556874631	find_circ,CIRI,circR
	23757_+173-			NA_finder,circexplor
27	chr3_30691952_306	hsa_circ_0005224	0.539544825	find_circ,CIRI,circR
	86239_+5713-			NA_finder,circexplor
28	chr6_144860579_14	hsa_circ_0001647	0.538974393	find_circ,CIRI,circR
	4858718_+1861-			NA_finder,circexplor
29	chr17_16981390_16	hsa_circ_0006600	0.526594271	find_circ,CIRI,circR
	979024_+2366-			NA_finder,circexplor
30	chr8_26441499_264	hsa_circ_0005013	0.525701195	find_circ,CIRI,circR
	39485_+2014-			NA_finder,circexplor
31	chr10_128860040_1	hsa_circ_0020460	0.520198432	find_circ,CIRI,circR
	28850945_+9095-			NA_finder,circexplor
32	chr5_14336836_142	hsa_circ_0006674	0.509454593	find_circ,CIRI,circR
	70934_+65902-			NA_finder,circexplor
33	chr6_34574681_345	hsa_circ_0006757	0.509001025	find_circ,CIRI,circR
	74332349-			NA_finder,circexplor
34	chr8_17143936_171	hsa_circ_0083423	0.508163027	find_circ,CIRI,circR
	37884_+6052-			NA_finder,circexplor
35	chr12_56194684_56	hsa_circ_0007446	0.503978299	find_circ,CIRI,circR
	18285911825-			NA_finder,circexplor
36	chr1_243388623_24	hsa_circ_0005749	0.497161563	find_circ,CIRI,circR
	33850263597-			NA_finder,circexplor
37	chr19_41737203_41	hsa_circ_0002945	0.492995055	find_circ,CIRI,circR
	736872_+331-AXL			NA_finder,circexplor
38	chr3_186505373_18	hsa_circ_0068464	0.470678199	find_circ,CIRI,circR
	6504916_+457-			NA_finder,circexplor
39	chr11_9446809_944	hsa_circ_0004672	0.413797212	find_circ,CIRI,circR
	1958_+4851-IPO7			NA_finder,circexplor
40	chr20_34246904_34	hsa_circ_0060122	0	find_circ,CIRI,circR
	2431243780-			NA_finder,circexplor

Supplementary Table S2. circWDR37-associated proteins or isoforms identified by mass spectrometry in NPC cells S18

Nu	Accesion	Description	Sc	Ma	Ma	Matc	Sequ	Seque	Co	pi	em
1	sp Q9Y6M1 IF	Insulin-like growth factor 2 mRNA-binding protein 2 OS=Homo	11	66	2	2	2	2	4.2	8.	0.1
2	sp P09914 IFI	Interferon-induced protein with tetratricopeptide repeats 1	10	55	7	7	4	4	8.4	6.	0.4
3	sp Q16629 SR	Serine/arginine-rich splicing factor 7 OS=Homo sapiens	10	27	3	3	2	2	8.8	11	0.2
4	sp P31942 HN	Heterogeneous nuclear ribonucleoprotein H3 OS=Homo sapiens	97	36	2	2	2	2	6.4	6.	0.1
5	sp Q7Z2W4 Z	Zinc finger CCCH-type antiviral protein 1 OS=Homo sapiens	88	10	4	4	4	4	5.9	8.	0.1
6	sp P52209 6PG	6-phosphogluconate dehydrogenase, decarboxylating OS=Homo	71	53	1	1	1	1	2.3	6.	0.0
7	sp Q07955 SR	Serine/arginine-rich splicing factor 1 OS=Homo sapiens	70	27	3	3	2	2	8.5	10	0.2
8	sp O75390 CIS	Citrate synthase, mitochondrial OS=Homo sapiens OX=9606	68	51	1	1	1	1	2.4	8.	0.0
9	sp P19525 E2A	Interferon-induced, double-stranded RNA-activated protein	65	62	3	3	2	2	4.9	8.	0.1
10	sp P09913 IFI	Interferon-induced protein with tetratricopeptide repeats 2	64	55	5	5	5	5	8.9	6.	0.3
11	sp 000425 IF2	Insulin-like growth factor 2 mRNA-binding protein 3 OS=Homo	61	64	1	1	1	1	2.2	8.	0.0
12	sp Q8NBJ5 G	Procollagen galactosyltransferase 1 OS=Homo sapiens OX=9606	60	71	1	1	1	1	2.3	6.	0.0
13	sp 095573 AC	Long-chain-fatty-acidCoA ligase 3 OS=Homo saniens OX=9606	57	81	1	1	1	1	2.1	8.	0.0
14	sp 075569 PR	Interferon-inducible double-stranded RNA-dependent protein	56	34	1	1	1	1	4.8	8.	0.1
15	sp O7Z417 NU	Nuclear fragile X mental retardation-interacting protein 2	55	76	1	1	1	1	1.9	8.	0.0
16	sp Q9NZI8 IF	Insulin-like growth factor 2 mRNA-binding protein 1 OS=Homo	54	63	2	2	2	2	4.3	9.	0.1
17	sp 008211/DH	ATP-dependent RNA helicase A OS=Homo sapiens OX=9606	52	14	2	2	2	2	1.7	6.	0.0
18	sp/P38159/RB	RNA-binding motif protein. X chromosome OS=Homo sapiens	52	42	3	3	2	2	5.1	10	0.1
19	sp P61221 AB	ATP-hinding cassette sub-family F member 1 OS-Homo saniens	51	68	1	1	-	-	2	8	0.0
20	sp P40938 RF	Replication factor C submit 3 OS-Homo sations OX-9606	50	41	1	1	1	1	39	8	0.0
20	spiO8TD47/PS	40S ribosomal protein S4. Visafarm 2 OS-Hama sanians	49	20	,	,	1	1	3.4	10	0.0
21	spiQ81D47/KS	405 Houseman protein 54, 1 isolorini 2 05-House sapiens	47	29 40	-	-	1	1	3.4	10	0.1
22	spiQ53EU0jG	Giveroi-3-phosphate acyltransferase 5 OS=riomo sapiens	40	49	1	1	1	1	2.8	y.	0.0
23	sp Q9Y3Y2 C	Chromatin target of PRM11 protein OS=Homo sapiens	47	26	1	1	1	1	5.2	12	0.1
24	sp 0148/9 IF1	Interferon-induced protein with tetratricopeptide repeats 3	47	50	2	2	2	2	3.1	5.	0.1
25	sp P62841 RS1	40S ribosomal protein S1S OS=Homo sapiens OX=9606	47	17	2	2	1	1	8.3	10	0.4
26	sp P56589 PE	Peroxisomal biogenesis factor 3 OS=Homo sapiens OX=9606	46	42	1	1	1	1	2.7	8.	0.0
27	sp Q12849 GR	G-rich sequence factor I OS=Homo sapiens OX=9606	45	53	1	1	1	1	2.3	5.	0.0
28	sp Q15637 SF0	Splicing factor I OS=Homo sapiens OX=9606 GN=SFT PE=1	44	68	1	1	1	1	2	9.	0.0
29	sp Q99729 RO	Heterogeneous nuclear ribonucleoprotein A/B OS=Homo sapiens	44	36	2	2	2	2	6.9	8.	0.1
30	sp Q96EP5 DA	DAZ-associated protein 1 OS=Homo sapiens OX=9606	44	43	1	1	1	1	3.7	8.	0.0
31	sp P39748 FE	Flap endonuclease 1 OS=Homo sapiens OX=9606 GN=FEN1	44	42	2	2	2	2	7.1	8.	0.1
32	sp Q3ZCQ8 TI	Mitochondrial import inner membrane translocase subunit	41	39	1	1	1	1	4.8	8.	0.0
33	sp Q9BSR8 YI	Protein YIPF4 OS=Homo sapiens OX=9606 GN=YIPF4 PE=1	40	27	1	1	1	1	3.7	4.	0.1
34	sp Q15149 PL	Plectin OS=Homo sapiens OX=9606 GN=PLEC PE=1 SV=3	39	53	1	1	1	1	0.4	5.	0.0
35	sp Q5BKZ1 Z	DBIRD complex subunit ZNF326 OS=Homo sapiens OX=9606	39	65	1	1	1	1	2.2	5.	0.0
36	sp Q9NXS2 Q	Glutaminyl-peptide cyclotransferase-like protein OS=Homo	38	43	1	1	1	1	2.9	9.	0.0
37	sp Q13409 DC	Cytoplasmic dynein 1 intermediate chain 2 OS=Homo sapiens	38	71	1	1	1	1	3.3	5.	0.0
38	sp Q5JWF2 G	Guanine nucleotide-binding protein G(s) subunit alpha isoforms	38	11	1	1	1	1	1.5	4.	0.0
39	sp O43818 U3I	U3 small nucleolar RNA-interacting protein 2 OS=Homo sapiens	36	52	1	1	1	1	2.1	7.	0.0
40	sp Q96AE4 FU	Far upstream element-binding protein 1 OS=Homo sapiens	36	67	2	2	2	2	3.6	7.	0.1
41	sp Q7LGA3 H	Heparan sulfate 2-O-sulfotransferase 1 OS=Homo sapiens	35	42	1	1	1	1	4.8	8.	0.0
42	sp Q92945 FU	Far upstream element-binding protein 2 OS=Homo sapiens	35	73	1	1	1	1	1.8	6.	0.0
43	sp Q13325 IFI	Interferon-induced protein with tetratricopeptide repeats 5	35	56	2	2	2	2	3.7	7	0.1
44	sp P31040 SD	Succinate dehydrogenase [ubiquinone] flavoprotein subunit,	34	73	1	1	1	1	1.7	7.	0.0
45	sp Q9BU23 L	Lipase maturation factor 2 OS=Homo sapiens OX=9606	34	79	1	1	1	1	3	10	0.0
46	sp Q9Y3I0 RT	RNA-splicing ligase RtcB homolog OS=Homo sapiens OX=9606	34	55	1	1	1	1	2.2	6.	0.0
47	sp Q15633 TR	RISC-loading complex subunit TARBP2 OS=Homo sapiens	34	39	1	1	1	1	4.1	6.	0.0
48	sp Q9H7F4 T1	Transmembrane protein 185B OS=Homo sapiens OX=9606	33	40	1	1	1	1	2.6	7.	0.0
49	sp O43291 SPI	Kunitz-type protease inhibitor 2 OS=Homo sapiens OX=9606	33	28	1	1	1	1	4.8	8.	0.1
50	sp O96006 ZB	Zinc finger BED domain-containing protein 1 OS=Homo sapiens	31	78	1	1	1	1	1	5.	0.0
51	sp Q13347 EIF	Eukaryotic translation initiation factor 3 subunit I OS=Homo	31	36	1	1	1	1	3.7	5.	0.0
52	sp P37108 SRP	Signal recognition particle 14 kDa protein OS=Homo sapiens	30	14	1	1	1	1	21.	10	0.2
53	sp P61158 AR	Actin-related protein 3 OS=Homo sapiens OX=9606 GN=ACTR3	30	47	1	1	1	1	3.3	5.	0.0
54	sp Q00688 FK	Peptidyl-prolyl cis-trans isomerase FKBP3 OS=Homo sapiens	30	25	1	1	1	1	4.9	9.	0.1
55	sp P60468 SC6	Protein transport protein Sec61 subunit beta OS=Homo sapiens	30	10	1	1	1	1	10.	11	0.3
56	sp Q07666 KH	KH domain-containing, RNA-binding, signal transduction-	30	48	2	2	2	2	4.5	8.	0.1
57	sp Q8IYT8 UL	Serine/threonine-protein kinase ULK2 OS=Homo sapiens	30	11	1	1	1	1	0.8	8.	0.0

58	sp Q6UN15 FI	Pre-mRNA 3~-end-processing factor FIP1 OS=Homo sapiens	30	66	1	1	1	1	2.4	5.	0.0
59	sp Q75NE6 MI	Putative microRNA 17 host gene protein OS=Homo sapiens	30	83	2	2	1	1	17.	9.	0.4
60	sp Q9NQ39 R	Putative 40S ribosomal protein S10-like OS=Homo sapiens	30	20	1	1	1	1	3.4	10	0.1
61	sp A0AV96 R	RNA-binding protein 47 OS=Homo sapiens OX=9606	30	64	1	1	1	1	3.4	7.	0.0
62	sp Q8N684 CP	Cleavage and polyadenylation specificity factor subunit 7	29	52	1	1	1	1	2.8	7.	0.0
63	sp Q9Y6Z5 AF	Putative uncharacterized protein AFDN-DT OS=Homo sapiens	28	26	1	1	1	1	3.1	11	0.1
64	sp Q99567 NU	Nuclear pore complex protein Nup88 OS=Homo sapiens	28	84	1	1	1	1	1.8	5.	0.0
65	sp Q9H2H9 S3	Sodium-coupled neutral amino acid transporter 1 OS=Homo	28	54	1	1	1	1	2.3	6.	0.0
66	sp Q9C0B5 Z	Palmitoyltransferase ZDHHC5 OS=Homo sapiens OX=9606	28	78	1	1	1	1	2.2	9.	0.0
67	sp Q15427 SF3	Splicing factor 3B subunit 4 OS=Homo sapiens OX=9606	27	44	1	1	1	1	3.3	8.	0.0
68	sp O60256 KP	Phosphoribosyl pyrophosphate synthase-associated protein 2	27	41	1	1	1	1	2.4	7.	0.0
69	sp P05023 AT1	Sodium/potassium-transporting ATPase subunit alpha-1	27	11	1	1	1	1	1.5	5.	0.0
70	sp Q86V85 GP	Integral membrane protein GPR180 OS=Homo sapiens OX=9606	27	50	1	1	1	1	3.4	7.	0.0
71	sp Q9H4K7 M	Mitochondrial ribosome-associated GTPase 2 OS=Homo sapiens	26	44	1	1	1	1	3.4	9.	0.0
72	sp 075396 SC	Vesicle-trafficking protein SEC22b OS=Homo sapiens OX=9606	26	24	1	1	1	1	4.7	6.	0.1
73	sp Q9NUQ6 S	SPATS2-like protein OS=Homo sapiens OX=9606 GN=SPATS2L	26	62	1	1	1	1	1.8	9.	0.0
74	sp Q96PE1 A	Adhesion G protein-coupled receptor A2 OS=Homo sapiens	26	14	1	1	1	1	0.9	8.	0.0
75	sp Q13573 SN	SNW domain-containing protein 1 OS=Homo sapiens OX=9606	26	61	1	1	1	1	2.8	9.	0.0
76	sp P49023 PA	Paxillin OS=Homo sapiens OX=9606 GN=PXN PE=1 SV=3	26	65	1	1	1	1	2.9	5.	0.0
77	sp P46779 RL2	60S ribosomal protein L28 OS=Homo sapiens OX=9606	26	15	1	1	1	1	5.8	12	0.2
78	sp Q9UKA9 P	Polypyrimidine tract-binding protein 2 OS=Homo sapiens	25	57	1	1	1	1	1.1	8.	0.0
79	sp P61962 DC	DDB1- and CUL4-associated factor 7 OS=Homo sapiens	25	39	1	1	1	1	3.2	5.	0.0
80	sp Q9BZE1 R	39S ribosomal protein L37, mitochondrial OS=Homo sapiens	24	48	1	1	1	1	3.8	8.	0.0
81	sp O96000 ND	NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit	24	21	1	1	1	1	6.4	8.	0.1
82	sp Q01844 EW	RNA-binding protein EWS OS=Homo sapiens OX=9606	24	68	1	1	1	1	2.1	9.	0.0
83	sp Q6ZN19 Z	Zinc finger protein 841 OS=Homo sapiens OX=9606	24	95	1	1	1	1	1	9.	0.0
84	sp P42694 HE	Probable helicase with zinc finger domain OS=Homo sapiens	24	22	1	1	1	1	0.3	7.	0.0
85	sp P40222 TX	Alpha-taxilin OS=Homo sapiens OX=9606 GN=TXLNA PE=1	24	62	1	1	1	1	5.1	6.	0.0
86	sp O94776 MT	Metastasis-associated protein MTA2 OS=Homo sapiens OX=9606	24	75	1	1	1	1	2.4	9.	0.0
87	sp Q6PJG6 B	BRCA1-associated ATM activator 1 OS=Homo sapiens OX=9606	24	89	1	1	1	1	1.3	5.	0.0
88	sp Q4G0X9 C	Coiled-coil domain-containing protein 40 OS=Homo sapiens	24	13	1	1	1	1	1	5.	0.0
89	sp O60318 GA	Germinal-center associated nuclear protein OS=Homo sapiens	24	22	1	1	1	1	1.1	5.	0.0
90	sp P04275 VW	von Willebrand factor OS=Homo sapiens OX=9606 GN=VWF	23	32	1	1	1	1	0.3	5.	0.0
91	sp Q96JQ0 PC	Protocadherin-16 OS=Homo sapiens OX=9606 GN=DCHS1	23	34	1	1	1	1	0.3	4.	0.0
92	sp Q96PB1 CA	N-acetylneuraminate 9-O-acetyltransferase OS=Homo sapiens	23	92	1	1	1	1	1.8	9.	0.0
93	sp O15243 OB	Leptin receptor gene-related protein OS=Homo sapiens OX=9606	22	14	1	1	1	1	9.9	6.	0.2
94	sp Q14192 FH	Four and a half LIM domains protein 2 OS=Homo sapiens	20	34	1	1	1	1	4.3	7.	0.1
95	sp O60884 DN	DnaJ homolog subfamily A member 2 OS=Homo sapiens	20	46	1	1	1	1	2.4	6.	0.0
96	sp Q86YR7 M	Probable guanine nucleotide exchange factor MCF2L2	19	12	1	1	1	1	1.3	6	0.0
97	sp Q9C0H6 K	Kelch-like protein 4 OS=Homo sapiens OX=9606 GN=KLHL4	19	81	1	1	1	1	2.5	6.	0.0
98	sp Q6ZRU5 Y	Putative uncharacterized protein FLJ46089 OS=Homo sapiens	19	17	1	1	1	1	10.	9.	0.1
99	sp Q8N9W4 G	Golgin subfamily A member 6-like protein 2 OS=Homo sapiens	19	10	1	1	1	1	1	4.	0.0
100	sp Q86X53 ER	Glutamate-rich protein 1 OS=Homo sapiens OX=9606	19	49	1	1	1	1	3.2	4.	0.0
101	sp Q9HC52 C	Chromobox protein homolog 8 OS=Homo sapiens OX=9606	17	43	1	1	1	1	1.3	9.	0.0
102	sp P16070 CD	- CD44 antigen OS=Homo sapiens OX=9606 GN=CD44 PE=1	17	82	1	1	1	1	2.2	5.	0.0
103	sp Q96PM5 Z	RING finger and CHY zinc finger domain-containing protein 1	17	31	1	1	1	1	4.6	6.	0.1

Characteristics	No. of natients	Expression	P value	
Characteristics	No. of patients	Low, n (%)	High, n (%)	_
Age				
< 45	81	58 (57.4)	23 (60.0)	0.868
\geq 45	59	43(42.6)	16 (41.0)	
Sex				
Male	24	20 (19.8)	4 (10.3)	0.179
Female	116	81 (80.2)	35(89.7)	
pre-EBV				
< 2 (×1000)	59	44 (43.6)	15 (38.5)	0.584
≥ 2 (×1000)	81	57 (56.4)	24 (61.5)	
T Stage				
T1-T2	18	11 (10.9)	7 (17.9)	0.263
T3-T4	122	90 (89.1)	32 (82.1)	
N Stage				
N0-N1	71	56 (55.4)	15 (38.5)	0.072
N2-N3	69	45 (44.6)	24 (61.5)	
Death				
No	115	87 (86.1)	28 (71.8)	0.047
Yes	25	14(13.9)	11 (28.2)	
Distant metastasis (DM)				
No	114	87(86.1)	27 (69.2)	0.021
Yes	26	14(13.9)	12 (30.8)	

Supplementary Table S3. Clinical characteristics of NPC patients according to
 high and low circWDR37 expression

135 Abbreviations: pre-EBV, pretreatment plasma Epstein-Barr virus DNA; OS: overall survival;

136 DFS, disease-free survival; *P* value was determined by χ^2 or Fisher's exact tests.

138 Supplementary Table S4. Univariate and multivariable Cox regression analysis of

139 circWDR37 expression level and survival in NPC patients

1	τ	J nivariate anal y	ysis	Multivariate analysis				
Variable	HR	95% CI	P value	HR	95% CI	<i>P</i> value		
Overall survival								
CircWDR37 expression (high vs. low)	2.357	1.068-5.203	0.034	2.531	1.132-5.659	0.024		
T stage (T3-T4 vs. T1-T2)	1.773	0.418-7.519	0.437					
N stage (N2-N3 vs. N0-N1)	3.651	1.513-8.807	0.004	1.943	1.243-3.039	0.004		
Age (\geq 45 vs. < 45 years)	2.791	1.232-6.320	0.014	3.000	1.317-6.834	0.009		
Gender (Female vs. male)	1.193	0.409-3.479	0.746					
pre-EBV (≥2000 vs. <2000)	9.376	2.210-39.786	0.002	6.576	1.524-28.373	0.012		
Disease-free survival								
CircWDR37 expression (high vs. low)	3.018	1.582-5.760	0.001	3.324	1.723-6.413	<0.001		
T stage (T3-T4 vs. T1-T2)	1.286	0.455-3.630	0.635					
N stage (N2-N3 vs. N0-N1)	3.763	1.813-7.811	< 0.001	3.827	1.784-8.208	0.001		
Age (\geq 45 vs. < 45 years)	1.785	0.935-3.408	0.079					
Gender (Female vs. male)	1.449	0.564-3.719	0.441					
pre-EBV (≥2000 vs. <2000)	5.506	2.144-14.137	< 0.001	4.208	1.620-10.928	0.003		
Distant metastasis-free survival								
CircWDR37 expression (high vs. low)	2.615	1.208-5.659	0.015	2.305	1.062-4.999	0.035		
T stage (T3-T4 vs. T1-T2)	0.814	0.281-2.364	0.706					
N stage (N2-N3 vs. N0-N1)	4.653	1.853-11.684	0.001	3.520	1.388-8.926	0.008		
Age (\geq 45 vs. < 45 years)	1.741	0.804-3.767	0.159					
Gender (Female vs. male)	1.787	0.536-5.955	0.344					
pre-EBV (≥2000 vs. <2000)	4.489	1.546-13.034	0.006	3.457	1.177-10.150	0.024		

140 Abbreviations: pre-EBV, pre-treatment plasma Epstein-Barr virus DNA; HR, hazard ratio;

141 NS, not significant. Bold values indicate P < 0.05, P value was determined by Cox regression

142 analysis.

144	Supplementary	Table S5. Primers and RNA sequences used in thi	is study

List of oligonucleotide sequences	5' \rightarrow 3' (F, forward; R, reverse.)
Primers for RT-qPCR	
CircWDR37-F/Divergent	GGCTCTCACTGCTTCTGGAG
CircWDR37-R/Divergent	GCTCTCGATGTCGTGGTCTT
Convergent-circWDR37-F	ACCACGACATCGAGAGCTG
Convergent-circWDR37-R	TCTTGGCCACGCTGACATC
WDR37-F	CCCACAGAAAGCGCAAGTTG
WDR37-R	AACCGAGGAAGGCAGTTTAGA
GAPDH-F/Convergent	AACGGATTTGGTCGTATTGG
GAPDH-R/Convergent	TTGATTTTGGAGGGATCTCG
Divergent-GAPDH-F	CCAATACGACCAAATCCGTT
Divergent-GAPDH-R	CGAGATCCCTCCAAAATCAA
GAPDH-F	GTCTCCTCTGACTTCAACAGCG
GAPDH-R	ACCACCCTGTTGCTGTAGCCAA
β-actin-F	CACCATTGGCAATGAGCGGTTC
β-actin-R	AGGTCTTTGCGGATGTCCACGT
PKR-F	GAAGTGGACCTCTACGCTTTGG
PKR-R	TGATGCCATCCCGTAGGTCTGT
U6-F	CTCGCTTCGGCAGCACAT
U6-R	TTTGCGTGTGTCATCCTTGCG
shRNAs	
sh-circWDR37-F	CTAGTATTGTCTCCAGCTT
sh-circWDR37-R	AAGCTGGAGACAATACTAG
siRNAs	
si-circWDR37-1	GTTGCTGACACTAGTATTG
si-circWDR37-3	CTAGTATTGTCTCCAGCTT
si-PKR-564	GGUGAUCUUUCAGCAGGUUTT
si-PKR-2058	GGCAUCAUCUCAGAUAUAUTT

145 * F, forward; R, reverse.

Antibodies	Source	Identifier
Anti-IKKβ	Cell Signaling Technology	2678T
Anti-p-IKKα/β	Cell Signaling Technology	2697T
Anti-p65	Proteintech	10745-1-AP
Anti-p-p65	Cell Signaling Technology	3033T
Anti-IĸBa	Cell Signaling Technology	4814T
Anti-p-ΙκΒα	Cell Signaling Technology	2859T
Anti-PKR	Proteintech	18244-1-AP
Anti-p-PKR-T446	Abcam	ab32036
Anti-p-PKR-T451	Abcam	ab81303
Anti-GAPDH	Abcam	ab8245
Anti-α-tubulin	Proteintech	66031-1-Ig
Anti-eIF2α	Beyotime	AF6771
Anti-p-eIF2α	Beyotime	AF1237
Anti-Flag	Sigma-Aldrich	F1804
Anti-HA	Proteintech	51064-2-AP
Anti-myc	Proteintech	16286-1-AP
Anti-p16 ^{INK4A}	Proteintech	10883-1-AP
Anti-Cyclin D1	Proteintech	60186-1-Ig

146 Supplementary Table S6. Antibodies used in this study