Cell Host & Microbe, Volume 31

Supplemental information

Salmonella-liberated dietary L-arabinose

promotes expansion in superspreaders

Sarah J. Ruddle, Liliana M. Massis, Alyssa C. Cutter, and Denise M. Monack

В

Α

╾ in vivo – in vitro

log2(FC)

- uninfected 1% arabinose
- infected no trreatment
- infected 1% arabinose

Δ								
~	1	11	21	31	41 5	0		
	MTTSLNSRRL	WLHRLCALLL	GTGSAL	VQAE	NPIFTDVFTA	40	с.	japonicus
	MRKKC-SVCL	WILVLLLSCL	SGKSAYAATS	TTIAKHIGNS	NPLIDHHLGA	49	в.	subtilis
	M-RRL-IVRL	FIAVLAALAL	LIMGIPAHAI	APASPSVIFI	NPLAEKRA	46	5.	avermitilis
	M			ANWP	NPFIEQRA	13	5.	Typhimurium
						02	c	iaponicus
		RVTTYMSSDD				02	R.	subtilis
	DPHTEKHTDG					89	s.	avermitilis
	DPETLRDG	SDYYFTASVP	-FYDRI FTRR	ANSLEGI R	AADPVVV	55	S.	Typhimurium
								.)p
	WEAHGPGLR-	-AKDFTWAKG	DAWA	SQVIERNG	KFYWYVTV	120	с.	japonicus
	WTDHGAIPVA	GANGANGGRG	IAKWAGASWA	PSIAVKKING	KDKFFLYFA-	147	в.	subtilis
	WTKHASGVM-		GAHIWA	PEIHFIDG	KWYVYFAA	120	s.	avermitilis
	WRKPESGPM-		SQLIWA	PEMHRING	KWYIYFAA	86	s.	Typhimurium
	RHDD	TKPGFAIG	VAVGDSPIGP	FKDALGKALI	TNDMTTDTPI	162	с.	japonicus
		NSGGGIG	VLTADSPIGP	WTDPIGKPLV	TPSTPGMSGV	184	в.	subtilis
	GSTSD	VWAIRMYVLE	SGAANPLTGS	W	TEKGQIATPV	156	s.	avermitilis
	THIQALDKLG	MFQHRMFALE	CADADPLIGK	W	TEKGQIKTPF	127	5.	Typhimurium
			WONTRD		DVAK	102	c	innonicus
						192	L.	Japonicus
				NTSLETAKMA		100	с.	SUDIILIS
		YHO-GKOWYI	WAOKAPDIAG	NSNTYLAFLE	NPWT	170	5	Typhimurium
	DITALOATI	Ing ongine	INGINI DING	NONLITEALEE		1/0	5.	rypriinar ian
	KKNMVELDGP	IRAIEGLPEF	Т	EAIWVHKYOD	NYYLSY	230	с.	iaponicus
	GPDMTSVVGS	ASTIDA-PFM	F	EDSGLHKYNG	TYYYSY	266	в.	subtilis
	ISGT	PTEISQ-PTL	SWETVGYKVN	EGPAVIQHGG	KVFLTYSASA	242	s.	avermitilis
	IKGE	PVRLSK-PEY	DWECRGFWVN	EGPAVVVHGD	KLFISYSASA	213	s.	Typhimurium
				<u> </u>				

В

SL1344 1 S. Typhimurium D23580 1 S. Typhimurium 4,[5],12:i:- 1 S. Dublin ATCC 39184 1 S. Paratyphi A ATCC 9150 1 S. Typhi Ty2 1	MA NWP N P F I MA NWP N P F I	EQ RADPFILR EQ RADPFILR EQ RADPFILR EQ RADPFILR EQ RADPFILR EQ RADPFILR	DGSDYYFIAS DGSDYYFIAS DGSDYYFIAS DGSDYYFIAS DGSDYYFIAS DGSDYYFIAS	V P EY D R L E I R R A N V P EY D R L E I R R A N V P EY D R L E I R R A N V P EY D R L E I R R A D V P EY D R L E I R R A N V P EY D R L E I R R A D	S L E G L R A A <mark>D</mark> P V V V W R K P E S G S L E G L R A A D P V V V W R K P E S G S L E G L R A A D P V V V W R K P E S G S L E G L R A A D P V V V W R K P E S G S L E G L R A A D P V V V W R K P K T G S L E G L R A A D P V V V W R K P E S G	P M S 65 P M S 65
SL1344 66 S. Typhimurium D23580 66 S. Typhimurium 4,[5],12:i:- 66 S. Dublin ATCC 39184 66 S. Paratyphi A ATCC 9150 66 S. Typhi Ty2 66	Q L I WA P EMH Q L I WA P EMH	R N G K WY Y F R N G K WY Y F	A A T H T Q A L D K A A T H T Q A L D K A A T H T Q A L D K A A T H T Q A L D K A A T H T Q A L D K A A T H T Q A L D K	L GM FQ H RM FA L E C. L GM FQ H RM FA L E C.	A DA DP L T GK WT EK GQ K T P F A DA DP L T GK WT EK GQ K T P F A DA DP L T GK WT EK GQ K T P F A DA DP L T GK WT EK GQ K T P F A DA DP L T GK WT EK GQ K T P F A DA DP L T GK WT EK GQ K T P F	DTF 130 DTF 130 DTF 130 DTF 130 DTF 130 DTF 130 DTF 130
SL1344 131 S. Typhimurium D23580 131 S. Typhimurium 4,[5],12:i:- 131 S. Dublin ATCC 39184 131 S. Paratyphi A ATCC 9150 131 S. Typhi Ty2 131	ALDATTFYHO ALDATTFYHO ALDATTFYHO ALDATTFYHO ALDATTFYHO SLDATTFYHO	2 GK QWY LWAQ 2 GK QWY LWAQ	K A P D I A G N S N K A P D I A G N S N K A P D I A G N S N K A P D I A G N S N K A P D I A G N S N K A P D I A G N S N	I Y L A E L EN PWT K (I Y L A E L EN PWT K (I Y L A E L EN PWT K (I Y L A E L EN PWT K (I Y L A E L EN PWT K (I Y L A E L EN PWT K (3 EP V R L S K P EY D W EC R G F W V 3 EP V R L S K P EY D W EC R G F W V 3 EP V R L S K P EY D W EC R G F W V 3 EP V R L S K P EY D W EC R G F W V 3 EP V R L S K P EY D W EC R G F W V 3 EP V R L S K P EY D W EC R G F W V	N EG 195 N EG 195 N EG 195 N EG 195 N EG 195 N EG 195
SL1344 196 S. Typhimurium D23580 196 S. Typhimurium 4,[5],12::- 196 S. Dublin ATCC 39184 196 S. Paratyphi A ATCC 9150 196 S. Typhi Ty2 196	P A V V V H GD K P A V V V H GD K	L F I SY SA SA T L F I SY SA SA T	DENYCMGLLW DENYCMGLLW DENYCMGLLW DENYCMGLLW DENYCMGLLW DENYCMGLLW	I NVN DDP RDP A NW I NVN DDP L T PQ NW I NVN DDP RDP A NW	HK SPR PV FTT SY ENRQYGPG HK SPR PV FTT SY ENRQYGPG	H N S 260 H N S 260
SL1344 261 S. Typhimurium D23580 261 S. Typhimurium 4,[5],12:i- 261 S. Dublin ATCC 39184 261 S. Paratyphi AATCC 9150 261 S. Typhi Ty2 261	FTQT P EGEN FTQT P EGEN FTQT P EGEN FTQT P EGEN FTQT P EGEN FTQT P EGEN	/ L V Y HA R N Y T / L V Y HA R N Y T	E I E G D P L Y D P I E I E G D P L Y D P I E I E G D P L Y D P I E I E G D P L Y D P I E I E G D P L Y D P I E I E G D P L Y D P I	N R H T R L K R V RWD E I N R H T R L K R V RWD E I N R H T R L K R V RWD E I N R H T R L K R V RWD E I N R H T R L K R V RWD E I N R H T R L K R V RWD E I	NGM P D F G V P P A D T 316 NGM P D F G V P P A D T 316 NGM P D F G V P P A D T 316 NGM P D F G V P P A D T 316 NGM P D F G V P P A D T 316 NGM P D F G V P P A D T 316	

Supplemental figure 1. *S.* Tm superspreaders and non-superspreaders have differentially enriched metabolic pathways at 7 and 14 DPI

Corresponds with figure 1

- A) Differential pathway enrichment of non-superspreaders and superspreaders at 7 DPI with multiple hypothesis correction (Likelihood ratio with Benjamini & Hochberg correction).
- B) Differential pathway enrichment of non-superspreaders and superspreaders at 21 DPI with multiple hypothesis correction (Likelihood ratio with Benjamini & Hochberg correction).

Supplemental figure 2. S. Tm genetic pathways enriched *in vivo* and *in vitro* Corresponds with figure 2

- A) Log2 fold differences of differentially enriched genetic pathways (adjusted p-value < 0.05) in vitro (blue) and in vivo (red). Each data point represents single gene within each sub pathway (y-axis). Sub pathways are annotated with corresponding major pathways (brackets along y-axis)
- B) Principal component analysis of *in vivo* and *in vitro* transcriptomes. *In vivo* and *in vitro* transcriptomes separate along PC1.

Supplemental figure 3: Exogenous dietary L-arabinose does not induce inflammation

Corresponds with figure 4. The data in this figure are from a single mouse experiment.

- A) Lipocalin-2 levels detected in feces of the indicated groups 4-days post treatment (diet and/or infection) by Elisa. n=5 mice
- B) qRT-PCR of mRNA extracted from spleens from indicated groups 5 days post treatment. n=5 mice.
- C) qRT-PCR of mRNA extracted from colons from indicated groups 5 days post treatment. n=5 mice

Supplemental figure 4: Carnitine supplementation does not confer a competitive advantage to WT S. Tm and L-arabinose concentrations decrease during infection in germ-free mice

Corresponds with figure 4

- A) 129X1/SvJ mice were inoculated with an equal mixture of S. Tm^{WT} and S. Tm^{cai}. Each dot represents data from one animal (biological replicate). Bars represent +- SEM. *p < 0.05, ** p < 0.01. Kruskal-Wallis. No difference across groups. N=10 per group.
- B) L-Arabinose concentration in the germ-free mouse feces was quantified by liquid LC/MS. Students T test, *** p < 0.001</p>

Supplemental figure 5. S. Tm arabinofuranosidase has conserved functional residues with previously characterized arabinofuranosidases

Corresponds with figure 5

- A) Amino acid sequence alignment of STM0148 (grey highlight) against three characterized arabinofuranosidase amino acid sequences. Red rectangles show conserved critical residues for enzyme function.
- B) Amino acid sequence alignment of STM0148 against five other Salmonella serovars" arabinofuranosidase amino acid sequences. Red rectangles show conserved critical residues for enzyme function. Pink highlight indicates amino acid differences compared to SL1344 (first strand).

Gene ID	Cazyme family	Reference accession
SL1344_0018	GH18	<u>CBW16119.1</u>
SL1344_3087	GH23	<u>CBW19186.1</u>
SL1344_0016	GH108	<u>CBW16117.1</u>
SL1344_0042	GH31	<u>CBW16143.1</u>
SL1344_0148	GH43	CAB89837.1
SL1344_0234	GH19	CBW16336.1
SL1344_0255 (MItD)	GH23	CBW16357.1
SL1344_0396	GH13	<u>CBW16496.1</u>
SL1344_0966 (NucD)	GH24	CBW17063.1
SL1344_1119 (FlgJ)	GH73	<u>CBW17215.1</u>
SL1344_1146 (NagZ)	GH3	<u>CBW17242.1</u>
SL1344_1188	GH33	<u>CBW17283.1</u>
SL1344_1251 (CelF)	GH4	<u>CBW17347.1</u>
SL1344_1488 (GlgX)	GH13	<u>CBW17583.1</u>
SL1344_1489	GH13	<u>CBW17584.1</u>
SL1344_1490	GH13	<u>CBW17585.1</u>
SL1344_1724 (TreA)	GH37	<u>CBW17819.1</u>
SL1344_1727 (MItE)	GH23	<u>CBW17822.1</u>
SL1344_1846	GH105	<u>CBW17940.1</u>
SL1344_1892 (AmyA)	GH13	<u>CBW17987.1</u>
SL1344_1956	GH19	CBW18053.1
SL1344_2144 (BgIX)	GH3	<u>CBW18240.1</u>
SL1344_2529 (YfhD)	GH23	<u>CBW18629.1</u>
SL1344_2576	GH24	<u>CBW18677.1</u>
SL1344_2686 (Nucd2)	GH24	<u>CBW18788.1</u>
SL1344_2811 (MltB)	GH103	CBW18909.1
SL1344_2857 (lagB)	GH23	CBW18955.1
SL1344_2968 (MltA)	GH102	CBW19067.1
SL1344_3027 (BgIA)	GH1	<u>CBW19126.1</u>
SL1344_3480 (MalQ)	GH77	<u>CBW19575.1</u>
SL1344_3504 (GlgX)	GH13	<u>CBW19598.1</u>
SL1344_3505 (GlgB)	GH13	<u>CBW19599.1</u>
SL1344_3568 (TreF)	GH37	<u>CBW19662.1</u>
SL1344_3570 (fragment)	GH24	<u>CBW19664.1</u>
SL1344_3582 (YhjM)	GH8	CBW19676.1
SL1344_3628 (BaX)	GH73	<u>CBW19721.1</u>
SL1344_3629 (MalS)	GH13	<u>CBW19722.1</u>
SL1344_3644	GH127	<u>CBW19737.1</u>
SL1344_3715	GH31	<u>CBW19809.1</u>
SL1344_3740	GH1	<u>CBW19832.1</u>

 Table S1: Related to Figure 5. SL1344 predicted glycoside hydrolases

SL1344_3767	GHnc	CBW19857.1
SL1344_3965	GH31	CBW20055.1
SL1344_4153	GH23	CBW20241.1
SL1344_4235	GH4	CBW20321.1
SL1344_4358	GH30	CBW20445.1
SL1344_4384 (TreC)	GH13	CBW20472.1
SL1344_4509 (Slt)	GH23	CBW20598.1
SL1344_P2_0087 (PiIT)	GH23	CCF76895.1

Table S2: Related to STAR Methods. Oligonucleotides used in this study

Primer name: description	Sequence 5'-3'	Source
SR114: caiTABCD forward	AAATCGGGAATTGAACCGAAGGTTTTTTTCCGCC	IDT
lambda	ATTAAGTGTAGGCTGGAGCTGCTTC	
SR115: caiTABCD reverse	CGGATCGCGTTTTTCGGCAAATGCCTGCGGTCCTT	IDT
lambda	CGAGCCATATGAATATCCTCCTTAG	
SR116: caiTABCD forward	CTGGCTCAACAATATTGAACGC	IDT
verification		
SR117: caiTABCD reverse	GCGAGTGGGCCAATATAAACAC	IDT
verification		
SR118: caiTABCD	CGCGATGGTGTTATACGCC	IDT
reverse/internal verification		
SR119: araBAD forward	GACCAGGACGACAGAGCTTCC	IDT
verification		
SR120: araBAD reverse	CAGATTCATCAACGCGCCC	IDT
verification		
SR121: araBAD reverse-	GCGTCAGGGTATAGCTGCTTTCATACTC	IDT
internal verification		
SR148: 0148 lamda forward	AAACCCGTTTATTGAACAACGTGCCGATCCGTTTA	IDT
	TTTTAGTGTAGGCTGGAGCTGCTTC	
SR149: 0148 lamda reverse	TGGCGGCACGCCAAAATCAGGCATCCCGTTTTCGT	IDT
	CCCAGCATATGAATATCCTCCTTAG	
SR150: 0148 forward	CGGCGTTGGCTATCTGATTA	IDT
verification primer		
SR151: 0148 reverse	CAATATCAGGTGCTCACACGTCTG	IDT
verification primer		
SR150: 0148 reverse-internal	CTGGGAATGTTCCAGCATCG	IDT
verification primer		
Mouse IFNy qPCR forward	AGCGGCTGACTGAACTCAGATTGTAG	IDT
Mouse IFNy qPCR reverse	GTCACAGTTTTCAGCTGTATAGGG	IDT
Mouse GAPDH qPCR F	ACAGTCCATGCCATCACTGCC	IDT
primer		
Mouse GAPDH qPCR R	GCCTGCTTCACCACCTTCTTG	IDT
primer		
Mouse TNFa qPCR F primer	GATCGGTCCCCAAAGGGATG	IDT
Mouse TNFa qPCR R primer	TGGTTTGTGAGTGTGAGGGTC	IDT
Mouse IL-6 qPCR F primer	TCCAGTTGCCTTCTTGGGAC	IDT

Mouse IL-6 qPCR R primer	AGTCTCCTCCCGGACTTGT	IDT
Mouse IL-1β qPCR F primer	AGCTTCCTTGTGCAAGTGTCT	IDT
Mouse IL-1β qPCR R primer	GACAGCCCAGGTCAAAGGTT	IDT
Pfog forward	CGATTCGAATTCTATCGATAAGCTTGATATCGCGA	IDT
	CAAG	
Pfog reverse	CGATTCGGATCCCGCTCTAGAACTAGTGGATCGGA	IDT
	ТАААТС	
0148_up_forward	CGACAAGTGAATCCAATAT	IDT
0148_up_reverse	CTTTTGGATCGTTAGTGATCACGCCCTGGCATTAT	IDT
	CGTCTGTC	
0148_insert_forward	CGTGATCACTAACGATCCAAAAG	IDT
0148_insert_reverse	CAGTTTGCGGGAAGACTTTCAC	IDT