
Supplementary Materials for “Semi-parametric modeling of
SARS-CoV-2 transmission using tests, cases, deaths, and

seroprevalence data”

S-1 Simulation study
We performed a simulation study on 200 datasets to validate our models. We use the same prior
distributions for the parameters as in the main text. These distributions are presented in Table S-1-
.2. We purposely chose parameter values that resulted in data similar to the Orange Country data
used in the main text. Exact values for these parameters are presented in Table S-1.2. One of
the 200 simulated datasets is presented in Figure S-1.1. Figures S-1.2–S-1.4 present the prior and
posterior distribution for this single dataset. Figures S-1.5–S-1.8 show coverage and contraction
properties for the whole simulation study. Contraction is calculated as one minus the ratio of
standard deviation of the posterior and the prior. Commentary on these results is presented in
Section 3 of the main text.
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Figure S-1.1: Simulated data. The figure shows weekly counts of tests, cases (positive tests),
reported deaths due to COVID-19, as well testing positivity.
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Table S-1.1: Model parameters and their prior distributions.

Parameter Interpretation Prior Prior Median
(95% Interval) Source

S 0 Initial susceptible proportion Logit-Normal(6, 0.25)
0.998

(0.993, 0.999)

Ĩ0 Initial proportion of non-susceptibles who are in-
fectious

Logit-Normal(0.6, 0.0009)
0.646

(0.632, 0.659)

exp
(
R̃0,1

)
Initial basic reproduction number Log-Normal(0, 0.0625)

1.000
(0.613, 1.630)

1/γ Mean latent period (weeks) Log-Normal(-0.25, 0.01)
0.779

(0.640, 0.947) Xin et al. (2021)

1/ν Mean infectious period (weeks) Log-Normal(0.15, 0.01)
1.160

(0.955, 1.410) Byrne et al. (2020)

expit (η̃1) Initial infection fatality ratio Logit-Normal(-5.3, 0.04)
0.00497

(0.00336, 0.00733) Bruckner et al. (2021)

ρD Mean death detection rate Logit-Normal(2.3, 0.04)
0.909

(0.871, 0.937) Bruckner et al. (2021)

φD over-dispersion in observed deaths Negative-
Binomial model

Log-Normal(4.16, 0.293)
63.9

( 22.1, 185.0)

exp (α̃1) Initial proportion in proportional odds test posi-
tivity model

Log-Normal(1.35, 0.0121)
3.86

(3.11, 4.79)

φC over-dispersion in observed cases beta-binomial
model

Log-Normal(6.5, 0.0673)
665

(400, 1110)

σR0 Standard deviation of log-Guassian Markov ran-
dom field for time-varying R0

Log-Normal(-1.9, 0.09)
0.1500

(0.0831, 0.2690)

ση Standard deviation of logit-Guassian Markov
random field for time-varying η

Log-Normal(-2.4, 0.0144)
0.0907

(0.0717, 0.1150)

σα Standard deviation of log-Guassian Markov ran-
dom field for time-varying α

Log-Normal(-2.7, 0.0225)
0.0672

(0.0501, 0.0902)

ρ̃Y
1 Initial case detection rate Logit-Normal(-2.5, 0.01)

0.0759
(0.0632, 0.0908) Bruckner et al. (2021)

φY over-dispersion in observed cases Negative-
Binomial model

Log-Normal(3.93, 0.0684)
51.1

(30.6, 85.3)

σρY Standard deviation of logit-Guassian Markov
random field for time-varying ρY

Log-Normal(-2.2, 0.04)
0.1110

(0.0749, 0.1640)

Table S-1.2: Simulation parameters.

Parameter Interpretation Value
S 0 Initial susceptible proportion 0.9979
Ĩ0 Initial proportion of non-susceptibles who are infectious 0.6455

exp
(
R̃0,1

)
Initial basic reproduction number 1.2602

1/γ Mean latent period (weeks) 0.7697
1/ν Mean infectious period (weeks) 1.1997

expit (η̃1) Initial infection fatality ratio 0.0005
ρD Mean death detection rate 0.9061
φD over-dispersion in observed deaths Negative-Binomial model 87.2776

exp (α̃1) Initial proportion in proportional odds test positivity model 4.3958
φC over-dispersion in observed cases Beta-Binomial model 1,026.6765
σR0 Standard deviation of log-Guassian Markov random field for time-varying R0 0.1481
ση Standard deviation of logit-Guassian Markov random field for time-varying η 0.0944
σα Standard deviation of log-Guassian Markov random field for time-varying α 0.0696
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Figure S-1.2: Prior and posterior credible intervals for scalar parameters for a model fit to the
dataset presented in Figure S-1.1. True values for the simulated parameters are indicated by solid
black lines.
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Figure S-1.3: Prior and posterior 80% credible intervals for time-varying parameters for a model
fit to the dataset presented in Figure S-1.1. True values for the simulated parameters are indicated
by solid black lines.
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Figure S-1.4: Prior and posterior 80% credible intervals for latent compartments for a model fit
to the dataset presented in Figure S-1.1. True values for the simulated compartment sizes are
indicated by solid black lines.
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Figure S-1.5: Coverage properties of 80% posterior credible intervals for scalar parameters from
models fit to 200 simulated datasets. Nominal coverage is indicated by the dashed line.
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Figure S-1.6: Contraction properties of scalar parameters from models fit to 200 simulated datasets.
Contraction is calculated as one minus the ratio of standard deviation of the posterior and the prior.
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Figure S-1.7: Coverage properties of 80% posterior credible intervals for time-varying parameters
from models fit to 200 simulated datasets. Nominal coverage is indicated by the dashed line.
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Figure S-1.8: Contraction properties of time-varying parameters from models fit to 200 simulated
datasets. Contraction is calculated as one minus the ratio of standard deviation of the posterior and
the prior.
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Figure S-1.9: Coverage properties of 80% posterior credible intervals for latent compartments from
models fit to 200 simulated datasets. Nominal coverage is indicated by the dashed line.
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Figure S-1.10: Contraction properties of latent compartments from models fit to 200 simulated
datasets. Contraction is calculated as one minus the ratio of standard deviation of the posterior and
the prior.

S-2 Comparison with epidemia
We used the epidemia R package to infer Rt in the same 200 simulated datasets, as well as the
Orange County data. Statistical details of these methods are presented below. Commentary on
these results is presented in Section 3 of the main text.

The epidemia package can be used to create different branching process inspired models to
estimate the effective reproduction number. In contrast to the compartmental model used in this
paper, branching process inspired models have related the mean of current incidence to a weighted
sum of previous incidence and the effective reproduction number Rt. Let It be the incidence at time
t, Rt be the effective reproduction number at time t, and g(t) be the probability density function of
the generation time distribution (the time between an individual becoming infected and infecting
another individual; under the compartmental model framework this is usually taken to be equivalent
to the sum of the latent period and the infectious period). Then the mean relationship used is:

E[It|I1, . . . , It−1] = Rt

t−1∑
s=1

Isg(t − s).

For the model we used in this study, we then added an observation model for new cases, modeled
the effective reproduction number as a random walk, and modeled unobserved incidence as an
autoregressive normal random variable with variance equal to the mean multiplied by an over-
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dispersion parameter.

τ ∼ exp(λ) Hyperprior for unobserved incidence
Iν ∼ exp(τ) Prior on unobserved incidence ν days before observation

Iν+1, . . . , I0 = Iν Unobserved incidence

σ ∼ Truncated-Normal(0, 0.12)

log R0 ∼ Normal(log 2, 0.22) Prior on R0

log Rt| log Rt−1 ∼ Normal(log Rt−1, σ) Random Walk prior on Rt

ψ ∼ Normal(10, 2) Prior on variance parameter for incidence

It|Iν, . . . , It−1 ∼ Normal(Rt

∑
s<t

Isgt−s, ψ) Model for incidence

α ∼ Normal(0.13, 0.72) Prior on case detection rate

yt = αt

∑
s<t

Isπt−s Mean of observed data model

φ ∼ P(φ) Prior on dispersion parameter for observed data
Yt ∼ Neg-Binom(yt, φ) Observed data model

Here πt are the values of the probability density function for the delay distribution, the time between
an individual being infected and being observed. This distribution is assumed to be a gamma
distribution with shape parameter one and mean equal to the true mean latent period. To sample
from the posterior distribution, epidemia uses Hamiltonian Monte Carlo via the Stan simulation
software (Stan Development Team, 2020). We draw 2000 posterior samples and discard the first
1000 for this analysis.

S-3 Comparison with modeling structured populations
Here, we demonstrate that semi-parametric modeling of key parameters can obviate the need for
modeling heterogeneous populations with separate compartments. We construct a model wherein
a disease spreads among two subpopulations: the “general” population and the “vulnerable” pop-
ulation, which interact with each other. Progression through compartments is governed by the
following system of differential equations, with “g” subscripts denoting the general subpopula-
tion and “v” subscripts denoting the vulnerable subpopulation and parameters having the same
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Figure S-2.11: Properties of Rt estimation from 200 simulated data sets. The envelope is the
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specified in the simulation. Mean credible interval width (MCIW) is the mean of credible interval
widths across time points within a simulation replication. Absolute deviation is calculated as the
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interpretations as in the main text. The differential equations used for this model presented in (1).

dS v

dt
= −

(
βvvIv + βvgIg

) S v

N
dEv

dt
=

(
βvvIv + βvgIg

) S v

N
− γEv

dIv

dt
= γEv − νIv

dRv

dt
= ν(1 − ηv)Iv

dDv

dt
= νηvIv

dS g

dt
= −

(
βggIg + βgvIv

) S g

N
dEg

dt
=

(
βggIg + βgvIv

) S g

N
− γEg

dIg

dt
= γEg − νIg

dRg

dt
= ν(1 − ηg)Ig

dDg

dt
= νηgIg

(1)

subject to initial conditions X(t0) = x0 and N(t0) = 0, where x0 = (S v0, Ev0, Iv0,Rv0,Dv0,
S g0, Eg0, Ig0,Rg0,Dg0) are initial compartment counts.

We only observed the unstratified case and death counts. Observed cases and deaths are Poisson
distributed with the rate parameter equal to the number of latent cases and deaths, respectively.

Yl ∼ Poisson(∆NEvIv(tl) + ∆NEgIg(tl))

Ml ∼ Poisson(∆NIvDv(tl) + ∆NIgDg(tl))

We construct a scenario where a disease outbreak occurs in a small vulnerable population with
a true infection-fatality ratio of 10% before spreading to a larger general population with a true
infection-fatality ratio of 1%. Because the outbreak spreads through the different populations at
different times, the true population infection-fatality ratio varies in time. Figure S-3.12 shows the
latent new cases and new deaths for each subpopulation, as well as the combined latent new cases
and new deaths, and the observed new cases and new deaths for this constructed scenario.

Now, we fit a semi-parametric model, similar to the one in the main text, to this data. We model
η(t) with a logit-Guassian Markov random field, as in the main text. The differential equations used
for this model presented in (2).

dS
dt

= −βI
S
N

dE
dt

= βI
S
N
− γE

dI
dt

= γE − νI

dR
dt

= ν(1 − η(t))I

dD
dt

= νη(t)I

(2)

subject to initial conditions X(t0) = x0 and N(t0) = 0, where x0 = (S 0, E0, I0,R0,D0) are initial
compartment counts.

Figures S-3.13–S-3.16, demonstrate, that when we fit our semi-parametric model, we can gen-
erally fit the data well and recover the true values of the parameters without modeling the two
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a simulated scenario.
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Table S-4.3: Model parameters and their prior distributions.

Analysis Parameter Original Prior
Original Prior

Median
(95% Interval)

Sensitivity Prior
Sensitivity Prior

Median
(95% Interval)

Half S 0 S 0 Logit-Normal(6, 0.25)
0.998

(0.993, 0.999) Logit-Normal(5.31, 0.25)
0.995

(0.987, 0.998)

Half exp
(
R̃0,1

)
exp

(
R̃0,1

)
Log-Normal(0, 0.0625)

1.000
(0.613, 1.630) Log-Normal(-0.693, 0.0625)

0.500
(0.306, 0.816)

Double expit (η̃1) expit (η̃1) Logit-Normal(-5.3, 0.04)
0.00497

(0.00336, 0.00733) Logit-Normal(-4.61, 0.04)
0.00988

(0.00670, 0.01460)

Half exp (α̃1) Half exp (α̃1) Log-Normal(1.35, 0.0121)
3.86

(3.11, 4.79) Log-Normal(0.657, 0.0121)
1.93

(1.55, 2.39)

heterogeneous populations.

S-4 Sensitivity analysis
We conducted four sensitivity analyses to see how our results change depending on the specified
priors. In each additional analysis, we change only one aspect of the model priors. We per-
form one analysis where, a priori, twice the number of people are initially infected (denoted Half
S 0), one with a lower initial basic reproduction number prior (denoted Half exp

(
R̃0,1

)
, one with a

higher initial infection fatality ratio prior (denoted Double expit (η̃1), and one with a lower initial α
prior (denoted Half exp (α̃1). Precise descriptions of the priors used in the sensitivity analyses are
presented in Table S-4.3. Graphical results of the sensitivity analyses are presented in Figures S-4-
.17–S-4.19. We find that our model is typically robust to these alternative priors, and no alternative
model leads to substantively different conclusions.

Additionally, we perform analyses where we modify the main model to, one at a time, fix each
of the time-varying parameters, R0, α, and η. As demonstrated in Figure S-4.20, fixing these pa-
rameters has no negative impact on the model’s ability to properly fit the test positivity and death
data, with each of the models exhibiting nearly identical posterior predictive distributions. How-
ever, these modified models do lead to substantially different inferences about the time-varying
parameters themselves. This is shown in Figure S-4.21, where it appears that when one parameter
is fixed, the others can become more flexible to still precisely match the observed data. The most
dramatic effect is seen when fixing R0, which leads to drastically different inferences about η and
α. In contrast, there appears to be little impact from fixing the infection-fatality ratio, η as constant
through time.

S-5 MCMC Diagnostics
Convergence diagnostics are presented in Tables S-5.4 and S-5.5, where R̂ is the potential scale
reduction factor (Vehtari et al., 2021), and ESS is the effective sample size, both as computed
in the posterior R package (Bürkner et al., 2022). All parameters show potential scale reduction
factors between 1 and 1.02, providing no evidence of lack of convergence. Additionally, all model
parameters have effective sample sizes of multiple hundreds, which is sufficient for our inferences.
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parameters are indicated by the dashed line.

R0 β

7 ν 7 γ

1.4 1.6 1.8 2.0 4 5

2.5 3.0 3.5 4.0 4 5 6 7 8

Posterior

Prior

Posterior

Prior

Value

D
is

tr
ib

ut
io

n

Structured Population Modeled as Unstructured Population,
50%, 80%, 95% credible intervals, true values in black

Prior and Posterior Credible Intervals for Scalar Parameters
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Figure S-4.17: Prior and posterior 80% credible intervals for scalar parameters from four sensitivity
analyses and the original analysis.
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Figure S-4.18: Prior and posterior 80% credible intervals for time-varying parameters from four
sensitivity analyses and the original analysis.
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Figure S-4.19: Prior and posterior 80% credible intervals for time-varying parameters from four
sensitivity analyses and the original analysis.
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Figure S-4.20: Posterior predictive distributions when one of the typically time-varying parameters
is made to be fixed through time.
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Figure S-4.21: Posterior inference for time-varying parameters when one of the typically time-
varying parameters is made to be fixed through time.

We also produce a trace plot of the log-posterior probability for each chain in Figure S-5.22,
which indicates that each chain explores a region of similar probability.
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Table S-5.4: Convergence diagnostics for scalar parameters for the main model fit to the Orange
County data set.

Parameter R̂ ESS

S 0 1.00 992.14
Ĩ0 1.01 1128.48
1/γ 1.01 712.86
1/ν 1.02 907.22
φD 1.00 876.28

ρD 1.00 812.16
φC 1.00 841.67
σR0 1.00 544.21
ση 1.00 788.91
σα 1.01 567.30

Table S-5.5: Convergence diagnostics for scalar parameters for the main model fit to the Orange
County data set.

Parameter Min. R̂ Avg. R̂ Max. R̂ Min. ESS Avg. ESS Max. ESS

exp (α̃t) 1 1 1.01 630.78 827.20 1088.73
exp

(
R̃t,t

)
1 1 1.02 693.98 977.45 1368.80

expit (η̃t) 1 1 1.02 563.38 793.53 1259.37
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Figure S-5.22: Trace plot of log-posterior probability for the main model fit.
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