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A Proof of Proposition 1

Let Y = (Y1,...,Y,) and t = (t1,...,t,) be the vectors of observed outcomes and associated
sampling times. From the data generating model we observe that the marginal distribution of the
vector of observed outcomes Y | t, © is

P(Y [£,0) = [ P(Y| £(t),t.©)dP(f(¢) | £,©)

— N(up(t), Colt, t) + 0°1)

where pg(t) = (ug(t1), ... pa(tn)), Co(t,t) is the n x n covariance matrix obtained by evaluating
Co(s,t) at {(s,t) € t x t} and [ is an n x n identity matrix. This implies that the joint distribution
of Y and the latent functions (f, df, d*f) evaluated at an arbitrary vector of time points t* is

F(t%) 1p(t%) Co(t*,t%)  0aCo(t*,t*)  02Cy(t*,t*) Co(t*,t)

df (t*) 6,0~ N dug(t*) | |01Ce(t*,t*) 9102Ce(t*,t*) 0103Ce(t*,t*)  91Cp(t*,t)

)| d?ug(t*)| " |03Ce(t*,t*) 0202Ce(t*,t*) 07103Cq(t*,t*)  02Cy(t*,t)
Y pp(t) Co(t, t*) 02Cp(t,t%) 02Cy(t,t*)  Cy(t,t) + oI

where 8;-“ denotes the k’th order partial derivative with respect to the j’th variable.

By the standard formula for deriving conditional distributions in a multivariate normal model, the
posterior distribution of (£, df,d?f) evaluated at the p time points in t* is

f(t)
af(t*) | 1Y, t,0 ~ N (i, )
d2f (t°)
where pu € R? is the column vector of posterior expectations and 3 € R3P*3P is the joint posterior
covariance matrix, and these are given by

[ up(t") Co(t",t)

p=|dug(t?) | + [01Ce(t*,t) | Kox(t,t) " (Y — pa(t))
| dPpp(t¥) 02Cy(t*,t)

[ Co(t*,t*)  Cy(t*,t*)  D2CsH(t*,t*) Co(t*,t) Co(t,t*)
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where Kg ,(t,t) = Cp(t,t) + 0?I. Partitioning p and ¥ as

pr(t™ 1 ©) Tttt | ©)  Npg(tt,tT[©)  Xppp(th, 7| ©)
p= gt [©) |, Z= Bt t[0) gt t|©) By ettt |O)
pazs (87 | ©) Tap (65,87 [ ©) Dgop (7,67 [©)  Tgep(t™,t" | ©)

and completing the matrix algebra, we obtain the expressions of the individual components given in
the Proposition.

B Proof of Proposition 3

Rice showed in section 3.3. of Rice (1945) that the expected number of zero-crossings of a Gaussian
process X on an interval Z is given by

/I/_ ”U’fX(t),dX(t) (0,v)dvdt O

where fx(1).ax(t) is the joint density function of X and its derivative dX at time ¢. To derive the
expression for the Expected Trend Instability we must apply the Rice formula to the joint posterior
distribution of (df, d*f). From Proposition 1 the distribution of (df,d?f) | Y,t, ® is bivariate normal
for each t.

Let pqf, pazp, Yar and Yg2p be defined as in Proposition 1 and define further

Wt | ©) = Sap.a2f(t, 1| ©)
Sap(t,t | ©)1/28 2 (8,1 | ©)1/2

as the posterior point-wise cross-correlation function between df and d?f. The joint posterior density
function of (df, d*f) at any time ¢ evaluated at (0,v) can be factorized as

T2 0(0,0) = &1 (£)e2(Meealtv?~2ea(t)e

where c1, ..., cq4 are functions of time given by
ci(t) = (2m) " Sgp(t, 1| ©) 28y (t, | ©) 721 —w(t | ©)%) 717
t]©)> 24 (t | ©)2
es(t) par(t | ©) paz (t | ©)
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Let dETI(t | ®) denote the inner integral in Equation (1). Using the factorization of the joint
posterior density we may write it was

AETIE | ©) = [~ [ol o (0 )

= (t)eCQ(t) / ’U|€fC3(t)U272c4(t)vd,U (2)

[e.9]

=C (t)eCQ(t) (/OO 1)6703(t)v2+2c4(t)vdv + /OO veCs(t)v2264(t)vdv>
0 0

Cq4 (t) =




Because c3(t) > 0 for all t since Yg2¢(t,t | @) > 0 and |w(t | ©)] < 1 by Assumption A4 we obtain
the following solution for the type of integral in the previous display by using formula 5 in section
3.462 on page 365 of Gradshteyn and Ryzhik (2014)

) 1/2 ca(t)? (t)
—es(tr2eatyog, - L calt) 7 e 1+ Frf [ - 3
fy v U 2a® M a0 "\ Vaw &

where Erf: z — 2771 [ e~ du is the error function. Combining Equations (2) and (3) we may
express dETI as

— o1 (t)ec2® 1 ca(t) '/ e?;itf T <C4(t) ))
dETIE] ©) = e(f) (cg(t)+03(t) TR W/ O

Defining ¢(t | ©) = v/2¢4(t)e3(t)~1/2 and collecting some terms, the index can be rewritten as

1/2 c (t)2
dETI(¢ | ©) = D <ecz<t> LT e O ) B (C(t | 9))>

03(75) 21/2 21/2
Straightforward arithmetic calculations show that
ca(t)? par(t | ©) 1 2, Mar(t]©)?
)= I = =—=(Ct]|O©)?+ 4=
w) M= T me ey U= (IO S G Te)

and by defining ¢: x — (27r)*1/ 2¢=2" a5 the density function of the standard normal distribution
ca(®)?

we may write e () tealt) (2m)1/2¢ <%> and e2(®) = 27¢(((t))¢ (2;?{,55%@))1/2) which

leads to
_al) par(t | ©) ((t] ©)
T O) =™ <2df(t,t | @)1/2> (20tcte1 @)+l @)mrt (V57 )
Standard arithmetics show that
Cl(t) . lchf(t,t ’ @)1/2 B 9 1/2
c3(t)  w Syt t| ©)1/2 <1 w(t]®) )

and we finally obtain the expression

JETI(t | ©) = A(t | ©)¢ (%) (20t @)+ <(t] @) Bat (C(;'/z@))
where A and ¢ are given by

Saep(t,t | ©)1/2 o\ 1/2
At18) = T ey (1-wit] ©)F)
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Sazp(t,t ] ©)V2 (1 —wi(t| @)2)1/2

By definition
ETI(Z | ©) = / dETI(t | ©)dt
A

which completes the proof.



C Zero-crossings of f and df in the zero-mean stationary case

Let f ~ GP(0,Cq(+,-)) where the Cy is either the Squared Exponential or Rational Quadratic
covariance function. We look at the expected number of zero-crossings on an interval by either f
and df as given by the Rice formula in Equation (1) with either X (¢) = f(¢t) or X (¢) = df(¢). In
this case the expressions simplifies immensely due to the zero means of both f, df, and d?f and
because Cov|[f(t),df (t)] = 0 and Covldf(t), d*f(t)] = 0. The latter is a result of using a stationary
covariance function for the prior distribution of f (Cramer and Leadbetter 1967). In this stationary
case local expected number of zero-crossing of f and df are given by

1/2 9 A2 1/2
0102C(s,)| | o]
5=t an 5=
1/2 1/2
mCo(t,1) 7010:Co(5,1)
s=t
respectively. It then follows that
o2 302
Co"(tt) = 0%, NG5 (s,t)| = 7 005Cs"(s,t)| = o
o? 202(1 + v
Cooltt) =% DuCysit)| _ =50 ORORCH )| _ = (p)

and the local expected number of zero-crossings of f and df for either the Squared Exponential and
the Rational Quadratic covariance functions are

1/2 1/2

NDCEE(s,1)| S a%a%CEE(s,t)L:t 31/2

OGO s s |
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Figure 2: Trace plots of the last 5,000 MCMC iterations for the hyper-parameters in the smoking
application.
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Figure 3: Trend analysis of smoking data with logit transformed outcome.
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