Science Advances

Supplementary Materials for

Solanoeclepin B, a hatching factor for potato cyst nematode

Kosuke Shimizu et al.

Corresponding author: Masaharu Mizutani, mizutani@gold.kobe-u.ac.jp

Sci. Adv. **9**, eadf4166 (2023) DOI: 10.1126/sciadv.adf4166

This PDF file includes:

Figs. S1 to S27 Tables S1 to S8

C₂₇H₃₂O₉ (determined by HRMS)

Fig. S1. Purification scheme of HF. (A) Hatching assay-guided purification and (B) UPLC-MS/MS detection-based purification.

Fig. S2. The concentration of HFs from potato hydroponic culture solution. (A) Schematic concentration process using Sepabeads SP207 resin. (B) HS activity of the methanol eluents from Sepabeads SP207 resin. The hatching assay was conducted with *Globodera rostochiensis* eggs. The assay results at two different dilution rates are shown. The values indicate the means of two biological replicates; white dots are individual measurements.

Fig. S3. Liquid-phase extraction of HFs. (A) Schematic of liquid-phase extraction process. (B) HS activity of *n*-hexane, ethyl acetate, and aqueous phase. Hatching assay was conducted with *Globodera rostochiensis* eggs. The assay results at two different dilution rates are shown. The values indicate the means of two biological replicates; white dots are individual measurements.

Fig. S4. The separation of HFs using ODS column chromatography. (A) Schematic of ODS column chromatography process. (B) HS activity of each separated fraction. Hatching assay was conducted with *Globodera rostochiensis* eggs. The assay results at two different dilution rates are shown. The values indicate the means of two biological replicates; white dots are individual measurements.

Fig. S5. The separation of HFs using strong cation exchange (SCX) column chromatography. (A) Schematic of SCX column chromatography process. (B) HS activity of each separated fraction. The hatching assay was conducted with *Globodera rostochiensis* eggs. The assay results at two different dilution rates are shown. The values indicate the means of two biological replicates; white dots are individual measurements.

Fig. S6. The separation of HFs using size exclusion column chromatography. HS activity of each separated fraction. The hatching assay was conducted with *Globodera rostochiensis* eggs. The assay results at two different dilution rates are shown. The values indicate the means of two biological replicates; white dots are individual measurements.

Fig. S7. The separation of HFs using strong anion exchange (SAX) column chromatography. (A) Schematic of SAX column chromatography process. (B,C) HS activity of each separated fraction derived from Frs-fast (B) and Frs-late (C). Hatching assay was conducted with *Globodera rostochiensis* eggs. The assay results at two different dilution rates are shown. The values indicate the means of two biological replicates; white dots are individual measurements.

Fig. S8. The separation of HFs in Fr-B using preparative NP-HPLC. (A) A chromatogram of UV absorbance at 270 nm. (B, C) HS activity of fractions collected at different retention times. The hatching assay was conducted with *Globodera rostochiensis* eggs. The hatching rates (%) are shown for two dilutions. Fractions were grouped and tested at first (B) and then each fraction around the Rt of 35–37.5 min was tested independently for HS activity (C). The assay results at two different dilution rates are shown. The values indicate the means of two biological replicates; white dots are individual measurements.

Fig. S9. Separation of HFs in Fr-A is shown in Fig. 1B using preparative NP-HPLC. (A) A chromatogram of UV absorbance at 270 nm is shown. (B, C) HS activity of fractions collected during each retention time. The hatching assay was conducted with *Globodera rostochiensis* eggs. The hatching rates (%) are shown for two dilution series. First, fractions were grouped and tested (B) and then each fraction in the group of 36.5–41 min was observed for HS activity and tested independently (C). The assay results at two different dilution rates are presented. The values represent the means of two biological replicates, and white dots are individual measurements.

Fig. S10. UPLC analysis of Fr-A1. (A) Chromatograms of UV absorbance at 270 nm are shown. (B, C) Chromatograms obtained by positive (B) and negative (C) ESI mass spectrometry scan mode with the range of m/z 100–1100. (D, E) Positive and negative ESI mass spectra obtained at compound 1 (Rt 8.2 min) (D) and compound 2 (Rt 8.5 min) (E).

Fig. S11. Method for detecting SEB using LC-MS/MS analysis. (A) Product ion spectra at 10, 30, and 50 eV are shown. (B) MRM chromatograms of Fr-A1. The MRM transition of m/z 501 > 429 was selected.

¹H NMR

110 100

90 80 70 60 50 40 30 20

120

10

0 ppm

Fig. S12.

220 210 200

190 180 170

160 150 140 130

Fig. S12. (Continued)

Fig. S12. (Continued) NMR spectra of solanoeclepin B (SEB)

Fig. S13. Observed COSY (blue bold bond) and HMBC (red arrow) for SEB.

compound a (+)-(*1R,2S,4R,5S*)-1-(tert-Butyldimethylsilyloxymethyl)-5-hydroxy-3,3-dimethyl-7oxabicyclo[2.2.1]heptane-2-carboxylicacid ethyl ester

Fig. S14. ¹H chemical shifts and coupling constants of structurally related compounds.

Fig. S15. MRM-LC-MS/MS analysis of the extract of tomato hairy roots. The extract was prepared with 100 mg and 1 g of FW tomato hairy roots, respectively. Fresh tomato hairy roots (100 mg or 1 g) were extracted and purified with Oasis[®] MAX.

Fig. S16. HS activity of extracts of various parts of the tomato. The hatching assay was conducted with *Globodera rostochiensis* eggs. The assay results at two different dilution rates are shown. The values indicate the means of five biological replicates; white dots are individual measurements.

Fig. S17. Gene structures and target sites for CRISPR/Cas9-mediated genome editing. Each target region is shown by red letters.

SOLA1-ko_#4				
guide 1	1 <u>37</u> bp	guide 2		guide 3
5 - GAACCAGGTACAAATTCATGGTCCAAAGCAAGTAAA	GAAGCTG//AAACCT	TTTGTATGGTTATGTTGG	CCAAATCCCATTTATTCCTCTTTA	TGAGAGTATGGGCATTGA-3 WT
5`(70 bp)	CTG//AAACCI	TTTGTTATGTTGG	CCAAATCCCATTTATTCCTCTTTA	TGAGAG-ATGGGCATTGA-3 -76 (6/8)
5 -GAACCAGGT	(22	25 bp)		ATGGGCATTGA-3 -225 (2/8)
SOLA1-ko #5				
guide 1	151 bp	guide 2	guide	e 3
5 - GAGAATTTGGAACCAGGT-ACAAATTCATGGTCCAA	AGC//AACCTTTGTA	TGGTTATGTTGGCCAAA	FCCCATTTATTCCTCTTTATGAGA	GTATGGGCATTGA -3 WT
5 - GAGAATTTGGAACCAGGTAACAAATTCATGGTCCAA	AGC//AAACCTTTG-			tgggcattga -3` -45,+1 (8/8)
SOLA2-ko_#6				
guide 1 55 bp	guide 2		guide 3	
5 - AAAGAACTATAGAGATATACTATGGG//AGGCCAGG	CACAACTACTTGGG	AATCTACCTGTAAAGAAA	TTAGACATGCCTTTGAAAACCAT	GTTG-3 WT
5 - AAAGAACTATAGAGATATA-TATGGG//AGGCCAGG	CAC	(49 bp)	CATG	GTTG-3 -49 (6/8)
5 - AAAGAACTATAGAGATATAC	(125	p)(qd	CATG	GTTG-3 -125 (2/8)
SOLA2-ko #9				
guide 1	guide 2		guide 3	
5 - AAAGAACTATAGAGATATACTATGGG//AGGCCAGG	CA-CAACTACTTGG	GAATC TACCTGTAAAGAA	ATTAGACATGCCTTTGAAAACC	CATGGTTG -3 WT
5 - AAAGAACTATAGAGATATAC		(120 bp)		$2 \times 7 \times $
5'-AAAGAACTATAGAGATATGGG//AGGCCAGG	CA-CAACTACTTGG	GAATCTACCTGTAAAGAA GAATCTACCTGTAAAGAA	ATTAGACATGCCTTTGAAAAAAACC	$2 \times 10 \times 10^{-10}$ $-7, +2 (1/8)$
5'-AAAGAACTATAGAGATATGGG//AGGCCAGG	CA-CAACTACTTGG	GAATCTACCTGTAAAGAA	ATTAGACATGCCTTTGAAACC	CATGGTTG -3` -6 (2/8)
5'-AAAGAACTATAGAGATATGGG//AGGCCAGG	CAACAACTACTTGG	GAATCTACCTGTAAAGAA	ATTAGACATGCCTTTGAAAAAAACC	CATGGTTG -3` -5,+1 (1/8)
<i>SOLA3</i> -ko_#30				
guide 1	guide 2		auide 3	
5'- CAACCTCATGGTTATCGACGTCTCGAGAAATCCGAT	CGCGTTGGAAGAGT	ACGGTTGCTTTGCCCCC	TGTACAAGAAAGTCATGCCGGAG	:-3`WT
5'-CAACCTCATG			TGCCGGAG	c -3` -74 (8/8)

Fig. S18. Genotyping of sequences surrounding the target sites for CRISPR/Cas9-mediated gene disruption. WT; wild-type sequence. gRNA target sequences are indicated in red letters. The number of deleted and inserted and sequence frequencies in the cloned PCR products are indicated to the right of the sequence.

Fig. S19. Analysis of candidate *DOX* gene-disrupted tomato hairy roots. (A) UPLC-MS/MS chromatograms of partially purified culture medium of vector control or candidate genedisrupted tomato hairy roots. (B) The hatching rate of *Globodera rostochiensis* eggs treated with partially purified culture medium of vector control (VC) or candidate gene-disrupted tomato hairy roots. The sample solutions were prepared at the same concentration as the original hairy root culture medium. The assay results at two different dilution rates are shown. Bars indicate the mean hatching rate induced by samples derived from each tomato hairy root lines. Error bars show the standard error (n = 3); white dots are individual measurements.

Fig. S20. SEB production and growth rate of *SOLA1–3*-knockout tomato hairy roots. (A) After 2 weeks of cultivation, the culture medium was collected and subjected to UPLC-MS/MS. Chromatograms were recorded in the MRM mode at m/z 501 > 429. Data are presented as the mean \pm SE (n = 3 biologically independent flasks). (B) The fresh weight of hairy roots after 2 weeks of culture.

Fig. S21. Analysis of transcription levels of candidate genes analyzed by real-time quantitative RT-PCR in hairy roots treated with each phytohormone. Error bars represent means \pm SE (n = 3 biologically independent flasks).

SOLA4/CYP749A20_Solyc05g011970

Fig. S22. Gene structures and target sites for CRISPR/Cas9-mediated genome editing. Each target region is shown by red letters.

Fig. S23. Genotyping of sequences surrounding the target sites for CRISPR/Cas9-mediated gene disruption. WT; wild-type sequence. gRNA target sequences are indicated by red letters. The number of deleted and inserted and sequence frequencies in the cloned PCR products are indicated to the right of the sequence.

Fig. S24. Analysis of candidate *CYP* gene-disrupted tomato hairy roots. (A) MRM-LC-MS/MS chromatograms of partially purified culture medium of vector control or candidate genedisrupted tomato hairy roots. (B) The hatching rate of *Globodera rostochiensis* eggs treated with partially purified culture medium of vector control (VC) or candidate gene-disrupted tomato hairy roots. Bars indicate the mean hatching rate induced by samples derived from each tomato hairy root line. Error bars indicate the standard error (n = 3); white dots are individual measurements. The sample solutions were prepared at the same concentration as the original hairy root culture medium. The numbers at the bottom of the graph indicate the dilution rate.

Fig. S25. SEB production and growth rate of *SOLA4*- and *SOLA3*-knockout tomato hairy roots. (A) After 2 weeks of cultivation, the culture medium was collected and subjected to UPLC-MS/MS. Chromatograms were recorded in the MRM mode at m/z 501 > 429. Data are presented as the mean \pm SE (n = 3 biologically independent flasks). (B) The fresh weight of hairy roots after 2 weeks of culture. Data are presented as the mean \pm SE (n = 3 biologically independent flasks). (B) The fresh weight of hairy roots after 2 weeks of culture. Data are presented as the mean \pm SE (n = 3 biologically independent flasks).

Fig. S26. Putative biosynthetic pathway of SEB and putative intermediates.

Fig. S27. Phylogenetic tree of the *DOXC20* clade genes. The amino acid sequences of the *DOXC20* genes were obtained from *Solanum lycopersicum* (Solyc_), *S. tuberosum* (Soltu.DM._), *Glycine max* (Glyma_), *Phaseolus vulgaris* (Phvul._), *Arabidopsis thaliana* (At_). The amino acid sequences of two *DOXC41* genes, *Sl16DOX* and *St16DOX*, were used for the outgroups. A phylogenetic tree was generated using the maximum-likelihood method in MEGA X. Bootstrap values based on 1000 replicates are shown at the branching points

<i>m/z</i> (measured)	Estimated ion formula	<i>m/z</i> (calculated)	Error (ppm)	lon type
	C ₂₇ H ₃₃ O ₉	501.2119	0.3	[M+H]+
501.2118	$C_{28}H_{29}N_4O_5$	501.2132	2.9	-
	$C_{24}H_{25}N_{10}O_{3}$	501.2106	-2.4	-
	$C_{27}H_{32}NaO_9$	523.1939	-0.2	[M+Na]+
523.1940	$C_{28}H_{29}N_4O_5$	523.1952	2.3	-
	$C_{24}H_{25}N_{10}NaO_3$	523.1925	-2.8	-
539.1681	C ₂₇ H ₃₂ KO ₉	539.1678	-0.5	[M+K]+

Table S1. Ion formulas of HF-500 estimated by positive mode ESI-HRMS analysis.

Table S2. Ion formulas of HF-500 estimated by negative mode ESI-HRMS analysis.

<i>m/z</i> (measured)	Estimated ion formula	<i>m/z</i> (calculated)	Error (ppm)	lon type
400 1060	C ₂₇ H ₃₁ O ₉	499.1974	0.9	[M-H]-
499.1909	$C_{28}H_{28}N_4O_5$	499.1987	3.6	-
545.2031	$C_{28}H_{33}O_{11}$	545.2028	-0.6	[M-H+HCOOH]-
559.2160	C ₂₉ H ₃₅ O ₁₁	559.2185	4.4	[M-H+CH₃COOH]-

nosition	solanoec	lepin B			solanoeclepin A					
position	δc	δн	multiplicity	coupling constant	δн	multiplicity	coupling constant			
1	41.85	1.63	1H ^a		2.46	1H, d	<i>J</i> = 17.2 Hz			
		2.41	1H, dd	<i>J</i> = 12.3, 10.5 Hz	2.55	1H, d	<i>J</i> = 17.2 Hz			
2	74.85	4.53	1H, ddd	<i>J</i> = 14.6, 4.3, 4.3 Hz						
3	87.62	4.00	1H, d	<i>J</i> = 4.8 Hz	4.01	1H, s				
4	52.38									
5	154.68									
6	146.81									
7	_c									
8	150.55									
9	132.68									
10	93.48									
11	32.21	2.56	1H, dd	<i>J</i> = 20.0, 5.4 Hz	2.42	1H, dd	<i>J</i> = 19.8, 5.0 Hz			
		2.67	1H, ddd	<i>J</i> = 20.1, 11,6, 5.7 Hz	2.53	1H, ddd	<i>J</i> = 19.8, 6.0, 5.8 Hz			
12	33.65	1.47	1H, ddd	<i>J</i> = 12.9, 12.9, 5.8 Hz	1.71–1.	67 1H, m				
		2.02	1H, dd	<i>J</i> = 14.0, 5.5 Hz	1.89	1H, dd	<i>J</i> = 14.3, 4.6 Hz			
13	39.9									
14	_c									
15	66.88	4.43	1H, dd	<i>J</i> = 7.8, 3.0 Hz	4.27	1H, dd	<i>J</i> = 7.4, 3.0 Hz			
16	39.76	2.13	1H, dd	<i>J</i> = 12.6, 3.0 Hz	1.97	1H, dd	<i>J</i> = 12.6, 3.0 Hz			
		2.27	1H, dd	<i>J</i> = 12.4, 7.6 Hz	2.1	1H, dd	<i>J</i> = 12.6, 7.4 Hz			
17	_c									
18	15.08	1.30	3H, s		1.14 ^b	3H, s				
19	75.6	4.29	1H, s		4.38	1H, s				
20	_c									
21	17.99	1.32	1H, m		1.42-1.3	31 1Hª				
22	11.99	0.95-0	.912H, m		1.03–0.	96 2H, m				
23	21.4	1.63	1H ^a		1.42-1.3	31 1Hª				
24	_c									
25, 26	28.31	1.35	3H, s		1.15 ^b	3H, s				
	24.17	1.57	3H, s		1.28	3H, s				
27	62.54	3.59	3H, s		3.42	3H, s				

Table S3. Assignments of ¹³C and ¹H chemical shifts of SEB and synthetic SEA.

a: overlapping

b: unable to distinguish

c: could not detect

Table S4. HS activities of SEA and SEB for *Globodera rostochiensis* eggs.

	-	I0 ng/m	nl		1 ng/ml		1	100 pg/ml		10 pg/ml		1 pg/ml		100 fg/ml		าไ		
	rep1	rep2	mean	rep1	rep2	mean	rep1	rep2	mean	rep1	rep2	mean	rep1	rep2	mean	rep1	rep2	mean
SEB	61.6	62.5	62.0	73.9	76.7	75.3	79.3	81.1	80.2	62.1	66.9	64.5	29.1	27.5	28.3	14.1	10.4	12.3
SEA	87.1	84.0	85.5	87.3	90.1	88.7	88.1	89.9	89.0	82.8	83.1	83.0	59.6	48.8	54.2	24.6	25.1	24.8

Table S5. HS activities of SEA and SEB for *Globodera pallida* eggs.

		10 ng/m	ıl		1 ng/ml			100 pg/ml		10 pg/ml		1 pg/ml		100 fg/ml				
	rep1	rep2	mean	rep1	rep2	mean	rep1	rep2	mean	rep1	rep2	mean	rep1	rep2	mean	rep1	rep2	mean
SEB	87.7	88.7	88.2	84.3	89.8	87.1	67.7	67.7	67.7	22.1	27.0	24.6	1.3	1.3	1.3	0.3	0.0	0.1
SEA	66.5	53.8	60.1	62.1	60.3	61.2	65.9	56.0	61.0	39.2	35.3	37.3	8.4	11.2	9.8	1.1	1.0	1.1

Gene ID	DOX	Gene name	Bud	Flower	Leaf	Root	Fruits stage				
	clade						1cm	2cm	3cm	Mature green	
Solyc01g108860	DOXC21		0	0	0	1345	0	0	0	1	
Solyc01g090610	DOXC20		0	0	0	648	0	0	0	0	
Solyc06g066830	DOXC20		0	0	0	282	0	0	0	0	
Solyc12g042980	DOXC20	SOLA3	0	0	0	180	0	0	0	0	
Solyc06g067860	DOXC20	SOLA2	0	0	0	152	0	0	0	0	
Solyc11g072200	DOXC41		0	0	0	139	0	0	0	0	
Solyc06g067870	DOXC20	SOLA1	0	0	2	128	0	0	0	0	
Solyc01g090630	DOXC20		0	0	0	94	0	0	0	0	
Solyc02g071470	DOXC52		0	0	2	87	0	1	1	8	
Solyc09g089830	DOXC22		0	0	0	83	0	0	0	0	
Solyc06g083910	DOXC38		1	0	0	75	0	0	0	0	
Solyc02g070080	DOXC38		0	0	0	67	0	0	0	0	
Solyc09g089680	DOXC31		1	3	1	43	0	0	0	2	
Solyc11g010400	DOXC38		0	0	0	41	0	0	0	0	
Solyc03g116260	DOXC22		0	1	1	38	0	0	0	0	
Solyc01g067620	DOXC54		3	15	0	36	0	1	1	0	
Solyc06g073580	DOXC38		2	0	0	26	0	0	0	0	
Solyc06g069900	DOXC22		0	0	0	20	0	0	0	0	
Solyc01g006580	DOXC20		0	0	0	19	0	0	0	0	
Solyc09g089790	DOXC31		0	1	0	18	0	0	0	0	
Solyc06g060070	DOXC53		5	1	0	17	0	0	0	0	
Solyc03g120970	DOXC3		2	1	2	14	2	1	1	1	
Solyc02g071440	DOXC52		4	2	0	12	0	1	0	0	
Solyc02g071410	DOXC52		1	1	0	12	0	0	1	1	
Solyc02g071490	DOXC52		2	1	0	11	1	2	2	2	
Solyc09g089780	DOXC31		0	0	0	8	0	0	0	0	
Solyc09g089810	DOXC31		0	0	0	7	0	0	0	0	
Solyc07g045040	DOXC55		0	0	0	6	0	0	0	0	
Solyc03g025490	DOXC17		0	0	0	5	0	0	0	0	
Solyc09g089800	DOXC31		0	0	0	5	0	0	0	0	
Solyc07g054870	DOXC37		0	0	1	5	0	0	0	0	

Table S6. List of tomato *DOX* genes specifically expressed in roots.

Gene ID	CYP	bud	flower	leaf	root	1cm fruit	2cm fruit	3cm fruit	Mature green fruit	Breaker	Breaker 10 d
Solyc05g011970	CYP749A20	8	7	2	409	2	2	2	2	2	26
Solyc05g011940	CYP749A19	0	0	0	79	0	0	0	0	0	0
Solyc05g021390	CYP716A44	3	0	0	71	0	0	0	0	0	0
Solyc12g042480	CYP736A74	4	8	3	57	3	4	5	15	6	3
Solyc10g007960	CYP74C3	0	0	0	52	1	0	0	0	0	0
Solycu2g084930	CYP722C1		1	5	52	0	0	0	0	0	0
Solyc06g065430	CYP/16A43	1	0	0	47	0	0	0	0	0	0
Solyc01g109140	CYP74D1	0	0	0	47	0	0	0	13	0	0
Solyco3g047660	CYD714417	0	7	0	45	11		0	0	0	0
Solycosy095510	CVD70740	1	1	4	40		0	/	4	1	1
Solycoby075520	CVD704100	0	1	0	40	0	0	0	0	3	2
Solyc07g055550 Solyc02a082070	CVP71811	0	1	0	34 28	0	0	0	0	0	0
Solvc04g079660	CVP82D38	1	2	5	20	1	0	1	0	2	2
Solyc04g079000	CVP716C6	4	2	5	27	0	0	0	2	2	2
Solvc12a006860	CYP73448	2	7	2	26	1	1	1	0	0	0
Solvc04a078270	CYP81B40	0	, 1	0	26	ò	0	0	Ő	0	0
Solvc10a039210	CYP82M2	0	0	0	24	0	Ő	0	ů 0	0	0
Solvc08a062950	CYP711A21	3 1	3	5	20	8	10	7	7	2	0
Solvc10a017510	CYP71BE18	ò	0	0	20	1	1	, 1	Ó	0	ő
Solvc03a111880	CYP71AU33	1	0	0	20	0	0	0	0	0	0
Solvc09a098770	CYP76B12	0	0	1	18	0	0	0	0	0	0
Solyc02q065190	CYP76B17	Ő	õ	4	18	Ő	1	Ő	Ő	Ő	Ō
Solyc01g008650	CYP71D185	0	0	0	16	0	0	0	0	0	0
Solyc01g094140	CYP704A63	0	0	0	16	0	0	0	3	1	0
Solyc06g074420	CYP94C29	3	2	1	14	6	3	2	0	0	0
Solyc02g092250	CYP71BE17	1	1	1	13	0	1	1	1	1	0
Solyc07g055530	CYP72A174	3	2	3	12	6	5	5	4	3	4
Solyc10g083700	CYP76A21	0	2	0	11	2	5	3	2	0	0
Solyc03g114940	<i>CYP78A75</i>	1	1	3	11	1	0	0	0	0	0
Solyc02g094860	CYP735A20	0	5	0	10	5	5	1	1	0	0
Solyc12g088970	<i>CYP82C22</i>	0	0	0	10	0	0	0	0	0	0
Solyc10g018150	CYP712G1	0	0	0	10	0	0	0	0	0	0
Solyc04g078340	CYP81C9	0	1	0	7	0	1	0	0	0	0
Solyc06g082730	CYP714G9	0	0	0	7	0	0	0	0	0	0
Solyc10g009310	CYP/8A/8	0	0	0	6	0	0	0	0	0	0
Solycu 1g096280	CYP78A74	0	2	2	5	0	0	0	0	0	0
Solycu3g112040	CYP71AU32	0	0	0	5	0	1	0	2	0	4
Solycu 1g008640	CYP71D186	0	0	0	5	0	0	0	0	0	0
Solyco 19094130 Solyco8a080430	CVP87421	0	0	0	5	0	0	0	0	0	0
Solvc03a121510	CVP90D19	0	0	0	4	0	0	0	0	0	0
Solvc10a081550	CYP82M3	0	0	0	4	0	0	0	0	0	0
Solvc06a076800	CYP86A33	Ő	0	1	3	ő	ő	0	Ő	0	ő
Solvc03a019870	CYP720A1	0	0	0	3	0	0	0	0	0	0
Solvc02a090300	CYP76B24	1	Ő	Ő	3	1	0	0	Ő	Ő	0
Solvc04a080650	CYP722A1	0	Ő	Ő	3	1	0	Ő	Ő	Ő	0
Solvc10a007890	CYP72A194	õ	õ	õ	2	ò	õ	ő	õ	õ	õ
Solvc09a008910	CYP76A19	0	0	0	2	0	0	0	0	0	0
Solyc06g073570	CYP82W1	0	0	0	2	0	0	0	0	0	0
Solyc02g094110	CYP94B17	0	0	0	2	0	0	0	0	0	0
Solyc07g055970	CYP718A6	0	0	0	2	0	0	0	0	0	0
Solyc04g011920	CYP96A51	0	0	0	1	0	0	0	0	0	0
Solyc07g055490	CYP72A176	0	0	0	1	0	0	0	0	0	0
Solyc02g014730	CYP86B11	0	0	0	1	0	0	0	0	0	0
Solyc04g011940	<i>CYP96A49</i>	0	0	0	1	0	0	0	0	0	0
Solyc04q054250	CYP736A67	0	0	0	1	0	0	0	0	0	0

 Table S7. List of tomato CYP genes specifically expressed in roots.

Table S8. Primer sequ	uences used in	n this pape	er.
-----------------------	----------------	-------------	-----

Primer No.	Usage	Primer sequence $(5' \rightarrow 3')$
Primer-1	For aBT-PCB of <i>SOLA1</i> (Ew)	GGTTATGTTGGCCAAAATCCCATT
Primer-2	For gRT-PCR of <i>SOLA1</i> (Rv)	TGCTAGCAATGCTTCGCTAAAATCA
Primer-3	For aBT-PCB of SOLA2 (Fw)	ACTCGAGACCTTCAATGGATAACTC
Primer-4	For aRT-PCR of $SOLA2$ (Rv)	GCACCCTATCATTGCTCCATCC
Primer-5	For aRT-PCR of <i>SOLA3</i> (Fw)	ACCTTGAGGAGTGGCACAACC
Primer-6	For $aBT-PCB$ of <i>SOLA3</i> (By)	CTTCCCTTAGCTCCGGCATGA
Primer-7	For $aBT-PCB$ of Solve01a090610 (Ew)	
Primer-8	For $aBT-PCB$ of Solve01a090610 (By)	ACCGCTGAGAAGCCTTTATCTG
Primer-9	For aBT-PCB of Solve01a090630 (Ew)	ACGTTGATGTCCCTCCCTCC
Primor-10	For gRT-PCB of Solve01g000000 (Fw)	
Primor-11	For aBT-PCB of SOL 44 (Ew)	TGCATGAATCCGACACGAAC
Primer-12	For $aBT-PCB$ of $SOLA4$ (By)	TTGCCATTCGGGATGAAGTG
Primor-13	For $aBT-PCB$ of $SO(A5 (Ew))$	
Primor 14	For aPT PCP of SOLAS (Fw)	
Primor 15	For qRT PCR of CVR716444 (Ev)	
Primer 10	For gRT PCR of CVR716444 (FW)	
Primer-16	For qRT-PCR of <i>CTP716A44</i> (RV)	
Primer-17	For gRT-PCR of Ubiquitin 3 (Fw)	
Primer-18	For gRT-PCR of <i>OblgOldin 3</i> (RV)	
Primer-19	For construction of CRISPR/Case vector of SOLAT	
Primer-20		
Primer-21		
Primer-22		
Primer-23	For construction of CRISPR/Cas9 vector of SOLA2	TTGGGTCTCGTGCAGAACTATAGAGATATACTATGTTTTAGAGCTAGAAATAGCA
Primer-24		TTGGGTCTCGAGTAGTTGTGCCGTTTTAGAGCTAGAAATAGCA
Primer-25		TTGGGTCTCCTACTTGGGAATCTGCACCAGCCGGGAATCGAA
Primer-26		TTGGGTCTCCAAACTGGTTTTCAAAGGCATGTCTCTGCACCAGCCGGGAATCGAA
Primer-27	For construction of CRISPR/Cas9 vector of SOLA3	TTGGGTCTCGTGCAGTCGAGACGTCGATAACCATGGTTTTAGAGCTAGAAATAGCA
Primer-28		TTGGGTCTCGTCCAACGCGCATGTTTTAGAGCTAGAAATAGCA
Primer-29		TTGGGTCTCCTGGAAGAGTACGCTGCACCAGCCGGGAATCGAA
Primer-30		TTGGGTCTCCAAACGCATGACTTTCTTGTACACTCTGCACCAGCCGGGAATCGAA
Primer-31	For construction of CRISPR/Cas9 vector of SOLA4	TTGGGTCTCGTGCAGATATCTTTGGTATTTCCATGGTTTTAGAGCTAGAAATAGCA
Primer-32		TTGGGTCTCGGAAGTCAAACTAGTTTTAGAGCTAGAAATAGCA
Primer-33		TTGGGTCTCCCTTCTCATCAGTCTGCACCAGCCGGGAATCGAA
Primer-34		TTGGGTCTCCAAACATGATTGATATTTCTCATGACTGCACCAGCCGGGAATCGAA
Primer-35	For construction of CRISPR/Cas9 vector of SOLA4	TTGGGTCTCGTGCAGCAAGAAGCTTTTCGGAGACGGTTTTAGAGCTAGAAATAGCA
Primer-36		TTGGGTCTCGTGGGTAAAAATGGTTTTAGAGCTAGAAATAGCA
Primer-37		TTGGGTCTCCCCCATTTTTCGCTGCACCAGCCGGGAATCGAA
Primer-38		TTGGGTCTCCAAACTGTTTTTCATGGAGTAAGCCTGCACCAGCCGGGAATCGAA
Primer-39	For construction of CRISPR/Cas9 vector of CYP716A44	TTGGGTCTCGTGCAGTCCCGTAGCAAAGTGACGTTGTTTTAGAGCTAGAAATAGCA
Primer-40		TTGGGTCTCCTTGCAATGCTTCTGCACCAGCCGGGAATCGAA
Primer-41		TTGGGTCTCGGCAACGTTACGTGTTTTAGAGCTAGAAATAGCA
Primer-42		TTGGGTCTCCAAACATTTGATGTTTTGGCTTCTGCTGCACCAGCCGGGAATCGAA
Primer-43	For genotyping of SOLA1-ko (Fw)	GGGTTCTCTAACAGTTACCCACAA
Primer-44	For genotyping of SOLA1-ko (Rv)	CCATTAGGCCACATGAAATTGGT
Primer-45	For genotyping of SOLA2-ko (Fw)	AAGAAGCCTATATAAAACCAAGCAA
Primer-46	For genotyping of SOLA2-ko (Rv)	TGGCCACATGAGGTTGGAAA
Primer-47	For genotyping of SOLA3-ko (Fw)	TGGCTTTCCAAGTAGAACCAA
Primer-48	For genotyping of SOLA3-ko (Rv)	ACCAGTATTTATGAACGTTGTCATT
Primer-49	For genotyping of SOLA4-ko (Fw)	TTCCCTACACATCATTATCAAAAGC
Primer-50	For genotyping of SOLA4-ko (Rv)	TTGTGCCCCTCTAGCTCCAT
Primer-51	For genotyping of SOLA5-ko (Fw)	CTCTACTGGCATGGACTGCAA
Primer-52	For genotyping of SOLA5-ko (Rv)	TTCCAACGTTCGAGCATTGTCT
Primer-53	For genotyping of CYP716A44-ko (Fw)	TTGTGGTGCATCAGCCAATAAA
Primer-54	For genotyping of CYP716A44-ko (Rv)	TTGTGTTGATGATACTTTCCCCTCA