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SUPPLEMENTARY FIGURES 

Fig. S1. GSEA of dMMR vs. pMMR human primary organoids. 

(A) GSEA of differentially expressed gene sets from the Reactome database comparing pMMR

vs. dMMR tumor organoids (+ve NES: dMMR). 

Fig. S2. cGAS/STING controls IFN signaling in dMMR tumor cells. 

(A, B) Genetically modified MC38 tumor cells were confirmed by western blotting. (C) 

Cytosolic DNA of MC38 tumor cells was isolated with a commercial kit and quantified by 

qPCR with primers specific for genomic DNA. (D) Cytosolic cGAMP levels were quantified 

by ELISA of cell lysates of cultured MC38 tumor cells. (E) IFN-ȕ�SURGXFWLRQ�IURP�0&���WXPRU�

cells was quantified by ELISA. (F) Cytosolic DNA of MC38 tumor cells was isolated with a 

commercial kit and quantified by qPCR with primers specific for genomic DNA. (G) Cytosolic 

cGAMP levels were quantified by ELISA of cell lysates of cultured MC38 tumor cells. (H) 

IFN-ȕ�SURGXFWLRQ�IURP�0&���WXPRU�FHOOV�ZDV�TXDQWLILHG�E\�(/,6$���,��7KH�SKRVSKRU\ODWLRQ�

of STAT1 in cultured MC38 cells was detected by western blotting. (J) The relative gene 

expression of Isg15, Ccl5 and Cxcl10 in cultured MC38 tumor cells was quantified by qPCR. 

(K) The phosphorylation of STAT1 in cultured MC38 cells was detected by western blotting.

(L) The relative gene expression of Isg15, Ccl5 and Cxcl10 in cultured MC38 tumor cells was

quantified by qPCR. The data represent n=3 independent experiments (C, D, F, G, J, L) or are 

representative of n=2 independent experiments (E, H). One-way ANOVA (D, E, G, H, J, L) or 

Student’s t test (C, F) was used to determine significance. 

Fig. S3. STING-mediated IFN signaling in dMMR CRC controls immunogenicity. 



(A, B) Genetically modified MC38 tumor cells were treated with anti-IFNAR1 blocking 

antibodies (30 µg/ml) for 24 h, and the relative gene expression of Isg15, Ccl5 and Cxcl10 was 

quantified by qPCR. (C, D) In vitro proliferation of cultured MC38 tumor cells. (E) Endpoint 

size of subcutaneously grown WT, MLH1-/- or MLH1/STING-/- MC38 tumors (n=5) or (F) 

WT, MSH2-/- or MSH2/STING-/- MC38 tumors (n=7-10). (G, H) Tumor-bearing mice were 

treated without or with anti-IFNAR1 (200 µg/mouse) blocking antibodies every three days 

starting at Day 0 (n=3-5). (I, J) Tumor-bearing mice were treated without or with anti-CXCR3 

(200 µg/mouse) blocking antibodies every three days starting at Day 0 (n=3-5). The data are 

representative of n=2 independent experiments (A, B) or represent n=3 independent 

experiments (C, D). The data are presented as the mean ± SEM (G-J). One-way ANOVA (E, 

F) or Student’s t test (A, B) was used to determine significance.

Fig. S4. Synthetically enforced STINGN153S drives IFN signaling. 

(A) IFN-ȕ�SURGXFWLRQ�IURP�67,1*�PXWDQW�0&���WXPRU�FHOOV�ZDV�TXDQWLILHG�E\�(/,6$���%��

The phosphorylation of STAT1 in cultured STING mutant MC38 cells was detected by western 

blotting. (C) The relative gene expression of Isg15 in cultured STING mutant MC38 tumor 

cells was quantified by qPCR. The data are representative of n=2 independent experiments (A, 

C). One-way ANOVA (A, C) was used to determine significance. 

Fig. S5. Synthetically enforced STING signaling promotes antitumor immunity. 

(A) Endpoint tumor weight of subcutaneously grown WT vs. STINGN153S MC38 tumors in

syngeneic WT C57Bl/6 mice (n=5). (B) In vitro proliferation of cultured MC38 tumor cells. 

(C) Growth of subcutaneously inoculated WT and STINGN153S MC38 tumor cells in NOD-

SCID mice (n=4). (D) In vitro proliferation of cultured STING mutant MC38 tumor cells. (E) 

Growth of subcutaneously inoculated STING mutant MC38 tumor cells in syngeneic C57Bl/6 



mice (n=5). (F) FACS analyses displaying the percentages of Ifng and PD1 in CD8+ T cells 

from subcutaneously grown MC38 tumors in syngeneic WT C57Bl/6 mice explanted on Day 

16. The data are presented as the mean ± SEM from n=3 independent experiments (B) or are

representative of n=2 independent experiments (D). Student´s t test (A, F) was used to 

determine significance. 

Fig. S6. Tumor cell-intrinsic STING enforcement sensitizes to immune checkpoint 

inhibitor therapy. 

(A) Endpoint tumor weight of subcutaneously grown WT vs. mixSTINGN153S MC38 tumors

that were treated with ICI therapy (n=10). (B) Survival of WT vs. mixSTINGN153S tumor-

bearing mice treated with ICI therapy every three days starting on Day 10 (n=9-10). Student´s 

t test (A) or log-UDQN��0DQWHO&R[��WHVW��%��ZDV�XVHG�WR�GHWHUPLQH�VLJQLILFDnce. 

Fig. S7. The expression of STINGN153S in a subset of tumor cells reprograms the TME. 

(A) Heatmap displaying the different cell clusters (y-axis) and the antigen intensity of the

antibody-labeled cells (x-axis). (B) UMAP plot displaying the annotated clusters comparing the 

WT (gray) vs. mixSTINGN153S (blue) conditions. (C) WT or mixSTINGN153S MC38 tumor cells 

were subcutaneously inoculated into syngeneic C57Bl/6 mice, and the percentages (CD4, CD8, 

NK, CD11c, CD8+ DCs) of live/CD45+ cells in the tumor were quantified by FACS analysis 

(n=4-5). (D) Differentially expressed gene sets obtained via GSEA by using g:profiler on all 

GO:BP terms enriched for fewer than 400 genes considering only the DC clusters “MHCII+ 

DCs” and “CD11b+ DCs”. Student´s t test (C) was used to determine significance. 
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Figure S2
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Figure S3
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Figure 64
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Figure S5
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Figure S6
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Figure S7
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Table S1. Mutations in MMR genes in human CRC from TCGA datasets and in patient-derived 

CRC organoids. 

Table S2. Total number of somatic variants and variant allele frequencies of recurrent mutations 

in dMMR (n=3) and pMMR (n=9) patient-derived CRC organoids. 

Table S3. Differential gene expression analysis (DESeq2 output and GSEA) comparing human 
dMMR (n=3) vs. pMMR (n=9) patient-derived CRC organoids. 
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